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Abstract

Log anomaly detection is an important process that can help prevent or detect system fail-
ures, intrusion attempts and other malicious behavior. However, modern systems produce
amounts of log data far beyond what is possible to analyze manually. That is why a variety
of automated methods were developed for this purpose, ranging from rule based techniques
to approaches using deep learning. The aim of this thesis is to compare several log anomaly
detection methods to determine which one is the best suited for application on large real-
world log files, represented by a collection of logs from production AAA (authentication,
authorization, accounting) servers provided by AT&T. Apart from AT&T logs, the methods
were applied to and evaluated on two other labeled datasets, one of which was enriched by
synthetically generated anomalies. This thesis adopts three unsupervised anomaly detec-
tion methods: Local Outlier Factor, DBSCAN clustering and an OPTICS-based framework.
The former two examine the logs on a sample-level, while the latter analyzes entire log se-
quences. All methods achieved results comparable to works with similar approaches.

Abstrakt

Detekcia anomalii v logoch je dolezity proces, ktory poméha detekovat poruchy systému,
pokusy o prienik do systému a dalsie skodlivé spravanie, pripadne tymto udalostiam umoznu-
je predchadzat. Moderné systémy vsSak produkuju logy v mnozstvach, ktoré nie je mozné
analyzovat ru¢ne. Preto sa na tento ucel pouziva mnozstvo automatizovanych metéd, od
technik zaloZzenych na pravidlach, az po pristupy pouzivajice hlboké ucenie. Cielom tejto
diplomovej prace je porovnat niekolko metéd detekcie anomalii v logoch a urcit, ktora z nich
je najviac vhodné pre pouzitie na velkych log stiboroch z praxe. Reprezentantom takychto
dat je zbierka logov z produkéného AAA servera, ktoré boli poskytnuté firmou AT&T.
Okrem AT&T logov boli metédy aplikované a vyhodnotené na dvoch dalsich anotovanych
datasetoch, z ktorych jeden bol obohateny o synteticky generované anomalie. Tato praca
vyuziva tri metody detekcie anomaélii: lokalny odlahly faktor, zhlukovaci algoritmus DB-
SCAN a OPTICS framework. Prvé dve metédy skumaju logy na trovni jednotlivych zéz-
namov, zatial ¢o poslednd analyzuje celé sekvencie logov. Vsetky metddy dosiahli vysledky
porovnatelné s pracami, ktoré realizuji podobné pristupy.
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Rozsireny abstrakt

Detekcia anomdlii, nazyvana aj detekcia odlahlych hodnét, je proces identifikacie idajov,
ktoré sa vyrazne lisia od beznych vzorcov spravania. Tieto odchylky mézu byt indika-
torom vyskytu chyby systému, Skodlivych aktivit alebo jednoducho zaujimavé data, ktorych
preskiimanie moéze byt prinosné. Interpretacie sa mozu lisit podla oblasti, pre ktoru je de-
tekcia anomalii pouzitda. Tieto oblasti zahfnaju analyzu spravania zdkaznikov, detekciu
finanénych podvodov, monitorovanie zdravia a Statistiku, pricom pre kazdu existuje Siroky
rozsah pouziti. Tato praca je vSsak zamerand len na jednu z tychto domén a to na ky-
berneticki bezpecnost. Anomaélie odhalené v pocitacovych systémoch mézu byt klacovym
indikatorom potencialnych zlyhani systému, titokov a pokusov o prienik do systému.

Vyuzivanie logovania je standardom v pocitacovych programoch vsetkych oblasti, od
operacnych systémov az po aplika¢ny softvér. Logy su zdznamy ¢innosti, ktoré vykonava
systém ako aj udalosti, ktoré sa vyskytli pocas prevadzky systému. V zavislosti od sys-
tému, z ktorého logy pochadzaji moézu protokoly obsahovat tidaje o procesoch opera¢ného
systému, HTTP poziadavkach na server, autentifikacné udaje uzivatelov alebo vykonané
databdzové dotazy. Vdaka tomu su logy vynikajicim zdrojom informécii pre detekciu
anomalii. Predpokladom je, ze anomalne udalosti sa prejavia v logoch ako zaznamy, ktoré
sa nejakym sposobom lisia od logov generovanych beznymi udalosti.

Jednou z velkych prekézok pri hladani anomélii v logoch je velké mnozstvo tudajov,
ktoré je potrebné spracovat. V stcasnosti poéitacové systémy produkuji objem dat, ktoré
je jednoducho nemozné analyzovat manualne. Nehovoriac o tom, ze tento pristup vyzaduje
doménovych expertov, ktori si podrobne obozndmeni so standardnym spravanim daného
systému, a preto dokazu identifikovat odlahlé hodnoty. Okrem toho, niektoré anomaélie
nie su Tahko rozpoznatelné, ¢i uz kvoli vedomému tsiliu tocnika alebo kvoli povahe danej
anomalie.

V praxi teda nie je manudlna identifikdcia realizovatelnd a namiesto toho sa pouzi-
vaju rozne automatizované metédy. Tieto metédy zahinaju pristupy zalozené na defino-
vani pravidiel, ktoré pochadzaju z technik dolovania tudajov, algoritmy strojového ucenia
vyuzivajuce zhlukovanie, metédy hlbokého ucenia s neurénovymi sietami a dalsie. Tieto
metédy mozno pouzit na velké mnozstvo tidajov a zvycCajne bez hlbsich znalosti o hladanych
anomaliach.

Cielom tejto prace bolo vybrat metodu pouzitelnii pre stibor logov poskytnutych firmou
AT&T, ktoré obsahuju logy z produkéného autorizacného serveru. AT&T dataset nie je
anotovany, preto boli pouzité metddy, ktoré realizuji ucenie bez ucitela. Vybrané boli
metédy: LOF, DBSCAN a framework pre detekciu anomalii, ktory vyuziva OPTICS.

Aby mohla byt vyhodnotend dcéinnost zvolenych metdd typickymi metrikami, boli vy-
brané dva dalsie anotované datasety. OPTICS framework bol vyhodnoteny na HDFS
datasete, ktory obsahuje nestruktirované textové spravy. Druhy dataset, LANL, bol obo-
hateny o synteticky generované anomadlie a pouZity na vyhodnotenie LOF a DBSCAN.
Celkovo najvyssiu efektivitu dosiahol OPTICS framework, konkrétne F1 skore 0,65. Ukazalo
sa, ze z metod aplikovanych na dataset LANL je DBSCAN 1cinnejsi, s dosiahnutym F1
skoére 0,49. Vysledky st porovnatelné s pracami, ktoré realizuja podobny pristup.

Metédy boli tiez aplikované na dataset od AT&T a tspesne identifikovali podozrivé
spravanie, ktoré sa odchyluje od beznych vzorcov. Avsak na potvrdenie, ze sa jednalo
o skuto¢ne anomalne zdznamy su vSak potrebné dalsie informacie, ako napriklad histéria
uzivatelov. V ¢ase vyhotovenia tejto prace tieto informacie neboli firmou AT&T poskytnuté.
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Chapter 1

Introduction

Anomaly detection, also called outlier detection, is the process of identifying data that
differ significantly from normal patterns and behaviors. These deviations can be an indica-
tor of erroneous occurrence, malicious operations, or simply interesting data points worth
examining. Interpretations may vary among the many areas where anomaly detection is
utilized, including customer behavior analysis, financial fraud detection, health monitoring,
and statistics, each with a wide range of use cases. This work, however, is only focused on
one of these domains, specifically cyber security. Anomalies detected in computer systems
can be a crucial indicator of potential system failures, attacks, and intrusion attempts.

It is standard in computer programs of all areas, from operating systems to application
software, to utilize logging. Logs are records of activities executed by the system and
events that occurred while the system was operating. Depending on the origin, logs can
contain data regarding operation system processes, HI'TP requests made to a server, user
authentication data or performed database queries. This makes logs an excellent data
source for performing anomaly detection. The expectation is that anomalous events will be
translated into logs which in some way deviate from those generated by normal events.

One of the great challenges of finding anomalies in logs is the large amount of data
that needs to be processed. Nowadays, computer systems produce volumes of logs that
are simply impossible to analyze manually. Not to mention that this approach would
require domain experts who are familiar in detail with the standard behavior of a given
system and can, therefore, identify the outliers. Furthermore, some of the anomalies are not
easily noticeable, either as a result of a conscious effort from an attacker or the nature of
the anomaly itself. Overall, identifying anomalies by hand is in no way a viable approach,
and instead a variety of automated methods are used in practice. Approaches include rule-
based methods originating from data mining techniques, machine learning algorithms using
clustering, deep learning methods with neural networks, and more. These methods can be
applied on large amounts of data, usually without having a deep knowledge of the anomalies
present.

The focus of this work is log anomaly detection with various machine learning methods.
Through collaboration with a Czech branch of the American telecommunications company
AT&T residing in Brno, these methods can be selected for and applied to a specific real-
world problem. The goal is to develop a log anomaly detection method, which can be applied
in the case of AT&T. In order for this method to be useful and practical, the emphasis is
put on two areas, the method parameters and the effectiveness. If a method requires
the specification of parameters, determining their optimal value should be an automated



process. Effectiveness can be characterized by the rate of false alarms and the ability to
detect present anomalies.

The remainder of this work is organized as follows. Chapter 2 introduces general
concepts related to log anomaly detection, provides an overview of machine learning ap-
proaches, and a detailed description of methods used within this work. Chapter 3 describes
the datasets used for evaluation of the implemented methods and their preprocessing. Chap-
ter 4 presents the selected solutions and their implementation details. Chapter 5 contains
evaluation of the achieved results. Finally, Chapter 6 examines the application of the se-
lected machine learning methods on real-world large log files.



Chapter 2

Machine learning for log anomaly
detection

Anomaly detection, also called outlier detection, is the process of identifying rare events
or observations different from standard behavior. This chapter introduces the problem of
log anomaly detection by defining the terms connected to it used within this work, out-
lining components of a general detection framework, and discussing the challenges faced
in the field. This work focuses on solving anomaly detection with machine learning algo-
rithms. Their primary classification is outlined below, including a detailed description of
the methods that were utilized.

2.1 Log anomaly detection

Anomaly detection can be utilized in numerous areas, including finance and healthcare.
Within the IT realm, it can be used as a part of system monitoring either to detect faults
in the system or in the context of cyber-security. Logs are a natural source of information
about the system runtime and its operations, so they can be analyzed for anomalies.

2.1.1 Anomaly

An anomaly, also referred to as an outlier, is a significant deviation from the normal or
expected pattern of behavior [12]. Ruff et al. [43] formally define anomaly as follows: let
X C RP be the data space of a given problem and normality be the distribution Pt on
X. Anomaly = € X is a data point located in an area under P™ with low probability. In
other words, if p™(x) is the probability distribution function of P*, set of anomalies can be
defined as

A={zcX|pT(x)<7},7>0 (2.1)

where 7 is the threshold determining the probability of A is sufficiently low.

Authors in [43] also highlight the difference between anomaly, novelty, and noise. All
three terms signify points in low-probability areas of P™. However, noise is simply a rare
occurrence from PT while novelty is an instance from a new area of changing, evolving PT.
In contrast, anomaly comes from a different distribution altogether. This is why anomalies
are characterized as carrying significant information, unlike noise, which corrupts data and
interferes with data analysis.



2.1.2 Anomaly types

Chandola et al. [12] classify anomalies into three groups: point anomalies, contextual anoma-
lies, and collective anomalies. Point anomaly, also called a global anomaly, refers to a single
data point that is itself anomalous. A request from a foreign IP found in network logs can
be considered a point anomaly.

Contextual anomaly, sometimes called conditional, is a normal data point with respect
to the dataset, but anomalous within a defined context. To detect this type of anomaly, data
instances need to contain contextual as well as behavioral attributes. Contextual attribute
refers to circumstances in which a log entry occurred (IP address, user, timestamp) and
behavioral attribute describes the patterns exhibited within the log entry (response status,
request type, number of packets). The anomalousness of two instances that are the same in
terms of behavioral attributes can differ depending on their contextual features. An example
of a contextual anomaly is a network traffic peak during early morning or late night hours.
Although such traffic is considered normal during the day, it is anomalous in the given
context of the time of the day.

When a group of related data points, which are individually normal, is anomalous
because they occurred together, they are called collective anomalies. Numerous entries of
failed login events can suggest occurrence of a collective anomaly. A failed login on its own
is not an anomalous event; however, a large number of these events occurring together can
be a mark of a brute force attack on user passwords.

2.1.3 Logs

Logs are chronological records of events that occur in a system. Log files are a collection
of log entries or log lines, where each entry documents a single event. Log entries always
contain a timestamp but the rest of the entry structure and content vary greatly between
different systems. Log entry attributes can be one of the following types:

e categorical nominal — e.g. usernames, device identification, protocol;
e categorical ordinal — e.g. severity;
e numeric — e.g. time and date, packet size;

o unstructured text — e.g. URL, packet or website content, command, description.

2.1.4 Log-based anomaly detection framework

Generally, log-based anomaly detection frameworks include four steps: log collection, log
parsing, feature extraction, and anomaly detection [23].

1. Log collection: Depending on the approach, logs from one or multiple sources are
used. The logs in Figure 2.1 are collected from Hadoop Distributed File System
(HDFS) running on Amazon cloud [52].

2. Log parsing: If logs from multiple sources are analyzed, there is usually a large
variation in how they look. Even in logs from the same source, each type of event can
contain different fields and information. The point of log parsing is to unify the log
structure. Log parsing can also refer to a specific process of extracting message
templates and variables from textual logs with a parser. For more information about
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Figure 2.1: Example of general framework for log anomaly detection. Adopted from [23].

this type of parsing see Section 2.2.1 that describes the popular Drain [22] parser.
Step 2 in Figure 2.1 shows the creation of templates from the collected logs.

3. Feature extraction: the feature extraction aims to transform raw data into a form
suitable for a model or algorithm that is applied. This includes selection of used
features (username, IP address, date), construction of new features from log templates
(event count vector [54], state ratio vector [52]), or, in case of methods based on
natural language processing (NLP), vectorization of log messages. Features can also
be obtained by clustering. If there is a need to reduce dimensionality of a dataset,
apart from removing attributes, the principal component analysis (PCA) algorithm
can be used. Step 3 in Figure 2.1 shows creation of an event count vector using sliding
windows.

4. Anomaly detection: the last step is applying the anomaly detection. Methods which
can be applied include simple user-defined rules, more sophisticated data mining
techniques, or machine learning algorithms and models.

2.1.5 Labels vs. anomaly score

There are two ways in which a method can report the result of a detection; by assigning
a score or a label to a log event. Score represents the degree to which a data instance
is considered anomalous, while the label only asserts whether the instance is normal or
anomalous. The score can be used to determine a number of the top n anomalies with
the highest anomaly score, or a threshold can be established to select the instances which
should be examined further. This allows adjustments based on the characteristics of a spe-
cific problem, such as data contamination, which refers to the proportion of anomalies in
a dataset.

2.1.6 Challenges of anomaly detection

Anomaly detection is based on discerning behavior in the training data in order to learn
characteristics of the normal and anomalous. There are several factors that stem from
the nature of anomalies that make this process a challenge. Pang et al. [39] and Ruff et al.
[43] discuss the following:

e Unknowness: anomalies represent unexpected behavior, such as errors or attacks.
They remain unknown until they appear.



o Diversity of anomalies: as a result of the irregular nature of anomalies, there may
be a large difference in their manifestation. Different errors or attacks do not pro-
duce similar logs. This also connects to anomaly types. A collective anomaly which
is a group of individually normal log entries has very different characteristics from
a point anomaly which is a single anomalous entry. Therefore, it is complicated to
build a model that will be able to detect all anomaly types. There are methods that
try to sidestep the diversity problem by only modeling the normal class and marking
any unknown behavior anomalous. This is not a perfect solution either, as discussed
in the next point and in Section 2.2.3.

e Variability of normal data: normal behavior of systems is no less complicated than
the anomalies that can occur. The more complex a system is, the higher the chance
is that a rare normal event could be wrongly marked as an anomaly.

e Class imbalance: anomalies occur rarely, creating highly imbalanced datasets. As
discussed in more detail in Section 2.2.2, some methods do not handle uneven class
distributions well.

Other challenges include:

e Score threshold. For methods with anomaly score output, it is necessary to explicitly
set a threshold (7 in Definition 2.1) that distinguishes anomalies from normal data.
Attributes that would influence the value, such as contamination of the data, are
usually unknown, so it is not a trivial task to decide what is a “sufficiently” large
deviation from normal.

e Variable log structure. Even though logs are semi-structured data, there is no one
standard log message format. From system to system, logs vary in content and form.
Logs from a Java application might have a very different logging style to an Nginx
server logs. This renders universal solutions less effective and requires tailoring to
a specific problem, which is costly.

2.2 Machine learning methods

Machine learning uses models and algorithms to solve problems without being explicitly
programmed to do so [45]. Solutions are predicted according to information extracted from
the provided data. Machine learning methods for log anomaly detection learn to identify
anomalous (normal) data instances among the log data, without explicitly defining what
anomalies (normal data) look like.

Application of machine learning to a problem entails several steps. First, it is necessary
to prepare the data to a form suitable for the chosen algorithm or model. Then the method
itself can be applied. In the end, the results need to be evaluated. There is a plethora
of methods to choose from for each of these steps. Following sections detail the tech-
niques used within this work. Machine learning anomaly detection methods can be divided
into three main categories: supervised, semi-supervised, and unsupervised. Figure 2.2 dis-
plays an overview of the classification, the methods that were used are highlighted in bold.
The dataset provided by AT&T for this diploma project is unlabeled, so this work focuses
mainly on unsupervised methods.
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Figure 2.2: Classification of machine learning methods for anomaly detection. Methods
used in this work are in bold.

2.2.1 Data preparation

Data preparation is an important step as it has a significant effect on the models ability to
learn. It includes components such as:

e Data integration: To detect certain anomalies, it may be necessary to analyze logs
from multiple sources. These logs need to be integrated into a dataset with unified
structure.

e Data cleaning: Includes handling the missing values, noise and any redundancy cre-
ated by data integration. In the case of anomaly detection, data cleaning has to be
considered very carefully, so that meaningful anomalies are not removed in the process
of cleaning noise.

o Data reduction: Data can be reduced in terms of numerosity (number of samples),
dimensions or cardinality of attributes (number of unique values of an attribute). To
decrease numerosity, only a certain time window of the original log file can be used
or the logs can be sampled. To reduce dataset dimensions, the most representative
features are carefully selected. New features can be extracted either manually or with
more sophisticated methods such as log parsing or autoencoder models. To remove di-
mensions with insignificant variability there are methods such as principal component
analysis (PCA) for numerical attributes or multiple correspondence analysis (MCA)
for categorical variables. To decrease the cardinality of an attribute, the values can
be discretized.

e Data transformation: Its role is to change data into a form digestible for the ap-
plication of a machine learning algorithm. For categorical features, transformation
involves encoding the nominal or ordinal values to numerical. Numerical attributes are
typically transformed by normalization. Popular transformation techniques include
one-hot encoding, integer encoding and Min-Max normalization.



Encoding of categorical variables

There are several encoding methods, including one-hot encoding and integer encoding. One-
hot encoding, also called 1-of-n encoding, creates a new binary attribute for each category
of the transformed variable. The attribute which represents the original value of a sample
then has a value of one, and the rest of the attributes are zero. Integer encoding simply
replaces each unique category of the variable with a number. It is good practice to assign
the specific number in a way that avoids bias based on the order of appearance. Each
approach has different advantages and drawbacks. Integer encoding method is simple and
does not increase the dimensions of the dataset. However, when applied to nominal data,
it could artificially create an ordinal relationship between the values leading to a decrease
in the performance of the applied model [10]. In that way, one-hot encoding is much better
at representing the distinctiveness of categories but it drastically increases the dataset
dimensions if applied to variables with a large amount of unique values.

Multiple correspondence analysis

MCA is a dimensionality reduction method designed for categorical attributes based on
correspondence analysis (CA) [1]. The attributes are transformed into an indicator ma-
trix, which essentially means applying one-hot encoding on the attributes. Standard CA is
applied to the matrix, creating set of row and column factor scores, whose variance corre-
sponds to their eigenvalues [1]. To reduce dimensions data to m dimensions, factors with
the m largest eigenvalues are selected and the dataset is projected onto these factors. In
practice, the number of target dimensions is typically not chosen explicitly. Rather, it is
determined by a required minimum cumulative variance of used factors.

Min-Max normalization

Some algorithms, such as k-means clustering, perform better on normalized data [40]. Oth-
erwise, variables with higher magnitudes may overshadow variables with lower values [15].
That can be avoided by transforming values to the same interval. It should be noted that
for certain distance measures, such as Euclidean, normalizing a dataset is necessary [2].
One of the fundamental methods, Min-Max normalization, linearly transforms data. Let A
be an attribute with a value range of [miny4, maz4]. Min-Max normalization transforms
a; € A to a in range [new_minya, new max 4] [21] by:
a; —min
ai = l—,A(newimaa:A — new_miny) + new_mina (2.2)
maxg — mina
In case when attributes are transformed to a new range of [0,1], the mapping function
can be simplified to:
, a; — ming

= A 2.3
@i mars — mina (2:3)

Drain parser

Drain [22] is a streaming log parser with a fixed depth tree. In general, a parser processes
raw log lines into structured log messages. The parser identifies logs that describe the same
operation and derives a message template, i.e. the constant part, for each group of such log



messages. The variable parts, message parameters, which change from message to message,
contain specific information about system runtime [22].

Drain processes raw logs in a streaming manner, one by one. When a log entry is parsed,
it is matched to a most suitable group of already parsed logs or a new group is created.
Drain searches for log groups using a fixed depth parse tree. Internal nodes of this tree
contain rules for finding a suitable log group and leaf nodes contain a list of log groups.
Before parsing, Drain preprocesses logs with simple regular expressions created by the user
based on domain knowledge, called masking patterns. These regular expressions represent
frequently used variables, such as IP address, and if matched, the variable is removed. This
helps the parser to identify variable parts of a log message more effectively.

2.2.2 Supervised anomaly detection

Supervised anomaly detection models require the existence of training data with anno-
tations, which means that data instances are labeled as normal or anomalous. Building
a model consists of creating a function to map input to output values [34]. This function
is improved with learning through feedback from a loss function. Supervised methods can
perform two tasks, regression or classification. Classification models map the input values
to a set of discrete output values (classes) [37]. Regression models predict the output value
of a continuous dependent variable based on a set of independent variables [17].

Both tasks can be used for log anomaly detection. Application of classifiers is very
straightforward; the model is trained to classify the input data, in this case the processed
log files, into normal or anomalous classes. Commonly used supervised classifiers are k-
nearest neighbors (KNN), support vector machines (SVM), decision tree, random forest, and
supervised neural networks. When using regression models, the input independent variables
become features extracted from the logs. The target variable can be the anomaly label [35]
or another variable present in the source data. In the latter case, the anomalousness is
based on a comparison of the predicted value with the actual value [19].

Although the supervised approach can often produce more accurate results, these meth-
ods also have several drawbacks. The most obvious one is the need for labeled data. This
limit is highlighted in an area such as log anomaly detection, since labeled logs are not
commonly available. The resulting model is also unable to detect novel or unseen abnor-
malities. This may reduce the effectiveness of the model, as new malicious behavior is
always arising and evolving. Training data may lack certain groups of anomalies if they are
difficult to obtain, such as in the case of very obscure attacks and system errors. Another
well-known classifier issue is the processing of imbalanced class distributions [26, 32, 5].
In anomaly detection this issue is always present as there is naturally a higher amount of
normal instances present in the dataset compared to anomalous objects.

2.2.3 Semi-supervised anomaly detection

Semi-supervised anomaly detection methods assume the existence of data labels for one
class only. It is difficult to collect samples of anomalous behavior, so most labeled data
comes from the normal class. During training, a model is built to recognize this class. It
is then used to determine whether a new data point is an instance of the recognized class,
and therefore normal, or deviating from the model, marking it an anomaly. This approach
has the benefit of decreasing the cost and effort of labeling. It is also useful in instances
where obtaining anomalies is challenging. Potential limitations include the dependence on
the representativeness of the training data.
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2.2.4 Unsupervised anomaly detection

Unsupervised anomaly detection does not require any labeled data. Instead, it relies on
the assumption that anomalous data points differ from normal instances and are far less
present in the data. This makes the methods widely applicable and allows for detection
of evolving anomalies. Potential challenges of this approach are the difficulty in evaluating
the accuracy of models and the interpretation of the results. Another different approach
to unsupervised anomaly detection is using semi-supervised models on unlabeled data. In
that case, it is crucial that the data contamination is low and that the model used is robust
enough to handle the present anomalies.

There are many types of unsupervised methods, Nguyen et al., 2016 [38] mention the fol-
lowing categories: Nearest-neighbor based techniques, Clustering based techniques, Statistical
techniques and Goldstein et al., 2016 [20] add an additional group of Subspace techniques.

Nearest-neighbor techniques

Nearest-neighbor techniques are based on the notion of density of a neighborhood of data
points. The underlying assumption in these methods is that the data in more densely
populated regions is normal and that the sparse data is abnormal. To determine the density
of a neighborhood, a distance measure is used, which can be interpreted as the similarity
between data points. There are two ways in which the assignment of an anomaly score to
data points can be approached. A point can be represented by:

o the distance to its k-th nearest neighbor;

o the relative density of its neighborhood calculated by taking into account the anomaly
score of each of the k nearest neighbors.

the resulting value is then compared to a predetermined threshold, and the data instance
is characterized as normal or anomalous. The advantage of this group of techniques is
that no assumptions about the generative distribution of the data is made. Additionally,
adapting these methods to different data types is relatively straightforward. The downsides
include the computational complexity of O(n?). If the data is complex, it can also be rather
difficult to define an appropriate distance measure.

Local Outlier Factor

Local Outlier Factor (LOF) algorithm was introduced by Breunig et al., [9]. LOF assigns
a degree of outlierness to each object based on the ratio of density of the object to the average
density of the neighborhood of the object. This concept is loosely related to density-based
clustering such as DBSCAN [18] or OPTICS [6], however, does not involve any notion of
clusters.

Formally, let k-distance of point A be the distance from A to its k-th nearest neigh-
bor. K-neighborhood of A, denoted Ni(A), is a set of points within a circle, with radius of
k-distance(A) or Ni(A) = {B | d(A, B) < k-distance(A)}. This also implies that the num-
ber of points in Ni(A) may be greater than k. Reachability distance from point A to point
B is defined as

rdx(A, B) = max{k-distance(B),d(A, B)} (2.4)

That is, if point A is further than the k-distance of B, reachability distance is the distance
between these points; otherwise, all points within the k-neighborhood of B have the reach-
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ability distance value of k-distance of B. This is done to lower the statistical fluctuation of
d(A, B), when B is close. Local reachability density of point A is defined as

Z ) Tdk(A, B)
lrdy(A) = 1/(BEN’“T]\;]€(A)| ) (2.5)

In other words, the inversion of the average reachability distance of the k-nearest points of
A. Local outlier factor of point A is the average of the ratios of local reachability density
of k-nearest points of A and point A’s own local reachability density.

lrd, (B
BE]%: (A) leZEA;

An object with LOF}, < 1 has higher density than its neighbors, implying that it is an inlier.
If the object has LOF}, ~ 1, density of its neighbors is similar to its own. An object with
LOF}, > 1 has lower density than its neighbors and therefore can be considered an outlier.

From the above definitions, it can be seen that the value of LOF is based on one pa-
rameter k, denoted MinPts in [9]. MinPts is the number of nearest neighbors that define
the local neighborhood. The LOF value does not change monotonically with changing
MinPts, so the authors propose using a range of values. Of the resulting LOF scores,
the maximum should be considered to emphasize the case where the object is the most
outlying. The lower bound of the range can be interpreted as the minimum number of
objects in a cluster C in order to classify an object as an outlier with respect to C'. It is rec-
ommended that the lower bound be at least 10 to avoid statistical fluctuation. The specific
value is application-dependent, but 10 to 20 is said to work well in most cases. The upper
bound of the range represents the maximum number of objects that can be in a cluster, C
while all objects from C are outliers.

Clustering based techniques

Clustering is a process of grouping objects into sets, called clusters, based on their similarity.
The resulting clusters contain objects that are more similar to each other than to objects in
other clusters [25]. Using clustering for anomaly detection, the results can be interpreted
in one of the following ways. Firstly, it can be assumed that normal data belongs to
a cluster while anomalies do not. Although not all clustering algorithms allow data instances
not to be assigned to any cluster, methods such as density based spatial clustering of
applications with noise (DBSCAN) can be used in this case. Another approach is based
on the premise that normal data will form larger clusters, while the clusters of anomalies
will be much smaller in size. Algorithms such as cluster-based LOF (CBLOF) are suited
for this approach. Lastly, we can consider the data points located closer to the centroid of
their cluster as normal and instances further away as anomalies. In this case, algorithms
such as k-means or expectation-maximization (EM) are applicable.

The complexity of clustering depends on the chosen algorithm but ranges between O(n)
(k-means) and O(n?). As clustering algorithms are not primarily intended for anomaly
detection, they are also not optimized for this purpose. Another problem with many of
the algorithms is that they force every instance to be assigned to a cluster. The detection
efficiency can also drop when anomalies that occur form clusters themselves.
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Figure 2.3: Comparison of DBSCAN and K-means clustering on different cluster shapes.

DBSCAN

Density based spatial clustering of applications with noise (DBSCAN) was proposed by
Ester et al. [18]. DBSCAN’s notion of clusters is based on density, meaning that clus-
ters can be identified because the typical density of points within a cluster is higher than
outside of clusters. Similarly, points can be labeled as noise if their density is lower than
the density of any identified cluster. Defining the clusters in this way allows DBSCAN to
detect arbitrarily shaped clusters. This ability is demonstrated in Figure 2.3 which shows
the comparison between the DBSCAN and k-means, which unlike DBSCAN, forms clusters
based on a distance to a centroid point.

The idea behind DBSCAN is that each cluster point should contain a specified num-
ber of points in its neighborhood of a given radius. Clusters and noise for dataset X =
{1,229, ...,xy} of n points in a D-dimensional Euclidean space RP can be formally defined
as follows. Let Eps-neighborhood of a point p € X, denoted by Npgps(p), be defined as
NEps(p) = {q € X |dist(p,q) < Eps}, where dist(p, q) is the distance of p and ¢ determined
by the chosen distance measure. Eps is the user-defined radius of an Eps-neighborhood.

Ester et al. identify two types of points in a cluster: core points and border points.
Border points have significantly less points in their Eps-neighborhoods. If the number of
required points in a neighborhood (MinPts) is the same for both types of points, it would
have to be set appropriately low to include the cluster borders. However, the authors
point out that this would not be representative for the cluster, especially if noise is present.
Instead, they define relation called directly density-reachable. Point p is directly density-
reachable from point ¢ when p € Ng,s(q) and |Ngps(q)| > MinPts, for a given Eps and
MinPts. Essentially, every point in a cluster has to be a member of Eps-neighborhood
of a point which satisfies the requirements for being included in the cluster, e.g. has at
least MinPts points in its Eps-neighborhood. Direct density-reachable is symmetric for two
core points, but not symmetric for a core point and a border point. As an extension, let
point p be density-reachable from point ¢ if exists p1,...,pn,p1 = ¢, Pn = p where p;41 is
directly density-reachable from p;. Since it does not always apply that two border points
are density-reachable from each other, the relation density-connected was defined, which
says the there must be at least one core point from which the points are density-reachable.
Formally, let points p and ¢ be density-connected, if exists point o from which p and ¢ are
both density-reachable.

Based on these definitions, Ester et al. define cluster and noise as follows. Cluster C is
a subset of points C C X, C # @, which:

1. Vp,q: if p € C and q is density-reachable from p then ¢ € C.
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2. Vp,q € C: p is density-connected to gq.

Let Cq,...,Cy be clusters of X, with Eps; and MinPts; = 1,...,k. Noise is a set of
points which are not a member of any cluster C;, noise = {p € X;Vi : p ¢ C;}. In
an ideal case, it would be possible to define the optimal Eps and MinPts values for each
cluster. Regardless, this information is not commonly available and there is no simple way
to obtain it. Instead, the authors argue that it is sufficient to determine the value of the two
parameters for the least dense cluster and use them for all clusters.

To construct clusters that fulfill the defined characteristics, DBSCAN iterates over all
data points and processes each previously unassigned point z; with the following:

1. Retrieve the neighbors of x; into seeds (neighbors are points from Ngps(z;)).

2. If seeds contain less points than MinPts (x; is not a core point), assign z; as NOISE
and finish its processing. Otherwise, create a new cluster C and assign z; and all seeds
to C.

3. Select point s; from seeds if not empty, otherwise finish the processing.

4. Retrieve neighbors of s; into neighbors. If number of neighbors is less than MinPts
(s; is not a core point), return to Step 3, otherwise continue.

5. Insert all unassigned neighbors into seeds.
6. Assign cluster C to all points in neighbors which are unassigned or NOISE.

7. Continue to Step 4.

Essentially, if z; is a core point, new cluster is formed by core points density-reachable from
x; and border points density-reachable from any of the included core points.

The authors of the algorithm also introduce a heuristic for choosing the values of MinPts
and Eps. For a given k, let k-dist be a function mapping points to the distance to their
k-th nearest neighbor. Sorted k-dist graph is a graph of points sorted in descending order of
their k-dist. If a point p is chosen, Eps is set to k — dist(p) and MinPts is set to k, points
with equal and smaller k-dist become core points. Therefore, the goal is to find a point
that corresponds to the maximal value of k-dist for the least dense cluster. The authors
propose an interactive approach of choosing the value of the threshold point, as it is easier
to determine visually from the sorted k-dist graph than automatically. The threshold point
is located in the first so-called “valley” of the graph. Figure 2.4 shows an example of sorted
k-dist graph with a threshold point p in green. All points with k-dist above the threshold
(to the left) would be considered noise.

OPTICS

Ordering points to identify the clustering structure (OPTICS) is an extension of DBSCAN
proposed by Ankerst et al. [6]. Authors of OPTICS identified several weaknesses of the ex-
isting clustering algorithms, including DBSCAN, such as the need to determine global
parameters that describe the character of clusters and that the results of the clustering
are highly influenced by such parameters. Both of these factors are unfavorable because it
is complicated to estimate the parameters and also because the cluster density cannot be
characterized globally for real-world data.
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Figure 2.4: Example of a sorted k-dist graph with a threshold point p located in the first
valley of the graph.

Ankerst et al. based OPTICS on the observation that for a fixed MinPts value, two
clusters formed with a certain Eps value can be also identified as one cluster if the Eps
radius is increased. The authors point out that to discover the different clustering levels,
DBSCAN could be extended so that it is calculated for a variety of Eps values, providing
a better understanding of the structures present in the data. OPTICS functions as such
an extension with an infinite number of Eps values Eps; up to a specified generating distance
Eps, 0 < Eps; < Eps. OPTICS does not explicitly assign cluster membership to points, but
rather creates an ordering of points, based on the order of processing, from which clusters
can be extracted for any Eps; < Eps. The clusters can be obtained using core-distance and
reachability-distance which are calculated for each data point.

Let p be a data point from dataset D and Eps be the radius of Eps-neighborhood Ng,
of point p (as defined in 2.2.4). MinPts-dist(p) is the distance to MinPts’ neighbor of p,
MinPts € N. Core-distance of p is defined as:

UNDEFINED i | Ngps(p)| < MinPts,

core-dist gps Minpts(p) = { MinPts-dist(p) otherwise. (2.7)

In other words, core-distance for a given MinPts is the smallest distance Eps’ from object
0 t0 ¢, ¢ € Npps(p), for which p can be considered a core point with respect to Eps’; Eps’ <
Eps. Reachability-distance of point p to a core point o is the smallest distance, so that
p is directly density-reachable from o. Formally, for a given MinPts € N, and Eps-
neighborhood of 0, Ngps(0), the reachability-distance of p to o is defined as:

reach-dist i ( o) = UNDEFINED if ’NEps(0)| < MinPtS,
Eps,MinPts\P, 0) = mazx(core-dist(o), dist(o,p)) otherwise.
(2.8)

To illustrate these concepts, Figure 2.5 shows an example of core-distance and reachability-
distance within a Eps-neighborhood(o) for MinPts = 4.

The OPTICS algorithm loops through points in a dataset and processes each previously
unseen point p; as follows, with respect to a given generating distance Eps:

1. Retrieve neighbors of p; into seeds (neighbors are points from Ngps(p;)).

2. Mark p; as processed, calculate its core-distance and output the data point and its
metadata to FILE.
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Figure 2.5: Core-distance c(0), reachability-distances r(p1), r(p2) for MinPts = 4.

3. If the calculated core-distance of p; is undefined (p; is not a core point), finish the pro-
cessing. Otherwise, insert seeds into processing queue queue.

4. If not empty, select next point ¢ from queue (point at the head of the processing
queue), otherwise finish the processing.

5. Mark ¢ as processed, calculate its core-distance and output the data point and its
metadata to FILE.

6. If the calculated core-distance of ¢ is undefined (g is not a core point), return to Step
4. Otherwise, retrieve neighbors of ¢, insert them into seeds, and return to Step 4.

The ordering of objects in the processing queue determines the resulting OPTICS ordering.
Points in the queue are ordered by reachability-distance. If the inserted object is not in
the queue yet, the point is inserted into its place based on its reachability-distance to
a core point from which it was reached. If the point is already in the queue and the new
reachability-distance is smaller than the previous value, the distance is updated which
moves the object up in the queue. This ensures that the points are always processed with
respect to the highest density (smallest reachability-distance). Result of OPTICS is a file
with ordered database objects, each assigned a core-distance and reachability-distance.

From the OPTICS output is it simple to obtain a DBSCAN-like cluster assignments,
with respect to a given Eps’). This extraction is performed by iterating over points in
the OPTICS ordering. Each point can be identified as the first point of a cluster, as member
of an already existing cluster or as noise. New cluster is created when the reachability-
distance of a point is larger than the neighborhood radius Eps’, meaning the point o; is
not density-reachable from the previous point 0;_1 in the ordering, but it is a core point
with respect to Eps’. If reachability-distance of a point o; is smaller than Eps’ it means
it is a part of the same cluster as 0;_1 and it is added as a member of that cluster. If
reachability-distance is larger than Eps’ but the point is not a core point with respect to
Eps’, it is simply noise.

Statistical techniques

Statistical methods use the assumption that normal data is generated from a distribution.
Therefore, if a stochastic model can be fitted to the data, a probability that a data point was
generated by this model can be determined for each new instance. Then, given a probability
threshold, the instance is normal or anomalous. There are two types of statistical methods:
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parametric, which assume the generating distribution, and non-parametric, which do not
and can therefore be applied to any kind of data. The computing complexity of statistical
methods is usually O(n).

The drawback of this approach is that an incorrect assumption of the generating dis-
tribution can degrade the results. Histogram-based methods do not take into account
attribute interactions and only determine anomalies based on isolated attribute values, not
rare attribute combinations.

Subspace techniques

Subspace, also called spectral, methods assume that the dimensions of data can be reduced
into a lower-dimensional space in a way that will show a significant difference between
normal and anomalous data instances. One of the popular methods is PCA. The advantage
of this approach is that it is suitable for high-dimensional data. These methods can also
be used for data preprocessing to reduce dimensions.

2.2.5 Evaluation metrics

Anomaly detection can be interpreted as a binary classification, where the classes are normal
and anomalous. The most basic metric for evaluating model results is accuracy, calculated
as the number of correct predictions divided by the number of all predictions. However,
this metric can be misleading in the case of highly imbalanced datasets. For example,
if the dataset contains only 2% of the target class and the model classifies all samples as
the non-target class, its accuracy is 98% which is not representative of its performance at all.
Instead, a different set of metrics must be used. When the predicted label is compared to
the ground truth label, the result is one of 4 combinations depicted in a so-called confusion
matrix, Figure 2.6.

Actual

Positive Negative

Positive | True positive | False positive

Predicted
Negative | False negative | True negative

Figure 2.6: Confusion matrix.

True positive (TP) is the number of instances correctly classified as members of a class.
False positive (FP) is the number of instances of incorrectly classified as members of a class.
Correspondingly, true negatives (TN) are instances correctly classified as non-members
of class, and false negatives (FN) are incorrectly classified as non-members. With this
definition, precision, recall, and F1 score can be defined as follows:

TP TP Precision x Recall
P ,S10N = ————— Recall = ————— F1=2
reaston = o p T p = TPYFN * Precision + Recall

Precision conveys how many of the predicted positives are truly positive, meaning that
the higher the precision, the lower the rate of false positives. Recall states how many of
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the true positives were classified as positive. Therefore, the value of 1 means that all true
positives were recognized as positives by the model.

2.3 Related work

Supervised and unsupervised anomaly detection has been studied extensively. Since this
work operates in an unsupervised setting, only works of that nature were examined within
the scope. Clustering methods are widely utilized for unsupervised log anomaly detection.
Popular algorithms include k-means, DBSCAN, OPTICS, and hierarchical clustering.

Henriques et al. [24] use k-means to identify anomalous cluster in NASA HTTP logs
and then apply XGBoost decision tree for better interpretability of the results. Dani et
al. [16] use k-means to cluster logs from a high performance computing facility and deter-
mine the anomalousness of a data point based on its distance from its respective centroid.
The number of clusters is estimated as the number of unique event types present in the log
data.

Alghamdi and Reger [3] propose an unsupervised framework for pattern extraction of
multi-stage threats utilizing DBSCAN. The framework is designed to process logs from
multiple sources and identify patterns within the logs in two stages. Phase one aims to
identify the inner behavior of logs. Each log is processed individually and DBSCAN is used
to extract clusters of samples which share the same characteristics. For this stage, the fea-
tures that are unique among the sources were selected. The resulting cluster assignments
are used as a new feature for the next phase. The objective of phase two is to correlate
behaviors from different sources based on the their shared features, such as timestamp, user,
or source address. DBSCAN is applied again, this time to construct behavior patterns, and
they are assigned a signature to allow identifying similar patterns. The two step approach
is interesting as it allows for a multifaceted analysis of the data from multiple sources,
honoring both the inner behavior of each source and also providing insight on correlations
between the different logs. However, it does not provide a clear identification of anomalous
behavior and still requires a considerable amount of effort to analyze the results. It is also
of note, that the used dataset was quite small, only amounting to about 80 thousand log
entries.

LOF is another widely used algorithm, which is as the name suggests, performs outlier
detection locally. Paulauskas and Bagdonas [11] use LOF to identify outliers in aggregated
network flow logs. Cheng et al. [14] introduce a solution integrating Isolation Forest (IF) and
LOF. IF is used to prune a part of the normal data points before applying LOF, to decrease
the rate of false positives. They also design an algorithm to determine the threshold for
pruning since IF itself does not provide such information. The proposed algorithm, however,
is dependent on application specific parameters and authors provide no guidelines on how
to estimate them. The previous works applied LOF in a static setting, calculating outlier
scores for an unchanging dataset. There were also efforts to adapt LOF for application
in a streaming environment. Alghushairy et al. [4] provide a review of the adaptations
including incremental LOF (ILOF) [42], memory efficient ILOF (MiLOF) [44], and density
summarizing ILOF (DILOF) [36].

Another popular notion is to base the anomaly detection in the sequential nature of
logs and examine the frequency with which events occur in the data. The general outline
of this kind of methods is: parse logs to extract event types (log templates), construct
features that capture the frequency patterns with respect to event types, and use machine

18



a learning method to detect deviation from established normal patterns. The features are
usually formed for log file chunks of a given size called windows.

Method proposed by Xu et al. [52] for mining console logs follows this outline. They
acquire the log templates directly from the source code. During parsing, each log line is
matched to a template and the message variables are extracted. Two features are created:
state ratio vector and message count vector. The first captures the ratios of variable values
within a window and the second contains the number of logs matching each template within
a window. PCA is applied to these features to identify anomalies, and the decision tree
is used to used to visualize the rules for detecting an anomaly. Though the authors used
PCA, it can be replaced by any other detection algorithm making the solution more flexible.
However, this approach relies on having access to all source code producing the log data
which is not realistic for real-world scenarios.

LogCluster [31] includes a construction phase which uses logs from testing environment
and a testing phase which uses production logs. Clustering is used to extract log templates
from testing data that are transformed into weighted vectors of log sequences. These vectors
are clustered with Agglomerative Hierarchical clustering and centroids of the extracted
clusters serve as representative patterns. The logs from production are also converted into
vectors and clustered. Any patterns that are new compared to the ones extracted from test
environment are to be examined as potentially suspicious.

Zeufack et al. [54] combine approaches of [52] and [31] into a two stage framework.
During the first phase, called knowledge base construction, behavior patterns are extracted.
Log are parsed into templates with a fixed-tree parsing algorithm Drain and the templates
are used to construct event count vectors, which capture the number of logs of a certain
template present in a given windows. The vectors are clustered using OPTICS and centroids
of the identified clusters serve as a knowledge base of normal behavior patterns. The second
part of the framework is streaming anomaly detection. When a new log entry is added,
an event count vector is constructed for a window containing the newest and the latest
entries. The window is marked anomalous or normal based on its distance to the closest
centroid in the knowledge base. This approach removes the dependence of log parsing
on accessing source codes and the two stage structure enables to apply the framework in
a streaming manner.

It can be noted that some works seem to share a common flaw. Even when developing
an unsupervised log anomaly detection method, it is necessary to use annotated data to
accurately evaluate the efficiency and precision of the proposed method. The number of
publicly available labeled datasets is limited, so many papers test their frameworks on
a select few, such as the widely popular Hadoop Distributed File System (HDFS) log data
set [52]. This causes many of the methods to be applicable to a specific type of logs and it
can be challenging to adapt them for other real-world data.

2.4 Summary

To summarize, anomalies are deviations from normal behavior or patterns. There are three
types of anomalies: point anomalies, collective anomalies, and contextual anomalies, and
each type manifests differently in log data. Anomalies can be detected using machine learn-
ing methods, and this work focuses specifically on unsupervised methods as the goal is to
apply them to an unlabeled dataset. The algorithms can be grouped based on their underly-
ing principles into nearest-neighbor based, clustering, statistical, and subspace techniques.
Algorithms from the former two were selected for implementation in this work, inspired by
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the popularity of the methods in other log anomaly detection works. Namely, the algo-
rithms LOF, DBSCAN and OPTICS were utilized. Chapter 4 describes their application
on the chosen datasets in detail.
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Chapter 3

Description of used datasets

This chapter contains a description of the datasets used in this work and their prepro-
cessing. The use of multiple datasets was motivated by the lack of labels in the dataset
provided by AT&T. To use evaluation measures that require identified ground truths, it
was instrumental to select other data sources with labels. The idea was to choose another
dataset similar to AT&T, when accounting for the source of the data and the nature of
the attributes, to ensure that a matching approach to data preprocessing and feature selec-
tion and extraction could be implemented for both. The AT&T dataset contains structured
data of categorical and numerical nature, as well as an attribute with an unstructured text.
It was challenging to find a single similar dataset so instead, two publicly available datasets
were selected. First one is the the Hadoop Distributed File System dataset [52] which con-
tains unstructured text messages and was used to evaluate the methods that expect this
kind of input. The second selected dataset is the Los Alamos National Laboratory cyber
security dataset [27] which only contains categorical attributes and was used to evaluate
approaches suitable for structured data. Table 3.1 summarizes the basic characteristics of
each dataset, including the size, number of lines (Entries), the time span and a number of
attributes of a dataset if applicable.

Table 3.1: Statistics of used dataset files.

’ Dataset ‘ Size [MB] ‘ Entries ‘ Time span ‘ Attributes
HDFS 355.01 | 500,000 14:56:27
LANL 62.16 | 945,202 | 28 days 10:14:48 9
AT&T 103.85 | 867,697 | 14 days 03:44:18 12

3.1 Hadoop Distributed File System dataset

Apache Hadoop' is an open source framework designed for handling large files and dis-
tributed processing. Hadoop Distributed File System (HDFS) is the storage component of
Hadoop. HDFS dataset [52] contains of logs generated by HDF'S collected from more than
200 Amazon cloud nodes. The logs had been manually labeled. This work used the HDFS
version maintained by Loghub [56], namely HDFS_v1. Out of the total 11,175,629 logs
lines, 500 were used, which span approximately 15 hours. HDFS log entry consists of

! Apache Hadoop: Distributed storage and processing of large datasets. Available at: https://
hadoop.apache.org/
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a header and a log message. The header contains date, time, process 1D, logging level, and
identification of a component that generated the entry. Message contains the contents of
log in a form of an unstructured text. Following is an example of raw HDFS logs:

081109 203519 145 INFO dfs.DataNode$PacketResponder: PacketResponder 2 for block
blk_-1608999687919862906 terminating

081109 203519 145 INFO dfs.DataNode$PacketResponder: Received block blk_-1608999
of size 91178 from /10.250.10.6

Each entry is tied to a specific block and all logs corresponding to one block form a trace
that was labeled as anomalous or normal by domain experts. To obtain labels for individual
samples, if a log entry belongs to an anomalous block trace it was labeled as an anomaly
and otherwise as normal. HDFS dataset contains around 3% of anomalies.

3.1.1 Data preparation

The header of HDFS logs was discarded, only keeping the contents of the log message,
similarly to other works [54, 33, 7]. The log messages were parsed with Drain parser. Drain
first preprocesses the input data with regular expressions, called masking patterns. Tokens
that match any masking pattern are replaced by a specified placeholder. Three masking
patterns were used:

e block ID pattern — to mask block IDs, e.g. blk_-1608999687919862906, with <blk>
placeholder token,

o path pattern — to mask paths, e.g. /mnt/hadoop/mapred/system/job_80/job. jar.,
with <path> token,

e location pattern — to mask locations, e.g. /10.250.19.102:54106, with <loc> token.

After preprocessing, the log messages are parsed. During parsing, Drain distinguishes
between the constant and variable parts of a log message. The variable part includes
message parameters that capture the runtime state of a system and are different from log to
log (block ID, size of block). The constant part is identical for logs that document the same
system operation (creating a block) and it represents the message template. Figure 3.1
shows the processing of a raw HDF'S log line into a message template and parameters.

log header log message

081109 203519 145 INFO dfs.DataNode$PacketResponder: " Received block blk_-1608999687919862906 of size 91178 from /10.250.10.6 ‘

@ discard log header

’ Received block blk_-1608999687919862906 of size 91178 from /10.250.10.6 ‘

@ Drain parsing

| blk_-1608999687919862906, 91178, /10.250.10.6 |

Received block <blk> of size <*> from <loc>

message template message parameters

Figure 3.1: Processing and parsing of a raw HDFS log line, using Drain parser.

In total, 33 different templates were extracted from the HDFS logs. The message pa-
rameters extracted by Drain were discarded and only the log templates were used. Each
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template was replaced by a numerical identifier. In conclusion, the preprocessing trans-
formed the input raw logs into a sequence of log template IDs.

3.2 Los Alamos National Laboratory dataset

Los Alamos National Laboratory (LANL) cyber security dataset [27] contains log events
from their internal network collected from multiple sources over 58 days. In total, the dataset
contains more than 1.5 billion events captured in authentication records, Domain Name Ser-
vice (DNS) lookups, network flow data and others, along with a set of events generated by
red team attacks.

In this work, only the authentication log file was used, which contains Windows-based
authentication events. The original file was more than 70 gigabytes with over a billion
log lines. To avoid high computational complexity, the number of records was reduced.
The red team attacks did not span over the entirety of the 58 days, so the data was cropped
to the time frame of the attacks. After applying random sampling, the log file contained
approximately 2.4 million events. Following Tuor et al. [50] all computer-to-computer com-
munication was removed, keeping only the interactions involving users. The final log file
contained approximately 900 thousand samples spanning 28 days, of which 749 events were
anomalous.

Each line in the log file describes an authentication event with attributes such as the time
of the event, users, computer identification, authentication type and orientation. All at-
tributes are listed in Table 3.2 along with the number of their unique values (Unique),
number of missing values (Missing), an example value, and the data type of the attribute.

Table 3.2: Description of LANL authentication log file attributes.

’ Attribute \ Unique \ Missing \ Example value \ Data type
time 760,492 0 | 2568342 integer
src_user 23,807 0 | C104$@DOM1 enum
dst__user 24,760 0 | ANONYMOUS LOGON@C586 | enum
src__computer 12,670 0 | C586 enum
dst__computer 11,377 0 | C988 enum
auth_ type 15 | 550,166 | Kerberos enum
logon__ type 9 | 179,013 | Network enum
auth_ orientation 7 0 | LogOff enum
success 2 0 | Success boolean

3.2.1 Data preprocessing

Attribute src_user had a user@domain format. These values were split by @ separator
into user and domain and stored in src_user and src_domain, respectively. For exam-
ple, the value U2281@D0M1 was transformed into { src_user:U2281, src_domain:DOM1
}. Attribute dst_user was transformed in the same way into dst_user and dst_domain.

Attributes auth_type and logon_type had a significant amount of missing values. How-
ever, they capture information that could be valuable for determining anomalous events, so
they were not removed. Instead, the missing values were replaced by a new category called
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“Other”. When inspecting the attributes further, it was discovered auth_type contains
the following values (among others):

MICROSOFT AUTHENTICATION PACKAGE V1 0
MICROSOFT AUTHENTICATION PACKAG
MICROSOFT AUTHENTICATION PACKAGE V1_
MICROSOFT AUTHENTICATION PACKAGE
MICROSOFT AUTHENTICATION PACKAGE_
MICROSOFT AUTHENTICATION PACK
MICROSOFT AUTHENTICATION PACKA
MICROSOFT AUTHENTICATION PACKAGE V1
MICROSOFT AUTHENTICATION PACKAGE V
MICROSOFT AUTHENTICATION PAC

Rather than being an anomaly caused by malicious behavior, the differing values seemed
more like a mistake made during data collection. Therefore, all the variations were replaced
by MICROSOFT_AUTHENTICATION_PACKAGE.

It was up for consideration whether to include the timestamp of the logs. Collective
anomalies are entirely dependent on the context of their time frame and cannot be detected
otherwise. On another hand, the provided logs spanned only a few weeks period, which
might not have offered enough data to form reliable patterns of normal log frequency on
particular days of the week or in specific hours. Instead, the inclusion of these features could
have reduced the effectiveness of detection by introducing unnecessary noise. The patterns
connected to time are discussed further in Section 3.2.2 and the Figure 3.3 provided there
suggests, that patterns with regard to time did exist, but it was not possible to ascertain
how representative the patterns were. In the end, the time data was not used.

The next step was to transform the values into numerical. The LANL dataset con-
tained mostly categorical attributes, specifically categorical attributes with extremely high
cardinality (number of categories). If they were encoded with one-hot encoding, the re-
sulting dataset would have an unmanageable number of attributes. Applying anomaly
detection on such data would not only require a substantial amount of resources (memory
and computing time), but could also lower the efficiency of methods if they did not handle
sparse data well. So instead, a simple integer encoding was used with a randomization of
the assigned values to avoid the bias based on the order of appearance. Note that this
may have negatively affected the efficiency of detection by introducing ordinal relationships
between categories. Integer encoding was applied to src_user, dst_user, src_domain,
dst_domain, src_computer, and dst_computer. The values in the dataset had been uni-
fied across all records, meaning user Ul in src_user and Ul in dst_user represent the same
user. Similarly, the same value in src_computer and dst_computer symbolizes one par-
ticular machine. To preserve the ties between the values, all six transformed variables
were encoded by the same mapping. First, the columns were joined and duplicates were
removed. Then, the integer encoding was applied, creating a mapping of each value to
a unique number. The mapping was then applied to the values in the original columns.

The remaining categorical attributes, auth_orientation, auth_type, and logon_type,
were encoded with one-hot encoding creating 25 columns. MCA was applied to reduce
the dimensions, keeping at minimum 95% of the original variance, which yielded 17 at-
tributes.

The final preparation step was to normalize the values. All attributes were normalized
with Min-Max normalization to a range [0, 1] using Equation 2.3.

24



3.2.2 Generating anomalies

The LANL dataset is labeled and contains 749 events classified as anomalies. All anomalous
events came from one of four source computers, presumably the devices the attackers used.
However, without any further context, the activity was not suspicious compared to the rest
of the logs. The anomalous log entries all had the same values of auth_orientation,
auth_type, and logon_type, but these values were not unique to the anomalies and could
be found in normal data as well. The number of events associated to the attacker computers
also did not stand out, as the data contained many computers that appeared less often or
with a similar frequency. The pairing of src_user and src_computer was N-to-N, meaning
that one user was associated with multiple computers within the dataset and one computer
to multiple users. So, it was not an exception that the attacker computers were connected
to different users.

In conclusion, the anomalies presented in LANL dataset were not representative as
a deviation from normal behavior or patterns. Therefore, to test the power of the se-
lected anomaly detection methods in a more meaningful way, the dataset was enriched by
generated anomalies. Anomalies of each type 2.1.2 were generated to allow for testing of
the robustness of detection methods.

To create the contextual anomalies, it was first necessary to inspect if the data contained
some patterns. Most of the data in the dataset was de-identified, including the timestamps,
which as a result begins at an epoch of one with a resolution of one second. The de-
identification took away the possibility to intuitively make assumptions about the distri-
bution of events in time. For example, it is common to observe differences in the amount
of records based on the day of the week or differences during the day and the night. Al-
though this behavior might not be present at the expected times, the patterns could still
be present as the time frame and time difference between events were preserved. Figure 3.2
shows the number of log entries per hour and day. Note that because of the de-identification,
hour 12 does not correspond to noon and day zero does not correspond to Monday. How-
ever, the plot shows a clearly visible trend in the activity. Certain hours for a specific day
contained more log entries, and there were differences between the activity levels of certain
days. It could be inferred from the plot that days five and six are likely to be the week-
end based on the lower number of logs. Similarly, hours ten through 24 seem to represent
daytime because of the increased activity. Anyhow, it was not necessary to assign specific
labels to the values of day of week and hour. What is important is that the data contained
patterns, which when disturbed, would be anomalous.

Following is a list of created anomalies, with descriptions, their assigned label and a brief
explanation of how they were generated:

1. Point anomalies:

e NontypAuth: Atypical value of auth_type, logon_type and auth_orientation
with respect to their global frequency in the dataset. Histogram of the different
combinations of these attributes was retrieved and randomly selected combina-
tions with zero occurrences were generated in a specified amount.

e NontypAuthUser: Atypical value of attributes auth_type, auth_orientation
and logon_type with respect to behavior of a particular user. Anomalies were
created the same way as NontypAuth but for a specified user.

e UnexAuthUser: Unexpected successful of failed authentication from a system
user. For the system user LOCAL SERVICE few of the most common combinations
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Figure 3.2: Average number of logs per hour and day in the week in the LANL dataset.
The day of week and hour values are de-identified, Day of week 0 does not correspond to

Monday and Hour 12 does not correspond to noon.
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of attributes were chosen and assigned the opposite Success value. Such samples
were inserted uniformly within the dataset, with respect to a specified amount.

2. Collective anomalies:

e ManyFailsUser: Increase in failed authentication attempts of a particular user
within a short time period. Based on a histogram of user login success, a random
user from the tenth to 20th most common users was chosen. For this user were
generated failed login attempts. The rest of the attributes has the most common
values with respect to the selected user.

e ManyFailsGlobal, ManyFailsGlobalUnspec: Overall increase in failed authen-
tication attempts within a short time period. ManyFail anomalies are generated
as failed login events for a random user, where other attributes have the most
common values. ManyFailUnspec are generated as a failed login event for a ran-
dom user and the other attributes have values generated with respect to their
frequency in the dataset.

e BurstLogonUser Multiple logon attempts of the same user within a short time
period. A random user is chosen and an increased number of login events (20 to
40) is generated within windows of specified size throughout the dataset.

e BurstLogonAtrib: Repeated authentication attempts with infrequent attributes.
Anomalies are generated the same way as BurstLogonUser but with infrequent
values of attributes.

3. Contextual anomalies:

o UnusualActivity: Increased activity (number of authentication events) dur-
ing a typically low-activity time periods (during night or the weekend). Five
least frequented users were selected. Login events with random attributes were
generated for the users during a low activity time period.

e UnusualActivityUser: User is active in an atypical time based on their usual
behavior. User, who is typically active during a low activity time period (a sup-
posed weekend), was selected and login events were generated during his inactive
days.

In total, 19,054 anomalies were generated which is approximately 2% of the whole dataset.
The same number of anomalies was created for each type.

3.3 AT&T dataset

AT&T provided a dataset from one of their servers that contains more than 800 thousand
log entries spanning approximately two weeks. This dataset consists of log records from an
AAA (authentication, authorization, accounting) server. AAA servers are used to handle
user access to networks and network resources by providing centralized management of
credentials and user group administration. As such, the log files from these severs have
a great potential to carry important information concerning system security, so they can
be invaluable when detecting attacks. The exact properties of the log file are displayed in
Table 3.1.

The log file contains various attributes which describe a logged event, most impor-
tantly the timestamp, source and destination IP addresses, username, command type, and
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Table 3.3: Description of AT&T AAA server log file attributes.

Attribute Unique ‘ Missing ‘ Example value Data type
entry_ ts 172,300 0 | 2023-10-12 06:52:07 | datetime
username 50 2,322 | e02916 enum
cmd__authorized 2 | 349,833 | YES boolean
cmd_type 5 0 | TACACS+_LOGIN | enum
ip_ dest 484 0] 0.0.0.2 enum
ip_src 20 0 | 0.0.1.231 enum
customer name 2 0 | Customer 0 enum
aaa_ server 1 0| 0.0.1.245 enum
server__port 2 0149 integer
cmd 2,116 0 | terminal length 0 string
auth__mode 3| 753,867 | PASSWORD enum
total_packet_ rt 1,408 | 349,833 | 104 integer

the command itself. The list of all attributes with the number of unique values (Unique),
number of missing values (Missing), an example value and a data type are shown in Ta-
ble 3.3.

3.3.1 Data preprocessing

The cmd attribute of some samples contained multiple commands separated by semicolons.
These samples were split into multiple rows, where each row contained one of the commands
and the rest of the attributes were duplicated. For example:

1: 2023-10-10 16:47:10, NetBrain, TACACS+_ACCOUNTING, 0.0.1.221, 0.0.1.231,
configure terminal;vrf context PreprodVRF

!
1: 2023-10-10 16:47:10, NetBrain, TACACS+_ACCOUNTING, 0.0.1.221, 0.0.1.231,

configure terminal
2: 2023-10-10 16:47:10, NetBrain, TACACS+_ACCOUNTING, 0.0.1.221, 0.0.1.231,
vrf context PreprodVRF

Cmd contained Cisco Internetwork Operating System (IOS) commands used for configuring
and troubleshooting network equipment. The number of unique values of cmd shown in
Table 3.3 was very large, however, this statistic did not take into account that the same
command can be used with different arguments values. For example, terminal length 0
and terminal length 55 are the same command for configuring the terminal, but during
the analysis they were treated as two unique commands. To get a more general outlook on
what commands were being used, Drain parser was used to extract command templates from
cmd. Drain was used with masking patterns for file paths, IP addresses, and other generic
patterns such as numbers. Commands were parsed into 218 templates. New attribute with
the command template ID, called template was created and the original cmd attribute was
removed from the dataset.

All data had been collected on the same server and the aaa_server IP address was
the same for all entries, so it was removed. The dataset also contained attributes with
a large number of missing values: cmd_authorized, auth_mode, and total_packet_rt.
The missing values were connected to the content of cmd_type, mostly attributes were
absent for command type TACACS+_ACCOUNTING and auth_mode values were absent for all
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TACACS+_COMMAND_AUTHOR commands. As these attributes were not common for all entries,
they were omitted. Additionally, all rows where username was missing, which was around
two thousand, were removed. The customer_name corresponded to the server_port at-
tribute, meaning that a customer always communicated on the same port, so the port
attribute had been removed as redundant.

As for the time attribute entry_ts, the same argument as in Section 3.2.1 can be
made, whether the used time span is sufficient to reliably characterize any patterns, since
the provided logs spanned only a two-week period. An identical approach was adopted and

the timestamp was not used.

Number of logs

Figure 3.3: Average number of log messages per hour and day in the week.

The next step had been to convert categorical values into a numerical representation.
The attributes ip_dest, template, and username had a large number of categories, i.e.
high cardinality. If they were encoded with one-hot encoding, the resulting dataset would
have more than 500 attributes. Similarly to the LANL preprocessing, integer encoding was
used. The remaining categorical variables; cmd_type, ip_src, and customer_name, were
encoded using one-hot encoding creating 27 binary attributes. MCA was applied to reduce
the dimensions down to 21 attributes that preserved at least 95% of the original variance.
As a final preparation step, the values were normalized with Min-Max normalization to

a range [0, 1] using Equation 2.3.

3.4 Summary

Three datasets were selected for application of the anomaly detection methods; AT&T
server logs dataset and LANL dataset with authentication records and HDFS dataset with
logs from a distributed file system. Only one feature was used to characterize HDF'S logs,
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a total of six features were used to characterize AT&T dataset and ten features were used
for the LANL dataset:

o HDFS - template;

e LANL — success, src_user, dst_user, src_domain, dst_domain, src_computer,
dst_computer, auth_type, logon_type, auth_orientation;

o AT&T — username, cmd_type, ip_src, ip_dest, customer_name, and template
which was extracted from the original cmd attribute.

AT&T and LANL datasets were transformed from categorical to numerical data using
integer encoding for attributes with high cardinality and one-hot encoding for the rest of
the attributes with subsequent reduction of dimensions using MCA. All attributes were
normalized with Min-Max scaling to a range of [0,1] before applying the anomaly detection
algorithms.
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Chapter 4

Implementation of selected
solutions

There are countless methods that can be utilized for log anomaly detection. Based on
the core principle on which a certain anomaly detection algorithm operates, or the way
it is applied, some approaches are more likely to detect point anomalies, and others are
more suited to detect collective and contextual anomalies. To explore both cases, LOF,
DBSCAN, and OPTICS framework were selected. LOF and DBSCAN (in the way they
were applied within this work) are both more prone to detecting singular log lines and small
groups of similar anomalies deviating from an established normal behavior. The size of
anomaly groups that the algorithms are able to detect depends on the parameter settings.
On the other hand, the selected OPTICS framework analyzes sequences of logs and is
sensitive to collective anomalies, since they are very different in comparison to normal
sequence patterns. This chapter details application of the selected methods, along with
tools and techniques used for estimating method parameters and interpreting the results
on an unlabeled dataset.

4.1 Local Outlier Factor

The first method applied for anomaly detection was LOF. It is used to calculate outlier
scores for each data point and points with the highest anomaly score are labeled as anoma-
lies. The algorithm itself depends on one parameter MinPts, which defines the size of
a neighborhood from which the outlier score is calculated. However, to obtain labels from
the scores, it is necessary to determine the expected proportion of anomalous samples in
the dataset (contamination). Based on contamination value a a threshold ¢ can be calcu-
lated as (1 — «) percentile. Any samples with outlier score greater than § are anomalous
and samples with a score less than § are normal. Therefore, in practice, the contamination
value essentially becomes a second parameter of LOF.

Authors of LOF recommends using a range of MinPts values with guidance on how to
determine application specific lower and upper bounds of the parameter range. In real-world
scenarios, using a range of values for every detection would be computationally expensive,
so the desire is to find one suitable MinPts value on subset of the dataset and use it in
consecutive applications. A combination of methods was used to estimate the parameters
for LOF.
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4.1.1 Automatic hyperparameter tuning method

Xu et al. [53] propose an automatic hyperparameter tuning method (AT) for the joint
tuning of MinPts and contamination. The method is inspired by the mechanics of support
vector machine, as it selects parameters which maximize the difference between anomalous
and normal samples around the decision boundary [53].

Algorithm 1 displays pseudocode of the proposed method. Let grid. and gridy be sets
of candidate values of contamination ¢ and neighborhood size k, respectively, and X e R"*¢
be the input data of n samples and d attributes. Anomalies are the top |[cn] samples with
the highest LOF score. For each combination of ¢ € grid. and k € gridy, the mean and
variance of natural logarithm of LOF scores is calculated for top |cn| anomalies and top
|cn] normal samples. The standardized difference between anomalous and normal samples
is defined as

Mc,k,out - qu;,in
k pu—
' 1
\/Lan (%7k70Ut + %,k,in)

The optimal value of k for a given c is arg max; 7). Assuming the LOF scores
for a given ¢ are random samples of Gaussian distribution A (NC,ouhUz,out), T¢ 1 approx-
imates a non-central ¢ distribution 7'(k,0) with & = 2|cn| — 2 degrees of freedom and
6= \/ f C’E’:;_” 2:22 ) non-central parameter. To find the optimal value of ¢, standardized

en T \9¢ out TO0¢ in
differer&ceJ T ke.ope cannot be compared directly as the distribution T¢y follows is different
depending on c. Instead, quantiles for T, ., in the corresponding distribution are com-
pared. Optimal value of c is defined as arg max, P(Z < Tk, ,; dfc, ncpe), where Z follows

a non-central ¢t distribution T'(df., ncpe).

T. (4.1)

4.1.2 Contamination estimation

Python Outlier Detection Thresholding (PyThresh) [30] toolkit implements a variety of
unsupervised non-parametric thresholding methods. The methods are designed to derive
labels from outlier scores by estimating a threshold. They can be used to determine the con-
tamination of a dataset. Some methods do not calculate the threshold value directly, but
contamination can always be derived from the number of samples labeled as normal and
anomalous. Thresholders implemented by PyThresh include:

o Z-score thresholder (ZSCORE). For mean z and standard deviation o of outlier scores,
Z-score is calulated as follows:

r—

7 =

(4.2)

g

Thresholder classifies any point with |Z| > 1 as an outlier.

o Trained Classifier thresholder (CLF). This thresholder estimates the threshold value
using classifier trained with a linear stochastic gradient decent method. The model
was trained with a warm start and fit with outlier scores and ground truth labels
from PyOD outlier detection methods. The model uses scores, log of scores, and
probability density function (PDF) of scores as inputs.

o Filtering based thresholder (FILTER). Outliers are determined by a Savitzky—Golay
filter [47]. It is usually utilized for smoothing data and reducing the noise. In this
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Algorithm 1 Automatic LOF parameter tuning

Require: X, Input data (n samples x d features)

Require: grid., Feasible contamination ¢ values

Require: gridy, Feasible neighborhood size k values
1: for all ¢ € grid. do

2 for all k € grid; do
3: M, ;. out < mean log LOF for |cn] outliers
4: M, 1 in < mean log LOF for |cn]| inliers
5 Ve ke,out < variance of log LOF for |en| outliers
6 Ve kin < variance of log LOF for [cn] inliers
7 T.) Me kout—Me k,in
’ \/ﬁ(Vc,k,out-i-Vc,k,m)
: end for
9: M. out < mean log M j oyt Over k € gridy,
10: M, in < mean log M,y ;, over k € gridy,
11: Ve,out < variance of Vi o over k € gridy,
12: Ve,in < variance of V, 1 i, over k € gridj,
13: nepe — Me.out— Mein
\/ﬁ(vc,out"!‘vc,in)
14: dfe + 2|en] — 2
15: keopt <—arg maxy Te
16: end for

17: Copt <—arg max, P(Z < T,y.,.,; dfe, nepe)
Ensure: c,,;, Optimal contamination value
Ensure: k.., Optimal neighborhood size
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case, the filter is applied on the input scores and threshold is set to its maximum
value.

e One-Class Support Vector Machine thresholder (OCSVM__T). Uses OcSVM to deter-
mine the outliers from outlier scores, specifically an Additive Chi2 kernel approxima-
tion and SGDOneClassSVM.

o Combined thresholder (COMB). Threshold is calculated as mean of specified thresh-
olders, in this case ZSCORE, CLF, FILTER, OCSVM_ T.

4.1.3 Overview of LOF application

In certain cases, LOF does not handle duplicated data well. Plot a in Figure 4.1 shows
the outliers identified by LOF when data is not duplicated. In Plot B, there is duplicated
data and the number of duplicates is shown above the points. Without duplicates, LOF
was able to identify the outliers correctly. When duplicates are included, some points on
the edges of a cluster were classified as anomalies. LOF is calculated as a ratio of density
of a point to densities of its neighborhood. The area with highly duplicated samples is
much denser than the outskirts of the cluster and this drastic change can manifest in a high
outlier score, which then causes the points to be classified as outliers.

(a) LOF for data without duplicates (b) LOF for data with duplicates
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Figure 4.1: LOF outlier detection on dataset with duplicates vs. without duplicates.
The the number of samples of a certain value is indicated by the number above the points.

To avoid this, after preprocessing the data, duplicates were removed before applying
LOF. However, it is important to note that this can affect the anomalies, especially collective
anomalies. Figure 4.2 displays the process of applying LOF algorithm on data. This
pipeline was designed based on the capabilities of the parameter estimation methods and
their evaluation, when applied on the LANL dataset, which are described in detail in
Section 5.1. First, LOF scores are computed from the processed dataset for each candidate
MinPts. The resulting scores are used to estimate a threshold with COMB thresholder. AT
selects the optimal MinPts value for the calculated threshold, which is applied to calculated
outlier scores for the selected MinPts, obtaining the final labeling.

34



Input data
Local Outlier Threshold
Factor estimation

LOF scores
, -, 155] Threshold

Candidate MinPts [
[10, 15, ..., 155] ’

]

Automatic tuning |

—> MinPts

—> CQutliers

Figure 4.2: Overview of application of LOF on data.

4.2 DBSCAN

DBSCAN identifies clusters in data based on the density of their neighborhood. DBSCAN
also recognizes the notion of noise, so it allows data points to not be assigned to any cluster.
The results of clustering were interpreted for anomaly detection so that samples identified as
noise (outliers) by DBSCAN were labeled as anomalies, while points belonging to a cluster
were considered normal.

4.2.1 Parameter estimation

To apply DBSCAN, it was necessary to determine its parameters Eps and MinPts. MinPts
was determined based on experiments with a variety of values, the process is detailed in
Section 5.2. Eps was calculated using a method proposed by Alghamdi and Reger [3]. This
method adopts the knee method to automatically calculate the parameter. Algorithm 2
outlines the calculation process.

Algorithm 2 Eps parameter estimation for DBSCAN

Require: X, Input data (n samples x d features)

Require: MinPts, minimum number of points in a neighborhood of a core point
1: drop duplicates in X

2: kdist < k-distances between data points calculated using KNIN
3: unique <— unique kdist

4: if |unique| =1 then

5: Eps < kdisty / 2
6
7
8

. else
Eps < mean unique
. end if
Ensure: Eps, Optimal Eps (neighborhood radius) value

35



° Knowledge Base Construction

4\

L1: PacketResponder 1 for
block blk_38865049064139660
terminating

L2: Verification succeeded for
blk_-4980916519894289629
13: 10.250.5.237:50010 Served
block

}
| blk_3166960787499091856 to !’
/ 10.251.43.147

Log Parsing

E1: PacketResponder <*> for
block <*> terminating

E2: Verification succeeded
for <*>

E3: <*> Served block <*> to
<>

.

( Feature Extraction \

Sliding Windows
E1l, E2, E3

Event Count Matrix

-EE

wl

w2 0 1 1

[ Knowledge Base )

Construction

«.t ©

Streammg Anomaly Detection

lncommg log

\ Streaming Log

Parsing

=

( Streaming Feature \

extraction

=

/Streaming Anomaly\

Detection

New Window

E1: PacketResponder <*> for
[ E3: <*> Served block <*> to <*>

L4: PacketResponder O for block »
blk_9093049293972551787
terminating sty
block <*> terminatin
S W — y 4

E1: PacketResponder <*> for block
<*> terminating

Event Count o

New

window
Figure 4.3: Overview of an OPTICS log anomaly detection framework. Adopted from [54].

N

4.3 OPTICS log anomaly detection framework

The next approach implemented in this work is an unsupervised anomaly detection frame-
work proposed by Zeufack et al. [54]. This framework detects anomalies based on event
occurrence patterns in logs. There are two phases: knowledge base construction and stream-
ing anomaly detection. Figure 4.3 shows an overview of the framework.

Knowledge base construction is the training phase. During this stage, raw historical logs
are processed and parsed into log templates (event types). Logs are partitioned by a sliding
window of a fixed size k (number of samples in a window) that moves sequentially through
the dataset with a specified stride, generating overlapping log sequences. Figure 4.4 shows
an example partitioning with a sliding window of size three with a stride of one.

From each log sequence an event count vector feature is constructed to capture the event
occurrence patterns. Size of the event count vector is equal to the number of templates
extracted from logs. Each vector index corresponds to a certain template and its value is
equal to the number of occurrences of that template in a given log sequence. For example,
if the extracted templates are {TO, T1, T2}, for a log sequence T2, T1, T1 the event
count vector is [0, 2, 1]. The created event count vectors are clustered using OPTICS.
The centroids of the extracted clusters form the knowledge base.

The second phase is the anomaly detection itself. The proposed framework detects
anomalies in a streaming manner. For a new incoming log a sequence is formed with
the k& — 1 previous logs. The sequence is converted into an event count vector and its
distance to the closest centroid from the knowledge base is calculated. If the distance is
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Figure 4.4: Partitioning of log samples (L;) into sequences (seq;) with a sliding window of
size three and a stride of one.

greater than a threshold J, the sequence is labeled as anomalous. Threshold § is the largest
distance between a centroid and a member of its cluster, across all clusters.

4.3.1 Parameter estimation

The Eps parameter influences how many clustering levels (different cluster densities) are
detected. It is usually set to the maximum value (such as numpy.inf in python). However,
OPTICS is quite insensitive to the Eps parameter [6]. In practice, values lower than
the maximum can be used with little impact on the clustering results and can lead to
a decreased runtime [48].

There is no definitive heuristic for choosing the MinPts value. Schubert and Getrz [48]
suggest that guidelines similar to the DBSCAN parameter may apply, referring Sander
et al. [46], who recommend using a value of at least twice the dataset dimensions. They
also recommended to increase the value for datasets with large amount of noise or dupli-
cates. The experiments were conducted with a range of MinPts values, based on these
recommendations.

4.4 Implementation tools

The selected methods were implemented in python. The following summarized utilized
libraries and toolkits and their usage:

« pandas', numpy” — used for data manipulation and preprocessing;

e scikit-learn’

uation;

— used for implementation of anomaly detection algorithms and eval-

o Py0D [55] (Python Outlier Detection toolkit) — used for LOF implementation;

!Pandas: Python Data Analysis Library. Available at: https://pandas.pydata.org/

2NumPy: the fundamental package for scientific computing with Python. Available at: https:
//numpy.org/

3Scikit-learn: Machine Learning in Python. Available at: https://scikit-learn.org/stable/
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e PyThresh® (Python toolkit for thresholding outlier detection likelihood scores) — used
for implementing LOF contamination estimation;

o DBSCAN-based framework by Alghamdi and Reger [3] — this work uses parts of
the implementation modified for the implemented task, namely the Eps calculation,
evaluation and exporting of clustering results;

e drain3’ - this implementation of the Drain parser is used for log parsing and template
extraction.

4PyThresh: Python toolkit for thresholding outlier detection likelihood scores. Available at: https:
//pythresh.readthedocs.io/en/latest/7badge=latest
®Drain3: Online log template miner. Available at: https://github.com/logpai/Drain3
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Chapter 5

Evaluation

This chapter contains evaluation of the implemented methods. Each selected approach was
firstly applied on a labeled dataset. If multiple techniques for parameter estimation were
considered, the one with the best F1 score achieved on the labeled dataset was chosen
as the final approach. The effectiveness of the method as a whole was estimated and
the method was applied to the AT&T dataset.

AT&T dataset is unlabeled so it was not possible to compare the predicted labels to
a ground truth when evaluating the outputs. Generally, to confirm whether flagged samples
are true anomalies, in the context of unsupervised learning, domain experts have to review
the results manually. An anomaly can be verified by linking it to a known security incident
that occurred, based on further investigation of history of a suspicious user or in other ways.
This kind of background information was not provided for the AT&T dataset. Therefore,
the effectiveness of the methods cannot be estimated precisely. However, exploration of
the results still revealed some interesting observations.

One of the goals of this work was to select a method with the lowest rate of false alarms
(false positives, while also detecting as many of the present anomalies as possible. These
characteristics are expressed in the F1 score, so for the purpose of this work, the methods
were be compared based on this metric. Therefore, hereafter, when a solution is called more
“efficient” it refers to achieving a higher F1 score.

5.1 Local Outlier Factor

The efficiency of LOF and the selected parameter estimation methods were first evaluated
on the LANL dataset before being applied to the AT&T dataset.

5.1.1 LANL dataset

Before applying LOF, all duplicated data points were removed, as detailed in Section 4.1.3.
Table 5.1 shows the original number of samples and the number of samples remaining after
the duplicates were removed. The table includes counts for normal and all anomalous data,
along with counts for each anomaly type. As expected, collective anomalies which are
user specific, such as BurstLogonUser and ManyFailsUser contained a large number of
duplicates.

Methods chosen for parameter estimation were evaluated, starting with the tuning
method AT. Candidate MinPts values were set to a range from ten to 150 with a step
of five, grid, = {10,15,20,25,...,155}, to represent a variety of values. Removing dupli-
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Table 5.1: Number of normal and anomalous events in LANL dataset before and after
removing duplicate samples. Anomaly type all is the total sum of samples for all anomaly

types.

] Label ‘ Anomaly Type \ Original \ Without Duplicates | Removed
Normal | - 944,421 243,913 700,508
Anomaly | all 19,054 18,176 878
Anomaly | UnusualActivity 1919 1911 8
Anomaly | UnusualActivityUser 1923 1902 21
Anomaly | BurstLogonAttrib 1915 1909 6
Anomaly | BurstLogonUser 1911 1684 227
Anomaly | ManyFailsGlobalUnspec 1907 1906 1
Anomaly | ManyFailsGlobal 1903 1898 5
Anomaly | ManyFailsUser 1900 1717 183
Anomaly | UnexAuthUser 1896 1706 190
Anomaly | NontypAuthUser 1892 1660 232
Anomaly | NontypAuth 1888 1883 5

cates discarded some anomalies, but most removed records were normal, which changed
the contamination of the resulting data. The original contamination was 2% and the con-
tamination of dataset without duplicates was approximately 7.5%. Therefore, the candidate
contamination values had to be set appropriately higher than would normally be expected
(typical contamination is 1-3%). The selected candidate values for contamination were
grid. = {0.02,0.04,0.06,0.08,0.1}.

The results of AT parameter tuning are ko, = 70, copr = 0.2. However, these parameters
are far from optimal. In fact, out of all the grid. values, LOF with a 2% contamination
performed the worst, which can be seen in Table 5.2. The table shows evaluation of LOF
with different values of contamination and their respective optimal MinPts. AT selects
the contamination value which corresponds to the highest quantile for a non-central ¢ dis-
tribution. For all ¢ € grid,., the computed quantile was 1.0, so AT considered all values as
equally optimal. The resulting value was chosen based on the implementation of arg max,
which picked the first argument out of multiple equal options, producing incorrect results.

AT can also be used to only tune the MinPts parameter if contamination is known.
Table 5.2 shows performance of LOF with MinPts calculated by AT for a given fixed
contamination, compared to the best results for the same contamination level. AT selected
the optimal MinPts value in all cases except for 2% contamination, where the difference
was negligible.

In conclusion, while AT did not produce meaningful results for joint tuning of both
parameters, it could be used to find a nearly optimal value of MinPts for a given contam-
ination. Contamination had to be determined in another way. Five different threshold-
ing methods were evaluated: ZSCORE, FILTER, OCSVM_ T, CLF, and COMB, which
combined the thresholds calculated by all other methods by averaging. The thresholding
methods can compute thresholds for multiple sets of outlier scores; therefore, thresholds
were calculated from LOF scores for all candidate MinPts values. The resulting threshold ¢
was used as an input for AT to obtain a MinPts value k. Table 5.3 shows efficiency of LOF
with parameters ¢ and k. The combination of all estimators, COMB, achieved the highest
F1 Score, so this method was selected.
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Table 5.2: Comparison of LOF performance with MinPts calculated by Automatic tuning
and the highest achieved performance for any MinPts € gridy, with respect to a fixed
contamination (C).

C Automatic tuning Best

MinPts \ Precision \ Recall \ F1 Score || MinPts \ Precision \ Recall \ F1 Score
2% 70 0.5661 | 0.1632 0.2534 50 0.5850 | 0.1687 0.2619
4% 70 0.4732 | 0.2729 0.3462 70 0.4732 | 0.2729 0.3462
6% 70 0.3902 | 0.3376 0.3620 70 0.3902 | 0.3376 0.3620
8% 70 0.3356 | 0.3872 0.3595 70 0.3356 | 0.3872 0.3595
10% 70 0.2991 | 0.4313 0.3532 70 0.2991 | 0.4313 0.3532

Table 5.3: Efficiency of LOF using different thresholding estimation methods. C' stands for
contamination of dataset. MinPts values were estimated with AT method.

’ Thresh. estimator ‘ C ‘ MinPts | Precision | Recall ‘ F1 Score ‘

ZSCORE 4.09% 70 0.4685 | 0.2767 0.3480
FILTER 1.86% 70 0.5656 | 0.1519 0.2395
OCSVM 10.39% 70 0.2935 | 0.4400 0.3521
CLF 10.25% 70 0.2956 | 0.4373 0.3528
COMB 6.65% 70 0.3687 | 0.3537 | 0.3611

To summarize, the most efficient method to estimate the dataset contamination is
a COMB thresholder and AT can select a nearly optimal value of MinPts. The parameters
estimated for LANL dataset using these methods are MinPts = 70 and contamination =
6.653%. LOF anomaly detection applied to LANL with these parameters achieved precision
0.36, recall 0.35 and F1 score 0.36.

5.1.2 AT&T dataset

Removing duplicates reduced the AT&T dataset much more drastically than LANL. From
the initial 865,619 samples, only 23,573 remained. It seems that the users whose activity
was recorded on the server, repeatedly performed the same actions and because the times-
tamp is not included as one of the features, these actions produced samples with identical
values (after preprocessing). Using the same parameter estimation process as for the LANL
dataset, the resulting parameter values were MinPts = 70 and contamination = 6.198%.
In total, LOF identified 1,461 samples as anomalies.

Analyzing the anomalous samples on attribute level revealed that certain attribute val-
ues only occurred in anomalous samples. This could be a strong indicator that the attribute
value was the cause of the anomalousness or that the value was common for a group of sam-
ples that deviated from normal. One such example was the customer name Customer 1,
which was one of the two customer_name values in the dataset. All samples of Customer 1
were identified as anomalies. This customer value was much less frequent, only 61 samples
out of the total 20 thousand. It could be simply this fact that made it anomalous; however,
on further investigation, it shows that this subset of samples was unique in more ways.
Customer 1 was always connected to the same destination IP address and the address did
not appear for the other customer. The commands that were connected to this customer
were generally very infrequent, with respect to the whole dataset. Furthermore, the users
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Table 5.4: DBSCAN performance on LANL dataset for various MinPts values. Highest
achieved F1 score is in bold.

’ MinPts Eps ‘ Precision ‘ Recall ‘ F1 Score

2 56.92 0.4681 | 0.5242 | 0.4945
3 54.06 0.3929 | 0.6035 0.4759
) 59.05 0.3324 | 0.6693 0.4442
10 67.46 0.2684 | 0.7442 0.3945
15 74.97 0.2215 | 0.8292 0.3497
20 88.84 0.1861 | 0.8834 0.3075
30 104.51 0.1518 | 0.9464 0.2617

connected to Customer 1 rarely appeared for the other customer. All of this seems to indi-
cate that samples with Customer 1 exhibited different behavior patterns and there was not
enough data for this customer to consider these patterns normal. It also showed that LOF
was able to identify these deviating patterns even when they were connected to a group of
samples (not just individual instances).

Another example was the source IP address 0.0.1.228 which was always anomalous
(only occurred in anomalous samples). The IP address was used quite frequently and in
connection with multiple users. That is to say, the cause for anomalousness was not a low
global frequency. Instead, it seems that the IP address was determined abnormal with re-
spect to specific users. Users with the source IP address 0.0.1.228 were also connected to
other source addresses and out of the multiple values, 0.0.1.228 was consistently consid-
erably less frequent. So, it seems that it was identified as abnormal with respect to a given
user, showing that the method can identify patterns with respect to attributes (not just on
the global level).

5.2 DBSCAN

DBSCAN efficiency was estimated using the LANL dataset. The effect of different MinPts
values on the precision, recall and F1 score was observed and the most appropriate value
was selected. DBSCAN was then applied to the AT&T dataset.

5.2.1 LANL dataset

Table 2 displays the performance of DBSCAN on LANL dataset for a range of MinPts val-
ues. The Eps was calculated with respect to MinPts using method outlined in Section 4.2.1.
With increasing MinPts, the recall increased but the precision lowered, which means that
while more true anomalies were identified as anomalous, more normal data points were as
well.

Naturally, smaller MinPts produces smaller clusters, which can lead to anomalies form-
ing clusters and therefore to classifying them as normal. For example, for MinPts = 2, out
of the 8,898 total clusters formed by DBSCAN, 1,077 of them were purely anomalous, that
is, they only contained anomalous data samples, and 189 contained both anomalies and nor-
mal data. Table 5.5 shows how many anomalies of each type were identified as an outlier by
DBSCAN and how many were a member of cluster. Among the types, BurstLogonUser,
ManyFailsUser were misclassified the most. This is understandable, as they are collec-
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Table 5.5: Overview of DBSCAN clustering results for each anomaly type present in LANL
dataset.

’ Anomaly type ‘ Outlier ‘ In a cluster
BurstLogonAttrib 1,481 434
BurstLogonUser 307 1,604
ManyFailsGlobal 1,380 523
ManyFailsGlobalUnspec 1,742 165
ManyFailsUser 316 1,584
NontypAuth 1,478 410
NontypAuthUser 300 1,592
UnexAuthUser 312 1,584
Unusual Activity 1,521 398
UnusualActivityUser 152 771
Total 9989 9065

tive anomalies. These are all also anomaly types tied to a specific user. Interestingly,
manyFailsGlobal was detected much more successfully than manyFailsUser, even though
both are collective anomalies of the same nature. This is because as the samples share
the same user, they were naturally more similar and could, therefore, more easily form
a cluster.

DBSCAN achieved the highest F'1 score for MinPts value of two. The bigger the MinPts
value, the less effective was the anomaly detection. This is connected to how DBSCAN
was applied; anomalies were equated with noise (as defined in the context of DBSCAN),
so the algorithm identified the most anomalous samples in a global context of the whole
dataset. In line with this usage, the smallest value of MinPts was the most suitable, since
it allowed samples of an infrequent behavior to form clusters as well, reducing the number
of false positives.

To summarize, the selected value of MinPts was two. The Eps value calculated for
the LANL dataset, with respect to MinPts was Eps = 56.92. DBSCAN anomaly detection
applied to LANL dataset with these parameters achieved precision 0.45, recall 0.52 and an
overall F'1 score 0.49.

5.2.2 AT&T dataset

DBSCAN was applied with parameters MinPts = 2 and Eps = 0.0613, producing 434
clusters and 99 outliers. The number was much lower when compared to results of LOF,
especially when taking into account that DBSCAN was applied to the full dataset (as
apposed to removing duplicates). This was caused by the MinPts parameter, that specified
that only two points are required to form a cluster. This means that samples classified as
anomalies by LOF, for example samples connected to Customer 1, formed their own cluster
and therefore were not labeled as outliers.

The results contained almost no attribute values that would occur only in anoma-
lous samples. Instead, the algorithm identified the most abnormal value combinations
with respect to the whole dataset. This made it especially challenging to evaluate, since
the anomalousness depended on a combination of attributes which was not easily visible.

However, there were also some immediately suspicious behaviors. For example, there
were three users whose logins were identified as anomalous. These users performed login
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on two separate days, each day all three logins were from the same source IP address
(the address was different each day) and the logins happened at the same time. After
the login, users did not perform any other actions. To draw any definite conclusions, such
as that an attacker trying to gain access to user accounts was responsible for this activity,
it would be necessary to examine the history of the users or verify their actions in person,
which was not possible within the scope of this work.

Another suspicious behavior was identified for user mm930m. Usually, the user performs
multiple actions with respect to a destination IP address. The identified samples document
unusual behavior, where the user only performed one command of type TACACS+_PPP (com-
munication with a point-to-point protocol) for a particular destination IP address. Such an
isolated event could be considered suspicious. Again, to confirm whether it was truly a ma-
licious action, more information would be necessary, for example examining the contents
of the communication. Nonetheless, in both presented examples, DBSCAN appeared to
successfully identify certain suspicious behavior that was abnormal, with respect to a com-
bination of attributes.

5.3 OPTICS log anomaly detection framework

The OPTICS framework was evaluated using the HDFS dataset. Since the original paper
lacked details on parameter settings, implementation, and other specifics, the framework
was initially applied to the HDFS dataset to verify the reproducibility of the results. Af-
terwards, the framework was applied on AT&T dataset.

5.3.1 HDFS evaluation

Table 5.6 shows the performance using different Min Pts values for the OPTICS parameter.
As mentioned in Section 4.3.1, it is recommended that MinPts is at least twice the number
of dataset attributes and even higher if the dataset contains large amount of duplicates. In
this case, the OPTICS input was an event count matrix with approximately 350 thousand
rows, of which only around 70 thousand were unique. There were 33 detected templates for
HDFS, meaning the event count vector had 33 dimensions. Based on these characteristics,
a wider range of MinPts values from 70 up was tested. Eps was set to numpy.inf for all
experiments. The knowledge base was calculated using 70% of data and 30% was used for
testing. The framework performed best for MinPts = 150. It can also be noted, that at
a particular MinPts value, the precision remained relatively consistent for any value above
it.

Table 5.6: Efficiency of OPTICS framework for a variety of MinPts values.

MinPts | Precision | Recall | F1 Score

50 0.9269 | 0.0345 0.0665
100 0.6970 | 0.2920 0.4116
120 0.7139 | 0.5784 0.6391
150 0.7141 | 0.6052 0.6551
200 0.7154 | 0.4702 0.5674
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5.3.2 AT&T results

There were 218 templates extracted from the AT&T dataset. Using all templates would
have lead to a very large event count matrix and long runtime of OPTICS. Instead, only
the 50 most frequently occurring templates were considered. An extra column was added to
record the sum of counts of the less frequent templates. The event count matrix contained
approximately 600 thousand rows and around 420 thousand of them were unique. Consider-
ing the proportion of duplicates was lower than for the HDFS dataset but the count vectors
had more dimensions, it was assumed that MinPts value that performed well for HDFS
would also produce reasonable results for AT&T dataset. Therefore, the OPTICS was ap-
plied with MinPts = 150 and Eps = numpy.inf. The knowledge base was constructed
from 70% of AT&T data and the streaming anomaly detection was applied to the remaining
30%. Of the 250 thousand analyzed windows, 85 were identified as anomalous.

5.4 Summary and comparison with similar approaches

In summary, three methods were applied on the selected datasets: LOF, DBSCAN and
an OPTICS framework. Table 5.7 compares their results. Out of the methods evaluated
on the LANL dataset, DBSCAN achieved the highest F1 score of 0.49. Overall, OPTICS
framework attained the best results with an F1 score of 0.65.

When comparing the anomalies detected in the AT&T dataset by all three methods,
it was found that 75% of the anomalies detected by DBSCAN were also identified by
LOF. However, the log sequences identified as anomalous by the OPTICS framework did
not correspond to anomalies detected by either LOF or DBSCAN. This outcome is not
entirely unexpected. While LOF and DBSCAN mainly detect point anomalies, the OP-
TICS framework identifies collective anomalies at a log sequence level. This, combined
with a shortened event count vector, resulted in point anomalies that went undetected by
the OPTICS framework.

Table 5.7: Comparison of all selected solutions evaluated on labeled datasets.

] Method ‘ Dataset ‘ Precision | Recall ‘ F1 Score ‘
LOF LANL 0.3687 | 0.3537 0.361
DBSCAN LANL 0.4681 | 0.5242 0.4945

OPTICS FW | HDFS 0.7141 | 0.6052 0.6551

To contextualize the results, several works that implemented similar approaches were
examined for comparison. The implemented OPTICS framework achieved the same pre-
cision as in the original paper. Nonetheless, Zeufack et al. [54] achieved a higher recall of
1.0 and the overall F1 score of 0.83. This difference may be largely due to the variation in
dataset size, as their study applied the framework to three million HDFS samples, while this
work used only 500 thousand samples. Bjornerud [8] presented a similar approach but used
DBSCAN instead of OPTICS for clustering the event count vectors, achieving an F1 score
of 0.6%. Compared to this, the OPTICS framework performed slightly better. However,
Bjornerud also applies DBSCAN on the same data after removing duplicated sequences,
which improved the F1 score to 0.95. This presents an interesting area for future research.

Sikl6si [57] applies LOF a network traffic dataset and generated syslog datasets of vary-
ing size. LOF achieved an F1 score of 0.048 on the traffic dataset. The performance of
LOF on the syslog data was largely depended on the size of dataset, an F1 score of 0.45
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was achieved on just five thousand samples, however, the performance decreased to zero
when LOF was applied to dataset with 50 thousand log messages.

It was challenging to find works that applied DBSCAN in a similar manner to this
thesis. Most studies use DBSCAN more alike the OPTICS framework or combined with
other anomaly detection techniques. However, Kommineni [28] included DBSCAN as one
of the baseline models applied to logs in the same way as this work, attaining an F1 score of
0.5. In conclusion, the achieved results are comparable to the results of the selected works
that adopted a similar approach.
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Chapter 6

Application on large real-world log
files

The need to analyze large amounts of data, which are unmanageable manually, is one of
the driving forces for using machine learning for log anomaly detection. Therefore, it is
important that the used methods are suitable for handling large real-world log files.

The “suitability” of a method can be considered in several aspects, out of which the fol-
lowing three are discussed: the theoretical characteristics of an algorithm, implementation
factors, and method application. The first two factors examine the effort of a one-time
application of anomaly detection. Theoretical characteristics include the time and space
complexity of the utilized algorithm and implementation factors examine the paralleliza-
tion options. The third aspect, method application, takes into account efforts necessary
for a continued use of the method. Logs are inherently data streams and new data are
generated continuously which influences the usability of certain methods.

6.1 LOF

The LOF algorithm consists of two main steps. The first step is finding MinPts-nearest
neighbors for all data points. For dataset of size n, a K-nearest neighbor (KNN) query has
to be performed n times leading to time complexity of O(n * knn), where knn, for KNN
query complexity knn. A naive KNN approach calculates the distance to every data point
for all points, resulting in a complexity of O(n) [6]. If the query is computed using special
data structures such as k-d trees or ball trees, the complexity can be reduced to
mathcalO(logn). However, for highly dimensional data, the performance may degrade and
be surpassed by the naive approach [51]. Thus, the first LOF step has a time complexity
of O(nlogn) for low and medium dimensional dataset and complexity of O(n?) for highly
dimensional datasets. The second step is computing the LOF scores. This phase requires
iterating over the MinPts neighbors of each point leading to complexity of O(n). Apart
from all the data points, the algorithm needs to store calculated distances, which leads to
space complexity O(n).

From an implementation stand point, the algorithm is easily parallelizable. The calcu-
lation of nearest neighbors, the subsequent local reachability density (Ird) and of the LOF
scores are independent for each point.

LOF is intended for use on a static dataset. To account for new generated logs, anomaly
detection process must be repeated. If previous logs are included in subsequent anomaly
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detection runs, the dataset quickly increases to an unmanageable size. However, if only
a chunk of data (such as logs from the last day) is analyzed, the results may be skewed
because short time periods do not provide a robust representation of normal behavior.
Regardless, the calculation of LOF has to be repeated for all data points each run. These
drawbacks were the motivation for development of several LOF modifications specifically
suited for data streams. Alghushairy et al. [4] provide a review of the ILOF, MILOF and
DILOF modifications. When a new data point p is added, ILOF calculates KNN, Ird and
LOF score for the new point and updates points around p, whose scores are affected by
the addition. This way, efforst needed for analyzing new data are reduced. ILOF is still
demanding memory-wise, since the previous data points need to be stored in memory,
which also slows down the calculations. MILOF and DILOF try to solve the issues by
storing the past points in a summarized form, by using k-means clustering and gradient
descent, respectively.

6.2 DBSCAN

Similarly to LOF, DBSCAN performs a KNN query for each data point. If the query is
performed using optimized indexing structures (k-d tree or ball tree), the overall complexity
reaches O(nlogn). For cases, where the structures cannot be used, such as for highly
dimensional data, the complexity with a naive KNN query is O(n?). To avoid repeated
calculation of distances between data points, DBSCAN can store pairwise distances in
a matrix, which yields the space complexity of O(n?). Implementations that do not utilize
the matrix have space complexity of O(n).

DBSCAN algorithm can be parallelized. KNN queries can be computed independently
and the expansions of clusters can be performed simultaneously. The original version of
DBSCAN operates on a static dataset which causes the sames issues as outlined in Sec-
tion 6.1. Silva et al. [49] present a survey of data stream clustering techniques, including
approaches based on DBSCAN, such as ClusTree [29], D-Stream [13], and DenStream [11].

6.3 OPTICS log anomaly detection framework

OPTICS can be considered an extension of DBSCAN, therefore, it shares the same char-
acteristics when it comes to the algorithm complexity. The time complexity is governed by
the KNN query for each data point and is overall O(n logn) if indexing structures are used.
The worst case still reaches O(n?). The authors also determined that on average OPTICS
is 1.6 times slower than DBSCAN [6]. The space complexity can reach up to O(n?) if
a distance matrix is used to store pairwise point distances, which is generally avoided in
practical settings. Otherwise, the space complexity is O(n).

OPTICS is inherently difficult to parallelize. As the output is determined by the pro-
cessing order, the individual KNN queries and the subsequent distance calculations have
to be performed sequentially. The framework was designed for online anomaly detection,
which means the training (knowledge base construction) is performed once in the beginning
and then new data points can be evaluated with minimal effort. However, it may be nec-
essary to update the knowledge base from time to time to account for new data patterns
and new log templates that inevitably appear in logs of evolving systems.
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6.4 Summary

Table 6.1 summarizes characteristics of the used methods with regards to processing large
log files. From a theoretical standpoint, all algorithms are comparable. When considering
the real-world use on log data of a streaming character, the OPTICS framework is the best
solution. It requires performing the OPTICS clustering only during the training phase
and the anomaly detection of new data requires an insignificant effort when compared to
the other methods. However, there are several works that adopt DBSCAN and LOF for
a streaming detection. If instead, the modified methods were used, combined with the pos-
sibility of parallelized computation, they might represent a better solution. Exploring LOF
and DBSCAN in a streaming setting presents a topic for future work.

Table 6.1: Characteristics of selected methods with regards to time and space complexity
and application on large log data files.

Time complexity | Space complexity . Suitable for
Method Worst \ Normally | Worst \ Normally Parallelizable data streams
LOF O(n?) | O(nlogn) | O(n?) O(n) v/ X
DBSCAN O(n?) | O(nlogn) | O(n?) O(n) v X
OPTICS FW | O(n?) | O(nlogn) | O(n?) O(n) X v
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Chapter 7

Conclusion

This work focused on log anomaly detection with machine learning. The goal was to se-
lect a method applicable to dataset provided by AT&T, which contains logs from an AAA
server. The AT&T dataset is not annotated, therefore, unsupervised approaches were used.
The selected methods were: LOF, DBSCAN and an OPTICS-based anomaly detection
framework. To evaluate the efficiency of the methods, two labeled datasets were selected
for validation. The AT&T dataset contains a mix of categorical attributes an unstructured
text, the methods process one or the other. The HDFS dataset with unstructured log mes-
sages was selected for validation of the OPTICS framework. LANL dataset, enriched with
generated anomalies, was used for validation of LOF and DBSCAN. Overall, the OPTICS
framework achieved the highest efficiency with a F1 score of 0.65. Out of the methods
applied to the LANL dataset, DBSCAN proved to be more effective attaining a F1 score
of 0.49. The results are comparable to similar works.

The methods were applied on the AT&T dataset and successfully identified suspicious
behavior that deviates from normal patterns. However, to confirm whether the identified
samples are true anomalies, additional knowledge, such as user history, is required. At
the time of creation of this work, AT&T was not able to provide such information.

7.1 Future work

In future work, after more information and domain knowledge is obtained, the application
of methods to the AT&T dataset could be evaluated more specifically. This would enable
determining the most suitable method for this distinct dataset. Additionally, evaluating
the methods on multiple datasets could help identify a more robust method. Currently,
ten types of anomalies were generated for the LANL dataset; future work could expand
this number and include more elaborate attack scenarios to provide a more representative
dataset for evaluating the methods.

Other areas with a potential for improvement involve the selected methods. Both LOF
and DBSCAN were applied in a static setting to the entirety of the dataset. In a real-
world scenarios, anomaly detection would have to be performed periodically, requiring
a substantial amount of resources for computation. However, there are several works that
adopt the algorithms for data streams, which limits the efforts necessary for analyzing
new data. The use of these variants could greatly improve the practical applicability of
the methods.
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In this work, DBSCAN was applied by equating anomalies with noise identified by
DBSCAN. It could be beneficial to explore other applications, such as identifying anomalies
based on cluster size or the distance from a cluster centroid. The OPTICS framework, as
adopted in this work, does not classify individual samples but rather whole sequences.
Authors of the framework also do not specify how to identify anomalies on a sample level.
Nonetheless, extending the framework in this way would be valuable, leading to more easily
interpretable results.
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