
BRNO UNIVERSITY OF TECHNOLOGY
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

FACULTY OF INFORMATION TECHNOLOGY
FAKULTA INFORMAČNÍCH TECHNOLOGIÍ

DEPARTMENT OF INTELLIGENT SYSTEMS
ÚSTAV INTELIGENTNÍCH SYSTÉMŮ

THE ANALYSIS OF CRYPTOGRAPHIC TECHNIQUES
FOROFFLOADINGCOMPUTATIONSANDSTORAGE
IN BLOCKCHAINS
ANALÝZA KRYPTOGRAFICKÝCH TECHNÍK NA ODĽAHČENIE VÝPOČTOV A UKLADANIA

V BLOCKCHAINOCH

MASTER’S THESIS
DIPLOMOVÁ PRÁCE

AUTHOR Bc. SAMUEL OLEKŠÁK
AUTOR PRÁCE

SUPERVISOR Ing. MARTIN PEREŠÍNI
VEDOUCÍ PRÁCE

BRNO 2024

Institut: Department of Intelligent Systems (DITS)

Student: Olekšák Samuel, Bc.

Programme: Information Technology and Artificial Intelligence

Specialization: Cybersecurity

Category: Security

Academic year: 2023/24

Assignment:

1. Study principles of blockchains and smart contracts.
2. Get familiar with cryptographic techniques utilized in the context of blockchains (and smart

contracts) to offload computations and storage (such as ZKP: zkSNARKs, zkSTARKs, and
accumulators, etc.).

3. Look at the existing use cases of techniques and their details in different blockchain
ecosystems/platforms.

4. Analyze the privacy properties of studied techniques and the performance in terms of savings w.r.t.
computations/storage savings.

5. Select one technique from point 2 and propose a new use case of utilization.
6. Make proof-of-concept implementation and evaluation of the proposed solution.
7. Make a security and privacy analysis of your solution.
8. Discuss the achieved results, possible extensions, and future work.

Literature:
• Ozcelik, Ilker, et al. "An overview of cryptographic accumulators." arXiv preprint arXiv:2103.04330

(2021).
• Petkus, Maksym. "Why and how zk-snark works." arXiv preprint arXiv:1906.07221 (2019).
• Fhenix: End-to-End Encrypted Web3.
• NEXUS: Enabling General-Purpose Verifiable Computing powered by zero-knowledge proofs.
• Vitalik Buterin. "STARKs, Part I: Proofs with Polynomials." online.
• Vitalik Buterin. "An approximate introduction to how zk-SNARKs are possible." online.
• Schumm, Daria, Rahma Mukta, and Hye-young Paik. "Efficient Credential Revocation Using

Cryptographic Accumulators." 2023 IEEE International Conference on Decentralized Applications
and Infrastructures (DAPPS). IEEE, 2023.

• DarkFi, an anonymous L1 based on zero-knowledge, multi-party computation, and homomorphic
encryption.

Requirements for the semestral defence:
1-4.

Detailed formal requirements can be found at https://www.fit.vut.cz/study/theses/

Supervisor: Perešíni Martin, Ing.

Head of Department: Hanáček Petr, doc. Dr. Ing.

Beginning of work: 1.11.2023

Submission deadline: 17.5.2024

Approval date: 6.11.2023

Master's Thesis Assignment
155940

The analysis of cryptographic techniques for offloading computations and
storage in blockchains

Title:

Faculty of Information Technology, Brno University of Technology / Božetěchova 1/2 / 612 66 / Brno

Abstract
The emergence of blockchain technologies has enabled a new perspective on distributed
computing and decentralised data management. However, with increasing popularity, plat-
forms face challenges in the form of scalability, since their operation requires cryptographic
principles which are computationally difficult. This thesis explores techniques that address
this problem by offloading computations and storage from blockchains using zero-knowledge
proofs, cryptographic accumulators and other cryptographic techniques. The second part
of the thesis proposes a novel approach to implementing a blockchain-based zero-knowledge
proof marketplace with proof of useful work (PoUW) consensus protocol.

Abstrakt
Vznik blockchainových technológií umožnil nový pohľad na distribuované výpočty a decen-
tralizovanú správu dát. Avšak so vzrastajúcou popularitou platforiem vznikajú problémy so
škálovateľnosťou, keďže ich prevádzka vyžaduje kryptografické princípy náročné na zdroje.
Táto práca skúma techniky, ktoré tento problém riešia odľahčovaním výpočtov a ukladania
v blockchainoch pomocou zero-knowledge dôkazov, kryptografických akumulátorov a iných
kryptografických techník. Druhá časť práce navrhuje nový spôsob implementácie trhoviska
zero-knowledge dôkazov založeného na blockchaine s využitím proof of useful work (PoUW)
konsenzuálneho protokolu.

Keywords
cryptography, blockchain, zero-knowledge proof, SNARK

Kľúčové slová
kryptografia, blockchain, zero-knowledge dôkaz, SNARK

Reference
OLEKŠÁK, Samuel. The analysis of cryptographic techniques for offloading computations
and storage in blockchains. Brno, 2024. Master’s thesis. Brno University of Technology,
Faculty of Information Technology. Supervisor Ing. Martin Perešíni

Rozšírený abstrakt
Kryptografické techniky na zabezpečenie kľúčových vlastností blockchainov, ako naprík-
lad decentralizácia, integrita dát a distribuovaný konsenzus, sú obecne veľmi náročné na
výpočtové zdroje a úložisko. Preto existuje motivácia identifikovať a izolovať komponenty,
ktorých výpočet alebo uloženie by sa dali presunúť mimo blockchainu (tzv. off-chain).
Techniky, ktoré toto umožňujú síce existujú, avšak ich implementácia je pomalá z dôvodu
bezpečnostných nedostatkov alebo kvôli zvýšenej réžií.

Táto práca popisuje základné kryptografické princípy potrebné na pochopenie toho, ako
fungujú blockchainy. Nasleduje popis toho, ako fungujú dve hlavné techniky využívané na
odľahčenie výpočtov a ukladania z blockchainu, ktorými sú zero-knowledge dôkazy a kryp-
tografické akumulátory.

Dvomi z najčastejšie používaných schém zero-knowledge dôkazov sú zk-SNARKy a zk-
STARKy, ktoré dokazovateľovi umožňujú presvedčiť overovateľa o platnosti výpočtu defi-
novaného pomocou aritmetického obvodu bez toho, aby overovateľ zistil hodnoty samot-
ných vstupných dát výpočtu. Kryptografické akumulátory zase poskytujú možnosť komp-
rimovaného uloženia zoznamu dátových položiek s rizikom kolízií a taktiež umožňujú opý-
tanie sa na prítomnosť konkrétnych položiek v zozname bez potreby zverejniť obsah celého
zoznamu, čo má široké uplatnenie v oblasti aplikácií na ochranu súkromia.

Keďže vykonávanie výpočtov na blockchaine typicky znamená, že každý uzol podieľa-
júci sa na konsenze vykonáva daný výpočet, existuje veľká motivácia premiestňovať tento
výpočet mimo blockchain. V priebehu rokov vzniklo mnoho techník, ktoré sa na tomto
podieľajú, pričom za spomenutie stoja:

• Bitcoin Lightning sieť – Lightning sieť umožňuje dvojici používateľov Bitcoinu,
aby si bezpečne vytvorili kanál na opakovanú výmenu meny bez toho, aby sa každá
transakcia musela zapisovať do blockchainu. Jediné dve operácie, ktoré sa musia doň
zapísať sú vytvorenie a uzatvorenie Lightning kanálu. Široké využitie by umožnilo
výrazne zvýšiť priepustnosť Bitcoinu, ktorá je na úrovni približne siedmych transakcií
za sekundu.

• Zk-bridge – Výmena informácií medzi dvomi blockchainami (zdrojovým a cieľovým)
vyžaduje, aby cieľový blockchain verifikoval platnosť stavu zdrojového blockchainu.
Táto operácia je výpočtovo náročná a je takmer nemožné takýto výpočet vykonávať
na blockchaine. Preto zk-bridge navrhol riešenie, kde cieľový blockchain neoveruje
platnosť stavu celého blockchainu, ale overuje iba zk-SNARK dôkaz, ktorý dokazuje,
že sa konkrétna udalosť na zdrojovom blockchaine stala. Verifikácia zk-SNARKu je
operácia, ktorá je uskutočniteľná na blockchaine, avšak vygenerovanie dôkazu pre-
bieha v tzv. relay sieti, ktorá beží mimo blockchainu.

• Mina protocol – Mina využíva rekurzívne generovanie zk-SNARKov na dokázanie
platnosti stavu blockchainu. Vďaka tomu je potrebných na overenie platnosti stavu
blockchainu iba 22 kB dát na rozdiel od klasických blockchainov, medzi ktoré patrí
napríklad Bitcoin, ktorý vyžaduje stiahnutie stoviek gigabajtov dát na dokázanie, že
stav v blockchaine je platný.

V druhej časti práce je navrhnutá blockchainová sieť, ktorá funguje ako trhovisko na
SNARKy, kde uzly s nevyužitým výpočtovým výkonom môžu získať odmenu v podobe
natívnej meny za generovanie zero-knowledge dôkazov. Sieť podporuje dva druhy transakcií

a to transakcie mincové, ktoré umožňujú účtom v sieti vymieňať si natívnu menu a transak-
cie dôkazové, ktoré za poplatok vytvárajú účastníci, ktorí majú záujem nechať si vygen-
erovať dôkaz iným uzlom v sieti. Čerstvo vytvorené transakcie sa umiestnia do zoznamu
nedokončených transakcií, z ktorého sa vyberajú účastníkmi na konsenzuálnom protokole
(tzv. baníkmi, ang. miners), potvrdzujú a vkladajú do novovytvoreného bloku. Potvrdenie
transakcie pozostáva zo skontrolovania platnosti transakcie a v prípade dôkazovej transakcie
aj z vygenerovania dôkazu, čo je výpočtovo náročné. Táto výpočtová náročnosť je využí-
vaná na implementáciu konsenzuálneho protokolu typu proof of work (dôkaz vykonanej
práce), ktorý sa používa aj napr. v sieti Bitcoin. Avšak v typickom proof of work dochádza
k výpočtom, ktoré sa neskôr zahodia, pretože neslúžia na nič iné okrem realizácie kon-
senzuálneho protokolu – v našom prípade sa výpočty nezahadzujú, pretože nimi vznikajú
zero-knowledge dôkazy, o ktorých vygenerovanie má záujem pôvodný žiadateľ, ktorý si ich
môže prečítať z blockchainu po zverejnení bloku s jeho transakciou.

Navrhnutá blockchainová sieť (resp. jej overenie konceptu) je implementovaná v jazyku
Python s využitím knižnice ZoKrates, ktorá poskytuje podporu pre generovanie a overovanie
zk-SNARKov. Funkcionalita, bezpečnostné aspekty, možné vylepšenia a možné použitia
v existujúcich platformách sú následne evaluované.

The analysis of cryptographic techniques for of-
floading computations and storage in blockchains

Declaration
I hereby declare that this Master’s thesis was prepared as an original work by the au-
thor under the supervision of Ing. Martin Perešíni. I have listed all the literary sources,
publications and other sources, which were used during the preparation of this thesis.

. .
Samuel Olekšák

May 23, 2024

Acknowledgements
I would like to thank my supervisor Ing. Martin Perešíni for his guidance and patience
during the development of this thesis. I would also like to thank Ing. Ivan Homoliak, Ph.D.
for his insights and the expertise he shared with me.

Contents

1 Introduction 3

2 Cryptographic Concepts 4
2.1 Cryptographic Goals . 4
2.2 Symmetric Cryptography . 4
2.3 Asymmetric Cryptography . 5
2.4 Cryptographic Hash Function . 6

2.4.1 Lamport’s Hash Chains . 8
2.4.2 Linked Timestamping . 8
2.4.3 Merkle Tree . 9
2.4.4 Merkle-Patricia Trie . 10

2.5 Blockchain . 10
2.5.1 Smart Contracts . 14

2.6 Secure Multi-party Computation . 14
2.7 Cryptographic Commitments . 15
2.8 Polynomials . 15

2.8.1 Degree of a Polynomial . 16
2.8.2 Constructing Polynomials . 16

3 Offloading Techniques 18
3.1 Zero-knowledge Proofs . 18

3.1.1 Zero-knowledge Arguments . 19
3.1.2 Zk-SNARKs . 19
3.1.3 Zk-STARKs . 20
3.1.4 Comparison of SNARKs and STARKs 24

3.2 Cryptographic Accumulators . 24
3.2.1 Classification . 24
3.2.2 Bloom Filters . 25
3.2.3 Cuckoo Filters . 26
3.2.4 RSA Accumulator . 26
3.2.5 Merkle Tree Accumulator . 27
3.2.6 Evaluation and Applications . 27

4 Existing Technologies and Applications 29
4.1 Trusted Execution Environments . 29
4.2 Bitcoin Lightning Network . 29
4.3 ZoKrates . 31

4.3.1 Trusted Setup Using SMPC . 32

1

4.4 Zk-Bridge . 33
4.5 Mina Protocol . 33
4.6 ZkLLVM . 34
4.7 Marlin . 35

5 Design 36
5.1 Incentive Scheme . 36
5.2 Transactions . 36
5.3 Block Construction . 37
5.4 Block Verification . 38
5.5 Circuit Storage . 39
5.6 Internode Communication . 39
5.7 Storing User Account Data . 41
5.8 Proofs . 42
5.9 Keys and Identifiers . 42
5.10 Reputation System . 42

6 Implementation 44
6.1 Client Application . 44

6.1.1 Modes . 44
6.1.2 Client Commands . 45
6.1.3 Communication Protocol . 46
6.1.4 Joining the Network . 46
6.1.5 Logging Priorities . 46
6.1.6 Network Configuration and Genesis Block 49
6.1.7 ZoKrates Library Integration . 49
6.1.8 Example Uses . 49

6.2 Testing . 50
6.2.1 Client Application Testing . 50

7 Discussion 51
7.1 Solution Analysis and Limitations . 51

7.1.1 Forks . 52
7.2 Possible Enhancements . 53

7.2.1 Reducing Wasted Work . 53
7.3 Practical Use Cases . 54

7.3.1 Zk-Bridge . 54
7.3.2 Zk-Rollups . 55

8 Conclusion 56

Bibliography 57

A Contents of the Attached Medium 62

2

Chapter 1

Introduction

Cryptographic techniques to ensure key properties of blockchains, such as decentralisation,
data integrity, and distributed consensus, are generally very demanding in terms of com-
putational resources and storage. Blockchains are typically distributed networks with data
replicated on multiple nodes in the network. Due to the immutability of blockchain data,
the storage demands of the network grow over time as new data are added.

Since performing computations and storing data on-chain is expensive, there is motiva-
tion to optimise the processes by identifying components that could be addressed off-chain.
A plethora of techniques have been proposed and some have already been implemented,
but their overall adoption is slow due to security and overhead concerns.

This thesis outlines the cryptographic concepts necessary to understand how blockchains
operate and secure their data. Furthermore, techniques used for optimising on-chain storage
and computation requirements of blockchains are listed and explained with a focus on zero-
knowledge proofs and cryptographic accumulators. The description of specific existing
technologies follows along with their security analysis.

In the second part of this thesis, a new use case of utilisation used for optimising
computation in blockchain is proposed, designed and implemented – SNARK marketplace.
SNARK marketplace is a blockchain designed to facilitate the delegation of computationally
intensive proof generation tasks. Proof generation is an important part of the Proof of Useful
Work (PoUW) consensus mechanism used in the blockchain, where computational resources
are directed toward solving meaningful tasks as opposed to Proof of Work (PoW) used
in many blockchain networks including Bitcoin, where miners compete to solve arbitrary
cryptographic puzzles, which have use outside of the consensus protocol. This aspect of
PoW is often criticised as it consumes significant amounts of energy without producing any
tangible real-world value beyond securing the blockchain [26].

Chapter 2 will explain the necessary cryptographic concepts and primitives while fo-
cussing on aspects of blockchain, cryptographic accumulators, and zero-knowledge proofs.
Chapter 3 will explore existing methods for offloading storage and computations from the
blockchain, while Chapter 4 will describe specific technologies and networks utilising them.
The SNARK marketplace design, implementation and evaluation will be described in Chap-
ter 5, Chapter 6 and Chapter 7, respectively.

3

Chapter 2

Cryptographic Concepts

Cryptography [36] is the study of mathematical techniques related to aspects of information
security. It is closely related to the field of computer science. Over the centuries, an elab-
orate set of protocols and mechanisms has been created to address information security
issues.

2.1 Cryptographic Goals
Each objective of information security can be derived from one of the following four cryp-
tographic goals. The fundamental purpose of cryptography is to adequately address these
goals:

• Confidentiality, also called secrecy or privacy, is a service that protects information
from unauthorised access or disclosure.

• Data integrity is a service that protects against unauthorised data modification.

• Authentication is a service that provides the identification of communicating enti-
ties.

• Non-repudiation is a service that prevents an entity from denying past actions or
commitments.

This thesis will refer back to these goals when introducing various cryptographic prim-
itives and algorithms.

2.2 Symmetric Cryptography
Symmetric cryptography [36, 50] has existed for thousands of years, way before the invention
of computers as we know them today. It is defined by both parties sharing the same secret
key 𝐾. Symmetric cryptography works by employing two functions – one for encryption
𝐸 and one for decryption 𝐷. The encryption function is parameterised by the key and
plaintext 𝑃 (message). The output of the function is called ciphertext 𝐶 and should only
allow the recovery of the original plaintext with the decryption function and with the
knowledge of 𝐾.

Symmetric encryption ciphers can be divided into two categories:

4

• Block ciphers – Blocks of fixed size are encrypted one by one. Examples of this
algorithm include DES (Data Encryption Standard) and AES (Advanced Encryption
Standard).

• Stream ciphers – Data is encrypted one digit at a time. Instances of this category
are RC4 and GSM A5/1 algorithms.

Symmetric encryption can provide confidentiality, data integrity, and authentication,
but its problem lies in the distribution of keys. Keys generally have to be distributed using
physical media (USB drives, snail mail, etc.), or asymmetric cryptography could be used.
To provide the mentioned authentication, each pair of communicating parties has to set up
their own key. This proves challenging in the context of a large pool of 𝑁 users who want
to communicate with everyone else in the pool, since the number of user pairs (keys) 𝑈
increases quadratically:

𝑈 =
𝑁 * (𝑁 − 1)

2
(2.1)

This means that for a company with 100 employees, there need to be 4950 keys so
that each employee is able to communicate with any other employee, which is a very large
amount also considering that keys should be regularly refreshed.

One of the inherent disadvantages of symmetric cryptography is that it cannot provide
non-repudiation, since the same key is always shared between multiple parties.

2.3 Asymmetric Cryptography
As opposed to symmetric encryption, which is based on both parties sharing the same
secret key, asymmetric encryption [36] depends on a pair of mathematically linked keys –
a private key and a public key. There are a limited number of mathematical problems that
can be leveraged to create asymmetric encryption schemes, namely:

• Knapsack problem – Optimisation problem which involves finding the heaviest
subset of a set of items weighing in sum not more than some predefined maximum
value.

• Integer factorisation – Task of finding the prime factors of a natural number.

• Discrete logarithm – Based on working out the discrete logarithm of an element in
a finite cyclic group.

Due to the high computational complexity of the problems, they could not have been
reasonably used before the invention of the computer and the attainment of reasonable
computational speed. Therefore, asymmetric cryptography is with us for a much shorter
time than symmetric cryptography.

Symmetric encryption is generally regarded as much faster per byte in contrast to asym-
metric cryptography. Often a hybrid approach is used, where asymmetric cryptography is
used to securely distribute a symmetric key before using asymmetric encryption to transfer
the bulk of the data.

As mentioned, this type of cryptography leverages a key pair consisting of a private
key 𝐾𝑝𝑟𝑖𝑣𝑎𝑡𝑒 (one that is only kept by a single party) and a public key 𝐾𝑝𝑢𝑏𝑙𝑖𝑐 (which can
be widely distributed). Based on which side’s key pair is utilised, we can distinguish two
schemes:

5

• Using recipient’s key pair – The message sender knowing the 𝐾𝑟𝑒𝑐𝑖𝑝𝑖𝑒𝑛𝑡
𝑝𝑢𝑏𝑙𝑖𝑐 can use it

to encrypt a message, which can only be decrypted by 𝐾𝑟𝑒𝑐𝑖𝑝𝑖𝑒𝑛𝑡
𝑝𝑟𝑖𝑣𝑎𝑡𝑒 . This scheme provides

confidentiality but does not address integrity, authentication nor non-repudiation.

• Using sender’s key pair – The message sender uses their 𝐾𝑠𝑒𝑛𝑑𝑒𝑟
𝑝𝑟𝑖𝑣𝑎𝑡𝑒 to produce a proof

of message integrity and further provide the authentication and non-repudiation prop-
erty. This is typically implemented by encrypting a message hash – this process is also
known as signing. Confidentiality is not achieved since the decryption key 𝐾𝑠𝑒𝑛𝑑𝑒𝑟

𝑝𝑢𝑏𝑙𝑖𝑐 is
public.

By combining these two schemes into one, we can achieve all four cryptographic goals
mentioned in Section 2.1. The stacking can be performed in two ways that are equal in
their satisfaction of the cryptographic goals (Figure 2.1).

E E D DP PC

private
sender

K public
recipient

K private
recipient

K public
sender

K

E E D DP PC

public
recipient

K private
sender

K public
sender

K private
recipient

K

Figure 2.1: Two variants of an asymmetric encryption scheme providing confidentiality,
data integrity, authentication and non-repudiation. A dashed line represents an unsecured
channel, for example, the Internet.

2.4 Cryptographic Hash Function
A cryptographic hash function (CHF) [49] is an algorithm with the following properties
appealing to cryptographic applications:

𝐻 : {0, 1}* → {0, 1}𝑛

• Unconstrained input length – Thanks to their iterative fashion, CHFs can process
input of arbitrary length.

• Finite output length – Output (so-called digest or hash) size is finite.

6

• First preimage resistance – It is computationally infeasible to find 𝑥 for a given
𝐻(𝑥).

• Second preimage resistance – It is computationally infeasible to find 𝑥′ for a given
𝑥 such that 𝑥 ̸= 𝑥′ ∧𝐻(𝑥) = 𝐻(𝑥′).

• Collision resistance – It is computationally infeasible to find inputs 𝑥 and 𝑥′ such
that 𝑥 ̸= 𝑥′ ∧𝐻(𝑥) = 𝐻(𝑥′).

CHFs can be classified into two main groups – message digest codes (MDCs) and message
authentication codes (MACs). When using algorithms in the MDCs group, the hash can be
calculated just from the knowledge of the message. On the other hand, MACs also make use
of keys. With MACs not only is the knowledge of plaintext required, but also a knowledge
of the key (Figure 2.2).

The importance of CHFs in the rest of modern cryptography, especially blockchains,
cannot be overstated. Their applications within the field of blockchains will be discussed in
the following sections. They are used in a wide range of applications outside of blockchains,
ranging from password storing and verification, file integrity checking, to malware detection,
and digital signatures.

K2K1

i-pad

o-pad

✖

✖
Si M1 M2 ... MN

H

MD1So

H

MD2

Figure 2.2: Schematic of the HMAC protocol – one of the most popular MAC schemes.
The message is represented as blocks 𝑀1 up to 𝑀𝑁 , key is split in half into 𝐾1 and 𝐾2.
The output of the algorithm is represented by 𝑀𝐷2. Constants 𝑖-𝑝𝑎𝑑 and 𝑜-𝑝𝑎𝑑 which mix
with key halves using XOR operation are inherent to the algorithm and don’t change with
the key nor message. The nodes marked with 𝐻 represent a hashing function.

7

2.4.1 Lamport’s Hash Chains

Lamport’s hash chain [33] is a mechanism that can be used to implement one-time passwords
(OTPs). They are based on repeated application of CHF on a randomly selected seed 𝑠.
This algorithm is very simple to implement, although it suffers from the fact that OTPs
deplete after 𝑛 generations:

1. The client generates and saves a random seed 𝑠.

2. The client applies the hashing function to the seed 𝑛 times and registers 𝐻𝑛(𝑠) on
a server. The number of iterations represents the number of one-time passwords that
can be generated from this single registration before they are depleted.

3. The client uses 𝐻𝑛−1(𝑠) to authenticate at a server – thanks to the first preimage
resistance property of CHFs, the value 𝐻𝑛−1(𝑠) cannot be deduced just from 𝐻𝑛(𝑠)
without the knowledge of 𝑠 or any 𝐻𝑚(𝑠), 0 < 𝑚 < 𝑛. The server can very easily
verify the correctness of OTP by hashing it once and comparing it to the previous
correct submitted OTP.

4. Upon each attempt to authenticate, the value of 𝑛 will decrement by one. Thus, the
server will reject subsequent attempts to authenticate with the same OTP.

2.4.2 Linked Timestamping

One of the applications of CHFs fundamental to the creation of blockchains is linked times-
tamping (Figure 2.3). It is used to cryptographically link multiple pieces of data (blocks)
into a chain. This is used to immutably record events in the order of occurrence – no
block inside the chain can be modified without changing the hash of the entire chain, thus
achieving non-repudiation and data integrity.

Figure 2.3: Hash chain of newspaper prints used to validate integrity. This chain can be
used to prove existence, content, and time of addition of a document in relation to other
documents in the chain. Retrieved from [32].

8

2.4.3 Merkle Tree

A Merkle tree (also known as a binary hash tree), originally described in [37], is a data
structure used to ensure data integrity of a large list of items with an efficient membership
test by utilising a CHF. The construction of a Merkle tree is described in Figure 2.4 and
verification of element presence is visualised in Figure 2.5.

H(a) H(b) H(c) H(d)

H(H(a) || H(b)) H(H(c) || H(d))

H(H(H(a) || H(b)) || H(H(c) || H(d)))

a b c d

Figure 2.4: The items contained within the Merkle tree are listed as 𝑎, 𝑏, 𝑐 and 𝑑. The
items are first hashed, which creates the leaf nodes of a Merkle tree. Pairs of hashes on the
leaf layer are concatenated (represented with || operator in the image) and again hashed to
obtain an output of the same size for each Merkle tree node. This is performed repeatedly
until only one hash on a layer is left – this hash is called the root hash. If an adversary
modified even a single element in the original list, it would completely change the root hash.
Thus, the root hash provides integrity of the original list data.

H1,1 H1,2 H1,3 H1,4

H2,1 H2,2

H3,1

H1,5 H1,6 H1,7 H1,8

H2,3 H2,4

H3,2

H4,1

Figure 2.5: To verify the presence of hash 𝐻1,3 (and its corresponding element) in the
Merkle tree, only a small subset of other pair hashes in the tree (so-called Merkle path)
needs to be fetched. The number of pair hashes necessary scales logarithmically with the
number of original list elements.

In addition to the data integrity use mentioned, Merkle trees have a multitude of other
uses across cryptographic and blockchain applications like simplified payment verification
(SPV) and zero-knowledge proofs (see Section 3.1).

9

2.4.4 Merkle-Patricia Trie

Merkle-Patricia trie (MPT) [22] combines Merkle trees and Patricia tries. MPT is used for
efficient (in theory with 𝑂(𝑙𝑜𝑔(𝑛)) complexity) insertion, deletion, and lookups of items. It
allows deterministic and cryptographically verifiable storage of key-value pairs.

If the hash function used satisfies the cryptographic properties highlighted in Section 2.4
then it is computationally infeasible to create two distinct states with the same root hash.

MPTs generally consist of three main types of nodes (demonstrated on an example in
Figure 2.6):

• Branching nodes – These nodes have up to 𝑛 child nodes. The value of 𝑛 depends
on the branching factor of the trie, but Ethereum’s MPT uses a branching factor of
16, one per each value of the current nibble (resp. hexadecimal character) of the key.

• Extension nodes – Used to aggregate nodes that share a common prefix.

• Leaf nodes – Leaf nodes store the actual value associated with the complete key and
are at the end of the specific key path.

Figure 2.6: Modified version of Merkle-Patricia trie that is used in the Ethereum blockchain.
It consists of three kinds of nodes – extension node, branch node and leaf node. Retrieved
from [1].

2.5 Blockchain
Blockchain is a technology built on distributed ledgers. Although ledgers have historically
been used as means to record financial transactions, blockchains can record any kind of
digital event in general.

10

Bitcoin [39] is undoubtedly the most popular example of blockchain technology, which
has found uses in both the financial and non-financial areas. Blockchain principles will be
explained using the Bitcoin network, since it was the first blockchain platform and is in
essence relatively simple. The description will be kept as general as possible, but there is
a huge variety in the blockchain platforms, meaning that these principles might not apply
to every blockchain technology.

The general features of a blockchain network are as follows:

• Immutability – Thanks to the cryptographic principles described in Section 2.4.2
and Section 2.4.3, the events recorded on blockchain cannot be tampered with –
altered nor deleted. This is why blockchains are often referred to as write-only
databases.

• Transparency – Each transaction on the blockchain is publicly visible and auditable.
This did apply for the early blockchain networks like Bitcoin, but this trait is not
always desirable, thus many blockchains use zero-knowledge (Section 3.1) and other
techniques to implement more confidentiality into the blockchain.

• Decentralisation – Blockchains are implemented as peer-to-peer (P2P) networks
where decisions are made with distributed consensus. This means that there is no
central authority that controls the blockchain, unlike financial institutions, which can
be controlled by a small group of people or a government.

The term blockchain refers to the essential data structure used to implement the technol-
ogy, which consists of blocks that are cryptographically linked together (Figure 2.7). Each
block consists of transactions, which represent payments in the network. Linking typically
occurs by including the hash of the previous block in the newly created block, protecting
the previous block’s integrity. For efficient querying of the transaction, two cryptographic
structures are used – Merkle trees (Section 2.4.3) and Bloom filters (Section 3.2.2). Merkle
trees aggregate transactions of a block and protect their integrity while making querying
for transactions within a block efficient. To find a particular transaction inside the whole
blockchain without the knowledge in which block the transaction is located, bloom filters
are used to rule off the majority of the blocks and greatly shrink the search space.

Figure 2.7: Essential components of a typical hash chain. Retrieved from [39].

Each block (Figure 2.8) consists of a header containing metadata about the block includ-
ing the previous block hash, Merkle root, timestamp, number of transactions, and a nonce
– random number used to adjust the block hash until a partial collision is found according
to current difficulty. Difficulty is a regulating mechanism used to keep the block creation
time constant (in Bitcoin around 10 minutes), regardless of the current computing power
of the network.

11

Figure 2.8: Simplified look on a single block of a blockchain along with corresponding
Merkle tree containing transactions. Retrieved from [39].

A consensus protocol is used to govern the creation of blocks and the addition of transac-
tions to blocks. These protocols create incentives to participate in the network and penalise
malicious nodes that violate the rules of the protocol. Some of the most common consensus
mechanisms are described in the following sections.

To understand the problems consensus protocols try to solve, we will look at an overview
of common attacks in blockchain networks and how they are remediated:

• Double spending – The point of this attack is to spend the same cryptocurrency
twice by creating conflicting transactions. This problem is typically remediated by
waiting for multiple so-called confirmations (blocks on top of the block that contained
the transaction). The deeper the transaction in the blockchains is, the lower is the
chance that it will be overwritten.

• 51 % attack – This attack involves a single entity or a group of colluding entities
controlling more than half of the network consensus power. This means that they can
produce blocks regardless of the will of the rest of the network, including reversing
transactions and stealing funds.

• Selfish mining – If an attacker controls a considerable proportion of the network
power, they can mine blocks without publishing them. Depending on the power of
an attacker, they could accumulate a lead of multiple blocks which, published at the
right time, could overwrite blocks on the main chain.

A divergence of a blockchain is called forking. Forking can occur for multiple reasons,
namely implementation of new features, security updates, or disagreements1. Forks are
mainly classified into two categories – soft fork, which is backward compatible with the
previous version and hard fork, that is not backward compatible and produces two separate

1For an example, see the Ethereum and Ethereum Classic dispute that stemmed from the DAO hack –
https://www.bitstamp.net/learn/crypto-101/ethereum-dao-hack/.

12

https://www.bitstamp.net/learn/crypto-101/ethereum-dao-hack/

blockchains. If forks happen accidentally (like, for example, if two verifiers mine a block at
the same time), the dispute is typically resolved using the longest chain rule or the strongest
chain rule, since more computational work has been put into them.

Blockchain has a wide range of applications across various areas, including, but not
limited to:

• Financial sector – Monetary transactions and trading without relying on centralised
entities.

• Digital identity management – Decentralised identity management with trans-
parent auditing with the possibility of utilising zero-knowledge proofs for improved
privacy.

• Voting – A secure, transparent, and fraud-resistant voting system could be imple-
mented using blockchain technologies.

• Asset ownership – Assets such as real estate and art pieces could be represented
by tokens and listed publicly and securely on a blockchain.

• Proof of authorship – Blockchains can provide a write-only record of authorship
and help with intellectual property rights.

Proof of Work

Proof of work (PoW) [25] was the first consensus protocol to be used in a blockchain
network. Its use in blockchains was inspired by the Hashcash algorithm [4], which was
used as a countermeasure to denial of service attacks and spam in email and other systems.
The idea behind it was to create a cost function that was expensive to compute but easy
to verify. The solution was to use a non-interactive, publicly auditable, trapdoor-free cost
function with unbounded probabilistic cost. In essence, the algorithm consists of finding
a partial hash collision of data and some nonce, typically involving a certain number of
leading zeros in the hash output. Since finding partial hash collisions is computationally
intensive, the found hash serves as a proof that the sender invested some resources into
their action and makes performing a DoS attack much more computationally expensive.

A very similar algorithm is used in Bitcoin today – so-called verifiers (miners) compete
to find a first partial collision of a block hash. This is done by repeatedly chaining the nonce
value in the block header until some number of leading zeros (depending on the current
network parameter called difficulty) in the output hash are found.

Proof of work has been criticised for the amount of energy that is necessary to make the
protocol work. Later, alternative protocols have been proposed like proof of stake, proof of
storage, proof of authority, and many more.

Proof of Stake

Proof of stake (PoS) was first implemented in the Peercoin protocol [31]. This protocol
foregoes the energy-intensive computations of PoW and selects the next block validator
pseudorandomly, where the probability of being chosen is proportional to the validator’s
stake in the network. The largest stakeholders have the highest motivation to prevent
the 51 % attack, as they have the most to lose if the trust in the network diminishes. If
a malicious validator validates an invalid transaction, then they will lose a part of their

13

stake (so-called slashing), creating an incentive for honesty and maintaining the integrity
of a network.

Probably the most notable example of a network using PoS is Ethereum, which switched
from PoW to PoS in 2022.

Proof of Authority

Proof of authority (PoA) is a consensus mechanism based on a list of trusted validators that
are allowed to validate transactions and are often selected based on their reputation in the
network. It is used mostly in private blockchains since if the number of trusted validators
is low, it allows a certain degree of centralisation.

2.5.1 Smart Contracts

The first blockchain platforms were generally based on the exchange of currency. With
the increase in popularity, came the need for more complex logic to be executed on the
blockchain. This need led to the development of smart contracts, which are, in essence,
programs stored and executed on the blockchain.

Predating the rise of smart contracts as we know them today, Bitcoin laid the ground-
work with its Bitcoin Script language. This stack-based language provided a simple set of
instructions dictating conditions how a transaction output can be spent. This simplicity
came at the cost of limited functionality for complex applications.

The first smart contract platform is generally considered to be Ethereum, launched in
2015. It introduced the concept of smart contracts as terms of agreement written directly
into code using a Turing-complete programming language. The smart contracts were to
be executed inside an environment called Ethereum virtual machine (EVM), which de-
fined a set of possible operations and ensured reproducible execution. This allowed the
birth of so-called dApps (decentralised applications) and DAOs (decentralised autonomous
organisations). Ethereum has paved the way for a plethora of decentralised innovation and
applications within the blockchain and cryptocurrency space.

2.6 Secure Multi-party Computation
Secure Multi-party Computation (SMPC) [20] is an area of cryptography focusing on coop-
erative computation between two or more untrusted parties, or even between competitors,
while keeping their inputs of computation private.

As an example, we can consider multiple banks that want to collaborate to identify
fraudulent transactions. One solution would be to use a trusted third party to gather
all customer data across all banks and produce a model based on the data. Alternatively,
banks could use SMPC to create a shared model identifying fraudulent transactions without
compromising individual customer’s data and without having to rely on a third party which
has to be trusted by all of the involved banks.

There are multiple cryptographic principles that we can use in SMPC, but one of the
most common is homomorphic encryption. Homomorphic encryption allows some oper-
ations to be performed on the encrypted data without having to decrypt it first. If we
consider, for example, additive homomorphism, it applies:

𝐸(𝑃1) + 𝐸(𝑃2) = 𝐸(𝑃1 + 𝑃2) (2.2)

14

If there exists a suitable scheme that supports all the necessary operations, the computa-
tion can be performed on the encrypted data, providing security guarantees and facilitating
SMPC.

2.7 Cryptographic Commitments
Cryptographic commitment is a concept that involves locking into a value without having
to reveal the value itself yet. One of the ways to implement cryptographic commitments is
to use a cryptographic hash function to bind a value to a specific representation without
disclosing the value.

The process involves two phases – the commit phase and the reveal phase. During
the commit phase, the committing party generates a random nonce 𝑟, appends it to the
commitment value 𝑣, and sends its digest 𝐻(𝑣||𝑟) to the other party. 𝐻(𝑣||𝑟) is referred to
as a commitment. The first preimage resistance property of the hashing function prevents
the other party from learning the value 𝑣 or 𝑟 (hiding property), and at the same time the
second preimage resistance property of the same function provides the binding property.
In the second phase – the so-called reveal phase – the committing party discloses the value
of 𝑟 and 𝑣, allowing the other party to verify whether the commitment received earlier was
valid by calculating 𝐻(𝑣||𝑟).

This process can be demonstrated on a simple example – a game of Rock paper scissors
over a network. Two players are trying to play without a third party. Since perfect time
synchronisation over this network is impossible, one of the players might receive the decision
of the other player in time to change their own decision so that they win. To prevent this,
we can force both players to commit to rock, paper, or scissors before any of the players
reveal their choice (Figure 2.9).

Player A Player B

H(elemA, rA)

H(elemB, rB)

elemA, rA

elemB, rB

commit phase

reveal phase

Figure 2.9: A fair game of Rock paper scissors over a network implemented using cryp-
tographic commitments. Values 𝑟𝐴 and 𝑟𝐵 represent the nonces and 𝑒𝑙𝑒𝑚𝐴 and 𝑒𝑙𝑒𝑚𝐵

represent the rock/paper/scissors choice.

Among the many applications of cryptographic commitments, there are zero-knowledge
proofs, electronic voting, time-locking of digital funds, and smart contracts.

2.8 Polynomials
A polynomial (Figure 2.10) is a mathematical expression consisting of variables with non-
negative integer exponents and coefficients. Cryptographic proofs often use polynomials as
a medium of the proof, since they can efficiently represent large amounts of data.

15

𝑥3 − 3𝑥2 − 𝑥+ 3

−5 −4 −3 −2 −1 1 2 3 4 5

−5

−4

−3

−2

−1

1

2

3

4

5

Figure 2.10: A polynomial is a mathematical expression that can be represented as a curve
on a graph.

2.8.1 Degree of a Polynomial

Degree of a multivariate polynomial is defined as the largest sum of the variable exponents
of all terms2. From now on we will only consider single variable polynomials, where the
degree will be defined as the largest variable exponent in the polynomial.

The fundamental theory of algebra states that a single-variable polynomial 𝑓 of degree
𝑑 can have at most 𝑑 intersections with the x-axis, thus 𝑑 real roots. If we consider complex
domain, each solvable polynomial has exactly 𝑑 roots3.

Two polynomials 𝑓 and 𝑔 both of degree 𝑑 have at most 𝑑 intersections. This can be
proved by defining a polynomial ℎ = 𝑓 − 𝑔. When two polynomials 𝑓 and 𝑔 intersect for
some 𝑥 their evaluation is equal: 𝑓(𝑥) = 𝑔(𝑥), rearranged 𝑓(𝑥) − 𝑔(𝑥) = 0. Thus, the
newly created polynomial ℎ roots correspond to the intersection points. The polynomial ℎ
can have a degree (therefore roots count) of at most 𝑑 since no multiplication operations
have been carried out to increase the degree. This shows that two polynomials of degree 𝑑
cannot have more than 𝑑 intersection points.

2.8.2 Constructing Polynomials

Polynomials are very useful for representing information. An example of this are Reed-
Solomon codes [47] where a message is represented by points through which a polynomial
is threaded. The polynomial is then sampled at additional points to create redundancy
and achieve error detection and error correction capabilities when sending a message over
an unreliable channel.

There are multiple ways to convert points into polynomials – namely Fast Fourier trans-
form (FFT) and Lagrange interpolation. Let us shortly describe the latter method, since
it is simpler.

2The degree of 𝑓(𝑥, 𝑦) = 𝑥2𝑦2 +𝑥3 + 𝑦2 +3𝑥𝑦2 will be 4 since it’s the largest sum from the list (4, 3, 2, 3)
representing the sum of all variable exponents per each term in the polynomial left to right.

3The polynomial 𝑓(𝑥) = 𝑥2 + 1 has zero real roots, but two complex roots: 𝑥1 = 𝑖 and 𝑥2 = −𝑖.

16

−2 −1 1 2 3 4 5 6 7 8

−2

−1

1

2

3

4

5

6

7

8

Figure 2.11: Lagrange interpolation with points {(0, 3), (1, 5), (3.5, 1), (5, 3)}. The red
curve passes through all four points and is created by summing a partial polynomial (drawn
with a transparent colour) for each point.

Lagrange Interpolation

Lagrange interpolation for 𝑛 points (𝑥𝑖, 𝑦𝑖) for 𝑖 ∈ {1, ..., 𝑛} representing some message
consists of finding 𝑛 polynomials 𝑝𝑖, one for each point, and adding them to receive the
final polynomial representing the entire message. The trick is to choose 𝑝𝑖 in such a way
that its evaluation is zero for each point in the message except the i-th point. This can be
achieved simply by setting 𝑥𝑗 as roots of 𝑝𝑖, 𝑗 ∈ {1, ..., 𝑛}, 𝑖 ̸= 𝑗. A graphical example of
this can be seen in Figure 2.11.

Unisolvence Theorem

Given a message of 𝑛 points (𝑥𝑖, 𝑦𝑖), 𝑖, 𝑗 ∈ {1, ..., 𝑛} and for 𝑖 ̸= 𝑗 it holds that 𝑥𝑖 ̸= 𝑥𝑗
then ∃!𝑓 : 𝑑𝑒𝑔(𝑓) < 𝑛 where 𝑓(𝑥𝑖) = 𝑦𝑖. The polynomial 𝑓 is called Lagrange (low-degree)
polynomial and can be found using Lagrange interpolation.

Low-degree polynomials and their detection is an important part of zero-knowledge
protocols (described in Section 3.1), since they rely on knowledge of a message represented
by a polynomial and exchange of polynomial evaluations between the parties. If we forego
low-degree polynomial testing in those protocols, a malicious party could abuse the protocol
by using high-degree polynomials, which can be shaped to fit constraints put up to prevent
false proofs.

17

Chapter 3

Offloading Techniques

Two of the most common techniques for secure delegation of work and storage to entities
outside of the blockchain are zero-knowledge proofs and cryptographic accumulators.

3.1 Zero-knowledge Proofs
A zero-knowledge (ZK) protocol [11] is performed between two parties – the prover and the
verifier. The prover is trying to convince the verifier that some statement is true without
revealing any additional information about the statement. A zero-knowledge proof must
satisfy the following three properties:

• Completeness – If the statement is true, an honest verifier will be convinced by
an honest prover.

• Soundness – If a malicious prover tries to prove a false statement, an honest verifier
will not be convinced with sufficiently high probability.

• Zero knowledge – Proving the statement will not reveal any other information about
the statement (except truthiness) to the verifier.

Let us explore the soundness property more and talk about what it means to be con-
vinced with a sufficiently high probability. We will consider an abstract example of a zero-
knowledge protocol about two balls and a colour-blind friend. We will be taking a role of
prover who has two balls – one blue, one yellow – who is trying to convince our colour-blind
friend (the verifier) that those two balls are distinguishable. We will want to prove that we
can distinguish them, but we do not want to reveal which is blue and which is yellow to
the verifier.

The protocol will consist of the verifier taking both balls and holding one in each hand,
hiding them behind their back, and possibly swapping them. The verifier will remember
whether he swapped them or not. The job of the prover is to say whether they were swapped
or not based on the colour vision he is trying to prove. If a prover correctly identified
whether the swapping occurred or not, the verifier is now convinced with a probability of
50 % that the prover can distinguish colours.

Now, they can repeat the protocol for as many rounds 𝑟 as it takes to convince the
verifier with sufficiently high probability 𝑝, where 𝑝 = 1 − 0.5𝑟. Unfortunately, we will
never be able to prove the statement with 100 % certainty, but this is generally acceptable
with zero-knowledge proofs in practice.

18

In general, the exact properties of zero-knowledge proofs depend on the particular pro-
tocol used, but they generally provide some of the following benefits:

• Succinctness – Proof size is much smaller than the actual statement it is proving,
therefore, both network bandwidth and storage can be saved.

• Enhanced privacy – No additional information about the statement must be shared
except the truthfulness of the statement. As an example, we can consider the Bitcoin
protocol. In it, each input and output of a transaction amount is publicly known.
Bulletproofs [14], a cryptographic technique for range proofs, could be used by a trans-
actor to prove that they have sufficient funds to perform a transaction without having
to disclose the exact amount of Bitcoin (BTC) they own nor the amount that is trans-
acted.

• Performance – A party can prove to other parties that a computation was performed
correctly using a zero-knowledge proof, thus the other parties do not need to rerun
the computation, they just need to verify the proof, which is often computationally
much cheaper. The efficiency gains of the ZK proofs increase linearly with the number
of validators [11].

3.1.1 Zero-knowledge Arguments

A zero-knowledge argument is very similar to a zero-knowledge proof with a single important
distinction – ZK proofs are resistant against an adversary with computationally unbounded
resources, as opposed to a computationally bounded adversary in ZK arguments. Most
conventional ZK arguments are based on cryptographic hash functions, which have the
property of finite co-domain. This means that a computationally unbounded adversary is
guaranteed to find a hash collision after hashing at most 𝑛+ 1 different inputs, where 𝑛 is
the cardinality of the hash function co-domain (Pigeonhole principle).

3.1.2 Zk-SNARKs

Zk-SNARK [43] is a type of zero-knowledge proof developed in the early 2010s. SNARK
stands for Succinct Non-interactive Argument of Knowledge and, as the name implies, it
allows production of proofs which are very short in comparison to the original statement
being proven and are also fast to verify. Non-interactivity allows prover to send a proof to
the verifier in a single message without needing to communicate back-and-forth, as is the
case with interactive proofs, such as zk-STARKS. On the other hand, one of the drawbacks
of SNARKs is the necessity to perform the so-called trusted setup. The security aspects of
trusted setup are discussed in Section 3.1.4.

The process of obtaining SNARKs typically starts with a program in a high-level lan-
guage, such as Rust or ZoKrates. The ability to use a particular language and the re-
strictions applied depend on the compiler used. Examples of popular SNARK compilers
include Zokrates (Section 4.3), zkLLVM (Section 4.6) and Circom. The compiler converts
the source program into an arithmetic circuit by mapping each operation to its arithmetic
equivalent.

Arithmetic circuits are used to represent computations using mathematical operations,
specifically addition and multiplication. They consist of nodes (gates) and edges between
them. Each gate performs an arithmetic operation, while each wire transports a value
between nodes. The gates perform operations on the inputs they receive, and the results are

19

passed through the circuit until the final output is obtained. An example of an arithmetic
circuit is shown in Figure 3.1 along with the next step of SNARK computation, which is
the conversion into Rank 1 Constraint System (R1CS).

R1CS represents the program in a system of linear equations which capture the relation-
ships between the inputs, intermediate values, and outputs. R1CS provides a standardised
way to represent computations used in SNARK proofs. This allows different programming
languages and compilers to target R1CS, making it easier to develop interoperable solutions
and perform audit.

Problem
x^3+x+5 == 35

Arithmetic Circuit

x

5

x

x

+

+

x

x

x

s . a * s . b - s . c = 0

Rank 1 Constraint System (a,b,c)

[1, x, out, sym1, y, sym2]

Quadratic arithmetic

program

out

sym2

y
sym1

ax^n + ... + bx + c = 0

Figure 3.1: Transition of a computation to zk-SNARK.

Zero-knowledge

The result is a zero knowledge proof, however, only from the point of view of the prover.
The verifier can still extract knowledge from the two polynomials sent by the prover. To
combat this, shifting the values is also used on the prover’s side.

Non-interactiveness

The obvious problem is that we require a single trusted entity to create a setup completely
randomly and not to store the secrets. One way to solve this problem is to create a composite
trusted setup involving multiple parties. Here, each participant will create their setup, and
the resulting used one is a combination of all those involved. The cryptographic pairing
described above creates this combination. Moreover, we use the resulting pairing of all the
individual setups as the final setup, which enables the creation of a setup that only requires
a single party from the creators to be honest and delete their secrets.

3.2 Zero-knowledge proofs of computation
To prove the execution of a computation, we first need to express the computation function
in polynomials. However, first, we must restrict the problems to only the problems that
polynomially expressed functions can calculate.

NP-complete problem is a problem within an NP class to which every other problem
in the NP class is reducible [14]. As an NP-complete problem, SAT is reducible to the
problem of evaluating polynomials [29] therefore, the polynomial evaluation also belongs
to the NP class and by itself is NP-complete. Furthermore, polynomials can express any
problem within the NP class.

The process of expressing operations through polynomials is shown in Figure 3.1. By
adding variables as constants to polynomials, we can create simple logic components that
build equations describing the function. Moreover, to turn it into a proof of computation,

17

Figure 3.1: Steps of transforming a mathematical problem into a zk-SNARK. Retrieved
from [48].

3.1.3 Zk-STARKs

Zk-STARK (Zero-knowledge Succinct Transparent Argument of Knowledge) [8, 10] is a zero-
knowledge proof system proposed in March 2018. They are similar to zk-SNARKs but offer
several advantages, including transparency and post-quantum security. STARKs eliminate
the need for trusted setups that introduce a potential vector for an attack. STARKs
do not rely on the hardness of factoring large prime numbers or the discrete logarithm
problem, which are vulnerable to Shor’s algorithm, which can be run efficiently on quantum
computers.

On the other hand, STARKs typically offer a larger proof size and require interactive
communication during the proving. The latter can be remediated by using a Fiat-Shamir
transform discussed in the following sections along with a walk-through of a simple STARK

20

proof. To understand a zk-STARK proof, we need to describe three major parts of it, and
those are problem definition and computational integrity conditions definition, problem
arithmetisation and low-degree testing.

Problem Definition and Computational Integrity Statement

Let us consider a simple example of a sequence 𝑋 of 𝑁 non-negative integer elements
𝑥𝑖, 𝑖 ∈ {0, 1, ..., 𝑁 − 1}. The prover wants to prove to the verifier that he knows a sequence
containing only zeroes and ones. If we were to describe this condition with a polynomial,
it would look like this:

𝑥𝑖 · (𝑥𝑖 − 1) = 𝑥2𝑖 − 𝑥𝑖 = 0 (3.1)

This is our computational integrity (CI) statement that we as a prover want to prove
to the verifier without having to reveal any additional information about our sequence.

Problem Arithmetisation

The second step consists of transforming the problem into an algebraic realisation so that
we can reason in the natural numbers. As with many cryptography problems, we will not
work in the Euclidean space, but rather over a finite (Galois) field.

The trace is an evaluation of some polynomial 𝑓 for some 𝐸 ⊂ 𝐹 where |𝐸| = 𝑁 . We
define a generator 𝑔 of the cyclic subgroup 𝐺 of multiplicative group 𝐹/{0}, where 𝐹 has
a size of a prime number. The size of 𝐺 is 𝑁 . The prover then maps the elements of
sequence 𝑋 to the subgroup 𝐺, which are defined by the generator 𝑔:

𝑓(𝑔𝑖) = 𝑥𝑖, 𝑖 ∈ {0, 1, ..., 𝑁 − 1} (3.2)

The next step involves finding the polynomial 𝑓 . In Section 2.8.2 we defined two meth-
ods for polynomial construction which were Lagrange interpolation and the Fast Fourier
transform. In general, there exists an infinite number of polynomials that can satisfy given
constraints, but only one of them is low-degree as discussed in Section 2.8.2.

So far we have defined mathematical constraints that hold if the statement is true, but
for now the verifier could just evaluate the trace at each point and found out the original
data, which would not help with succinctness nor zero-knowledge properties. That is why
the next step is to evaluate the polynomial on a larger domain, which creates a Reed-
Solomon correction code. This involves selecting 𝐿 where 𝐺 ⊂ 𝐿 ⊆ 𝐹/{0}, such that
𝑓 : 𝐿 → 𝐹 , and evaluating 𝑓 on 𝐿.

By combining Equation 3.1 and Equation 3.2 we receive:

𝑥2𝑖 − 𝑥𝑖 = 0 =⇒ 𝑓(𝑔𝑖)2 − 𝑓(𝑔𝑖) = 0, 𝑖 ∈ {0, 1, ..., 𝑁 − 1} (3.3)

From this, the prover then derives a composition polynomial 𝑝, which is the final step
of the arithmetisation process. The interactive protocol between the prover and the verifier
consists of the prover first committing to 𝑝 and 𝑓 and then querying for values of 𝑝 and
𝑓 and checking if they fit the commitment and the required conditions. If a prover used
a polynomial 𝑓 ′ which is not low-degree, they would be able to cheat and prove false proofs.
That is why low-degree testing is a part of the proving protocol.

21

Low-degree Testing

Low-degree testing uses Fast Reed-Solomon Interactive Oracle Proof of Proximity (FRI)
protocol [7] to reduce the dimensionality of the problem by halving the degree of a polyno-
mial that represents it in each iteration. After a certain number of iterations 𝜆 a constant
is reached. There exists an upper bound on 𝜆 which decides whether the original polyno-
mial was of low degree with a certain probability. This algorithm has a time complexity of
𝑂(log 𝑛) where 𝑛 is the number of data points that our polynomial is describing.

Fiat-Shamir Transform

The interactive property of STARKs is not always beneficial and could lead to efficiency
and scalability problems. Fortunately, there is a way to transform an interactive proof of
knowledge to a non-interactive one using a technique known as the Fiat-Shamir transform,
which utilises a cryptographic hash function to produce pseudo-random queries from the
transcript of a protocol up to that point [10].

To visualise the Fiat-Shamir transform [11], let us consider a game of Sudoku played by
the prover. Prover wants to convince the verifier that they have solved the game without
revealing the solution. Both the prover and the verifier know the initial given numbers.
A Sudoku solution can be validated by checking the following three types of constraints:

• Each row contains distinct digits.

• Each column contains distinct digits.

• Each 3× 3 block contains distinct digits.

Since the Sudoku grid contains 9 rows, 9 columns, and 9 blocks, the total number of
constraints to check is 27. For the sake of example, let us say that instead of writing the
digits on paper, we solved the game by placing tokens numbered on one side with 1 to 9
on a grid, and we turned them face-down so that the verifier cannot see the numbers inside
the grid (intial given numbers are visible). The verifier could only ask for the contents of
a row, column, or block, to verify only one of the 27 constraints at a time (Figure 3.2).
The prover would pick up all tokens from the selected row, column, or block, scramble
them, and give them to the verifier to check if they are distinct. Afterwards, the tokens
would be returned to the grid face-down. If the solution is valid, the condition will hold. If
the solution is not valid, there is a chance that this particular constraint would still hold
true. This could be repeated for multiple rounds and constraints to increase the certainty
of catching a malicious prover.

This protocol requires interactivity since the prover is responding to verifier’s queries
for multiple rounds. We could turn this protocol into a non-interactive one using the Fiat-
Shamir transformation (heuristic). This requires the prover to commit to the solution, so
that they cannot change the solution in-between the querying rounds (Figure 3.3). This
can be performed, for example, using a Merkle tree (Section 2.4.3). The prover creates
a hash of each row, column, and block and joins the hashes into a Merkle tree and finally
computes the Merkle root. Sharing the Merkle root with the verifier will prevent prover
from changing the Sudoku solution during the querying, since before that, prover could
easily create a solution that is invalid but satisfies the single-queried condition.

Fiat-Shamir transformation would consist of the following steps:

22

4 1 2
5 8 3

2 5 9

9 6 3
4 7 2

6 3

8 5 7
1 6 9

4 1 8
6 7 1
8 3 4

5 8 4
2 1 9

3 9 2
6 7 5

1 2 7
3 6 8
9 4 5

3 4 5
7 9 1
8 2 6

9 8 6
5 2 4
7 3 1

7 9 6 1 5 8 2 4 3
7

Figure 3.2: An example of a solved Sudoku, where the digits in bold correspond to the
initial given numbers. In our example the tokens which are part of the solution are placed
face down so that the verifier does not see them. The verifier can request to see the tokens
of a row, a column or a 3× 3 block. Prover will pick the nine tokens from the grid, scramble
them and give them to the verifier, who will check if the tokens have distinct digits.

1. Prover would convert the Merkle root into a number between 0 and 26 using modular
arithmetic (remember, this conversion is part of the protocol that is agreed upon
before).

2. The number between 0 and 26 represents the condition to be queried.

3. We have now pseudo-randomly (but deterministically) produced a query without
having to interact with the verifier.

4. We repeat this algorithm from step one until we have performed enough rounds. We
will append the result of the query to the Merkle root and hash it before receiving
a number between 0 and 26 in step one, otherwise we would receive the same query.

Commitment

Prover Verifier Prover Verifier
Challenge

Response

Fiat-Shamir
Heuristic

Commitment

H(Commitment)

Response

Figure 3.3: Fiat-Shamir heuristic (transformation) converts interactive proof to a non-
interactive one. Function 𝐻 represents a hashing function. Adapted from [29].

23

We were able to substitute the role of an interactive verifier using Merkle trees for
commitments and modular arithmetic to select queries, thus converting an interactive proof
into a non-interactive one.

3.1.4 Comparison of SNARKs and STARKs

Both STARKs and SNARKs are zero-knowledge protocols which allow one party to prove
a statement to another party succinctly and without having to reveal any further infor-
mation about the statement aside from the statement’s truthfulness. One of the inherent
disadvantages of SNARKs is the necessity of initial setups (trusted ceremonies), which pose
a security risk – the initial key generation must take place within a secure environment,
since the generation of keys produces data often referred to as toxic waste which can be
used to generate false proofs [57]. The impact of this disadvantage is greatly reduced by
the ability of keys to be generated using SMPC (Section 2.6) where the responsibility is
shared among all participants in the setup. If at least one of the participants is honest
and deletes their part of the toxic waste, then no false proof can be generated anymore.
SNARKs are considered to be more efficient and faster compared to STARKs, while also
benefiting from a smaller proof size and a shorter verification time [17]. Their differences
are also summarised in Table 3.1.

SNARKs STARKs
Primary cryptographic mechanism Elliptic curves CHFs

Interactive No Yes
Require initial setup (ceremony) Yes No

Believed to be post-quantum secure No Yes

Table 3.1: Comparison of properties of two popular zero-knowledge protocols.

3.2 Cryptographic Accumulators
A cryptographic accumulator [42] is a data structure used for set membership tests that
can be used as an alternative to search-based approaches – linear search in an unsorted
list of elements (time complexity of 𝑂(𝑛)), binary search in sorted list or search tree-based
approaches (time complexity of 𝑂(log 𝑛)) or hash tables (time complexity of 𝑂(1) under
certain conditions), where 𝑛 is the size of the list.

Cryptographic accumulators use cryptographic primitives in order to achieve sublinear
time complexity for set-membership operations. They also provide the benefit of allowing
proof memberships without having to reveal the actual members of a set, which is a property
used in privacy preserving applications.

3.2.1 Classification

Depending on whether the accumulators use symmetric or asymmetric cryptography, they
are classified as symmetric or asymmetric. Symmetric accumulators are able to verify mem-
bership of an element without having to generate a witness after every inserted element.
An example of a symmetric accumulator would be the Bloom filter (Section 3.2.2), which
uses 𝑘 hash functions to select which of the 𝑚 bits should be set to one. Its false negative
rate is zero, but the false positive rate grows with the number of accumulated elements.

24

Asymmetric accumulators are typically (but not always) built on asymmetric cryptogra-
phy and require witness creation and update for dynamic verification of set membership.
An example of an asymmetric accumulator would be the RSA accumulator (Section 3.2.4)
that uses exponentiation and modular arithmetic.

Certain applications do not require the accumulator to perform both membership and
non-membership tests. Accumulators that can only provide membership-proof for the ele-
ments they have accumulated are called positive accumulators. On the other hand, an accu-
mulator able to perform only non-membership proof for non-accumulated elements is called
negative accumulator. If an accumulator is both positive and negative, it is referred to as
a universal accumulator.

If an input of an accumulator can change in time, it is called dynamic accumulator,
otherwise it is called static accumulator. Additive accumulators can only add new elements,
and subtractive accumulators can only remove input elements.

3.2.2 Bloom Filters

Bloom filter (Figure 3.4) [51] is a probabilistic data structure that allows a set to be saved
in a space-efficient way. This structure consists of an 𝑚 bit array and 𝑘 hash functions
with output in the range [0,𝑚− 1]. Initially (with the filter containing zero items), all bits
are set to zero. The structure allows for set membership queries which can result in false
positives but cannot result in false negatives. In other words, the two possible results of
the query are “definitely not in set” or “possibly in set”. The false positive rate increases
with the number of accumulated elements.

Insertion of an element involves applying all hash functions to the input and receiving
𝑘 indices into the bit array. The bits in the places of the 𝑘 indices are set to one1. It can be
easily seen that the insertion operation is idempotent, as would be expected when working
with sets.

Querying for an element is performed by applying all hash functions to the input ele-
ment, receiving 𝑘 indices, and checking if all bits in the indices are set to one. If at least one
of the indexed bits is zero, then the element is definitely not in the set. All bits containing
ones mean a high probability that the element is in the set. We cannot say with complete
certainty that an element is in a set, since two situations could have occurred:

• There is an element already in the set with a hash collision for all 𝑘 hash functions
occurring at once (if we consider the output distribution of all hash functions to be
uniform and independent of other hash functions, the probability of two elements
colliding in all hash functions is 1/𝑚𝑘).

• Multiple previously added elements caused all bits of the queried element to be set to
one. We can consider this extreme case – if the distribution of all hash functions is
uniform along the whole bit field, and we keep inserting distinct elements, eventually
all the bits in the filter will be set to one, thus querying for any element will yield
a positive result.

Statistical dependence of the false positive rate 𝐹𝑃𝑅 on 𝑘 and 𝑚 and the number of
accumulated elements 𝑛 is [42]:

1Note that sometimes two or more hash functions may yield the same result, and therefore set the same
bit to one twice.

25

𝐹𝑃𝑅 = (1− [1− 1

𝑚
]𝑘𝑛)𝑘 ≈ (1− 𝑒

−𝑘𝑛
𝑚)𝑘 (3.4)

Bloom filters are a very important tool for storage optimisation, used (not only) in
blockchains. For example, in the Bitcoin protocol, Bloom filters are part of the block header
and are used to encode transactions within a block2 – a user who searches for a transaction
on a Bitcoin blockchain first queries the filter to see if the transaction is possibly within
the block checked currently. Although not perfect, thanks to Bloom filters the user has to
inspect only a small fraction of blocks.

Figure 3.4: Overview of a Bloom filter with three hash functions and their indices for
various elements. If we were to insert 𝑥 and 𝑤 into the Bloom filter and then query for 𝑦,
we would get a positive result, even though 𝑦 is not in the set. Retrieved from [51].

3.2.3 Cuckoo Filters

Cuckoo filters are made up of 𝑚 buckets and use two hash functions to map and item
to two indices. The buckets store a fingerprint of an item, typically a hash. The items
fingerprint can be located at either of the two indices given by the lookup function. If the
buckets in both indices are occupied, the fingerprints are rearranged (Figure 3.5) so that
each fingerprint is located in one of their assigned indices. If they cannot be rearranged,
the two lookup functions are altered and the structure is regenerated. In contrast to Bloom
filters, cuckoo filters also allow the deletion of set items.

3.2.4 RSA Accumulator

An RSA accumulator [9] is an asymmetric accumulator that uses modular exponentiation
similar to the RSA cryptosystem. In a simple RSA accumulator, the modulo value 𝑁 is
calculated as the product of two large prime numbers 𝑝 and 𝑞. To accumulate (insert)
a value 𝑥, the new value 𝑎𝑐𝑐𝑛 of the accumulator is calculated as follows:

𝑎𝑐𝑐𝑛 = 𝑎𝑐𝑐𝑥𝑛−1 mod 𝑁 (3.5)

where 𝑎𝑐𝑐𝑛−1 is the previous value of the accumulator. Unfortunately, RSA accumula-
tors are collision-free only when accumulating prime numbers3 unless we map input elements
onto primes.

2For details, see BIP-37 (https://github.com/bitcoin/bips/blob/master/bip-0037.mediawiki).
3When accumulating the numbers 2 and 6 we would receive the same accumulator value as if we accu-

mulated 3 and 4.

26

https://github.com/bitcoin/bips/blob/master/bip-0037.mediawiki

Figure 3.5: Insertion of an element 𝑥 into a cuckoo filter. Since none of the buckets were
empty, the existing items had to be rearranged. Retrieved from [42].

3.2.5 Merkle Tree Accumulator

A Merkle tree (Section 2.4.3) structure can be used as an accumulator [28] by treating
the leaves as the elements that are being accumulated. The root of the tree serves as
the accumulator value, which means that the value is constant in size regardless of the
number of accumulated elements. This would be classified as an asymmetric accumulator
because a set member needs a witness for membership proof, although does not use any
asymmetric cryptographic primitives. The witness corresponds to the Merkle path of the
queried element, and its size is logarithmic to the number of accumulated elements.

3.2.6 Evaluation and Applications

Cryptographic accumulators are data structures that provide efficient aggregation and ver-
ification of a large set of elements. Their uses can be divided into two categories – storage
efficiency applications and privacy preserving applications.

The former category includes applications such as the use of Bloom filters by Bitcoin
to simplify the lookup of a transaction inside the blockchain. These applications utilise
the data compression ability of the accumulator without having additional security require-
ments. Since the accumulator uses fewer bits to represent the accumulated element than
bits used to represent the original data, it creates the possibility of collisions, leading to
being able to query for elements that were not accumulated (shown in Figure 3.4). The false
positive probability is proportional to the number of accumulated elements and inversely
proportional to the size of the accumulator (Figure 3.6).

Their usage in the privacy-preserving category requires balancing trade-offs between
security and performance savings as required by their intended application. To prevent
manipulation of the accumulated data, the data structure must ensure that it is infeasi-
ble to find two distinct sets of elements that produce the same accumulator value. The
membership or non-membership proofs have to be unlinkable, so that an adversary cannot
deduce any information about the contained elements even if multiple proofs are observed.
Thanks to these properties and especially the inability of extracting the accumulated ele-
ments, cryptographic accumulators are an integral part of many privacy-preserving schemes
including, but not limited to anonymous credential systems [3, 15, 34], group signatures
[15], ring signatures [41] and fail-stop signatures [6].

27

Figure 3.6: The false positive probability 𝑝 as a function of number of elements 𝑛 and the
size 𝑚 of a Bloom filter with optimally selected number of hashing functions 𝑘. Retrieved
from [27].

28

Chapter 4

Existing Technologies and
Applications

This chapter discusses existing technologies utilising storage or computation offloading using
cryptographic techniques mentioned in the previous chapters, with heavy emphasis on zero-
knowledge protocols.

4.1 Trusted Execution Environments
A Trusted Execution Environment (TEE) [38] is a secure area of CPU and memory pro-
tected from the rest of the system by a layer of encryption, which protects the area (the
so-called secure enclave) from unauthorised access and manipulation. This technology pre-
vents the reading of data outside the TEE by unauthorised parties, achieving confidentiality.
Code integrity provides guarantees that code inside TEE has not been tampered with by
unauthorised parties. Some TEEs provide a capability called attestation, which can be used
to remotely prove that a particular program is running inside a secure enclave.

The use of TEEs in blockchain can provide an extra layer of security for critical tasks
such as signing transactions or can improve the scaling of blockchain by offloading some
computations to the secure enclave. Thanks to their properties, TEEs can functionally
replace zero-knowledge proofs, fully homomorphic encryption, or secure multiparty compu-
tation.

The most notable examples of TEE platforms are the Intel SGX (Software Guard Ex-
tensions) technology, which is implemented on the hardware level, and AWS Nitro, which
is a software TEE.

4.2 Bitcoin Lightning Network
The Bitcoin network can only handle about seven transactions per second, which is nowhere
comparable to online merchants such as Visa, which could handle 65 000 transactions as of
August 20171. This leads to high transaction fees and slowness of the network with regard
to transaction confirmation.

The obvious solution would be to either increase the block size to accommodate more
transactions inside each block. This is a controversial topic because increasing the block

1According to https://www.visa.co.uk/dam/VCOM/download/corporate/media/visanet-technology/
aboutvisafactsheet.pdf.

29

https://www.visa.co.uk/dam/VCOM/download/corporate/media/visanet-technology/aboutvisafactsheet.pdf
https://www.visa.co.uk/dam/VCOM/download/corporate/media/visanet-technology/aboutvisafactsheet.pdf

size would mean higher storage requirements (even without this, the Bitcoin blockchain is
now more than half a terabyte large), which means that fewer users could afford setting up
a node, leading to higher centralisation. Although this did not stop the inception of Bitcoin
Cash – a hard fork of Bitcoin that changed the block size from Bitcoin’s 1 MB to 32 MB.

Another obvious solution would be to decrease the block time – this would lead to
blocks being created faster, increased throughput, and decreased transaction latency of the
network. The problem with this solution is that the new blocks might not be propagated
quickly enough throughout the network and might lead to unwanted forking. Thus, mul-
tiple more involved solutions were proposed to speed up the network, one of which is the
Lightning network.

Lightning network [46] is a layer-2 protocol built on top of Bitcoin. It provides a way
between two parties to transact securely repeatedly without having to write each transaction
to the blockchain. The only interactions necessary with the Bitcoin blockchain are the
opening and closing of channels.

Let us say that two parties Alice and Bob want to exchange Bitcoins regularly. To
save transaction fees and speed up exchange, Alice creates a Lightning network channel
and deposits 1 BTC into a multi-signature wallet that represents the channel. A channel
balance sheet is generated that tracks the amount of currency within the channel, with
Alice having 1 BTC that she deposited. Changes in this balance sheet are not tracked on
the blockchain, but each transaction within the channel must be signed by both parties.
Alice and Bob each have a signed copy of the most recent balance sheet and can each
whenever decide to close the channel and withdraw the Bitcoin amount written in the most
recent balance sheet from the multi-signature wallet. The whole interaction is summarised
in Figure 4.1.

Figure 4.1: Summary of how Lighting network is used. The only necessary interaction with
the blockchain is in steps “Establish channel” and “Close channel”. Retrieved from [56].

Due to the transitive nature of channels, two exchanging parties do not always have to
create a channel directly, but could utilise a chain of users within the Lightning network
mesh (Figure 4.2).

30

Figure 4.2: Example topology of Lightning network. The image shows one direct (in green)
and two indirect connections (in yellow and blue) of users using channels. Retrieved from
[56].

The only two operations that write to the blockchain and can be examined publicly are
the opening of a channel together with the initial charge amount, multi-signature wallet
address, and depositor address and closing of the channel with settlement amounts.

In a 2021 Bitcoin update nicknamed Taproot, the network switched to Schnorr signa-
tures, which make multi-signature transactions indistinguishable from simple transactions
in terms of on-chain footprint [16].

Lightning network uses watchtower, which is a service that detects and prevents fraud in
the network. If a node breached a channel (using an out-of-date commitment transaction),
they would receive a penalty.

Thanks to the Lightning network, two parties can exchange Bitcoins faster and with
much smaller fees. With it, the calculations within the channel need to be performed only
on two nodes instead of the whole Bitcoin network, which reduces the Bitcoin network load.
The decrease in number of transactions is hard to empirically express, since the channel
transactions are not public, but even if we consider that each Lightning channel sees ten
transactions before closing, the decrease of on-chain transactions is fivefold.

4.3 ZoKrates
ZoKrates [21, 57] is an open-source library written in Rust, providing tools for working
with zk-SNARKS. This library includes support for arithmetic circuit compilation and the
generation of zk-SNARKs. Generated proofs can be verified directly using the library or
by exporting a verification smart contract that can be deployed on the Ethereum network.

ZoKrates provides a domain-specific high-level language for describing arithmetic cir-
cuits. Its syntax can be observed by inspecting Figure 4.3 and Figure 4.4.

Here are listed individual ZoKrates commands in order that they are typically used to
generate a proof:

• A ZoKrates source file (typically denoted with .zok extension) is compiled into
an arithmetic circuit using zokrates compile command.

• The command zokrates compute-witness along with the proof parameters is exe-
cuted by the prover to create a witness file.

31

• The verifier creates a pair of keys using zokrates setup and sends the proving key
to the prover. It is important that this step is run by the verifier as the prover could
abuse this procedure and generate false proofs.

• The prover generates the proof using zokrates generate-proof and sends the proof
to the verifier for verification.

• The correctness of the proof can be checked using zokrates verify.

def main(
private field factor1,
private field factor2,
public field product

) -> bool {
assert (factor1 * factor2 == product);

return true;
}

Figure 4.3: ZoKrates source code for a program which can be used by a prover to prove
a knowledge of two secret factors which make up public product.

def main(private u32 a) -> bool {
u32 mut b = a;

for u32 i in 0..5 {
b = if b % 2 == 0 { b / 2 } else { b * 3 + 1 };

assert (b != 1);
}

return true;
}

Figure 4.4: Source code for a ZoKrates program to check if a prover knows a number that
would take at least 5 steps to converge to the number 1 given the rules of Collatz conjecture
without revealing that number to the verifier.

4.3.1 Trusted Setup Using SMPC

As mentioned in Section 3.1.4, the trusted setup procedure produces data that can be used
to generate false proofs by the party performing the trusted setup. This is problematic in
the trustless multi-party environment, since trust has to be put into the hands of a single
party. Thankfully, ZoKrates provides commands for performing the trusted setup using
a secure multiparty computation protocol (SMPC, Section 2.6).

32

The process consists of two phases. The first phase of the setup is called Perpetual
Powers of Tau Ceremony and includes using phase2-bn2542 on the latest response from
the Perpetual Powers of Tau repository3 to produce initial SMPC parameters. In the
second phase, each of the participants can contribute their own randomness to the key
setup with the zokrates mpc contribute command. There only needs to be a single
honest node, which deletes its randomness afterwards, to make the setup secure, so that
false proofs cannot be generated. The ceremony is finalised by applying a random beacon
with zokrates mpc beacon to get the final SMPC parameters, from which a key pair can be
exported using zokrates mpc export. At any point in the second phase, any participant
can verify individual contributions by running the command zokrates mpc verify.

4.4 Zk-Bridge
With the proliferation of blockchain technologies, the heterogeneity of various applications
grows. To build a functioning solution allowing multi-chain communication between appli-
cations, there needs to be a bridge that facilitates cross-blockchain transfer of messages or
funds.

Zk-bridges [54] offer a decentralised solution which achieves practical performance with
reasonable fees using zk-SNARKS. Other existing solutions [55, 44] suffer either poor per-
formance or rely on central parties.

Zk-SNARKs are leveraged to prove that a certain event (message, monetary transaction,
condition fulfilment) took place on the sender chain. The updater contract on the receiver
chain (Figure 4.5) verifies the SNARKs and after successful verification performs the state
change in the receiver network. This technology can be used, for example, to implement
decentralised exchanges that enable trustless swaps of tokens on different blockchains.

In between these two chains, there is a relay network that generates zk-SNARKs based
on the sender chain state. The relay network needs only a single honest node to function.
Bad actors inside the relay network are disincentivized since invoking the updater contract
costs fees on the receiver chain. The usage of an off-chain relay network is necessary since the
zk-SNARK proof generation is too computationally expensive to be performed on chain as
opposed to the proof verification, which is verified in the receiver chain smart contract when
using zk-bridges. The setup assumes that both linked blockchains are live and consistent,
that there is at least one honest node in the relay network, and that the zk-SNARK used
is sound.

This solution utilises recursive proof generation technique to achieve a short proof gener-
ation time, but requires the receiver chain to support smart contracts. However, a solution
has been proposed to use Bitcoin (which does not support smart contracts and has a very
limited scripting system) as a receiver chain as well [45].

Another solution for cross-chain message relaying using zk-SNARKs is zkRelay [53]
which shared many commonalities with zk-Bridge.

4.5 Mina Protocol
Mina Protocol [13, 19, 24] is declaring itself as the “world’s lightest blockchain” thanks
to its ability to capture the blockchain state in a verifiable snapshot of a constant size.

2Available from https://github.com/kobigurk/phase2-bn254.
3Available from https://github.com/weijiekoh/perpetualpowersoftau.

33

https://github.com/kobigurk/phase2-bn254
https://github.com/weijiekoh/perpetualpowersoftau

Figure 4.5: Zk-bridge example facilitating token transfer across two chains. The notation
of sender and receiver chain is used for this particular example – the bridges can be used
symmetrically in both directions. Retrieved from [54].

Unlike Bitcoin’s blockchain, which is over 570 GB as of May 20244 and evergrowing with
every block produced, the Mina Protocol blockchain size is tiny 22 kB and does not grow
over time. Obviously, 22 kB is not even close to being able to capture all transactions
and events on the blockchain. However, the Mina protocol classifies the blockchain as
a structure that captures the data required to verify if the current state is accurate and
valid in a trustless manner. Unlike Bitcoin or Ethereum, which require a user to download
the whole blockchain to verify the state in a trustless manner5, Mina uses a SNARK proof
to capture the correctness of a state without having to store the entire data source.

Mina leverages recursive SNARKs to ensure succinctness at any point in time as the
number of blocks increases. This means that as the blockchain grows, a new SNARK
proof must be generated that validates both the new blocks and the existing SNARK proof
(Figure 4.6). This type of SNARK where a SNARK proof attests to the verifiability of
another SNARK proof is called incrementally-computable SNARK [52].

The consensus mechanism Mina uses is called Ouroboros Samasika and has the char-
acteristics of proof of stake protocol where the probability of being selected as the block
producer is proportional to the amount staked relative to other nodes. However, unlike the
proof of stake protocol described in Section 2.5, Mina does not lock funds, nor does it slash
funds; it only stops distributing rewards to nodes that are offline or behave maliciously.

4.6 ZkLLVM
ZkLLVM [40] is a compiler designed to convert programs in high-level programming lan-
guages into inputs for provable computation protocols, particularly zero-knowledge proof

4As reported in https://ycharts.com/indicators/bitcoin_blockchain_size.
5Bitcoin has a concept of Simplified Payment Verification (SPV) clients which only download the block

headers to drastically decrease the amount of data downloaded. But this means that SPV nodes need to
trust the source of the data, since they do not verify block transactions themselves.

34

https://ycharts.com/indicators/bitcoin_blockchain_size

Figure 4.6: Recursive nature of SNARKs used in Mina protocol to produce constant size
proofs. Adapted from [24].

systems, by leveraging the LLVM infrastructure. It allows developers to create applications
in a compatible language (C, C++, Rust, and more). These are compiled using a modified
version of the Clang compiler, which outputs an intermediate representation of the circuit.
The compiled circuits are then used to generate in-EVM applications for on-chain proof
verification.

In 2023 the foundation responsible for zkLLVM also introduced Proof Market [30] whose
goal is to match the developers aiming to implement proof-based applications without
access to expensive infrastructure and suppliers of computational resources. This market
implements a matching engine that uses parameters of cost, order timeout, and generation
time to find the best proof generation supplier for a given order. The proof producer
who does not submit a proof in a promised time interval could be subject to penalties,
restrictions, and a decrease in their ranking which determines the likelihood of a future
request match.

4.7 Marlin
Marlin [35] is a solution for delegating complex computations to the decentralised cloud
utilising trusted execution environments (TEEs) and zero-knowledge based co-processors.
It enables smart contract-based protocols, web, mobile clients, and enterprises to securely
rent compute instances via a decentralised network of globally distributed nodes, which
allows for auto-scaling and fault tolerance.

Oyster is the Marlin subnetwork that specialises in TEE-based computation that ensures
the integrity and confidentiality of the computation carried out on the host machine. The
other subnetwork called Kalypso is focused on the usage of zero-knowledge proofs for efficient
verification of the computation correctness.

Each of the subnetworks is a permissionless network, which can be joined by any node
provided the subnetwork requirements are fulfilled. Thanks to the open-source nature of
the project, the public can develop new specialised subnetworks.

35

Chapter 5

Design

Based on the techniques described in the previous chapters, we propose a novel approach
to offloading computations and storage off of blockchain – SNARK marketplace with proof
of useful work (PoUW) [5] incentive mechanism where clients can request a SNARK proof
generation by providing either ZoKrates source code or by referencing an existing arithmetic
circuit known to a network along with proof parameters. Since the proof requester shares
both their public and private parameters with the rest of the network, this approach foregoes
the zero-knowledge aspect of zk-SNARKs and ZoKrates and focuses only on plain SNARKs.
Proof generation is encapsulated within proof transactions. The network also uses coin
transactions of the native currency, which facilitates block rewards and fees for transaction
confirmation and proof generation.

5.1 Incentive Scheme
Full nodes can receive a native currency reward by producing a block which contains gen-
erated SNARK proofs and coin transactions. The reward consists of three components:

• Proof generation fees – Sum of the fees paid by the clients requesting proofs. The
fee paid for a particular proof generation is proportional to the complexity of the
proof.

• Coin transaction fees – Sum of the fees paid by the clients who request coin
transactions.

• Block reward – Newly minted amount of native currency. This reward increases
the total supply of the currency, but will decay until the maximum supply is reached,
after which the reward will become zero, similarly to Bitcoin.

5.2 Transactions
Coin transactions facilitate the transfer of native currency between accounts. They consist
of the following fields:

• Transaction ID – Unique identifier of a transaction.

• Sender address.

36

• Recipient address.

• Amount.

• Signature – Signature of the transaction metadata by the sender to authenticate
and protect the integrity of the metadata.

Proof transactions wrap the proof generation tasks including the information about the
corresponding arithmetic circuit and parameters. A proof transaction has the following
fields:

• Transaction ID – Unique identifier of a transaction.

• Requester address.

• Requester signature – Since requesting a signature deducts a fee from the requester
account, the proof transaction has to be authenticated.

• Circuit hash – Uniquely identifying a circuit within the network.

• Public parameters – Parameters of the circuits necessary to generate and verify
the proof.

The list of transactions contained within a block is included inside the block body with
additional hash inside a block header protecting the integrity of the transactions.

5.3 Block Construction
The block construction consists of selecting the proof transactions according to the current
network difficulty parameter. The difficulty threshold is a network-controlled parameter
that is calculated based on the rolling average of block creation time across fixed amount
of latest blocks. Recalculation of difficulty does not happen after each and every block,
but rather after a retargeting period to smooth out short-term fluctuations in the mining
power.

The contribution of the proof to reaching the difficulty threshold depends on the com-
plexity of the proof, therefore, one proof with a complex arithmetic circuit can contribute
more than multiple simpler proofs, thus fairly compensating miners based on the work (com-
putation) performed. The complexity of a circuit is defined by the number of constraints
within it.

After the proof and coin transactions have been selected and verified, the work phase
begins where each of the selected proofs has to be generated (Figure 5.1). Verification of
coin transactions is simple enough – it consists of signature verification, checking whether
the sender has enough funds, and updating the state tree. SNARK generation is computa-
tionally difficult, which is why it is used as the work in the proof of work consensus protocol.
The work performed here is useful even outside of the consensus protocol, unlike Bitcoin,
which is why this consensus protocol is referred to as proof of useful work.

To protect the integrity of a block and to prevent a malicious node from modifying the
finished block, each of the generated SNARKs has a special last parameter where the digest
of the currently generated block is placed. With this, the block integrity is saved inside
each and every piece of work performed, making the proofs tied to that block and unable
to be removed and included inside a different block.

37

Block is now finished and
published; upon block

acceptance, miner receives the
block reward and transaction

fees

Difficulty

Difficulty

Difficulty

Difficulty

Miner starts with an empty
block which has to first be filled
with proof and coin transactions

State tree from the
previous block

Time

Miner selects proof and coin
transactions and verifies their

validity without generating
proofs while keeping track of

the state tree changes

Difficulty

Difficulty

Partially updated
state tree

Miner fills a block and
calculates hash H of the

included transaction metadata
and state tree data

Difficulty

Difficulty

Miner generates a SNARK for
each included proof transaction

and enters H as the last
argument to protect the integrity

of the block

Difficulty

Difficulty

Fully updated
state tree

Fully updated
state tree

Fully updated
state tree

Figure 5.1: Lifecycle of a block being mined. Miner has to first perform useful work by
generating enough proofs to cross the difficulty threshold.

If we were not to protect the integrity of a block inside each generated proof, then
a malicious node could extract the generated proofs from freshly broadcasted block and
use them to produce their own block while preventing acceptance of the original block, by
either delaying the broadcast or even not broadcasting the original block further.

Another solution that seems possible at first is the inclusion of only miner identification
within a proof. This would prevent any other miner from stealing a published proof, but
would not prevent a malicious node from producing multiple different versions of a block
with the same proofs. Thus, this solution would be incomplete.

5.4 Block Verification
All nodes participating in consensus have to confirm all received blocks. Let us assume
that the preceding block 𝐵𝑜𝑙𝑑 has already been verified and 𝐵𝑛𝑒𝑤 is currently being verified.
Verification of 𝐵𝑛𝑒𝑤 consists of the following steps:

1. Header Verification

• 𝐵𝑛𝑒𝑤.𝑠𝑒𝑟𝑖𝑎𝑙_𝑖𝑑 == 𝐵𝑜𝑙𝑑.𝑠𝑒𝑟𝑖𝑎𝑙_𝑖𝑑+ 1

• 𝑐𝑢𝑟𝑟𝑒𝑛𝑡_𝑡𝑖𝑚𝑒 > 𝐵𝑛𝑒𝑤.𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝 > 𝐵𝑜𝑙𝑑.𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝

• Difficulty rolling average calculation and verification.
• 𝐵𝑛𝑒𝑤.𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠_𝑏𝑙𝑜𝑐𝑘_ℎ𝑎𝑠ℎ == 𝐵𝑜𝑙𝑑.𝑐𝑢𝑟𝑟𝑒𝑛𝑡_𝑏𝑙𝑜𝑐𝑘_ℎ𝑎𝑠ℎ

2. Individual Proof Transaction Verification

• Check each proof validity using ZoKrates. SNARK verification step is much
cheaper in terms of computational resources in contrast to proof generation.

• Check each proof complexity. Verify that the sum of the proofs complexities
inside the block reaches the current difficulty threshold.

• Check if the proofs last parameter corresponds to the block metadata digest.
• Apply fee transfer to the state tree.

3. Individual Coin Transaction Verification

• Check if sender funds are sufficient.

38

• Apply transferred funds to the state tree.
• Apply transfer fee to the state tree.

4. State Tree and Block Integrity Verification

• Check if calculated state tree hash and transaction lists hashes matches the
header parameter.

• Check if current block hash is correct.

5.5 Circuit Storage
Our solution uses a subnetwork of nodes that manage the registered arithmetic circuits.
The subnetwork provides functions for decentralised registration and retrieval of arithmetic
circuits along with the corresponding proving and verification keys, information on the
circuit complexity, and the content of the original ZoKrates source code file. The circuit
subnetwork consists of nodes that stake a sufficient amount of native currency. In the event
of node misbehaviour or inactivity, the stake will be slashed.

The registration is initiated by a node that was unable to find a sufficient arithmetic
circuit among the already registered circuits. This node sends a request to the circuit
subnetwork and pays a fee. The fee is used as a mechanism to incentivise the reusing of
existing circuits when possible. Part of the fee is divided among the subnetwork nodes,
and part of it is burnt to prevent subnetwork nodes from registering circuits themselves
for free. The registration request contains a ZoKrates source code file. Each node in the
subnetwork will compile the ZoKrates source file and will contribute a piece of randomness
to the trusted ceremony using ZoKrates SMPC (Section 4.3.1).

The use of SMPC allows the nodes to generate the proof key pair in such a way that
only one of the nodes needs to be honest and delete their randomness after the ceremony
is over to retain the network security. If all nodes in the subnetwork were malicious, they
could share their randomness and use it to generate false proofs. After the registration has
been completed, the circuit hash can now be used inside a proof request along with custom
parameters by any party.

The registered circuits are uniquely identified within the network by their hash. There
are multiple ways to generate the hash – we could generate the hash from raw ZoKrates
source file, optimised source file (with removed comments, whitespace characters, etc.),
binary circuit file or R1CS file. Generating a hash from the ZoKrates file has the benefit of
the proof requester not having to compile the circuit locally to verify the correspondence
of the fetched ZoKrates file and the hash. On the other hand, using circuit or R1CS hash
would enable reusing circuits without having to depend on the program details that were
compiled away, such as variable names.

The circuit subnetwork allows retrieval of data which is necessary for secure generation
and verification of SNARKs within the network. The circuit database is write-only, meaning
that registered circuits are immutable, allowing clients to cache the circuit data without
ever having to invalidate the cached data.

5.6 Internode Communication
Blockchains typically rely on peer-to-peer (P2P) networks to exchange information while
avoiding centralisation. Our network also uses the P2P paradigm, which means that each

39

Client B
requesting SNARK
computation on a
registered circuit

Client C
requesting coin

transaction

Coin transaction

Mempool

Pending coin
transactions

Pending proofs
Full node A generating a block

Verify coin
transactions

Generate
SNARK proof

Block filled with proof
and coin transactions

Difficulty

Difficulty

SNARK task

.json

Hash of a
registered circuit Parameters

Blockchain

Publish block

Client A
registering a new

circuit
DFS

Circuit table

Hash (id) Source code

Hash (id) Source code

Hash (id) Source code

Complexity

Complexity

Complexity

Keys

Keys

Keys

Block A

Serial ID State root hash

Timestamp Difficulty

Proof txs

Coin txs

Previous block hash Current block hash

Block C (most recent)

Serial ID State root hash

Timestamp Difficulty

Proof txs

Coin txs

Previous block hash Current block hash

Proof transaction

Transaction ID

Proof

Address from

Parameters Signature

Circuit hash

Block B

Serial ID State root hash

Timestamp Difficulty

Proof txs

Coin txs

Previous block hash Current block hash

References

Account/Balance
model Merkle
Patricia tree

Coin transaction

Address from Address to

Signature

AmountTransaction ID

References

.zok

Zokrates source
code

Register

Figure 5.2: Diagram of a complete journey of transactions from creation to inclusion inside
blocks. Clients can request either a coin transaction or a proof transaction on registered
circuit. These requests will be placed inside two pools of pending transactions. Full nodes
will pick transactions from the pools, verify them, and include them inside blocks. Finished
blocks will be broadcast into the network and included inside the blockchain upon verifica-
tion by the peer nodes.

40

Request-response Broadcast (gossip)

Request
ResponseA B

A

CB

E F A B

D

G

...

Figure 5.3: Two types of communications within the network. The circles represent the
nodes within a network. In the broadcast type we can see what happens when there is
a loop in the transitive closure of the peer relation – the nodes A and B occur in the
network twice, but as we can see they do not transmit the message on the second receipt
of the message.

node has to keep track of its peers so that it can be synchronised with the rest of the
network. The number of peers has to be large enough to avoid a single or colluding group
of nodes that have become malicious to influence the network in a negative way, for example
by broadcasting invalid transactions or withholding new broadcasted blocks.

Each node curates its own statically defined list of seed nodes which are contacted upon
node initiation and which recursively provide lists of their own peers, a list of pending
transactions, and are willing to send information about blocks that have been mined since
the initiated node was last online.

Communication between two nodes can have two types (Figure 5.3) – request-response
and broadcast. Request-response are self-explanatory – a node is missing information and
requests it from one of its peers, ideally from the one with the highest reputation (Sec-
tion 5.10), who will answer with a response. Publishing a new pending transaction or
a new block uses the broadcast communication type in which a starting node broadcasts
a message to all of its peers and all of the peers will broadcast the message further recur-
sively1. This is why the second communication type is sometimes referred to as a gossip
protocol in the context of P2P networks.

5.7 Storing User Account Data
User account data for the current block is stored using the Account/Balance model (inspired
by the Ethereum network [22]) where a Merkle-Patricia trie (Section 2.4.4) is used to store
the mapping of addresses to coin balances. The root hash of the current version of the
Merkle-Patricia trie for the corresponding block is saved in the block header. Current
network implementation only needs to store the mapping of account address to balance,
but Merkle-Patricia tries are extensible and can support storage of application data as well,
including smart contract data.

1Unless the sending node has a low reputation or the message has already been broadcast by the current
node. The latter condition is in place to prevent infinite message transmissions with loops in the network
topology.

41

5.8 Proofs
Since writing custom SNARK generation and verification code would be very difficult and
prone to security problems, ZoKrates (Section 4.3) was selected as the library that would
provide means of manipulation with arithmetic circuits and proofs. ZoKrates is a tool that
started its development in 2019 and has been incorporated into many existing blockchain
ecosystems, such as zkRelay [53], and has proven to be robust and reliable. ZoKrates is
easy to integrate into the rest of the SNARK marketplace as it is packaged into a CLI
application and is well documented.

Another benefit of using ZoKrates is the ability to export a verifier smart contract that
is compatible with the Ethereum network, which would allow the integration of the SNARK
marketplace with Ethereum.

Considered were also alternatives, namely Circom, SnarkyJS and libsnark, but they
were inferior in the criteria mentioned above.

5.9 Keys and Identifiers
Intergrity and authentication on the network is facilitated by asymmetric cryptography, in
particular the ECDSA algorithm on the SECP256k1 curve (Figure 5.4). User accounts are
identified by the public key that is stored in compressed SEC1 format, which has 33 bytes
or 66 hexadecimal characters. Private keys, which are used to identify the user within the
client application and to sign transactions, are saved in PEM format.

The SECP256k1 curve was selected due to its widespread adoption among cryptocur-
rencies, especially two of the most popular ones – Bitcoin and Ethereum. This curve is also
classified as a Koblitz curve. This category of elliptic curves has performance and security
benefits compared to regular elliptic curves [12].

For hashing, the SHA-256 function was selected, which produces 32 bytes long hashes.
Hashing is used to generate the following fields – transaction identifier, block hash, state
root hash, and hash of transactions within a block.

5.10 Reputation System
The proposed network bears the properties of anonymity and decentralisation which present
challenges in establishing trust and ensuring reliable functionality of the network. This
necessitates the creation of mechanisms that incentivise cooperation according to the rules
to mitigate free-riding and other forms of undesirable behaviour. Such networks often use
reputation systems where the activity of individual nodes within the network is tracked and
a score is assigned depending on their behaviour and contribution to the network.

In this particular proof of concept, a very simple reputation system is introduced – each
node assigns integer score between -10 and 10 to each of their peers. If their peer sends them
a message which is correct and desirable (gossiped message or a response to a request), their
reputation is incremented by 1. On the other hand, if an invalid, undesired, or malformed
message is received from a peer, their reputation is decremented by 1. Failure to respond
to a request (timing out) will also yield a decrease in reputation. If peer’s reputation
reaches -10 then they are considered removed from the list of peers, and their messages are
rejected. If a node needs to make a request, it will select the peer of theirs with the highest
reputation.

42

𝑦2 = 𝑥3 + 7

−8 −6 −4 −2 2 4 6 8

−8

−6

−4

−2

2

4

6

8

𝑥

𝑦

Figure 5.4: SECP256k1 elliptic curve.

Only a very rudimentary reputation system was proposed, which could easily be abused
by carefully manipulating messages to perform a DoS attack on a node. This is intentional
since the reputation system was not the focus of this proof of concept implementation,
but the modular nature of the SNARK marketplace codebase allows easy swapping of the
reputation system for a more suitable one.

43

Chapter 6

Implementation

The marketplace is implemented in Python version 3.11 and uses the following dependencies
from the PyPI registry:

• ecdsa – Support for elliptic curve cryptography.

• pytest – Testing framework with support for unit tests, integration tests and E2E
tests.

As mentioned previously, the ZoKrates library provides features for working with SNARKs.

6.1 Client Application
A node connects to the network using the client application, which consists of a client script
and multiple support scripts. It has a command-line interface with multiple parameters.

Usage: python client.py [-k|--key <private key file>] [-v|--verbose] [-h|--help]
[-p|--port <port number>] [-c|--command <command>] [-f|--config <config file>]

-k, --key <private key file> Authenticate using an existing private key file
-v, --verbose Show more detailed log messages
-h, --help Print this message
-p, --port <port number> Open the listening socket on a specific port number
-c, --command <command> Run semicolon separated list of commands just after

client initialisation
-f, --config <config file> Provide a non-default configuration file
-n, --no-color Don’t print colored text into the terminal

6.1.1 Modes

The client application keeps track of two boolean variables – one defines whether verbose
mode is enabled, and the second tracks whether the user is authenticated.

Verbose Mode

The verbose mode can be enabled by either using the -v switch or verbose <on|off> client
command and based on its state, verbose priority messages will or will not be printed.

44

Authenticated and Non-authenticated Mode

If a user does not provide a private key for authentication using the -k switch, the client
application will be started in anonymous (non-authenticated) mode where they can track of
the current state of the blockchain but cannot contribute to it – they cannot create/confirm
pending coin transactions, create/generate pending proofs, or create blocks.

The client script provides the generate-key <output file> command to generate
a brand new SECP256k1 private key and save it inside <output file> in PEM format.
The private key along with the address that will be printed will represent a new account in
the blockchain.

6.1.2 Client Commands

The client application can be controlled using client commands. The semicolon-separated
list of client commands can be optionally inputted using the -c switch when starting the
application. After starting, the client commands can be inputted in the interactive mode.
To list all available client commands, the help command can be inputted.

Complete list of available client commands, where commands marked with an asterisk
are only available in authenticated mode:

• verbose <on|off> – Toggle verbose logging, defaults to on if -v switch was present,
otherwise defaults to off.

• exit – Terminate the client along with the listening socket.

• send <receiver address> <amount>* – Create a coin transaction and submit it to
the network.

• request-proof <circuit hash> <parameters>* – Request a proof to be generated
and submit the request to the network.

• select-proof-tx <proof index>* – Check if a pending proof transaction is valid
and include it in the partial block.

• select-coin-tx <coin tx index>* – Check if a pending coin transaction is valid
and include it in the partial block.

• partial* – Print information about currently produced partial (unfinished) block.

• produce-block* – Generate a proof for each proof transaction inside the partial block,
finish the block, and broadcast it to the network.

• generate-key <output file> – Generate SECP256k1 private key and save it in
<output file> in PEM format.

• inspect <block id> – Print information about block with <block id>.

• status – Print current status of the network.

• auth <private key file> – Switches from anonymous mode to authenticated mode.

• balance [<address>] – Print current (latest known block) balance of <address> or
self if authenticated and <address> is not provided.

• logout* – Switch to non-authenticated mode.

45

Command id Command
type

Command argument Command description

GET_PEERS Request – Requests a list of all peers
known to the message receiver

PEERS Response peers : Peer[] Sends the list of all known
peers

GET_LATEST_BLOCK_ID Request – Requests latest known block id
known to the message receiver

LATEST_BLOCK_ID Response latest_block_id : int Sends the latest known block
id

GET_BLOCK Request block_id : int Requests the header and body
of a block with provided block
id

BLOCK Response block : Block Sends a block header along
with block body with specified
id

GET_PENDING_COIN_TXS Request – Requests the list of known
pending coin transactions

PENDING_COIN_TXS Response txs : CoinTransaction[] Sends the list of known pend-
ing coin transactions

GET_PENDING_PROOF_TXS Request – Requests the list of known
pending proof transactions

PENDING_PROOF_TXS Response txs : ProofTransaction[] Sends the list of known pend-
ing proof transactions

BROADCAST_BLOCK Broadcast block : Block Broadcasts a newly mined
block

BROADCAST_PENDING_COIN_TX Broadcast tx : CoinTransaction Broadcasts a new coin transac-
tion to be confirmed

BROADCAST_PENDING_PROOF_TX Broadcast tx : ProofTransaction Broadcasts a new request for
a proof to be generated and in-
cluded in a block

Table 6.1: Complete list of protocol commands.

6.1.3 Communication Protocol

Clients open a socket on a port specified by the -p switch to listen to incoming TCP connec-
tions (Figure 6.1). Messages between clients are serialised into JSON format, which would
not be optimal in practice but makes debugging in our proof of concept easy. Individual
blockchain objects (blocks, transactions, and state trees) contain the verification of the in-
coming data inside their deserialisation method. Each message sent contains a command
and a body. The list of commands and their parameters is listed in Table 6.1. Commands
are split into two categories – request/response and broadcast.

6.1.4 Joining the Network

The client will request a list of peers from all of its seed nodes upon starting and will
recursively seek a sufficient number of live peers. The next step consists of synchronising
the state of the network which consists of fetching all missing blocks and all pending trans-
actions. Figure 6.2 describes the sequence of messages exchanged with the new client’s
peers.

6.1.5 Logging Priorities

The client application logs messages with 4 different priorities:

• VERBOSE – Messages used for debugging, can be enabled or disabled with the -v
switch or with verbose <on|off> client command.

46

Receiver thread

Listen for incoming
connections

should_terminate

 fork

Terminate thread Receive data
(transaction/block)

Verify data
(transaction/block)

 false
 true

Terminate thread

Send data to main
thread

 fork

Listener threadMain thread

Parse command line
arguments

should_terminate :=
false

Wait for command to
be entered

Entered command

Terminate thread

Create dummy local
connection

should_terminate :=
true

 exit

Handle comand

 other

Figure 6.1: Diagram showing the actions of individual threads of the client application.
The main thread is responsible for prompting the user for client commands and executing
them. The single spawned listener thread opens a TCP socket which listens for incoming
connections and spawns a new receiver thread for each incoming connection. The receiver
thread’s job is to receive incoming data (which is either a newly propagated block, a new
pending transaction, or a response to client’s request), verify the data and send it to the
main thread.

47

:NewClient

GET_PEERS

PEERS

dispatch

:PeerA

GET_BLOCK(K + i)

BLOCK

:PeerB

GET_LATEST_BLOCK_ID

LATEST_BLOCK_ID

GET_LATEST_BLOCK_ID

LATEST_BLOCK_ID

determine_freshest_peer(
 A.latest_block_id,
 B.latest_block_id
)

Client joined the network and
knows only blocks up to sequential
id of K and has PeerA inside its list

of seed nodes

verify_block(K + i)

loop

GET_PENDING_{COIN, PROOF}_TXS

PENDING_{COIN, PROOF}_TXS

GET_PENDING_{COIN, PROOF}_TXS

PENDING_{COIN, PROOF}_TXS

verify_pending_transactions(
 deduplicate(
 A.pending_transactions,
 B.pending_transactions
)
)

Client learns
about a new

peer – PeerB

Figure 6.2: A new node described by the NewClient process is joining the network. The
node first requests a list of peers from the statically defined seeder PeerA. Seeder returns
a list with a single peer – represented by the PeerB process. The joining node requests
the latest serial block id from both of the peers and determines which one of them is
fresher – reports knowing larger block id. The joining node then requests and verifies
its missing blocks one by one until it is synced up with the rest of the network. If it is
the first time the joining nodes join the network, it will have to sync all blocks from the
genesis block. After the blockchain is fetched and verified, the client will request the list of
pending transactions, verify them, and starts listening to new incoming blocks and pending
transactions. In a more realistic scenario, the number of seeding and peer nodes would, of
course, be much higher. The recursive request for peers to PeerB has been removed from
the diagram for clarity.

48

• INFO – General messages about current state of the application and success notifi-
cations.

• WARNING – Message about an event which may or may not require attention.

• ERROR – Messages about failures of a command or the whole application.

The priority name is always prepended to the message along with colour coding within
the terminal environment unless disabled with the --no-color switch.

6.1.6 Network Configuration and Genesis Block

The client and genesis block parameters are isolated inside a separate JSON file for ease
of modification and testing located at src/config.json. The most important configu-
ration parameters are the list of seed nodes and the maximum number of peers tracked,
which were discussed in this chapter. The file also contains a configuration of the genesis
block. For nodes to be compatible within a network, they need to have the same genesis
block statically defined inside their configuration file. The provided configuration file sets
up a genesis block that assigns 1000 coins to a node whose private key file is located at
src/test/misc/private_key.

A custom configuration file can be passed to a client using -f switch. This switch is
used extensively in tests that verify the behaviour of various configurations.

6.1.7 ZoKrates Library Integration

The ZoKrates library functions are invoked from the client application using a static class
bind_zokrates.py which wraps ZoKrates subprocess command execution inside Python
calls for increased modularity and ease of testing.

The client application will make sure to check the installed ZoKrates version at initiali-
sation using the zokrates --version command. If the absence of the ZoKrates library or
incompatible version is detected, a warning message is printed to the console.

6.1.8 Example Uses

To illustrate the functionality of the client application, here is a list of some example
commands for common use cases. Recall that commands after the -c switch could also be
entered one by one in interactive mode.

• python src/client.py -c "help" – Prints a list of all available client commands
(also listed in Section 6.1.2).

• python src/client.py -c "generate-key key.pem" – Generates a new private key
into the key.pem file and prints its corresponding address to stdout. This private
key can be used with the -k parameter to use client in authenticated mode.

• python src/client.py -k key.pem -c "send
0008b58b73bbfd6ec26f599649ecc624863c775e034c2afea0c94a1c0641d8f000
50" – Enters authenticated mode, creates a pending coin transaction (if sender funds
are sufficient) and broadcasts it to the network.

49

• python src/client.py -k key.pem -c "request-proof
f6d00f1b20054ec6660af23c8b5953ae8799ddbb8c9bd9e1808376fef65d970e
2 3 6" – Enters authenticated mode, creates a pending proof transaction (if sender
funds are sufficient to pay the fee) and broadcasts it to the network.

Some commands require the client to synchronise to the network first. This is ac-
complished by launching the client in an interactive mode with python src/client.py
-k key.pem without using the -c switch. The client will initiate network synchronisation,
which consists of pending transaction and block fetch. After the client has synchronised, the
following commands are ready to use – balance command to retrieve information from the
state tree of the latest block about balances of accounts, status and inspect commands
to find information about the blockchain.

6.2 Testing
The client application and the classes representing blockchain objects are tested using the
pytest library to check the validity of the program and avoid regressions during develop-
ment. A large portion of the codebase was developed using test-driven development.

6.2.1 Client Application Testing

The client application is being tested in an end-to-end manner where a single or multiple
instances are run. These tests could be divided into two categories:

• Non-interactive tests, where all of the tested commands are inputted using the
command line parameters when starting the client with the -c switch. At the end of
the command list there is an exit command to exit the client application, meaning
there are no commands input inside of the interactive client environment. Tests either
verify the output of the client application or correctness of created files (for example
when generating a private key with the generate-key command).

• Interactive tests, which launch one or more client applications and communicate
with them using pipelines which are used to send commands and receive inputs. This
allows for testing of client synchronisation, inter-client communication and gradual
reaction of clients on a series of commands in time.

50

Chapter 7

Discussion

The application was designed and implemented as a proof of concept to show that
a blockchain can be implemented, where an individual needing to generate a SNARK proof
defined by a ZoKrates program can exchange a fee in native currency to have that proof
generated for them. Proof generation is a computationally difficult task and could even be
impossible to perform on some low-power devices that need SNARK generation for their
applications, such as mobile wallets. That is why outsourcing SNARK generation could
improve the range of possible use cases of zero-knowledge technologies.

Considering that SNARKs are often used for outsourcing verifiable computation [53,
54, 48] and that our market facilitates outsourcing of SNARK generation, we deal with
double outsourcing of verifiable computation. The other major use case of SNARKs in
their zero-knowledge form is private computation. Due to the design of our marketplace,
we are not able to facilitate this use case.

7.1 Solution Analysis and Limitations
The designed architecture leverages the benefits of blockchains to implement a SNARK
marketplace. Native currency was conceived as a means to reward a miner for the work
performed. The blockchain tracks both generated SNARK proofs and coin transactions to
create an immutable ledger. The proof of work consensus protocol is used to secure the
blockchain as described in Section 2.5. Typically, the work in PoW has no other uses outside
the consensus protocol, leading to a waste of computational resources. We remedied this
problem by using the actual work needed to generate the proof as a means of demonstrating
consensus power.

The probability of being able to generate a block in a classical PoW protocol, such as
Bitcoin, is proportional to the computational power of a node, but due to the high random-
ness in the search for a partial collision, it is very hard for a single node to mine multiple
consecutive blocks in row even for the strongest node in the network, leading to increased
decentralisation. One of the flaws of our consensus protocol in comparison to classical PoW
as in Bitcoin is that the generation of a block does not contain that much randomness
to prevent the strongest node from generating multiple consecutive blocks. This could be
mitigated by decreasing the freedom of a node in regards to selecting arbitrary proof trans-
actions leading to decreased ability of a node to nitpick most computationally-cost-effective
proofs. The solution implementing this also has the benefit of reducing duplicated work
and is discussed in Section 7.2.1.

51

Block A Block B Block C Block D Block E

Block X
Generated

proof

Figure 7.1: Main blockchain containing blocks A through E and an orphaned block X on
a rejected fork. Proofs on block X are valid, thus they can be read by the proof requesters
if the block was transmitted throughout the network.

As with every blockchain, the security of the solution depends on the security of the
underlying cryptographic schemes. We have chosen the SHA-256 hashing function and
ECDSA over the SECP256k1 curve as the underlying cryptographic algorithms, since they
are widely used in many blockchain applications and are considered secure as of the writing
of this thesis.

7.1.1 Forks

As with other PoW resp. PoUW consensus protocols, our proposed solution suffers from
forks – divergences of the blockchain. Unintentional forks can happen due to inability of
a node to see the whole picture of the network at some exact time. Malicious nodes can
also induce forks intentionally, but the length of the induced fork is proportional to the
computing power of the malicious nodes in relation to the rest of the network, since the
fork conflicts are resolved by the longest chain rule – accepting the longer chain, since more
work has been put into it.

The ability to perform selfish mining, a malicious behaviour in which a node or group
of colluding nodes withhold from publishing blocks immediately after mining them and
reintroducing them later after some time to overwrite publicly known blocks, requires con-
trolling at least a third of the network. The ability of malicious nodes to selfishly mine in
PoW networks has negative consequences – wasted resources which were spent on orphaned
blocks and increased centralisation, the latter of which is inherent to a third of the network
being controlled by a single entity.

Our network has a single negative consequence of forks beyond those which are applica-
ble to Bitcoin and other classical PoW networks, and it is inherent to how proof requesters
read their proof from the blockchain. If an orphaned block on a rejected fork has been
transmitted far enough to reach the proof requester, the requester can read the proof with-
out it having to be included in the main blockchain (Figure 7.1). This is not a problem
on the requester side, since the fee they have paid for the proof generation is locked and
cannot be withdrawn. But for a prover this means that they will not receive the reward
because their block has been orphaned. This highlights the importance of long block time
and low network latency to decrease the frequency of updates and the time it takes for the
network to synchronise.

52

Figure 7.2: Sycomore ledger creates a split in the block DAG in times of high traffic.
Transaction here are colour-coded based on their prefix, which determined their position
after a split. Retrieved from [2].

7.2 Possible Enhancements
The design and implementation are just a proof of concept and is in no way ready for
production use. This section suggests some enhancements that would improve performance,
improve security, or widen the area of possible use cases.

7.2.1 Reducing Wasted Work

As mentioned in Section 7.1.1, the current design suffers from wasted work – when a node
publishes a block and that block is accepted by the network, all of the transactions con-
tained within the block are confirmed and have to be removed from all partial blocks being
produced by other nodes. According to Section 5.3, all selected proofs have to be selected
and committed prior to the generation of the very first proof of the block. That means that
if only a single one of those coin or proof transactions was confirmed inside block generated
by another node, the entire pending block would need to be started over, since a transaction
cannot be confirmed inside multiple blocks.

To remedy this problem, a solution inspired by Sycomore [2] is proposed. Sycomore is
a network that uses a directed acyclic graph (DAG) of blocks instead of a linear blockchain
to reduce the number of forks and conflicts while increasing the network throughput (Fig-
ure 7.2). One of its aspects that we could adapt is the use of transaction identifier prefixes
to determine the position of a transaction within a blockchain. We will apply the aspect of
sorting transactions by prefix to our blockchain without the introduction of DAGs.

Consider our network with multiple miners. If two miners have (even a slight) overlap in
the set of transactions in their partial blocks, the miner that does not publish the block first
will have to throw away a large portion of their work. If two miners were currently producing
a block of 𝑡 transactions (for simplicity, we consider each transaction to be equally difficult
to confirm) with 𝑝 transactions pending throughout the network, then the probability 𝑟 of
two miners selecting distinct subsets of transactions is:

𝑟(𝑝, 𝑡) = 1−
(︀
𝑝−𝑡
𝑡

)︀(︀
𝑝
𝑡

)︀ (7.1)

This shows that the number of conflicts is proportional to the number of transactions
within the block and inversely proportional to the total number of pending transactions. If

53

10

00 01

11

Figure 7.3: Visualisation of randomly selected transactions (left) and transactions with
specific prefixes (right), where the colour distinguishes each of the consensus participants.
Using prefixes defines strict boundaries decreasing the probability of conflicts.

we consider a network having more miners, then the probability of conflict is almost 100 %.
If we introduced transaction splitting, where miners could only confirm transactions with
prefix matching the prefix of the miner’s address, then we could achieve the separation of
transactions into distinct groups (Figure 7.3). The size of the prefix being matched could
be based on the current difficulty parameter of the network, which is already tracking the
number of miners inside the network. This would not eliminate conflicts altogether, but
would decrease their number drastically, since the conflicts will be larger but less common.
The number of conflicting transactions does not matter since even a single transaction
overlap would require a redo of the entire block along with its proofs.

7.3 Practical Use Cases
We present a couple of practical use cases that could leverage the SNARK marketplace to
improve the efficiency of existing technologies.

7.3.1 Zk-Bridge

Zk-Bridge (Section 4.4) [54] uses zero-knowledge proofs for cross-chain transfer of tokens.
SNARKs are used for proving the source blockchain status to the verifier contract on the
receiver chain; therefore, our marketplace not supporting zero-knowledge aspect of SNARKs
does not pose any problems. Our SNARK marketplace could be used to outsource SNARK
generation within the relay network of the zk-Bridge architecture.

The zk-Bridge whitepaper does not discuss incentive schemes of the relay network nodes
and leaves incentive design for future work, but one of the possible reward schemes for the
nodes could be to reward the proof submitter with tokens on the receiver chain. Since there
is already a verifier contract in place, it would be very simple to add reward functionality
to it.

From the security standpoint of the relay network, there is only a liveness requirement
– there needs to be at least one honest node in the relay network regardless of the number
of malicious nodes in the network. Denial of service (DoS) attacks are disincentivized by
the contract invocation requiring a fee in the receiver chain currency (often called gas).

54

7.3.2 Zk-Rollups

Zk-Rollups [18, 23] were designed to help increase blockchain scalability by bundling trans-
action data into batches and moving computation outside the blockchain, while using
SNARKs to verify the correctness of the computation. These solutions are often referred
to as layer-2 because they provide a layer of abstraction above the original blockchain
network, which is called layer-1 or the base-layer.

Outsourcing of the rollup SNARK generation to the SNARK marketplace would allow
nodes with lower computational power to participate in the rollups as well leading to a de-
creased fee on the layer-1 blockchain. The economical feasibility of paying fee for a SNARK
generation on the marketplace chain to decrease the fee on the rollup blockchain would
depend on the relative price of the respective cryptocurrencies, but since the marketplace
uses proof of useful work where the SNARK generation is also used as means to perform the
consensus protocol, it could be expected that it would be cheaper than having to generate
a SNARK outside of the marketplace.

55

Chapter 8

Conclusion

The first part of this thesis listed and elaborated on common techniques for computational
and storage offloading off of blockchains along with explaining the necessary cryptographic
primitives and concepts. Next, solutions for offloading were discussed with an emphasis on
zero-knowledge proofs, namely STARKs, SNARKs and their differences. Cryptographic ac-
cumulators were mentioned as a means of optimising the storage requirements of blockchain
networks.

Zero-knowledge proofs are an integral part of many technologies currently used in pro-
duction environments for two main reasons – they allow outsourcing of verifiable computa-
tion and proving a statement without having to reveal its details. Blockchain networks use
these properties to enable cross-chain token transfer [53, 54], network throughput scaling
by using layer-2 solutions [23], transaction confidentiality [14] and many more.

Then in the second part followed a design and proof of concept implementation of
a SNARK marketplace where computational power could be exchanged for native blockchain
currency in an environment with proof of useful work (PoUW) consensus protocol. PoUW
mitigates one of the most criticised problems of plain PoW which is the amount of wasted
computational work and its environmental impact by utilising the actual proof generation
to demonstrate the consensus power of a node. The implementation was developed us-
ing Python along with the ZoKrates library, which is used to compile arithmetic circuits,
perform a trusted setup using SMPC, generate proofs, and verify proofs.

Having SNARKs generated by a third party inside a marketplace enables faster and more
cost-efficient development of blockchain platforms that focus on verifiable computation and
privacy preservation. Some of the existing technologies that could benefit from this are zk-
bridge [54], which enables cross-chain token and data transfer, and zk-rollups [18] designed
to bundle transactions and reduce fees paid on the level-1 blockchain.

56

Bibliography

[1] Ahanger, T., Aldaej, A., Atiquzzaman, M., Ullah, I. and Yousufudin, M.
Distributed Blockchain-Based Platform for Unmanned Aerial Vehicles.
Computational Intelligence and Neuroscience. August 2022, vol. 2022, p. 1–16. DOI:
10.1155/2022/4723124.

[2] Anceaume, E., Guellier, A., Ludinard, R. and Sericola, B. Sycomore: A
Permissionless Distributed Ledger that Self-Adapts to Transactions Demand.
In: 2018 IEEE 17th International Symposium on Network Computing and
Applications (NCA). 2018, p. 1–8. DOI: 10.1109/NCA.2018.8548053.

[3] Au, M. H., Tsang, P. P., Susilo, W. and Mu, Y. Dynamic Universal Accumulators
for DDH Groups and Their Application to Attribute-Based Anonymous Credential
Systems. In: Fischlin, M., ed. Topics in Cryptology – CT-RSA 2009. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2009, p. 295–308. ISBN 978-3-642-00862-7.

[4] Back, A. Hashcash - A Denial of Service Counter-Measure. September 2002.
Available at: http://www.hashcash.org/papers/hashcash.pdf.

[5] Ball, M., Rosen, A., Sabin, M. and Vasudevan, P. N. Proofs of Useful Work
[Cryptology ePrint Archive, Paper 2017/203]. March 2017. Available at:
https://eprint.iacr.org/2017/203.

[6] Barić, N. and Pfitzmann, B. Collision-Free Accumulators and Fail-Stop Signature
Schemes Without Trees. In: Fumy, W., ed. Advances in Cryptology —
EUROCRYPT ’97. Berlin, Heidelberg: Springer Berlin Heidelberg, 1997, p. 480–494.
ISBN 978-3-540-69053-5.

[7] Ben Sasson, E., Bentov, I., Horesh, Y. and Riabzev, M. Fast Reed-Solomon
Interactive Oracle Proofs of Proximity. In: Electron. Colloquium Comput. Complex.
2017. Available at: https://api.semanticscholar.org/CorpusID:5637668.

[8] Ben Sasson, E., Bentov, I., Horesh, Y. and Riabzev, M. Scalable, transparent,
and post-quantum secure computational integrity. IACR Cryptol. ePrint Arch. 2018,
vol. 2018, p. 46. Available at: https://api.semanticscholar.org/CorpusID:44557939.

[9] Benaloh, J. and Mare, M. de. One-Way Accumulators: A Decentralized
Alternative to Digital Signatures. In: Helleseth, T., ed. Advances in Cryptology —
EUROCRYPT ’93. Berlin, Heidelberg: Springer Berlin Heidelberg, 1994, p. 274–285.
ISBN 978-3-540-48285-7.

57

http://www.hashcash.org/papers/hashcash.pdf
https://eprint.iacr.org/2017/203
https://api.semanticscholar.org/CorpusID:5637668
https://api.semanticscholar.org/CorpusID:44557939

[10] Berentsen, A., Lenzi, J. and Nyffenegger, R. A Walk-through of a Simple
Zk-STARK Proof. SSRN. 2022. DOI: 10.2139/ssrn.4308637. Available at:
https://ssrn.com/abstract=4308637.

[11] Berentsen, A., Lenzi, J. and Nyffenegger, R. An Introduction to
Zero-Knowledge Proofs in Blockchains and Economics. Federal Reserve Bank of St.
Louis Review. Fourth Quarter 2023, vol. 105, no. 4, p. 280–294. DOI:
10.20955/r.105.280-94. Available at: https://doi.org/10.20955/r.105.280-94.

[12] Bjoernsen, K. Koblitz Curves and its practical uses in Bitcoin security. In:. 2015.
Available at: https://api.semanticscholar.org/CorpusID:16632570.

[13] Bonneau, J., Meckler, I., Rao, V. and Shapiro, E. Mina: Decentralized
Cryptocurrency at Scale. March 2020. Available at:
https://minaprotocol.com/wp-content/uploads/technicalWhitepaper.pdf.

[14] Bünz, B., Bootle, J., Boneh, D., Poelstra, A., Wuille, P. et al. Bulletproofs:
Short Proofs for Confidential Transactions and More. In: 2018 IEEE Symposium on
Security and Privacy (SP). 2018, p. 315–334. DOI: 10.1109/SP.2018.00020.

[15] Camenisch, J. and Lysyanskaya, A. Dynamic Accumulators and Application to
Efficient Revocation of Anonymous Credentials. In: Yung, M., ed. Advances in
Cryptology — CRYPTO 2002. Berlin, Heidelberg: Springer Berlin Heidelberg, 2002,
p. 61–76. ISBN 978-3-540-45708-4.

[16] Casas, P., Romiti, M., Holzer, P., Mariem, S. B., Donnet, B. et al. Where is
the Light(ning) in the Taproot Dawn? Unveiling the Bitcoin Lightning (IP) Network.
In: 2021 IEEE 10th International Conference on Cloud Networking (CloudNet).
2021, p. 87–90. DOI: 10.1109/CloudNet53349.2021.9657121.

[17] Chainlink. Understanding the Difference Between zk-SNARKs and zk-STARKS.
2023. Accessed: 2024-05-17. Available at:
https://chain.link/education-hub/zk-snarks-vs-zk-starks.

[18] Chainlink. What Are Zk-Rollups (Zero-Knowledge Rollups)? 2023. Accessed:
2024-05-15. Available at: https://chain.link/education-hub/zero-knowledge-rollup.

[19] Cohn, B., Shapiro, E. and Tekişalp, E. Mina: Economics and Monetary Policy.
October 2020. Available at:
https://minaprotocol.com/wp-content/uploads/economicsWhitepaper.pdf.

[20] Du, W. and Atallah, M. J. Secure multi-party computation problems and their
applications: a review and open problems. In: Proceedings of the 2001 Workshop on
New Security Paradigms. New York, NY, USA: Association for Computing
Machinery, 2001, p. 13–22. NSPW ’01. DOI: 10.1145/508171.508174. ISBN
1581134576. Available at: https://doi.org/10.1145/508171.508174.

[21] Eberhardt, J. and Tai, S. ZoKrates - Scalable Privacy-Preserving Off-Chain
Computations. In: 2018 IEEE International Conference on Internet of Things
(iThings) and IEEE Green Computing and Communications (GreenCom) and IEEE
Cyber, Physical and Social Computing (CPSCom) and IEEE Smart Data
(SmartData). 2018, p. 1084–1091. DOI: 10.1109/Cybermatics_2018.2018.00199.

58

https://ssrn.com/abstract=4308637
https://doi.org/10.20955/r.105.280-94
https://api.semanticscholar.org/CorpusID:16632570
https://minaprotocol.com/wp-content/uploads/technicalWhitepaper.pdf
https://chain.link/education-hub/zk-snarks-vs-zk-starks
https://chain.link/education-hub/zero-knowledge-rollup
https://minaprotocol.com/wp-content/uploads/economicsWhitepaper.pdf
https://doi.org/10.1145/508171.508174

[22] Ethereum Foundation. Merkle Patricia Trie. 2024. Accessed: 2024-05-09. Available
at: https://ethereum.org/en/developers/docs/data-structures-and-encoding/
patricia-merkle-trie/.

[23] Ethereum Foundation. Zero-knowledge rollups. 2024. Accessed: 2024-05-15.
Available at: https://ethereum.org/en/developers/docs/scaling/zk-rollups/.

[24] Goel, K. Mina Protocol - Small but Mighty. 2022. Accessed: 2024-05-22. Available at:
https://messari.io/report/mina-protocol-small-but-mighty.

[25] Hijfte, S. V. Blockchain Platforms: A Look at the Underbelly of Distributed
Platforms. Morgan & Claypool Publishers, 2020.

[26] Jana, R. K., Ghosh, I. and Wallin, M. W. Taming energy and electronic waste
generation in bitcoin mining: Insights from Facebook prophet and deep neural
network. Technological Forecasting and Social Change. 2022, vol. 178, p. 121584.
DOI: https://doi.org/10.1016/j.techfore.2022.121584. ISSN 0040-1625. Available at:
https://www.sciencedirect.com/science/article/pii/S0040162522001160.

[27] Jerzak, Z. and Fetzer, C. Bloom filter based routing for content-based
publish/subscribe. In: Distributed Event-Based Systems. 2008. Available at:
https://api.semanticscholar.org/CorpusID:13891409.

[28] Jhanwar, M. P. and Tiwari, P. R. Trading Accumulation Size for Witness Size: A
Merkle Tree Based Universal Accumulator Via Subset Differences [Cryptology ePrint
Archive, Paper 2019/1186]. 2019. Accessed: 2024-04-25. Available at:
https://eprint.iacr.org/2019/1186.

[29] Kang, F. How To Transform Interactive Proofs Into Non-Interactive Proofs?
Fiat-Shamir Heuristic! May 2023. Accessed: 2024-05-23. Available at:
https://en.foresightnews.pro/how-to-transform-interactive-proofs-into-non-
interactive-proofs-fiat-shamir-heuristic/.

[30] Karpeev, I. =nil; zkLLVM + Proof Market: Enabling accessible and effective
zkProofs for all. 2023. Accessed: 2024-05-21. Available at:
https://nil.foundation/blog/post/proof-market-and-zkllvm-pipeline.

[31] King, S. and Nadal, S. PPCoin: Peer-to-Peer Crypto-Currency with Proof-of-Stake.
In:. 2012. Available at: https://api.semanticscholar.org/CorpusID:42319203.

[32] Laanoja, R. Simple hash-linking based time-stamping scheme. December 2009.
Accessed: 2024-01-18. Available at:
https://commons.wikimedia.org/wiki/File:Hashlink_timestamping.svg.

[33] Lamport, L. Password authentication with insecure communication.
Communications of The ACM. 1981, vol. 24, p. 770–772. Available at:
https://api.semanticscholar.org/CorpusID:12399441.

[34] Li, J., Li, N. and Xue, R. Universal Accumulators with Efficient Nonmembership
Proofs. In: Katz, J. and Yung, M., ed. Applied Cryptography and Network Security.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2007, p. 253–269. ISBN
978-3-540-72738-5.

59

https://ethereum.org/en/developers/docs/data-structures-and-encoding/patricia-merkle-trie/
https://ethereum.org/en/developers/docs/data-structures-and-encoding/patricia-merkle-trie/
https://ethereum.org/en/developers/docs/scaling/zk-rollups/
https://messari.io/report/mina-protocol-small-but-mighty
https://www.sciencedirect.com/science/article/pii/S0040162522001160
https://api.semanticscholar.org/CorpusID:13891409
https://eprint.iacr.org/2019/1186
https://en.foresightnews.pro/how-to-transform-interactive-proofs-into-non-interactive-proofs-fiat-shamir-heuristic/
https://en.foresightnews.pro/how-to-transform-interactive-proofs-into-non-interactive-proofs-fiat-shamir-heuristic/
https://nil.foundation/blog/post/proof-market-and-zkllvm-pipeline
https://api.semanticscholar.org/CorpusID:42319203
https://commons.wikimedia.org/wiki/File:Hashlink_timestamping.svg
https://api.semanticscholar.org/CorpusID:12399441

[35] Marlin. What is Marlin? 2024. Accessed: 2024-05-21. Available at:
https://docs.marlin.org/learn/what-is-marlin/.

[36] Menezes, A. J., Oorschot, P. C. van and Vanstone, S. A. Handbook of Applied
Cryptography. CRC Press, 2001.

[37] Merkle, R. C. A Digital Signature Based on a Conventional Encryption Function.
In: Pomerance, C., ed. Advances in Cryptology — CRYPTO ’87. Berlin,
Heidelberg: Springer Berlin Heidelberg, 1988, p. 369–378. ISBN 978-3-540-48184-3.

[38] Microsoft. Trusted Execution Environment | Microsoft Learn. Microsoft, June
2023. Accessed: 2024-01-15. Available at: https://learn.microsoft.com/en-us/azure/
confidential-computing/trusted-execution-environment.

[39] Nakamoto, S. Bitcoin: A Peer-to-Peer Electronic Cash System. 2008. Available at:
http://www.bitcoin.org/bitcoin.pdf.

[40] Nil Foundation. What is zkLLVM? 2024. Accessed: 2024-05-21. Available at:
https://docs.nil.foundation/zkllvm/overview/what-is-zkllvm.

[41] Odoom, J., Huang, X., Zhou, Z., Danso, S., Benedicta, N. E. N. et al.
Blockchain-assisted sharing of electronic health records: a feasible privacy-centric
constant-size ring signature framework. International Journal of Computers and
Applications. Taylor & Francis. 2023, vol. 45, no. 9, p. 564–578. DOI:
10.1080/1206212X.2023.2252238. Available at:
https://doi.org/10.1080/1206212X.2023.2252238.

[42] Özçelik, I., Medury, S., Broaddus, J. T. and Skjellum, A. An Overview of
Cryptographic Accumulators. CoRR. 2021, abs/2103.04330. Available at:
https://arxiv.org/abs/2103.04330.

[43] Petkus, M. Why and How zk-SNARK Works. CoRR. 2019, abs/1906.07221.
Available at: http://arxiv.org/abs/1906.07221.

[44] Poly Team. PolyNetwork: An Interoperability Protocol for Heterogeneous
Blockchains. Poly Network, May 2020. Available at:
https://www.poly.network/PolyNetwork-whitepaper.pdf.

[45] Polyhedra Network. Introducing the Bitcoin Messaging Protocol with zkBridge.
Polyhedra Network Blog, December 2023. Accessed: 2024-05-10. Available at:
https://blog.polyhedra.network/introducing-the-bitcoin-messaging-protocol-
with-zkbridge.

[46] Poon, J. and Dryja, T. The Bitcoin Lightning Network: Scalable Off-Chain Instant
Payments. 2016. Available at:
https://lightning.network/lightning-network-paper.pdf.

[47] Reed, I. S. and Solomon, G. Polynomial Codes Over Certain Finite Fields. Journal
of the Society for Industrial and Applied Mathematics. Society for Industrial and
Applied Mathematics. 1960, vol. 8, no. 2, p. 300–304. ISSN 03684245. Available at:
http://www.jstor.org/stable/2098968.

60

https://docs.marlin.org/learn/what-is-marlin/
https://learn.microsoft.com/en-us/azure/confidential-computing/trusted-execution-environment
https://learn.microsoft.com/en-us/azure/confidential-computing/trusted-execution-environment
http://www.bitcoin.org/bitcoin.pdf
https://docs.nil.foundation/zkllvm/overview/what-is-zkllvm
https://doi.org/10.1080/1206212X.2023.2252238
https://arxiv.org/abs/2103.04330
http://arxiv.org/abs/1906.07221
https://www.poly.network/PolyNetwork-whitepaper.pdf
https://blog.polyhedra.network/introducing-the-bitcoin-messaging-protocol-with-zkbridge
https://blog.polyhedra.network/introducing-the-bitcoin-messaging-protocol-with-zkbridge
https://lightning.network/lightning-network-paper.pdf
http://www.jstor.org/stable/2098968

[48] Slávka, S. Mobile Cryptocurrency Wallet Based on zk-SNARKs and Smart
Contracts. Brno, CZ, 2022. Diplomová práce. Vysoké učení technické v Brně, Fakulta
informačních technologií. Available at: https://www.fit.vut.cz/study/thesis/23223/.

[49] Smart, N. Cryptography: An Introduction. 3rd ed. McGraw-Hill College, 2004.
ISBN 978-0077099879.

[50] Stallings, W. Cryptography and Network Security: Principles and Practice. 6th ed.
USA: Prentice Hall Press, 2013. ISBN 0133354695.

[51] Tarkoma, S., Rothenberg, C. E. and Lagerspetz, E. Theory and Practice of
Bloom Filters for Distributed Systems. IEEE Communications Surveys & Tutorials.
2012, vol. 14, no. 1, p. 131–155. DOI: 10.1109/SURV.2011.031611.00024.

[52] Valiant, P. Incrementally Verifiable Computation or Proofs of Knowledge Imply
Time/Space Efficiency. In: Canetti, R., ed. Theory of Cryptography. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2008, p. 1–18. ISBN 978-3-540-78524-8.

[53] Westerkamp, M. and Eberhardt, J. ZkRelay: Facilitating Sidechains using
zkSNARK-based Chain-Relays [Cryptology ePrint Archive, Paper 2020/433]. 2020.
Accessed: 2024-05-18. Available at: https://eprint.iacr.org/2020/433.

[54] Xie, T., Zhang, J., Cheng, Z., Zhang, F., Zhang, Y. et al. ZkBridge: Trustless
Cross-chain Bridges Made Practical. October 2022. Available at:
https://arxiv.org/abs/2210.00264.

[55] Zarick, R., Pellegrino, B., Zhang, I., Kim, T. and Banister, C. LayerZero
Whitepaper v2.1.0. LayerZero Labs. Available at:
https://layerzero.network/publications/LayerZero_Whitepaper_V2.1.0.pdf.

[56] Zhou, Q., Huang, H. and Zheng, Z. Solutions to Scalability of Blockchain: A
Survey. IEEE Access. January 2020, PP. DOI: 10.1109/ACCESS.2020.2967218.

[57] ZoKrates Team. ZoKrates: A toolbox for zkSNARKs on Ethereum. November
2023. Accessed: 2024-05-08, version 0.8.8. Available at: https://zokrates.github.io/.

61

https://www.fit.vut.cz/study/thesis/23223/
https://eprint.iacr.org/2020/433
https://arxiv.org/abs/2210.00264
https://layerzero.network/publications/LayerZero_Whitepaper_V2.1.0.pdf
https://zokrates.github.io/

Appendix A

Contents of the Attached Medium

The README.md file contains a brief introduction and the steps necessary to run the appli-
cation. Other notable folders are:

• src/ – contains the Python source files implementing the application.

• src/test/ – contains the definition of all the tests and support files.

• src/circuit/ – contains files necessary for the generation and verification of indi-
vidual proofs.

CD-ROM
src/

circuit/
test/

misc/
test_bind_zokrates.py
test_block.py
test_client.py
test_coin_tx.py
test_proof_tx.py
test_state_tree.py

bind_zokrates.py
block_body.py
block_header.py
block.py
client.py
coin_tx.py
config.json
encodeable.py
network.py
peer.py
proof_tx.py
state_tree.py
util.py

README.md
requirements.txt

62

	Introduction
	Cryptographic Concepts
	Cryptographic Goals
	Symmetric Cryptography
	Asymmetric Cryptography
	Cryptographic Hash Function
	Lamport's Hash Chains
	Linked Timestamping
	Merkle Tree
	Merkle-Patricia Trie

	Blockchain
	Smart Contracts

	Secure Multi-party Computation
	Cryptographic Commitments
	Polynomials
	Degree of a Polynomial
	Constructing Polynomials

	Offloading Techniques
	Zero-knowledge Proofs
	Zero-knowledge Arguments
	Zk-SNARKs
	Zk-STARKs
	Comparison of SNARKs and STARKs

	Cryptographic Accumulators
	Classification
	Bloom Filters
	Cuckoo Filters
	RSA Accumulator
	Merkle Tree Accumulator
	Evaluation and Applications

	Existing Technologies and Applications
	Trusted Execution Environments
	Bitcoin Lightning Network
	ZoKrates
	Trusted Setup Using SMPC

	Zk-Bridge
	Mina Protocol
	ZkLLVM
	Marlin

	Design
	Incentive Scheme
	Transactions
	Block Construction
	Block Verification
	Circuit Storage
	Internode Communication
	Storing User Account Data
	Proofs
	Keys and Identifiers
	Reputation System

	Implementation
	Client Application
	Modes
	Client Commands
	Communication Protocol
	Joining the Network
	Logging Priorities
	Network Configuration and Genesis Block
	ZoKrates Library Integration
	Example Uses

	Testing
	Client Application Testing

	Discussion
	Solution Analysis and Limitations
	Forks

	Possible Enhancements
	Reducing Wasted Work

	Practical Use Cases
	Zk-Bridge
	Zk-Rollups

	Conclusion
	Bibliography
	Contents of the Attached Medium

