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Abstract

This thesis describes original proposals regarding light field rendering, focusing, compres-
sion, streaming, and methods for its optimal usage on 3D displays. Light field rendering is
a fast image-based way to render otherwise computationally demanding synthetic or even
real-life scenes. An input set of images that captures a scene is used to synthesize a novel
view without complex 3D reconstructions. The main scientific contribution of this thesis
is a proof of a hypothesis. The hypothesis states that state-of-the-art light field rendering
methods can be outperformed by a novel method in terms of visual quality, memory re-
quirements, and time performance. The novel method proposed in this thesis enables the
usage of light fields in real time without visual quality degradation and excessive hardware
requirements. The hypothesis is proven experimentally and supported by reference imple-
mentations and published papers. The thesis also contains other novel proposals that serve
as supporting materials for the main method. These proposals address the most crucial
issues in light field rendering. The main contribution and other proposals are intended to
open a way to the usage of light field assets in the gaming and film industry. This thesis
provides an overview of existing state-of-the-art methods, the hypothesis with experimental
proof, and a description of proposed applications of light field principles on 3D displays.

Abstrakt

Tato prace popisuje originalni navrhy tykajici se vykreslovani light fieldl, zaostrovani, kom-
prese, streamovani a metod pro jejich optimalni vyuziti na 3D displejich. Vykreslovani light
fieldd spadé do oblasti tzv. image-based renderingu. Jedna se o rychly zptisob vykreslovani
jinak vypocetné narocnych syntetickych nebo také redlnych scén. Vstupni sada obrazk,
kterd zachycuje scénu, se pouziva k syntéze nového pohledu bez slozitych 3D rekonstrukei.
Hlavnim védeckym piinosem této prace je dukaz hypotézy. Hypotéza uvadi, ze moderni
metody vykreslovani light fieldi mohou byt prekondny novou metodou, v oblasti vizualni
kvality, paméfovych pozadavki a ¢asové naroc¢nosti. Nova metoda navrzena v této praci
umoznuje vyuziti light fieldi v redlném case bez zhorseni vizudlni kvality a bez nadmérnych
hardwarovych pozadavka. Hypotéza je experimentdlné dokazana a podporena referenénimi
implementacemi a publikovanymi ¢lanky. Prace obsahuje i dalsi nové navrhy, které slouzi
jako podklady pro hlavni metodu. Tyto navrhy resi zasadni problémy pri vykreslovani light
fieldi. Hlavnim pfinosem prace je otevieni cesty k vyuziti light fieldt v hernim a filmovém
prumyslu. Tato prace obsahuje prehled stéavajicich nejmodernéjsich metod, hypotézu s ex-
perimentalnim diikazem a popis navrhovanych aplikaci light fieldt na 3D displejich.
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Rozsireny abstrakt

Light field rendering patii mezi metody tzv. image-based renderingu. Tyto metody jsou
urceny k vykreslovani novych pohled na 2D ¢i 3D scény pouze na zdkladé obrazového
vstupu. Vstupem téchto metod jsou pouze obrazky zachycujici danou scénu z ruznych
uhla pohledu. Neni potifeba napf. popis geometrie, nastaveni materidli povrchi nebo
rozmisténi svétel ve scéné. Pojem light field (svételné pole) je pouZivan pro reprezentaci
scény pouze na zakladé Sireni svétla. Pro kazdy bod a kazdy smér v prostoru je definovana
tzv. plenopticka funkce. Navratovymi hodnotami této funkce jsou vlastnosti svétla jako
jeho barva ¢i intenzita. Ve vypocetnich technologiich je obtizné pracovat s takovou spojitou
funkci, proto je light field definovin pouze pro vymezeny prostor a diskrétné. V praxi
se jednd o mnozinu 2D obrazkl, zpravidla zachycenych kamerami umisténymi na presné
definovanych mistech. Nejcastéji pouzivané rozmisténi kamer je v pravidelné rovinné mrizce.

Pouziti diskrétniho light fieldu pro vykresleni nového pohledu na danou scénu prindsi
problémy. V oblasti vizualni kvality se jedna o nedostatek informaci o scéné. Jelikoz obrazky
nezachycuji spojitou informaci, ¢dsti scény pro nékteré nové pohledy musi byt doplnény
pouze na zakladé vstupt, a tedy Casto interpolovany bez hlubsi znalosti o redlném obsahu
scény. Dale chybéjici informace o hloubce ve scéné znemozinuje spravné zaostieni scény ve
vSech jejich ¢astech, a scéna je tak castecné rozostiena. V oblasti vykonu je problematicka
samotna reprezentace diskrétniho light fieldu, jelikoz nekomprimované obrazky ve vysokém
rozliseni zaplni velkou ¢ast paméti na grafické karté. Vyse zminénou chybéjici hloubku ve
scéneé lze také odhadnout existujicimi metodami, nicméné tento odhad je Casto vypocetné
naroc¢ny. Existujici metody navic odhaduji hloubku pro dané vstupni pohledy, ne vSak pro
zatim neexistujici novy pohled, pro néjz je potieba.

Tato prace vychazi ze studia existujicich stavajicich metod. Na zakladé téchto metod
je stanovena védeckd hypotéza. Tato hypotéza tvrdi, ze 1ze navrhnout novou metodu light
field renderingu, kterd je schopnd vykreslit plné zaostfené nové pohledy na scénu, piimo
ze vstupnich obrazkd, bez potieby dodatecné informace o hloubce, v kvalité vyssi nez
u existujicich metod, s mensimi pozadavky na vykon a paméf. Hypotéza je dokazana ex-
perimentalné. Dikaz hypotézy je zdokumentovan v této praci a vychazi z publikovanych
védeckych clankt. Hlavnim jadrem dikazu je metoda, kterd na zakladé vzajemné podob-
nosti vstupnich obrazku vygeneruje tzv. zaostiovaci mapu. Tato rastrovd mapa v kazdém
pixelu uchovava optimalni zaostfovaci vzdédlenost pro pozadovany novy pohled na scénu.
Hodnoty v mapé jsou ziskany na zakladé nejmensi chyby, kdy jsou pixely vstupnich obrazku
porovnavany podle svych barev za tcelem vyhledani nejpodobnéjsich hodnot, a tedy podob-
nych mist ve scéné. Tato mapa se tedy lisi od ¢asto pouzivané hloubkové ¢i disparitni mapy
a nemusi plné odpovidat struktufe scény. Je vypocitana pro novy pohled a definovana ve
vsech mistech. Na zdkladé této mapy pak jsou ze vstupnich obrazkt vybrany potiebné
pixely a interpolovany do nového pohledu. Tato metoda je navrzena tak, aby plné vyuzila
masivniho paralelismu na grafickych kartach. V ramci vyzkumu byla vytvorena referenc¢ni
implementace a namérené vysledky odpovidaji hypotéze. Metoda je pouzitelnd i pro ap-
likace vyzadujici vykresleni v redlném case, minimalizuje velikost dat potfebnych v paméti
a neni zavisld na casto ¢asové narocném strojovém uceni.

Mimo hypotézu a dikaz jsou v préci také uvedeny doplnujici vysledky vyzkumu. Tyto
vysledky se zabyvaji napriklad kompresnimi metodami vhodnymi pro diskrétni light field.
Navrzena komprese vyuziva akceleraci na grafické karté a je kompatibilni s navrzenou
vykreslovaci metodou. Daéle se prace zabyva optimalnim zobrazenim dat na 3D displejich.
Toto téma také souvisi s principy pouzivanymi v oblasti light fieldu.
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Chapter 1
Introduction

A 3D scene in computer graphics is often described by its geometry, materials, and light
sources. Rendering techniques, such as path tracing or rasterization, sample the scene,
obtain the necessary visual information, and produce a novel view. However, these methods
can be performance-demanding and the 3D representation of the scene might not be easy to
acquire. To render a view of a scene, only a light-propagation model suffices. This model,
called the light field, describes the incoming light for any point and direction in the scene.
Lightweight image-based rendering methods can be used to produce novel views. Scenes
can be captured by light field cameras, camera arrays, or a moving camera. The captured
light field consists of multiple views of the scene. Synthetic or even real-life scenes can be
easily captured and reconstructed.

The main advantage of light field, in comparison to standard photography, is the option
of advanced editing in post-process. Standard photos and videos are captured from one
position and with one focus distance and aperture settings at a time. Light field can be
viewed from different angles or focused at different parts of the scene. A virtual camera
motion in a 3D environment can be simulated based only on the input set of 2D images.
Such editing and viewing options are in this thesis grouped to the term light field rendering.

Light fields are currently not widely used in industry. One drawback is the sampling
rate. A discrete approximation of light field, in the form of 2D images, does not contain
continuous information about the scene. Artifacts appear in parts of the scene with missing
information. Another issue is that storing the images requires a lot of memory. Also, to
achieve a completely sharp novel image, the geometry of the scene needs to be estimated.
Preprocessing of the data is not always possible in real-time applications. Depth or geomet-
ric input data increase the memory requirements and might not always be available. One
inherent limitation of light field is the impossibility to use standard 3D operations, such as
collision detection or physics simulation. The methods proposed in this thesis aim to solve
the issues related to quality and performance.

Based on the study of existing light field rendering methods, the central hypothesis
of this thesis is stated. According to the hypothesis, a novel light field rendering method
can be proposed and implemented. The advantages of this method over the state of the
art include a better visual quality of the result, less input data, and less memory and
computational requirements. The proposed method is described in this thesis and the
hypothesis is experimentally proven.

Light field rendering can be utilized to produce an input for virtual reality headsets, 3D
autostereoscopic displays, 3D tablets, or standard 2D screens with simulated 3D movement.
Part of this thesis explores the 3D displays and proposes methods for optimal retrieval and
processing of the input light field data. In summary, this thesis contains original proposals
covering the whole light field workflow, from the capturing of the data, their compression,
streaming to the GPU, rendering of the novel view, to the potential application in industry.



Chapter 2
Light Field

This chapter contains general and in-depth explanations on the topic of light field. The
basic principles of light field rendering and related topics, such as acquisition of the data
and their compression, are explained in this chapter. The description of light field state-
of-the-art methods serves as a theoretical background for the novel proposals in the later
parts of this thesis.

2.1 Overview of Light Field

As the name light field suggests, a field of light can be defined for a given scene. Such a field
would contain information about the incoming light at any point in the scene; see Fig. 2.1.
This universal definition does not involve working with materials, surfaces, or geometry.
However, it is difficult and impractical to work with such general definitions. In computer
graphics, the light field is defined only on a subset of space. Also, instead of an ideal
theoretical continuous definition, a discrete approximation is used. The scene is described
as static, and the light is defined only for specific wavelengths corresponding to the human
visual system. In practice, a light field can be used as an alternate representation of a
3D scene, different from the classic structural boundary or volumetric representation; see
Fig. 2.2.

N

Figure 2.1: Ray coming from a source changes its color according to the materials contacted.

Light field contains visual information for a defined position and a direction in space.
Structural representations describe the scene using information about its surface or vol-
ume attributes, such as definition of the shape of objects, textures, lights, or material
settings [91]. Light field is usually represented by a set of images that contain differently
positioned views of the same scene. Fig. 2.3 demonstrates the standard light field rendering
pipeline. The scene is first captured in multiple views from defined camera positions. The
images are aligned and passed to the light field rendering method. The rendering method
selects the necessary images and samples their pixels that are used in the synthesis of the
novel view.
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Figure 2.2: 3D scene can be represented by a definition of its geometry and materials.
A window in the Blender software depicts such a representation. A field of light can be
defined for any point, any ray, from any direction. In practice, such a representation is
approximated by a set of images that capture the scene from different positions.
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Figure 2.3: A grid of cameras captures a synthetic or real scene. A set of images, containing
various views of the scene, is stored or streamed directly to the rendering method. Novel
views are generated using light field rendering methods. These views can be used in 2D
and 3D display devices to create a 3D experience in real time.

2.1.1 Practical Highlights of Light Field

Light field representation of the scene is suitable for rendering purposes. The advantages of
light field rendering methods are mainly the constant, content-independent rendering time,
and straightforward capture of a synthetic or real-life scene. The drawback of the light field
is that it does not implicitly contain all necessary information about the scene geometry
for advanced interaction with the scene, such as physics simulation or collision detection.

A quick motivational experiment was conducted to show how light field rendering com-
pares to path-tracing and rasterization; see Tab. 2.1. NVIDIA OptiX render and denoising
with adaptive sampling in Cycles engine and rasterization (Eevee engine) in a 3D modeling
and rendering software Blender 3.6 was compared with a light field rendering method [10].
The measurements were performed on NVIDIA® GeForce RTX"" 2070.

Used GPU memory [MB] Render time PSNR [dB]
Scene PT Raster LF ‘ PT PT 1s Raster LF ‘ PT 1s Raster LF
Cornell 1698 811 172.01s 2.73s 0.20s 28.40 11.66 43.67
Bonfire 2230 1084 1200 163.97s 4.62s 0.55s 0.0512s 35.05 17.11 38.40
Low 2398 1736 45.41s 3.07s 2.48s 34.76 21.55 38.76
Simple 2298 1159 12.27s 3.01s 2.27s 41.20 31.48 39.28

Table 2.1: The table contains a comparison of path tracing, rasterization, and light field
rendering. Light field requires constant memory footprint comparable with other techniques
but offers up to 60x faster visualization to path tracing with one sample and 20x faster to
rasterization. Four different scenes from a 4K light field dataset [10] were compared. PT
refers to path tracing, PT 1s to path-tracing with one sample and denoising, Raster to
rasterization and LF to light field rendering. PT was used as a reference for the PSNR
measurement.

The results depend on the type of the scene. Note that path tracing can be used to
generate scenes for light field rendering. From a theoretical point of view, path-tracing can
be viewed as an algorithm that populates a discrete subset of the light field by probing
the ray directions defined by the camera parameters. The experiment is focused on the
rendering of the novel view, based on existing light field dataset. The production of the



dataset itself is not relevant for this motivational measurement. The main focus of this
experiment is to evaluate the options for real-time rendering. This experiment demonstrates
how light field rendering might be a better choice than a standard rendering implemented
in the popular 3D rendering software and potentially than many other implementations.

The results show that light field rendering does not require as much memory as path
tracing. Rasterization can require less memory when only simple geometry is present with-
out a lot of textures. Light field rendering offers a significant rendering speedup compared
to the other approaches. Although rasterization is commonly used in real-time graphics, a
lot of effects need to be simulated and are not possible to physically compute. The speed
of light field rendering depends solely on the number of necessary texture read operations,
which would be five per pixel for rendering with precomputed focus distances. Note that
the rasterization implementation in Blender might not be optimal and the times may be
faster, but the visual quality of the result would still be lacking due to its inability to fully
simulate path-tracing results. This is also the reason why the GPU industry has focused
on GPU-accelerated ray tracing in recent years [229]. Path tracing with only one sample
and denoising is still worse in both speed and visual quality compared to light field ren-
dering. Generally, the usability of light fields increases with higher complexity of the scene
and the amount of materials and assets used. This is reflected in the results, where the
difference in performance between light field rendering and path tracing is lower with more
simple scenes. Therefore, light field rendering has a significant potential to be used in 3D
simulations.

Fig. 2.4 shows how the results differ visually. The chosen scene contains only diffuse
and slightly specular materials so that it can be visually compared. Note that other more
complex materials would show more significant changes and the visual comparison focused
on the common issues of each method would be more difficult to visualize.

Path tracing Path tracing - one sample Rasterization Light field

Figure 2.4: A simple scene is rendered using different methods and visually compared
in the figure. Problematic parts are highlighted. One-sample path tracing shows blurry
results with vanishing details as visible in the red zoom. Rasterization has problems with
precise computation of the shadows and lighting effect as visible in the blue zoom. Light
field rendering can produce focusing artifacts as visible in the orange zoom.



Fast light field rendering, which is the main topic of this thesis, can be crucial for use
cases, such as streaming of light field movies or integration in 3D scenes; see Fig. 2.5.

streaming of light field films integration in 3D simulations and games

Figure 2.5: Real-time light field rendering, is important for streaming of light field films for
various 2D or 3D displays. Any view of the scene has to be accessible by a quick synthesis
so the user can change the viewing position. In 3D simulations, light field could replace
geometry that is not fully accessible by the camera and would be time-consuming to render.

An example of light field video usage is in cinematography for post-processing purposes.
The video, captured as a light field, would allow for a change of focus distance, camera
position, and would natively support a stereo or multi-view format export [264]; see Fig. 2.6.

) Standard photography has a static camera b) Light field with post-process options can
and one focus distance. change the camera position or focus distance.

uﬁ.ﬂud..d

) The images are examples of the refocused and differently positioned views.

Figure 2.6: The figure illustrates the difference between the standard photography and
light field. Light fields can be refocused and the viewing camera can be moved in the post-
processing. The red plane at the geometry depicts the focus distance.

In 3D simulations, like computer games, light field assets would be an optimal way to
render computationally demanding scenes [115], where the player’s movement is limited to
avoid reaching uncaptured parts of the scene [261]. Light fields assets for 3D environment
would be optimal for scenes such as views through windows, inside rooms, into boxes with
various objects, at distant scenery, etc.



2.1.2 Light Field in Already Existing Software

Google introduced a VR light field showcase application called Welcome to Light
Fields [201]. It serves as a virtual tour that shows a real-life captured scene with a ro-
tating camera array. The entire scene is scanned from a particular position. To minimize
GPU memory requirements, tiled streaming and caching is used along with modified VP9
compression. A disk-based reconstruction method is used to render the final image. The
whole scene is represented by a collection of disk-shaped windows with tessellated geometry
based on depth values estimated by multi-view stereo algorithms.

Leia LumePad, a 3D tablet, comes with a LeiaPix application. It is a light field editor
that allows unified editing of stereo photos, which are further interpolated into a higher
density light field; see Fig. 2.7.

Figure 2.7: The figure contains two screenshots from the LeiaPix light field editing software
on 3D tablet LumePad. The images are displayed in 3D and basic edits can be conducted.

An open-source light field imaging application PlenoptiCam [99] exists and allows the
user to display photos from Lytro or similar plenoptic cameras. It allows for various opera-
tions with plenoptic images such as depth map generation, refocusing or interactive camera
motion; see Fig. 2.8. A similar application Light Field Video Viewer [277] also supports
viewing light field videos. The author proposed using plenoptic camera along with classic
2D camera to capture the video at the same time and then use the angular information
from plenoptic camera to enhance the 2D video adding all the attributes of light field video.
In this way, the bandwidth is reduced since all the data from the plenoptic camera are not
being transferred and read during the final render. LFDisplay software [159] can be used
to view plenoptic images from light field microscopes; see Fig. 2.9. It supports tilting and
refocusing of the captured sample. Light Field Toolbox [61] is a set of algorithms used
to analyze light fields in Matlab software. It mainly supports Lytro plenoptic images but
can load other formats as well. The toolbox can be used to calibrate, rectify, refocus and
visualize light fields. Light Field Suite [279] is a set of tools that can be used to estimate
disparity from light field views. Similar features for plenoptic camera images are contained
in Plenoptic Toolbox [203] that supports rendering of the 3D views from such photos. How-
ever, none of these products would be able to replace the proposal of this thesis because
of their inability to process streamed, high-resolution, widely spaced light field data in real
time.
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Figure 2.8: The figure shows import (top left) and result (bottom) windows of Plenopti-
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be exported (top right). INRIA plenoptic camera dataset was used [238].
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Figure 2.9: The figure shows two viewing modes of microscopic light field images in LFDis-
play software.



2.2 Physical Background

In physics, light is defined as electromagnetic radiation of a certain wavelength [65]. Wave-
lengths A € (380, 750) in nanometers are regarded as visible light with respect to the human
visual system [44, 246]. Light transmission is described by geometrical (ray) or physical
(wave) optics [94]. Light is propagated in space by elementary particles called photons.
Light can also be viewed as a field defined by a vector function [76, 88]. Specific wave or
particle properties of light are not considered in this model. The model describes a field of
rays in any possible directions. To model such a field, a 7D plenoptic function [32] L can
be defined as in Eq. 2.1.

I:L(pocapyaPZa07907m7)\)' (2.1)

This function returns the light intensity I of an incoming ray to a point in 3D space with
coordinates p;,py,p. from a given direction represented by two spherical angles 0, ¢; see
Fig. 2.10. Assuming a non-static scene, the light can vary for each moment m in time and
for different wavelengths A.

(P Py P2)

Figure 2.10: The camera position and direction can be parametrized in 3D space as
arguments of a plenoptic function. The function can be discretized and sampled by grid.

In physics, the intensity of the light along a ray would be called radiance. The plenoptic
function is defined for a point and differs from the radiance, which is defined per unit area. It
resembles the definition of radiant intensity. Light fields are also sometimes called radiance
fields. The incoming light to the given point can originate from many different sources.
The light sources illuminate the scene and the light is absorbed, reflected, or refracted.
The intensity of the light of a given wavelength changes due to its interaction with the
environment. The resulting intensity can be a result of a combination of several light
sources.

The field contains the continuous information about the light so a full reconstruction is
always possible when each query point is contained in the light field. Light field defined as
a vector field of rays is a theoretical concept. The storage of continuous signal information
is challenging in computer science, and several approximation techniques have to be used
in practice.
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2.3 Discrete Approximation

Light information in computer science is often discretely encoded by a matrix of values of
a given color model representing an image [117]. A commonly used RGB additive color
model defines light as a vector of three channels: red, green, and blue, which corresponds
to the biological processing of light in the human eye [176]. This vector defined for a
specific coordinate in an image is called the pixel. Classic cameras usually quantize the
incoming light to the sensor to one 8-bit value per channel. High Dynamic Range (HDR)
devices, which aim to capture real light more accurately, use higher precision incoming light
information such as 10-bit, 16-bit, or 32-bit value per channel [213]. The light field can be
approximated by a set of images, where each image represents a view on the scene taken
with a different camera position. The views are also sometimes called sub-aperture images.

For static scenes and the definition of the return value I as a light color, for example,
RGB vector, the 7D plenoptic function can be approximated by a 5D function. The wave-
length A and time moment m arguments are omitted. In order to efficiently represent a
scene by light field, the viewing location is limited to the outside of a convex hull of the
scene. Light field would ideally capture a free space without occluders. When viewing only
the light field scene without additional 3D environment, the viewing and capturing cam-
eras are placed exactly on the scene convex hull boundary, which can be a simple bounding
box. Fig. 2.11 shows how a scene can be enclosed and sampled by virtual cameras as light
field. The surface of the convex hull of the scene contains the visual information about the
enclosed scene for each direction.

Figure 2.11: The scene is enclosed in a bounding box. The surface of the box contains
visual information about the enclosed scene in all directions. The cameras around the box
can sample the surface from all positions around it.
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When casting a ray from the viewing camera, the light information has to stay constant
along the whole ray. In this way, the function can be further simplified to 4D, commonly
referred to as the light slab [158] or the lumigraph [90]. The reduced 4D function L’
in Eq. 2.2 can be geometrically represented as a ray intersection of two planes or other
predefined surfaces [168], for example, sphere-plane [46], direction-point [45], or positional-
directional sphere [118].

I=1/(s,t,u,v) (2.2)

The ray would intersect the closer plane at a point with local coordinates of (s,t) and
the further plane at (u,v); see Fig. 2.12. The (s,t) coordinates, also called angular, on the
camera plane are used to identify which of the input views are relevant for the interpolation
of the novel view. The views are mapped on the plane since their capturing cameras were
distributed over a planar grid. The (u, v) coordinates, also called spatial, on the focal plane
are used to sample the correct pixels from the selected views.

Figure 2.12: The scene is placed between two invisible planes. The rays emitted from the
camera intersect the planes to find out which views and which pixels will be used in the
novel view synthesis.

The described representations are still continuous in theory. Their dimensions are lower
than those of the all-defined light field. All possible orientations of the rays in the described
representations cannot be fully defined without errors due to limited memory. That is the
reason why only some rays are defined, and the rest needs to be interpolated. In practice,
the definition of the rays is implemented by the discrete images. Fig. 2.13 describes the
issue of missing information caused by the light field discretization.
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Figure 2.13: Two cameras were used to capture light field in a form of two images. They
cover some rays that would sample the light field scene enclosed in a convex hull. The rays
that are not directly captured by the cameras need to be interpolated. The pixels from the
images can be, for example, simply blended together. The images were shifted so that the
highlighted pixels overlap each other.

13



2.4 Focusing Methods

The light field views can be placed on top of each other and blended together. In such
a case, only certain areas of the scene would be clearly visible because the areas that are
further or closer to the camera would not be properly aligned in the views. The input
images are expected to be without blurred areas, captured with infinite depth of field. The
focusing for one pixel in the resulting novel view is defined as a change of the coordinates
of the sampled pixels that are used for the final color computation. In this thesis, the pixel
in the novel synthetic view is called focused if it is interpolated from the pixels, sampled
from the input views, that belong to the same 3D spot in the scene.

The resulting view visually resembles a depth-of-field effect where certain parts of the
scene are sharp and the rest are blurry. The view can be focused at one distance, or depth
information can be used to correctly focus each part of the image. The position of the focal
plane determines the focus distance in the scene, that is, which part of the scene is visually
sharp; see Fig. 2.14.
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Figure 2.14: The scheme shows side view of a scene with a depth of z. Two rays from the
virtual camera c intersect the geometry at points a and b. The capturing cameras c¢; are
evenly distributed along the st plane. Sampling rays are emitted from the closest cameras
(c5, cg and c7) to the direction of a and b converging at the focus distance f on the camera
cray vector. ag and bg; mark the ideal intersection of the virtual camera with the st plane.
The intersection points al,, al, and b, bl! determine which pixels, from the projected
image on the uwv plane, are taken into the interpolation. Points al,, a!l demonstrate a
situation where the rays intersect the geometry in a correct place. Points b/, bl = intersect

the uv plane, ignoring the geometry of the scene that leads to a defocused image.

The change of the focus in the novel view is called refocusing. Refocusing is simulated
by the interpolation algorithm, which blends the input images together. The nature of the
light field refocusing is different from the optical refocusing used in cameras, although it
looks similar. In standard photography, light rays that pass through the lens hit the sensor.
The adjustment of the lens and the size of the aperture affect how the rays propagate
further to the camera body. If the rays converging at the given point on the sensor do not
come from the same spot in the scene, such area is blurry. In light field, such an effect
is also caused by the color information not coming from the same spot in the scene. The
incoming rays on the sensor are simulated by sampling pixels at different coordinates in
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the input images. The areas that are out of focus can contain sharp ghosting artifacts due
to a low angular resolution of the light field data [19]; see Fig. 2.15. The defocused areas
are caused by the disparity of views. A smaller distance between the capturing cameras
can reduce the ghosting, but it can also reduce the resulting 3D effect and viewing range.
Denser angular sampling can reduce the artifacts, leading to smooth defocus, but increases
the space requirements for the light field data due to increasing redundancy between the
views.

8x8 grid 16x16 grid

focused at 2z

focused at 29

Figure 2.15: The figure shows light field scene focused at two different distances. The
amount of artifacts decreases with increasing angular resolution.

In practice, the novel view at angular coordinates s’,#' can be produced as a linear
combination of shifted input views, weighted by the defined aperture function A(s,t), using
the shift-sum algorithm [13] according to a general Eq. 2.3. The size of the input data grid
in the number of images is SxT.
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S T
View(s',t’):/l /1 L'(s,t,u,v)A(s, t)dsdt (2.3)

Compared to the general 4D light field representation, shift-sum works on the basis of
pure view interpolation. The synthetic novel view in 4D representation can be produced so
that each part of the view can be interpolated from different input views. The intersection
of the two planes can inherently identify the angular and spatial coordinates used to sample
the input views for each pixel in the novel view. In this way, the whole light field grid can
be utilized. Shift-sum uses only the nearest input views to the virtual camera position
and is thus less demanding regarding the sampling of the light field grid. This fact can
be advantageous for the GPU rendering due to the aligned memory access and SIMD
(Single Instruction, Multiple Data) nature where each thread in a warp executes the same
instruction on different data.

The refocusing is implemented by changing the sampling coordinates. The sampling
spatial coordinates on the focal plane are transformed according to the defined focus dis-
tance f. The vector of angular coordinates of the currently sampled view st and the vector
of angular coordinates of the novel view st, are used to obtain a new focused coordinates
vector uv [195] with spatial coordinates uv; see Eq. 2.4. Note that the signs might change
according to the orientation of the view grid.

uvy =uv — (st —st,)f (2.4)

Eq. 2.5 produces a refocused view; with the L’y function extended with the focusing
parameter f, internally sampling the input views according to Eq. 2.4.

S pT
view (s, ', f) :/ / L’¢(s,t,u,v, f)A(s,t)dsdt (2.5)
1 J1

Eq. 2.3 can be approximated by the weighted sum in Eq. 2.6. The weights w; approx-
imate the shape of the aperture. They depend on the distance between the sampled view
coordinates and the novel view coordinates. They can, for example, be sampled from a
Gaussian function with its maximal value at the novel view.

S
Zszl ZtT:1 L,f(s’ ta u, v, f) * Wst
S T
ZS:]_ Zt:1 Wst

Fig. 2.16 shows the principle of shifting and blending the images to focus on a certain
area in the scene. The focusing process can be performed pixel-wise. Each pixel of the
scene can be focused by its own local focal plane; see Fig. 2.17.

If each pixel in the novel view is focused, such view is called all-focused. The correct
focus distance can be obtained by the ray intersection with the geometry of the scene. A
precalculated depth map provides the depth value for each pixel. This value can be used
directly or recalculated, according to the capturing camera attributes, as the focus dis-
tance [122]. A simplified geometric proxy can be used for the surface estimation instead
of the depth maps. The depth can be stored for each pixel in any light field parametriza-
tion [262]. This approach uses the principles of ray tracing with depth search [269]. The
mutual orientation between the intersection point on the geometric proxy and the arbitrar-
ily positioned input camera can be used without a regular grid to determine which pixels
need to be sampled [43].

view(s', ', f) = (2.6)
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Figure 2.16: Four input images from the grid are shifted to the novel view in the middle
of them. They are blended together. The images are shifted so that the roof of the front
house is focused.

(a) The scene is focused at the front house.  (b) The scene is all-focused, sharp everywhere.

Figure 2.17: The figure contains two views on a 3D scene, demonstrating the effect of all-
focused scene. The first one is focused on the front building with a smooth depth-of-field
simulation. The second one contains all parts of the scene in focus. Classic 3D rendering
methods automatically produce all-focused results and focusing needs to be simulated with
additional methods. Simple light field rendering supports only one focus distance and all-
focused results need to be produced by more advanced methods.
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2.4.1 Depth Extraction for Light Field Focusing

Depth maps can be available during the capture process. Their extraction is straightforward
with synthetic scenes, where the scene geometry is known. Depth is usually the position of
a pixel in a 3D scene on the axis perpendicular to the camera grid plane. Sometimes, values
in depth maps are distances of the pixels from the center of camera projection. Fig. 2.18
shows how the input light field data with depth maps would look like.
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Figure 2.18: The depth maps (on the right) can be used to approximate the scene geometry
in light field rendering.

Depth, disparity, or optical flow estimations are dual problems in this case. Each one
of them can be used to calculate the other with additional information, such as camera
positions and calibration data. The relationship of features between the images serves as
a basis for these estimations [31, 121]. Disparity maps describe how much pixels move
between two images. This is similar to optical flow that defines vectors for pixels or blocks
that describe their relative motion between two similar images.

When optical flow algorithms are applied to multiple camera outputs instead of one
camera video, it is possible to calculate a scene flow [183] that partially describes the
geometry. It can be said that the scene flow is a combination of disparity/depth and
optical flow [233]. The optical flow has to be filtered and the outliers are removed by
energy minimization methods [252]. Optical flow calculation is a search problem in which
a corresponding block of pixels needs to be found for each block of the other image [114].
Optical flow can be estimated from light field images in a manner similar to stereo views
processing [54]. The optical flow calculation is optimized by first performing a sparse
matching and then so called spatio-aware edge-aware filter is applied estimating dense flow.
The resulting disparity maps are then aggregated using median filtering followed by one-
step of energy minimization calculation. Fig. 2.19 demonstrates the visual relation between
two views of a light field grid.

Deep learning can also be used to estimate the depth from a set of images or even a
single image [70, 207], but additional processing would be needed to make the depth maps
consistent throughout the whole light field according to the 3D scene. The principle of light
field refocusing can be used to segment the image according to the resulting foused areas
to estimate depth [300].

A semi-global matching method estimates a dense disparity from rectified stereo images
by searching for most similar pixel blocks between the images in predefined directions and
search range [112]. Fast and good quality depth maps generation for light field images
using semi-global matching principle was previously proposed [18]. It uses principles of
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Figure 2.19: The right image contains highlighted areas which are also present in the left
image. This redundancy, typical for light field, can be exploited to estimate the depth
of the scene. Block-based approaches can be used to find the same spots in the views as
depicted by the white drawing connecting both images. The redundancy, on the other
hand, increases the amount of data.

the disparity map approximation method for stereo images. This method searches for best
disparity values along multiple corresponding lines in the input images.

A lightweight approach [128] manages to extract depth maps even from sparse input
data using intermediate disparity images and achieves the same results as more complex,
previously proposed, methods in less time. This method uses four corner images from
the grid as input. These images contain most of the geometric information about the
scene because they are captured from the most extreme positions. Rough disparity maps
are estimated from them using optical flow and are aggregated by energy minimization
algorithm. After applying bilateral filtering, the maps are warped into the rest of the views.
Possible holes that appeared due to occlusions are filled by global inpainting. However, the
missing information can produce unwanted visual artifacts in possible view interpolations.
The maps can be directly used to reconstruct a 3D geometry of the scene for the given
point of view; see Fig. 2.20.
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Figure 2.20: 3D mesh can be constructed from depth map but such a mesh is limited to
the same or similar point of views as in the depth map image.

Graph Cuts method for the energy minimization for multi-camera scene reconstruction
exists [143]. Plenoptic camera datasets can be processed to extract the depth with symmetry
property of the focal stack [167]. Focal stack representation of light field data consists of
images that are focused at different focal distances with depth-of-field effect. Another
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technique suitable for plenoptic camera data uses spatial variance after angular integration
of the epipolar image for defocusing and angular variance for correspondence depth cues
estimation [257]. Small matching windows can be used for a lot of images in the light field
datasets. Flat uniform regions which are not suitable for such approach can be analyzed in
a lower resolution, leading to multi-resolution matching approaches [194]. The extremely
narrow baseline in lenslet light field camera data causes problems when estimating depth
or disparity. This problem can be solved by exploiting phase-shift theorem in the Fourier
domain to estimate sub-pixel shifts [124]. The performance of depth or disparity estimation
methods is, in most cases, not sufficient for real-time usage along with rendering. Optimized
methods for light field data also usually work well with the plenoptic camera data but not
with the large baseline datasets. Deep learning methods also require excessive memory.

The multi-resolution depth estimation can also be used when working with wide-baseline
sparse datasets. The capturing and rendering pipeline using such an approach with a point-
cloud projection-based final image synthesis has already been proposed [223]. Point cloud
rendering also requires additional refinements such as smoothing of edges and filling of
occluded or empty areas [221]. However, using more cameras than the 4x4 proposed grid
to achieve better rendering results in this pipeline could negatively affect the performance.
The conversion of depth maps to point cloud is straightforward; see Fig. 2.21.

Figure 2.21: The light field depth maps can be converted to point clouds which then can
be merged to a 3D scene.

If the depth of the scene is known, novel views can also be rendered using image warp-
ing [232]. Light field rendering is potentially more GPU friendly and can maintain con-
stant speed. Warping techniques must solve issues with regard to the ordering of pixels in
occluded parts and the search for pixels in areas with missing data during the reprojec-
tion [155].

All search problems in algorithms described above can be optimized using the rules of
epipolar geometry [289] which can create search bounds to find the corresponding pixels.
For such an approach, the camera parameters and their exact positions are needed. One
point on one image can be found on a line on the other image.
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2.4.2 Light Field Focusing without Input Depth

Additional depth maps can improve the quality of light field rendering. However, they
increase the memory and streaming bandwidth requirements and also the number of texture
read operations, which is a crucial performance parameter for GPU algorithms. Even if
depth maps were available for each light field image, the depth information could be missing
for certain, previously occluded, parts of the novel view. The memory requirements can be
partially solved by selective streaming of the light field data only for the currently visible
part of the scene [74]. Light field rendering methods that do not rely on the input depth
maps might work as alternative solutions.

A simplified geometry of the scene can be used in a classic rendering pipeline with the
fine details substituted by a texture. To simulate view-dependent material attributes and
to mask geometry inaccuracies, each polygon of the scene can be rendered with variable
texture [62]. The method determines for each polygon in which input views it appears by
projecting them on image plane from the corresponding viewing angle. Partially visible
polygons are split. Polygons that are not visible in any of the input images are filled
with interpolated colors from neighboring polygons in object space. For each polygon, a
view map is generated simulating viewing hemisphere assigning closest input images to
the viewing angles. This method combines both image-based and geometric rasterization
rendering. Fig. 2.22 demonstrates the principle of variable texturing.

Figure 2.22: A simple geometry can be rendered with dynamic textures that change accord-
ing to the viewing angle. It is a combination of image-based rendering and rasterization.
The images on the right correspond to the cameras and show the captured view (left image)
and used textures for the same mesh area on the roof (right image).

Multiple unsynchronized video streams can be used as input for light field render-
ing [272]. In the first phase, a sparse, bidirectional optical flow is used to find corre-
spondences between the input videos. The result can be refined by applying an epipolar
constraint that can serve to detect outliers. Time offsets can be calculated to synchronize
the video streams, and temporal interpolation of new video frames is carried out using the
image morphing method. The quality is improved by an additional calculation of virtual
edges between corresponding feature points. For spatial interpolation, the unstructured
lumigraph rendering [43] method is used. This method requires a geometric proxy of the
scene, which requires preprocessing of the data with 3D reconstruction or depth extraction
algorithms.
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A light field movie can first be rendered offline using only the necessary set of cameras
to cover the entire scene of interest [115]. Each camera acquires a color and depth cubemap,
which is compressed using a similar concept to video compression methods. Raymarching
algorithm is used to render the scene in real time using only necessary parts of cubemaps
from the original cameras. Textures from cubemaps are chosen according to the distance
of the original cameras from the current virtual camera, viewing angle, and field of view.

Tens of differently focused views for a given viewpoint, using standard light field render-
ing methods can be analyzed to produce an all-focused view [254]. Areas in focus are then
chosen [247] from the previously generated views and the final image is constructed from
them; see Fig. 2.23. However, this approach was demonstrated only on small-resolution
images with a small distance between the cameras. It also uses multiple synthesis filters,
exploiting the density of Lytro dataset, which might not work well on the sparse datasets.
The method was further improved, but it is still unusable for real-time rendering [118].
This principle is similar to the main proposal of this thesis. However, the proposed method
works even with sparse data and on a per-pixel basis suitable for GPU acceleration.
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Figure 2.23: One possible method to achieve all-focused novel view is to produce several
views that are focused at different distances. Then composing the final view from the
focused parts of each intermediate view.

All-focus image can also be generated using high dynamic range light field [160], where
the position, direction, and exposure time information is integrated in the light field model.
Local focus distances can also be estimated for each view or even for each triangle of the
resulting viewing plane by minimizing the least squares error [107].

In a more general way, the principle of selecting the optimal focus distance per pixel or
pixel block can be defined by the 3D cost volume model [93]; see Fig. 2.24. The volume is
defined by its resolution, which could be the same as the desired pixel resolution of the novel
view. In general, the resolution is the density of the result and higher resolution provides
higher quality results but is more computationally demanding. The depth of the volume is
the hypothesis range. The hypothesis planes are possible results that are being searched.
The search algorithm uses a cost function to determine which hypothesis is the optimal
one for the given spatial coordinate. Note that this model is ideal for massive parallelism
computations, such as with GPU architectures. This model is used for disparity or depth
estimation in multi-view processing, as well as in the main proposal of this thesis.

Light field images can also be analysed in spectral domain. One of the depth-
independent reconstruction methods exploits the sparsity in continuous Fourier domain to
sample the light field efficiently [239]. A new sampling quality metric that outperforms the
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Figure 2.24: 3D cost volume consists of cells that can be mapped to pixel blocks of light
field focal stack. Each hypothesis plane in the depth dimension could be a differently
focused light field view. The goal of a search algorithm would be to identify the optimal
hypothesis for each spatial coordinate.

maximized minimum distance and reduces the search space, using symmetry constraints,
can be used in the novel view synthesis [231].

Densely sampled epipolar-plane image (EPI) reconstruction using shearlet transform
can be achieved exploiting the light field sparsity in shearlet domain [266]. EPI is a visual
representation of the scene where a visible point appears as a line with slope derived from
the distance between the capturing camera and the point itself. The intensity along the
line defines the light emission from the given point. The depth of the scene is visible
from the EPI [156] as shown in Fig. 2.25. This representation is the key principle of
the EPI reconstruction method. Depth-guided filters are used to analyze the EPI in the
frequency domain to identify the optimal depth layer that can be used for the novel view
reconstruction.

Deep-learning rendering based on few reference images [75, 104] can be used to produce
novel views from light field data. An unsupervised approach working with planar light
fields, using one network for disparity and one for occlusion map estimation, managed
to yield results comparable to supervised approaches, overcoming the drawbacks of the
full supervision methods [196]. The disparity estimation uses pyramid and a cost volume
approach on the input images. Warping is used to produce a novel view. The warping is
used in a cyclic manner to acquire the information about the scene geometry and occlusions.
Forward-backward warping takes two input views, warps one to the novel view, from the
novel view to the second input view, and then back to the novel and first input. In this
way, inconsistencies between the warped pixels and the input views reveal possible missing
information caused by occlusions; see Fig. 2.26.

Specific deep learning models for light field data and novel view synthesis also exist [249,
250]. When the camera position and parameters are known, image features can be sampled
along epipolar lines across several views near the virtual one. The neural network can evalu-
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Figure 2.25: Epipolar-plane image is constructed from a dense light field, where one row is
selected, views are sorted and stacked on top of each other. The views are cut and displayed
as a slice through the volume. The geometry of the scene is visible in the EPI in the slopes
of the lines. The intersections of the lines mark occlusions. Two EPI views are shown from
two slicing positions.

forward warping

top-left view novel center view BottOm-ri‘ht view . -

backward warping

Figure 2.26: The middle image is the novel view produced by blending and warping of the
left and right input views. To reveal occlusions, forward and backward warping is used so,
for example, point p; can be warped from the first input to the novel view but not to the
second input. That reveals p; being occluded in the second input. Point po is visible in all
views and would be propagated through the warping back and forth.
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ate the best match along these lines to synthesize all-focused view. These methods can deal
with occlusions even with missing data. Their real-time usage in 3D simulations with high-
resolution light fields would be problematic due to their memory and time requirements.
Fig. 2.27 shows the principle of epipolar features.
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Figure 2.27: A point in the central novel view has related points in the input view images
from the same spot in the scene if no occlusions are present. Many light field rendering
methods exploit the fact that the positions of the input views are known and an epipolar
line can be defined for each image. The main task of the rendering is the search for the
best match along epipolar lines (right).

Tremedous amount of research was conducted in the field of video frame interpola-
tion [66]. The frame interpolation methods can be used to enhance a video, especially by
increasing its framerate. Such videos look more smooth. Frame interpolation is a common
way to improve framerate even in the field of computer games [137]. Less information is
needed to be transmitted via the network or from the host memory to the GPU. Also,
fewer views need to be rendered in case of 3D simulations with graphical output. Frame
interpolation methods can also be used for the novel view synthesis in light fields. Fig. 2.28
shows the approach to exploiting frame interpolation, which usually works as a novel frame
interpolator between two consecutive video frames. The interpolation is used three times
to acquire a central view between four nearest views in the light field grid.

The standard frame interpolation can be implemented using optical flow, which identifies
the corresponding parts of two frames and serves as the interpolation guide. Fast GPU
accelerated approaches exist, such as NVIDIA FRUC library' which can be directly used
to interpolate intermediate video frames. A GPU-accelerated high-accuracy optical flow [41]
is implemented in OpenCV framework and can be used to interpolate, for example, new
video frames between two original ones. This approach can be used for light field data to
make the input image grid more dense or to generate intermediate views. The limitation is
the processing time and the inability to use additional information from surrounding views,
except for the two reference ones. Utilizing optical flow-based methods can be problematic
when the scene contains a lot of occluded parts, reflections, or areas without detailed
textures.

Deep learning provides better results in such cases. The frame interpolation seems to
work better on light field data than general deep-view interpolation methods [8]. Light
field data usually do not capture the scene from significantly different angles and positions,
which makes them unsuitable for methods designed to work with free-look data.

1 developer.nvidia.com/opticalflow-sdk
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Figure 2.28: The interpolation is first used to synthesize the middle images between two
pairs. The results are then interpolated again into the final view in the middle of the four
input views.

A combination of meta-learning and test-time adaptation leads to a robust network
for frame interpolation [57]. Meta-learning ensures better adaptability for various input
tasks as it modifies the learning algorithm itself according to the given task. Frame triplets
were used as the training samples. The triplet consists of three consecutive video frames,
where the middle one is considered as the expected ground-truth result. Optical flow and
pyramidal feature extractors can be combined with deep learning and softmax splatting,
which guarantees better interpolation results than optical flow or deep learning alone [197].
Bidirectional optical flow between the two input images is first estimated. The network is
used to synthesize the novel view between them, guided by the warped images according to
the flow. Softmax splatting solves the problems with sampling and splatting; see Fig. 2.29.
It can take into account the depth relation between the pixels and separate background
and foreground correctly.

FLAVR framework uses 3D spatio-temporal kernels to directly learn motion properties
from unlabeled videos [135]. This method can provide fast results in a good quality. The
improved texture synthesis in ST-MFNet outperforms the previous approaches in terms of
visual quality and uses four closest frames in the video instead of two [60].

General multi-view synthesis neural approaches can also provide acceptable results [190,
278] but are often not designed for light field data where views are aligned in a grid. To
reduce the memory requirements, it is optimal to use only the nearest views, which seems
to be problematic for this kind of network. The problem is similar to the 3D reconstruction
methods, which need more 3D information about the scene derived from the views. These
issues can be partially solved by identifying the camera rays projected in all views. The
color information along the rays can be used as the input of the network which significantly
shrinks the search domain for the correct synthesis of the novel view [274]. IFRNet is a
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Figure 2.29: When image is transformed, for example, warped by disparity map to the
novel camera position, the result can be produced in two simple ways. By splatting, sending
the input pixels directly to the resulting pixel grid which can produce holes and overlaps.
By sampling, where each pixel in the destination grid looks for the nearest source pixels and
computes the new value, for example, by averaging them. The figure shows how rotated
pixels are propagated.

real-time solution that reaches the same quality levels as the other works [144]. Similarly
to other approaches, feature pyramid is extracted from the input views. The output of the
feature extraction encoder is passed to the coarse-to-fine decoders. Intermediate flow fields
are gradually refined in a sequence of decoders. The performance of the model is improved
by novel objective functions: task-oriented flow distillation loss and feature space geometry
consistency loss. Pyramidal approach is used in computer vision often to detect features
and objects at different scales; see Fig. 2.30.

The deep interpolation is ready to be used even for modern standards like 4K
videos [204]. Large spaces between the frames and high resolution of the video introduce
drawbacks to the existing methods. The main issue is larger pixel distance between the
features in the frames. Search windows would have to be excessively big to quickly match
the detected inter-frame features. Global motion fields at a coarse scale are computed.
The issue of vanishing details in coarser scale is solved by refinement of the fields with an
upscaling module. Fig. 2.31 shows the problem of uneven distances between original and
downscaled images.

Networks such as FILM [216], that support large motion between the frames are the
most relevant for light field synthesis, as they are not limited to close views only. Input
images are processed in a pyramid manner with a feature extractor. Scale agnostic bi-
directional flows are computed from the features, and the final view is synthesized by UNet
decoder.

27



Figure 2.30: The input image is scaled down multiple times to produce several levels of scale
in the Gaussian pyramid (top image). This pyramid can be used in scale-invariant feature
or object detection. Laplacian pyramid (bottom image) is formed as a subtraction of two
successive levels in the Gaussian pyramid and is used for image compression. The pyramids
are often produced in grayscale, this figure contains RGB versions and its brightness is
increased for better readability.

Figure 2.31: Search windows used to find the corresponding features in two views might
not be optimal for high-resolution inputs. The image can be downscaled to reduce the
distance in pixels between the features. Important details might be lost in such process due
to the general loss of information introduced by downscaling. The figure shows the original
and 10x downsampled views. Right bottom corner of the original blended image (top-right
image) shows the size of their difference.
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2.4.3 3D Reconstruction

The light field images can be used in geometry reconstruction algorithms [188]. The quality
of the results depends on the density of input views, existence of additional information,
for example, depth and camera parameters, lighting conditions, or image quality. Stan-
dard photogrammetry and structure-from-motion methods, where the 3D scene or object
is reconstructed based on the corresponding features and similarities detected in the input
pictures [169], can be used with light field data. Software such as COLMAP, Meshroom,
VisualSFM, Regard3D, Metashape, Autodesk ReCap, 3DF Zephyr exists and can generate
3D representations of the light field scene with quality dependent on the dataset and meth-
ods implemented in each program. However, according to the conducted experiments, these
methods might fail with light field datasets because of the lack of free-look views around
the scene. Fig. 2.32 shows the results of 3D reconstruction experiments on standard light
field datasets.

(b) Scene is reconstructed with Metashape.

(c) Scene is reconstructed with 3DF Zephyr. (d) Scene is reconstructed with Visual SFM.

Figure 2.32: The existing reconstruction software does not work well with light field data.
Metashape estimated the camera positions correctly and produced an rough and incomplete
3D mesh. 3DF Zephyr reconstructed the scene and produced an accurate mesh estimation
in the shortest time, but the model contains a lot of holes. Visual SFM estimated the
camera positions, reconstructed the sparse point cloud but could not produce a viable
dense cloud. The reconstruction took several minutes, measured with Intel® Core"" i9-
9900K and NVIDIA® GeForce RTX"™ 4090.

COLMAP, Meshroom and Regard3D were not able to produce an acceptable result.
Most of the scenes that work well in light field rendering methods are not usable at all in
the reconstruction software, even with high-quality settings. The reconstruction sometimes
takes tens of minutes to complete, even on a high-end machine. These approaches need to
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preprocess the input data, calibrate the camera, find the corresponding features between the
images, create the mesh, and apply textures [136]. Generally, light field datasets with wider
space between the capture cameras are more suitable for 3D reconstruction algorithms.
Light field rendering methods, on the other hand, generate more artifacts with such datasets.

It is possible to reconstruct a scene in real time, for example, with a stereo camera [35],
but the possible combinations of light field images increase the necessary processing time.
Real-time methods such as ORB-SLAM3 [17] for camera pose estimation can usually also
produce a dense point cloud of the environment that can be used for 3D reconstruction.
These methods usually depend on the already calibrated camera parameters, and the pro-
cess should be initialized with enough input views of various orientations [256]. A similar
approach to 3D reconstruction is point-cloud reprojection that also requires depth informa-
tion [209]. Having an image and depth map, the 3D geometry can be reconstructed, but
information from different viewing angles might be missing [29]. Therefore, the viewing
cone would be limited. The scene can be represented as a set of textured planes [280] or
other simple objects such as spheres [12]. The depth associated with the pixels can be
quantized, segmented, and processed to produce a very simple geometry. The set of bill-
boards would result in a fast rendering; see Fig. 2.33. However, some parts of the scene
might create the cardboard effect [291] due to the lack of depth-related details.
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(a) Front view on the billboards (b) Shifted view looks natural (c) Side view reveals the
looks natural. but some 3D details are missing. incomplete geometry.

Figure 2.33: The figure shows how billboards can replace a 3D scene. They are constructed
according to one viewing direction. They can produce acceptable results when viewed from
this direction and slightly shifted camera positions. Similarly to light fields, they cannot
be used for views from completely different camera positions.

Real-time global illumination methods often use probes as an acceleration of rendering
instead of raw ray tracing of the scene [97]. The probes can store the 3D incoming light
information in the form of a light field [180]. This approach can be further extended to
handle dynamic lighting [53]. The geometric and radiance information can be separated
and the radiance reconstructed using the principles of deferred shading.

Real-time image-based light field rendering methods are potentially faster and less mem-
ory demanding than scene reconstruction and rendering of the result because of a reduced
number of necessary operations. 3D reconstructions might also fail completely when the
necessary correspondences between the views are not found or are not distributed properly
in the 3D space. Light field rendering always produces at least the best-effort result, where
the scene is reconstructed with visible artifacts in the worst case.
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2.5 Capturing of Discrete Light Field

The discrete approximation of light field, in the form of multiple images, can be captured by
a grid of cameras as shown in Fig. 2.34. The grid can be replaced with one moving camera
in the case of static scenes. The shape of the grid depends on the rendering method used.
The grid is generally rectangular and planar with constant spaces between the cameras [113,
237, 238, 267].

AW A

(a) Camera array captures a scene. (b) Resulting views are stored as images.

Figure 2.34: The figure shows a 4x4 array of cameras in a synthetic scene and the corre-
sponding grid of captured views.

Another way to capture light field data is by using a plenoptic camera [220]. The set
of images is acquired in the same way as with a camera grid except that only one sensor
is used and the incoming rays pass through a microlens (lenslet) array that is between the
main lens and the sensor [195]. Lytro company [$7] had released three models of plenoptic
cameras, where Lytro Illum became the most popular and capable of acquiring 4 megapixel
views. However, the extracted views from such cameras are very close to each other, so the
main use-case for such photos is only the refocusing and related effects. Fig. 2.35 contains
three handheld devices that can be used to capture light field views. The resulting photos
can be viewed in Fig. 2.36.

Figure 2.35: Three devices able to capture light field data are displayed in the photo. It is
a standard Samsung Galaxy NX camera with 3D stereo lens, Lytro plenoptic camera, and
3D stereo camera on Leia LumePad 3D tablet.
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(c) Plenoptic camera obtains lots of close views used for refocusing.

Figure 2.36: The results of the 3D lens and the 3D tablet are simple stereo images displayed
in the figure as side-by-side views. The plenoptic camera stores a plenoptic image that can
be refocused or tilted, as shown in two different views in the official Lytro Desktop software.

Camera grids have the advantage of being scalable, having a larger distance between
the cameras, and potentially having higher resolution because each view is captured by the
whole sensor. A similar solution targeting industry and science is Raytrix 3D Camera [211].
Plenoptic acquisition principles are also used in Fourier integral microscopes [235]. Multiple
sensor cameras can be used to increase resolution and reduce noise in standard photogra-
phy [224]. This approach is often used in modern smartphones to widen the effective image
sensor area for better zooming and telephoto options [34]. A two-sensor camera is used
in the LumePad 3D tablet to acquire a stereophoto that can be viewed directly on the
device [78]. 3D information can also be captured with the standalone depth sensor. An
example of this approach is Microsoft Azure Kinect [2985].

The distance between views is an important parameter that affects the quality of the
resulting image. The closer the images are to each other, the fewer artifacts occur in the
final render because the differences between images are very small. The 3D effect is less
visible if the angular resolution remains the same while the distance between the cameras
is decreased. The sampling rate of light fields during acquisition depends on the content of
the scene and the final use case of the rendering. Optimal sampling can be estimated by
spectral or optical analysis of the scene [19].

A study, conducted by the author of this thesis, revealed that input light field images
captured in logarithmic color profiles can improve the visual quality of the rendering meth-
ods [7]. Cameras offer various capturing color profiles that map the input light intensity
into digital color values by different functions. Synthetic scenes can also be rendered in
such profiles. The logarithmic profile CanonLog3 is the most efficient. Logarithmic profiles
reveal details in areas that are too dark and too bright [98]. They are often used for artistic
purposes as they enhance the post-processing options.
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2.6 Compression of Discrete Light Field

One of the main drawbacks of light field rendering are the high memory space requirements.
Light field data are often larger than standard 3D geometrical representation. The capturing
cameras usually record the same geometry with a lot of redundancy between the views [419].
The memory requirements on the GPU can be reduced by efficient data reuse approaches
and progressive rendering [154]. Efficient compression methods are still necessary and can
be used even in combination with smart streaming of the necessary parts of the light field
grid. Compression methods can also improve the visual quality of the novel view rendering.
If a highly efficient compression is used, the light field might be captured extremely densely
without large spaces between the views. Closer views are easier to interpolate If the density
of the views is larger than the necessary sampling density, the novel view rendering might
not even be necessary.

2.6.1 Standard Methods for Light Field Compression

The performance of the main image coding standards, JPEG, JPEG 2000, H.264/AVC
intra profile, and H.265 intra profile was evaluated [17]. The intra suffix refers to the fact
that the individual views were compressed independently (intra profile). The H.265 intra
profile proved to be the most efficient compression method.

Three strategies using the H.265 were also compared [268]. The first strategy performs
compression directly on the lenslet image. Another strategy arranges 4D light field views
in spiral order and subsequently compresses them. The last strategy compresses a subset of
lenslet images through the transformation to 4D light field. The results show that coding
4D light field leads to better performance compared to coding the lenslet images directly.

The performance of JPEG, JPEG 2000, and SPTHT (Set Partitioning in Hierarchical
Trees) directly on lenslet images was also compared [110]. The JPEG 2000 exhibits the
best compression performance.

4D light field views can be rearranged as tiles of a large rectangular image [208]. This
image is then compressed using the JPEG 2000 coder. The proposed scheme was compared
against standard image coding algorithms, namely JPEG 2000 and JPEG XR. However, it
is unclear how these standard coding algorithms were exactly applied to the 4D light field
data.

The similarity between light field images is high. Fig. 2.37 shows a Farneback dense
optical flow calculated between two views from the light field grid. The motion vectors
correspond to the structure of the scene and identify a lot of redundant data.

(a) First image is taken. (b) Second image is taken. (c) Optical flow shows a motion.

Figure 2.37: The dense flow shows that similar pixel blocks are correctly detected between
the neighboring images in light field grid. That suggests that compression methods exploit-
ing this correspondence might be efficient.
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4D light field can also be rearranged into a three-dimensional body [11]. The three-
dimensional volume is then encoded using the 3D DCT scheme on 8 x8x8 blocks, similarly
as in the JPEG coding system. Fig. 2.38 shows how light field views can be rearranged for
different compression methods.
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Figure 2.38: Two main approaches are used in light field compression. The views are
rearranged from the grid to a pseudo-sequence which is encoded, for example, using video
encoders, as depicted on the left image. The views can be also aligned to form a volume
which can be compressed by exploiting the redundant parts which overlay each other, as
depicted on the right image.

H.264 standard describes the Multiview Video Coding (MVC) extension, which is also
described in the H.265 (HEVC) standard (MV-HEVC) for optimal coding of animated mul-
tiview sequences [72]. This extension is capable of encoding multiple views and exploiting
their redundancy. It was designed for stereoscopic videos. The main downside of these
extensions is the lack of implementations, especially in open-source software and libraries.
Hardware acceleration is almost non-existent. It was used as part of the light field com-
pression scheme with hierarchical organization of the views [12]. An efficient 3D prediction
structure for MV-HEVC was proposed [111] and proved to be better than similar previous
approaches [271]. MV-HEVC can be easily adjusted to support the light field grid and
several prediction schemes were compared [21]. The results show that MV-HEVC can be
used for a random-access encoding which is suitable for light field data.

2.6.2 Video Methods for Light Field Compression

Light field compression with video codecs outperforms other 2D or 3D extended image
compression methods according to previous research [12, 1, 2, 228]. Another reason for
the promotion of video codecs is their widespread usage, the variety of available imple-
mentations, and the increasing support on modern GPUs [202] with the new AV1 support
on the NVIDIA® RTX"™ 3xx series and possible future support of current state-of-the-
art XVC [226] and VVC [39] (Versatile Video Coding) formats. H.265 standard [251],
similarly to alternative formats, offers intra-frame coding, which compresses the frame in-
dependently. This approach uses techniques similar to other image compression algorithms
such as JPEG [270], for example, block-based processing that exploits spatial redundancy
in the image, quantization of data in the frequency domain or chroma subsampling.

Inter-frame coding, available in all standard video compression methods, exploits tem-
poral redundancy. Similar blocks in multiple frames can be identified using block-matching
algorithms [245] and encoded as blocks with motion vectors instead of multiple blocks. The
input video frames, shown in Fig. 2.39, are compressed in three basic ways [33]:
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o I-frame is a keyframe that is encoded only by intra-frame methods. It can be decoded
without information from any other frames.

o P-frame is a difference frame which encodes only changes (new parts of the image
and motion vectors) from the previous frames. It is necessary to have the relevant
reference frames already decoded.

e B-frame is similar to the P frame but can also use later frames as reference for
decoding.

Figure 2.39: Three standard types of frames used in video compression are depicted in
the figure. I-frame can be encoded separately, P-frame depends on the last I-frame, and
B-frame depends on I-frames on both sides.

The encoded video stream is a numbered sequence of packets, where usually one packet
corresponds to one frame. Modern encoding standards can also split frames into mac-
roblocks or slices, where each slice can be independently encoded as one of the three men-
tioned types [234]. Group of pictures (GOP) is a sequence of encoded frames beginning
with an I-frame. The rest of the frames are P or B-frames that use one or more frames
from the same GOP as references. When random access in a video stream is needed, the
closest GOP beginning is found. The subsequent frames are decoded until the desired
one is reached. Light field data can be encoded as a pseudo-sequence that is designed for
optimal compression of the whole grid [181]. Another pseudo-sequence approach exploits
the redundancies in sub-aperture image intra spatial, sub-aperture image inter-view, intra-
micro-image, and inter-micro-image space [187]. Neural video compression methods can
also be used instead [161, 293].

2.6.3 Specialized Methods for Light Field Compression

One of the first proposals [1 58] was to use vector quantization to reduce redundancy between
views. 2D or 4D tiles of the light field are encoded as vectors and saved as references to
a codebook constructed during the training phase. This compression is lossy because the
closest value in the codebook is assigned to the input vectors. A training-based dictionary
technique [184] provides a way to compress light field images and videos. This approach uses
a multidimensional dictionary ensemble instead of single 1D dictionaries used in different
proposals. Simple approaches such as selective subsampling of the views in the grid can
improve the compression ratio for many light field encoders. This approach is mainly
efficient with dense light field grids [55].

Another approach divides the 4D light field into blocks and then converts to the YUV
color space with downsampled chrominance [179]. Evenly distributed I-frames are chosen
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from the input images and compressed using block-based discrete cosine transform and
coefficient quantization. P-frames that are used as difference frames between the closest
I-frames are then calculated using the disparity between the compressed image and the
adjacent I-frame. Because the shift between images is known, the disparity direction can
be exactly defined.

Hierarchical motion-compensated compression [212] was proposed as an efficient solution
for interactive rendering. This method analyzes the relative motion between input images
and applies image transformations to minimize redundancy in a hierarchical manner. Both
motion compensation and hierarchical approaches are combined into one hybrid method.
The main advantage of this approach is a fast GPU-friendly decoding. Similarly to other
methods, this method loses efficiency as the distance between the input images increases.
Fig. 2.40 shows an example of the identification of common elements in light field.
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Figure 2.40: Blocks which contain the same visual information in all light field views can
be detected. These blocks can be used in dictionary-based compression or for inter-view
prediction. Note that simply identifying blocks of pixels in multiple views that come from
the same spot in the scene is not enough. Reflections and other lighting effects produce
view-dependent changes in some materials.

Other standard image or video compression methods are used directly or in hybrid
approaches, such as displacement intra prediction [165]. The image displacement in the 4D
light field structure is estimated using the intra prediction of the H.265 standard in both
the time and spatial domains.

Sparse coding scheme for the entire 4D LF based on several optimized key views can
be used for an efficient compression [52]. Another method decomposes the 4D light field
into homography parameters and residual matrix [130]. The matrix is then factored as the
product of a matrix containing k basis vectors and a smaller matrix of coefficients. The
basis vectors are then encoded using the H.265 intra profile. Similarly, H.265 can be used
to remove redundancies in dynamic mode decomposition compression [215]. A hierarchical
coding structure for 4D light fields can also be used [163]. The 4D LF is decomposed
into multiple views and then organized into a coding structure according to the spatial
coordinates. The scheme is implemented in the reference H.265 software. Another approach
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is a coding scheme that splits the 4D light field into several central views and remaining
adjacent views [103]. The adjacent views are subtracted from the central views and then
both groups are encoded using the H.265 coder. The 4D light field can be fed into the H.265
exploiting the inter-prediction mode for individual LF views [166]. Disparity-based sparse
prediction [20] warps the reference views to the compressed ones with normalized disparity
maps. Then it reconstructs the view with inpainting and filtering based on the result.
JPEG2000 is used to encode the disparity views and H.265 to encode the residual and
color views. This method can be used for both dense and sparse datasets and outperforms
alternative plenoptic and video encoders.

A lot of research focuses on compression based on convolutional neural networks [116,
125, 299]. The learning process might often be time-consuming. Deep image prior [157],
with random neural network initialization, can be used to compress light field data without
the training process [129]. It is compact and lightweight and can reach better compression
ratios than alternative networks. All training-based methods depend on the quality of the
training phase and are usually not suitable for memory-efficient and fast GPU decoding.

Various compression schemes have previously been proposed for different light field
formats or live-streaming scenarios [146]. Data streaming can be optimized by analyzing
the current light field coverage of the scene so that only the data necessary to improve the
result are uploaded to the memory [74].

Light field rendering and compression are not just connected as different steps of the
light field workflow. Novel view rendering and synthesis can also be used as a compres-
sion method. The desired views can be synthesized from other existing views similarly to
reference and prediction frames in video compression methods but with fewer information
about the novel view. Deep learning can be used to estimate the 2D view from the sparse
sets of 4D views [24]. A sparse set of images is encoded using a hybrid video encoder, and
the missing views are approximated from the decoded ones. Similarly, multi-disparity ge-
ometry structure estimated from a sparse set of images can be used in a multi-stream dense
view reconstruction network to synthesize a novel image for decompression purposes [171].
This method handles well the occluded geometry and reveals texture details in high quality.
Residual CNN-Assisted JPEG compression method [106] outperforms the GPU-accelerated
H.265 decoding speed 10x for light field compression. The method uses depth-based warp-
ing of the central image from Lytro camera scenes. The central image is encoded in JPEG
format. A combination of novel video compression format VVC and deep learning for
missing view synthesis uses advantages of both approaches [23].

Disparity-assisted models can be more useful in light field compression due to the spatial
distribution of information across the grid [241]. However, novel standard image/video
compression methods can still reach results close to the schemes tailored for light field.
Especially when the views are far from each other and not captured by a plenoptic lenslet
camera, the disparity-based warping can introduce a significant amount of artifacts.
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2.7 GPU-Accelerated Decompression of Discrete Light Field

The following sections contain a deeper description of a HW accelerated decoding method [5]
suitable for the main proposals of this thesis. These methods are the author’s original
extension of the state-of-the-art field. Existing compression standards were investigated,
and, based on the results, a novel compression scheme was proposed. These experiments
and methods are not claimed to be the main scientific contribution of this thesis but are
necessary to support the main proposal. Acceleration of decompression is important in light
field rendering because the decompression process might be utilized several times during
each rendering time frame.

2.7.1 Evaluation of Light Field Compression Methods

This section is based on two published papers [, 2]. The impact of state-of-the-art image
and video compression methods on the quality of images rendered from light field data was
evaluated. The results presented here serve as motivation for the usage of video encoding in
the following light field compression scheme. The main question was: Which of the widely
used state-of-the-art image/video compression methods is the optimal choice for light field
data? Four-dimensional light field data can be compressed much more than independent
still images while maintaining the same visual quality. The video compression methods
seem to be an efficient solution for light field compression due to the best compression ratio
and wide support in the existing software and hardware.

Both main light field formats are included in the measurements performed. Light fields
acquired by a single compact sensor have limited support for the viewing angle. Light fields
based on the array of cameras offer larger viewing angles at the cost of missing information
in between the cameras. Considering increasing resolution sensors, it is no surprise that
the light field data reach huge sizes. For example, a scene from the standard dataset [267]
is captured using a 17x17 grid of cameras with image resolution 1536x1152 (rectified and
cropped). The uncompressed size easily exceeds one gigabyte.

Dataset

The first group of measured methods covers the image coding methods JPEG and JPEG
2000. They are sometimes referred to as self-similarity-based methods [162]. The second
group comprises the video coding methods H.265, AV1, VP9, XVC, and VVC. These meth-
ods are referred to as pseudo-sequence-based methods. The third group consists of JPEG
3D custom extension and JPEG 2000 3D (Part 10, JP3D). The fourth group extends the
image-coding methods into four dimensions with a custom JPEG 4D extension. To evaluate
the above methods, the following list of encoders was used: OpenJPEG?, x265%, libaom
(AV1 Codec Library)?, libvpx (VP8/VP9 Codec SDK)?, Divideon xvc codec’, Fraunhofer
vve codec” and custom implementation of the JPEG method. Tab. 2.2 describes the dataset
used in the measurements.

openjpeg.org
github.com/videolan/x265
aomedia.googlesource.com/aom
github.com/webmproject /libvpx
github.com/divideon/xvc
github.com/fraunhoferhhi/vvenc
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Scene Source Resolution Disparity

Black Fence EPFL Light-field [220] 15 x 15x 625 x 434 —1to1
Chessboard Saarland University [237] 8 x 8 %1920 x 1080 40 to 90
Lego Bulldozer Stanford Laboratory [267] 17 x 17 x 1536 x 1152 —1to 7
Palais du Luzembourg EPFL Light-field [220] 15 x 15x 625 x 434 —1to1

Table 2.2: Dataset used in this study. The first and last light field are taken using a
plenoptic camera; the Chessboard is captured using a camera array; the Lego Bulldozer is
captured using a motorized gantry holding a camera. The adjacent image disparity range
(last column) is given in pixels.

2.7.2 Evaluation

A simple comparison of compressed and uncompressed raw data is not enough to evaluate
the encoding of light fields. The uncompressed data were used in a light field refocusing
rendering, and the data before and after compression were compared. Fig. 2.41 describes the
evaluation scheme used. A quick experiment shows a significant disparity in the methods
used; see Fig. 2.42. This difference is about 10 decibels in the PSNR, depending on the
bitrate and compression method. This can be explained by the fact that any pixel in the
rendered view is a sum of pixels from the 4D light field. This sum suppresses compression
artifacts. The 4D light fields can be compressed much more than independent images, while
maintaining the same visual quality.

4D light field g

refocus

Figure 2.41: The data flow diagram describes the compression performance assessment
methodology used in this study.

2D, 3D and 4D Compression

To fairly assess the difference between multidimensional compressions, an identical method
must be used. A custom implementation of the JPEG compression method was created
with the ability to process 2D, 3D, or 4D data. Although JPEG 2000 supports 2D and 3D
data compression, it cannot process 4D images. Since the similarity of adjacent pixels in
the third and four dimensions strongly depends on the camera baseline, different results
can be expected depending on the baseline distance. The result of this experiment is shown
in Fig. 2.43.

3D compression methods clearly outperform their 2D counterparts on light fields with a
small baseline (Black Fence and Palais du Luzembourg). 4D JPEG also outperforms its 3D
counterpart. Pixels at the same spatial position in adjacent views are strongly correlated.
However, the situation changes with increasing baseline (Lego Bulldozer and Chessboard).
Adjacent views are less and less similar, resulting in higher amplitudes of the underlying
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Figure 2.42: The chart shows the difference in the quality assessment using the 4D light
field directly compared to using images rendered at virtual focal planes. The results are
measured with the Black Fence scene.
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Figure 2.43: Image compression methods are compared against their extensions into three
and four dimensions.



transform coefficients. Consequently, the tide is turning in favor of the less-dimensional
compression methods. Taking into account the JPEG method, the Lego Bulldozer is a
special case because it contains large areas of black pixels. It turns out that it is more
efficient to compress these solid areas at once using a single 4D block than using multiple
3D blocks. Similarly, it is more efficient to use a single 3D block than multiple 2D blocks.

Video Compression

4D light fields can be compressed as a sequence of 2D frames, as multi-dimensional volume,
or as a video. The overall comparison is shown in Fig. 2.44. Video compression methods
perform better than all image compression methods, even better than their 3D and 4D
extensions.
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(a) Black Fence is measured. (b) Chess is measured.

Bitrate [bpp]

Figure 2.44: Video compression methods perform better than all image compression meth-
ods according to the conducted experiment.

The video compression formats were compared in the refocusing scenario; see Fig. 2.45.
Another measurement was performed to additionally evaluate the effect of compression on
3D point cloud reconstruction from light field; see Fig. 2.46. A distortion is apparent at
lower bitrate, which is caused by noise and a reduced number of vertices present in the
point clouds. Video compression methods show similar results with the newest standards
slightly outperforming the old ones. These methods might be an optimal way to compress
light field data with a wide support in current software and hardware.

2.7.3 Efficient Video Decoding Method

The proposed method belongs to pseudo-sequence-based video compression where light field
views are used as video frames; see Fig. 2.47. One selected frame serves as a fully encoded
standalone reference, and other frames are encoded as motion-compensated differences from
this reference. The proposed compression is described with a 1D light field grid, where the
views are captured along a horizontal line. This method can be easily used for other shapes
of the light field grids as well.
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Figure 2.45: Different compression formats are compared on views rendered for multiple
focal planes.
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Figure 2.46: Different compression formats are compared on 3D point clouds reconstructed
from 4D light fields.
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Figure 2.47: The scheme describes the video encoding principle used for efficient data
streaming to GPU in light field rendering.

Frame Type Sequences

Ideally, only the necessary compressed video packets are uploaded to the GPU memory and
decoded there; see Fig. 2.48. The host and GPU memory data transfer is the bottleneck
of light field streaming. Using the classic encoding scheme, all previous packets from the
GOP need to be decoded before the desired frame is acquired. If the light field views are
encoded row-by-row, then multiple GOP jumps would be necessary to decode four nearest
views to the novel one. The interval between I-frames (size of GOP) can be shortened.
The data size would be larger because of more encoded space-demanding I-frames, but the
desired frame would potentially need fewer previous frames decoded. The shortening of
GOP can reach the limit, so that all frames are encoded as I-frames and can be decoded
without other frames.

- -

NEW VIEW @

Figure 2.48: Only a subset of the light field views is necessary for interpolation of a novel
view. The needed frames are determined by the viewing position of the user.
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Compression Scheme

The proposed optimal scheme for light field data encodes an I-frame in the middle of the
sequence. All other P-frames are encoded using only this initial I-frame as a reference. This
approach would not be efficient for arbitrary video, because of huge differences between its
different parts, especially when the scene changes. However, light field views are very
similar to each other because they capture the same static scene, and the distance between
the views is usually not significant enough to create large differences between the images.
Light field rendering methods often exploit this similarity. After decoding the initial I-
frame, all other frames can be decoded simply by uploading their packets to the decoder.
The minimum number of packets to decode a frame is one I-frame packet and one P-frame
packet, but only one P-frame packet is needed to decode further frames. The decoding
speed might also be faster because the decoder only needs to read the data from one packet
and also internally from one I-frame to decode the new frame. The encoding schemes that
are compared are:

e Proposed with one I-frame in the middle of the sequence and the rest P-frames
dependent on the one reference.

¢ One-GOP and GOP30 are classic GOP schemes, one I-frame at the beginning, and
the rest are P-frames sequentially encoded in a classic way with possible multiple
dependencies and a version with I-frames enclosing every 30 frames.

e All-1I where all frames are individually encoded as I-frames without any dependencies.

See Fig. 2.49 that compares the described schemes.

ooy ool Jof3]4]

(a) All preceding frames need to (b) The desired frame can be (c) One reference frame needs to
be decoded sequentially in decoded directly in all-I. be decoded before the desired
One-GOP or GOP30. frame in the proposal.

Figure 2.49: P-frames can be decoded only after all their reference frames. I-frames can be
decoded without any other frames. Fourth frame is the desired one in this example.

The main reason why light field assets are not commonly used instead of 3D mesh
geometry is their space requirements. One option is to keep the entire asset in the GPU
memory. The decoding and rendering would be relatively fast, but usually 3D simulations
or games require a lot of GPU memory. Storing a large number of assets like this might be
inconvenient. The second option is to stream the needed views of the light field asset in the
GPU memory on demand. The views need to be decompressed on the CPU and transferred
via PCI-Express in GPU memory. The importance of compressed data transfer and GPU
decoding has been increasing recently, as reflected in relevant proposed solutions, such as
DirectStorage® by Microsoft, which allows streaming of compressed multimedia files while
decoding them with GPU shaders. The workflow for the proposal is illustrated in Fig. 2.50.

devblogs.microsoft.com/directx/directstorage-is-coming-to-pc
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Figure 2.50: The input light field images are encoded with the proposed compression scheme
with one I-frame. The rendering method identifies the necessary views according to the
virtual camera position. Usually, only the closest views are necessary. These views are
decoded and only their packets with the I-frame are transferred to GPU. The packets are
decoded on GPU and used to interpolate a novel view.
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2.8 Decompression Evaluation

Measurements were performed on a machine equipped with GeForce RTX"™ 2070 GPU
and Intel® Core" i5-8500 CPU 3.00 GHz CPU, running Arch Linux. The relative com-
parison should be the same on other hardware (HW) and should not depend on the used
configuration.

2.8.1 Dataset

A custom dense (500 4K views) 1D light field dataset was rendered and used in the ex-
periments; see Fig. 2.51. The new dataset was created to reflect the current 4K video
standard and also to cover extremely dense data. Previously used high-resolution light field
datasets are usually sparse [267]. The 1D dataset simulates a horizontal 3D motion. It can
be suitable for views through virtual windows, expecting the camera to move at almost
constant height from the floor. Another use case is on holographic 3D displays, such as by
Looking Glass Factory, that support only horizontal view change, expecting the user to be
in a sitting position.

(a) Bunny contains (b) Cars contain (c) Sand contains a  (d) Class is a (e) Pawvilion is a

one simple object  reflective objects landscape with complex indoors  complex outdoors
with static with simple small number of scene. scene.
background. background. features.

Figure 2.51: Center views of the five scenes in the used dataset are shown in this figure.
The scenes cover the usual settings of light field data.

The dataset is used in three versions: full, every fifth, and every tenth view. The
greater distance between the views and the smaller view count might affect the compression
efficiency and also the light field rendering methods and their sensitivity to compression
artifacts. The scenes were taken from Blender demo projects’ where the Pavilion scene is
modelled by an external artist' and the Bunny 3D model is a classic Stanford Bunny''.

2.8.2 Streaming Capabilities

A simple experiment was conducted to compare the image decoding capabilities of modern
GPUs. Fig. 2.52 shows how H.265 (implemented using NVIDIA NVDEC via FFmpeg'?)
outperforms JPEG2000 (implemented using nvJPEG2000 library'®) when decoding a se-
quence of 4K light field views on GPU. H.265 has a physical HW acceleration unit on
modern GPUs and also reaches a better compression ratio for light field data due to intra-
frame redundancy, as shown in Fig. 2.53. GPU-accelerated texture compression formats

9
10
11

blender.org/download /demo-files

Hamza Cheggour - emirage.org
graphics.stanford.edu/~mdfisher/Data/Meshes/bunny.obj
12 trac.fimpeg.org/wiki/HWAccelIntro

13 developer.nvidia.com/nvjpeg

46


https://www.blender.org/download/demo-files/
https://www.emirage.org
https://graphics.stanford.edu/~mdfisher/Data/Meshes/bunny.obj
https://trac.ffmpeg.org/wiki/HWAccelIntro
https://developer.nvidia.com/nvjpeg

are inferior to the more advanced compression methods and are not suitable for the task.
Video formats seem to be the best choice for streaming light field data on a GPU.
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Figure 2.52: GPU-accelerated H.265 and JPEG2000 format decoding is compared in this
chart. 50 frames of Pavilion dataset were encoded with different quality settings and
decoded on GPU 50x in a loop.
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Figure 2.53: The figure shows a compression ratio comparison for H.265 and JPEG2000
formats on Pavilion dataset. ASTC (Adaptive scalable texture compression) GPU acceler-
ated texture compression format is added as a reference to show, how such formats relate
to the other methods.

2.8.3 I-Frame Positioning

It is expected that the user would be more interested in views near the center of the light field
than at the borders. The scene is usually captured so that the area of interest is in front of
the central cameras, which are often used as reference views for further synthesis [264, 267,
290]. The central view was also previously proposed in other works due to the symmetric
properties of the grid [141, 181]. Artifacts in light field, for example, in a window of a virtual
scene, would not be easily visible from the extreme viewing position at the edges, and even
widely used image-based methods [68] do not work well in such cases. The quality of the
decoded views should be the best around the middle because they are the most similar to
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the reference I-frame. An experiment was conducted to compare the positioning of the I-
frame in the proposed scheme. The Bunny dataset was encoded with the proposed scheme,
which has the reference frame in the middle of the sequence and at the beginning. The
result of the light field rendering quality using such decoded frames is shown in Fig. 2.54.
As an alternative, saliency detection methods [33] might also be used to identify the area
where the best quality is necessary.

0.95 -

SSIM

0.9 -

—e— middle
—— first
area of interest

0 10 20 30 40 50
Frame

Figure 2.54: The positioning of the I-frame and its effect on the visual quality of the
light field per-pixel rendering method is shown in the figure. The I-frame is placed at the
beginning and in the middle of the sequence. The experiment was measured on Bunny
dataset.

2.8.4 Decoding Time

The speedup of the proposed scheme could be even more significant when decoding four
frames in the 2D light field, since only one I-frame plus four P-frames would be uploaded.
The I-frame would be placed in the middle of the grid, similarly to the proposed scheme.
In addition, any subsequent decodings would not require the decoding of the first I-frame,
which would be kept as a reference. The proposed scheme is more efficient than encoding all
I-frames in the stream. This was proved in an experiment, where the I-frame was uploaded
and decoded only once; see Fig. 2.55. The decoding time t of a frame encoded at position
pos encoded with constant a GOP size in the classic scheme can be roughly estimated by
Eq. 2.7 assuming a simplified scenario with constant decoding time ¢! of I-frames and " of
P-frames and no B-frames. The function mod() performs the standard modulo operation.

t = t! + mod(pos — 1, GOP) - t* (2.7)

Fig. 2.56 shows the times necessary to decode one frame in the compared schemes.
Note that the times for comparison of the schemes were measured including the loading
time of the data from the file, uploading time of the packet to GPU and actual decoding
time. Preloading in RAM would be used as an optimization in real-time applications, and
the actual speed would achieve similar results as in Fig. 2.55, depending on the HW used.
Having the encoded packets already in the GPU memory would also be possible due to the
reduced size of the data, and the proposed scheme would still speed up the decoding.
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Figure 2.55: The speed of H.265 GPU-accelerated decoding was compared for the all-
I-frame and proposed encoding scheme. Two H.265 implementations were used for the
encoding: libx265 and hevc_nvenc. The proposed scheme outperforms the all-I1 in both
cases. The measurement was conducted over the standardized quantization parameter QP.
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Figure 2.56: The compared schemes and decoding times for each frame were measured on
Bunny dataset with CRF (Constant Rate Factor) set to 35. The proposed scheme has a
longer decoding of the first frame due to the initial I-frame decoding. The I-frame is used
directly when queried, so the decoding time in the middle of the sequence is almost zero.
The jump in GOP30 marks the beginning of the new GOP.
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2.8.5 Encoding Schemes Comparison

The packets are stored in one file, beginning with the I-frame. A second file contains a list of
pointers in the packet file, compressed by the Deflate algorithm. The existing encoders and
frameworks do not support the proposed scheme directly. The encoding was implemented
in pairs, where each frame was encoded in a two-frame video with the same first I-frame
and the packets were then stored separately. YouTube video platform recommends setting
the GOP size of uploaded videos to half of the framerate'*. The stream can be viewed as a
60 fps video, and the classic scheme was encoded with GOP size set to 30 frames. All videos
were encoded using the 1ibx265 encoder and decoded with GPU-accelerated NVDEC'®. The
encoder was used mainly with the default parameters. The main settings consist of: Main
4:4:4 profile, Level-5.1 (Main tier), Coding QT 64/8.

The original frames are encoded using the schemes over CRF values from 0 to 49 jumping
by 7 in an H.265 stream and decoded. The decoded frames are compared with the original
ones to discover how the schemes affect the compression quality. The decoded and original
frames are also used to produce new synthetic views utilizing three light field rendering
methods:

o LF per-pixel is a simplified per-pixel light field focusing method [9]. This method is
the fastest, but with the lowest quality, because it is initially designed for a 2D light
field.

e LF blend is a mix of all input images that are shifted so that a certain part of the
scene is sharp and the rest is defocused as proposed in the original light field rendering
method [158].

« Deep is a Pytorch implementation'® of deep-learning method Super SloMo [127] for
frame interpolation used in SAVFI framework [57]. This method offers the best quality
but is the slowest one.

The results are compared to properly test the compression schemes in light field ren-
dering use-case; see Fig. 2.57.

encode/decode light field render

igi roposed
HEINES

one-GOP

light field light field er-pixel
e render GOP30 et

deep

LF blend

—
T

Figure 2.57: The scheme describes the evaluation. The original frames are encoded and
decoded using different schemes. The decoded views are compared directly with the original
frames. The decoded and original views are also used in light field rendering.

The compression ratio of the proposed scheme is expected to be worse than that of the
classic one due to the way video encoders are designed. The main question is: How much

14
15
16

support.google.com/youtube/answer/1722171
developer.nvidia.com/video-codec-sdk
github.com/avinashpaliwal /Super-SloMo
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would the visual quality decrease with the proposed scheme and would the packet size still
be small enough to outperform the other schemes in terms of GPU decoding speed? The
objective of the measurement is to find which scheme has the best decoding time over visual
quality ratio. The results presented in Fig. 2.58 show that the proposed scheme can be used
in light field rendering methods to achieve real-time performance, faster and at the same
quality levels as the alternate schemes. Note that the measurement performed decoding of
the frames one by one over the whole dataset. When streaming continuously, the decoding
times might be even shorter, similar to Fig. 2.52.

The proposed scheme is not the best choice for storing light fields on the disk because
of the poorer quality/size compression ratio. However, the proposed scheme significantly
outperforms other schemes in decoding speed and is the best in all measurements with
the quality/speed ratio. To further investigate the results, two additional metrics were
measured.

The first error metric in Eq. 2.8 to compare the average results takes into account errors
in relation to the best values of the three measured quantities: wvisual quality, decoding
time and the resultant stream size. Visual quality error is usually small. Therefore, it is
amplified to be more significant. The proposed scheme has the lowest error metric in 61%
of the measurements.

error = 100erryisual + €T time + €TTsize (2.8)

The second metric is based on a threshold of 5% in visual quality error from the best
result. This threshold was selected as a tolerable error that cannot be clearly distinguished
by a human evaluator. The proposed scheme reached this limit in 58% of measurements.

Tab. 2.3 shows the average decoding time, size, and quality metrics of the results.
Given the significant speedup of decoding, the loss of visual quality is not critical. The
disparity-related artifacts in the proposed scheme are mitigated when used in the light field
rendering, and the scheme seems to perform better with larger and dense data due to higher
inter-frame similarity.

time PSNR [dB], SSIM, VMAF size
data  scheme [ms] decoded deep LF per-pixel LF blend [kB]

proposed  15.84 38741 0.86 69.86 39.07 090 81.46 28.77 0.80 3569 44.65 0.96 82.51 289.96

o one-GOP 19525 3878 0.87 7247 4092 0.92 8371 2924 081 40.15 4547 0.97 8347 253.06
© GOP30 136.65 3891 0.88 73.22 41.10 0.92 84.29 29.28 0.81 40.59 45.72 0.97 83.92 258.55
all-1 50.13 39.85 0.88 76.81 41.89 091 87.31 29.23 081 5816 46.42 096 86.20 544.29

proposed  16.16  37.37 0.86 69.79 40.40 090 84.17 29.41 0.81 37.81 45.07 0.96 83.05 287.35
one-GOP  349.93 3896 0.88 7329 4253 091 8629 2992 0.83 4321 4591 096 84.09 222.66
GOP30 160.00  39.16 0.88 7437 4280 0.92 87.09 29.99 0.83 43.88 46.39 0.96 85.42 228.76
all-1 69.55 39.81 0.88 76.69 43.53 091 89.43 2985 0.82 40.52 46.77 0.96 86.37 539.41

proposed  17.02  37.38 0.86 69.76 41.16 0.90 84.97 30.36 0.83 49.55 4547 0.97 83.66 285.86
one-GOP  1,420.28 39.36 0.88 75.13 43.32 091 8775 3098 0.85 5747 4647 096 85.79 167.86
GOP30 144.05 39.71 0.89 77.22 4381 0.92 89.36 31.10 0.86 59.05 47.46 0.97 88.06 180.03
all-T 233.40 39.78 0.88 76.61 44.05 091 89.95 30.86 0.84 53.51 4709 096 86.62 535.45

100

500

Table 2.3: The proposed scheme is the fastest, has the best quality/speed ratio, and the
quality loss is not significant. The best absolute results are typed in bold. The lowest
results of the weighted sum of errors, prioritizing visual quality, are underlined. The loss
in visual quality compared to the best result greater than 5% is typed in italic.
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Figure 2.58: The video encoding schemes are compared in the charts. The measurements
were performed on the c¢) full dense dataset, b) the sparser one where each fifth frame
was taken and a) even sparser where each tenth frame is taken. Four comparisons were
conducted: decoded frames as they were (left column solid lines), all frames blended to-
gether [158] (left dashed), deep interpolation [57, 127] (right solid) and per-pixel interpola-
tion [9] (right dashed) which is most error prone due to the compression artifacts.
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It even outperforms the other schemes in one case. Fig. 2.59 compares the visual quality
at the same decoding speed. The amount of artifacts in the other methods is much more
visible than in the proposal.

reference proposed one-GOP

decoding time [ms]

psnr [dB] 46.39 28.90
ssim 0.9895 0.8275
vmaf 96.336 17.732

85
28.95
0.8277
17.741

25
33.47
0.9001
62.913

Figure 2.59: The figure shows the difference in visual quality between the proposal and
other schemes while reaching the same decoding speed at Pavilion scene. The quality was
adjusted so that the decoding times would match. The other methods had to use much
more aggressive compression levels to reach the same decoding time as the proposal. The
10th frame was decoded from 100-frames dataset. The position of the frame was chosen to
ensure a similar decoding time but also reasonable position within the light field (not at
the very beginning or end). Frames further from I-frames in the other methods would not
be able to compete with the proposal. Decoding multiple frames would put JPEG2000 at
a disadvantage.

The following triplets of values are in the format of PSNR [dB], SSIM, VMAF. The best

visual results were obtained with the Bunny scene, where the proposed methods yielded
best results as 48.38, 0.9356, 96.59 and the worst as 32.23, 0.6655, 30.18. The worst results
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were measured with Class scene with the best 45.52, 0.9872, 96.16 and the worst 25.60,
0.7213, 17.54. This shows that the complexity of the scene plays a role in the efficiency of
the encoding, which is common for most existing compression methods. The Bunny scene
contains only a simple object with constant background, whereas the Class scene contains
a lot of small details in all parts of the scene.

The proposed scheme is not capable of reaching the same quality as the other schemes
at the almost lossless level. The best results with Bunny scene are for one-GOP 53.04,
0.9966, 97.046, GOP30 53.17, 0.9971, 97.048 and all-T 55.40, 0.9981, 97.29. This reveals
that the proposed method is not a good choice for archiving best-quality data. However,
these best-quality settings are not suitable for real-time rendering, where a certain amount
of hardly detectable information loss is to be expected.

The average standard deviations over the quality range of the visual quality metrics are
for the proposed method 2.41, 0.12, 5.35, one-GOP 2.37, 0.11, 3.94, GOP30 2.36, 0.10, 3.74
and all-1 2.67, 0.12, 5.23. These values show that the methods are all similarly suitable for
all datasets without a significant divergence in any case.

The standard deviations of decoding times in milliseconds at a default CRF' = 28 with
Bunny scene are for the proposed method 0.779, one-GOP 648, GOP30 86.7 and all-I 14.4.
This shows that the proposed method is the most stable and all packets have the same
decoding time, excluding the first reference, which is almost 16x slower but is decoded
only once during the initialization stage. The best and worst quality decoding speeds in
frames per second are for the proposed method 28, 85, one-GOP 0.36, 13, GOP30 3, 14,
and all-I 1, 31. The whole quality range of the proposed method can be considered suitable
for real-time streaming.

The best and worst quality data sizes [MB] are for the proposed method 764, 2.4, one-
GOP 486, 0.33, GOP30 506, 0.5, and all-I 1 461, 4.7 on Sand scene, which showed the
highest variance of the sizes. The proposed method is not capable of reaching the same
data reduction as one-GOP due to the impossibility of reusing information from decoded P-
frames. Compared to all-I, which is second fastest after the proposed method, the possible
data reduction is significantly higher.

The video encoding with one I-frame also helps to improve the quality of the light field
rendering methods. The generated focus map in Fig. 2.60, from the per-pixel focusing
method [9], shows how the inter-frame encoding aids the method. The focus map contains
optimal displacement values between the images so that every pixel is focused at the correct
depth. The map computation is based on color similarity between the displaced pixels of
the views. The all-I-frame encoded frames are compressed separately and the compression
artifacts that are different in each frame create bigger disparities even in the areas of the
light field views that should be the same (the sky in the figure). When the P-frames are
encoded using one common I-frame, their similarity in the static areas is untouched, and the
compression even serves as a denoising for such areas. The disparity detection algorithms
based on the color difference between pixels or their blocks then identify such areas even
more accurately than when using the uncompressed original frames. This hypothesis is also
confirmed in Tab. 2.3, where the all-I scheme does not always win in terms of visual quality
during the interpolation process.

The discovered results are expected to be valid even for higher-dimensional light fields,
which will be further investigated and proved in future work. The random access feature
would be even more convenient in 2D light field grids where at least 4 views are necessary to
decode. One row-wide offset between the two pairs would also require additional decoding.
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(a) An image was used (b) The focus map was (c) The focus map was (d) The focus map was
to compute a focus map. estimated from the estimated from the estimated from the
original. decompressed I-frame. decompressed P-frame

Figure 2.60: A part of a wall and the sky from Pavilion dataset is shown in a). The
focus map produced by a light field rendering method of the original input in b) resembles
a disparity or depth map, but light noise is visible in the static sky. All-I-frames in c)
decoded and used in the method produce even more noise. The P-frames similarly used in
d) produce the best focus map due to the inter-frame compression and reduction of color
differences in static areas.

A test performed on 2D light field Bunny scene from Stanford dataset [267] indicates similar
improvements as in the 1D measurement; see Tab. 2.4.

scheme  grid speedup of proposed

I S 2.066
a 8x8 1.94
17x17 8.64

GOP30 ¢ s 3.19

Table 2.4: The table shows how many times is the proposed scheme faster when de-
coding 4 views in the center of the grid (coordinates (3,3),(3,4), (4,3), (4,4) for 8x8 and
(8,8),(8,9),(9,8),(9,9) for 17x17 grid) of a 2D light field scene, compared to all-I and
GOP30 schemes encoded with the same default quality settings (CRF = 28).

The proposed scheme theoretically ensures the best memory usage since only the initial
I-frame is kept in the memory. The memory usage on GPU was measured experimentally,
decoding a frame at the end of the 100 frames light field. Tab. 2.5 shows that the proposal
needs the least amount of memory. The all-I-frame decoding needs a bit more, probably
due to the decoder allocating more memory in advance for further sequential decoding.

scheme proposed one-GOP GOP30 all-I
used memory [MB] 597 1019 1049 800

Table 2.5: The table shows a comparison of the schemes at the same quality level CRF = 35
with 4K data.
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2.8.6 Comparison to Existing Methods

An optimal light field data transfer to GPU was previously published, but it is not directly
comparable with this proposal [154]. The idea of video encoding and the principles of the
transfer scheme might be fused in a novel method in the future. The reordering of the
views [103] before encoding could also bring about a certain improvement that is inferior
to the proposed scheme. Previously published optimal subsampling of light field views [55]
might be combined with the proposed video encoding. Compression and reconstruction
networks [171, 215] or light field-friendly displacement intra prediction [165] use H.265 video
encoding for light field data, so this proposal could be used to improve their performance.
The proposed method is versatile and can be used as a part of other previously proposed
methods.

Although deep central light field image warping [106] outperforms video encoders, the
approach would be problematic with wide spacing of the views since occlusions in the
scene might cause warping artifacts. This proposal supports newer and potentially faster
decoding standards even with wide datasets. A deep generative model using a randomly
initialized network can be used without learning for light field compression [129]. The
proposed method does not depend on the training process.

GPU support is a crucial requirement as modern light field rendering methods and 3D
simulations are computed mostly on GPU and the data upload to GPU is the performance
bottleneck. This method focuses on achieving the best quality/decoding time ratio. Other
approaches generally aim to achieve the best compression ratio [179] even with partial
random access support [181].

An apparent candidate for this task - Multiview Video Coding (MVC) extension of H.265
that offers an optimal coding of animated multi-view sequences [72] is not fully supported
by commonly used codecs and no plans for GPU HW support are expected. According to
the current state of this extension, it cannot be expected to be present in more efficient
GPU-accelerated formats such as (AV1) AOMedia Video 1. The proposed scheme does not
depend on a specific format extension and uses the basic compression available in any video
encoding format. The scheme can be used in any future format. Similar proposals [21, 271]
to this method exploit the MVC extension, but it is not clear how efficient this approach
would be in real-life scenarios on GPU. Compared to this method, the measured datasets
were sparse, in a low resolution, the actual GPU decoding speed was not measured, and the
decoded views were not used in any light field rendering method before comparison. Other
specific approaches such as HEVC-HR [187] are most likely to be outperformed with the
novel video formats. Although other custom light field compression methods exist [38], the
proposed scheme is universal, scalable, independent on underlying video encoding method,
and guaranteed to be efficient even on future GPUs.

The encoding speed or compression ratios are not relevant for this study. The real GPU-
based decoding speed at the given quality plays the major role. Fig. 2.53 already showed
how GPU-accelerated image compressions are outperformed by the video approach.

The untrained neural compression paper [129] reported decoding of 81 views of 432x624
resolution simultaneously, measured on GeForce RTX"" 2080 Ti, in 262 ms. The same scene
Danger de morts of the pleno dataset [220] was measured using video compression with
H.265 with one reference frame on GPU GeForce RTX'"" 2070. 81 views can be decoded
in 273 ms while achieving the same quality. The performance is the same. However, video
decoders are improving and new coding standards are implemented, so the decoding speed
might be even better soon. The natively HW-accelerated decoding proposed in the research
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in this thesis can gain the same quality as a complex training-based method and might be a
more robust solution. The authors in the mentioned paper measured decoding time and it is
not clear if uploading of the data to GPU was also measured. The upload time was included
in the measurement of the method proposed in the experiments, as it plays an important
role in real-time streaming. They also mention that the network needs to be transmitted
to the decoder for each light field, which brings an additional unmeasured delay. It is not
clear how fast the decoding would be when only certain views are necessary.

Similar issues were found with neural video compression with diverse contexts [161]
where decoding of 96 images takes 765 ms for 1920x 1080 video on 2080 Ti GPU. Video
compression is capable of reaching 634 ms for the same task according to the measurements
conducted. The same experiment with 96 images was conducted with the published code
of learning for video compression paper [293]. The same issues prevail, and the decoding
took minutes. The decoding of a frame took approximately 10 s.

A dictionary learning approach paper [184] reports reaching 40 fps for a 2048x1088
light field data, measured on NVIDIA® Titan Xp. The proposed decoding scheme reaches
up to 80 fps with almost 2x larger images. The mentioned method also supports random
access. The disparity-aware learning-based model [241] outperforms other methods but does
not provide a significant gain in terms of decoding speed. This method reaches decoding
times for low-resolution Lytro data in tens of seconds, which is not comparable to fast
GPU decoders. The methods mentioned above were designed for Lytro camera data, while
the proposal aims at data with a wider spacing between the views. Compared to Lytro
data, where the maximal disparity reaches tens of pixels, the proposed method can process
disparities of hundreds of pixels.

Dual discriminator generative adversarial network compression [23] reaches certain qual-
ity gain, but the decoding takes tens of seconds due to additional synthesis of the missing
frames from VVC encoded reference frames. Bi-level view compensation compression [116]
is almost 1000x slower than H.265 at decoding. Authors of adversarial network-based view
synthesis paper [125] also admit that the method cannot be used in real-time. Various
JPEG extensions to 3D and 4D for multiview data were also beaten by video compression
methods when used with light fields [1, 2].
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Chapter 3
Hypothesis & Experimental Proof

This chapter defines the core scientific contribution of this thesis. It consists of a scientific
hypothesis which is defined to address the main issues related to light field rendering.
These issues are currently not efficiently solved by existing state-of-the-art methods. The
hypothesis is followed by sections describing the experiments that were implemented as its
proof.

3.1 Hypothesis

The main scientific contribution is related to the topic of light fields. The scientific goal of
the thesis is to experimentally prove the proposed Hypothesis and demonstrate progress
beyond the state of the art.

Hypothesis A novel method of light field rendering can be designed and imple-
mented that produces all-focused renders directly from input views without exploiting
additional depth information, having better visual quality, being computationally more
efficient, and having less memory requirements compared to the state of the art.

The proposed method was implemented, and experiments were carried out to mea-
sure its performance in visual quality, time, and memory requirements. The results
obtained prove the proposed Hypothesis. The implementation is GPU-accelerated to
exploit the contemporary hardware support and enable real-time usage of light fields in
industry.

This thesis addresses the main issues that were not efficiently solved in previous state-
of-the-art light field rendering methods. The results presented lead to a complete solution
that solves all the light field rendering issues at the same time. Previous proposals usually
focused on selected aspects without taking into account the whole process of light field
rendering. This makes the usage of light fields in real-life scenarios difficult without the
proposals in this thesis.

Light field assets are currently not widely used even though they achieve potentially bet-
ter rendering time performance than state-of-the-art rasterization or ray-tracing methods.
The light field rendering time is near constant and does not depend on the content of the
scene. Even complex materials and scenes can be quickly rendered using this image-based
approach.

The aim of the original research described in this chapter is to create a solid ground for
light field assets that can be widely used in practice. The desired result of the proposed
method is a novel synthetic view generated from the input set of views representing a
discrete light field approximation. The proposed method is designed for widely spaced
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discrete light field data. Narrowly spaced data, for example, taken by plenoptic cameras,
are useful for refocusing of the final photo at different distances. Widely spaced data allow
for 3D movement in the scene [283]. Such assets are meant to be used in 3D applications
or cinematography for rendering of arbitrary 3D scenes in real time. The following goals
needed for convenient light field rendering in industry are addressed in this chapter:

e Limited memory requirements.
e Real-time playback with quality results that allow for efficient GPU implementation.

o All-focused view without the need for pre-processing of input images or additional
information about the scene.

The following sections are based on original papers that were published as incremental
results of the research carried out. These are the core papers describing the novel method
proposed in this thesis.

3.2 Real-time Per-Pixel Focusing

This section is based on an original method of the author [9]. The basic method described
here addresses the claims of Hypothesis that the proposed method is computationally more
efficient than existing methods and does not require additional depth information about
the input scene.

This section describes a real-time light field rendering method that can be used with
contemporary consumer hardware. The inputs of this method are a discrete light field
approximation, as a grid of images, and a position of the virtual camera. The output is
a novel view that is focused in all parts of the scene. Various open-source applications
were implemented during this research and an interactive web demo' is available. The
main principle, allowing for the real-time usage, is the design of a highly parallel optimal
algorithm for GPU.

First, a focus map with the optimal focus distance is computed for each pixel. Then,
each pixel of the novel view is computed as a combination of pixels from the input images,
so that the contributing pixel colors are sampled from the same spot in the scene. The focus
map contains the mutual displacement of the images to achieve the all-focused sampling
and simulates the scene surface. The focus map can resemble a depth or disparity map,
but it does not contain the real depth of the scene. The scene structure does not have to
be visible on the focus map; see Fig. 3.1.

Figure 3.1: The first image is a depth map. The second one is a focus from the proposal.
It differs from the depth, but leads to artifacts-free novel view in the third image.

! The demo is available as a part of presentation website for one of the original papers [10] here:

fit.vutbr.cz/~ichlubna/lf
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Compared to the disparity map, the focus map contains the offsets for all light field
images and is not computed only for stereo pairs [102]. The values in the focus map are
calculated for the new synthetic view and are not explicitly aligned with any of the input
images. Color similarity is the main metric used during the focus map estimation as the
scene geometry correspondence in the views is not available. The main goal is to minimize
the final rendering error. Therefore, focus maps are tailored to be used in the light field
image-based rendering but not for 3D surface or point-cloud reconstruction. The scene can
be viewed from an arbitrary point of view within the bounds defined by the capturing grid.
Fig. 3.2 shows the principle of focus map usage in light field rendering.
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Figure 3.2: Left: Comparison of fully focused light field image as a result of the proposed
method with light field focused at a single distance. Right: From the input set of images
taken by camera grid, a new synthetic view of the scene is generated having every location
in the scene focused as if captured by a pinhole camera. focus distance values for each
pixel are estimated and stored in a focus map which resembles disparity or depth map of
the scene. This map is used to achieve a correct focusing of each pixel in the novel view
synthesis.

Compared to previous methods [18, 41, 160, 239, 247, 266], the proposed algorithm is
designed to optimally utilize GPU for real-time rendering scenarios and also outperforms
the methods in the resulting visual quality. It works well with sparse, dense, and high-
resolution light field datasets with no excessive hardware requirements. As proved in the
experiments, the method also reaches better quality than methods in the same category
and even reaches similar quality levels as deep learning approaches. Deep learning usually
depends on the long and expensive training process, and the rendering, using the pre-trained
model, is not reaching the times and memory requirements suitable for real-time usage with
high-resolution data.

The proposed method is lightweight in all aspects. No additional depth information
is needed as the input, which also saves memory and allows for the usage of the input
images without preprocessing. One of the notable advantages of the proposed approach is
its independence from the scene content. The computation time is constant and depends
only on the desired resolution of the resulting view and quality settings. This method can
be used, for example, to render scenes behind windows or in a far distance in computer
games where the player’s movement is limited by the environment. It can also be used to
provide a real-time preview of light field video, for example, on a film set, when light field
capturing technology is used.
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3.2.1 Per-Pixel Scanning

The key part of the method is the generation of the focus map. It uses principles similar
to stereo disparity estimation methods [112] but compares colors from multiple images
of the input light field grid. For each pixel, the method iterates over a focus distance
range, interpolates the sampled colors from the input images at the given focus distance,
computes the variance of the colors used, and stores the focus distance with the lowest color
variance. The weighted shift-sum algorithm [13] is used for color interpolation, where the
weights are computed by a linear function of the distance of the sampled image from the
position of the virtual novel view in the grid. The focus map then contains for each pixel its
lowest-variance focus distance. The variance is computed based on the Chebyshev distance
between the pixel values. Generally, the choice of the color distance metric for a given task
is problematic [227]. Chebyshev was experimentally proven to be the most suitable metric
in this case. The whole process is described in Alg. 1.

Data: Position of virtual camera, grid of images, focus range
Result: Focus map, novel image
foreach coordinate € image do
variances = emptyArray();
colors = emptyArray();
foreach focusDistance € range do
newPizel = shiftSum(camera, focusDistance, coordinate, grid);
variances| focusDistance| = newPixel — variance;
colors| focusDistance| = newPixel — color;

optimal Distance = indexOfMinimum (variances);
map|coordinate| = optimal Distance;
image|coordinate| = colors|optimal Distancel;

Algorithm 1: Function shiftSum() uses the shift-sum algorithm and returns the final
color and variance of the colors contributing in the summation. This algorithm is
generalized, returning also the focused pixel color. However, image synthesis is separated
in the reference implementation.

In terms of 3D cost volume [93], the focus distances are the hypothesis planes, the spatial
resolution of the focus map is the spatial resolution of the cost volume, and the cost function
is the variance of the colors in the given cell. When the focus map is ready, the shift-sum
algorithm is used again to synthesize the final image, where each pixel is interpolated at the
previously computed optimal focus distance. The focus map computation and rendering
of the novel view are separated in two stages so that optimizations such as focus map
subsampling can be used. The example of both the final image and the focus map is shown
in Fig. 3.3.

The 3D effect is simulated by the weights assigned to the input images and the novel
view camera coordinates that are used in the shift-sum algorithm to define the relative
displacement of the input images. The color vector of the output pixel p, can be obtained
by iterating over n input images. The function p; in Eq. 3.1 returns the pixel of the ith
image at the given coordinates. Each input color is weighted by w;. The output view
coordinates c are used to shift the sampled images by the offset 0; between the images in
the grid. The amount of shifting is adjusted by the desired focus distance f.
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(a) A view is rendered from light field. (b) A focus map is used in the process.

Figure 3.3: Focused result using the Pavilion dataset with a correspondent focus map are
shown side by side. The focus map contains estimated focus distance for each pixel of the
final image. The map resembles depth or disparity map for the given synthetic view because
the focus distances depend on the distance of the geometry one each pixel from the camera.
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An iteration of the used shift-sum algorithm is depicted in Fig. 3.4.
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Figure 3.4: The figure shows one iteration of the shift-sum based image synthesis where
a pixel from ith image (blue rectangle) is taken into the summation of the output pixel
Po- The orange rectangle depicts the new synthetic image. The red lines show the offsets
relative to the currently sampled image and the distance between the two images. The
currently sampled pixel’s weight w; depends on the distance between the two images. The
x and y superscript denotes the first and the second element of the vector variable.
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3.3 Improvements of the Focusing Algorithm

Additional improvements in quality and performance, optimal scheme for light field video
playback, and automatic detection of important parameters of the original method were
further proposed and published [3]. Hypothesis claims that the proposed method achieves
better visual quality than the state of the art. The improvements described here mitigate
the artifacts that can occur when the focus map contains inaccurately estimated focus
values for some pixels.

Objects of one-pixel size are usually not present in ordinary scenes, and such pixels can
be assumed to be focused at the same distance as their neighbors. The first straightforward
enhancement of the focus map is filtering. Median filtering is used to improve the quality
of the focus map, as shown in Fig. 3.5. A GPU-optimized min-max median algorithm [225]
is an efficient solution.

Figure 3.5: The noise in focus map resembles salt-and-pepper noise. Median filtering can
be used to get rid of incorrectly focused pixels.

3.3.1 Variance Course Analysis

False focus distance detection in the shift-sum algorithm is the source of visual quality
degradation. Large segments filled with a single color, repetitive patterns, or coincidentally
similar areas around one pixel can be problematic. An analysis of the variance course for
one pixel in the problematic area of the image (thin edge) can be seen in Fig. 3.6. The
global minimum does not correspond to the correct focus value. However, the desired detail
causes a peak in the variance chart. This steep change in the variance value, which is close
to the minimal value, can indicate such details. After the variances are computed, a fast
shuffle operation for interthread communication on GPU can be used to test each triplet
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of neighboring variances, detecting the difference that is above a certain threshold. This
scheme expects each GPU thread to evaluate one focus distance. Prioritizing the focus
distance, which is low enough and at the bottom of a saddle, reveals some of the previously
distorted details in the image. The method is described in Alg. 2.
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Figure 3.6: The chart shows the course of the variance coming from the shift-sum for one
pixel. The global minimum value does not correspond to the best focus distance in this
case. node indicates the correct distance. The steep saddle is a thin detail, the
frame of the window highlighted in the picture.

The saddle detection reveals problematic details, but it can lead to a false positive
and cause artifacts in the image, especially near low-frequency areas. Many scenes contain
various kinds of background, such as sky, walls, etc. Such backgrounds are bound to be
in focus at the beginning or end of the focus range. Sampled distances at the boundaries
of the range can converge to very low variance values. If the values are small enough and
their difference is below a certain threshold, it can be assumed that the tested pixel is in
focus at the border of the range. Alg. 3 describes this phase, and an example is shown in
Fig. 3.7.

3.3.2 Pixel Sampling

Instead of sampling one pixel per scan from the transformed coordinates, sampling multiple
pixels at a certain distance can lead to better results. It is based on the assumption that
pixels that are adjacent or very close neighbors belong to the same object in the scene.
This block matching resembles matching cost computation and aggregation used in stereo
disparity estimation methods [230]. However, increasing the number of texture-reading
operations slows down the computation. The pixels can be sampled using various patterns.
Fig. 3.8 shows the best patterns chosen according to the performance results.
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Data: Array of variances associated with focus distances, sensitivity
Result: Edited array of variances editedV ariances
editedV ariances = emptyArray();

editedV ariances ¢ firstElement(variances);
mazx = maximalElement(variances);
foreach three consecutive variances Varyrevious,current,next © variances do
VAT pew = 05
if varcurrent < VaTprey ANA VAT cyrrent < VaTRer then
norm — M;

max var
o o prev |.
prev = |norm — — Bt
next = |norm — Y%next };
max

saddle = prev + next,;
VAT new = VaTeyrrent — Saddle - sensitivity;
else

VaTnew — VaTcurrent;

. . insert
editedV ariances +—— varpeq;

. . insert .
editedV ariances «+—— lastElement(variances);

Algorithm 2: Saddle detection algorithm that prioritizes local minimum over the global
one in the array of color variances during the focus map generation phase. The bigger
the difference between the minimum and its neighbors, the more the minimum shifts to
outperform the global one.

Data: Edited array of variances from saddle detection phase editedV ariances,
number of border elements to check checkNum, detection threshold,
tolerance marking the same variance level

Result: Edited array of variances editedV ariances with new minimums

index = 0;

if firstElement(editedV ariances) > lastElement(editedV ariances) then

‘ index = sizeOf (editedV ariances) — checkNum;

same = false;

if editedVariances|index| < threshold then

foreach {i ¢ Z |0 < i < checkNum — 1} do

j = index + 1;
dif f = |editedVariances|j| — editedVariances[j + 1];
if dif f > tolerance then

same = false;

break;

if same then
‘ editedVariances|index| = —1;

Algorithm 3: The variances are adjusted by prioritizing the values at the borders of the
course which are low enough and surrounded by same or similar values. Such cases occur,
for example, when a distant background is present that stays in focus for a number of
distances at the end of the range.
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Figure 3.7: The chart is showing the course of the variance coming from the shift-sum for
one pixel. The saddle point in this case causes incorrect focus as shown on the picture. The
blue nodes are correct.

C)

Figure 3.8: The figure depicts three tested texture sampling patterns: a) is a full 3x3
window, b) exploits the texture interpolation units in GPU, getting colors from coordinates
between four pixels (similar to Kawase blur [139]), ¢) alternates over modulo, using four
three-read patterns. Note that these patterns were also used in 2 px radius version.
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3.3.3 Focus Range Detection

Predefined focus range can be inconvenient for dynamic scenes with a variable depth range.
The focus range might also not always be known for the given light field. However, the
range is an important parameter for the scan during focus map generation. Automatic fast
detection of the start and the end of the range is necessary. An extra wide range is defined
to ensure coverage of all standard datasets. Then this range shrinks into a tighter one.
The image is divided into 16x16 pixel blocks. Variance is computed with the shift-sum
algorithm in the same way as in the focus map generation. The variances are averaged
through the entire block at each distance. The minimal average variance is then chosen
as optimal. The minimum and maximum of these minimal averages from all blocks are
selected as the final focus range.

Only four nearest central images are used in this computation. Using images that are far
from each other, such as corner images of the whole grid, yields inaccurate results because
of the reduced similarity between them. The local minimum variance of each 16 x16 block is
stored in an array, and then the global minimum and maximum are found; see Alg. 4. The
array of local minimum variances is statistically filtered using the standard score method
to remove outliers.

Data: Four neighbouring input images, scanning distance, size of one scanning step
Result: narrowed focus range
coef = Frameer
range = 2DVector(distance, —distance);
foreach 16x16 block € result do
bestFocus = 0;
minVariance = maximalValue();
foreach fi from —distance to distance with step do
f = coef - fi%
vartance = 0;
foreach pizel € block do
colors = emptyArrayOfColors();
avgCol = emptyColor();
foreach {i ¢ Z |0 < i < 4} do
colorsi| = sample(images|i|, pizelyy, f);
avgCol = avgCol + colors|il;

angol _ (wg4C'ol;

foreach {i ¢ Z |0 < i < 4} do
variance = variance + distance(avgCol, colors|i]);

if variance < minVariance then
manVariance = variance;
bestFocus = f;

range = minMax(best Focus, rangemqz);
rangemin, = min(bestFocus, rangemin);

Algorithm 4: Automatic range detection iterates over a wide focus range. The new
narrow range is constructed using focus distances with minimal variance of each 16x16
block of pixels.

Experiments showed that non-linear focusing scan with a constant step is more robust
for this method. The desired focus range is always defined around the zero focus distance.
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Therefore, this area is searched more densely according to Eq. 3.2, 3.3, and 3.4. This is
achieved by transformation of the linear range, using a third degree polynomial, with only
the highest degree coefficient set as non-zero as follows:

f(z) = ax®. (3.2)

The transformation of the linear value into exponential space is calculated as:

fe=Af}. (3.3)
The coefficient A is calculated using the upper limit of the range as:
1
max

where f; is the focus distance in the linear range, f. is the focus distance in the expo-
nential range, and fy,q. is the upper limit of the range.

3.3.4 Depth of Field

The focus map can be used to generate post-processing effects, such as the depth of field.
The defocused area is distorted by sharp ghosting artifacts in many light field applica-
tions [158]. The artifacts can be mitigated with a blur filter that smoothens the defocused
parts. In the reference implementation, a two-pass separable linear blur was used, where
the amount of blur linearly decreases as the focus distance is closer to the chosen target
distance; see Alg. 5.

Data: All-focused light field rendered image; focus map, DOF range, DOF distance, size
of the blur kernel kernelSize, coordinate-space size of the half of the pixel
hal f Pizel
Result: Rendered image with depth of field effect
focus = round(distance - total Levels);
for pass ¢ {x,y} do
foreach pizel € image do
coord = pixel — coord,
dist = |focus — sample(map, coord)|;
kernelSize = round(dist - range);
w = kernelSize + 1; // weight
color = sample(image, coord) - w;
foreach {i € Z |0 < i < kernelSize} do
o = 2DVector(0,0); // offset
olpass| = (3 + 4 - i) - half Pixel;
w = kernelSize — i
color = color + sample(image, coord + o) - w;
color = color + sample(image, coord — o) - w;
color .
(kernelSize + 1)2°
outImage|coord| = color;

color =

switchImages(image, outImage);

Algorithm 5: Simulation of the depth-of-field effect on the rendered light field image
uses the computed focus map. Half-pixel offsets are used to sample pixels for two-pass
separable linear blur, exploiting the interpolation of texturing units in GPU.
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The results in Fig. 3.9 show that this method can be extended to support multiple focus
distances. The proposed improvements to the focus map reduce the number of artifacts in
this effect; see Fig. 3.10.

shift-sum focus-map-aided shift-sum focus-map-aided

-

Figure 3.9: Focus map was used to simulate the depth of field effect, applying box blur on
the defocused parts of the scene. A comparison with the original shift-sum algorithm is
shown in the figure. Box-like artifacts are visible without the proposed improvements.

Average
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Figure 3.10: The left image shows a part of the depth-of-field effect in Pawilion scene using
the focus map with the proposed improvements. The effect in the right image uses the focus
map generated without the proposed improvements and contains more visible artifacts. The
rightmost image is a difference between the top images.

3.3.5 GPU Utilization

The method is designed to exploit massive parallelism available on GPU architectures,
which is important for the desired real-time usage. The focus map generation is performed
in a GPGPU compute shader or kernel. Each warp (32 threads on NVIDIA cards) is
assigned to one pixel. Each workgroup consists of 8 neighboring pixels. This scheme offers
a good GPU occupancy and memory access coherency, allowing an in-warp data transfer
between the threads, which is much faster than using the global or local memory. Each
thread computes one focus distance (or more when denser search is required), using the
weighted shift-sum and the Welford’s variance algorithm [281]; see Alg. 6.

This way of variance computation improves the GPU occupancy by reducing the nec-
essary number of registers. In the end, the minimal variance value within a warp is found
using parallel reduction with ballot operation. In the fragment shader, a surface represent-
ing the light field is rendered. The focus map and the input images are stored as textures.
Therefore, the missing pixels can be interpolated in texturing units if the resolutions of the
result and the focus map differ. Fig. 3.11 describes the work distribution on GPU.

69



Data: Stream of input pixel values
Result: Estimated variance msy
n = 0;
mean = 0;
mo = 0;
foreach pizel < input do
n=mn-+1;
delta = pixel — mean;
distance = pixelDistance(pizel, mean);
mean = mean + delta / n;
ma = mg + distance - pixelDistance(pizel, mean);

n;g:mg/(nfl);

Algorithm 6: Welford’s method for computing online variance in one pass, adjusted to
pixel values (RGB colors in reference implementation) comparison purpose. This algo-
rithm is used in the shift-sum, analyzing new color values coming into the summation.

Workgroup = 8 pixels

Warp = focus map pixel
INPUT
7 RIA 1“ CE
PIXELS RIAN
MINIMAL
PARALLEL VARIANCE FOCUS
REDUCTION + — 3| MAP
(BALLOT) FOCUS PIXEL
DISTANCE

Figure 3.11: Work distribution on the GPU for focus map generation. The compute shader
analyses the input images, going through the focus range and saving the focus distance
with a minimal variance in the focus map. Because the workload is divided into warp-sized
elements, no global or local synchronization, that would slow down the computation, is
needed.
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Video Streaming

Classic datasets [267] contain frames in the 8x8 grids. Current video standards expect a
resolution of at least 1920x1080 (FulllHD), slowly rising to 3840x2160 (4K). This leads
to almost 10 GB/s when streaming 25 fps FullHD 8-bit RGB video. Such a transfer from
RAM memory via PCI-Express into GPU memory is hardly achievable in real time.

Video compression was shown to be an optimal solution for light field data [1]. It was
discovered that compression artifacts are mitigated by light field rendering. The same fact
was proven for downscaling with H.265 compression; see Fig. 3.12. PSNR difference is
higher when comparing the raw data frame-by-frame than when comparing synthetic views
produced by the light field rendering method. SSIM seems to be a bit worse in the light
field case, but the difference is very small.
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Figure 3.12: An average error, over all compression levels defined by H.265 CRF parame-
ter, of PSNR and SSIM comparison of downscaled (HD) and original (FullHD) light field
dataset. The downscaled dataset was compared to the original frame-by-frame as a video
and as a light field, comparing the new synthetic views, produced using the original and
downscaled input.

Video packets can be uploaded asynchronously, decompressed on GPU, and converted?
to textures. The scheme in Fig. 3.13 describes the approach used in the experimental
implementation.

compressed

GPU
packets

OpenGL renderer

Figure 3.13: Light field images are compressed in a video stream which is transferred asyn-
chronously to the GPU. Video packets are decoded on GPU, using vdpau, and converted
into OpenGL textures. Textures can be then used for rendering, using classic rendering
pipeline and compute shaders.

np

light field

images

2 GL_NV_ vdpau__interop extension for OpenGL can be used.
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3.4 Experimental Evaluation with Standard Datasets

The proposed method was evaluated using an experimental implementation. Datasets used
in the experiments captured with camera array come from Stanford light field archives [267],
light field captured by the plenoptic camera Lytro Illum belongs to EPFL light field
dataset [220], and synthetic dataset was rendered on Barcelona Pavilion scene, which is
available at the Blender demo files page; see Fig. 3.14. Only one Lytro dataset was used
because the distance between Lytro views is very small and cannot be used to create an
appreciable 3D effect. In all experiments, a ground truth center view from the original
dataset was chosen as a reference and it was compared using SSIM and PSNR metrics to
a new synthetic view rendered by the proposed method. All experiments were executed on
a machine equipped with NVIDIA® GeForce RTX"™ 2070 GPU and Intel® Core™ i5-8500
CPU 3.00 GHz CPU, running Arch Linux.

(a) Bunny contains a simple (b) Lego contains small (¢) Buldozer contains one
object. details. complex object.

(d) Chess contains reflective (e) Pawvilion scene is a (f) Lytro is an outdoor scene
materials. complex outdoor scene. taken by a plenoptic camera.

Figure 3.14: The images are reference views from each dataset used in the experiments.

3.4.1 Color Distance Metric

The variance computation phase in the proposed algorithm requires a pixel color value
distance metric to decide how much two pixels differ in terms of color similarity. The
right choice of the metric depends on various aspects, such as the expected color range,
the type of images, or a final use case. Various color distance metrics were compared to
find out which one would yield the best visual quality results for light field datasets; see
Fig. 3.15. The quality differences were not significant, but the computational complexity of
the metrics differed and could negatively affect performance. Chebyshew metric was chosen
for further experiments because of high-quality results and computational simplicity.
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Figure 3.15: A comparison of the RGB color distance metrics for the pixel similarity
test during the variance computation phase. The W suffix in the metric name stands for
weighted metrics. The average results of all the datasets tested are presented.

3.4.2 Base Quality

For each dataset, the best focus range and search step were manually found and the resulting
images were compared to the reference. The final visual quality is evaluated in Fig. 3.16.
The images are focused in all parts, but interpolation artifacts are visible around thin edges
or near similarly colored areas.

Bunny - — Chess T
5 Chess E—— Bunny -
& Buldozer I— Buldozer I
Q@ Pavillion Lytro s
Lego Lego mmmmmmmmm
Lytro mm ‘ ‘ ‘ Pavillion W8
30 35 40 0.880 0.900 0.920 0.940 0.960
PSNR [dB] SSIM

Figure 3.16: Best results are presented of rendering a new view from each dataset compared
to the ground truth.

A detailed look at the interpolation artifacts is captured in Fig. 3.17. Bunny dataset
contains only diffuse material and is clearly separated from the black background. There-
fore, the reconstruction had minimum artifacts. Although the Chess dataset contains a
lot of reflections, the chessboard pattern and a relatively small distance between the views
improved the quality of the result. Buldozer contains a lot of small details that are clearly
separated from the yellow construction of the model, which causes higher variance values
when mixing nearby pixels. Lego dataset is filled with a single-color area where, for example,
the thin edges or details are hard to detect, and the pixels interpolated from the surrounding
area might yield lower variance. The distance between Lytro cameras is small, so the result
was expected to be better. However, due to the technical drawbacks of the camera, the
input images contain subtle noise that negatively affects the evaluation. Pavilion contains
both similar colored areas and complex objects with many details, but the distance between
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cameras is large. Fig. 3.18 shows the elapsed time of focus map generation and the final
composition of pixels from each dataset.

N

(a) Reference image is (b) Rendered view shows (c¢) Zoomed reference (d) Zoomed render shows
taken from the input missing details. contains the edges of the vanishing details.
light field. bricks.

Figure 3.17: Reference images are placed in the left column. Right column contains ren-
dered reconstructed images with zoomed detail of interpolation artifacts caused by incorrect
focus distance estimation in the affected pixels.
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Elapsed time [ms]

Figure 3.18: Elapsed time of the focus map generation and drawing which depends on the
focus map and resulting image resolution respectively. Full, 1/4 and 1/8 sized focus map
is used in these measurements. The drawing time slightly increases when using a smaller
focus map, most likely due to coordinates interpolation in texturing units due to resolution
mismatch.
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3.4.3 Focus Map Resolution

One of the key features of the proposed method is the option to separate the focus map
generation from the interpolation of the final result. Fig. 3.19 shows how the reduction of
the focus map size affects the computation time and visual quality of the final image.
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Figure 3.19: The chart shows the relation of visual quality, computation time, and amount
of focus map dimensions division. The results are averaged from all tested datasets.

Surprisingly, the quality does not decrease rapidly even with a significant focus map
downscaling. In certain cases, the quality even improves because some areas with incorrect
focus distances are smoothed due to filtering caused by resizing. Too small map size can
lead to the same focus distance on nearby objects that might not lie in the same distance,
causing out-of-focus artifacts as shown in Fig. 3.20.

Ground truth "‘,_.:__- ; A ]_;‘-T 20x smaller

2x smaller R .Y 50x smaller

Kl

Figure 3.20: Focusing artifacts caused by low resolution focus map. The first image shows
reference image with generated depth map. The other ones are focus maps with their
dimensions divided by 2, 20, and 50 with the final rendered results.
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3.4.4 Focus Range Density

Increasing the number of search samples when iterating over the focus distances in a given
range does not significantly help the visual quality and unnecessarily slows down the com-
putation unnecessarily; see Fig. 3.21. 32 samples proved to be an optimal choice for most of
the datasets. The most significant difference in quality was measured on Pavilion dataset
which has the largest depth range. That is the only case where a denser search is necessary.
A denser search is needed, especially when the objects in the scene are linearly distributed
over the whole depth range.
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Time [ms]

Figure 3.21: Effect of focus range scan density on visual quality is shown.

3.4.5 Camera Grid Sampling Distance

The experimental results in Fig. 3.22 show how many images need to be sampled for the
resulting pixel sum. The sampling window in the input grid gives optimal results when
having a radius about 2 grid views wide. The wider radius leads to more texture reads and
excessive memory access, which slows down the computation most. Surrounding images
from the grid in distance from zero to the sampling distance radius are taken into account
during the interpolation. When the radius is too wide, images from distant places in the
grid might add unwanted ghosting artifacts in the final result. The images capture the
scene from a different angle than expected.
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Figure 3.22: Effect of maximal sample distance to quality and computation time is shown.
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3.4.6 Camera Grid Parameters

The Pavilion dataset was used to measure the relation between the visual quality of the
reconstructed view and the distance between cameras with various focal lengths. The
distance between cameras, field of view, total depth range in the scene, and position of the
camera grid in the scene affect the quality of the reconstruction; see Fig. 3.23.

Focal length
— 25 mm

Focal length

30 - —— 25 MM
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0.5 1 1.5 0.5 1 1.5

Camera grid scale

Figure 3.23: The camera grid contains 8x8 cameras and is initially 2 m wide in the scene-
space. The first visible surface is about 1 m away from the grid, and the farthest visible
spot excluding the sky is about 90 m away. The camera grid is uniformly scaled up and
down to change the distance between cameras. The meters units are used according to the
world space of the scene.

The camera setup used in the scene can be viewed in Fig. 3.24. With an increasing
space between cameras or a decreasing field of view (increasing focal length), the differences
between views increase, and the interpolation is more prone to visual artifacts. On the other
hand, the farther the cameras are, the more freedom is gained for the virtual camera. This
issue can be solved with denser sampling [19], providing more views in the grid, increasing
its dimensions. However, this leads to higher memory and bandwidth requirements.

Figure 3.24: The size of the grid (red circle) in Pawvilion scene and the value of field of
view was animated and resulting reconstruction quality was measured. Two views from the
corners of the grid using 25 mm focal length are placed in the middle and 55 mm ones at
the bottom. The difference between views is bigger in the 55 mm version.
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3.4.7 Comparison to Other Methods

An accurate comparison of performance with state-of-the-art methods is complicated due
to different methodology and outputs. The proposed method generates a focus map for
the new synthetic view used in the rendering stage. The process can be roughly compared
to depth or disparity map estimation algorithms. Tab. 3.1 is an indicative overview of the
computation times of this stage.

Method Architecture Resolution Time
Proposed RTX 2070 1920x1080x64 18 ms
[27] Tesla C2050 640x480%x2 16 ms
[18] E3-1245 V2 541x376%x9 1.5s
[128] i7 2.8GHz 512x512x49 13 min
[54] i7-6700k 512x512x49 0.8 s
[59] Quadro M1000M 1920x1080x45  1.58 s

Table 3.1: The table contains an overview of computation times of state-of-the-art depth
or disparity estimation methods from light fields.

The core of the method, consisting of the focus range scan, was first evaluated. The
improvements, such as saddle and border detection, block sampling, or map filtering, were
then additionally measured to find out how efficient they were. A side-by-side visual quality
comparison with state-of-the-art methods is shown in Fig. 3.25.

direct methods learning-based methods
reference proposed Vagharshakyan Shi Brox reference proposed Ni

o zoomed detail  synthetic view

)
=
3

IS

=

—

41.54 32.15 38.91

Figure 3.25: Side-by-side visual comparison with other state of the art methods, rendering
a new synthetic view. The proposed method without improvements outperforms other
general methods but does not reach the same quality as learning-based methods. The
results of direct methods do not show any significant differences and are almost identical
with difference below 1 dB from the proposed method. The proposed method produces the
sharpest result. The proposed method was compared to Vagharshakyan [266], Shi [239],
Brox [11], and Ni [196].

Methods capable of producing the synthetic view directly from the images were chosen
for the evaluation. The proposed method outperforms other similar approaches. View
reconstruction on Bunny dataset, using the biggest competitor, the shearlet approach [266],
measured on GeForce GTX"" Titan X takes 5 s, which is not suitable for real-time rendering.

The proposed method without further improvements does not reach the same visual
quality as the newer learning-based methods [196] when measured on the same dataset used
in the original paper, but slightly outperforms older methods [134] (indirect comparison on
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Kitchen and Museum datasets, difference about 1 dB [196]). However, the proposed method
does not depend on the training process, is faster, and is less memory demanding.

Measurements show that the new proposed method is comparable to the other pub-
lished algorithms in terms of visual quality, reaching a performance suitable for real-time
rendering. Fig. 3.26 shows how saddle detection improved the results, compared to the
original scan.

. block sampling block sampling ) . all without
original method saddle check saddle with borders (1pxradius) (@px radius) median filtering allimprovements saddle and border reference
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psnr [db] 29.823474 29.689416 30.18
ssim 0.904607 0 87894 0.91574 0.91 0.919459 0.905507

time [ms] 9.6

synthetic view

zoomed detail

synthetic view

zoomed detail

29.946434 29.927458
0.875411 0.875854
245

psnr [db] 28.610685 28.618998 28.552596 29.428625 X 29.212515
ssim 0.840625 0.834447 0.830915 0.858882 . 0.859828
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time [ms]

Figure 3.26: The figure contains visual comparison of the proposed improvements, captured
on Lego and Pavilion datasets. Saddle and borders detection leads to huge improvements in
visual quality in Lego dataset but creates additional noise and artifacts in other ones. Block
sampling, using texture interpolation, was used (method b) in Fig. 3.8. Two combinations
of the improvements were also measured.

The saddle detection and median filtering bring about quality improvement without
significant performance loss; see Tab. 3.2. How this improvement made the method compa-
rable even with deep learning approaches is visible in Tab. 3.3. The block sampling patterns
are further referenced as bA, bB, bC according to Fig. 3.8. Fig. 3.27 shows the best-settings
quality improvements for each scene. Fig. 3.28 shows the comparison between the proposed
pixel sampling patterns. The automatic focus range detection shows very good results,
measured on the data annotated by human; see Fig. 3.29.
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Method Time [ms]
1920x1080 1024x1024 624x432

raw 18.9 9.6 3.2
saddle 194 9.9 3.3
borders 194 9.9 3.4
bA 30.9 15.7 5.4
bB 22.4 11.5 3.9
bC 43.4 21.1 5.9
median 19 9.6 3.2
bB+m 24.5 11.8 4.1
bB4+m-+s 24.6 11.9 4.1

Table 3.2: The table contains absolute computational times of focus map generation for
all improvements and three common light field resolutions in the tested datasets. The raw
label marks the per-pixel scan without the proposed improvements. The time depends only
on the resolution of the dataset and does not depend on the content of the scene.

Method PSNR [db]
film (4x4 images) [217] 42.73
proposed (median+block) 42.62
film (2x2 images) [217] 42.55
Jiang [57] 42.35
Chlubna [9] 41.91
Brox [41] 41.54
Vagharshakyan [260] 41.29
Shi [230] 41.16

Table 3.3: A qualitative comparison with other methods is presented here. PSNR was
measured on the Bunny scene and compared to other results. The best improvements were
used in the proposed method.

80



10 - | 1 PSNR
SSIM

Lego Pavlllon Lytro BunnyBulclozer Chess

Dataset

Improvement %]

Figure 3.27: The figure shows the best vi-
sual quality improvements for each scene
in the dataset. The improvement value is
relative to the per-pixel scan without addi-
tional operations. The complex scenes show
higher quality gains than the simple ones,
but all scenes are improved.
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Figure 3.28: The chart shows the vi-
sual quality comparison of the three block-
sampling patterns. Two distance variations
were compared, the first samples the clos-
est pixels, and the second the pixels that
are one pixel further away than the first ac-
cording to the sampling pattern.
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Figure 3.29: Automatic focus range detection is compared to manual focus set according

to subjective visual evaluation of the result. The average error of automatic detection using
the PSNR metric is 1.46% and 1.19% using SSIM. The detection was able to outperform
the manual setting in the case of the Chess dataset, measuring PSNR. This was probably
caused by the inaccuracy of the PSNR metric according to human visual perception.



3.5 Focusing Performance Optimizations

The generation of the focus map can be accelerated to produce a better quality/speed
ratio [10]. The optimal computational efficiency mentioned in Hypothesis is the main goal
of this research. This section describes the proposed optimization of the above-described
light field rendering method; see Fig. 3.30.

selection of focus
with minimal color
range dispersion
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Figure 3.30: Real-life or synthetic scene is captured by multiple cameras which are optimally
positioned according to the proposal. The captured images, closest to the virtual camera,
are mutually shifted to simulate light field focusing. Multiple focus distances are scanned
using a novel optimal strategy with an improved color dispersion metric. Optimal focusing

for each pixel is stored in a focus map which is filtered and used to synthesize a novel view.
The result is produced by the proposed method with Cornell box scene.
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3.5.1 Focus Range Scanning

Scanning of the focus range and looking for the minimal color dispersion was previously [8,
9] carried out using a brute-force approach. A fixed number of steps with constant spaces
was used. This brute-force scan has two disadvantages. First, it can skip the optimal
value due to the constant spacing of the samples. Second, it is computationally demanding
because each sample involves GPU memory access operations that slow down the process.
The goal of this research is to find a better strategy that adaptively scans the relevant parts
of the range and skips the parts that do not contain any potentially desired values. Several
alternative scanning methods are proposed and tested:

o BF (brute force) is a simple scan with fixed number of steps and constant spaces.

« BFET (brute force with early termination) is the BF scan that stops if the last
optimal value does not change in a defined number of steps.

o VS (variable step) shrinks the step size when a new optimal value is found and grows
otherwise.

o VSET (variable step with early termination) is the VS scan that stops if the last
optimal value does not change in a defined number of steps.

e RAND (random) scans the range at random positions with an early termination
mechanism.

o« TD (top down) starts with three samples, and in each iteration scans the center
positions of the remaining spaces between the previously sampled positions.
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o HIER (hierarchical) uses bisection method to scan the range sparsely and shrink the
scanning interval in each iteration.

o DESC (gradient descent [100]) starts at multiple uniformly selected positions in the
range. FEach scan branch uses a variable scan step that changes according to the
difference between the last focus value and the new optimum. The best value of all
branches is selected in the end.

o« PYR (pyramid) performs the first scan on downsampled and blurred data. A tight
area around the found optimum is scanned again on the full-resolution data. The
downsampling might help to identify the area that most likely contains the desired
values, and large disparities or single colored areas might be easier to detect [263].
This method can exploit texture mipmapping.

Fig. 3.31 describes the methods. Stochastic variations of the proposed methods were tested
too, but they showed too much thread divergence on GPU and were too slow.
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Figure 3.31: Scanning methods compared in this study are depicted in the figure. The blue
line marks the whole focus range. The orange arrows are samples in the scan. Each method
scans the range with different number of steps and at different positions.

3.5.2 Color Dispersion Metric

A statistical dispersion metric is used when the colors of the pixels sampled are compared.
This metric is used to estimate the probability that the sampled pixels belong to the same
spot in the scene. The assumption is that the colors of such pixels would be similar. The
color function C in Eq. 3.5 for a specific pixel and synthetic view position is a mapping
between the focus level f and the light field image grid coordinates st into the m-dimensional
color space (typically m = 3 for RGB or YUV spaces):

C(st, f) : R* x R — R™. (3.5)
An array of colors for all images X(f) from SxT sized grid is processed in Eq. 3.6 as:
X(f)=1[C(u,f)] stell...S]x][1...T]. (3.6)

The optimal focus distance f, in Eq. 3.7 is found from the focus range [fs, fe], based on the
minimal color dispersion value disp(X(f)):

fo=argmingc iy ) {disp(X(f))}. (3.7)
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This study contains a comparison of several dispersion metrics that differ in quality and
computational complexity:

o VAR (variance) is standard statistical variance.

« RANGE (total range) measures the maximal and minimal distance from the origin,
and their difference is marked the dispersion.

o ERANGE (elementwise range) is a metric where maximal and minimal values are
stored for each color vector element. The distance between the maximal and minimal
vectors marks the dispersion.

e MAD (mean absolute difference): would be too complex to compute, so a simple
approximation is used. The difference of the new color and the last one and the
difference of the new color and one sample from the history are added to the final
dispersion.

Interquartile range metric [63] was also considered but not measured because the prelim-
inary test showed that this metric is computationally too demanding and the results in
terms of visual quality were not promising.

3.5.3 Pixel Sampling

Memory requirements of light fields are one of the main issues in the rendering pipelines.
Encoding in video formats was previously proposed [3] to stream the necessary packets in
the GPU memory, where the frames are decoded in the HW decoders. Most decoders,
such as NVDEC, return frames in YUV format. Conversion between color spaces might
bring additional overhead. The attributes of YUV might be exploited to achieve better
results than in standard RGB. Given the assumption that most of the materials in the real
world are partially diffuse and specular, the color of the pixel at the same spot on the scene
geometry should not change with the changing camera position. The luminance of the pixel
can change. The Chebyshev distance [227] proved to be the best metric to measure color
similarity in focus map generation [9]. This distance function can be adjusted to attenuate
the luminance component in Eq 3.8 as:

d:max(‘c{}—c{i‘-wy,‘cf‘,—cg‘,‘cé—cg‘), (3.8)

where d is the final distance, ¢ and ¢® are the input colors with subscripts cy,u,v rep-
resenting the color components and wy is the attenuation weight for the Y component
distance.

Additional strategies for sampling the texture outside its borders were proposed, as the
shifted textures always end up being sampled outside. Blending of the pixels at the border,
where the radius grows with the distance from the border and alternating of the last pixels
instead of copying of the last one might create more distinctive details.
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3.6 Experimental Evaluation with Novel 4K Dataset

The implementation uses CUDA kernels for the focus map computation. Visual quality
was measured using PSNR and SSIM metrics. Quality was measured relative to the basic
BF method and averaged. The number of scan steps was set to 32 according to previous
measurements [9], as it ensures the optimal speed/quality ratio. Decreasing the steps leads
to quality loss with only linear speed-up. Additional no-reference metrics LIQE [296] for
standard artifact detection and NIQSV+ [259] for multi-view image synthesis evaluation
were used for further analysis of the results. MNSS [92] metric designed for DIBR (depth-
image-based rendering) was also tested, but the results did not correspond to the actual
quality of the novel view. The DIBR artifacts are apparently of a different nature than
artifacts appearing in light field rendering. Measurements were carried out on all scenes of
the dataset, unless explicitly stated otherwise. Five reference views for each measurement
were linearly selected, with constant spaces, from the reference dataset grid and evaluated.
The dataset was generated by the method described in Section 3.7.

3.6.1 Important Parameters Identification

Initially over six million test combinations were considered, but due to the size being unrea-
sonable, only the most promising parameters were selected for full testing. A quick test was
conducted on street animation scene to eliminate parameters that did not show significant
improvements. The scene was selected because it resembles an ordinary real-life photo and
contains various materials.

Reduction of Scan Methods

RAND, VSET, VS and BFET methods are considered to be only minor optimizations.
Only VSET was selected for the further measurement, according to Fig. 3.32.
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Figure 3.32: These four similar scanning methods were compared to select only one for
further measurements. The quality does not change significantly, but the speedup is the
best at VSET. The measurements are relative to the base BF method.

Although the quality metrics were not in favor of RAND, this scan method might be
useful for early preview purposes similarly to progressive path tracing, where the amount
of noise decreases with every new sample [287]. The advantage of RAND is that the error
distribution is uniform throughout the image [178]. This method can transform the typical
light field ghosting artifacts to classic, per-pixel, color noise. Other methods usually leave
whole areas distorted, so the area-wise error is more visible to human observer than the
pixel-wise error; see Fig. 3.33. Perceptual LIQE metric score for RAND was 1.97 compared
to 1.73 for VSET and 3.382812 for the reference image. NIQSV+ score was 7.0 for RAND
and 6.9 for VSET.

85



(a) Reference image is taken (b) RAND focuses the scene but (¢) VSET leaves some parts of
from the input light field. adds noise everywhere. the scene out of focus.

Figure 3.33: The figure shows how VSET scan can reconstruct many small details but can
contain large areas with artifacts. RAND contains more pixels with error, but the error
might not be visible because it is distributed uniformly. The images are zoomed parts of
the street animation scene.

Map Filtering

The final focus map usually contains noise. The map was filtered by three methods: median
filter, symmetric nearest neighbor [101], and Kuwahara filter [150]. Median and Kuwahara
produced better quality results. Kuwahara filter was identified as the best option because
the same quality of the result could be achieved in half the time of the previously proposed
median filter.

Color Sampling

The pixels are sampled by blocks to obtain information about the surrounding details.
Previous measurements showed that pixels can be optimally sampled in certain patterns
with a kernel with a width of 2 pixels [9]. Only 5 pixels are sampled in the distance defined
by the radius. One pixel in the middle and four interpolated, each between the four pixel
coordinates in the corners. The measurements on 4K data showed that the visual quality
improved with increasing block radius up to 10 pixels. The quality reached an improvement
of 13% compared to the single-pixel sampling. Experiments on various sizes of the data
showed that the radius can be linearly adjusted according to the total number of pixels, for
example, 2.5 for FullHD resolution.

The change of color spaces does not significantly affect the result. It can be safely
assumed that the proposed method works with the same efficiency in both RGB and YUV.
YUYV formats, such as widely used NV12, store the Y values in a separate array from UV.
Reading the whole YUV triplet would cause inconsistent read operations on GPU which
might negatively affect the performance. The measurements showed that the color distance
can be replaced by the simple difference of Y components of the colors with the loss of
quality by 3%. The proposed weighted YUV Chebyshev distance, see Eq. 3.8, slightly
outperforms the other mentioned approaches with the attenuation weight set to 0.25 which
was empirically discovered. The quality improvement is 0.2% compared to standard RGB
and 0.8% to YUV Chebyshew.
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Other Parameters

Measurement of the behavior of the out-of-texture sampling showed that the computational
time does not change significantly. The visual quality of standard wrapping, mirroring, and
solid border modes is the lowest. Clamping, blending, and alternating produced similar
results, with alternating slightly outperforming the rest by 0.34%.

The effect of the order of the color distance (distance® ") function was measured, but
the effect on the result is not statistically significant. The focus range was originally scanned
linearly. The order of non-linear transformation (range® ") was also measured since the
details that are far from the camera might not be as dense and might need a sparser scan
than the objects nearby. This assumption was not confirmed, and the linear range showed
the best results. Both orders were kept at the value of 1 in all other experiments.

The average quality measured in all tests showed that the input views can be reduced
to only 4 nearest neighbors to the synthetic view, compared to the previously proposed 16
views. The quality loss is only 0.3%, but the reduced number of texture read operations
drastically speeds up the process 10.6x when measured over all the approaches mentioned.

3.6.2 Color Dispersion

The dispersion metrics were compared by averaging all measurements with all scanning
methods; see Fig. 3.34. The previously proposed VAR metric for the evaluation of color
dispersion can be replaced by ERANGE which is 4.14x faster and reaches better quality
than VAR by 3%.

BS MAD . . |
% ERANGE I —
=  RANGE M - B
0 1 2 3 4 0 20 40 60 80 100
Times faster Quality change (%)

Figure 3.34: The color dispersion metrics were compared over all measurements. The
ERANGE metric outperforms all other approaches in time and quality. MAD metric brings
no improvement. The measurements are relative to the base VAR method.

3.6.3 Focus Scanning

The comparison of the scanning methods is performed with the ERANGE metric, but the
results are similar even with the other ones; see Fig. 3.35. The PYR method reaches almost
the same quality as the base BF method, the quality loss is 2.86%, but it is 1.74x faster.
The TD method is the fastest, 2.96x faster, but the quality loss is 12.83%. HIER reaches
1.06x speedup with 3% quality loss.

No-reference metrics were also used to evaluate how the artifacts manifest in the best
scan. NIQSV+ and LIQE scores for BF and PYR were 5.44, 5.41 and 1.86, 1.84 respectively.
This shows that the perceptual distortion of the PYR scan is minimal compared to the BF.

Fig. 3.36 shows the common errors in the results. Although the number of scanning
levels can be reduced to speed up the original BF method, the constant scan leads to a crude
focusing approximation where certain ranges are never scanned at all. The proposed scan
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Figure 3.35: The scanning methods were compared, showing that all methods are signifi-
cantly faster than the base BF. The PYR method outperforms all other approaches in time
and quality. The measurements are relative to the base VAR method.

methods are less prone to vanishing details and ghosting due to the possibility of denser

scan when necessary.

(a) Reference image is taken ) BF method creates (¢) PYR significantly mitigates
from the input light field. 1ncomplete surfaces. the artifacts.

Figure 3.36: Parts of the most challenging high frequency scene are shown on the pictures.
The number of steps of the BF method was lowered to reach the same time as PYR.

3.6.4 Optimal Setup

According to the above measurements, the optimal parameters are identified and the best
method for focus map generation is proposed with parameters listed in Tab. 3.4. The
comparison with the previously proposed and other state-of-the-art methods is shown in
Tab. 3.5.

Scan Metric Views Filter Block Color Texture
PYR ERANGE 4 Kuwahara 10x 10 YUVw ALTER

Table 3.4: The best-quality and fastest computation parameters were identified.

Method Views PSNR [dB] SSIM LIQE NIQSV+ Time [ms]

proposed 4 30.26 0.86 5.41 1.84 51.21
previous scan [J] 4 30.09 0.872  5.32 1.79 396.85
previous scan [3] 16 30.1 0.86 5.44 1.82 1769.12

Table 3.5: Previous focus map generation method is compared to the improved proposal.

Fig. 3.37 shows a visual and measured comparison of the proposed method and other
recently published approaches. Furthermore, the FLAVR [135], ST-MFNet [60] and
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SAVFI [57] methods were tested but required more views than 4 closest to produce a
reasonable result. Instant NGP [190] was able to use 4 views, but the result was still blurry
even after minutes of processing.

method reference proposed previous scan softmax

view

zoom

psnr [dB] 45.30 43.82 40.64
ssim 0.988 0.989 0.985
NIQSV+ 8.13 7.77 6.9
LIQE 2.75 2.12 1.62
time 57.78 ms 361.89 ms 4.69s
memory 1.2GB 1.18 GB 5.36 GB
resolution 3840x2160 3840x2160 1920x1080
method ifrnet biformer film fruc

view

zoom

psnr [dB] 42.43 42.26 39.1 28.9
ssim 0.99 0.989 0.982 0.966
NIQSV+ 6.7 7.98 6.33 5.42
LIQE 1.43 1.6 1.42 1.52
time 1.2s 33.15s 65.51s 110 ms
memory 4.75 GB 6.54 GB 7.37 GB 1.08 GB
resolution 1920x1080 1920x1080 1280x720 3840x2160

Figure 3.37: View interpolation methods were compared on Cornell box scene. The other
methods are: previous scan [8] for focus map generation, deep interpolations such as soft-
max [197], ifrnet [144], biformer [204], film [217], and optical-flow based fruc by NVIDIA.
All methods were measured on GPU. Inputs of some methods had to be downscaled.

The 4 closest images are problematic for the 3D and neural [274] reconstructions, as
the 3D information is difficult to obtain from only four views positioned on a plane. For
example, Colmap library, Meshroom, or 3DF Zephir were unable to correctly position the
cameras for dense point-cloud reconstruction. All these results show that the proposed
method is valuable for real-time processing as it saves memory, produces a high-quality
synthetic view, and is significantly faster than other methods. The previous focus map scan
used 16 nearest views. The implementation of the previous method used in the experiments
was adjusted to use 4 views, otherwise the speed-up would be even higher.

The memory and time requirements of the proposed method are lower than state of the
art. To prove that the method reaches the same level of visual quality as existing methods,
a qualitative comparison was conducted on different existing datasets. A zoomed detail
of the chest scene is compared in Fig. 3.38 where many methods ignore the details on the
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crystal and blur them. Optical-flow-based fruc, on the other hand, unnecessarily highlights
the details.

reference proposed previous scan softmax

. ¥
-
1.5

\ &
B~ | z W

L -

e
biformer film

ifrnet

Figure 3.38: A problematic zoomed region of chess [267] scene is compared across the
interpolation methods. The reflective material of the crystal with the small crack-like shiny
details is hard to reconstruct.

Fig. 3.39 shows full novel views views from different scenes. The results look visually
the same with minor differences.

The proposed method can produce artifacts similar as the existing methods but is stable.
Deep learning methods can fail when the pretrained model does not contain the necessary
information for the specific kind of scene. The example of such an issue is especially visible
in the simple setting scene with softmax and ifrnet. Although deep learning methods
can sometimes produce higher-quality results, the proposed method is more stable and
lightweight.

3.6.5 Scene Types

The original dataset proved to be a good benchmark of various types of scenes. The best
quality, PSNR above 40 dB and SSIM over 0.95, was measured at Cornell box, low frequency
and simple setting scenes. The worst quality, PSNR below 25 dB and SSIM below 0.75,
was measured at high frequency and large depth scenes. It can be assumed that two crucial
parameters regarding the resulting quality of the proposed method exist. The first is the
frequency of the features in the scene, as the sampling can miss the high frequency patterns
according to the Nyquist—Shannon theorem [19]. The second is the depth range, where
the wide range is more difficult to properly scan without skipping important details in the
scene. Both parameters need to be high to decrease the quality. For example, low frequency
contains a large depth range but belongs to the best results. The method is efficient with
reflective materials, volumetric effects, and single-colored areas, which are often considered
problematic for image-based rendering methods. Surprisingly, the reflective scene reached
slightly better quality of the novel view than its counterpart diffuse. Both scenes contain
the same geometry and differ only in material.

The views need to be synchronized in time [272] and captured by the same type of
camera. The proposed method can produce a novel view even from temporarily unsynchro-
nized views with different brightness levels. The color similarity metric ensures that the
least error value is produced, so the unsynchronized results are simply motion blurred.

Several filters including CLAHE contrast [2412], edge detection, sharpening, histogram
equalization, bilateral filtering, sinusoidal color transformation, etc. were tested for both
denoising and detail highlighting. The quality remained the same, and the filtering did not
aid the algorithm. However, this proved that the method is robust enough and can tolerate
such filters and applied effects on the views.
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Figure 3.39: Existing view interpolation methods are qualitatively compared using scenes
from different datasets: board games [113], chess [267], chest [267], flower [267], and simple
setting (original dataset). The in the bottom-left corners are SSIM results.
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3.7 Novel Dataset Capturing Method

This section proposes an optimal method for capturing light field data [10]. It supports the
Hypothesis by creating optimal dataset for the proposed method. This data set ensures the
best visual quality of the results produced by the proposed rendering.

Narrowly spaced data, for example, taken by plenoptic cameras, are useful for refocusing
of the final photo at different distances [286]. They can be represented as a grid of images
with small spaces or by a focal stack, where the images are taken from the same position
but differently focused [152]. Widely spaced data allow for 3D movement in the scene [283].
Widely spaced discrete light field data are the main topic of this research.

The shape of the camera grid used is usually defined by the technical limitations of
the rig or by subjective visual evaluation of the results. FExisting datasets usually use
constant spacing between cameras [158], or different fixed spaces in both axes depending
on the capturing mechanism [109]. Reconfigurable camera arrays also exist, where camera
positions are adjusted based on the rendering quality of the result [295]. The cameras
are usually positioned to achieve a defined overlap, for example, complete view overlap at
10 feet from the array [220], instead of depth-aware adjustment. This section proposes a
capturing method designed to produce the best results with the proposed rendering method
by having the same amount of view overlap in both axes.

Two main parameters can be defined by the user to affect the positioning of the cameras
in the grid: the distance from the cameras plane to the geometry of the scene and the amount
of overlap between the cameras. These parameters are more intuitive for the user than, for
example, size of the camera grid, because they reflect how much of the scene content the
resulting views share between each other.

The geometry of the scene is usually not planar. The distance to the geometry needs to
be defined as either a distance to the object of interest or to the average position of the whole
visible geometry. Occluded vertices or varying density of the geometry in a synthetic scene
disallow the method to analyze the geometry itself. A screen-space approach is proposed
to solve this issue. In case of a synthetic scene, the scene is quickly rendered from the
reference camera with all object materials overridden by a special material, which converts
world-space coordinates of the fragments into colors. The average of such a rendered image
is a decent approximation of the average position of the visible geometry. One, even a
low-quality, depth sensor would suffice for real-life camera grids. The camera grid is then
created, taking a reference camera position and orientation as the center of the grid.

Having square-shaped cameras with the same width and height and the same horizontal
and vertical spaces between the cameras always results in the same-sized overlapping areas
in the views. The aspect ratio between the width and height of cameras in modern cine-
matography or photography is usually used with a wider width, for example, 16 : 9 [48].
Regular spaces between such cameras would lead to unequal overlap. Spacing simply scaled
by the aspect ratio would ensure that the cameras exactly touch their borders when the
overlap is zero but would be unequal when it is greater. The spacing needs to be recalculated
based on the input parameters. Standard 50 mm lens was used in the implementation, as it
creates the most natural-looking image for a human observer [26]. Fig. 3.40 demonstrates
the described issue.

Fig. 3.41 depicts the positions of the cameras in relation to the scene and along with
the 2D-aligned view in Fig. 3.42 contains definitions of the variables used below.
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four cameras from the grid
touching with their projections

with scaled view cones the width
of the overlaps of the projections
are not equal in both axes

the camera positions need to be
recalculated with the proposed
method to achieve even overlaps

Figure 3.40: The figure demonstrates the problem of overlaping view cones in light field
camera grids. A non-uniform aspect ratio, e.g., standard 16 : 9, creates different overlapping
areas of the image planes between the neighboring cameras in the vertical and horizontal
directions. Recalculation of the camera spacing by the proposed method is necessary to
ensure the same amount of overlap in both axes.

g '\cameras' centers ———»,
i

Figure 3.41: Two capturing cameras placed
at two neighboring rows and columns are
depicted. The sy, s,, and d lines are going
through the centers of projection. The cam-
era cones overlap in both axes with amount
op and o,. The goal of the method is to
achieve the state where oy, = 0,.
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Figure 3.42: 2D view of two neighboring
cameras is shown. The spacing s; between

the cameras is the desired result. The
ends of the view cones represent the image
planes.



Given a horizontal field of view f,, horizontal l;, and vertical [, camera length or
resolution, the tangent of half of the vertical field of view f, can be obtained from

tan (%) I,

— = = (3.9)
tan (%) Ly
The horizontal distance between cameras s;, can be expressed from
Ih Sp
t sy . 2h 1
an ( 5 2d; (3.10)
as
sp = 2tan (‘];h> dy, (3.11)

using the distance d; from the cameras plane to the closest point of camera frustum overlap.
This distance can be obtained from

di = d — ds. (3.12)

The distance d is the total distance from the cameras plane to the scene geometry and do
is the distance from the aforementioned point of overlap to the scene geometry. Both d;
and dy are unknown but can be obtained by expressing do from

tan (’;’L) - 2%;, (3.13)

where o5, denotes the amount of overlap between the cameras. Combining the equations 3.12
and 3.13 expresses d; as

dy=d— — (3.14)
2tan (%)
Combining equations 3.11 and 3.14 results in
sp = 2tan <fh> d—— , (3.15)
2 2tan (%)
which can be simplified to the final formula:
sp = 2tan (‘];h) d — op,. (3.16)

The same approach can be used to analogously express the vertical distance between the
cameras S,:

Sy = 2tan <J;U> d — oy. (3.17)
The horizontal oy and vertical o, amount of overlap should be the same according to the
desired constraint:

O = 0y. (3.18)

This method, described by Eq. 3.9-3.18, was used to produce a novel 4K synthetic

dataset containing 22 static and 4 animated light field scenes with the size of the grid

15x 15 views. The scenes were selected to cover most of the commonly measured scenarios

such as diffuse/reflective materials, wide/narrow depth range, high /low frequency features,

single/multiple objects, near/far objects, all-focused/depth-of-field, solid/volumetric ob-

jects, and their combinations. The currently existing datasets are usually available in lower
quality and do not cover all the mentioned scenarios suitable for benchmarking.
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3.7.1 Evaluation

The amount of overlap in the input views can affect the quality of the novel synthetic view.
The distance between the cameras depends on the defined minimal overlap value. When the
view is not in 1:1 ratio, the minimal overlap is defined on the vertical axis. With constant
spaces between the cameras, the views would overlap more on the horizontal axis. This
might be redundant. Using the proposed camera distance calculation method ensures that
the minimal overlap will be used in both axes.

An experiment was conducted to measure how the quality changes when the aforemen-
tioned approaches are used. The 4K street animation scene from the dataset was used with
the default camera settings documented in the dataset files. Tab. 3.6 shows that the qual-
ity does not change significantly. However, the proposed method allows for larger spaces
between the cameras, which means that a larger portion of the scene is captured without
quality degradation. For comparison, an even larger spacing was measured in the table
to show how the quality decreases when the distance is too large. The proposed method
ensures the best quality of the result with the largest possible spacing. Note that the spac-
ing difference in favor of the proposed method might be even larger with other camera
configurations.

Method PSNR [dB] SSIM LIQE NIQSV+ width

proposed 37.00 0.95 3.039 7.09 1.816
const, 38.74 0.96 3.139 7.18 1
aspect 37.22 0.95 3.035 7.03 1.778
wide 31.41 0.0.92 2.57 6.87 5

Table 3.6: Various light field camera grids are compared. The proposed method ensures the
largest grid width without visible quality degradation. The grid height remains the same
in all measurements. When the width of the grid is too large, the quality loss is visible.
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3.8 Hypothesis Proof Summary

The presented results complete the proof and solve the set goals. The proof of the proposed
Hypothesis not only supports the scientific achievements of the thesis, but also, perhaps
more importantly, shows that the light field rendering can be practically used. The pro-
posed rendering method highlights the advantages and mitigates the disadvantages of light
fields as much as possible to achieve better quality than existing methods and significant
computational speedup.

Based on the results achieved and published, the proposed Hypothesis can be claimed
as proved. Each part of the hypothesis was proved as follows:

o A novel method of light field rendering can be designed and implemented...
A reference implementation of the proposed method was created and used in the
experiments. The novelty of the method was proved by peer-reviewed publications
and acceptance by the scientific community.

e ...that produces all-focused renders directly from input views without exploiting addi-
tional depth information,...
The method is capable of automatically detecting the best focus distance for each
pixel of the result, as described in Section 3.2.1. The result is all-focused, with min-
imum visible out-of-focus artifacts. The proposal works only with the input images,
so no structural information about the scene is necessary, as described in Section 3.2.
The necessary focus range of the scene can be detected automatically, as shown in
Section 3.3.

e ...having better visual quality, being computationally more efficient, and having less
memory requirements compared to the state of the art.
The experimental evaluation of the proposal in Sections 3.4 and 3.6 shows that the
proposed method achieves better visual quality, higher computational efficiency, and
less demanding memory requirements than state-of-the-art methods.

The experimental measurements were conducted on standard datasets and also on a
novel original dataset. It is possible that certain data might not be suitable for the proposed
method. However, the tested datasets cover most of the scenes commonly used in both
industrial and real-life applications. Therefore, it can be assumed that the proposal can
generally achieve optimal results.

On top of the hypothesis proof, the following light field rendering advantages, mentioned
in Chapter 2, are highlighted in the proposed method:

e Constant render time
The proposed method is based on scanning of the focus range that consists of a fixed
number of steps; see Section 3.2.1. The most time-consuming part of each step is
the texture read operation, which can also be considered constant-time. This ensures
a constant render time, which depends only on the light field resolution or focusing
quality settings.

e Constant memory requirements
The method uses only the nearest views of the light field grid; see Section 3.6.1.
All necessary memory allocations can be made in advance and no reallocations are
necessary.
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¢ Rendering algorithm independent of scene content
The previous two points show that the algorithm performs the same operations on all
types of data. The camera position change only affects the selection of the necessary
views of the light field grid. The measurements carried out showed that the method
is robust and works well for existing standard and novel original datasets; see Sec-
tions 3.4 and 3.6. It can be assumed that the method would work for most potential
scene types independently of their content.

e Simple representation as textures
The method adopted the widely used format of discrete light field approximation as a
set of images. The standard datasets can be used directly without any preprocessing;
see Section 3.4.

e Straightforward acquisition
No changes are necessary in the acquisition process. A simple capture of the scene in
a predefined grid suffices. The proposed optimal acquisition method follows the same
principles and only affects the positions of the cameras; see Section 3.7. However,
the method works even for data that were captured without the proposed guidelines,
although not necessarily achieving the highest possible quality.

o Easily implementable on parallel architectures
Light field rendering is expected to be used primarily on GPU to make it available
in graphic applications. The proposed method is designed to fully utilize GPU paral-
lelism. The algorithm is not difficult to implement, compared to alternative rendering
methods that include various algorithms for specific material or lighting settings.

In addition, the following most crucial disadvantages of the typical light field rendering
methods are mitigated by the proposal:

o Excessive memory requirements
Compared to previous methods, which require the entire light field grid to be present
in the GPU memory, the proposed method only requires the four closest views to be
used in the algorithm; see Section 3.6. Other allocations, such as the focus map image,
can even be downscaled without a significant quality loss; see Section 3.4. Also, no
pre-trained deep-learning weights are necessary to be uploaded to the GPU memory.

o Excessive streaming requirements
The proposed method is compatible with the proposed compression method based on
GPU-accelerated video decoders; see Section 2.7. These decoders proved to be the
optimal choice for the streaming of light field data.

e Focusing artifacts

The experimental evaluation of the proposed method showed that a high-quality, all-
focused image can be produced as a result; see Sections 3.4 and 3.6. Certain artifacts
can still be visible, but the quality of the result outperforms the majority of state-of-
the-art approaches. Furthermore, the possible artifacts might not be clearly visible,
as the scene might be focused at a distance which is near the correct one or focused
somewhere else where the color similarity metric ensures that the part of the image
looks natural.
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e Time consuming reconstruction with missing structural information

The inputs required for the proposed method are the input images and the aspect
ratio of the capturing cameras. The method does not require any depth information
as input; see Section 3.2. Other methods use, for example, depth maps, which might
not always be available, their estimation would slow down the process, and their usage
would increase the memory requirements. No heavyweight 3D reconstructions, data
preprocessing, or camera intrinsic parameters are necessary to produce an all-focused
view in real time. In addition, no deep learning training process is necessary prior to
using the method.

e Limited view space
The proposal focuses on the best quality interpolation of the views in the space
enclosed by the input light field grid. Possible extrapolations outside of the grid are
beyond the scope of this thesis. The virtual camera can freely move inside the scene
bounding box defined by positions of the input cameras.

Experimental measurements revealed that the method outperforms other state-of-the-
art ones. In combination with the proposed compression scheme and GPU accelerated
algorithms, the method seems to be an optimal choice for a real-time light field rendering.
It can be assumed that Hypothesis was proved in the experiments.

The proposed methods were implemented in several experimental applications that were
used for the measurements. All applications serve as proof-of-concept which can be used
after necessary refactoring in industrial scenarios. All resources are available online® and
are free to use for other researchers or developers.

3 fit.vutbr.cz/~ichlubna/research
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Chapter 4
Light Field Applications and 3D

Displays

Light field rendering can be used not only with classic 2D displays, but its significance
increases when considering 3D displaying multiview devices. Additional research was con-
ducted regarding 3D displays to ensure the best rendering quality of the input light fields.

This chapter describes additional proposed methods used for input light field data pro-
cessing before presentation on a 3D display. The main proposal of this thesis, described in
Chapter 3, can also be used to produce the necessary input views for the 3D displays. This
chapter is not directly related to the main scientific hypothesis and its proof, but is related
to the topic of light fields and their practical usage with modern technology. Analogous
problems with input views located at defined positions and focus artifacts are addressed.
This chapter can be viewed as one of the possible applications of light field principles in
industry, and additional scientific contributions are proposed.

4.1 3D Displays

This section describes the technology of 3D displays that simulate 3D perception for the
user. These devices are tightly related to light fields, as they physically implement their
multi-view and optical features. Fig. 4.1 shows various types of 3D display devices.

On classic displays, users can view a 2D projection of a 3D scene. The depth of the scene
can be perceived from the motion of the camera [30, 89]. Objects at different depths would
have different apparent velocity. The perceived velocity difference is called the motion par-
allax. Moving objects in the scene can also serve as a depth cue, even without parallax [244,
253]. When objects move closer and farther from the camera, the projected size change
indicates the distance of the object. Perspective projection can similarly indicate depth
relations in the scene. Textures, transformed by geometry from the original 2D view, are
another important depth cue [198]. Other depth cues exist, such as eye accommodation,
learned expectations, contextual analysis of the scene, shadows, etc. [200].

Binocular depth cues [71, 182] play an important role in human depth perception. A
straightforward way to simulate this perception is to capture two images of the same scene
from a slightly different position. These images can be projected separately into each eye,
creating the 3D illusion [35]. Binocular parallax creates the 3D feel by a projection of two
2D images that capture the scene from different positions, one for each eye. Monocular
motion parallax is based on the occlusion and motion of the objects in the scene according
to the position of the users’ heads. Several models of devices, called head-mounted displays
(HMDs), are commonly used among consumers, usually referred to as virtual reality devices.
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Figure 4.1: Multiple 3D display devices that represent categories from large displays for
movie watching, smaller sizes for interactive usage or previews, almost pocket-size devices,
and equipment wearable on user’s head.

Another way to project different images into each eye is to use light-blocking glasses [56].
The two images can be simultaneously displayed on a screen, each image with different
polarization. Polarized glasses on users’ heads then pass through only one of the images to
each eye. An alternate approach is to use a shutter display. The display cyclically switches
between the two images at high frequency. The shutter glasses are synchronized with this
switching and pass through the currently projected image only to the associated eye.

Volumetric displays use a rotating mirror and a projector with a high frame rate that is
synchronized with the mirror rotation frequency [131]. 3D scene can then be rendered from
multiple angles, and each of the views is then reflected by the mirror in the right direction.
Users see different parts of the scene depending on their position and viewing angle at the
mirror. A more robust solution using a similar principle with a rapidly vertically moving
flat screen, on which a different part of the 3D image is projected depending on its current
position, are Voxon Photonics products [140].

A different approach that uses the viewing angle-based ray distribution is the Tensor
Display [111]. It uses multiple light-attenuating layers that modify the light coming from
the source display in the form of directional backlight, which can be simulated by the
lenslet array on the display. A compact solution in the form of a 3D tablet by Leia Inc.
uses diffractive light field backlighting [78, 142]. Four views of the same scene are projected
in 16 directions with a 2D backlight, proprietary optical layer, and an LCD panel. Rapid
temporal modulation showing different frames in a short period of time helps to widen
the angle of view showing different parts of the scene through the synchronized layers.
Similar technology was used in the RED Hydrogen One holographic smartphone [284]. A
holographic screen, where each point modifies light rays emitted from the optical module
layer in various directions, is used in the HoloVizio display by Holografika [25].
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4.1.1 Visual Discomfort

An unnatural stereoscopic input into the human visual system could cause discomfort and
eye strain, resulting in excessive brain activity or unpleasant eye conditions such as het-
erophoria [138]. This discomfort can lead to cybersickness [15]. The effect of varying camera
separation, display duration, focal length, and convergence distance on visual perception
using stereoscopic displays has already been documented [119, 120]. The eye strain is more
severe with increasing disparity between images. The vertical parallax in virtual reality
devices is not well tolerated by the human visual system and should not exceed 20” [189] or
7 mm for two homologous points [285]. An experiment carried out revealed that tilt angle
differences of the 3D screen greater than 30° cause noticeable visual discomfort [248]. Simi-
lar rules are valid even in the field of augmented reality [1417]. Correction of inappropriately
shifted or rotated stereoscopic views was proposed and tested by image transformation, re-
vealing the difference between translational and rotational disparities, where rotation was
shown to be easier to correct [175]. An objective metric exists to predict visual fatigue from
stereoscopic images that measure vertical and horizontal disparities, but considers only two
views [69]. The effect of compression was also evaluated, revealing that depth perception
does not change significantly with increasing compression ratio, but eye strain is much more
significant due to the reduction in image sharpness [236]. However, compression artifacts
are less visible in scenes with large disparities [185].

Previously published papers [84, 164, 285] addressed stereoscopic screens and input im-
age distortions with respect to user depth perception. However, novel 3D displays combine
stereoscopy with the view-dependent 3D effect in a relatively large viewing cone in front
of the screen. The previously discovered rules might not be exactly the same for current
state-of-the-art 3D display technology. The issue of distorted capturing camera trajectory is
usually not present in already well-explored stereoscopic images because the stereo cameras
are usually physically bound together and cannot move independently. Camera distortions
can be partially fixed with stereo stabilization algorithms [96, 172]. Parallax of 2° was
shown to cause visual discomfort with stereoscopic displays [174]. Another work stated 40’
as the upper limit of the comfort zone parallax [275]. The same paper contained informa-
tion that young people are more prone to visual sickness than old ones. Research in the
field of visual discomfort shows that input views presented on 3D displays need to follow
certain rules. Otherwise, the quality of user experience might deteriorate.

4.1.2 Looking Glass

The state-of-the-art multiview display by Looking Glass Factory (LKG) [81, 82] is designed
to directly display a 3D scene without any additional equipment, such as glasses, similarly
to lenticular displays [255]. This device consists of a classic 2D display, a microlens layer,
and a glass block on top. USB output is also included, since the device calibration with the
display and microlense parameters is sent to the rendering computer to ensure the correct
pixel alignment and optimal 3D projection.

Multiple views are displayed at once on the underlying display in a defined pattern;
see Fig. 4.2. The microlenses redirect the rays per pixel in the right directions, so that it
is possible to see different views according to the user’s position. The glass layer refracts
the rays coming out of the background display so that they reach wider viewing angles.
One of the limitations of this display is only horizontal parallax, where users are expected
to be sitting in front of the screen and tilting their heads from side to side. This device
can be considered as a hardware implementation of the one-directional discrete light field
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approximation. Similarly to 1D light field rendering, an array of images, taken along a
horizontal line with constant spaces between the camera positions, is used as an input; see
Fig. 4.3. The display renders the appropriate view based on the user’s viewing angle and
also blends neighboring views to mask out abrupt changes of the views.

Figure 4.2: Evenly distributed cameras on a horizontal line capture the scene as a set of
images that are merged into one matrix (quilt) representing a 1D light field. The top left
image is the first one from the linear sequence and the bottom right the last one. The quilt
is then transformed into the internal LKG format which can be directly displayed on LKG.
The optical block on the device distributes the pixels in the correct directions.

Figure 4.3: The figure shows the optimal orientation of the capturing cameras which are
placed in the scene according to the horizontal 3D display orientation. Users then see a
combination of the captured views according to their viewing position.

102



Focusing

Focusing of the scene is closely related to a similar issue in light field rendering [158]. A
distance from the camera’s near plane where all projected pixels are in focus is called the
zero-parallax plane. Such pixels are spatially static and do not show any parallax motion
when users change their viewing angle. Their color can change due to reflections or other
lighting effects. The parallax is visible in the defocused parts of the scene and is one of the
important depth cues that simulate the resulting 3D effect [218]. An example of different
focus distances and the parallax effect on the physical device is visible in Fig. 4.4. The
geometric representation of the focus problem is shown in Fig. 4.5.

(e) Parts of defocused areas from each view are zoomed.

Figure 4.4: The figure contains a 15.6” LKG device with the same scene, captured from
the left (a,c) and the right (b,d) side and with zero-parallax plane positioned at the front
(a,b) and back (c,d) object. The parallax is visible when the view angle changes. The
out-of-focus blur resembles ghosting artifacts due to the mixing of the rendered views.

P2
zero-pa\rallax pIach?&

Figure 4.5: Point p; lies on the zero-parallax plane and is focused from all cameras A, B, C.
Point po lies further away and is projected on the screen with disparities d4p, dpc between
the views.

Focusing is simulated by displacement of the input images according to their position
on the capturing trajectory. The method is similar to the shift-sum algorithm [13] used in
light field rendering [123]; see Fig. 4.6. Light field function L describes light from a given
angular u and spatial x coordinates with the refocusing parameter focus; see Eq. 4.1.
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focused = / L(x —u- focus,u)du (4.1)
R

After shifting, the last pixel is repeated at the edge of the image to avoid visual dis-
continuities. The focused result, where the ith image of the total N images of the scene is
shifted (shiftImage;(amount)) by the focus value, which can be relative or in pixels, can
be calculated by Eq. 4.2. The summation can be a specific pixel distribution operation, for
example, conversion into the internal format of the LKG. The images can be moved to the
left or to the right, while the center image remains static.

N .
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d= hiftl A (1= = 4.2
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Figure 4.6: The scene is captured from multiple positions. The images can be mixed
together as they are, leading to ghosting artifacts. The zero-parallax plane can be changed
by shifting the images so that the desired part of the scene is in focus (constant screen
position) but does not show parallax.

The combination of the images from the quilt into the internal format is performed
according to Eq. 4.3, where h is the index of the RGB channel (R = 0,G =1,B = 2), 1
function samples an input input image at the given coordinates, and the internal format
image access function Ij, is extended by the parameter to index the specific channel. The
calibration parameters, defined by the LKG manufacturer, are as follows: s is subpixel
shift, ¢ is tilt, p is pitch, v is view portion, and c is center shift. The total number of views
is defined as N, || means floor operation, and {} is the extraction of fractional part.

Lkg(z,y,h) = ([{(z + sh + yt)p — c} N, vz, vy) (4.3)

Each physical LKG device comes with a different set of these parameters. The equation
allows to directly render the quilt on the display without any proprietary software as it
distributes the pixels according to the structure of the microlens array on LKG. The focusing
can be achieved by the transformation of x,y coordinates similarly to Eq. 2.4.

The user always sees multiple mixed views at the same time. Their disparity leads to
ghosting artifacts in parts far from the zero-parallax plane. Scenes with a large depth range
would show more parallax and 3D feel, but they would contain more ghosting artifacts in
the defocused parts. A naive approach to create an optimal all-focused result would be to
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split the image into parts, where each part would be focused with a different zero-parallax
plane position. This principle is similar to the per-pixel focusing method from Section 3.2.
However, this would cause discontinuities when changing viewing angles and an unnatural
motion of the objects that would rotate instead of moving to the sides according to the
parallax; see Fig. 4.7.

(a) Left view shows abrupt splitting of the scene (b) Right view shows a discontinuity on the
and duplicated objects. ground.

Figure 4.7: Two zero-parallax planes (different focus distance for each half of the image)
were used to keep both objects focused. The parallax is visible and is sharply cut at the
middle of the image. The motion of the objects is also unnatural. Both are rotating instead
of one seemingly moving to the sides.

4.1.3 Camera Trajectory of Input Views

Input views for 3D displays need to follow defined rules regarding their camera positions.
Methods mentioned in this section are tools used to identify camera motion in a sequence
of such views. These methods are used in the following sections.

Camera motion following a straight horizontal line trajectory is called truck in cine-
matography. It is visually similar to pan which consists only of rotation around vertical
axis. Dense [77] or sparse [177] optical flow can be used to detect camera motion for consec-
utive video frames. Another option is to use feature matching algorithms with descriptors
such as SIFT [19], SURF [30], KAZE [14], or ORB [222] and find the displacement of the
found features.

For a sparse optical flow, the tracking features are selected using the Shi-Tomasi corner
detector [126]. The dominant camera motion in a video sequence is usually estimated by
averaging optical flow vectors in predefined regions of the image/flow [294]. A set of rules is
then used to estimate camera motion based on the dominant direction in each region [153,
288].

Knowing the intrinsics of the camera, a combination of multiple optical flow models
can provide more accurate results [205]. A spatio-temporal derivative of the intensity in
two successive frames can be used [37]. Motion vectors can be computed using tempo-
ral gradient-based block matching. The resulting motion is estimated using the motion
vectors of interest, which are chosen from the field according to their significance and con-
sistency [105]. If encoded video files are used as input data, the necessary motion vectors
can be extracted from the compressed stream [16, 260, 282]. Hidden Markov Models [193] or
Transferable Belief Model [95] might be more robust alternatives to solid thresholds in the
camera motion estimation rules. Multiresolution least-squares methods might be used to
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fit the motion model even with noisy data [199]. Model-based estimations might not cover
the whole range of possible videos and camera motions. Machine learning approaches to
overcome this problem were also proposed [50, 51, 86, 170, 173], but their quality depends
on the training process.

Structure-from-motion and visual simultaneous localization and mapping techniques
are frequent approaches that are used to reconstruct a point cloud of a 3D scene or to
retrieve the camera trajectory from a sequence of images. ORB__SLAMS3 [17] is based on a
previous SLAM research [191, 192]. ORB_SLAMS3 approach consists of tracking, mapping,
relocalization, and loop closing based on ORB features extracted from the image frames.
Camera pose information can be retrieved in real time for each frame after the initialization
phase when the scene map is created. The quality of the result, aside from the quality of
the input sequence, depends on the camera intrinsics, especially the focal length value.

4.2 3D-Display-Friendly Frames Extraction

Suitable views of scenes for the 3D display can be captured intentionally, but many shots
can be found, for example, in movies or gameplay videos. The method proposed in this
section [4] can automatically extract suitable views of a scene from any video footage or
detect that no such scene exists. This proposal describes light field capturing from existing
data. It is important to ensure that such light field is suitable for the 3D display so that
the main proposal of this thesis can also be applied in this field.

With minor adjustments, the method could be used to assist users during a capture
process on a set. Without the aid of the method, the user would need to use special
equipment to ensure the optimal motion of the camera along the desired trajectory. In case
of already recorded videos, manual, time-consuming selection of the video frames would be
necessary with additional editing and repeated evaluation on the display. Automatically
extracted sequential frames, the so-called quilt, are ready to be displayed on a 3D display.
LKG was used as a testing device. This method proposes the entire pipeline to produce
a visually appealing result. The input video is analyzed, suitable frames are extracted,
resampled, and the optimal focus distance is identified to reduce out-of-focus artifacts; see
Fig. 4.8.

4.2.1 View Synthesis Approach

One possibility of obtaining the views for LKG is to pick a few frames from a video, re-
construct the scene, and render the missing views. The 3D reconstruction fails in most
cases because the scene is captured only from one direction in the input views. 3D recon-
struction algorithms usually expect the scene to be captured from many different positions.
The suitable sequences for LKG do not contain views positioned freely in the space. For
example, the expected LKG-friendly Barber scene from the original dataset was used in
INGP [190], FILM [217], Meshroom, and 3DF Zephyr. The scene was reconstructed in the
two programs, but the result is not optimal, as shown in Fig. 4.9. INGP pre-processing of
the data by Colmap failed. The FILM deep learning frame interpolation produced a frame
between the boundary frames from the video. However, the frames had to be downscaled
from FullHD to HD due to insufficient resources on NVIDIA® RTX"™ 2070. The inter-
polated frames contained visible artifacts even when the distance between the views was
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Figure 4.8: The figure is an overview of the proposed method: a) The identification of
video frames captured by horizontally moving camera. b) Selection of desired images for
the sequence. ¢) The conversion of desired images into proper format which can be displayed
on the LKG. Different virtual views are visible from different real-life viewing angles.

halved. RGBD photos can also be processed by LKG software and displayed, but the lack
of parallax and missing reflections create the unwanted cardboard effect [291].

The only reliable way to produce a good-quality quilt from videos is the proposed
method with possible interpolation on a small scale if the views are not distributed linearly
along the trajectory. The proposed focusing metrics are still necessary for the extracted
or interpolated views. The user can capture the scene in a similar way as when taking a
panorama photo with a mobile phone. The only difference is that instead of rotating the
phone, the user would move to the side. Such captured footage would be automatically
prepared by the proposed method for direct rendering on the 3D display.

4.2.2 Extraction Overview
The proposed method consists of the following steps:

1. Quilt extraction where the input video stream is analyzed and suitable frames are
chosen for further processing. The suitable frames are those that capture the scene
having their camera positions lying on a horizontal trajectory.

2. Frame resampling where The camera in the selected sequence can be subject of
acceleration or uneven capturing frequency producing uneven spacing between the
views. Equally-distanced frames are selected from the sequence to ensure the best
visual quality of the rendered result.

3. Automatic focusing solving the problem of 3D displays support for only one dis-
tance with a fairly limited depth of field, where the scene is visually sharp and focused.
The optimal focus distance is estimated to ensure that most of the scene is in focus.

Sparse optical flow, dense optical flow, feature matching, and SLAM approaches were
used to estimate the camera trajectory and compared in the reference implementation. In
the first phase, a rough camera motion estimation is performed, detecting truck and pan
motion sequences. Pure truck sequences are ideal for LKG. The camera can also do a
combination of truck and pan, which might still be acceptable. Excessive panning motion
reduces the parallax effect. The second phase determines the amount of pan motion in the
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(a) Meshroom reconstructed only standalone  (b) 3DF Zephyr produced a distorted but full
polygons. geometry.

(c) Original middle view was taken from the (d) FILM produced a distorted middle view.
input light field.

(e) Original quarter view was taken from the (f) FILM produced a distorted quarter view with
input light field. less artifacts.

Figure 4.9: Zephyr produced the best result when reconstructing the scene, but the result
still contains a lot of artifacts. The deep FILM interpolation produced distorted results for
both full and halved distance between the views from Barber scene in the used dataset.
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sequence. Additional checks are performed, such as motion blur and shakiness detection.
A score that evaluates the suitability of the sequence is the result of the second phase. An
approach using ORB__ SLAMS3 does both tasks in one phase.

4.2.3 Horizontal Sequence Detection

Pairs of pixel blocks are identified as belonging to the same spot in the scene in two con-
secutive video frames. The field of motion vectors (optical flow) is then known for each
frame pair. The mean of these vectors is a good guide to determine the overall motion
of the camera. Monocular visual SLAM methods also exploit a similar concept of feature
matching in two frames, and based on them, the camera pose or scene map is estimated.
Fig. 4.10 shows a simple scenario in which the ideal horizontal quilt sequence is mapped to
a subset of suitable video frames.
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Figure 4.10: The camera positions on the trajectory belong to frames in the input video.
The frames sample the camera motion with a constant framerate. The required ideal
horizontal sequence, capturing the scene from a desired spot and with a given spacing, is
then mapped on the closest input frames.

A possible scene change can be detected by a simple histogram comparison or by setting
a threshold for the estimated camera pose change. The result of the analysis is an array
of estimated camera pose differences between frames. The analysis phase is the most
computationally expensive part of the processing.

In many cases, the mean value of these vectors can be used directly to decide whether
the truck/pan motion is dominant in the shot. When the truck motion is combined with
pan, the parallax can be inverted, depending on the distance of the objects in the scene
from the camera. To solve this issue, the direction of the sequence can be ignored, working
only with the magnitude of horizontal motion. The method accepts the ith frame f; in
the sequence seq; until the vertical velocity velye,: is above a defined threshold ¢+ or the
horizontal velocity vely,, is close to zero; see Eq. 4.4 and Alg. 7.

accept if Velhor(fia fifl) >0A Velvert(fia fifl) < tvert
seq; = (4.4)

reject otherwise
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Data: Video frames sequence fr

Result: Clips suitable for LKG quilt clips

motions = emptyArray();

foreach two consecutive frames prev and next € fr do

. insert .
motions <—— motion(prev, next);

clips = emptyArray();

clips Jusert emptyClip();

foreach id and motion € motions do
{z,y} = |motiongyl;

if © > xpmin and y < Yma: then

insert

‘ last(clips) «— id,
else
if hasSufficientLength(last(clips)) then
. insert .
‘ clips +—— emptyClip();
else
‘ last(clips) = emptyClip();

Algorithm 7: The algorithm iterates over the calculated camera offsets between all con-
secutive frame pairs and is adding frames into the sequence as long as the motion meets
the requirements. Note that in SLAM-based approaches, where the camera rotation
is explicitly known, the maximal rotational bounds and checks can be implemented in
addition to the vertical velocity test.

4.2.4 Pan Elimination

Fig. 4.11 shows images composed of multiple video frames. The pan shots are very similar
to the truck ones, except for the distortion in the corners of the field. The angles between
the motion vectors and the horizontal axis are higher than zero. Dense optical flow can be
computed for each corner of the image pair. The mean motion vector should point down
on one side and up on the other side of the image or vice versa, according to the camera
motion direction. Each fifth pair is tested in the reference implementation for performance
reasons.

Pan and truck

Figure 4.11: The apparent motion of the pixels is demonstrated in the images for truck,
pan, and combined camera motion. Frames from the testing sequences were mixed together
and the image gradient of the result was highlighted. The rightmost image shows how pan
could be identified from the motion field based on the previous images.

A score is calculated for each processed sequence; see Eq. 4.5. The calculation of
the score s takes into account the overall amount of motion blur in the sequence, shake
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(amount of vertical motion), the average presence of the pan pattern, and the difference
dist between the average amount of vertical motion at the center of the image ycent and
at the corners y.,, normalized by the maximal allowed limit maxzDif f; see Eq. 4.6. The
amount of blur is measured using the variance of Laplacian method [206, 210]. Lower-
scored sequences are assumed to be more suitable for LKG. The weights w; can be adjusted
according to the specific requirements of the quilt. In the measurements, the weights were
set to 0.2,0.5,0.1,0.2 in this order. The values were determined according to a previous
study on user experience related to camera trajectory distortions on LKG [6]. It shows that
the pan pattern can negatively affect the result quickly, while shaking can be tolerated to
a certain extent.

s = wy - dist + ws - pan + ws - shake + wy - blur (4.5)
. . Ycor — Ycent

dist = 1], ¥/— 4.6

" mm( " maxDiff > (4.6)

In the case of ORB__SLLAMS3 analysis, the camera pose matrix is decomposed into trans-
lation and rotation. The translation difference can be obtained simply by subtracting the
translation vectors. The rotation difference dif f.o,; is estimated by comparing the rota-
tional quaternions q; and qo according to Eq. 4.7. Pure pan motion is not suitable for
SLAM reconstruction and is rejected automatically.

2acos(q1 - q2)
T

diffrot =1- -1 (4'7)

4.2.5 Non-linear Camera Velocity and Noise

The motion vectors are available from the analysis phase and can be used to improve the
quality of the accepted sequence. The vertical component of the average motion vector
can be used to reduce the shaking of the camera on the vertical axis. The camera motion
perpendicular to the viewing plane (dolly motion) can be used to change the scale of the
images to reduce the noise on the depth axis.

For the best viewing experience on LKG, equally distanced views of the scene are opti-
mal [6]. This requires a constant camera velocity and frame rate, which is not guaranteed
in the input. If the frames are not equally spatially distanced, the sequence has to be
sampled non-uniformly. The frame distance can be represented by a horizontal component
of the average motion vector between frames. Horizontal position changes are accumulated
in acc frame-by-frame, with an increasing index ¢. The nearest neighbor can be accepted as
the nth frame in the resampled sequence res,, when the accumulated motion exceeds the
maximal allowed value m,,q,. The difference is labeled as d in Eq. 4.8. The conditions that
decide the index of the accepted frame that is closer to the desired position are described
in Eq. 4.9 and Alg. 8.

d = acc — Mgz (4.8)
] if d <|d—|m;_

res, = ! ifd <|d—fmi| (4.9)
i — 1 otherwise
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Data: X axis motion values for a sequence of selected frames clip,
Result: Sequence of frame indices with linearized motion clipy;,
Motion ey — max(clipy);
acc = |first(clipy)|;
clipyy, = emptyArray();
foreach two consecutive id and motion < clip, do
acc = acc + |motionpeztl;
if acc > motion,., then
delta = acc — motionmaz;

if delta < |delta — |motiony,e,|| then
‘ insert

clipyin +—— idpext;

else
insert

clipyin +—— Z‘dprev ;

acc = acc — MmotioNmaz;

Algorithm 8: The sequence is resampled in the algorithm to ensure a constant camera
position difference between the frames. Note that instead of choosing the closer frame
according to the velocity accumulator, a frame interpolation can be used to create a
new synthetic one.

The distances between frames have to be large enough to create sufficient 3D perception.
If the frames are too close, the LKG result looks flat without significant parallax. On the
other hand, too large distance reduces the amount of focused area in the scene. The sequence
can be resampled according to the optimal frame distance; see Fig. 4.12. The computation
of the best alignment offset op.s; from the range (05, o) of the detected sequence is described
in Eq. 4.10. The Sgptimal is a vector that contains the positions of the views in the optimal
sequence with constant spacing. The Sgetected 1S @ vector that contains the positions of
the views in the sequence that was detected in the previous phase. The optimal sequence
is shifted by the offset o and the error between the sequences is computed, looking for its
minimum. The vector and scalar addition is defined as the addition of the scalar value to
all values in the vector.

Obest = arg Inin{|(Soptimal + O) - Sdetected|} (4~10)
0€[0s,0¢]

Eq. 4.10 is implemented in practice by Alg. 9 that describes a quilt window with the
desired distance. This window is sliding over the extracted frames, and the error is computed
from the distance between the actual frames and the positions in the window. The window
position with the lowest error marks the best sequence according to the given requirement.
The optimal distance depends on the content of the scene and the user preferences.
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Figure 4.12: The middle row depicts the video frames spaced according to their camera
displacement. A quilt window with fixed spacing is placed at the beginning in the bot-
tom row and at a better position in the top row. The distances between the positions in
the sampling windows and the positions of the nearest input frames are defining the overall
erTor.

Data: Sequence of frame positions pos, desired spacing between the views space,
location of interest in the input sequence loc, searching distance around the
defined position dist, resolution of the search, number of the quilt views

quiltSize
Result: An offset of the window with desired parameters with the lowest error
Clipbest
clips = emptyArray();
_ 2 - dist .
step = Tesolmlffon’

range = (loc — dist,loc + dist);

foreach of fset € range with step do
error = 0;

window = emptyArray();

foreach {i ¢ Z |0 < i < quiltSize} do
sample = of fset + i - space;
nearest = findNearest(pos, sample);
dif f = |nearest,o,s — samplel;
error = error + dif f?;

. insert
window +—— nearest;y;

// if duplicates are not allowed
if hasNoDuplicates(window) then
clip = newClip(error, of fset);

. insert .
clips «—— clip;

clippest = lowestErrorClip(clips);

Algorithm 9: A quilt window is sliding along the sequence, computing the squared
distance between the closest samples and predefined positions in the window. The
window position with the lowest error is then marked as the optimal one.
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4.2.6 Focusing

The display blends multiple frames to avoid discrete frame changes when users change view-
ing position. Scene content positioned at zero-parallax plane is always sharp and maintains
its screen-space coordinates; see Fig. 4.13. The further the content is from the plane, the
more parallax is present along with the out-of-focus artifacts. The zero-parallax plane po-
sition can be changed by shifting the views so that the same area of the scene lies on the
same screen-space coordinates.

Figure 4.13: The first picture shows the 3D scene with two zero parallax plane positions.
The two other pictures are the actual results displayed on the LKG showing how the plane
position affects the focusing in the rendered image.

The positions of the start and end points of the acceptable focus range, where at least
parts of the scene are focused, depend on the depth range of the captured scene; see
Fig. 4.14. The proposed method finds the optimal zero-parallax plane position that makes
most of the scene focused.

The unique internal image format, displayed directly on the LKG screen, where all quilt
views are combined into one image, is analyzed. The areas of the image outside the zero-
parallax plane are distorted by a diagonal blur-like pattern. The more the pattern is visible,
the less focused the given part of the image is on LKG. Two focus estimation metrics are
proposed.

The first is a difference of Gaussians (DoG) edge detection on the internal LKG format
image. The second performs a subtraction of two internal LKG images with different display
calibration settings. The diagonal blur pattern is different for each calibration. In both
cases, the out-of-focus pixels in the result contain high values. A similar principle was used
in all-focused light field research [148]. Fig. 4.15 shows both the metrics and their results.

The algorithm iterates over a wide focus range and searches for the minimum of the
given metric, as shown in Fig. 4.16. The principle is the opposite of the standard blur
measurement methods [73]. The Gaussian metric is described by Eq. 4.11 and subtraction
by Eq. 4.12. The optimal focus distance fP°¢ and f5" searched as f in the interval (fs, f.)
is computed, for the first metric, as a difference of internal LKG format images Ijx, with
calibration parameter c1, processed by Gaussian filter G with filter parameters p; and ps.
The second metric subtracts two different internal images with calibration parameters c;
and c3. The DoG parameters used in the measurement were radius = 10,01 = 0,09 = 10,
but different reasonable parameters showed the same results. The calibration parameters
used in Eq. 4.3, ¢; were set to t = —0.1153,p = 354.42108,¢c = 0.04239,v = 0.99976
according to a physical device used in the tests, and the parameters co were changed to
t = 0.05, p = 150 which showed the most visible changes after subtraction.

fPoC = argmin {G(p1, xg(c1, f)) — G(p2, Iirg(c1, £))} (4.11)
JE[fs,fe]
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End

Figure 4.14: Scene is focused at the borders of the focus range and in the optimal distance
where most of the scene appears to be focused.
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Out of focus

Pitch: 354

Pitch: 100 Avg: 20.4949

Most of the scene in focus
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Figure 4.15: Focused and out-of-focus images are shown. Left ones are in the LKG internal
format with two different display calibration settings. The first proposed metric is the
difference of Gaussians from a single LKG image, and the second one is a subtraction of the
two images with different calibrations. The more focused the image, the less energy (right
images) the metrics yield.
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f2ub = argmin {Tjpg(c1, f) — Lng(ca, £)} (4.12)
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Figure 4.16: Two focusing metrics are plotted with manually marked optimum distance
where most of the image is focused. The location of the global minimum of the energy
marks the best focus.

4.2.7 Results & Discussion

The overall quality of the detector was evaluated in terms of efficiency and performance,
see Tab. 4.1, in the following experiments:

1. Quilt extraction which aim was to measure the accuracy of automatic quilt extrac-
tion from a video. The classification is evaluated using an annotated dataset.

2. Frame resampling experiment which proves that frames can be sampled in an
optimal way, resulting in a lower error compared to a simple first frame alignment.

3. Automatic focusing of the resulting quilt proves that the optimal focus distance
where most of the scene lies on the zero-parallax plane can be found automatically,
which makes the resulting quilt ready to be displayed.

OpenCV implementations of the Lucas-Kanade, Farneback, and ORB methods were
used along with the original ORB_SLAMS3 implementation for the quilt extraction. All
experiments were executed on a machine equipped with NVIDIA® GeForce RTX"™ 2070
GPU and Intel® Core™" i5-8500 CPU 3.00 GHz CPU, running Arch Linux.

The dataset consists of 182 FullHD, 25 fps, synthetic and handheld camera scenes
encoded in H.265 format. The scenes are divided into 7 categories according to the dominant
camera motion: chaotic, dolly, pan, pan and truck combined, pedestal, tilt, and truck. The
duration of the videos is from 2 to 13 seconds. The videos were captured to cover all types
of scenes with various depths, close and far objects of interest, etc. The synthetic shots were
rendered in Blender with pre-made scenes from Blender demo files. They were captured in
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Horizontal sequence extraction

analysis method true [%)] false [%)]
ORB_SLAM3 79.7 20.3
ORB 75.6 244

Optimal window positioning

scene squared error

first frame aligned optimized
teddy 382.988 251.594
hut 502.925 300.505
class 115.437 82.4649
pavilion 88.3094 72.9947

focus distance detection

method absolute error

DoG subtraction
average 0.0475 0.0441
min 0 0
max 0.549 0.549

Table 4.1: The table contains important results from the experiments with the best results
highlighted. ORB_ SLAM3 and ORB showed the best results for quilt extraction. True
values are considered TN +T'P and false FN +FP (T/F is true/false, P/N is positive/neg-
ative) according to the annotated dataset. The alignment errors of the first frame of the
quilt window and optimal placement are compared, proving that the proposed algorithm
can find a better position in the sequence.

two versions: with ideal smooth camera motion and with additional shaking and motion
blur. The real-life videos were captured by Panasonic HC-VX980 Camcorder without any
special equipment.

4.2.8 Quilt Extraction

The desired point in Fig. 4.17 marks the maximal vertical motion between two frames that
is accepted as valid. The position was empirically determined by watching the amount of
artifacts on LKG. An experiment was conducted in which identical frames with a simple
pattern were vertically shifted with an increasing offset. The first kind of artifact is caused
by the mixing of the frames, which occurs throughout the displaying range to simulate the
binocular parallax. Fig. 4.18 shows the difference between the vertically displaced quilt
and the aligned one. These artifacts start to occur with displacement around 1.5 px. The
second type is visible in between two frame positions in the monocular motion parallax
when watching the display from a close distance. This kind of artifact is more sensitive to
displacement and was detected starting at 0.5 px displacement. A value between these two,
1 px, was selected as desired; see Fig. 4.19.

Three metrics, the Youden index, closest to point (0, 1), and maximum area, were used
to identify the best ratio threshold in the ROC curves [67], which corresponds to a vertical
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Figure 4.17: The ORB_SLAM3 and ORB are the best candidates for quilt detection. The
threshold parameter is the limit of vertical motion. ORB_ SLLAMS3 does not cover the whole
ROC range due to its inability to analyze all the sequences. The desired point (1 px vertical
motion tolerance) was chosen according to empirically found maximal acceptable threshold
and the best ratio (0.9 px tolerance) according to the commonly used metrics.

Figure 4.18: The first picture shows a checkerboard quilt with views that are aligned in
one horizontal line. The second picture shows the same quilt with vertical displacement
between views where artifacts are visible.
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Figure 4.19: A simple pattern was chosen to measure how vertical motion limit affects the
quality of the result. The border of the pattern is getting distorted with the increasing
vertical displacement (values on the left). The breaking points were detected at 1.5 px in
the center case and 0.5 px in the in-between case.
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motion tolerance of 0.9 px. Fig. 4.20 shows the distribution of negative and positive results
among the categories in the dataset. Fig. 4.21 shows the accuracy and precision results.

ORB-based feature detection method outperforms the optical flow approach.
ORB__SLAMS3 shows better results than all other approaches, but it is limited by its inabil-
ity to analyze all possible sequences. Most of the problematic sequences are true negatives,
but some positive sequences were also rejected. That is the reason why its ROC curve does
not reach the right top corner as the rest.

An unknown focal length is assumed in the measurements, according to the use case,
where the user can provide a random video without further information. The focal length
was estimated by Meshroom photogrammetry software, as it is a necessary parameter for
ORB SLAMS3 method.

The results of the computational time measurements are presented in Fig. 4.22. ORB
might be more versatile and robust, while ORB__ SLAM3 is more accurate in classification.
However, the efficiency of ORB__SLAM3, depends on the focal length estimation, which
might be problematic in scenes shot by multiple different cameras or shots containing zoom-
ing.
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Figure 4.20: The amount of positive ORB and ORB_ SLAMS3 results in each category of
the dataset is depicted. Only pure truck or truck-and-pan combined camera motions are
true positives. Truck has the most positive results, followed by pan and truck, which can
still be displayed but are prone to artifacts and a flat look.
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Figure 4.21: The figure shows precision and accuracy values for all methods. The vertical
motion limit is set to 1 px. ORB__SLAM3 method is the best choice for the analysis.
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Figure 4.22: The chart compares the computation times of both CPU and GPU imple-
mentations of the analysis methods. Times were measured and averaged over the whole
dataset. The resolution of the processed sequences is 1920x 1080.

4.2.9 Frame Resampling

teddy sequence from the truck category in the dataset was chosen because it is recorded
with a handheld camera and is bound to have different spaces between the frames. Fig. 4.23
shows how the resampling algorithm selects the optimal offset within the defined range to
minimize error.
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Figure 4.23: The chart shows the results of the experiment with the adjustment of the
position of the quilt window in scenes from the truck category. The distance between the
frames was twice the average distance in the sequence to avoid duplicates. The search range
was set to one quarter of the distance.
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4.2.10 Automatic Focusing

The focusing metrics were evaluated on the quilts created from the truck sequences. The
range and optimal value were manually annotated, evaluating the result on LKG. The
absolute error of the estimated optimal value and the annotated one was calculated and
normalized by the whole scanning range. SMAPE was used as a second evaluation metric.
The results of the two proposed focusing metrics do not differ significantly, as shown in
Fig. 4.24. The optimal focus distance is in all quilts very close to the metric minimum.
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Figure 4.24: Bars are showing the errors of both focus estimation metrics. The differences
are not significant.

4.2.11 Comparison to Existing Methods

To prove the novelty of the proposal, the method was compared experimentally with similar
methods. No alternative full-quilt detection methods for 3D displays were proposed before.
Only the subtasks of the proposal were compared in standalone tests. The results show
that the proposal cannot be replaced by existing standard approaches.

Quilt Extraction

3D reconstruction software, such as Meshroom, can be used to estimate camera poses, but
it takes minutes to process one frame compared to near real-time processing proposed in
this paper. It would also be problematic to process a video file without knowing how many
frames are necessary to include in the computation. The proposal is focused on processing
of the two subsequent frames, retaining the context of the previous results. In most cases,
two frames are not enough for a successful 3D reconstruction.

Panorama stitching software is another option as it detects the pan motion with pos-
sible shaking when the capturing device is handheld. Experiments with the Autostitch
program [40] showed that pure truck motion shots can be properly detected as a suitable
sequence and processed by the software. However, the combination of pan and truck does
not yield acceptable results, and this category of potentially suitable quilts would be re-
jected. Simple averaging of motion vectors from optical flow would also make the distinction
between small amount of camera vertical shake, pan, and truck impossible.

Research in video analysis [214] usually focuses only on the general classification of
the shot type such as mowving or static and these approaches cannot be used for the quilt
detection. CAMHID [105] method can be used to classify camera motion, but the re-
sults presented by the authors mention only static, pan, tilt, and zoom categories with-
out the necessary distinction between pan and truck, which is necessary for the proposed
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method. Similar categories translation (pan and/or tilt), zoom, and static are defined in
other works [64, 95, 276].

Truck motion is distinguished from pan in a novel deep learning approach of camera
motion detection for story and multimedia information convergence [22] where 8 frame
intervals are processed. An advanced motion vector extractor preprocesses the shots, and
ResNet is used to classify the resulting sequences.

The available implementation of the network was trained with the same data that the
authors provided. The network was then used to measure its accuracy on the data tested
in this paper to determine if the network can be used instead of the proposal. The network
can classify a shot into pan, pedestal, tilt, truck, zoom-in, and zoom-out categories. This
classification is not detailed enough for the quilt detection because truck with a small
amount of pan is also acceptable. This motion is not distinguishable by the network. The
measurement was slightly adjusted in favor of the network approach, and any shot from
the combined truck and pan category classified by the network as either standalone pan
or truck is considered to be successful true positive, and false classification between other
categories is not penalized. Tab. 4.2 shows that the proposal in this paper is more suitable
for the task than the alternative deep learning network.

analysis method true [%] false [%)]

proposed 79.7 20.3
deep [22] 68.1 46.9

Table 4.2: The table compares alternative existing detection method with the proposal.
True values are considered T'N +T P and false F'N 4+ F P according to the custom annotated
dataset.

The frames containing the motion vectors need to be downsampled to resolution of
600x300 compared to 1920x 1080 in this paper’s proposal. The time of the classification
for one frame in the network is 0.006 seconds and the time of optical flow preprocessing
is 0.1 seconds compared to 0.025 seconds for ORB and 0.14 seconds for ORB__SLAMS3 in
the proposal of this paper. The proposal is not a real-time solution and both compared
methods can be labeled as the same speed category since the difference is not significant. If
the same resolution frames were used as in the proposal, the deep classification time would
be at least 0.07 seconds and the preprocessing would be 1.15 seconds due to the processing
of 11.52x more data.

Focusing

To prove that a novel focusing metric is necessary for the quilt detection task, an attempt
to identify focus distance with three other methods was conducted. The first is a standard
contrast-based method [240] with root mean square (RMS) contrast metric [149]. The sec-
ond is a no-reference image quality metric LIQE [296] which should be able to detect various
artifacts and defocused areas. Both metrics were used on the internal LKG format like in
the proposal and on the blended views according to Eq. 4.2 with all weights set to the same
constant, resulting in averaging of the refocused images. The third is a PSNR comparison
of the refocused views according to the central one. Each view is shifted according to the
focus distance, compared with the central one with the PSNR metric, and the average of
the PSNR values is taken as the metric. The results are shown in Fig. 4.25.

124



The maximal values of both metrics on the internal LKG format are close to the optimum
but not as close as proposed metrics in Fig. 4.16. The error of the proposed metrics on
teddy scene is only 15 px in the focus displacement while the contrast metric error is 36 px
which is more than 2x higher than in the proposal. The charts of the proposed metrics
also show steeper curve towards the minimum which identifies the area of potential other
focus distances that the user might want to choose. The slope of the alternative methods is
either noisy or not that steep so such identification would be more problematic. The idea
of evaluation of the internal format is proposed in this paper, so the internal versions of the
metrics are only semi-alternative. The versions with blending, which can be considered as
an alternative approach, are not suitable at all. The conventional methods cannot be used
in this case.
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Figure 4.25: Alternative existing metrics that can be used to measure focus in image were
compared on teddy scene. The values were transformed to the range of (0,1) because only
possible minimum or maximum are the desired information. The results show that these
metrics are not suitable for 3D displays. The metrics were tested on internal LKG format
and blended views.
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4.3 Focusing Artifacts Mitigation

Another study was conducted to improve the quality of the quilts displayed on LKG [3].
The focusing on 3D displays and possible transformations of the input scenes are necessary
to ensure the best viewing comfort for the user. The light field rendering method proposed
in this thesis is capable of producing the input views for 3D displays but does not address
the necessary adjustments of such views for optimal viewing on the devices. This section
addresses this issue.

The novel saliency-based autofocusing method was compared to the previously proposed
one and proved to be more efficient. Additionaly, a data prefiltering step is proposed to
improve the existing method. Low-pass filtering to reduce interperspective aliasing was
implemented as a depth-of-field blur to mitigate out-of-focus artifacts. The measurements
showed that such filtering, proposed in previous works, can improve the result but might
not be optimal in all cases. The theoretical basis and the results of the experiment con-
cerning the relation of the distance between objects in the scene and the focus settings are
documented. A novel scene-warping method was implemented to increase the focus areas
in the result and was proved to be efficient and desirable by users.

4.3.1 Edge Detection Focusing

The previously described focusing method, based on DoG is extended. The output values
of the metric for each focusing distance need to be prefiletered prior to the minimal value
identification. When the scene is extremely defocused, the total energy of the DoG image
tends to get very low; see Fig. 4.26. This happens at the borders of the focus range; see
Fig. 4.27. The global minimum would not mark the correct focus. Therefore, the average
energy value is calculated and all energy values from the borders of the array are removed
until they are higher than the average. The whole process is described in Alg. 10.

4.3.2 Saliency Based Focusing

This method is content-aware. First, the potential object of interest is detected, assuming
that the user would like to see this object focused [36]. The goal of the method is to position
the zero-parallax plane near the detected object to minimize visual discomfort [132]. To
identify the object of interest, the deep learning method GICD [297] is used. For each
image of the input set, a saliency map is computed and saved. The map contains white
pixels in the area of interest and black elsewhere. The method iterates over a focus range
and shifts the maps according to the zero-parallax plane position. The intersection of the
shifted maps is then computed; see Fig. 4.28. The intersection is implemented by median
filtering across the images to avoid completely black saliency maps clearing the result. The
focus distance with the highest energy saliency map intersection is then the one which has
the object of interest in focus; see Alg. 11.
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Figure 4.26: The first row contains the internal LKG format images with two different zero-
parallax plane positions. The second row shows the same images after DoG edge detection.
The resulting energy of the image is lower in the focused case.
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Figure 4.27: The minimal energy value of the entire scan range would not be correct due
to the very low values at the boundaries of the range. Therefore, the border values are
excluded until they reach the average value. The values are taken from the evaluation of
the Buddha dataset.
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Data: The input set of images, discrete focusRange with defined step
Result: Optimal focus distance
values = emptyArray();
foreach focus € focusRange do
interal = generatelnternal(images, focus);
dog = differenceOfGaussians(internal);
e = energy(dog);

values ¢4 {focus, e}

avg = getAvg(values);
foreach v € values do
if Venergy > avg then
break;

setAsInvalid(v);

foreach v € reverse(values) do
if Vepergy > avg then
break;

setAsInvalid(v);

optimal = minEnergy(values);
distance = optimal focys;

Algorithm 10: The method iterates over a focus range and returns a distance, where the
DoG of the internal LKG format has the lowest energy.

a) Saliency maps are computed from three different views.

LIRS

b) Completely defocused maps are mixed. (c) Maps are focused on the body and mixed.

Figure 4.28: The first row contains three generated saliency maps. The second row shows
two images which are results of a simple mix blending of the maps to demonstrate, that
the defocused case would result in completely black multiplication of the images while the
focused one would contain white areas.
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Data: The input set of images, discrete focusRange with defined step
Result: Optimal focus distance
maps = saliencyMaps(images);
optimal = minimalValue();
foreach focus € focusRange do
maps = shiftlmages(maps, focus);
mix = multiply (maps);
e = energy(mizx);
if e > optimal — e then
optimal = {e, focus});

distance = optimal — focus;

Algorithm 11: The method iterates over a focus range and returns a distance, where the
intersection of saliency maps has the highest energy.

4.3.3 Depth of Field Enhancement

Due to the discrete light field representation and optical mixing of the views, a ghosting
artifact appears in the parallax area. This artifact is similar to defocusing in a human visual
system when the eyes are fixed at a certain distance [79]. The images can be pre-filtered to
mitigate this interperspective aliasing [186, 301]. Prefiltering removes high frequencies in
the scene that are breaking the bounds defined by the Nyquist-Shannon Theorem. Depth-
of-field (DoF) simulation blurs the expected defocused areas [151]; see Fig. 4.29. The
depth map or information on the geometry of the scene is usually necessary to increase
the amount of blur with increasing distance from the zero-parallax plane [28]. Depth
estimation along with the blur effect can be achieved using deep learning approaches, for
example, DeepLens [273] which is used in the experiments.

(a) without DoF (b) with DoF

Figure 4.29: The ghosting artifacts are visible at the defocused part of the scene (back
object). The preprocessed images with DoF effect mitigate the out-of-focus sharp artifacts.

The proposed DoF algorithm needs a screen-space position of a zero-parallax plane
point. When the depth map is estimated, a coordinate in the image is sufficient to identify
the focus distance. In the case of DoG focusing, the coordinate can be found by generating
the focus map as in light field rendering methods [9] based on pixel color deviations. The
average coordinates of the focused pixels can lie outside a concave area, so the closest pixel
is found from the focused ones, and its coordinates are selected as the DoF focus point.
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Multiplication of saliency maps can be used instead of the focus map to identify the focus
point. Alg. 12 describes both cases.

Data: The input set of images, used focusing method
Result: DoF images
if method is DoG then

map = dogFocusMap(images);

else if method is Saliency then
map = saliencylntersection(images);

map = threshold(map);

map = medianFilter(map);

avgCoord = averageWhitePx(map);

coord = closestWhitePx(map, avgPoint);
DoF = simulateDoF (images, focusPoint);

Algorithm 12: One of the focused pixels is chosen to identify the focus point for the
depth of field simulation.

4.3.4 Experiments & Results

15 people participated in the experiments in a laboratory equipped with a 15.6” Looking
Glass 4K model. Users were expected to be LKG users interested in IT in the age range
between 20-65. None of the users was diagnosed with serious sight-related problems. All
users passed a quick entrance test to exclude people with limited depth perception. They
were instructed to read the text on the display and distinguish 2D and 3D parts of the
scene. The users were sitting in front of the LKG at an initial distance of 55 cm, as
recommended [219]. The average time of one session was approximately 14 minutes with
11 seconds per test. The tests were randomly shuffled to avoid bias when evaluating the
same scene or type.

The rendering camera setup is based on Eq. 4.13 from the official LKG documentation’,
where the travel value is the length of the capturing camera trajectory, the distance is
measured from the camera to the geometry of the expected area of interest, and fouv is the
field of view of the camera.

travel = distance - tan(fov/2) - 2 (4.13)

! docs.lookingglassfactory.com
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Focus Range Identification

The depth range (the distance between the closest and farthest points from the camera)
affects the way the user might select the optimal focus distance. If the scene does not
contain large depth differences, the zero-parallax plane might be set by the user between
multiple objects to keep them all more or less focused. Otherwise, the user would focus on
a specific area of interest, leaving the rest of the scene unfocused.

For a given pixel representing a point in a perpendicular distance from the camera plane
d, distance from the camera to the zero-parallax plane f, horizontal field of view fov,,
horizontal distance between the two neighboring capturing cameras Ac,, and horizontal
resolution of the image res,, the displacement of the pixel representing the width of ghosting
artifact ghost, can be theoretically computed by Eq. 4.14.

2 - tan(fov,/2)
In a simple case, the optimal 2D vector representing resolution of one view would be

calculated from the resolution of the device screen and the number of views according to
Eq. 4.15.

ghost = - Tesy (4.14)

view = w (4.15)
views

For a 4K (3840x2140) display with 45 views in a quilt, this would lead to a resolution of
572x322. According to the observations conducted, this resolution is still not high enough,
and the improvement in visual quality is visible when the resolution is further increased.
The low-resolution artifacts cease to be noticeable at about 800x583. This leads to an
approximation of Eq. 4.16, for the optimal view resolution calculation from the screen

one. The vector elements are accessed by the x,y subscripts.

view = (0.21 - screen,,0.27 - screen,) (4.16)

Note that the ratio between horizontal and vertical resolutions is less than the screen
aspect ratio 16:9 and the quilt rows and columns ratio 9:5. This might be caused by the
rotation of the lenticular strips. Fig. 4.30 shows the theoretical amount of ghosting for the
Crash scene where the field of view of the camera is 39.6°, distance between the cameras
is 0.050702 meters, and the horizontal resolution is 800 px. The amount of artifacts is
increasing not only with a higher distance of the pixel from the zero-parallax plane but also
with the zero-parallax plane position being closer to the camera. Scenes focused on very
close objects to the camera can be more difficult to setup.

The goal of this experiment is to find the distance between two objects, where users
switch from focusing on one object to moving the zero-parallax plane in between them.
The testing scene contains two same objects next to each other. The one in the front is
static, and the second one starts at the same Z position (depth) as the first one. Then it is
moved further away in each measurement. The moving object is scaled in each step so that
it covers the same area of the image as the static one (approximately 7.5% of the image).
Rescaling is conducted to avoid a perceptional bias that might make users focus more on
the larger object.

The measured focus distances were clustered in two groups according to their distance
to the optimal focus distance of the closer and further object. The variances of these two
groups were averaged and compared to the global variance without clustering in Fig. 4.31.
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Figure 4.30: The chart shows the amount of ghosting artifacts produced according to the
position of the zero-parallax plane f and the depth of the pixel d.

According to the theoretical calculation above, given the zero-parallax plane positioned
at the first object and the views rendered in FullHD, with the scene dimensions shown
in Fig. 4.32, the artifacts should become visible (ghost > 1 px according to the plenoptic
sampling theory [19]) at the distance from the camera plane of 2.823402 meters. The
distance between the object should be 3.01 —2.823402 = 0.186598 meters. The graphs start
to noticeably diverge around 0.8 meters. The equation is more strict than the real tolerance
of the users, but it can be used as a good estimation.

Some users noticed that the object that is closer to the camera is more artifact-prone but
also has more 3D-looking when focused. This confirms the assumption shown in Fig. 4.30.
Fig. 4.33 reveals that users usually choose the object that looks more 3D despite the higher
amount of artifacts.

Depth Warping Evaluation

The goal of this experiment is to determine whether the scene can be warped to reduce
the depth range. The zero-parallax plane would be closer to more geometry, which leads
to more focused scenes. The disadvantage is that the 3D effect and the amount of parallax
would be less significant, similarly to cardboard effect caused by the low separation of the
capturing camera [291]. The users were choosing a more visually appealing result from pairs
of scenes, where they compared differently warped scenes. Fig. 4.34 shows an example of
the difference between the warped and original scene on LKG. Given the camera position
cam, expected focus distance, and the factor of the depth (z axis) shrinking, the warping
can be performed for each vertex vert of the scene using Eq. 4.17, 4.18, 4.19, producing
vertices with new positions vert”. The z,y, z subscripts access the corresponding vector
elements. The objects keep the same relative size in the camera view but are shrinked
towards the focus plane position and the camera.

verty = factor - (vert, — focus) + focus (4.17)
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Figure 4.31: The figure shows how the vari-
ance of the focusing measurements increases
with larger distance between objects. The
average variance of the clustered measure-
ments is close to the global variance until a
slightly larger distance but close to the the-
oretical estimation.

Figure 4.32: Dimensions of the testing Crash
scene in meters and degrees.
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Figure 4.33: The figure shows that most users chose to focus on the front object in the
Crash scene.
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Figure 4.34: The zero-parallax plane is positioned at the tree in the front in all cases. The
warped scene has 20x smaller depth range and has more objects behind the tree in focus
than the original. However, the parallax is less visible in the warped case.

Fig. 4.35 shows the users’ choices when presented in each test with two scenes with dif-
ferent amounts of warping. The users chose the more warped scene almost every time. The
only exception was in the case where the original scene was compared to the first warping
iteration. The reason is a high amount of artifacts that made both scenes relatively noisy
and hard to distinguish which is better. The testing scene was intentionally designed with
a large depth range as an expected candidate for the warping method. The measurements
prove that the warping of the scene is a suitable approach to improve the quality of the
displayed result.
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Figure 4.35: The charts show how users prefer higher amount of warping of the scene
geometry. The warping reduces parallax but mitigates the out-of-focus artifacts.

Depth of Field Evaluation

The scenes are focused with the saliency method, and then the images are post-processed
with a shallow depth-of-field framework [273]. The DoF-based ghosting mitigation assump-
tion is based on the sampling theory, effectively removing frequencies above the Niquist
limit [302]. The filtering was applied on the full-resolution input views to avoid alias-
ing [19]. Users were presented with prefocused scenes in two variants for each scene, with
and without depth of field. Their task was to choose which of each pair is more appeal-
ing in terms of visual quality and 3D experience on the LKG. The prefiltered scenes were
manually validated.

Surprisingly, Fig. 4.36 shows that most users chose the scene without DoF as a more
appealing result. Therefore, DoF cannot be used without a prior analysis of the content
of the scene. Although the interperspective aliasing artifacts are smoothed, the added blur
can decrease the visual comfort of the imagery on LKG. Fig. 4.37 shows the results for each
scene. The Cars scene was mostly preferred with DoF, the Knight scene without, and the
expected optimal candidate for DoF, Angel, was slightly more preferred without DoF; see
Fig. 4.38. Few observations can be derived from the measurements:

e DoF reduces the quality of the result in scenes with small depth range, for example,
Knight, Table.

e The best choice for DoF is a scene with sharp edges that are only slightly out-of-focus,
for example, Cars, Room.

e Applying DoF on a distant background does not always improve the result, for ex-
ample, Angel.
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Figure 4.36: The overall amount of users Figure 4.37: The chart shows the user pref-

that preferred original or DoF scene across erences regarding the DoF effect for all tested
all tests and scenes. scenes.

Focusing Method Comparison

The edge detection (DoG) approach selects as the optimal zero-parallax plane position a
distance where most of the scene is focused. The method does not take into account human
perception. The saliency method focuses on a specific area in the scene that is most likely
to be looked at by the user. The difference is shown in Fig. 4.39.

The autofocusing methods are time-consuming due to the scanning process, where all
input images must be analyzed, filtered, and evaluated for all steps of the focus range. A
measurement was carried out to analyze the performance of the methods in relation to the
resolution of the input images. Fig. 4.40 shows the execution times of both methods and
the resulting focus distances. The measurement was carried out on an Arch Linux machine
equipped with Intel® Core™ i5-8500 CPU 3.00 GHz and 16 GB DDR4 RAM.

The density of the sampling range affects the performance/quality ratio linearly because
it only adds more iterations. The density is set to 400 steps in the [—1; 1] range, which was
empirically identified as sufficient to cover the entire dataset.

The DoG method is approximately 6x faster than the saliency one, but the detection
of a focus point for the DoF simulation is approximately 30x faster in the saliency method.
However, the DoG method is faster in the total time comparison, because the detection
of the point takes only 15% of the total DoG time and 0.09% of the saliency time. The
saliency method is stable in all resolutions, whereas the DoG method slightly changes the
result in different resolutions and returns a completely wrong focus distance for resolutions
below 512x288.

The saliency method had problems in four scenes (Brick, Cubes, Rock, Cars). The
reason is that the generated saliency maps did not mark the same objects in the scene as
salient. The DoG method always returns the best overall focus distance.

The experimental task for the users was to move the slider to optimally focus the scenes.
The user might move the zero-parallax plane to an object of interest or to the position that
makes a bigger part of the scene focused, sacrificing the sharpness of other parts.
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Figure 4.38: Examples of the most interesting scenes details on LKG with and without
DoF.
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Figure 4.39: Two zero-parallax planes are depicted in the 3D scene, one is aligned with the
front object which is regarded the object of interest as the result of the saliency method and
the second one is roughly between the objects (a bit closer to the one with larger area in
the final image) trying to find the best average focus distance as the result of DoG method.
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Figure 4.40: The figure shows the performance of both autofocusing methods. The reso-
lution of the input images shrinks by 3/4 of the previous one along the z axis, starting at
4K. The range was scanned with 200 steps on the Crash scene. The red nodes indicate how
the value of the focus changed.
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Fig. 4.41 shows that the saliency method outperforms the DoG one and simulates the
human choice more precisely with respect to the overall error. The total number of mea-
surements that were closer to the DoG method is higher; see Fig. 4.42.
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Figure 4.41: The chart shows the average Figure 4.42: The bars show how many of
difference of the automatically detected focus the users measured the focusing closer to the
distances from the users’ measurements. given method in 180 measurements.

Note that in some cases, such as in many measurements of Knight scene, the mea-
surements of both methods were very close. Therefore, the error is taken as the most
representative metric. Fig. 4.43 shows the average, minimal, and maximal measured values
and values which were automatically detected by the two proposed methods for each scene.
The DoG method is not optimal for scenes with a large depth range and scenes with a lot
of high-frequency features. The saliency method performs slightly worse in scenes with low
frequencies and large solid-colored areas.

Cars q —————
Angel -
Buddha - i
Knight -~ __ gzeé -
Q Cubes - —e— Saliency
S Room -
o Class -
Table - i
Bricks - ——
Cat - e
Rock -
Layers - o

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

Focus distance

Figure 4.43: The automatically detected focus distances of both methods and the average
measured focus distances with their minimal and maximal values are visible in the chart
for each scene.

The DoG method serves as a good first guess for the focusing, expecting the user to
adjust the result for desired result. The saliency method is a better approach for reaching an
artistic result without further adjustments. The experiments show, that a general focusing
approach would consist of both methods, first performing the saliency one. If the accuracy
of the saliency method is too low, for example, low amount of overlapping saliency masks,
the DoG method can be used as a fallback. This approach would improve the accuracy
of the focusing, compared to the saliency method, by more than 50% according to the
measurements.
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4.4 Capturing Camera Trajectory Distortion

The main goal of this section is to discover the limitations and most crucial parameters
related to the shape of the capturing camera trajectory when creating input views for
3D display. An evaluation method was proposed and experimentally measured in a user
study [6]. This study reveals specific attributes of 3D displays that define the limitations
for the input light field data. For example, the proposed light field rendering method can
be used accordingly.

The linear trajectory of the cameras was distorted in various ways. The users were asked
to adjust the amount of the distortion to the maximum acceptable values while evaluating
the visual quality of the result on the LKG; see Fig. 4.44. Some distortions of the trajectory
might affect the resulting visual quality in a different way or with a different impact on the
human visual system than others.

Scene
. User evaluation
- —
! s

4

Trajectory distortion. Looking Glass display

v ¥
CAMERA
3D SCENE TRAJECTORY RENDERING REPROJECTION Lg?AKISI\éG
DISTORTION
ADJUSTING
PARAMETERS IEEE USER EVALUATION

Figure 4.44: The testing 3D scene was captured by cameras placed along the optimal
trajectory. The views obtained were displayed on a Looking Glass Factory 3D display. The
users adjusted the amount of simulated distortions of the trajectory. Each distortion type
was examined in a separate measurement. The users evaluated the resulting 3D experience
on the display and were instructed to set the amount of the distortion to the maximal value
where the possible visual discomfort was not noticeable yet.

Users might capture the scene with a handheld camera or extract the scene from arbi-
trary video. The discovered limits might be used to produce a score of scene suitability and
estimate the level of visual comfort for such a scene. The perfect camera trajectory is diffi-
cult to achieve in real life without special equipment. Proprietary software, such as games,
can use tools like NVIDIA Ansel to enable restricted free-look camera view. The proposed
guidelines might help to correctly setup the capturing process when intentionally creating
suitable views and also when processing already existing videos or photos which are not
suitable to display on LKG without additional edits. A 2D-reprojection-based correction
method of the images is also proposed and evaluated. The method is capable of improving
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the visual quality of the unsuitably captured scenes, thus loosening the required capturing
rules. The limits discovered might lead to a more comfortable experience in the field of 3D
displays, which had been gaining popularity and various applications in recent years [292].

Compared to previous studies, more camera trajectory distortions were tested with ad-
ditional adjustments of user behavior and scene content. More distortion types (translation
and rotation in 3D and their combination) were implemented in this study, and they were
also measured in more variations (with or without background, with user’s head moving
and being static). The study does not focus on possible misperceptions and depth accu-
racy issues [108] or visual discomfort caused by specific disparity-related problems [258].
The measurements discovered limitations valid for the current state-of-the-art 3D display
that might differ from previous tests with older devices. The device in this study is not
experimental as devices in previously published papers, but it is a widely used consumer
3D display device. Other technologies, such as Lumepad 3D tablet, provide only a limited
functionality of LKG and the results would be similar, so only LKG was considered during
the testing.

4.4.1 Evaluation Method

All experiments require the users to adjust the normalized slider in the [0, 1] range, which
affects the distortion of the capture camera. At the same time, they visually evaluate the
result on the LKG. In this way, users find the optimal or maximum value of the parameter,
keeping the result visually acceptable. The four main objectives of the experiments are as
follows:

1. Find the maximum acceptable amount of the distortions.
2. Identify the most crucial and the least crucial type of distortion.

3. Reveal the effect of the content of the scene or user behavior on the visual quality of
the distorted scene.

4. Measure the efficiency of 2D reprojection of the images that compensates for the
distortions.

An OpenGL application with a simple 3D scene with two boxes and a background
plane was implemented to conduct the experiments; see Fig. 4.45. The zero-parallax plane
distance was set to keep most of the area containing the boxes in the middle of the scene
focused. Fig. 4.46 is the blueprint of the scene. The experiments were conducted with 10
people in a laboratory equipped with a 15.6” Looking Glass 4K model, rendering 45 views
of the scene. Users were expected LKG users, people interested in IT, in the 20-40 age
range with no serious sight indisposition. During the experiments, the participants were
sitting in front of the LKG at an initial distance of 55 cm, which is within the recommended
viewing distance range [219]. A supervisor noted the relevant comments of the users. The
results were statistically processed and averaged.

During the first set of measurements, users were instructed not to move their heads to
evaluate only the artifacts caused by the interpolation of the views. The use case for this
scenario is, for example, watching a 3D movie where users are expected to sit still. During
the second set, they moved their heads from side to side to see the parallax and to evaluate
the quality of the seeming motion of the objects in the scene. The user might do so, for
example, when playing games or exploring 3D models.
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Figure 4.45: 2D view of the testing applica-
tion where the user’s task was to move the

slider to the maximal value while evaluating
the result on the LKG. Figure 4.46: The figure depicts the 3D scene

used in the experiments. The measures are
in the world space units. The cameras are
set according to the official LKG recommen-
dations.

The user might focus solely on the main object in the scene (boxes) or may also evaluate
the artifacts in the background. Therefore, another categorization was used, using the same
scene with and without the background. The categories are depicted in Fig. 4.47. A total of
128 measurements were conducted with two output values for each measurement, the slider
value, and the time duration of the particular measurement. At the end of the session,
users were asked additional questions about the experiments:

1. What distortions were the most problematic and why?

2. What kinds of artifacts did the participant notice?

Trajectory Distortion

The shape of the capturing camera trajectory can be described by a function. Different
shapes might result in different kinds of artifacts and user experience, even if the underlying
camera transformation is the same. Theoretically, n basis functions f; can be defined and
combined with weights w; to simulate a large set of camera trajectory shapes according to
Eq. 4.20. The resulting zth camera displacement d(z) can be calculated by multiplying the
amount of transformation t(x) and the weighted sum of the basis shape functions.

n

d(z) = t(x) - Y _(w; - fi()) (4.20)

i=0
Two basis functions were defined and used separately (only one weight is 1 and the
second is zero): a sine function to simulate camera shaking and a linear function to simulate
gradual camera change. Therefore, the distortions were implemented in two variants:
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Figure 4.47: The scheme describes the categories of the measured tasks in the experiments.

e Linear where each camera is affected by the distortion relative to the previous one
(incrementally).

o Jagged where the cameras are distorted in an alternating pattern.

Fig. 4.48 shows how the cameras are placed. Fig. 4.49 is an example of the resulting quilts.
Six basic camera transformations were implemented: rotation and translation on the three
basic axes; see Fig. 4.50.

(a) no distortion (b) linear (c) jagged

Figure 4.48: The distortions can be applied in two modes, linearly with an offset relative
to the distance from the first camera and jagged where the camera moves up and down
repeatedly. Vertical translation is used here for the demonstration.

Linear distortion causes more ghosting in the static view; see Fig. 4.51. The motion
artifacts, when moving the head around the display, are continuous. The objects move
in the direction of the distortion smoothly; see Fig. 4.52. The jagged distortion creates
less ghosting. Two images of three might be placed on the horizontal line in the best
case. However, the motion of the objects suffers from wobbling artifacts; see Fig. 4.53.
All proposed tests simulate the distortions that the user might create, for example, when
capturing the scene with a handheld camera.

An extra distortion is a circular shape of the trajectory. Two versions are used, a circle
around the objects where each camera points to the center of the circle and an inverted
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(c) jagged

Figure 4.49: The figure shows different kinds of distortions. Each line shows a subset of
views from the whole quilt. The blue line tracks the position of the same 3D point.

y

Figure 4.50: The basic transformations used to distort the trajectory: translation and
rotation (roll, pitch, yaw) in X, Y, Z axes.

Figure 4.51: The figure shows the LKG imagery Figure 4.52: The figure shows the LKG
captured with the ideal camera trajectory in the view from rightmost, center, and left-
top row and increasing jagged vertical distortion most viewing angle. The objects move
below. The ghosting effect is visible at the edges down according to the linear distortion
of the objects. with a motion blur.
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Figure 4.53: The figure shows two zoomed areas of the LKG imagery captured from different
but close angles. The jagged vertical distortion leads to wobbling artifacts of the edges.
The lines represent the expected edge. The ghosting artifact oscillates around the expected
edge.

one, where the cameras point outside; see Fig. 4.54. This simulates the case where the
user might circle around the object with a camera to capture it from all angles or when
capturing the scene standing at one place and rotating the camera around, such as when
taking a panorama photo.
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Figure 4.54: The circular distortion interpolates the camera positions between the original
and the circular trajectories. Two variants are implemented, half-circle around the object
where the cameras point at the center and inverted half-circle as if taking a panorama
photo.

Extra Measurements

Additional measurements were included. The first was to discover the limits and optimal
value of the view cone (distance between the cameras). According to the documentation,
35° is the optimal value of the total bounding view cone for all cameras combined according
to the physical parameters of the display. This experiment was conducted to verify this
claim and to find the possible range of acceptable view-cone values.

Two additional tests, with the scene using a 30° and 60° view cone, measuring the
depth-of-field effect were also included. These angles were chosen to represent narrow and
wide view cones. Users were asked to set the amount of background blur (Gaussian blur
radius) that can mitigate out-of-focus artifacts [133].
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The default view angle of the camera from Fig. 4.46 is used in all measurements except
for the depth-of-field test, where the angle is changed to test the effect of the wide and
narrow view, and in the view cone test, where the users change it directly.

Reprojection

All distortion measurements had corresponding versions with a 2D correction of the images
back to the optimal position. The pixels of the rendered 2D images are completely repro-
jected by the inverse transformation of the distortion with a specified constant depth. The
goal of these tests is to evaluate the efficiency of this correction process in fixing inappro-
priately captured scenes. This is the evaluation of the ideal case, where the transformations
are known: the view matrix view,, of the camera in an optimal position, the distorted
view matrix viewys, and the projection matrix proj. The reprojected coordinates cr are
obtained in Eq. 4.21 where cv are the view-space coordinates of the pixels in the distorted
image. The inverse matrix of the distortion is used to correct the image and transform it
according to the optimal position of the camera.

cr = proj-my. -cv (4.21)

The distortion is represented by a transformation matrix my;, obtained as described in
Eq. 4.22, as the difference matrix of the optimal view matrix and the distorted one.

My = ViewW g - view;plt (4.22)
The cv denotes the view space coordinates acquired by Eq. 4.23 from the input normalized
texture coordinates (NTC) co of the image. 1 denotes vector filled with the value one.

cv=proj ' -(2-co—1,d,1) (4.23)

The coordinates must first be converted to the normalized device coordinates (NDC). A
predefined depth d that corresponds to the view-space depth of the focused objects (boxes)
is used as a constant global depth for all pixels in the image. The projection is then reversed
using the inverted projection matrix. The coordinates need to be divided by their fourth
element to compensate for the perspective-divide operation; see Eq. 4.24. The subscript
(x,y, z,w) denotes the selection of the given coordinates.

(¢
cv = Yy (4.24)
CVy
Eq. 4.25 is used to perform the perspective division and to get the coordinates back into
NTC, resulting in the final cr.

1
cr = <Cr‘”y + 1) 5 (4.25)

cry

In practice, 3D reconstruction methods such as ORB-SLAM3 [417] would be necessary
to estimate the camera positions and their distortions from the optimal path. Views in the
quilt should also be 2x zoomed in to hide the areas at the edges of the reprojected image,
where visual information is not available. Fig. 4.55 shows an example of the reprojection.
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(b) The images are reprojected with zoom and crop.

Figure 4.55: The figure demonstrates the effect of the reprojection of the 2D images into
the correct positions. The orange line marks the area with missing image data. The images
are zoomed to mitigate border artifacts where the image was not rendered.

4.4.2 Experiments & Results

The user experience measurement criteria [265] do not focus on the general usability or
efficiency of the product in these experiments. The time of each task or the overall opinion
of the user about the LKG is not important. The main metric is the visual appeal of
the result and the visual comfort related to human perception, based on the amount of
distortion. The effort of the user to complete the task was also checked and noted to
identify possibly problematic types of distortion.

The duration of the session for one participant was approximately 29 minutes, where
one measurement took 14 seconds on average. Half of the participants felt slight fatigue
after the experiments, but none reported sickness, such as when watching uncomfortable
virtual reality imagery. The most significant artifacts according to the users were vanishing
edges, motion-blur-like noise, and ghosting. When evaluating the results while moving their
heads, unrealistic motions of the objects and woobling artifacts were reported. Tab. 4.3
explains the names of the measurements used in this section.

name description

linear The cameras are distorted incrementally. nth camera is distorted n times.

jagged The cameras are distorted alternately. Positive direction, no distortion, neg-
ative direction, no distortion, etc.).

static The participants were instructed not to move their heads to evaluate only the

stereo image.
moving The participants were instructed to evaluate the result from different viewing
angles.

Table 4.3: The table explains the terms used in the measurements.

The units used in the measurements are listed in Tab. 4.4 that shows how much the view
image changes when its camera is transformed. Two metrics are used: SSIM over the whole
image compared to the undistorted one and displacement of one pixel placed in the area of
interest, on the zero parallax plane. The pixel is placed at the top left corner of the smaller
box. This pixel was chosen because of its position at the edge where most of the artifacts
are noticeable. Note that other pixels in the scene might move with a different velocity due
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to the perspective projection, their depth, and the nature of the applied transformation.
SSIM metric was chosen as a commonly used standard image similarity metric which better
reflects the image differences for the human observer than other metric such as PSNR [58].

transformation amount axis  SSIM  displacement [px]
x  0.636040 19
rotation 1° y  0.596173 19
z  0.651903 3.2
x  0.850915 5
translation 0.01 ws unit y  0.891480 5
z  0.938095 2

Table 4.4: The table shows the relationship between the given transformation and the
difference in pixels between two neighboring 1920x 1080 views. The pixel displacement is
the length of the trajectory that the chosen pixel (a corner pixel in the area of interest)
traveled due to the applied transformation. Identical images would be evaluated by SSIM
value of 1. The world-space units in the 3D scene are labeled as ws units.

The main questions defined in Section 4.4.1 are answered as follows:

1. The maximum distortion should generally not be greater than 0.3° in rotations and
0.02 world units (4 px in the area of interest) in translations.

2. Users mostly tolerated rotational distortions followed by translational and circular.
The jagged variant is also more artifact-prone than the linear one.

3. A featureless or solid background can, in some cases, increase the tolerance to distor-
tions. The more users move their heads around the LKG, the more unpleasant the
distortion artifacts appear.

4. The 2D reprojection can be used to significantly improve the quality of the distorted
quilts, up to 60 times in the best cases.

The pixel difference between the distorted and optimal quilt is not enough to predict
the effect of the distortion on the resulting visual quality. Fig. 4.56 shows the SSIM metric
values between the optimal and distorted quilts according to the measured limits.
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Figure 4.56: The chart shows SSIM comparison between the optimal and average distorted
quilt. A lower value means higher tolerance.

In this way, the measured results are normalized by the image difference and different

transformations can be compared. Users tolerate a higher amount of rotational than trans-
lational, and linear over jagged variants of the distortions. The presence of background
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does not show a significant difference in this overview. The z axis rotation is the most
tolerated, while the rotation of the z and y axes shows very similar limits. The same facts
are not valid for translations, where the x axis has the highest distortion limit, followed by
z, and leaving y as the most artifact-prone transformation; see Fig. 4.57. Visually, a small
amount of y rotation is similar to x translation and z rotation to y translation. Despite
that, the results do not correlate due to the parallax effect present in the translation.

Axis
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Figure 4.57: The charts show the average measured limits of the translations and rotations
along the three basic Cartesian axes. Translation along the x axis and rotation along the z
axis are the ones that users tolerate most.

Reprojection can significantly loosen the limits according to Fig. 4.58. This correction
of the distorted images is most efficient at rotational distortions because of the absence of
parallax-related artifacts compared to the translational ones. Generally, the reprojection
can be used in almost all cases to correct the distorted quilt by hundreds of percent.
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Figure 4.58: The effect of the reprojection is demonstrated in this chart. The percentage
improvement of the measured limit is most significant in rotations, especially around the x
axis.
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SSIM Comparison

The optimal quilt was compared, using the SSIM metric, with the quilt acquired with the
amount of the distortion corresponding to the average measured value. This ensures an
objective measurement of the difference in the views after the trajectory distortion; see
Fig. 4.59. The chart indicates two main facts. Users tolerate more pixel difference in:

e rotations than in translations,

e linear distortions than in jagged ones.
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Figure 4.59: The chart contains SSIM values of the distorted quilt compared to the optimal.
The amount of the distortions corresponds to the average values from the measurements.
The lower the value, the greater the tolerance of the participants for the given camera
distortion.

This result proves that the perception of the image on the LKG does not depend only
on the pixel difference, but also on the type of transformation which might affect how the
human brain interprets the artifacts. Note that the values in the chart would not differ if
the pixel difference of the quilt was the only parameter that impacted quality. The high
SSIM values of jagged variants of the distortions are also caused by the fact that some
images are the same as in the optimal quilt. It might be surprising that the participants
did not tolerate even higher distortions in the rest of the images in the jagged variants.
Apparently, the resulting quality depends on each of the views and cannot be evaluated
globally over the whole quilt because the imagery the user perceives is always a mix of
three or more views. In most of the cases, the motion of the users’ head also lowers their
tolerance to the artifacts.
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Rotations

Fig. 4.60 summarizes the measurements of the maximum angles. The participants marked
the z rotation as an unexpected behavior of the objects according to the position of the head.
The difference between the static and moving variants is the most significant. Nevertheless,
the measurements show that this rotation allows for the most freedom. The values obtained
are generally slightly lower than the results of other studies on stereoscopic images [243].
However, certain cases show greater tolerance, for example, the static jagged variant of the
z rotation without background image. The linear variant of the tests shows higher user
tolerance in the evaluation without head motion. The situation is the same in the jagged
tests with a black background.
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Figure 4.60: The chart shows the maximum rotational angles in all three main Cartesian
axes that the users marked as visually acceptable.

Translations

The results in Fig. 4.61 reveal that the translational distortion in the x axis is quite robust
to the artifacts, followed by the z axis, which visually creates a zoom effect in the view.
The z axis translation moves the view along the direction of the optimal line trajectory,
which corresponds to the orientation of the human eyes. The z axis distortion might look
more natural to the user than the y axis, because the vertical motion of the objects on
the y axis resembles shaking of the 2D imagery, while the zooming of the objects might
resemble the deformation caused by a perspective projection. The sitting position of the
participants also reduces the expectation of the vertical motion of the rendered objects and
does not exclude the possible motion of the user’s head closer and farther away from the
screen, which resembles the z axis distortion.
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Figure 4.61: The chart shows the maximum amount of translation in the world space units
in all three main Cartesian axes that the users marked as visually acceptable.

Reprojection

The 2D reprojection of the view images can significantly increase the maximum limit of the
transformations; see Fig. 4.62. The reprojection is most efficient at rotational distortions
because of the lack of parallax effect. As expected, the removal of the background signifi-
cantly increases the efficiency of the reprojection in almost all cases. The expected depth
used in the reprojection process (Eq. 4.23) corresponds to the zero-parallax plane that is
placed at the boxes. The best cases for reprojection (45— 60x improvement) are the jagged
variants of z and y axis rotations. The most significant improvement was detected at the
inverted circular trajectory (30x).
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Figure 4.62: The chart shows the average improvement of the measured limits at each
transformation after applying the 2D reprojection to correct the distortions. The original
limit is considered to be 100%. The values are calculated from the average measured limits
in each category.
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Extra Measurements

The linear trajectory can be interpolated into half circle only by the factor of 0.08 (1 = half
circle), which proves that circular capture is unusable. Users marked the inverted circular
distortion as the most artifact-prone transformation of all measurements.

For a simple stereoscopic image, where the user is not expected to move around, the
view cone can be lowered almost to half of the recommended value for the background scene.
According to the measurements, the view cone value can generally be set in [13°; 50°] range.

The participants mostly set the value of the depth of field low enough to mitigate the
ghosting artifacts. The optimal amount of blur seems to be directly proportional to the
view-cone value. Doubled view-cone requires doubled radius of the blur. Users tended to
increase the blur when head motion was allowed; see Tab. 4.5.

view cone [°|  head  avg radius
30 static 0.562100
moving  1.865934

60 static 2.287247

moving  2.383613

Table 4.5: Measured average radius of the Gaussian blur in the depth-of-field effect simu-
lation is shown in the table.
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Chapter 5
Conclusion

The main contribution of this thesis is a novel light field rendering method. The method
outperforms the state-of-the-art methods that are analyzed in the thesis. The conducted
research addresses the most crucial issues in light field rendering. A scientific hypothesis
was presented, and its experimental proof showed that the proposed method for light field
rendering outperforms existing approaches and solves the related issues. Additional contri-
butions regarding the quality of rendering on 3D displays are described, as they are closely
related to light fields.

The methods proposed in this thesis can be used to utilize light fields in modern industry.
The rendering method allows for high-quality and real-time synthesis of a novel view from
discrete light field images. Research regarding light field compression leads to the proposal
of an optimal encoding and streaming scheme for light fields. It solves the excessive memory
and bandwidth requirements of light field rendering methods. Hypothesis of this thesis
stated that a fast and high-quality light field rendering method can be proposed. The main
presented proposal focuses on optimal GPU utilization, which makes the method faster
than the state of the art. The method is designed to exploit massive parallelism that allows
it to densely scan the input data to find the best focus distance for each resulting pixel.
This ensures mitigation of standard light field rendering out-of-focus ghosting artifacts.
Hypothesis was experimentally proved as valid.

3D displays are currently not mainstream displaying technology due to various limita-
tions such as input views alignment and a single focus distance. The proposed methods lead
to automation of tasks necessary for comfortable usage of 3D displays. The methods can
detect potentially good scenes from an arbitrary sequence of images or a video or detect the
optimal focus level. The user study also reveals an important limitation of this technology
regarding the deviation of the input data from the officially recommended guidelines.

Most of the research included in this thesis has been accepted by the scientific commu-
nity, peer-reviewed, and published. The materials described in this thesis lead to a complete
and usable light field rendering approach which can be utilized in industrial solutions. They
can also be used as a solid basis for further research.

Future work will cover efficient compression of the 2D light field grid in the time domain.
The optimal position of the I-frame can ensure a fast light field video playback. Light field
rendering designed for the standard data format in a grid was concluded in this thesis.
Arbitrary-positioned light field views are a topic for future research. Both optimal rendering
of synthetic views and acquisition method are to be explored in depth. A comparison of
several 3D viewing devices will be performed to measure the ability of users to perceive
various kinds of rendering or capturing artifacts in the scene.
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