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Abstract

Protection against distributed denial of service (DDoS) attacks is one of the key areas of
network security. One of the forms of defence is to use the DCPro DDoS Protector device
developed by the CESNET association. The CESNET association also utilizes network
monitoring and traffic analysis systems IPFIXcol2 and NEMEA, as well as the network
monitoring protocol sFlow. The aim of this thesis was to propose and realize the integration
of those systems, so that an effective distributed system for the mitigation of DDoS attacks
could be created. During the work on this task, special focus was given to the effective
utilization of existing solutions, reusability and the option for a future expansion of the
distributed architecture.

Abstrakt

Ochrana pred distribuovanymi utoky odepreni sluzby (DDoS) patii mezi klicové oblasti
sitové bezpecnosti. Jednou z moznych forem ochrany je vyuziti zafizeni DCPro DDoS
Protector vyvijeného sdruzenim CESNET. Sdruzeni CESNET provozuje také systémy pro
monitorovani a analyzu sitového provozu IPFIXcol2 a NEMEA, a déale poskytuje moznost
vyuzit protokol pro monitorovani sité sFlow. Cilem této prace je navrhnout a uskutecnit in-
tegraci téchto systému a vytvorit tak efektivni systém potlaceni iitoku odepreni sluzby. Pri
vypracovani tohoto cile byl kladen diraz na efektivni vyuziti stavajich feseni, znovupouzitel-
nost a moznosti budouctho rozsiteni celé distribuované architektury.
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Rozsireny abstrakt

Sitova bezpecnost je jednou ze zakladnich oblasti, kterym je nutné vénovat zvysenou
pozornost pri navrhu, vyvoji a nasazeni sitovych sluzeb, mezi néz patii i informacni systémy.
V soucasnosti se s rozsifenim systému a aplikaci, které spoléhaji na prenos dat po siti,
stavd tato otdzka o to vice dilezitou. Pii ochrané systémil se bezpecnostni cile typicky
déli do nékolika kategorii, mezi které patii integrita, divérnost a dostupnost. Jednou
z nejvétsich hrozeb pro zajisténi dostupnosti jsou v dnesni dobé tutoky odepfeni sluzby
(DoS) a jejich distribuovana varianta (DDoS), kterd komplikuje detekei titoku a ochranu
pred nim vyuzitim nékolika zdroja utoku. Cilem téchto tkolt byva pretizeni cilového stroje
nebo linky, aby se poskytovana sluzba stala nedostupnou pro legitimni uzivatele. Vypadek
v dostupnosti sluzby miize predstavovat nebezpedi zejména v oblasti kritické informacni
infrastruktury statu, kdy i relativné kratky vypadek dilezité sluzby muze mit za nasledek
velky dopad.

Chranéna

sit

pravidel pomoci

Nastroje pro strojového udéeni
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sitovém provozu

Smérovad/Sonda
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Administrator

Obrazek 1: Cilova Architektura Systému pro distribuované potlaceni DDoS tutokiu

Ochrana proti DDoS utokim obvykle vyzaduje prvotni detekci itoku prostrednictvim
technologii pro monitorovani sité. Jednou z téchto monitorovacich technologii je protokol
sFlow, ktery slouzi pro preposilani vzorku pakett prochazejicich pres bézna sitova zarizend,
jako jsou smérovace, nebo dedikované sondy. Dalsi technologie zahrnuji protokoly IPFIX
a NetFlow. Oba tyto protokoly mohou byt opét nasazené na smérovacich, které je pod-
poruji. Narozdil od sFlow vsak nedochézi k vzorkovani jednotlivych paket{i, namisto toho



jsou pakety agregovany do takzvanych sitovijch toku, které jsou identifikovany pomoci IP
adres a cisel portid v paketech a obsahuji agregované informace o celkovém poctu bytu
a paketti, které prosly pfes dané sitové zafizeni v konkrétnim casovém intervalu. V ramci
sdruzeni CESNET jsou data o sitovych tocich zpracovavana nejdiive kolektorem IPFIXcol,
a nasledné modularnim systémem pro analyzu sitovych toki NEMEA.

Po detekci utoku je mozné ttocné pakety zahodit nebo presmérovat. K tomuto ucelu
slouzi napriklad smérovaci protokol BGP. Pouziti smérovaciho protokolu pro zabranéni
utoku nemusi byt vzdy efektivni feseni, protoze v pripadé distribuovaného ttoku typicky
omezuje i pristup legitimnich uzivateli ke sluzbé. Z téchto divodu je sdruzenim CESNET
vyvijen systém pro potlaceni DDoS utokt aktivni filtraci paket ptichozich do chranéné
sité, ktery se nazyva DCPro DDoS Protector. DCPro DDoS Protector je z kapacitnich
davodil a z divodu zpomaleni provozu obvykle nasazen tak, ze v pripadé utoku je na néj
na smeérovaci presmérovan protokolem BGP podezrely sitovy provoz, ze kterého DCPro
DDoS Protector nasleduje odfiltruje titocné pakety a legitimni navrati pres smérovac zpét
do chranéné site.

V soucasném zapojeni systémi sice existuje systém pro kontinudlni analyzu sitového
provozu NEMEA a je mozné konfigurovat smérovace pro odesilani monitorovacich zprav
pomoci protokolu sFlow, nicméné neexistuje zadné napojeni na systém DCPro DDoS Pro-
tector. Cilem této prace, ktery je vizualizovan v Obrazku 1, je navrhnou a implementovat
prototyp rozhrani pro napojeni systému pro sbér dat o sitovém provozu a systému DCPro
DDoS Protector tak, aby mohl administrator systému DCPro DDoS Protector tento sys-
tém rucéné konfigurovat formou takzvanych mitiga¢nich pravidel, a napojeni na moduly
systému DCPro DDoS Protector, které dokazi mitigacni pravidla odvozovat automaticky
za vyuziti metod strojového uceni. Obrazek znazornuje cilovy stav, kde zelenou barvou
je naznaceno nové vzniklé napojeni zpracovanych dat ziskanych monitorovacimi protokoly
sFlow, NetFlow a IPFIX na systém DCPro DDoS Protector. Diky integraci téchto sys-
témi tak vznikd jeden distribuovany systém pro potlaceni DDoS ttokt, ktery ma pristup
k monitorovacim datim sbiranych ze sitového provozu, a mutze tak efektivné potlacit pii-
chozi tok za pomoci distribuovaného systému DCPro DDoS Protector v ramci relativné
rychlé odezvy, s vyuzitim automatizace ve formé odvozeni mitiga¢nich pravidel technikami
strojového uceni.
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Chapter 1

Introduction

Since the introduction of the Internet, one of the most important considerations in the
design, development, and deployment of services that can be accessed through it has been
the issue of security. The basic cybersecurity goals have been defined using the CIA Triad
[30], which consists of confidentiality, integrity and availability. Currently, Denial-of-Service
(DoS) attacks, and especially their distributed variant (DDoS), are one of the most common
threats to availability of services. Furthermore, as described in [45] and [13], the historical
trend is that both the rate and the complexity of such attacks are increasing. According to
Cisco, the number of detected DDoS attacks almost doubled between 2018 and 2023. DDoS
attacks pose a significant threat to services that are part of critical infrastructure, where
even a relatively short interruption in availability can cause potentially irreparable damage.
Potential high-value victims include financial institutions, government agencies, healthcare
facilities, and any systems and services used in the management of critical infrastructure,
such as power and water supply. However, even DDoS targeted against businesses can cause
significant damage to the economy. A distributed DoS or DDoS attack utilizes the greater
computing power of a larger number of machines while also becoming harder to detect,
as it is not possible to identify a single source of a traffic anomaly. Although historically
mitigation of DoS attacks was possible by continuous analysis of statistics and blacklisting
of anomalous hosts, these days it is no longer effective. Not only is the number of attacking
hosts potentially quite large, but the attacker can use some form of spoofing or amplify the
volume of malicious traffic using some other distributed service, such as DNS'.

The first step in DDoS mitigation is network monitoring. Monitoring gathers important
data which can be processed and analyzed. There are several protocols and technologies that
can be deployed for monitoring purposes. Often, ordinary network devices, such as routers,
can be configured to export network traffic information using one of the available protocols.
The second step is detection, where a past, or in a better case, still ongoing, DDoS attack can
be identified. The features of the detected DDoS attack can be used to prevent more such
attacks in the future. However, while it is more difficult, active mitigation of the ongoing
attack is more desirable. The simple option is to use the blacklisting of IP addresses, from
which the attack originates, using a routing protocol. However, this approach has several
drawbacks, the most important of which is that it can indiscriminately block all traffic
that is on the way to the victim system. An alternative is to use a dedicated active DDoS
mitigation system. One such system is being developed at CESNET?, called DCPro DDoS

'Domain Name System
2https://wwu.cesnet.cz
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Protector. DCPro DDoS Protector is an active DDoS mitigation system, which filters out
any illegitimate traffic based on the configuration provided by the administrator. It also
supports automated inference of configuration using machine learning techniques.

This thesis aims to integrate the DCPro DDoS Protector with the network monitoring
tools, which are currently in use at CESNET, to form a coherent distributed system for
the mitigation of DDoS attacks, which would cover all areas of protection against DDoS:
monitoring, detection, and mitigation. In addition to that, integration should also affect
the possibilities of inference of configuration by machine learning using the data gathered
by the monitoring tools. Currently, there is no integration between the various systems and
protocols, and the only way to relay data between them is by manually analyzing them and
then inputting the configuration into the DCPro DDoS Protector. The thesis first discusses
the basic concepts and technologies used for network monitoring and DDoS detection in
CESNET in Chapter 2. Chapter 3 then describes the technologies used to actively mitigate
DDoS attacks, with a special focus on the DCPro DDoS Protector and its inner structure.
The solution is discussed and designed in Chapter 4. Finally, the implementation process
is described in Chapter 5, together with an evaluation of the outcome.



Chapter 2

DDoS Detection and Monitoring

Denial of Service (DoS) has various definitions and many dimensions. The International
Telecommunications Union (ITU-I) recommendation X.800 provides a helpful general defi-
nition:

denial of service: 'The prevention of authorized access to resources or the de-
laying of time-critical operations.

DoS can be caused by accidental or malicious actions. These actions can originate
remotely or locally. Typically, damage is caused by the exhaustion of a critical resource
at the target point. In this case, critical resources include network bandwidth, parts of
network infrastructure, server resources, or application-level resources. In the first three
cases, the attack is mostly dependent on raw computing power. Network links and devices,
such as routers and switches, are effectively disabled for regular users due to the sheer size
of the incoming traffic. Server resources, such as CPU computing power and memory, may
be exhausted by flooding the server with requests, as every request requires some of these
resources to be allocated for its processing, which eventually results in the inability of the
server to handle any more requests. DDoS attacks are described in detail later in Section
2.1.

Efficient monitoring of incoming traffic makes it possible to identify the source of a DoS
attack and block traffic from flooding the target and exhausting the resource. In the case
of DDoS attacks, it is more difficult to distinguish the sources of the attack from legitimate
users. Typically, it is possible to detect an attack by observing irregular traffic patterns, such
as a sudden increase in incoming traffic, or more complex anomalies. Once an anomalous
pattern is detected, sources can be blacklisted, or more sophisticated tools can be used to
reduce the amount of incoming illegitimate traffic. One of those tools is the DCPro DDoS
Protector described in Section 3.2.

2.1 Types of DDoS Attacks

DDoS attacks are classified into several types. According to [40], we can divide DDoS
attacks into two basic categories, which are semantic and volumetric or flooding attacks.

2.1.1 Semantic Attacks

Semantic attacks exploit specific flaws in the implementation of communication protocols.
An example of such an attack is the LAND (Local Area Network Denial) attack [49]. The



LAND attack sends a malformed TCP segment in which the attacker sets the destination IP
address to be identical to the source IP address. When the target machine operating system
receives this packet, it responds to itself, effectively sending the packet for reprocessing in
an infinite loop. Another example would be the ping-of-death [25], which is based on the
ICMP ECHO request, also known as ping. The maximum size for the request is set at
65535 bytes, which is also the maximum size for an IP packet. However, since an IP packet
may be fragmented on the way, the total size of a specifically crafted ICMP ECHO request
may exceed the expected maximum size, and the target system may crash when processing
the request, due to the overflow of the internal 16-bit variable which holds the packet size.
Semantic attacks are best defended against by fixing the flaws in the used systems. For
most users, the danger is minimized by regularly updating their systems. Defense against
this kind of attack is simple and reliable, once the exploit is found and a fix is provided.

2.1.2 Volumetric attacks

Volumetric attacks are the brute-force method of disabling the target machine through the
sheer volume of traffic. Although they require more resources for the attacker to execute
successfully, the defense similarly requires potentially significant resources to effectively
mitigate the attack. Completely reliable protection against such an attack is not possible,
as the attacker may possess enough resources to overwhelm even the countermeasures.
Mitigation of such an attack therefore always lies in making the attack more difficult and
resource intensive than the potential gain.

Oftentimes, volumetric attacks are categorized by the location of the target in the layers
of the network model. Attacks targeting the application layer target web applications and
services by sending HT'TP requests which overwhelm the application’s capacity. Other
kinds of volumetric attacks aim to exhaust the bandwidth or capacity of the target system
or network device itself.

Modern DDoS attacks try to hide the identity of the attacker, making the attack more
difficult to mitigate. The attacker may use a so-called botnet. A botnet is a group of
machines infected by malware. A single infected machine is called a bot, which can then
be controlled by the attacker without the knowledge of their owner [19, 20, 53].

Another approach is to misuse an existing Internet service as an amplifier to cause
additional harm. This is called an amplification attack. The use of amplification increases
the total volume of traffic and also hides the attacker behind a legitimate service that is
misused to generate attack traffic [41].

Attacks Overview

The following is a simple overview of some common types of volumetric DDoS attacks.
A more detailed description can be found in [55].

« UDP flood — A UDP flood is a sort of DoS attack in which the targeted host
is flooded with IP packets containing a UDP datagram. If no applications have
these datagrams, a destination unreachable packet is sent by the receiving host. As
more UDP packets are received and responded, the system becomes overloaded and
unavailable to other clients. In [50], several types of DDoS attacks are described,
implemented, and analyzed, including the UDP flood attack.



« ICMP flood - A ping flood, also known as ICMP flood, is a typical DDoS attack in
which the attacker causes the victim machine to fail by overpowering it with ICMP
echo requests known as pings. The ICMP flood is also described in [50].

e Smurf attack — An amplification attack vector that increases the potential for harm
by leveraging the features of the broadcast network. This type of attack is explained
in [28], together with a detailed description of the effects of the amplification, and it
also discusses the prevention of such attacks.

o Fraggle attack — involves flooding a network with faked UDP traffic directed at
a router’s broadcast address. As mentioned in the overview of DDoS attacks in [29],
this type of attack can be considered a variant of the Smurf attack and is largely
outdated now.

« TCP SYN attack — Makes use of a portion of the standard TCP Three-Way hand-
shake to drain resources on the targeted server and make it unavailable. TCP SYN

attacks are described in [11] in great detail. Furthermore, [15] discusses protection
against TCP SYN DDoS attacks.

e« HTTP DDoS attack — A volumetric DDoS attack that floods the target server
with HTTP requests and is unable to respond to normal traffic. In [35], attacks that
abuse the HTTP /2 protocol are described in detail. The study in [42] explains the
protection against such attacks and proposes an optimal specification of the framework
that would protect against this kind of attack.

« XML DDoS attack — Attacks deplete server resources and network bandwidth
while handling SOAP messages. The attack is discussed in [24] in the context of
cloud services.

2.2 Monitoring

In the context of DDoS detection, network monitoring is crucial, as it provides the victim
with the ability to identify the sources of incoming illegitimate traffic and potentially restrict
or block them completely [16]. This is most often done by collecting sample traffic from
the network and then looking for anomalies by analyzing it.

An approach to monitoring DDoS attacks described in [27] is to set up a honeypot.
Honeypots make it possible not only to safely identify the attacker, but also to potentially
discover new methods of attack.

The other way is to use already existing network infrastructure, primarily routers, to
collect traffic samples. There are two basic formats for network traffic samples: packet and
flow.

A packet sample is the oldest and simplest way to store network traffic samples. The
packets may be sampled at a certain rate by the network device and then collected, stored,
and analyzed at a later date. The payload may be removed to save storage space and
network bandwidth, as the headers are enough to detect most types of volumetric attacks
targeting network layers L4 and lower.

Flow data, on the other hand, represents the flow of information or messages between
two participants in a communication. Every flow is identified by several parameters, such
as the IP address and port of the two communicants. A flow typically does not contain



the payloads of the packets, but instead the number of packets, the length, and other
parameters.

2.3 Packet Capture Monitoring

The simplest way to monitor network traffic is to sniff packets. Recording of every IP
packet is the only way to achieve complete knowledge of the information that is passed
on over the network, including the protocols used, communication patterns of individual
users, etc. However, as [2] states, in modern networks, it is simply not feasible to capture
all packets in real time, due to the limiting impact on bandwidth and latency, as well as
storage limitations. A relatively simple remedy to these problems is to sample traffic at
a certain rate.

2.3.1 sFlow

One of the methods that can be used to capture packet samples is the sFlow protocol,
described in RFC 3176 [39]. It defines two basic types of components, collector and ex-
porter, called sFlow Agent. An sFlow Agent is a component or software module embedded
in network devices, such as routers, switches, or standalone probes, which sends sFlow
samples created by the network device to a central controller. sFlow defines the sampling
mechanism, the interface for controlling sFlow Agents called sFlow Management Informa-
tion Base (MIB), and the format of the sample data that the sFlow Agents forward to the
central collector. The design aims to solve issues associated with the accurate monitoring of
network traffic at high speeds, managing large numbers of agents, and having an extremely
low cost agent implementation, so that it can be embedded in switches and routers.

sFlow implements two basic sampling methods: counter sampling and packet flow sam-
pling. Counter sampling consists of periodically polling every data source on a network
device, i.e. the counters. Although both types of samples are combined in sFlow data-
grams, this thesis focuses on the use of packet flow sampling. Packet flow sampling pro-
duces samples of packets, with the restriction that the sampling mechanism ensures that
any packet involved in a flow has the same chance of being sampled, regardless of the flow
to which it belongs. In the context of sFlow, a flow represents a group of packets and is
identified by the network device interface they were received on and the interface they were
transmitted from. The mechanism involves a counter decremented with each packet. When
zero is reached, a sample is taken. There is also another counter to count the total number
of packets.

Taking a flow sample involves either extracting features from a packet or copying its
header. The values for both counters are sent together with the samples to the sFlow Agent
for processing. The format of a sFlow datagram is visualized in Figure 2.1. The sFlow
protocol uses only the TP address to identify the Agent, unlike the protocols described in
the following section.

2.4 Flow Monitoring

Flow monitoring does not suffer from the same issues as packet capture monitoring. Es-
pecially in high-speed networks, flow export is a relatively scalable and less costly option
[18]. The IPFIX specification RFC 7011 [1] defines a flow as ’a set of IP packets passing
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Figure 2.1: Structure of a sFlow Datagram header

an observation point in the network during a certain time interval, such that all packets be-
longing to a particular flow have a set of common properties’ These common properties can
include metainformation and packet header fields, such as IP addresses and port numbers
for both source and destination. However, what is recorded in a flow is mostly the headers
of individual packets, not the payload. This resolves the capacity limitations, but reduces
the amount of data available for analysis.

As described in [18], flow export protocols and technologies are widely used and de-
ployed. This is due to their integration into high-end packet forwarding devices, such as
routers, switches, and firewalls. In 2013, a survey among commercial and research network
operators found that 70 % of participants have devices that support flow exports [47]. Sec-
ondly, significant data reduction can be achieved — in the order of 1/2000 of the original
size, since packets are aggregated. Third, flow export is usually less privacy sensitive than
packet export, since traditionally only packet headers are considered. Lastly, flow export
makes it possible to comply with data retention laws. For example, in Europe, communi-
cation providers are required to retain connection data, such as flow export, for a period
of six months to two years ’for the purpose of investigation, detection, and prosecution of
serious crimes’ [38], [23].

After the aggregation of the packet header information in flows was described in [34],
Cisco' and the Internet Engineering Task Force (IETF)? developed competing technologies
for flow export. Cisco introduced its technology called NetFlow. The first widely available
version of NetFlow was NetFlow vb, which was subsequently obsoleted by NetFlow v9
[8]. IETF on the other hand decided to standardize the IP Flow Information Protocol,
or IPFIX, which is based on Cisco NetFlow v9, but offers additional features. Both the
NetFlow v9 and IPFIX protocols utilize templates, which enable flexible flow definitions.

"https://www.cisco.com/
’https://www.ietf.org
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In the following subsections, the two protocols are discussed in more detail. Due to the aim
of this thesis, the focus is primarily on the structure of the exported flow data, rather than
the specific mechanisms of capture.

2.4.1 NetFlow

NetFlow is a service provided by Cisco that allows network administrators to access in-
formation about network traffic in the form of flows. The original idea behind NetFlow
came from flow-based switching, where flow information is maintained in a flow cache and
forwarding decisions are made only in the control plane of a networking device for the first
packet of the flow. The subsequent packets are switched exclusively in the data plane. The
initial versions of NetFlow were based on the export of the information stored in the flow
cache. The up-to-date version of NetFlow described here is NetFlow v9, defined in RFC
3954 [8].

0(2|4|6|8/1012{14|0(2|4 |6 |8|10(12[14
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Source ID

Figure 2.2: Structure of a NetFlow Export Packet header [8]

The NetFlow process running on the network device is called Exporter. The Exporter
is responsible for the creation of flows from the observed IP packets and sending them to
the Collector. If no packets belonging to a flow have been observed for a given timeout, the
flow is considered inactive. If any packet is seen within the timeout, the flow is considered
active. The Exporter can export a flow under the following conditions:

1. If the Exporter can detect the end of the flow, for example if a FIN or RST bit is
detected in a TCP connection.

2. If the flow has been inactive for a given timeout.

3. For long-lasting flows, the Exporter should export the flow records on a regular basis,
specified by a configurable timeout.

4. If the Exporter experiences internal constraints, such as low memory or counters
wrapping, the flow may be forced to expire prematurely.

The default transport protocol is UDP, but NetFlow v9 has been designed to be trans-
port protocol independent. Omnce the conditions for the export of a flow are met, the
Exporter sends an Ezport Packet. An Export Packet consists of one or more FlowSets.



A FlowSet may be of three types: Template, Data or Options Template. FlowSets are
collections of Flow Data Record, which is a structure containing the values a flow cor-
responding to a Template record. There are several ways in which the Exporter ensures
that the Collector has the correct Template and Options Template Records when the cor-
responding Flow Data Records are received. The Exporter may interleave the Flow Data
Records with Template Records to ensure they are delivered at the same time, and also
periodically send the currently used Template and Options Template Records separately.

The Export Packet header is shown in Figure 2.2. Note that unlike sFlow, the NetFlow
Export Packet Header contains the source ID, which should be used to identify different
export streams originating from a single exporter according to [8]. Templates contain
a variable number of fields. Every field is defined by type and length in bytes. The following
are examples of various fields that can be used:

e IN_BYTES — Number of incoming bytes associated with an IP Flow. The default length
is 4 B.

e IN_PACKETS — Number of incoming packets associated with an IP Flow. The default
length is 4 B.

e FLOWS — Number of Flows that were aggregated

e PROTOCOL — IP protocol byte

e TCP_FLAGS — TCP flags; cumulative of all the TCP flags seen in this Flow
e L4_SRC_PORT — TCP/UDP source port number

e IPV4_SRC_ADDR — IPv4 source address

Every Flow Data Record contains the ID of the template that it uses.

2.4.2 JPFIX

0(2|4|6|8/1012{14|0(2|4 |6|8|10(12[14

Version Number Length

Export Time

Sequence Number

Observation Domain ID

Figure 2.3: IPFIX Message header

IP Flow Information FExport or IPFIX is a protocol for the exchange of flow information
developed by IETF and is defined in RFC 7011 [1]. It is heavily based on NetFlow v9,
which was described in Section 2.4.1. Most of the changes lie in the details of how the data
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should be transfered between the Observation Point (analog to NetFlow Exporter) and the
Collector. IPFIX identifies every flow by one or more Flow Keys. The traditional flow
identifier is the 5-tuple of source and destination IP addresses and ports and the transport
protocol.

IPFIX Observation Point devices export Messages containing Sets, which are analo-
gous to NetFlow FlowSets, and these have identical types; Data, Template, and Template
Options. Templates are used to specify which Information Elements from the flow should
be included in the Data. Unlike NetFlow, IPFIX was designed with the option to define
proprietary Information Elements, which was needed by vendors.

As can be seen in Figure 2.3, IPFIX retains a similar structure to NetFlow in the Message
header as well. Observational Domain ID is functionally identical to the NetFlow Export
Packet Source ID. The specification recommends that each IPFIX device have a different
1D.

2.5 IPFIXcol2

IPFIXcol2? is a flexible and high performance NetFlow v5 / v9 and IPFIX flow data collector
[21]. Tt is fully modular and provides many input and output plugins, as illustrated in
Figure 2.4. It is a new generation of IPFIXcol, which shared the same functionality but the
implementation was less efficient. In the context of this thesis, all unqualified mentions of
IPFIXcol refer to the IPFIXcol2 version, as the previous one is being phased out. IPFIXcol2
has been developed at CESNET and an instance is currently deployed in the CESNET
network. It was created with performance in mind and, due to its parallelized design, is
a perfect choice for centralized collection of flow data from the entire network.

Figure 2.4: Schema of IPFIXcol2 modular design [22]

It provides the following input plugins, every plugin can listen on a given network
interface and port:

o UDP - receive NetFlow v5/v9 and IPFIX over UDP

Shttps://github.com/CESNET /ipfixcol2
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e TCP — receive IPFIX over TCP

o FDS File — read flow data from FDS File (efficient long-term storage)

o IPFIX File — read flow data from IPFIX File

A selection of the available output plugins is listed here:

o FDS File — store all flows in FDS file format (efficient long-term storage)

e IPFIX File — store all flows in IPFIX File format

o JSON - convert flow records to JSON and send/store them

e JSON-Kafka — convert flow records to JSON and send them to Apache Kafka
e Viewer — convert IPFIX into plain text and print it on standard output

e UniRec — send flow records in UniRec format via TRAP communication interface
(into NEMEA modules)

IPFIXcol2 was implemented to match the specification of an IPFIX collector given in
[1]. It is the core of a wider active network monitoring infrastructure run by CESNET.
The modularity and the relatively wide selection of output plugins made it possible to
integrate it with other network monitoring and traffic analysis platforms. Currently, the
IPFIXcol2 instance deployed at CESNET also stores the flow records. for later manual
or automated analysis. To make this possible, a flow filter was developed for use with
IPFIXcol2, described in [48]. The administrator can also use visualization tools, such as
FTAS or the more modern SecurityCloud, which are described in Section 2.7.

2.6 NEMEA Framework

Monitoring

NEMEA [ et
System Handling

Collector

Monitoring \. /

Probe

Figure 2.5: Flow monitoring infrastructure with analysis done by NEMEA [7]

Network Measurements Analysis or NEMEA is an open-source flow-based modular
framework for the stream analysis of flow data [7, 9. NEMEA has been created with
the task of continuous analysis of flow data collected by IPFIXcol2. Every NEMEA in-
stance is a collection of heterogeneous modules, which function as independent processes
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Figure 2.6: Example of several NEMEA modules and their interconnection [7]

connected by unidirectional interfaces for communication. The primary intended output
of NEMEA are alerts, which are records about detected security incidents generated by
detection modules.

The most important feature of NEMEA are the modules. Each NEMEA instance may be
composed of a variety of modules and a number of possible interconnections between them.
Different deployments of NEMEA may use completely different module configurations and
thus perform different tasks. In a typical configuration, the modules are interconnected into
a tree or a directed acyclic graph with a single module acting as the main input of the whole
system. This module gathers or creates flow records and sends them to other modules which
process them. Each module is essentially a separate program that performs a specific task
on the gathered flow data, such as preprocessing, filtration, anomaly detection, or logging
and reporting results. An example of a configuration of modules and their connections is
visualized in Figure 2.6.

NEMEA is not only easily reconfigurable, it can also be easily extended with new
functionality. The NEMEA framework is designed to allow quick and easy implementation
of new modules. Although NEMEA is used in a production environment for analysis of
live traffic, it is also designed to serve as a common platform for researchers in the area
of network security and monitoring. It allows for fast prototyping of new traffic analysis
methods, testing them on both offline and online data and comparing them with existing
methods.

The framework used by the NEMEA system is developed in C language and brings
support for the implementation of additional user-specific NEMEA modules in C, C++ or
Python. The set of modules can be controlled and monitored by a tool called Supervisor.
The intended purpose is to have every module implement an algorithm for traffic analy-
sis or detection and communicate with other modules using the features of the NEMEA
framework. The system, which consists of a whole array of modules, should be able to run
on any UNIX-like operating system.

NEMEA is very well optimized for high-throughput flow data analysis, which is expected
when processing backbone network traffic. It uses the binary UniRec format for data
exchange, which in conjunction with the stream nature of data processing allows for efficient
memory management. The modular design makes it theoretically possible for multiple
identical modules to run concurrently if their design allows it. If a module requires access
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to a wider or more detailed part of the traffic, there are filtering and preprocessing modules
that streamline the process, so that it can still be scalable and fast enough for real-time
use in high-speed networks.

Supervisor NEMEA Module
. | Module | | Module | | Module _, O Algorithm Of->

| | | : - NEMEA Framework -

A

NEMEA Framework }

Figure 2.7: View of NEMEA module implementation and integration [7]

2.6.1 Traffic Analysis Platform (TRAP)

The most important part of the framework is the Traffic Analysis Platform (TRAP) library,
which implements the communication interfaces and other basic functions that all NEMEA
modules need. TRAP implements a high-level communications interface, which can be used
to relay messages between the individual modules. In the code of the modules, TRAP is used
in a way similar to sockets. Internally, TRAP serves to encapsulate lower-level interprocess
communications interfaces, more specifically, the TCP interface, the Unix socket interface,
and the SHMEM interface. TRAP also provides additional functions for the improvement of
the general quality of data transmission, such as timeouts, auto-flush, multi-read operations,
and buffering.

TRAP interfaces are usually initialized at the time of module launch from the pa-
rameters passed to the module instance by the user, typically using command-line argu-
ments. A module might expect to receive the identifiers of one or more interfaces and
may use them to write or read messages. There is a standardized format for passing
interfaces in a command-line argument. The format requires a specification of the un-
derlying interface type and a variable number of additional parameters, which may be
required to initialize the lower-level interface. The general structure is the following:

type and may contain the following values:
o u — Unix socket (for local communications)
o t — TCP socket (for remote communications
e b — blackhole (to drop all messages written to it)

o f—file
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Figure 2.8: SecurityCloud architecture and query execution model [44]

The other parameters together enable the unique identification of the interface. In case of
TRAP interfaces using TCP sockets, it is a combination of host address and port, in case of
Unix sockets, it is a string identifier. Multiple interfaces can be passed as values of a single
command-line argument, in which case they are separated by a comma (,). An example
TRAP interface specification looks like this:

merger -i "t:localhost:8801,t:localhost:8802,u:DNS_out"

The example lists the module merger, which writes all messages received on the interfaces
t:1localhost:8801 and t:1localhost:8802 to the interface u:DNS_out.

2.6.2 Unified Record (UniRec)

Unified Record or UniRec in short is a data format for binary representation of flow records
and other information. UniRec is the default data format used for communication between
modules using TRAP interfaces. A UniRec message contains binary data, which makes
it efficient for storage, transmission, and processing, and a template, which describes the
data. The binary data contained within the data structure is described using UniRec
templates. Every UniRec message has a template attached, specifying the fields of the
message and their types. There are several predefined template field types, such as int8,
int16, macaddr, ipaddr. Every field must also be given a unique field name that serves as
its identifier.

The NEMEA framework introduces functions for the C and Python languages, which
serve to specify the expected template in the code. Templates can be dynamically modified
during runtime. Most basic modules do not expect a specific template, or only require
a specific field to function, such as the source or destination IP address. This is especially
helpful in case an extra field is added by some other module when the whole system is
already up and running.
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2.7 SecurityCloud

Security Cloud is a modern distributed flow-based processing software, which is being de-
veloped as a joint effort of CESNET, Flowmon, and Masaryk University [44]. The core
parts are the IPFIXcol2 collector and the fdistdump tool. Fdistdump is a command line
tool that utilizes MPI* to communicate with subcollectors. The user can use fdistdump to
execute ad hoc queries on stored data. As shown in Figure 2.8, the user sends the query to
a proxy node, which then collects the data from the subcollectors using the map and reduce
phases, which do not exactly correspond to the MapReduce computation model. What is
also important for the topic of this thesis is not only the ability of SecurityCloud to process
structured queries, but also that it includes a GUI for the visualization of graphs displaying
the queried network traffic. The GUI is shown in Figure 2.9.
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Figure 2.9: SecurityCloud GUI [43]

SecurityCloud is a relatively new successor to the system that CESNET has used before,
called the Flow-based Traffic Analysis System, or FTAS®. FTAS, described in [17] and [52],
offered similar functionality to SecurityCloud, differing mainly in implementation details.

Both mentioned visualization tools that operate with raw flow data tend to be more
optimized for a detailed analysis of a single incident, rather than continuous automated
monitoring, since flows are not processed in a stream. Instead, IPFIXcol2 saves the data
in a file which can then be loaded and manually analyzed. This approach is also severely
limited by the fact that the number of flows collected in the CESNET network every
second can easily reach tens or even hundreds of thousands. Both FTAS and SecurityCloud
are intended for the analysis of incidents that occurred a day or two ago at maximum.
For automated traffic monitoring and analysis, it is much more effective to use a stream
processing platform like NEMEA, to leave out the need to persist every single flow record.
This thesis aims to provide a visualization and monitoring solution, which addresses those

4Message Passing Interface
Shttps://www.cesnet.cz/en/services/network-1/network-traffic-monitoring-ftas-34
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concerns and which allows information to be provided in formats useful to the administrator
of the DCPro DDoS Protector, which is described in Section 3.2, as well as a way to
effectively aggregate flows for longer-term storage, as the storage of individual flows proves
ineffective at the expected high throughput.
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Chapter 3

DDoS Protection and Mitigation

Ever since the advent of DoS and DDoS attacks, protection against such attacks has been
one of the primary areas of network security. However, due to the nature of volumetric
DDoS, creating a completely impermeable defense is virtually impossible. Therefore, the
most cost-effective approach is to minimize the effects of volumetric DDoS. The various
approaches to mitigation of DDoS attacks are discussed in [3].

DDoS attacks can be prevented using passive countermeasures, such as robust load
balancing and high bandwidth. However, often a more active approach is needed. Active
mitigation of DDoS attacks can be broadly divided into two categories; filtering and rate-
limiting. Rate-limiting mechanisms do not completely remove the attack, but reduce the
incoming traffic so that the victim machine is not overwhelmed. However, rate-limiting
works indiscriminately and a portion of legitimate traffic is also blocked. This effect is
especially damaging if rate-limiting is done close to the victim, as a large number of le-
gitimate users will be affected. Filtering, on the other hand, aims to identify and filter
out illegitimate traffic. Although it seems to be the optimal option, filtering is significantly
more resource-intensive. A common tool, which is also used in the CESNET network, is the
Border Gateway Protocol. CESNET and affiliated institutions are also currently developing
a more complex active DDoS mitigation tool, called DCPro DDoS Protector.

3.1 Border Gateway Protocol (BGP)

The Border Gateway Protocol (BGP) is one of the most powerful widely used routing proto-
cols. The protocol defines the concept of Autonomous Systems (AS), which are collections
of networks and routers [12, 46]. BGP is used to define routing for the connections between
different AS, as well as inside them. Therefore, the BGP protocol is further classified into
external BGP (eBGP), which is used in communication between different AS, and internal
BGP (iBGP), which is used to route communication inside a single AS. The BPG routing
protocol is one of the primary methods of DDoS mitigation, either by traffic policing or
by blackholing the attack traffic. However, both approaches inevitably lead to legitimate
traffic being dropped as well. In case of traffic policing, the cause is obvious. Blackholing
only the attack traffic is virtually impossible. Due to the distributed nature of DDoS, the
attack comes in packets with different source IPs. The only effective way to remove the
attack is to drop all packets with the destination IP of the protected subnet.

Remote Triggered Black Hole (RTBH) is a technique provided by the BGP protocol,
which enables the network administrator to specify which packets should be dropped by

18



the routers. The preconfigured policy on the router is to send the abuser packets to the
nullo interface, where it becomes unreachable. The most proper way to stop a DDoS attack
is as early as possible. Border routers are the suitable place to do so. A better approach
might be to redirect the attack traffic to a filtering system, which can efficiently distinguish
between the attack and actually legitimate traffic. An example of such a system is the
DCPro DDoS Protector described in Section 3.2.

The most efficient technology based on BGP, which is currently in use, is BGP FlowSpec.
BGP FlowSpec is a technology used for the effective distribution of routing information, in
the form of FlowSpec rules, based on the proposal in [32]. FlowSpec rules allow for a wider
variety of options to classify traffic compared to basic BGP, so the selection of the attack
traffic is much more precise and less legitimate traffic is affected. FlowSpec rules always
include an action, such as accept, decline, rate-1limit, and redirect. The action specifies
what the router should do with the traffic matched by the options in the respective rule.
BGP FlowSpec allows the rules to be dynamically deployed to the routers and is an effective
and scalable solution for managing the volume of incoming traffic. In the CESNET network,
the ExaBGP' tool is used for the efficient distribution of FlowSpec rules from user-created
configuration files, in plain text or JSON formats, to the routers.

3.2 DCPro DDoS Protector

DCPro DDoS Protector is a software device developed by CESNET with the aim of pro-
tecting a network from external DDoS attacks [10]. It can filter incoming traffic with
bandwidth of up to 100 Gbps. The device was designed primarily to counter amplification
attacks. However, since SYN flood attacks comprise the majority of today’s DDoS attacks,
the device also implements the corresponding mitigation methods, as detailed in [15]. As
such, it is a solution to the problem of effective filtering of DDoS attacks.

The DCPro DDoS Protector is implemented using the DPDK? framework, so that it
can directly access the network card without the need for the packets to pass through the
operating system. This makes it possible to utilize the processing power of the network
card much more efficiently and without any delays caused by the overhead of the different
layers of the operating system that would otherwise stand in between the card and the
application. As shown in Figure 3.1, the DCPro DDoS Protector acts as an L3 network
device. The router that acts as the access point to the network redirects unverified traffic
to the DCPro DDoS Protector. If the traffic is safe, it is redirected back to the router and
then to the network. In the opposite case, the packets are dumped by the DDoS Protector
and do not enter the network.

3.2.1 Architecture

The DCPro DDoS Protector as a system consists of the main application and several sup-
porting tools. The whole system is designed to be modular and distributed. The system is
divided into two types of machines, Controllers and Mitigators.

The Controller is a (optionally virtual) machine that provides a central configuration
database, Web API, and additional services. It has two primary features. Firstly, it acts
as a controller for Mitigator instances, storing all persistent data, such as configuration
and statistics. Secondly, it hosts the tools for user interaction, such as ExaF§S, which is

"https://github.com/Exa-Networks/exabgp
Zhttps:/ /www.dpdk.org
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Figure 3.1: Schema of DCPro DDoS Protector connection to the network [5]

a web server with a GUIL The database is accessed by both the user tools and the Mitigator
instances, which can dynamically load their configuration from there.

The Mitigator is a separate machine that is used to mitigate attacks on the wire and
that should preferrably run on separate dedicated hardware. The only program running on
a Mitigator instance is the main DCPro DDoS Protector DPDK application itself. In Figure
3.1, the DDoS Protector represents a Mitigator instance, while the databases represent the
Controller.

The DPDK application utilizes a dependency injection framework, so that it can be
fully modular. The DI configuration is done using YAML? files, which specify what modules
should be used and how they should be instantiated. This makes it possible to distribute
the application in binary format, while also leaving room for configuring the application to
fulfill specific tasks. The DCPro DDoS Protector framework can be used to create a fully
functioning DDoS mitigation device or a simple probe that only collects traffic data.

3.2.2 Pipeline Configuration

The DCPro DDoS Protector DPDK application consists of a pipeline which processes
a stream of packets which are received by the network card. The pipeline has a few basic

3YAML Ain’t Markup Language
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Figure 3.2: DCPro DDoS Protector packet processing pipeline

modules, each made up of a number of smaller and more specific modules. The pipeline is
visualized in Figure 3.2.

The Port Reader and Port Writer stages are concerned only with reading and writing
packets on the binded network card port. The Host Traffic Processor and the Ring Reader
stages are primarily tasked with redirecting traffic intended for the machine itself to the
operating system kernel. The bulk of the actual DDoS mitigation is done in Packet Parser
and Mitigator Processor stages of the pipeline. Packet Parser parses the packet features
from every packet. These include most of the items in the L3 and L4 headers. The Mitigator
Processor has two main parts. The first part is the packet classifier. To understand how
the packet classifier module functions, it is necessary to first discuss how the Mitigator is
configured. The Mitigator Processor module is configured using so-called mitigation rules.
Each mitigation rule type corresponds to a single mitigation module. A mitigation rule
is essentially a data structure that contains the configuration of the mitigation module
and the packet classifier. The rules share a base, which includes items like source and
destination IP addresses, source and destination ports, VLAN identifier, and others. The
packet classifier checks whether the incoming packet matches any of the mitigation rules,
and if so, the packet is processed by the given mitigation module. The second part of the
Mitigator Processor is the mitigation modules themselves. These have a common modular
structure, so that the DCPro DDoS Protector may be easily extended with additional DDoS
Mitigation methods.

3.2.3 Mitigation Rules

As described in Section 3.2.2, mitigation rules are data structures used by the DCPro
DDoS Protector DPDK application, which hold the configuration for the packet classifier
and for the respective mitigation module. There is at most a single mitigation module for
every mitigation rule type. Some mitigation rules are abstract, and are used as a template
for the creation rules of other types by the Controller, but are otherwise only present
in the database, and are not loaded into the Mitigator itself. These would primarily be
rules utilizing machine learning methods. Rules are persistently stored in the Controller
database. They can be modified only through the Controller. Mitigator instances load rules
into memory every time the instance is launched or when the database is modified.

There are two basic categories of mitigation rules, based on whether they produce traffic
on their own or not. For better orientation, Machine Learning rules have been separated
into a third category; otherwise they would also be classified as passive. The rules are listed
in the order in which the methods are executed.
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Passive Rules

A passive method determines whether to pass a particular packet based solely on traffic
observation.

e Packet Capture — captures all matching packets into PCAP format.

e FEzxact Match — allows or drops all matching packets based on source or destination
IP address, depending on the mode (deny/allow).

e Malformed Traffic — drops malformed packets.
e Filter — drops all matching packets.
o SYN Drop — mitigates SYN Flood (D)DoS attacks.

o Amplification — mitigates amplification (D)DoS attack.

Interactive Rules

An interactive method might also generate traffic, and it can act on behalf of a protected
device or network. These crafted packets typically require additional routing configuration.

o TCP Authenticator — mitigates SYN Flood (D)DoS attacks.

Machine Learning Rules

Special kind of passive rules. The Mitigator does not read these rule types; instead, each
of them has its dedicated tool that handles them.

e ADT PCAP — learning method that uses data from Packet Capture rules to generate
filter rules using adaptive decision trees. The method is futher described in Subsection
3.2.6.

o ADT Flow — similar to ADT PCAP but using UniRec data instead of captured pack-
ets.

e KitNET — machine learning method that uses packet data from an external source to
generate a set of [P addresses to block. The method is further described in Subsection
3.2.7.

3.2.4 Mitigation Window

In the Mitigator Processor stage, there are contrasting requirements. Firstly, the Mitigator
should at all times be concerned with processing the stream of incoming packets to maximize
the throughput and efficiency. To further accelerate the processing of packets, the Mitigator
Processor runs in several parallel pipelines. At the same time, however, it is crucial for the
administrator to be able to see how well the device and the individual mitigation rules
perform, so that the configuration may be improved, and any potential problem detected
and solved. Some mitigation rules also require access to the total number of packets or
bytes which fit certain criteria, to know whether a threshold was exceeded or not. Because
of both of these, it is necessary to aggregate the counters incremented by each of the parallel
pipelines.
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The solution to this problem is the mitigation window mechanism, which is visualized
in Figure 3.3. The Mitigator Processor keeps two structures, called mitigation windows.
At any one time, one mitigation window is in the active phase, and the other is in the
preparation and statistical collection phase. The two windows periodically exchange their
place; the default value for the interval is one second, which is also called the duration
of a mitigation window. Every time the windows are swapped, the currently inactive
window aggregates data from counters from all the pipelines for every mitigation rule. The
aggregates are then saved to the database in the form of mitigation statistics. The structure
of the statistics is discussed later in Subsection 3.2.9. For the purposes of this thesis, it
is important to note that this mechanism collects, aggregates, and periodically saves the
number of bytes and packets.

3.2.5 Mitigation Rule Database

The mitigation rules represent a dynamic configuration that is expected to change many
times in the lifetime of one DCPro DDoS Protector run. Although they can be preloaded
from a YAML file whenever a DCPro DDoS Protector instance is launched, this is only
intended for testing purposes, as rules loaded from a YAML file cannot be dynamically
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changed at runtime. In a production environment, the mitigation rules are stored inside
a PostgreSQL database instance, which runs on the controller machine.

The schema of the mitigation rule database is defined using Python classes in the
dcproapi library, in conjunction with the sqlalchemy ORM® library. In this way, it is
ensured that the rule structure is the same in the database schema as in the ORM classes
in the configuration tools written in Python. To properly manage database migrations,
alembic is used in conjunction with sqlalchemy. Since the database tables are defined
with the use of Python, the fields in ER diagrams are annotated with respective Python
types, such as str, int or enum for any kind of enumeration type. Special types for the
representation of IP and MAC addresses are provided by the sqlalchemy extension for
PostgreSQL.

Individual rule classes are mapped onto database tables in a way that for every class,
even an abstract one, there is a separate table. Because of this, there is a base class which
contains the common rule attributes, mostly those specifying whether the rule is enabled or
in a dry-run state, and those attributes used for traffic classification, such as IP addresses
and ports. Due to the fact that the structure of every rule type shares these attributes, it
is possible to classify the incoming packets by whether they match the rule or not. The
structure is visualized in the mitigation rule database schema in Figure 3.4. Only a few
example rule types are shown in the schema; the types relevant to the purposes of this
thesis are described and discussed separately in Subsections 3.2.6 and 3.2.7.

3.2.6 Adaptive Decision Tree (ADT) Rules

The Adaptive Decision Tree (ADT) is a machine learning model which is being used in the
ADT Flow and ADT PCAP rule types. ADT Flow and ADT PCAP can be understood
as two variants of the same rule, differing only in the type of input that is being processed
by the ML model. They share all other aspects; therefore, from now on, they will be
referred collectively to as ADT rules. Instead of providing configuration for an actual rule
present in the DCPro DDoS Protector, it is used by a daemon, which then uses the ADT
rule as a template to create additional mitigation rules. The ADT rules are used to derive
a Berkeley Packet Filter (BPF) filter which can later be used in a Filter rule. The inferrence
mechanism is described in detail in [6].

The daemon executes two basic kinds of processes. The first is the capture process.
For ADT PCAP, this process creates a Packet Capture rule, to capture traffic on the
DCPro DDoS Protector device. For ADT Flow, the process creates an instance of a simple
specialized NEMEA module, which instantiates a dataframe class from the pandas library
using the collected flow data. The Packet Capture rule shares the basic attribute values with
the ADT PCAP rule, so it can be configured to only capture traffic to and from certain IP
addresses and ports. The NEMEA module is preceded by a unirecfilter module, which
filters the incoming UniRec records in the same way. The data, be they UniRec records or
PCAP, are then converted to the pandas dataframe format. The data are then analyzed.
If the traffic contained within the dataframe exceeds the threshold specified in the ADT
rule, the dataframe is marked as containing malicious traffic. Otherwise, it is marked as
safe. When a malicious dataframe is encountered for the first time and there is at least
one safe dataframe exists, the model is trained. The mechanism common to both ADT
rules is visualized in Figure 3.5.

4Object-Relational Mapping
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TCP Flags Packet Lengths

values int lower bound int
mask int upper bound int
Subnet PP
PK | Subnet ID int
direction enum
Rule Base + +
ip address ipaddr K Amplification
PK | Rule ID int
descriotion str table exponent int
ipti
Port Range P - .
limit bps int
i rule type enum
PK | Port range ID int L
limit pps
. enabled bool
direction enum .
fragmentation enum
) dry-run bool
lower bound int
. threshold bps int SYN Drop
upper bound int
threshold pps int table exponent int
L4 Protocol vlan int threshold hard int
PK | Protocol ID int threshold soft int
rotocol enum
P TCP Authenticator
. table exponent int
Priority
H threshold hard int
rank int
validity timeout interval
Filter
bpf str
mode enum
geoip mode enum

Figure 3.4: Schema of mitigation rule database
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Figure 3.5: ADT rule functionality

The model for the ADT rules consists of an adaptive decision tree, which looks for the
differences between the datasets and represents a BPF® statement, which aims to remove
most of the malicious traffic while keeping as much of the safe traffic as possible. The
BPF filter is then used to generate additional Filter mitigation rules, which again use the
attributes of the ADT rule as a template and add the BPF generated by the machine
learning model. Since the BPF is only concerned with L3 and L4 packet header values, it
is possible to use it on the UniRec records as well, even if the accuracy of the model will
be inherently lower than with PCAP files, as PCAP contains samples of entire packets.

3.2.7 KitNET Rule

KitNET rule is a type of machine learning rule that configures a method that uses a type
of neural network called an autoencoder to properly identify and mitigate only malicious
packets. The method implemented by KitNET first trains an ML model, called a KitNET
instance, which may be used by multiple KitNET rules for different parts of traffic. The
KitNET machine learning model is described in detail in [36], and the implementation of
the KitNET module is described in [14].

As shown in Figure 3.6, each KitNET rule must be assigned a single KitNET model
instance, which is then assigned a single IP set. IP sets are objects that are optimized to
contain a large number of IP addresses. They can then be used by exact_match rules to
efficiently blacklist or whitelist packets coming from the IP addresses they contain. KitNET
rules have two modes, learn and detect. In learn mode, the KitNET rule is used by the
daemon as a template for the creation of a Packet Capture rule. The daemon then uses
the PCAP file produced by the Packet Capture rule to train the KitNET model instance,
expecting the PCAP to contain only legitimate data. Once the model is sufficiently trained
on mostly legitimate data, the KitNET rule may be switched by the administrator to the
detect mode, in which it no longer modifies the KitNET instance, but instead uses it to
detect anomalous packets from PCAP, and then fills the specified IP set with the source IP
addresses of the potentially malicious packets.

3.2.8 Rule and Device Groups

The DCPro DDoS Protector is meant to be deployed as a distributed system, where multiple
Mitigator instances exist with a central Controller server with a database. Since different
Mitigator instances in a single distributed system may require a specific configuration, the
DCPro DDoS Protector works with the concept of groups. In this context, a group refers
both to a group of devices and to a group of rules. This means that we can assign a number

5Berkeley Packet Filter
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Rule Base

PK| rule ID int KitNet
description str mode enum
KitNet Instance
rule_type enum
PK | Instance ID int
enabled bool KJ— Exact Match
name str
dry_run bool
mode enum description str
threshold_bps int P
threshold_pps int threshold int
vlan int
IP Set
PK | IP set ID int O
name str
description str

Figure 3.6: KitNET rule schema

of rules to a group which contains only Mitigator devices on the periphery of the protected
network. Both rules and devices may be assigned to multiple groups at once. Each device
loads all rules from every group assigned to it. The schema of the database is shown in
Figure 3.7.

The group structure allows the administrator to categorize the rules into groups that
are then used on a group of devices. Therefore, it is possible to specify groups of rules
based on the throughput of specific deployed Mitigator instances, since some instances may
use lower-capacity network cards. There may also be a difference between rules used on
the periphery of a network and rules which are used to protect a specific object inside the
network. The mechanism makes it possible to build a truly distributed system for DDoS
mitigation, with different parts having different configuration to fully contribute to the
common goal in conjunction with each other.

3.2.9 Statistics and Device Database

Other than the mitigation_rules schema which contains the tables that contain the mit-
igation rules, the Controller database contains other schemas to logically separate dif-
ferent types of entity. This is made possible by the PostgreSQL database management
system, which supports the use of schemas as namespaces. The three other schemas are
mitigation_statistics, which is described in Figure 3.8, and consists of a table for the
statistics on how many packets and bytes were dropped or passed by individual mitigation
rules on given Mitigator devices, devices, described in Figure 3.9, which contains records
for every Mitigator instance, and device_statistics, described in Figure 3.10, which con-
tains statistics on how many total packets and bytes were dropped or passed through the
given device, regardless of mitigation rules.
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Rule Base Group Device
PK| id int PK| id int PK| id int
O—0
description str name str name str
rule_type enum description str description str
enabled bool +
dry_run bool +

Group Priority

PK| . .
threshold_pps int FK | d int

threshold_bps int

vlan int rank int

Figure 3.7: Rule and device groups schema

As shown in the diagrams, the schemas are interconnected, and in several tables, there
is a foreign key referencing a column in a table from a different schema. This is especially
evident in the table that contains the mitigation statistics. Mitigation statistics are collected
in the Mitigator Processor stage and exported to the database by every mitigation window.
The record stored in the database includes the identifier for the mitigation rule, as well as
the Mitigator instance on which it was collected. This means that it is possible to see the
effectiveness of a specific mitigation rule, as well as how well it functions on a given device,
since some Mitigator instances may be deployed on high-speed links on the perimeter of
a network, while others may be deployed farther inside to protect specific objects or subnets.
Additionally, every Mitigator instance exports device statistics data, which show the total
sum of incoming and outgoing data for the instance, regardless of the mitigation rule.

Although device statistics contain generally useful data for the network administrator,
to see how much traffic is traveling through the mitigation device, it provides little useful
data for the configuration of the Mitigator devices, except as a way to estimate the volume
of traffic and the possible values for useful thresholds. However, mitigation rule statistics
provide an integral insight for the configuration of Mitigator devices and the DCPro DDoS
Protector infrastructure as a whole. Using mitigation rules, it is also possible to see the
volume of traffic from a given source to a given destination, since the statistics only contain
the packets and bytes matched by the rule. The fields contained in the statistical records
collected by the Mitigator are shown in Figure 3.8. A record is always identified with
the device on which it was collected and the mitigation rule, since a packet is evaluated
by every matching rule. The dry-run and rule status fields only record the state of the
rule at the moment, whether it was active or not. Each processed packet increments the
packets_in and bytes_in by the respective amounts. If the packet in question is not
dropped by the rule, it also increments the packets_out and bytes_out in the same way.
The fields packets_in_activation and bytes_in_activation are used primarily by those
rules, which are automatically activated after encountering a preset number of packets with
certain characteristics, such as some TCP flags being set. Finally, packets_out_gen and
bytes_out_gen contain the number of packets and bytes generated by the rule. Currently,
there is only one interactive rule type, TCP Authenticator, which can autonomously gen-
erate a TCP packet with an RST flag to reset the connection and verify the liveness of the
client trying to connect to a device in the protected network.
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Device Mitigation Statistics Record Rule Base
PK| id int time_start timestamp PK| id int
name str duration interval description str
description  str rule_status enum rule_type enum
=+ dry_run bool enabled bool
packets_in int dry_run bool
packets_in_activation int threshold_bps int
————(O<] packets_out int >O—HH threshold_pps int
packets_out_gen int vlan int
bytes_in int
bytes_in_activation int
bytes_out int
bytes_out_gen int

Figure 3.8: Diagram of the mitigation statistics record table

3.2.10 Complementary Tools

Finally, it is helpful to mention the tools that act as a user interface for a deployed DCPro
DDoS Protector instance. The tools include the CLI® tool dcproctl and the web GUI
ExaFS. ExaFS is a web GUI originally developed as a network management system over
ExaBGP, with a complex user authentication system and more features. As part of the
DCPro DDoS Protector project, an extension was developed, described in [31], which is used
for the configuration of a DCPro DDoS Protector instance. ExaFS makes it possible to
display graphs, showing user-important information extracted from the mitigation statistics.
The graphs can be shown for statistics collected by any rule, on any Mitigator device. Both
ExaFS and dcproctl use the dcproapi library to connect to the database that stores
mitigation rules and statistics. The dcproapi library serves not only as a base for any
tool that provides a user interface but is also used by all daemons and other utility tools
and scripts written in Python, such as the ADT and KitNET daemons, and the database
management tool dcpro_db, which manages database initialization and migrations.

Scommand-line interface
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Licence Device
PK| id int O—O<PK]|id int
content str name str
signature str H description  str
Device Status Device Status
';:é device_id  int HO— ';:2 device_id  int
last_change timestamp PK| port_id int
version str last_change timestamp
dev_name str
mac_address macaddr
fw_version str
speed int
duplex enum
autoneg bool
Figure 3.9: Device schema
Queue Record Device Port Record
port_id int PK]| id int port_id int
queue_id int name str time_start timestamp
time_start timestamp description str duration interval
duration interval port_status  enum
rx_bytes int phy_link enum
tx_bytes int rx_bytes int
rx_packets int tx_bytes int
tx_packets int rx_packets int
rx_errors int tx_packets int
rx_errors int
tx_errors int
rx_misses int
rx_nombuf int

Figure 3.10: Device Statistics schema
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Chapter 4

Solution Design

The task of this work, as set out in Chapter 1, is to integrate the sFlow exporters, IP-
FIXcol, the NEMEA framework and the DCPro DDoS Protector to form a comprehensive
and distributed system for the mitigation of DDoS attacks. Currently, the DCPro DDoS
Protector architecture does not have access to any network traffic that was not redirected
to it. It is not desirable to direct all traffic to the DCPro DDoS Protector, as it would
increase the latency and possibly cause legitimate traffic to be classified as a false negative
and dropped. This problem can be solved by integration with the NEMEA system, so
that data processed by any existing running NEMEA instance can be used in the DCPro
DDoS Protector context. Secondly, the solution should also contain integration with sFlow
exporters, as a variety of basic network devices, such as routers, can export sFlow.

The integration of the wider DCPro DDoS Protector architecture with the NEMEA and
sFlow exporters should produce several results. Firstly, the administrator of the DCPro
DDoS Protector should be able to broadly access the network traffic data processed by
NEMEA, ideally in a format similar to how the DCPro DDoS Protector statistics are
shown. In case of sFlow, the format question is simpler as sFlow messages contain individual
sampled packets. Secondly, there should be a way to distinguish data coming from different
sources, probes, routers, etc. What is especially important is to separate the inner network
nodes from the gateways that connect the CESNET network to the outer web. Third, it
should make it possible to use the traffic data from NEMEA to train the Machine Learning
models to be used in the DCPro DDoS Protector mitigation methods which use Machine
Learning.

4.1 Current status

Currently, all individual parts of the proposed architecture are deployed in the CESNET
network. The IPFIXcol2 flow collector is deployed in multiple instances, most of which
collect real-world traffic. Virtually all of those instances offer a TRAP interface, which can
be utilized by any NEMEA module as a source of data in UniRec format. Although there is
currently no deployed collector for sFlow messages, many of the routers used in the network
can be configured to export sFlow.

NEMEA Framework is also deployed in various configurations in many instances. The
highly modular nature of the NEMEA framework makes it very easy to add new modules to
already running instances. In addition, there already exists a single link to the DCPro DDoS
Protector architecture, which is the ADT Daemon briefly discussed in Subsection 3.2.6. The
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ADT Daemon launches two NEMEA modules for every ADT Flow; unirecfilter, which is
used to filter incoming UniRec data, so that it matches the IP addresses and ports specified
in the ADT Flow rule, and a custom module, which gathers the filtered UniRec data and
saves them into a pandas dataframe object, which it then uses to generate a BPF and
a corresponding filter rule for the DCPro DDoS Protector.

The DCPro DDoS Protector is also deployed, processing live data for testing purposes.
However, studying the current deployment of the DCPro DDoS Protector may provide the
least insight of all the systems discussed here, simply because it is located at the end of the
proposed chain of integration, and the only feature missing from a DDoS Protector device
run in a testing environment is the ability to filter live data. Although it might be desirable
to test the eventual solution in filtering live data, for the purposes of this thesis, it will not
be discussed.

4.2 General Design Considerations

The code produced as part of the thesis will be used by the DCPro DDoS Protector de-
velopment team to further develop the tools and take inspiration from. Thus, the most
basic consideration in devising the design of the solution was to explore the options of the
implementation of the current architecture, so that the solution requires as few changes as
possible and that the concepts in the solution implementation are easily understood by the
members of the DCPro DDoS Protector development team.

Prototypes

It was decided that the development carried out as part of this thesis should focus on
producing working prototypes. While it is desirable to create fully working systems and
tools, it is expected that some modules and systems may need a lot of additional work to
cover all the possible use-cases, such as covering all the possible sFlow packet types. Instead,
the solution proposed and implemented as part of this thesis should focus on finding the
optimal way to connect the systems, so that it becomes possible to study its drawbacks and
venues of future development.

Reuse of Already Existing Tools

A special focus has been placed upon the reuse of already existing resources, be they libraries
or already used algorithms, such as the one used in the ADT daemon. The reasoning
behind this idea is tied to the fact that the designed and implemented prototypes should
be mainly comprised of the implementation of the actual new algorithm. Any other code
produced should either come from the use of libraries already utilized in the development
of the DCPro DDoS Protector and the various supporting tools, or it at least should reflect
already existing patterns in the system, so that the structure is familiar to the developers
who might be interacting with it in the future.

Reusability and Modularity

The last consideration connects to the previous two. As most of the implementation will be
made up of prototypes mostly unsuitable for production deployment, the high modularity
of the solution makes it possible for the various modules to be reused as part of the future
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development of the production implementation. To achieve modularity, the various pro-
posed parts should be standalone programs, with little dependencies on each other. While
the design involves a specific use-case for the whole architecture, the modules should be
general enough to allow for various future modifications to the architecture. Some parts or
whole prototypes might be reused as they are, while some modules might be connected in
a different way than what is proposed in this chapter or replaced altogether. The changes
to the existing code and the modules created as part of this thesis should therefore aim to
be as nonspecific as possible, especially the interfaces and other parts, which will interact
with the surrounding systems and modules.

4.3 Data Format and Source Identification

Since the aim of this thesis is to integrate the NEMEA system, IPFIXcol, sFlow exporters
and DCPro DDoS Protector, it is necessary to decide the formats for the exchange of
data between the different systems. We can generalize the various used formats into two
categories based on their content. The first category is packet data. This includes actual
packets processed by DCPro DDoS Protector, as well as PCAP files produced by Packet
Capture mitigation rules, and the packed samples captured using sFlow. The other category
is flow data, which includes IPFIX, NetFlow, and UniRec data formats. We can assume the
formats inside each category are fully compatible, and it is possible to transform the data
from one format to another without a significant loss of information, which would be relevant
for the purposes of this thesis, i.e. the display of statistical data to the administrator of
DCPro DDoS Protector, and the use in the training of the ADT machine learning models.

Finally, the format in which the statistics will be stored and displayed to the adminis-
trator had to be decided. Since the tools used for the visualization of statistics in the form
of graphs, such as ExaFS, already use the format of statistics used by the DCPro DDoS
Protector, it was decided to use this format. To do this, the various data formats needed to
be converted. For sFlow, the conversion is relatively simple, as the same mechanism which
is used for live packets in the DCPro DDoS Protector can be used for the sampled packets as
well. However, flow data can generally be converted to the format, as the mitigation statis-
tics also aggregate the total numbers of bytes and packets per certain interval. However,
such a conversion inevitably leads to a loss of information or an imprecise reconstruction
of information lost by the initial aggregation into flows.

Because different protocols and probes produce data of various quality and granularity,
it is important to pass the information about the specific source of data to the administrator.
A source of data in this context is an exporter that uses any of the aforementioned protocols.
Because it is expected that the same traffic may pass through multiple exporters, it is also
important to distinguish between them, so that there is as little data duplication as possible.
The considerations are explained in more detail in the following subsections.

4.3.1 Data Sources

In the proposed architecture for a distributed DDoS protection system, there are multiple
sources of network data. Primarily, it is the DCPro DDoS Protector Mitigators, which
process a stream of packets which are redirected to it, and periodically produce statistics,
which contain the information on how many packets passed through and how many were
dropped by the Mitigator. However, the deployment of a Mitigator instance is costly, and
the monitoring data produced by the widely used protocols IPFIX and NetFlow contains
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Figure 4.1: Overview of the considered data sources

information valuable to the administrator. In the CESNET network, the flow data in both
formats is collected using the IPFIXcol2 collector. The IPFIXcol2 collector offers multiple
ways to store and/or export data. One of those ways includes writing the data converted to
the UniRec format to a TRAP interface, which is used to transmit data between modules
in the NEMEA framework. Finally, the last source of data is the sFlow protocol, which
enables ordinary network devices, such as routers, to periodically export sampled packets.
According to the initial source of the network monitoring data, we may broadly divide it
into two categories, flow data and packet data. The data sources and the formats they
use are shown in Figure 4.1, which lists the flow data sources and packet data sources
separately.

It is necessary to represent the individual network monitoring data exporters in the
DCPro DDoS Protector database so that it is possible to distinguish between them. This
should make it possible to display statistics collected on specific devices. The issue is that
when a packet passes through several routers, it is registered and aggregated on each of
them. The administrator should be able to show statistics exported only from particular
routers, such as those on the perimeter of the network, to eliminate data duplication, or to
monitor the traffic directed to a specific protected object inside the network.

Packet Data Sources

Packet data in the context of this thesis is any data collected by network devices which
contain individual packets. From the technologies discussed in this section, DCPro DDoS
Protector Mitigator and sFlow-compatible devices function as sources of packet data.
DCPro DDoS Protector Mitigator devices might be launched with variable configura-
tion of internal modules. This allows the devices to be optimized for the collection of
statistics. By dropping all packets just after statistics are collected, the total throughput
might increase by reducing the total computing power required for the system to work.
Due to this, a Mitigator device can be effectively used as a network traffic probe. DCPro
DDoS Protector devices also support packet capture at the same time as statistics collec-
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tion. This means that the processed packets not only contain useful network monitoring
information, but may be used for the training of complex machine learning models, which
require additional data present in the packets but removed in flows.

The other source of packets is the sFlow protocol, or more accurately, the various
devices producing sFlow messages. The sFlow protocol does not have the same restrictions
for deployment as the DCPro DDoS Protector, since it does not cause the exporter device to
significantly slow down the incoming traffic and is much less resource intensive to run, since
the DCPro DDoS Protector requires a dedicated machine, while sFlow can be configured
on many existing routers. Compared to the DCPro DDoS Protector is that the sampling
rate is significantly lower. While a DCPro DDoS Protector probe will process all of packets
from an entire network subset if traffic coming to or from a certain subnet is redirected
to it, an sFlow exporter will always have access to the entire network traffic but will only
export every n-th packet.

From the description provided here, it should be rather obvious that both approaches for
the collection of network monitoring data have their uses. It is fully expected that both types
of data sources will co-exist in a single distributed system. However, the difference in their
function makes it important to distinguish between the two sources when communicating
the collected monitoring data to the user. Especially the sampling rate for the sFlow
exporter and the portion of traffic redirected to a DCPro DDoS Protector probe.

Flow Data Sources

The other type of network monitoring data source is represented by the IPFIX and NetFlow
protocols. Like sFlow, those two protocols are natively supported by a myriad of ordinary
network devices. It is important to distinguish these data from the monitoring data pro-
duced using sFlow or DCPro DDoS Protector devices, since the conversion of packets into
flow records neccessitates the loss of important information. This makes it impossible to
deduce information, such as the number of packets or bytes that would be dropped by
a DCPro DDoS Protector device, which is not an issue for sFlow. Generally, the relation-
ship between bytes and individual packets is completely lost in the compression to flows,
as well as the information about the time when the specific packets were recorded.

Both IPFIX and NetFlow typically aggregate packets into flows in a 5-minute window.
This is generally enough to detect a DDoS attack and effectively mitigate it while it is
still ongoing, as most DDoS attacks typically last for hours [54]. However, it is still useful
to notify the administrator as soon as possible. What helps is the fact that IPFIX and
NetFlow export the flows earlier once certain thresholds on packets are crossed, so a basic
volumetric attack becomes apparent sooner than after five minutes. It is impossible to
reconstruct the original information in the same resolution as is offered by DCPro DDoS
Protector or sFlow, so the only solution is to at least inform the user about this fact.
Additionally, we need to consider that the collection of the flows and their conversion to
the common UniRec format causes additional variable delay.

Since both IPFIX and NetFlow messages are converted to UniRec format to be later
processed by NEMEA modules, and since our main focus is on the DCPro DDoS Protector
environment, we can consider the IPFIX and NetFlow messages covered as part of a single
data source, which is the NEMEA system, or more precisely, a TRAP interface. TRAP
interfaces were described in Subsection 2.6.1.
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Figure 4.2: Relationship between the UniRec, sFlow and DCPro DDoS Protector mitigation
statistics formats

4.3.2 Data Format

Once the sources of the network monitoring data were identified and classified, it was
necessary to analyze the formats of data exchange and data storage. The data formats
currently in use by the tools mentioned in the previous subsection were already described
in the sections on the various tools, in Chapter 2 and Chapter 3. To achieve the aim of
this thesis, there are two considerations. First, what format should serve as the final data
storage format, which will be used to display the information to the end user, and secondly,
how do the formats correspond to each other, to see how much information may be lost
in transmission and what are the considerations for displaying data from different types of
sources.

Because the DCPro DDoS Protector already utilizes a web GUI called ExaFS, it makes
sense to convert all the network monitoring data to the format used in the DCPro DDoS
Protector database. ExaFS provides graphs for every rule that show how many packets and
bytes were dropped by the rule or passed through. The DCPro DDoS Protector database
contains more information, such as the number of packets generated by the rule, in case it
is a rule type that uses an interactive method to validate incoming traffic, and the number
of packets which count towards the activation of the rule, which is important in rules with
more complex methods.

As visualized in Figure 4.2, UniRec and sFlow contain information, which can be trans-
lated into the DCPro DDoS Protector mitigation statistics format. In case of sFlow, since
sFlow contains sampled packets, and the DCPro DDoS Protector mainly interacts with
the packet headers, which are left untouched by the sFlow sampling mechanism, the same
statistical data which are produced by DCPro DDoS Protector from live packets can be
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extracted from packets sampled and collected using the sFlow protocol. On the other hand,
flows aggregate information from multiple packets which share some attributes. Because
of this, it is impossible to extract the same amount of information from them. This affects
the counters for the number of packets that were not dropped and the number of packets
that counted toward the activation of a more complex rule. However, the most important
values, such as the starting timestamp and duration, can be calculated from the values
contained in a UniRec message. In both cases, the device identifier of the converted data
represents the probe which collected the UniRec or sFlow data and exported the converted
statistics in the DCPro DDoS Protector format.

The sFlow data format requires a simpler conversion, as the protocol transmits packet
data. We can therefore reuse the methods already used by the DCPro DDoS Protector
for the classification of packets by the mitigation rules, as well as the mechanism for the
mitigation window, which aggregates the relevant values taken from multiple packets into
a single statistical record.

For UniRec, the method is more complex. There are two central issues. One is that
a flow can be collected inside up to a five-minute window. The DCPro DDoS Protector
usually exports the statistics to the database in one- or two-second intervals. Therefore,
while it is possible to convert the flow directly to the DCPro DDoS Protector format as
is, it would result in a much lower resolution, and would produce potentially misleading
data, since the DCPro DDoS Protector statistics displayed in ExaFS do not indicate in any
way the duration of the collection window, since it is implied the duration of all of them
is identical. The solution may be in splitting the collected flow into segments of identical
duration, such as 5 seconds. In this way, we can improve the granularity of the data,
which will better correspond to the graphs produced from the traffic processed by sFlow
or DCPro DDoS Protector. Since not all the fields of a mitigation statistics record can be
reconstructed from the fields of a UniRec message, it is a matter of consideration whether
to use the same database table for both mitigation statistics and the statistics extracted
from UniRec data, or to define a new database table with a reduced number of columns,
and possibly a different configuration of the TimescaleDB hypertable structure, which is
used by the mitigation statistics table to efficiently store time series data.

4.3.3 Source Identification

In the context of integrating the DCPro DDoS Protector with both the NEMEA framework
and the sFlow data from routers, it becomes crucial to establish a mechanism for accurately
identifying the sources of network traffic data. This identification is essential because routers
within the network may exist at various locations, some at the edge of the network, while
others are positioned internally. Consequently, the same traffic can be captured by multiple
routers, leading to possible duplication of data.

To address this problem, we need to find a source identification mechanism within the
integrated system. This mechanism should differentiate between data originating from
different sources, such as probes, routers, and other network nodes. Fortunately, both
NetFlow and sFlow packets contain the source identificator.

The source identification process should ideally align with the existing structure of the
DCPro DDoS Protector statistics. This ensures that administrators can easily interpret
and analyze the network traffic data processed by NEMEA in a manner consistent with
the overall monitoring and mitigation framework of the DCPro DDoS Protector. Since the
DCPro DDoS Protector controller already supports having several instances, each with an
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identification in the devices table, we can extend this way of identification to the network
traffic data sources.

All of the discussed network traffic export protocols, sFlow, NetFlow, and IPFIX, sup-
port the identification of the exporter. The UniRec format used in NEMEA uses dynamic
templates for the transmission of data between modules and may therefore be very easily
extended to include the identifier. IPFIXcol2 has access to the NetFlow and IPFIX identi-
fiers and actively uses them, but does not export them to NEMEA at the moment. Lastly,
what needs to be done is find a way to represent the various exporters in the device table
inside the DCPro DDoS Protector database. Since mitigation statistics received from the
various Mitigator instances are already identified by the device on which they were col-
lected, this is a natural extension of the concept of devices in the DCPro DDoS Protector
architecture.

4.4 sFlow Processor

To process sFlow packets to generate statistics in the DCPro DDoS Protector format, and
to use it to train the models of the machine learning rules, a component was devised,
conceptually called sFlow processor. Since sFlow is functionally similar to the capture of
live packets, the solution should aim to include as many components of the DCPro DDoS
Protector, which already implement the necessary methods.

There was some consideration on how to implement the sFlow processor. To fully reuse
most of the already existing systems, it would be best to introduce a sFlow parser module,
which would act as an additional stage in the DCPro DDoS Protector modular pipeline.
The sFlow parser would precede the packet parser stage, as after the sampled packet is
parsed out of the sFlow message, it is essentially a normal packet.

However, this approach posed several difficulties. First, the code of the internal parts of
the DCPro DDoS Protector is licensed as proprietary and cannot be modified as part of this
thesis. Secondly, even if we utilized the modular nature of the DDoS Protector, where the
individual modules and stages of the pipeline can be linked together from libraries, which
only reveal the public interface, the internal structure is heavily optimized toward packet
processing. In case an incoming sFlow packet contains multiple packet samples, there is no
way to effectively split them and direct them to the next stage of the pipeline as several
individual packets.

Due to this, it was decided to implement an sFlow parser which would function as
a server listening for sFlow packets. The sFlow parser should then parse out any sampled
packets and write them to a virtual TAP/TUN interface. This is because the DCPro DDoS
Protector as a DPDK application is expected to be bound to an interface. The sampled
packets would then arrive at the Mitigator instance as ordinary packets. As a further
improvement, the modular nature of the Mitigator pipeline can be leveraged to improve
the efficiency, as several stages can be considered irrelevant when used on packets sampled
as monitoring data. The only additional consideration is the sFlow exporter identification
mechanism. However, this is largely a secondary issue.

4.4.1 TUN/TAP

TUN/TAP, described in [26], is a virtual network interface for user space programs provided
by the Linux kernel. It can be dynamically created and is closed once the file descriptor is
closed. TUN/TAP refers to a single concept; the difference is that TUN interfaces are used
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to write or read IP packets, while TAP interfaces are used to write or read Ethernet frames.
Since the DCPro DDoS Protector expects to encounter an incoming Ethernet frame, the
solution needs to use a TAP interface.

TAP interface outwardly appears as a normal interface. It contains all the functionality
which could be used by the DCPro DDoS Protector, such as allowing for a BPF to be
bound to it. Additionally, TAP interfaces can be configured to be multi-queue. In this
way, the DCPro DDoS Protector can be bound to a single TAP interface, while there may
exist multiple sFlow parsers, each writing the parsed out sample packet to a single queue.
Thanks to this, it is possible to achieve production rate throughput even with a relatively
unoptimized implementation.

4.4.2 sFlow packet parser

The sFlow parser component itself should act as a simple server, listening on UDP port
6343, which is the port dedicated to receiving sFlow messages. The parser should then
parse out any sampled packets from the message. In case the message does not contain
a packet sample, but is instead of any other sFlow message type, it should be ignored. While
messages containing the counter values of network devices can be useful in the future, the
aim of this work is more directed towards giving the DCPro DDoS Protector administrator
essential information about the traffic which is not being redirected towards the DCPro
DDoS Protector at the moment.

The prototype can also focus on the implementation of the parsing of sFlow messages
contained within IP version 4 packets. The reason is that most of the network devices
currently used in the CESNET network, which could export sFlow messages, use an IPv4
address.

Additionally, focusing on IPv4 only makes it possible to relay the address of the server,
since the 32-bit IPv4 address can be fully contained within a 48-bit MAC address. Every
DCPro DDoS Protector stage has full access to a packet that is being processed, so the
module for exporting statistics can be modified to parse out this information and find the
respective database record for the sFlow exporter identified by the IP address. However, this
functionality will require additional changes on part of the DCPro DDoS Protector, possibly
even a new statistics exporter module, as the DCPro DDoS Protector only attaches its own
device ID. This new DCPro DDoS Protector instance can be called the DCPro sFlow Probe,
as it will only be used for the export of statistics from collected sFlow-sampled packets.

4.4.3 DCPro sFlow Probe

The DCPro DDoS Protector Mitigator pipeline configuration, shown in Figure 3.2, contains
many stages, which are concerned almost exclusively with the purpose of filtering live
network traffic. Therefore, for the purposes of sFlow processing, it was decided to create
a variant of the Mitigator pipeline configuration, which would omit certain stages that only
make sense when the Mitigator runs on live data and not past sampled traffic. This reduced
variant is called DCPro sFlow Probe. However, it should theoretically be able to process
any kind of packet data, such as replayed PCAP files, if the need arises in the future.

As described in the previous subsection, the DCPro DDoS Protector instance used to
process sFlow will differ from an ordinary DCPro DDoS Protector in that it will have
to keep the counter values not just for every rule, but for every sFlow exporter and rule
combination. This will significantly increase the memory requirements for the statistics
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Figure 4.3: DCPro sFlow Probe pipeline configuration

exporter module. To make sure that it does not exceed an acceptable level, we can perform
a simple calculation to determine the possible future memory size.
Currently, the counters take up 32 bytes of memory, namely:

e 4 B for incoming packets

e 4 B for incoming packets, which count towards the activation of the mitigation method
« 4 B for outgoing packets

e 4 B for packets generated by the mitigation method

e 4 B for incoming bytes

e 4 B for incoming bytes, which count towards the activation of the mitigation method
e 4 B for outgoing bytes

e 4 B for bytes generated by the mitigation method

If we assume the number of supported sFlow exporters will be in the lower tens, the
maximum a hundred, since the most of the network traffic information needed to successfully
mitigate an incoming DDoS attack will be collected on the peripheral network devices, then
we can calculate the following equation:

M=CxE (4.1)

Where M represents the new total memory requirement, C is the memory taken up by
the counters in bytes, and E is the expected number of sFlow exporters. When we assume
the number 100 as the upper limit on the expected number of sFlow exporters, and the total
size of the counters 32 B, the equation yields the value of 3.2 kB, which is fully acceptable.

However, to counteract the additional overhead introduced by this mechanism, we can
utilize the modular structure of the DCPro DDoS Protector to remove unused pipeline
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stages, since the DCPro sFlow Probe will not need to deal with any host traffic, nor is
it expected to send the packets which pass the mitigation modules back. The stages are
shown in Table 4.1, together with their inclusion status and the reason for the decision.

Table 4.1: Pipeline Stages and Their Inclusion Status

Stage Name

Status

Description

Port Reader

Packet Parser

Host Traffic Processor

Mitigator Processor

Packet Router

Ring Reader

Port Writer

Included

Included

Excluded

Included

Excluded

Excluded

Excluded

Port Reader stage is required for the sFlow
Probe to receive packets from the interface.

Similarly, the Packet Parser stage is included,
as it contains the module for the classification
of packets by matching rules.

This stage directs traffic intended for the host
machine to it. Since sFlow does not contain
live traffic, it serves no purpose.

The Mitigator Processor stage is the core of
the Mitigator pipeline, as it is the stage where
it is decided whether the packet should be
dropped or allowed to pass. The stage is left
in the sFlow Probe, as it also generates the
statistics.

The Packet Router serves to determine and
update the MAC address for the packets that
successfully passed the Mitigator stage. Since
no packets leave the sFlow Probe, this stage is
also removed.

The Ring Reader reads packets generated by
the kernel from a packet ring and sends them
to the final Port Writer stage. Since Host Traf-
fic is not supported, this stage is also removed.

The final stage writes the packets back to the
network interface. Since the sFlow Probe re-
ceives packet samples, there are not packets to
write back.

The removal of certain stages can significantly help the throughput of the instance, as
the number of removed stages is around half of the total. The new pipeline configuration is
visualized in Figure 4.3, together with a comparison with the complete Mitigator pipeline,
where the removed stages are marked in red.

Additionally, we can further reduce the memory capacity and computational power
demands of the DCPro sFlow Probe by using only the Filter mitigation module. We can
do this since the expected use case now is to see how many packets and bytes were matched
by the rule and whether the packet or byte thresholds were exceeded at any time. Packet
matching is performed collectively for all rule types, regardless of the rule type, and only
requires the configuration data stored in the rule_base table. As the Filter rule type has
the simplest implementation and the least memory requirements, it is the perfect candidate.
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Figure 4.4: sFlow Processor architecture

Thanks to this, even rules which would need to allocate additional memory for their internal
supporting data structures, such as a table containing IP addresses for Amplification and
SYN drop rule types. The queries used by Mitigator to load the mitigation rules are
contained in a SQL file. We can use the Filter mitigation module on each rule by altering
the SQL queries used by the DCPro DDoS Protector to load every rule as a Filter rule,
and to include a default BPF value of null, since it would otherwise be missing. Because
mitigation rules are applied in sequence and the packets dropped by one rule are not visible
to the next one, all the rules are to be in a dry-run mode, to ensure the administrator can
see the effectiveness of every single rule alone.

As an exception, Packet Capture and machine learning rules can function without any
modification. Machine learning rules are not directly loaded into the DCPro DDoS Protec-
tor anyway, since they are only utilized by the machine learning daemons. The only issue
may be the inclusion of a manufactured MAC address in captured PCAPs. However, it is
highly unlikely that the MAC address fields will ever be used for DDoS mitigation, so we
can safely ignore this drawback.

4.4.4 sFlow Processor Conclusions

Thanks to the proposed measures, the DCPro sFlow Probe configuration for the DCPro
DDoS Protector, used in conjunction with the sFlow parser, should fulfill all the needs and
considerations set out in the introduction of this chapter. It is designed to be a relatively
lightweight system compared to a DCPro DDoS Protector Mitigator, and to reuse as much
existing technology as possible. The proposed design should be simple to understand for
any DCPro DDoS Protector developer. It is expected that the throughput of the solution
may be sufficient enough for this system to be deployed in production setting, since even if
the sFlow packet parser is not implemented very efficiently, if we use the multiple queues of
a TAP interface, we can solve any throughput disparity between it and the DCPro sFlow
Probe.

The final design of the sFlow Processor architecture is shown in Figure 4.4, where
multiple sFlow exporters, such as routers, supply the machine on which the DCPro sFlow
Probe is running through the sFlow Parser. The sFlow Parser listens for incoming sFlow
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messages on the port assigned for the collection of sFlow, which is port 6343, and sends
the sampled packets to the DCPro sFlow Probe using the TAP interface. If the volume of
sFlow is too high, multiple NICs' can be used on the machine, and a sFlow Parser instance
can run on each of them. The sFlow Parsers can then share a multi-queue TAP interface,
so that all extracted packets arrive on the same DCPro sFlow Probe.

If the issue with the identification of the sFlow exporter is not resolved during the
implementation of the prototype, we can assume that the DCPro sFlow Probe also acts
as a singular exporter. Additionally, every sFlow exporter has a set sampling rate, which
is useful information for the administrator. Since the sampling rate is a relatively static
attribute of an sFlow exporter, it can be stored in the database together with a record for
the exporter itself.

4.5 DCPro NEMEA Daemon

The other conceptual module is the DCPro NEMEA Daemon. DCPro NEMEA Daemon
should function as an ordinary NEMEA module. However, due to the expected amount of
traffic, it should implement a parallel mechanism similar to the mitigation windows of the
DCPro DDoS Protector. In this way, it should be possible not to export statistics for every
UniRec record but instead one or more aggregated records once a given interval.

Because of this, it cannot function as a server like the sFlow parser, which purely
reacts to any incoming packets, but must also implement a complex main loop, which
includes periodic execution of the statistics export function. Thankfully, we can utilize the
existing daemon module of dcproapi Python library. Because of this, the prototype can be
implemented quickly and function as a useful demonstrator, since only the modules that
actually process UniRec data will need to be implemented, as the basic daemon structure is
already included in the daemon module. However, unlike the sFlow Processor, it is unlikely
that the DCPro NEMEA Daemon will achieve the throughput necessary for its effective
production deployment.

To achieve higher levels of throughput, a NEMEA module may be implemented in C,
which removes much of the additional overhead caused by the use of Python and its runtime
environment. However, the implementation of a fully working daemon in C, which would
continuously aggregate the statistics, as well as periodically export them and train the
machine learning models, would be exceedingly difficult and unwarranted. There would
be many additional design considerations, which would require a lot of additional input
from the members of the development team, since the project is still going to continue. To
be implemented effectively, the daemon would need to reuse much of the components of
the DCPro DDoS Protector, especially the packet classifier, which produces a list of rules
which match the incoming packet. The packet classifier would need to be modified to accept
UniRec data. Although this should not be a conceptual problem, as the packet classifier
only uses the so-called packet features to classify the packet. The required values of the
packet features data structure can be mostly constructed from data found in a UniRec
record. However, the code structure of the current packet classifier implementation would
need significant changes, which are beyond the scope of this thesis. The implementation
of the accelerated packet classifier has been quite complex and has been the main aim of
another thesis, as described in [51]. Therefore, the solution proposed here will focus only
on a prototype that is most likely implemented using dcproapi and written in Python to
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reduce the development time. This also means that instead of an accelerated rule classifier,
the prototype will aim to implement a slower but functionally identical version. In case it
is later shown that the prototype may achieve sufficient throughput, the classifier can be
modified and extracted to be used as a standalone C module with a Python interface.

4.5.1 Daemon Structure

The daemon module of the dcproapi offers a main loop component and an environment,
which can be used to launch asynchronous routines just once, periodically or as a reaction
to an external event. The routines may be launched as part of the main application thread,
or in a separate process, since Python does not support genuine multithreading, due to the
Global Interpreter Lock, as explained in [33] and [37].

The Daemon should be highly modular, with the main part being the event loop itself.
The event loop registers events asynchronously and executes the respective servicing rou-
tines, one per iteration. This means that while the events are conceptually asynchronous,
there is no parallelism, as everything happens in a single thread and is executed in the
order in which it was requested.

4.5.2 Main Loop

The main loop should be used for two main functions. First, it should continuously collect
the UniRec data in a list by repeating an execution of a simple task, whose only job is
to run the read method or an equivalent on the TRAP interface. The TRAP interface,
the list for the storage of UniRec records, and any other supporting data structures should
be initialized during the initialization of the loop module. Second, it should periodically
launch more complex routines for handling the collected data, such as matching the records
with the mitigation rules, aggregation and subsequent export of the extracted statistics,
and training of the machine learning models of the ADT Flow rules.

4.5.3 Statistics Export Module

The module for the export of statistics should be periodically launched from the main loop
in a separate process. The only data required for the module to function are the UniRec
data itself and the database connection parameters. Every time the method provided by
the module is called, the module should load all the rules which are currently present in
the database. To do this, it would be advisable to again use the methods for the retrieval
of DCPro DDoS Protector database data offered as part of the dcproapi library.

Once the rules are loaded, the UniRec data is to be processed. Because a single UniRec
record may contain data collected in an up to five-minute long interval, and the starting
time of the interval may vary and may be delayed by several minutes, there needs to be
an algorithm which would make it possible to aggregate the various records into a limited
number of statistical records. This will inevitably also increase the granularity, while there
will be no change to the accuracy of the data, since flows in general contain only a summary
of a network traffic profile and not detailed information, like the time of the peak in the
number of incoming packets. Just like the mitigation window mechanism of the DCPro
DDoS Protector, the statistics from all the various UniRec records can all be aggregated
into one or more intervals. It should be efficient to split the whole aggregation window into
multiple intervals. In case a record is split over more than one interval, it’s values also have
to be divided by the number of intervals and distributed equally among them. Preferably,
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Figure 4.5: Nemea Daemon sliding window for the aggregation of statistics

those intervals may have length closer to a mitigation window, so that the administrator is
presented with data of similar granularity to that of the DCPro DDoS Protector.

Therefore, we need to maintain a data structure for every rule, which contains byte and
packet counters for every interval of the same duration in the last few minutes. The exact
number of those intervals required must together add up to the equivalent of five minutes,
since that is the maximum duration of a single UniRec record. However, UniRec records
may be introduced with some delay. Therefore, if we assume that the delay for most records
will not exceed two minutes, we need enough counters to cover a seven-minute window. It is
possible then to calculate the number of counters needed for the data structure, by dividing
the total length of the window, e.g. 7 minutes, with the length of a single interval, e.g. 10
seconds.

The intervals which are represented by the counters should ideally also be used in the
main loop as the interval between the periodic execution of the statistics export routine.
The structure then forms a sliding window that shifts every 10 seconds. While it might
be required in the future to restrict the window to a fixed length, the Python implementa-
tion of the prototype should make it very easy to dynamically alter the size of the window
structure in case a record, which is earlier than the lower bound of the window, is encoun-
tered. The sliding window is visualized in Figure 4.5, together with the distribution of an
incoming UniRec record among the counters at the various intervals. The figure shows the
UniRec record being delayed by 55 seconds compared to the timestamp of the end of the
sliding window. The UniRec record, which contains 5 minutes of aggregated data, is then
distributed into buckets equally, by dividing the aggregated numbers of bytes and packets
by the number of buckets, and adding the result to the byte and packet counters inside
every bucket. In this illustrative case, the increment value is 1,000 for every byte counter
and 10 for every packet counter.

4.5.4 Machine Learning Module

The other module which has to provide a routine to be executed periodically by the main
loop is the machine learning module. The proposed machine learning module mostly imple-
ments the same functionality as the NEMEA ADT Flow Daemon, effectively replacing it.
The reason is that it is simpler to have a single modular system, which will read from a single
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NEMEA interface and distribute an identical set of collected data to all different process-
ing modules, rather than launching several separate NEMEA modules, each preceded with
a unirecfilter module. Like the Statistics Export Module, the Machine Learning Module
takes the data collected in the main loop and processes them in a separate process. Again,
what is also needed are the database connection parameters. The only difference is that
the only rules that are loaded should be those with type ADT Flow.

Legitimate traffic buffer

legitimate
TRAP dataframe Sy
dataframe
attack | > Infer BPF —> BPF

Figure 4.6: ADT Flow Daemon legitimate traffic buffer mechanism

Like the ADT Flow Daemon, the Machine Leaning module aggregates UniRec records
into instances of the dataframe class provided by the pandas library. Since the creation of
a BPF filter requires two dataframes as input, one containing legitimate traffic, the other
malicious one, the Machine Learning Module needs to keep past dataframes. As shown in
Figure 4.6, ADT Flow Daemon increases the accuracy of the generated BPF by storing up to
ten dataframes with legitimate traffic. These dataframes can then be combined to increase
the accuracy of the machine learning model. The proposed solution in the DCPro NEMEA
Daemon Machine Learning Module should imitate this approach, as it has already been
proven in deployment. The only difference in the proposed mechanism is that the NEMEA
Daemon needs to keep the buffers for every ADT Flow rule, whereas the ADT Flow Daemon
runs a separate instance for every rule.

Once new dataframes are constructed from fresh data and any are classified as containing
attack traffic, they should be passed to the function implementing the actual machine
learning technique, which is part of the internal ml1_module library, and returns a BPF.
Finally, for every generated BPF, a new Filter rule should be created and inserted into the
database.

4.6 Overview of the Proposed Changes

Once the proposed changes are implemented, the DCPro DDoS Protector architecture
should have full access to flow and packet traffic data from the entire CESNET network.
Integration of real-time network traffic with machine learning mitigation methods could
produce better results than is possible with only the traffic that is redirected directly to the
DCPro DDoS Protector. The DCPro DDoS Protector administrator should be able to see
all the collected network monitoring data in the same format as is produced by the DCPro
DDoS Protector, including how much traffic was matched by every mitigation rule.
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Chapter 5

Solution Implementation

The implementation of the proposed solution had a simple objective: to create one or more
working prototypes of the designed modules and to test the feasibility of the algorithms.
The basic task was to implement the algorithm to show its function and to analyze potential
weaknesses and possible ways to mitigate them. The additional task was to measure the
throughput of the prototypes and provide some demonstration of the implementation. Since
both modules proposed in Chapter 4 work with continuous streams of data, the throughput
of the applications is essential information, as it is not feasible to delay the execution or
process the data in batches at a later time. The throughput data may be later used to
determine which technologies should be used to develop a live version of the modules.

It is highly unlikely that a working efficient high-throughput solution could be im-
plemented without serious effort from multiple team members. Therefore, the process of
implementation was continuously discussed with the development teams of DCPro DDoS
Protector, NEMEA Framework, and IPFIXcol. The immediate findings were shared with
the respective team to ease any later developments and to leverage the knowledge and take
into account the specific considerations of the various parties.

Most of the work was performed under the DCPro DDoS Protector development team,
as it is the most affected by the output of this thesis. Thanks to this, the implementation
of the prototypes received a regular stream of input and provided instant feedback for
any implementation decisions. The prototypes were developed in several iterations. Every
iteration, the code of the prototypes, and the output they produced was also reviewed by
several of the team members.

5.1 Source Identifiction

As explained in Subsection 4.3.1, it is greatly beneficial for the end user to be able to clearly
differentiate data coming from various sources, be they dedicated probes or ordinary routers
configured for the export of statistical data.

For sFlow messages, this information is included only in the L3 packet header, as sFlow
exporters are identified only by their IP address, which is also set as the source IP address
of the packet containing the sFlow message. However, identification of sFlow sources is
a task which does not need any modification of existing systems and thus can be fully
implemented in the sFlow processor.

NetFlow and IPFIX messages contain the exporter IP address and ID. Currently, de-
ployed NEMEA systems do not have access to this information within the UniRec records,
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as IPFIXcol does not pass this information to the UniRec output template. Most NEMEA
modules do not expect a static template structure for the incoming UniRec records. Es-
pecially utility NEMEA modules, which only modify the flow of records, such as replay,
multiplexor or flowcounter modules. Other NEMEA modules tend to be implemented
in a way where the module only operates with several required fields in the UniRec record
and any other additional fields are ignored. Thanks to this, it was only necessary to modify
the code of IPFIXcol UniRec exporter module.

Furthermore, as mentioned in Subsection 4.3.3, the database schema was modified, to
include the information about the source of the statistical data. Since the DCPro DDoS Pro-
tector database already distinguishes statistics coming from different Protector instances,
also called devices, most of the work was primarily on extending the functionality of the
devices table.

5.1.1 Changes to IPIXcol

The changes required to be implemented for IPFIXcol were straightforward, as IPFIXcol
has access to the whole contents of IPFIX and NetFlow messages, including the source
IP address and the source identifier. Since UniRec supports dynamic templates, where a
UniRec record can contain many different fields, and those fields are specified by both the
sender and the recipient of the record, the only thing that needed to be done was to include
the IP address and the ID of the source in the template for the output TRAP interface.

The specified changes were made exclusively in the code of the unirec output plugin.
Since IPFIXcol converts both IPFIX and NetFlow to an internal representation modeled
after IPFIX, the added fields are called ODID, which stands for Observation Domain ID
of the exporter, and just like the respective field in an IPFIX message, and EXPORTER_IP,
which is the source IP address of the packet that contained the IPFIX message. Firstly, both
0ODID and EXPORTER_IP required a mapping and a translation function in the translator
component, which translates values from the internal representation to the UniRec format.
As the field EXPORTER_IP is not included in the IPFIX message, but is retrieved from the
L3 header, there also had to be a change in the message context given to the translator to
also include the .4 and L3 headers that wrapped the message.

This change was minor and does not significantly affect the NEMEA and IPFIXcol
instances currently deployed at CESNET, since the vast majority of NEMEA modules
specify their own template format and do not interact with any additional UniRec fields.
The changes were consulted and implemented with the help of the IPFIXcol development
team.

5.1.2 Changes to DCPro Protector Database

The DCPro DDoS Protector controller database schema was then modified to provide a way
for the administrator to see an overview of the devices which act as sources for statistics.
The changes are shown in Figure 5.1, where the new tables and columns are shown in
green. The devices table was generalized, and the additional information specific to the
device type is included in respective tables. The types include mitigator, which represents
all devices which were present in the table before the change, sflow_exporter, which
represents any network device which exports sFlow messages, and flow_exporter, which
represents a device exporting any kind of flow data, be it NetFlow or IPFIX. The fact that
the data arrive through the use of NEMEA in UniRec format is omitted, since it has little
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Figure 5.1: Updated database schema for devices

to do with the probe itself, and the implementation of the connection from the probe to
the database may change in the future.

The DCPro DDoS Protector Database is defined using sqlalchemy ORM Python li-
brary. Therefore, the implementation of the changes consisted of introducing a new inher-
itance relationship between a generalized devices table and specialized tables representing
the sFlow exporters, flow exporters and the entities in the original devices table, instances
of DCPro DDoS Protector.
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5.2 DCPro sFlow Probe

As discussed in Subsection 4.4.3, the DCPro sFlow Probe is a specific configuration of the
DCPro DDoS Protector pipeline. The mechanism of DCPro DDoS Protector pipelines is
explained in detail in Subsection 3.2.2. As designed, the implemented pipeline configuration
is a reduced one, as we do not need the modules listed in Subsection 4.4.3 for the DCPro
sFlow Probe to work.

The components representing unnecessary stages have been removed from the YAML
files of the Mitigator pipeline configuration. The DCPro sFlow Probe is therefore function-
ally similar to the Mitigator, the only difference lies in the reduced functionality, such as
the management of host traffic or writing any packets back to the port, which precludes it
from serving as any kind of network filter device.

The changes to the YAML configuration file also required some minor modifications to
the queries used to load the mitigation rules from the rule database.

The identification mechanism for the sFlow exporter was not implemented as part of
this thesis. The reason is that it would require the introduction of a whole new component
to the DCPro DDoS Protector. The code of the DCPro DDoS Protector is licensed as
proprietary, so such deep modifications could not be made and published as part of this
thesis.

5.2.1 Changes in YAML Configuration

The YAML configuration is organized into multiple parts, where bottom-level files contain
the configuration of self-contained modules, and there is a hierarchy where upper-level
configuration files can import the lower-level ones. The YAML files support variables, which
can be specified on launch of the DCPro DDoS Protector using command-line arguments.

The pipeline configuration for Mitigator is contained in the file dcpro_pipeline_mi-
tigator.yaml, which import two other configuration files, dcpro_pipeline_base.yaml
and dcpro_pipeline _mitigator_${mitigation.controller}.yaml. The second impor-
ted configuration can be specified using the variable mitigation.controller. The two
options are file for a simple Mitigator configuration, which parses the mitigation rules
from a YAML file during the start of the application. This configuration is used mainly for
testing. The other option is postgresql, which specifies the components to retrieve the
rules from the PostgreSQL database, as well as to write the mitigation statistics back to it.

For the DCPro sFlow Probe, the mitigation.controller variable is set by default
to the value postgresql, as using the file variant is virtually useless for a probe whose
primary objective is to export statistics to the database. However, it is still possible to use
this mode for debugging without a running database, so an explicit override by the user
using a command-line argument is not disabled.

The configuration for most of the basic pipeline modules, such as the modules for writing
to and reading from the port, processing host traffic intended for the kernel of the machine
on which the DCPro DDoS Protector is running, a packet parser and a packet router
module, is present in the dcpro_pipeline_base.yaml. Due to the fact that whenever
a module is unused as an attribute of another module, in a way that would connect it
to the hierarchical tree that arises from the root application module, it is ignored by the
dependency injection framework of the DCPro DDoS Protector, we can largely leave the
file dcpro_pipeline_base.yaml untouched. The only consideration for the DCPro sFlow
Probe is to not use the pre-prepared list of modules dcpro_pipeline_common_rx, which
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contains the modules used for reading and processing traffic coming from the port, as the list
contains the host traffic module dcpro_pipeline_host_traffic, which would be unused
in case of the DCPro sFlow Probe intended use, as it is not expected the probe will receive
any data intended for the kernel, as it will be bound to the virtual TAP interface created
by the sFlow Packet Parser.

The actual changes to the configuration of the pipeline were therefore made in the file
dcpro_pipeline_mitigator.yaml. There are two main root modules that needed to be
changed. Firstly, it was the root module dcpro_pipeline_mitigator, which changed from:

&dcpro_ pipeline__mitigator:
- xdcpro__pipeline__common__rx
- *dcpro__mitigator__proc
- xdcpro__pipeline__ common__tx

to:

&dcpro__pipeline__mitigator:
- xdcpro__pipeline__rx_ reader
- x*dcpro__pipeline_ pkt__parser
- xdcpro__mitigator__proc

This change essentially implements the pipeline structure proposed in Figure 4.3. See
that the pipeline ends at the Mitigator Processor stage, after which all packets are simply
dropped. This means that both statistics and packet capture work in full.

The other change of the configuration from the original Mitigator to the probe one is
the reduction in the number of Mitigator Processor modules, where there is one module
per rule type. The list changed from the original values:

&dcpro__mitigator__modules:
- smitigation_ module__packet__capture
- xmitigation__module__exact__match
- xmitigation__module__malformed__traffic
- xmitigation__module__filter
- xmitigation_ module__syn_ drop
- ¥mitigation__module__amplification
- xmitigation__module__tcp__auth

to the new reduced one:

&dcpro__mitigator__modules:
- xmitigation_ module__packet__capture
- ¥mitigation__module__ filter

As was proposed, the configuration only supports the Packet Capture and Filter rules,
and removes the other mitigation modules. However, to force the Filter mitigation module
to accept rules of all the different rule types, except for Packet Capture, it was necessary
to change the database queries used to load the rules. This was done so that the actual
type of the other rules may be hidden and be virtually re-typed to the Filter rule type for
the internal use in the DCPro sFlow Probe. The changes to the queries are described in
Subsection 5.2.2.

Additionally, it was necessary to modify certain configurations of the Packet Parser
stage. By default, the Packet Parser checks whether the declared Ethernet frame length
and IP packet length match the real length. If not, the packet is immediately dropped.
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Afterwards, the packet is checked more thoroughly, such as whether the packet checksum is
valid. If any of the safety features are invalid, the packet is blackholed. The blackholing can
be safely turned off, as we do not expect the DCPro sFlow Probe to be receiving invalid
packets. Thanks to this, the sFlow Parser only needs to parse out the sampled packet
and add padding to it, as the sampled packets contained in the sFlow message might only
contain a header and the first few bytes of the payload.

5.2.2 Changes in the Configuration of Database Queries

As discussed in the previous subsection, to make it possible for all the rules to be used
by the Filter mitigation module, it was necessary to load them from the database as filter
rules. The DCPro DDoS Protector includes a component called file_sql_query_manager,
which is configured in the configuration file dcpro_pipeline_mitigator_postgresql.yaml
to use queries specified in the file mitigation_queries.sql.

When the DCPro DDoS Protector needs to load the mitigation rules, the database
access module first creates a list of all the rule bases and then reads the information from
the additional type-specific tables based upon the type given in the base table. This means
that there was no need to change any of the many queries used to load the additional
attributes of the other rule types, and it was only needed to modify the query, which
retrives the rule bases, so that it would replace the original type with the value filter for
every rule other than Packet Capture. The resulting modified query only needed a simple
addition of a CASE conditional expression compared to the original query.

Additionally, it was necessary to set all rules as being in the dry_ run mode. Otherwise,
it would not be possible to see how much of the traffic was matched by every rule. Even
though the packets would be dropped anyway, this change makes it possible for the rules
at the end of the priority order to receive every packet, since the packets are only dropped
after passing through all the rules. Thus, the dry_run flag is set to true.

The modified query is shown in Figure 5.2. Notice that file_sql_query_manager
requires a format where every query needs to be named and delimited with the markers
-- BEGIN (query name) and -- END.

The only other query that was needed to be updated was the query used to load the
table with the attributes specific to the Filter type, which includes the BPF. Since BPF does
not need to be specified, it was decided to use the default value of null in case no record
for the given rule existed in the mitigation_rules.filter table, which happens when
a non-Filter rule is loaded with the forged type. This has been achieved by using a UNION
clause on two SELECT queries. The first subquery retrieves all the filter rules, including the
mode and BPF, the other retrieves the same data structure, with values block’ and null
set for mode and for BPF respectively, but for all the other rule types.

Once the changes to the database and the YAML configuration of the DCPro DDoS
Protector Mitigator pipeline were made, the result was a fully working pipeline configu-
ration for the export of traffic statistics and possible capture of incoming packets. The
implementation heavily borrows from the current configuration, which was also the goal
initially set during the design phase, as the maintenance of the code is greatly simplified
by producing changes in as few files as possible. The two new files that were created
are the dcpro_pipeline_sflow_probe.yaml, which is a modified version of the original
file dcpro_pipeline_mitigator.yaml, and sflow_queries.sql, which is based on the
mitigation_queries.sql file with the changes mentioned in this section.
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—-- BEGIN mitigation_rules.base.select
SELECT
id,
CASE
WHEN rule_type = ’filter’ THEN rule_type
WHEN rule_type ’packet_capture’ THEN rule_type
ELSE ’filter’
END AS rule_type,
enabled,
’true’ AS dry_run,
threshold_bps,
threshold_pps,

vlan
FROM mitigation_rules.device_rule
WHERE

device_id = $1::int
-- END

Figure 5.2: Modified rule base retrieval query

5.3 sFlow Packet Parser

The sFlow Packet Parser was implemented as a basic server application written in C to
achieve reasonable throughput even for a prototype. Due to the ability of using multiple
write queues in a single TAP interface, there is a real possibility the sFlow Packet Parser
will be used in a production environment, albeit with heavy changes. The implementation
was focused on the creation of a simple prototype with a basic structure which could be
later expanded upon. However, there are also limitations to the prototype that need to
be solved later. Most importantly, it is the fact that the sFlow protocol supports many
message types other than that containing a sampled packet. Support for the other message
types may be included later. However, in that case, the sFlow parser would need to fulfill
more roles than only parsing out sampled packets and passing them to the virtual TAP
interface.

The sFlow parser has three basic parts. The first is the initialization of the TAP interface
and the port binding. The other two parts are procedures, which are executed as part of
the main loop. The first procedure parses the incoming packet, and the other writes the
extracted packet samples to the TAP interface. The sequence of function calls is visualized
in Figure 5.3.

5.3.1 Initialization

The initialization of the sFlow parser has three steps. Firstly, we need to process the
command line arguments, secondly we need to initialize the socket and bind it to a port,
and finally the TAP interface needs to be created and brought up. Each of these steps is
executed in a separate function.
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Figure 5.3: sFlow Packet Parser activity diagram

Parsing the Arguments
The first function is called process_args. It has the following function header:
void process_args(int argc, char *argv[], int *port, char *interface)

Where the parameters argc and argv are taken directly from the parameters of the main
function. Both port and interface are allocated on the stack in the main function just
before process_args is called. The size of the interface is limited by the value of the
IFNAMSIZ constant defined in the if .h header file. The port and interface name are passed
by pointers.

The arguments are parsed using the getopt library. The command line arguments are
specified by the flags -p for the port, —i for the TAP interface name and -d for an interface
name, if the socket needs to be bound to a specific interface. All three arguments are
optional. The default value for port is 6343, which is the dedicated port number for sFlow
collectors, as mentioned in the preceding chapter. The default value for the interface name
is tap0. It is expected that the option to change these will be used for experiments and
testing only.

Socket Creation and Binding

Once the port identifier and the interface name are parsed and stored in the variables, the
next step is to create and initialize the socket to listen on the given port. This is done in
the init_socket function, which has the following function header:

void init_socket(int *sFlowSocket, int port)

The variable sFlowSocket, which contains the file descriptor, is declared in the main func-
tion. Firstly, the function socket is called with the values AF_INET for the parameter
domain and SOCK_DGRAM for the parameter type. This means that the socket is created in
the IPv4 domain and uses UDP datagrams.

Once the socket is created, it is bound to the given port. For the IP address, the
value is set to INADDR_ANY, meaning the socket accepts packets from all IP addresses. The
socket is then configured with options SO_BINDTODEVICE if a specific network interface
is requested in the respective argument, and SO_NO_CHECK, which makes the socket accept
packets with invalid checksum. The last option should be particularly helpful during testing
and experimentation if manufactured packets are used.
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Creation and Initialization of TAP Interface

Finally, the TAP interface is created and initialized. This is done by the function create_-
tap_interface, which has the following function header:

int create_tap_interface(char *interface)

The function takes the interface name as an parameter and returns the file descriptor for
the created TAP interface. There is a sequence of shell commands that are executed to
create the interface and bring it up. Firstly, it is checked whether an interface with the
given name already exists. If it does, the program assumes that the interface was created
previously by the user. The management of any existing interfaces is left strictly to the
user, while the creation of a TAP interface is done by the sFlow Parser, as it is a more
complicated process. The shell commands necessary for the creation of a TAP interface are
executed using the system function. The verification of the existence of the TAP interface
is performed using the command ip link show <interface>. Then, if the interface does
not exist, it is created using the command sudo ip tuntap add <interface> mode tap.
After the interface is created, it needs to be brought up using the shell command sudo ip
link set <interface> up.

Once the interface is up and running, a file descriptor is opened for a write-only oper-
ation. Then a ifreq structure is created, which represents a request for an I/O operation
on a network interface. The ifr_flags attribute is set with the flags IFF_TAP, which
means the request is to open a TAP interface, and IFF_NO_PI, which stops the interface
from attaching any additional information to the raw packets. Once the ifreq structure
is initialized with the flags, it is used for the request to attach the file descriptor to the
created TAP interface, with the ioctl function, with the flag TUNSETIFF. After ioctl runs
successfully, the file descriptor is now fully initialized and can be used to write any packets
directly to the TAP virtual network interface.

5.3.2 Packet Parsing

Once the socket for receiving sFlow messages and the TAP interface and the file descriptor
for writing into it are initialized, the primary loop is started. The loop first reads the
incoming packet from the socket using the following function by calling the function recv,
as shown in the following code snippet:

ssize_t bytesRead = recv(sFlowSocket, buffer, sizeof (buffer), 0);

The function recv is a blocking function, which waits for the packet to arrive on the socket,
writes its payload to the buffer and returns the number of bytes which were written into
the buffer. Afterwards, the function parse_sflow_packet is called. This function has the
following header:

uint32_t parse_sflow_packet(
char *buffer,
ssize_t bytesRead,
char **xsFlowSamples,
uint32_t **sFlowSamplesSizes

The function returns the number of unpacked samples. Firstly, it reads the type of the
sFlow Agent IP address. Then it uses it to calculate the offset and stores the Agent’s IP
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address. Then it parses the number of samples contained within the message. From every
sFlow sample header, the type and enterprise fields are parsed. These contain information
on the sample content. If the sample does not contain a sampled IPv4 or IPv6 packet, the
size and data of the sample is set to 0 and NULL, respectively. What is also parsed is the
size of the sampled data, to set the offset for the next sample.

For every valid packet sample, the type is extracted. This is done to calculate the
possible discrepancy between the actual size of the sample and the declared size of the
packet, since the DCPro DDoS Protector packet parser automatically drops misformed
packets, where the declared and actual sizes do not match. The supported packet types
are IPv4 and IPv6, although other types will simply be sent as is without any additional
padding. The memory for the sample is then allocated and in case of IPv4 and IPv6, the
sample data is then padded with zeros. The actual resulting size of the packet is then stored
in the sFlowSamplesSizes variable and the pointer to the allocated memory containing
the padded sample is added to the sFlowSamples array. The number of samples is then
returned once all the samples have been processed.

5.3.3 Packet Writing

Finally, the parsed packet samples are written to the TAP interface. This is relatively
simplest and most straightforward part of the implementation, since the packet samples
contain the whole raw packets. This means that it is only needed to loop through the
samples and call the function write in the following way:

ssize_t bytesWritten = write(tap_fd, sFlowSamples[i], sFlowSamplesSizes[i])

Once every sample is written, the memory allocated for the variables containing the
samples is freed, and the main loop starts all over again with a new sFlow message being
read.

5.4 DCPro NEMEA Daemon

The implementation of the DCPro NEMEA Daemon largely followed the design specified in
Section 4.5. The DCPro NEMEA Daemon is an application written in Python and imple-
mented using the daemon module of the dcproapi library, which is part of the DCPro DDoS
Protector development tools. The DCPro NEMEA Daemon is implemented as a prototype,
as it is fully expected that an application suitable for deployment in production would re-
quire a higher focus on the throughput of the system and much better optimalization.
Furthermore, it would be helpful to reuse multiple modules of the DCPro DDoS Protector,
especially the accelerated packet classifier module described in [51]. However, as already
mentioned in the chapter on the design of the tool, the DCPro DDoS Protector code is
protected under a proprietary license and cannot be reused as such. It should be possible
to extract the packet classifier into a standalone component with a public interface. How-
ever, the amount of work required to decouple the module from the modules connected to
it is too high for the scope of this thesis. This is mostly due to the fact that its internal
structure is based heavily on the processing of packets. Instead, the implementation serves
to showcase the required functionality.
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5.4.1 Basic Daemon Structure

The dcproapi library used in the implementation provides a basic structure for the daemon,
with its daemon module. The module provides two abstract classes, which are used to
implement a basic daemon structure. The first one is AsyncRunner, which is implemented
by the UvloopRunner. The runner class should exist as a single instance, and it handles
the main loop of the daemon application. The other is the AsyncReader abstract class,
which serves as a basic interface for any module, which implements handlers for scheduled
tasks and any asynchronous events happening on the main event loop, such as incoming
database notifications.

The core of the DCPro NEMEA Daemon is mainly contained in the implementation
of a single reader class called NemeaStatsReader. The reader class contains several meth-
ods, which are executed by the runner as asynchronous tasks. Firstly, the command-line
arguments are parsed. The daemon supports arguments for the specification of the path to
a configuration file and the identifier of the TRAP interface to connect to.

Configuration files provides form of long-term configuration, which is an approach used
elsewhere in the DCPro DDoS Protector supporting tools and daemons. The configuration
file is called nemea_stats.ini by default, and it is used to define variables that are unlikely
to change often. In the current state of the DCPro NEMEA Daemon, these are the database
connection parameters, the logger settings, and the setting for the number of workers, which
are used in the daemon module of the dcproapi library.

The daemon application uses a dependency injection framework provided by the depen-
dency_injector' Python library. The library provides a simple interface for the configu-
ration of dependency injection through a Container class. This class contains the classes
which should be instantiated, and the dependencies between them. It can also handle
command-line arguments and pass them as parameters during instantiation. Thanks to
the use of this technique, the daemon is highly modular and can be easily expanded with
additional modules. The NemeaStatsReader instance is injected with all the configuration,
as well as the entity manager objects provided by dcproapi.

The initialization of the reader instance involves the creation and initialization of a TRAP
interface to receive the UniRec data. The reader then continually executes a data gathering
task, which is explained in detail in Subsection 5.4.2. The reader also creates a periodic
task that occurs once per an interval provided in the configuration. The default length of
the interval is ten seconds. As will be explained in detail later in Subsection 5.4.3, this
task then launches computation-heavy tasks in separate processes. These include the ag-
gregation and export of the statistics and the training of the ADT Flow module. Thanks
to the use of separate processes, the limit put on parallel execution by Python’s Global
Interpreter Lock, explained in Subsection 4.5.1, is overcome.

5.4.2 Data Gathering

Data gathering is the only task that is continually being processed at all times, except in
the relatively small time window when the processes for the execution of other tasks are
started. The data gathering task uses the TRAP interface, which is created on initialization
of the runner. Afterwards, the recvBulk method of the TRAP interface object is called.
The method returns a list containing UniRec objects, which are essentially represented as
Python dictionaries. The recvBulk method required a timeout, which is set to 1 second,

https://python-dependency-injector.ets-labs.org
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and it can automatically handle a change in the template of the incoming UniRec data. The
number of returned records is currently set to 1, but can be changed for experimentation.

Once the method executes, the contents of the returned list are checked first. If the list
is empty, the task terminates and is staged for a new execution in the next iteration of the
event loop. Several values of the UniRec record are serialized, as more complex objects,
such as the IP address class used by the pytrap library, cannot be passed to newly created
processes. Once the conversion is complete, the record is appended to a list of records. The
list of records is flushed once every interval of the sliding window, after which the extracted
statistics are exported, and the ADT Flow models are trained.

5.4.3 Window Handling

When the interval given for the sliding window expires, the handle_window method is
executed as a periodic task. Inside the handle_window method, several process tasks are
created using the create_process_task method provided by the runner instance. The
tasks created in this way run in a different process, so they do not affect the primary event
loop, since even though the primary even loop allows for scheduling tasks asynchronously,
only one task can be actively executed at a time. Using different processes, the limitation
put on multithreading in Python can be overcome. The mechanism for insertion of extracted
statistics and training of ADT Flow machine learning models is shown in Figures 5.4 and
5.5, and is further described in the following subsections. The diagrams are a customized
version of the UML sequence diagram, and are used to visualize both the sequence of
executed operations, as well as indicate the different processes by different colors of the
sequence box. The periodic task is visualized as an endless loop in the main event loop.
The task that reads the UniRec messages from the TRAP interface is not shown, as it is
not parallel and is always scheduled on the main event loop. The sequence diagram does
not use only objects, but also the coroutines which are scheduled as separate process tasks,
to show the parallel nature of the mechanism. Any method invoked as part of the coroutine
is then executed within that process.

5.4.4 Export of Statistics

The export of statistics extracted from UniRec into the DCPro DDoS Protector database
is handled by what is called the Statistics Export Module. During experimentation, it was
decided to also implement several useful changes to the DCPro DDoS Protector database,
specifically to the way statistics are stored, so that the space is effectively utilized. Op-
timization of storage space use proved useful even in testing, as the mechanism used to
extract and aggregate the values contained in the UniRec data resulted in the creation of
multiple statistical records per single collection window.

Statistics Export Module

The sequence of execution of the Statistics Export Module is visualized in Figure 5.4.

Export of statistics is handled by the _export_statistics static method, which is passed
as the coroutine to the create_process_task method. The parameters passed to the
export method include the identifier of the DCPro NEMEA Daemon device representation
in the DCPro DDoS Protector database, the database connection parameters and various
other configuration variables, the list of UniRec records and the timestamp of the end of
the data collection window.
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Figure 5.4: Sequence diagram of the export of statistics

The first part of the initialization is retrieving the mitigation rules from the database.
Since the mitigation rules are loaded only once during the export of the statistics, in case
any new rules are added in the meantime, they are only taken into account in the next
collection window.

Secondly, a data structure is created to contain the aggregated data. As proposed in
Chapter 4 and visualized in Figure 4.5, the implementation splits the byte and packet
counters contained within the UniRec records into several buckets of the same length and
updates the counters in them. The structure containing the buckets is instantiated for
every rule and for every registered flow exporter device. Every bucket contains a packet
and a byte counter, which is incremented by the value I if the UniRec matches the given
rule. The value [ is calculated using the following equation:

I = Total/ Bucket__count (5.1)

In this equation, I represent the value to be incremented, T'otal is the total number of
packets or bytes contained in the UniRec record and Bucket__count is the number of bucket
calculated from the UniRec duration and the interval represented by each bucket. The
number of buckets in the structure is dynamic, as new buckets can be added if a record with
an earlier TIME_START timestamp is encountered. This method of splitting each bucket into
several buckets produces skewed data, as we do not know the exact temporal distribution
of packets and bytes in each UniRec record. However, this is offset if the number of UniRec
records is large enough.

The method classify_flow determines which rules match the incoming record and
returns a list of the IDs of the matching rules. The classification is implemented in the
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same way as in the DCPro DDoS Protector, which uses source and destination IP addresses
and ports.

Finally, once all records are processed, a statistical record is inserted into the database
for every bucket of every rule. This means that if the bucket size is ten seconds and the
longest a record was collected is five minutes, up to 30 records are inserted per rule per
collection window. While this approach generates a relatively large number of records com-
pared to the DCPro DDoS Protector, it scales much better for any kind of number of UniRec
records than producing one statistical record for every UniRec record, and it produces data
in much more useful granularity than if only five minute buckets were considered, especially
since the flow might be much shorter.

Database Modifications

Because a relatively large amount of data is inserted into the DCPro DDoS Protector
database and because the statistical records extracted from UniRec overlap, a more complex
storage solution was devised. Since UniRec contains only the BYTES and PACKETS fields,
a new table was created, named flow_records. The table replaced all byte and packet
columns in the mitigation statistics table with only one column for bytes and another for
packets. When the statistics are read, the values are converted to the mitigation statistics
format in a join. Additionally, the TimescaleDB extension uses a hypertable structure,
which can have a specific retention time for the data. The retention policy for flow_records
is set to only 1 day compared to the 14 days for mitigation statistics. After that time elapses,
the records are stored in a materialized view which uses continuous aggregation. All the
data that would be dropped are aggregated using 10 second time buckets, so that the
overlap is removed, and is saved into the materialized view for longer persistence.

5.4.5 ADT Flow Module

The ADT Flow module is the other task which is started every time a collection window
finishes. The ADT Flow module is represented by the _load_ml_rules and _train_ml_mo-
dels private static methods, which are again passed to the create_process_task runner
method to run as a separate process. The sequence of method calls and the creation of
separate processes is visualized in Figure 5.5. The implementation is heavily inspired by
the previous implementation of the ADT Flow Daemon, which was described in Subsection
4.5.4. During the initialization of the DCPro NEMEA Daemon, a special structure is
created, which contains a circular buffer of dataframe objects containing legitimate traffic
data for every ADT Flow rule. At first, the structure is an empty Python dictionary which
is later filled with the buffers as values and the rule identifiers as keys.

At first, the _load_ml_rules method is scheduled as a process task. This is done
so that the main event loop is not slowed down by awaiting the result of costly time-
consuming database operations, as the current implementation of the dcproapi supports
only synchronous database connections. The process task is modified by adding a callback
method called _on_ml_rules_loaded, which then schedules a process task for every single
ADT Flow rule for the derivation of the BPF from the collected UniRec messages. The
_on_ml_rules_loaded callback is passed to the add_done_method of the process task object
as a partial function, so that it already contains the collected UniRec messages.

The _on_ml_rules_loaded callback method then creates a separate process task for
every rule from the method _train_ml_model. The method expects the rule object, the
data collected inside of the window, and the circular buffer kept in the reader object as
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Figure 5.5: Sequence diagram of the ADT Flow module

the parameters. Inside the method, the data are first classified, and a list of UniRec
messages that are matched by the given ADT Flow rule is created. In case the number
of matched records exceeds the configured limit, the other records are simply ignored.
The classification function is reused from the statistics exporter module. Afterwards, the
matched data is analyzed using a function provided by the ml_netflow module, which
takes the byte and packet thresholds of the rule. If the traffic contained in the list is
analyzed as attack traffic, the circular buffer is linearized into a list containing legitimate
traffic data. Both lists are transformed into dataframe objects, which are then passed to
the create_rules_from_netflow method provided by ml_module library, which returns
a generated BPF. The generated BPF is then used to create a new filter rule using the
create_and_upload_rule method provided again by the ml_netflow module. In case
the data are classified as legitimate, it is immediately returned as a tuple, where the first
element is the rule identifier and the second one is the list containing the UniRec messages.

The process tasks created for _train_ml_model have a callback method added to them,
called _on_ml_rules_processed. In case the value returned from the process task is a tuple
with the dataframe and rule ID, the existing circular buffer contained in the reader object
is appended with the list containing messages with legitimate traffic, to be used for a more
precise BPF inference in a later collection window.

5.5 Experimentation and Evaluation

During the implementation of the prototypes, they were already experimented upon. The
first set of experiments focused on finding potentially problematic areas of future develop-
ment. Especially the sFlow Parser was extensively investigated, as there was a competing
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Figure 5.6: sFlow testing architecture

design possibility in a DCPro DDoS Protector pipeline with an additional sFlow parser
stage. Both the NEMEA Daemon and the sFlow Processor were tested on real traffic. Af-
ter the general functionality of the tools was affirmed, the other tests focused primarily on
the applications’ throughput, which is absolutely crucial when processing large quantities
of data produced by high-speed network links in real time.

5.5.1 sFlow Parser and DCPro sFlow Probe Testing

The testing of the throughput sFlow Parser and the DCPro sFlow Probe was complicated
by the fact the sFlow Parser is a socket application listening on a UDP port and is connected
to the DCPro sFlow Probe using a virtual TAP interface. The problem lies in the fact that
both the UDP socket and the TAP interface have their own limitations on the throughput,
and some packets might be dropped before even arriving at the sFlow Parser.

For the first round of experimentation, the sFlow Parser and DCPro sFlow Probe were
supplied with live sFlow messages from a router deployed by the DCPro DDoS Protector
development team. Once it was confirmed that both applications process the data correctly,
the sFlow messages were captured into a PCAP file. Although tools like tcpreplay’ make
it possible to replay packets from a PCAP file on the same machine machine, such re-
played packets are inserted into the network stack so that they are inaccessible to a socket.
Therefore, sFlow messages had to be replayed from another machine, using tcprewrite®
to rewrite IP and MAC addresses and to fix the checksum. The final architecture used to
test the sFlow Parser and DCPro sFlow Probe is visualized in Figure 4.4, together with
the sources of valuable data. To correctly identify a potential bottleneck, both the physical
and the TAP interfaces were monitored. The throughput of the socket was evaluated using
a simple log. Thanks to the use of captured sFlow traffic, we can determine the ratio of
bytes to packets. Since the number of Ethernet frames in the PCAP is 18, and the total
sum of bytes is 18076, we can expect the average number of bytes per packet to be round

’https://tcpreplay.appneta.com
3https://tcpreplay.appneta.com/wiki/tcprewrite
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1004. The sFlow messages contain 95 sflow samples, which have a total declared length of
82559 bytes.
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Figure 5.7: sFlow architecture throughput

The throughput of the whole system was tested first on a 1 Gbps link and then on a 100
Gbps link. Using the tcpdump and iftop tools to retrieve the number of packets and bytes
that passed through the network interfaces. The number of packets and bytes which the
sFlow parser read from the socket and which were written to the TAP interface was kept
in counters and displayed after the application was terminated, as the printing operation
can be relatively time consuming. Finally, the number of packets and bytes received by
the sFlow Probe was retrieved from the statistics. The result of the throughput tests is
visualized in Figure 5.7, where the test cases are shown for the 1G and 100G link. The
graphs show the actual volume of data that travel through the link, which was only around
55.83 Gbps for the 100G link. There was an issue with generating such large amounts of
traffic, which was resolved by using the TRex* packet generator. Note that the numbers
of bytes and packets shown for TAP and the sFlow Probe are divided by the ratios of
sFlow messages to samples retrieved from the PCAP file, so that the values can be directly
compared. The scale of the values is logarithmic, so that the results of the 1G and 100G
test cases can be visualized together.

From the results compared side by side, we can see that the throughput of the UDP
socket used by the sFlow Parser plateaus around 100,000 packets per second. The value
differs slightly in both tested cases, most likely due to the different NIC which were used,
and their level of optimalizations and compability with the kernel. In case of the 1G test, it

‘https://trex-tgn.cisco.com
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Figure 5.8: Distribution of the throughput of statistics collection window by the number of
flows and processing time per window

was the Intel(R) Ethernet Controller X710 for 10GbE SFP+°, and the NVIDIA Mellanox
ConnectX-5° 100G NIC. In both test cases, we can see that the throughput of the TAP
interface and the DCPro sFlow Probe match the throughput of the sFlow Parser, and there
are no more significant packet losses. The limits that kernels place on the throughput of
sockets are one of the reasons why the DCPro DDoS Protector and other such high-volume
network applications are implemented using the DPDK framework, which bypassed the
kernel. The performance analysis of DPDK-based applications in [4] also mentions this
fact.

5.5.2 DCPro NEMEA Daemon Testing

The NEMEA Daemon was experimented with using traffic collected by a testing IPFIXcol
instance and a NEMEA instance, which acts as a UniRec preprocessor. The NEMEA Dae-
mon was appended to the last module of the NEMEA instance. Using the flowcounter
NEMEA module for measurement, the average detected number of UniRec records that
passed through the instance every second was close to 100,000. However, individual mea-
sured values ranged from less than 75,000 to more than 125,000 records per second.

Like the sFlow Parser and the sFlow Probe, the NEMEA Daemon was also tested pri-
marily for throughput. However, it soon became apparent that the throughput could vary
significantly due to the tools used for the implementation, and the time needed to process
the data also varied. Figure 5.8 shows the distribution of the number of flows collected
within a 10 second aggregation window and the amount of time it took to aggregate them
and upload them to the database as statistical records. Both graphs contain 25 measure-
ments, each of which corresponds to the same window. The values of the 25 measurements

Shttps://www.intel.com/content/www/us/en/products/details/Ethernet/700-controllers/x710-
controllers/products.html
Shttps://www.nvidia.com/en-us/networking/Ethernet/connectx-5/
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Figure 5.9: Relationship between the number of flows and the processing time of each
window

are shown in Figure 5.9, where the degree to which the flow count and the spent time
correspond to each other is also shown. The values in both figures were measured when
two mitigation rules were active. On average, the number of flows per second handled by
a statistics export window is about 9432.7665. This means that the NEMEA Daemon can
on average handle the same volume of data as is currently being processed on the testing
instance of NEMEA and IPFIXcol. However, in case a DDoS attack is ongoing, we can
assume the number of incoming UniRec records to increase significantly, as NetFlow and
IPFIX exporters will export flows prematurely if a certain threshold of traffic is reached.

Furthermore, the number of active mitigation rules severely affects the speed at which
the flows are processed, since every rule is checked to see whether it matches the given rule.
As can be seen in Figure 5.10, there is a steady decrease in the throughput of the statistics
module with each additional rule. Every number in the figure is an average calculated from
a five-minute run with the given number of active rules. The duration of the statistics
export can affect the execution of the whole daemon if it becomes too long, as the daemon
can only support a handful of active processes.

The machine learning module was tested for general functionality. However, since a se-
parate process is executed for every ADT Flow rule, it makes little sense to test it for
throughput. As the ADT rules were already tested for the optimal input size, all that
needed to be verified is that the module is fully functional.

5.5.3 Summary and Evaluation

From the data gathered, we can conclude that the sFlow parser is suitable for a limited
real-life volume. Depending on the configuration of the sFlow exporters, especially the
sampling rate, it may be fully suited for the task of gathering at least some data. The
main bottleneck currently seems to be the kernel handing over packets to the socket. This
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should be easily solved by deploying the sFlow Parser on multiple network interfaces, and
using a multi-queue TAP interface with a single DCPro sFlow Probe. Together with ad-
ditional optimizations, it should make the sFlow Parser ready for high-volume production
deployment.

The NEMEA Daemon, on the other hand, is less efficient with the data and, therefore,
unsuitable for a production deployment, outside of low-volume uses. It seems to suffer from
its implementation decisions, such as the use of asynchronous processing in Python, which
severely limits its potential for high-speed execution. With certain crucial optimizations,
such as the use of the ACL accelerated packet classifier extracted from DCPro DDoS Pro-
tector, it could become much better suited for real-life deployment. Additionally, it is also
possible to deploy an array of NEMEA Daemon instances using a demux NEMEA module.
However, first a discussion of whether the chosen approach is suitable or whether a new
implementation should be developed using more efficient tools should be held. The opti-
mized implementation could use modules written in C or C++, or it could be written in
those languages wholesale, as the NEMEA Framework provides an API in those languages.
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Chapter 6

Conclusion

The aim of this thesis was to propose and subsequently implement a solution for the in-
tegration of the DCPro DDoS Protector and the tools used for network monitoring and
analysis at CESNET, so that they can form a single distributed architecture for the miti-
gation of DDoS attacks. First, the protocols used for network monitoring in the CESNET
network were discussed. These include NetFlow and IPFIX for flow-based data, and sFlow
for packet samples. The IPFIXcol2 flow data collection system and the NEMEA data
processing system were then analyzed. Special attention was paid to the format of the
data and the information that needs to be extracted. Finally, the implementation of the
DCPro DDoS Protector was studied in detail to understand the needs of the system and
its administrator.

Based on the knowledge gained, a solution to the problem was devised. The proposal
was to convert data collected from NEMEA and sFlow to the format used for DCPro DDoS
Protector statistics and to devise a way to train machine learning models used for DDoS
mitigation with these data. The solution was implemented as a fully functioning prototype
for demonstration purposes. The DCPro NEMEA Daemon was created to handle the flow-
based data collected by IPFIXcol2 and processed by NEMEA, so that they can be used for
DDoS mitigation by the DCPro DDoS Protector. Packet samples created using the sFlow
protocol are handled by two main applications. The first is the sFlow Packet Parser, which
parses the samples out of a sFlow message and writes them to a virtual network interface.
The other is the DCPro sFlow Probe, which is a reduced configuration of the DCPro DDoS
Protector mitigation pipeline.

Both tools were thoroughly tested on captured real-world traffic. The results show that
the deployment of the sFlow Parser and DCPro sFlow Probe is viable. In the case of the
DCPro NEMEA Daemon, the implementation serves well to demonstrate the functionality.
However, it needs further changes so that it can be deployed effectively in a high-volume
traffic environment. Together, the two implemented tools proved the feasibility of the
solution and set the future goals of increasing the throughput of both applications. The
aim of this thesis was thus fulfilled, as the creation of a distributed architecture for the
mitigation of DDoS attacks using DCPro DDoS Protector, with network monitoring data
received through sFlow and NEMEA, was achieved.
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Appendix A

Contents of the included storage
media

The root directory of the included storage media is structured in the following way:

root directory

source/ Source code
nemea_daemon/ DCPro NEMEA Daemon
sflow_parser/ sFlow Parser
conf/ DCPro sFlow Probe configuration
bin/ Executable file
scripts/ Scripts used for testing
doc/ Thesis source code
thesis.pdf Thesis text
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