
BRNO UNIVERSITY OF TECHNOLOGY
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

FACULTY OF INFORMATION TECHNOLOGY
FAKULTA INFORMAČNÍCH TECHNOLOGIÍ

DEPARTMENT OF INFORMATION SYSTEMS
ÚSTAV INFORMAČNÍCH SYSTÉMŮ

ASSISTANCE IN CREATING MEDICAL REPORTS US-
ING LARGE PRETRAINED LANGUAGE MODELS
ASISTENCEPŘI TVORBĚLÉKAŘSKÝCHZPRÁVPOMOCÍVELKÝCHPŘEDTRÉNOVANÝCH JAZYKOVÝCH

MODELŮ

MASTER’S THESIS
DIPLOMOVÁ PRÁCE

AUTHOR Bc. PATRIK PRICL
AUTOR PRÁCE

SUPERVISOR RNDr. MAREK RYCHLÝ, Ph.D.
VEDOUCÍ PRÁCE

BRNO 2024

Institut: Department of Information Systems (DIFS)

Student: Pricl Patrik, Bc.

Programme: Information Technology and Artificial Intelligence

Specialization: Bioinformatics and Biocomputing

Category: Artificial Intelligence

Academic year: 2023/24

Assignment:

1. Get acquainted with the concept and possible usage of large pretrained language models, explore
and compare different types of these models (LLaMA, Alpaca). Familiarise yourself with the format
and structure of medical reports, analyse available datasets.

2. Propose a method for utilising large pretrained language models for completing new and correcting
existing text in the process of creation of medical reports. Select appropriate types and settings of
the models, training procedures, and training datasets. Also, experiment with already available
pretrained models.

3. Perform training of selected language models according to the previous point using a suitable
dataset of medical reports. Choose an appropriate method for measuring the usability of the trained
models for the given purpose and evaluate them.

4. Implement a tool for demonstrating the completion of new and correction of existing text in the
creation of medical reports using the trained models.

5. Test the entire solution, evaluate the results, and discuss them.

Literature:
• ZHAO, Wayne Xin, et al. A survey of large language models. arXiv preprint arXiv:2303.18223, 2023.

Available at: https://arxiv.org/abs/2303.18223
• YUNXIANG, Li, et al. Chatdoctor: A medical chat model fine-tuned on llama model using medical

domain knowledge. arXiv preprint arXiv:2303.14070, 2023. Available at:
https://arxiv.org/abs/2303.14070

Requirements for the semestral defence:
Items 1 and 2.

Detailed formal requirements can be found at https://www.fit.vut.cz/study/theses/

Supervisor: Rychlý Marek, RNDr., Ph.D.

Head of Department: Kolář Dušan, doc. Dr. Ing.

Beginning of work: 1.11.2023

Submission deadline: 17.5.2024

Approval date: 30.10.2023

Master's Thesis Assignment
153712

Assistance in Creating Medical Reports using Large Pretrained Language ModelsTitle:

Faculty of Information Technology, Brno University of Technology / Božetěchova 1/2 / 612 66 / Brno

Abstract
The thesis consider with the use of pre-trained language models for summarizing medical
documentation in the form of dismissal reports.

Abstrakt
Práca sa zaoberá využitím predtrénovaných jazykových modelov na sumarizáciu zdravotnej
dokumentácie do formy prepúšťacích správ.

Keywords
NLP, Text sumarization, Artificial intelligence, Large language models

Kľúčové slová
Spracovanie prirodzeného jazyka, Sumarizácia textu, Umelá Inteligencia, Predtrénované
jazykové modely

Reference
PRICL, Patrik. Assistance in Creating Medical Reports using Large Pretrained Language
Models. Brno, 2024. Master’s thesis. Brno University of Technology, Faculty of Information
Technology. Supervisor RNDr. Marek Rychlý, Ph.D.

Assistance in Creating Medical Reports using Large
Pretrained Language Models

Declaration
I hereby declare that this Master’s thesis was prepared as an original work by the author
under the supervision of RNDr. MAREK RYCHLÝ, Ph.D. The supplementary information
was provided by company STAPRO s.r.o. I have listed all the literary sources, publications
and other sources, which were used during the preparation of this thesis.

. .
Patrik Pricl

May 17, 2024

Acknowledgements

Contents

1 Artificial Intelligence 6
1.1 Symbolic Artificial Intelligence . 8

1.1.1 Rule-based Expert System . 8
1.2 Machine Learning . 9

1.2.1 Decision Tree and Random Forest 10
1.2.2 Naive Bayes Classifier . 11
1.2.3 K-Means Clustering . 12
1.2.4 Q-Learning . 12
1.2.5 Artificial Neural Network . 13

2 Large Pre-trained Language Models 25
2.1 Tokens . 25

2.1.1 Vocabulary . 25
2.1.2 Tokenization . 25
2.1.3 Token embeddings . 28
2.1.4 Special tokens . 29

2.2 Large Pre-trained Language Model‘s Architectures 30
2.2.1 Attention mechanism . 31
2.2.2 BERT . 33
2.2.3 GPT . 34
2.2.4 LLaMA . 35

2.3 Learning . 36
2.4 Evaluation techniques . 37

3 Assistant for Creating Medical Reports 39
3.1 Dataset . 39

3.1.1 Entities . 39
3.1.2 Dismissal reports . 41
3.1.3 Data for Supervised fine-tuning . 42

3.2 Assistant API Gateway . 44
3.2.1 API . 44
3.2.2 Ollama . 44

4 Implementation and testing 45
4.1 Data preparation . 45

4.1.1 1st version of dataset . 46
4.1.2 2nd version of dataset . 46
4.1.3 3rd version of dataset . 46

1

4.2 Suitable model . 47
4.2.1 Model‘s variants . 47
4.2.2 Prompt . 47

4.3 Learning . 48
4.4 Inference and API communication . 49

4.4.1 Inference . 49
4.4.2 API communication . 50

Bibliography 52

2

List of Figures

1.1 Venn diagram of Artificial Intelligence’s subsets mentioned in this thesis. . 8
1.2 Design of Rule-based expert system. Image taken from [2]. 9
1.3 Diagram of Decision tree defining research designs. Image taken from [21] . 11
1.4 Visual demonstration of clustering using the K-means algorithm. Image

taken from [17] . 12
1.5 Visual description of a human neuron. Image taken from [6]. 13
1.6 Visualization of a perceptron. Image taken from [4] 14
1.7 Graph of Bipolar step function. 16
1.8 Graph of Binary step function. 16
1.9 Graph of Identity. 17
1.10 Graph of Sigmoid function. 17
1.11 Graph of ReLU Activation Function. 18
1.12 Visualization of individual types of the neural network based on connection.

Image taken from [5] . 19
1.13 Progress of back-propagation algorithm. Image taken from [12] 21
1.14 Progress of finding minimum loss. Image taken from [12] 21
1.15 Visualization of CNN architecture. Image taken from [19]. 23
1.16 Process of prediction sequence of new words by Recurrent neural networks .

Image taken from [16]. 23

2.1 Tokenization of the sentence written in the English language. 27
2.2 Tokenization of the sentence written in the Czech language 27
2.3 Word2vec predicts the words in the neighborhood of a central word by logistic

classifier L. Image taken from [16]. 28
2.4 Token embeddings for Transformers, like BERT or GPT, contains position

information duo to parallel computations of Transformers. Image taken from
[16]. 29

2.5 Computation of a contextual embedding for a single token “mouse” by at-
tention mechanism. Image taken from [16]. 31

2.6 Visual representation of multi-head attention. Image taken from [16]. 32
2.7 Scheme of stacking multiple transformer layers. Image taken from [16]. . . . 33
2.8 Transformer model predicts the next token in token‘s sequence. Image taken

from [16]. 34
2.9 Comparation between word prediction by BERT and text generation by

GPT. Image taken from [16]. 35
2.10 Difference between types of attention. Image taken from [3]. 35
2.11 LoRA principle using initial pre-trained weights and two much smaller ma-

trices. Image taken from [10]. 37

3

3.1 Entity relationship diagram of given dataset. 41

4.1 Simple schema of fine-tuning process of large language model. 45
4.2 Client‘s application. 50

4

Introduction

The expansion of artificial intelligence within the framework of natural language processing
leads to its more frequent use in various fields of work. By using artificial intelligence, people
can be relieved of redundant administration by having artificial intelligence manage it by
itself. Medicine is one of these sectors. In the 1st chapter of this thesis, artificial intelligence
as such will be discussed. The second chapter, the architecture and learning process of Large
Pre-trained Language models will be discussed. In Third chapter, the dataset is shown and
how to modify it for training purpuse. In forth chapter, implementation of training of Large
Pre-trained language model is shown and evaluate.

5

Chapter 1

Artificial Intelligence

A wide range of programs fall into the category of artificial intelligence. It can be an
program that classified a thing to 2 categories or an assistant, which can drive a car from
some city to another city.

Program, categorized as artificial intelligence, is called agent. An agent is just some-
thing that acts. Computer agents are expected to do: operate autonomously, perceive their
environment, persist over a prolonged time period, adapt to change, and create and pursue
goals. [22]

Based on this, we divide artificial intelligence into [11]:

• Narrow Artificial Intelligence: Also called Weak Artificial Intelligence. It can
be trained to perform a single or narrow task, often far faster and better than a
human mind can. However, it cannot perform tasks other than the one it was trained
for. Even OpenAI’s ChatGPT is considered a form of Narrow Artificial Intelligence,
because it is limited to the single task of text-based chat.

• Generative Artificial Intelligence: Also known as Strong AI. This type of AI can
solve more problems and truly understands what is happening. There may even be
emotions and creativity. Only few companies decide to develop this type of AI and
are still working on it. This type of Artificial Intelligence is still theoretical.

• Super Artificial Intelligence: Artificial superintelligence is strictly theoretical. If
ever realized, Super Artificial Intelligence would think, reason, learn, make judgements
and possess cognitive abilities that surpass those of human beings. The applications
possessing Super Artificial Intelligence capabilities will have evolved beyond the point
of understanding human sentiments and experiences to feel emotions, have needs and
possess beliefs and desires of their own.

6

Artificial Intelligence is also divided into four categories based on functionalities [11]:

• Reactive Machine Artificial Intelligence: Reactive machines are Artificial Intelli-
gence systems with no memory and are designed to perform a very specific task. Since
they can’t recollect previous outcomes or decisions, they only work with presently
available data. Reactive Artificial Intelligence stems from statistical math and can
analyze vast amounts of data to produce a seemingly intelligence output.

• Limited Memory Artificial Intelligence: This form of Artificial Intelligence can
recall past events and outcomes and monitor specific objects or situations over time.
Limited Memory Artificial Intelligence can use past- and present-moment data to
decide on a course of action most likely to help achieve a desired outcome. However,
while Limited Memory Artificial Intelligence can use past data for a specific amount of
time, it can’t retain that data in a library of past experiences to use over a long-term
period. As it’s trained on more data over time, Limited Memory Artificial Intelligence
can improve in performance.

• Theory of Mind Artificial Intelligence: Theory of Mind AI is a functional class
of AI that falls underneath the General AI. Though an unrealized form of AI today,
AI with Theory of Mind functionality would understand the thoughts and emotions of
other entities. This understanding can affect how the AI interacts with those around
them. In theory, this would allow the AI to simulate human-like relationships. Be-
cause Theory of Mind AI could infer human motives and reasoning, it would per-
sonalize its interactions with individuals based on their unique emotional needs and
intentions. Theory of Mind AI would also be able to understand and contextualize
artwork and essays, which today’s generative AI tools are unable to do.

• Self-Aware Artificial Intelligence: Self-Aware AI is a kind of functional AI class
for applications that would possess super AI capabilities. Like theory of mind AI,
Self-Aware AI is strictly theoretical. If ever achieved, it would have the ability to
understand its own internal conditions and traits along with human emotions and
thoughts. It would also have its own set of emotions, needs and beliefs.

In this thesis, attention will be directed only to Narrow artificial intelligence, as the
other types currently operate only at a theoretical level. Narrow Artificial Intelligence
includes the categories Reactive Machine AI and Limited Memory AI, so attention will be
also focused only on these two categories based on functionality.

The Narrow Artificial Intelligence can be also divided by the approach how to solve
the given problem. In the thesis, the approach using Symbolic Artificial Intelligence and
machine learning will be described.

7

Figure 1.1: Venn diagram of Artificial Intelligence’s subsets mentioned in this thesis.

1.1 Symbolic Artificial Intelligence
Symbolic artificial intelligence, a fundamental approach in artificial intelligence, intricately
involves the explicit modeling of intelligent systems with a strong focus on clarity and un-
ambiguous representation. This approach requires an in-depth analysis and understanding
of the problem. The acquired knowledge is transformed into symbolic or abstract forms.

Symbolic representations can take the form of graphs, logic formulas, and rules [7]. They
are used to preserve the characteristics of individual knowledge. The solution is created by
traversing complex relationships and rules that provide the basis for sophisticated problem
solving.

These symbolic representations must be defined by human experts. The expert describes
how the system perceives and acts in its environment. Due to the need for high expertise in
the area of the given problem and precisely defined knowledge for effective functioning, this
approach places higher demands on human resources than the machine learning approach.
Nevertheless, this approach is often preferred due to the clear definition of how the program
should behave in a given situation and the simple correction in case of unexpected behavior.

1.1.1 Rule-based Expert System

One of the methods that is used nowadays is Rule-Based Expert Systems. Its use human
expert knowledge to solve real-world problems that normally would require human intel-
ligence. Expert knowledge is represented in the form of rules with needed data saved in
computer’s memory.

Depending upon the problem requirement, these rules and data can be recalled to solve
problems. Rule-based expert systems have played an important role in modern intelligent

8

systems and their applications in strategic goal setting, planning, design, scheduling, fault
monitoring, diagnosis.[2]

Figure 1.2: Design of Rule-based expert system. Image taken from [2].

The basic components of an expert system are illustrated in Figure 1.2.
The knowledge base stores all relevant information, data, rules, cases, and relationships

used by the expert system. A knowledge base can combine the knowledge of multiple human
experts. The purpose of the inference engine is to seek information and relationships from
the knowledge base and to provide answers, predictions, and suggestions in the way a human
expert would. The explanation facility allows a user to understand how the expert system
arrived at certain results. The purpose of the user interface is to ease use of the expert
system for developers, users, and administrators. [2]

.

1.2 Machine Learning
Machine Learning, unlike Symbolic Artificial Intelligence, does not need an expert with
knowledge in the problem’s topic. What it needs, however, is data of the given problem,
on which it will ”learn“ the solution. This approach is really inspired by the human ability
to learn.

Learning

In machine learning are 3 types that defines how can agent learn the solution.

• In unsupervised learning the agent learns patterns in the input even though no
explicit feedback is supplied. The most common unsupervised learning task is clus-
tering: detecting potentially useful clusters of input examples.

9

• In reinforcement learning, the agent learns from a series of reinforcements—rewards
or punishments. If the agent gets a reward, it knows that is a good way to the solu-
tion. On the other hand, if the agent is punished, it knows that is a bad way to the
solution.

• In supervised learning, the agent observes some example input–output pairs and
learns a function that maps from input to output.

Process of learning, that turn machine learning models with bad results to models,
which give useful results, contains these steps:

• First step is Data Preparation: Data should be in the best condition. Flaws can
cause a significantly worse result. The cleaned and modified data are divided into
training, validation and test datasets. The training dataset is used to train the model,
the validation dataset provides an evaluation of the model’s fit during training, and
the test dataset is required for the final evaluation of the model.

• Second step is Model Training : After randomly initializing the model parameters,
input data is fed forward through the model, producing output. The difference be-
tween the produced output and the desired value is calculated, and through iterations,
this difference is minimized by adjusting the model parameters.

• Third step is Evaluation and Testing: Using the validation dataset, the model is
evaluated with metrics such as accuracy, precision, and recall. This type of evaluation
is performed after every iteration during the training phase. Once the training is done,
the testing dataset is used to evaluate metrics and assess the ability of the model to
solve the given problem.

One of the main problems during model training is overfitting. It means that the
model has learned the data in great detail, including any noise or flaws captured in the
data. As a result, the model fails when it encounters new, unseen data.

1.2.1 Decision Tree and Random Forest

This model is mostly used for classification, but it also manages the regression or the
anomaly detection. Model has tree structure, where leafs represent final class as it is shown
in the Figure 1.3. A tuple with quantitative and qualitative attributes is used as input. The
classification process starts from the root node and continues to other non-leaf nodes, where
the value of attributes is evaluated. Branches represent the outcomes of this evaluation.
Supervised learning is selected in order for the model to be able to assign tuples to the
correct class.

10

Figure 1.3: Diagram of Decision tree defining research designs. Image taken from [21]

A random forest is a model using multiple decision trees. Each tree is created based on
randomly chosen subset of data. A random forest is good for classification tasks. Each of
the individual trees vote for final class. The selected class is the class with the most votes.
One of the advantages of this model is its resistance to overfitting.

1.2.2 Naive Bayes Classifier

The Naive Bayes Classifier is a machine learning model based on probability. The foun-
dation is Bayes’s Theorem. This theorem uses conditional and marginal probabilities to
calculate the probability of a certain class. The theorem can be described by the math-
ematical equation 1.1, where 𝑃 (𝑋) is probability of event 𝑋 and 𝑃 (𝑋|𝑌) is conditional
probability of event 𝑋 if event 𝑌 already happened.

𝑃 (𝑋|𝑌) =
𝑃 (𝑌 |𝑋)𝑃 (𝑋)

𝑃 (𝑌)
(1.1)

For the Naive Bayes classifier, the mathematical equation 1.1 is modified into the equa-
tion 1.2. 𝐶𝑘 represents the k-th class and 𝑋𝑖 represents the i-th attribute of the input tuple.
The result is class with higher probability.

𝑌 = 𝑎𝑟𝑔𝑚𝑎𝑥
𝑘=1,2,...,𝑚

𝑃 (𝐶𝑘)
𝑛∏︁

𝑖=1

𝑃 (𝑋𝑖|𝐶𝑘) (1.2)

11

The reason why this model is called ”Naive“ is that the dependence between individual
features is not considered.

1.2.3 K-Means Clustering

This model uses unsupervised learning, which takes all the data and divides them into K
clusters. The position of the cluster is mainly indicated by its centroid, which represents
the point in the center of the cluster. Each cluster has its centroid positioned at the mean
position of the data within that cluster. New data are included in the cluster whose center
is located closest to them. The Euclidean distance or other distance function is chosen to
calculate this distance. This process may visually looks like in the picture 1.4.

Figure 1.4: Visual demonstration of clustering using the K-means algorithm. Image taken
from [17]

1.2.4 Q-Learning

Q-learning is a reinforcement learning algorithm. It is widely used to estimate an optimal
strategy, where an agent needs to make decisions to maximize a reward. Usage of this type
machine learning is in healthcare, autonomous cars or natural language processing.

The idea of the Q-Learning algorithm is that an agent interacts with a given environment
to obtain data that have not been previously presented. The agent will then map the set

12

of states, actions, and rewards. This combination of state, action, and reward is called
“quality”. An agent concerned with the best immediate benefit would choose the action
with the greatest immediate reward. However, considering the long-term impact of its
actions, a better decision could be made.[20]

After the learning phase, the model creates a policy based on the quality to do the best
long-term action for the current state.

1.2.5 Artificial Neural Network

Artificial Neural Networks are inspired by biology to imitate the human ability to learn.
More precisely, neurons and their interconnections, which make up the brain and the entire
nervous system, are a source of inspiration.

Human Neuron

A cell that is a basic part of the human nervous system. A neuron consists of a nucleus,
which is also called Soma. Soma is round or oval, with a prominent nucleolus [24]. Next,
there are filaments extruding from Soma and these filaments are used for communication
with other neuron cells. The layer between communicating filaments or filament and another
type of cell is called Synapse. These filaments are divided into [24]:

• Dendrites: Serve to receive input information. A neuron has usually a larger number
of dendrites. They tend to be shorter but richly branched.

• Axon: Used to send information from the body of the neuron. It is usually one, but
at the end it can be considerably branched. In most cases, the axon is wrapped along
its entire length by a myelin sheath, which plays a significant role in the transmission
of impulses. The longer the nerve fiber and the thicker the myelin sheath, the faster
it conducts the impulse.

,

Figure 1.5: Visual description of a human neuron. Image taken from [6].

The main function of a neuron is to receive, process and send a signal. This signal is in
electrical form within the neuron and between neurons it is in chemical form. Whether the
signal is sent further when one or more Dendrites are activated depends on the cell itself.

13

Perceptron

A perceptron is an artificial neuron that mimics human neurons in a very simple way. It
has multiple inputs, but only one output. Artificial neuron also consist of weights, a basis
function and an activation function.

• Weights: The numerical values, which indicate how much the given input will influ-
ence output‘s value. Each input has its own weight.

• Basis function: It processes the input values together with the corresponding
weights. The result serves as input to the activation function.

• The activation function sets the output value, and this function is selected based
on the task to be solved.

The Figure 1.6 shows the perceptron with Linear basis function graphically and the
similarity with the human neuron from the Figure 1.5 is visible.

Figure 1.6: Visualization of a perceptron. Image taken from [4]

Basis function

In machine learning, two functions are defined as basis functions: the Linear basis function
and the Radial basis function. [22].

• Linear basis function: For most neural networks, perceptrons with the Linear basis
function are chosen. It can be described as a linear combination of inputs and their
weights. This can also be represented by the mathematical equation 1.3, where 𝑥 is
input, 𝑦 is output of the Linear basis function, 𝑤 is weight and 𝑖 is number of input.

𝑦 =

𝑖∑︁
𝑛=0

(𝑥𝑖𝑤𝑖) (1.3)

14

Perceptrons with the Linear basis function also typically have an input called Bias,
always with the value 1. In equation 1.3, input 𝑥0 represents the Bias. The Figure
1.6 shows the perceptron with the Linear basis function.

• Radial basis function: This basis function works on other principle than the Linear
basis function. The value of the Radial basis function depends only on the distance
from a certain point called the center[7]. The coordinates of this point are stored in
the parameter weight. For the calculation of this distance, the Euclidean distance is
used [25]. Its mathematical description is 1.4. In the given equation, 𝑥 is vector of
inputs, 𝑤 is vector of inputs. 𝑛 is count of all inputs to the neuron.

𝐷 (𝑥,𝑤) =
√︁
|𝑥21 − 𝑤2

1|+ |𝑥22 − 𝑤2
2|+ · · ·+ |𝑥2𝑛 − 𝑤2

𝑛| (1.4)

Activation function

Output from a node depends on this function. As already mentioned, the choice of the
activation function depends on the problem that the neural network has to solve and also
on the way in which it is expected to solve it. Some activation functions can behave quite
radically. Bipolar step function or Heaviside step function are typical examples of this [7].

• Heaviside step function: This is a very simply defined function. The function
returns 1 for a positive input and 0 for a negative input. Mathematically, the function
is defined as 1.5 and the development of the function on the 2D numerical axis is shown
in the Figure 1.8. The function is also called as Binary step function and is used in
the output layer 1.2.5 of the neural network for binary classification tasks. One of the
main disadvantage of this function is that the gradient at an output value of 0 is also
0. This means that during learning process, there is no change in neuron‘s weights,
basically meaning that the neural network learns nothing.

𝑓(𝑥) =

{︂
1, 𝑥 ≥ 0
0, 𝑥 < 0

(1.5)

• Bipolar step function: This function is also as simple as the Heaviside step func-
tion. The only difference between them is that the Bipolar step function returns -1
for a negative input or 0. The mathematical equation of the function is 1.6 and the
graph of the function is shown on Figure 1.7. This function is used also in the output
layer of the neural network for binary classification tasks. This function does not have
a 0 at the output like the Heaviside step function 1.2.5, so the neuron‘s weights are
changed at both outputs.

𝑓(𝑥) =

{︂
1, 𝑥 > 0

−1, 𝑥 ≤ 0
(1.6)

• Linear function: This function reacts more ”smooth“ than the 2 previous functions
[7]. The Basic linear function is called Identity and the result of the function is the
same as the input as seen in the Figure 1.9. These types of function are used in
regression tasks, where the goal is to predict continuous values, or in dimensionality
reduction to reconstruct the input data, while preserving its linear structure.

15

Figure 1.7: Graph of Bipolar step function.

Figure 1.8: Graph of Binary step function.

16

Figure 1.9: Graph of Identity.

• Sigmoid function: This function is continuously differentiable and a smooth S-
shaped function [23]. On large negative or positive inputs, gradient of this function
can be very small, which leads to vanishing gradient problem. This function can be
used in hidden layers, but because of vanishing gradient problem, function is mostly
used in output layer at binary classification tasks, where the output should be the
probability of classifying the element in the given class. This function can be also
used in hidden layers. The Sigmoid function is seen in the Figure 1.10.

Figure 1.10: Graph of Sigmoid function.

• ReLU Activation Function: ReLU stands for rectified linear unit and is a non-
linear activation function which is widely used in neural network [23]. The function is
based on a mathematical equation 1.7 and its behavior is illustrated in the Figure 1.11.
This function is used in hidden layer 1.2.5 for various tasks from image classification
to speech recognition.

17

𝑓(𝑥) = max (0, 𝑥) . (1.7)

Figure 1.11: Graph of ReLU Activation Function.

• Softmax function: Like the sigmoid function, the result is the probability that the
given sample belongs to the given class. The difference from the sigmoid function
stems from its use, where the sigmoid function is used to determine the probability
between two classes and the softmax function produces a probability distribution
over multiple classes. Primarily used in the output layer of classification models. A
mathematical equation of this function is 1.8, where 𝑧 is vector, 𝑗 is index of vector
and 𝐾 is number of classes.

𝜎(𝑧)𝑗 =
𝑒𝑧𝑗∑︀𝐾
𝑘=1 𝑒

𝑧𝑘
(1.8)

Layers

As the brain is made up of several interconnected neurons, the neural network is also made
of multiple perceptrons arranged in layers. A perceptron can also be referred to as a node.
These 3 types of layers are used in neural networks:

• Input Layer : The input enters the neural network through the input layer. Neurons
in this layer perform no other activity than sending the input value to other neurons.

• Hidden layer : The layer of this level performs calculations on the input values
that will lead the neural network to the correct result. Networks with more than one
hidden layer are denoted as Deep Neural Networks. With more hidden layers, the
network can learn to solve the given problem more successfully, but the process of
training the model is all the more challenging.

• Output layer : It processes calculations obtained from neurons from the hidden
layer and sends the result to the output.

18

Each layer has a different purpose and together they ensure the desired functioning.
The cooperation of the layers also depends on their type of connection. There are two
fundamentally distinct ways [22]:

• Feed-forward network : Layers are only connected in one direction. Only the
given input will influence output‘s value. Each input has its own weight. Every node
receives input from “upstream” nodes and delivers output to “downstream” nodes.
There are no loops. The Feed-forward network, where the input of node is obtained
from nodes that are one level of layers higher, is called Fully-connected network.

• Recurrent network : Unlike the Feed-forward network, this one feeds its outputs
back into its own inputs. This means that the activation levels of the network form a
dynamical system that may reach a stable state or exhibit oscillations or even chaotic
behavior. Moreover, the response of the network to a given input depends on its
initial state, which may depend on previous inputs. Recurrent networks can support
short-term memory. This makes them more interesting as models of the brain, but
also more difficult to understand.

Those two types are graphically illustrated on Figure 1.12.

Figure 1.12: Visualization of individual types of the neural network based on connection.
Image taken from [5]

19

Model Training

As mentioned in 1.2, first the parameters are randomly initialized, then the input is passed
through the network. After all inputs from the training dataset have passed through the
network, the difference between the output of the network and the expected output is
calculated for each sample in the training dataset. Expected output is also called label. A
loss function is used for these calculations.

Loss function can be an arbitrary function mapping two vectors to a scalar. This
function should be bounded from below, with the minimum attained only for cases where
the prediction is correct. [8]

The type of loss function is chosen based on the network architecture and the type of
problem. The types of loss function are as follows [8]:

• Hinge : For binary classification problems, the classifier’s output is a single scalar
𝑦𝑟 and the label 𝑦𝑤 ∈ {−1, 1}. The mathematical notation is as follows 1.9.

𝐿(𝑦𝑟, 𝑦𝑤) = max (0, 1− 𝑦𝑟𝑦𝑤) (1.9)

• Binary cross-entropy: The function is used in binary classification with conditional
probability outputs. Binary cross-entropy is useful when the network produces class
conditional probability for a binary classification problem and It is assumed that the
output layer is transformed using the sigmoid function. The loss function is defined
as 1.10. Label 𝑦𝑤 ∈ {0, 1} defines in which class the sample belongs to and 𝑝 (𝑦𝑤) is
the probability from the model.

𝐿 = −𝑦𝑤 log 𝑝 (𝑦𝑤)− (1− 𝑦𝑤) log (1− 𝑝 (𝑦𝑤)) (1.10)

• Categorical cross-entropy: Similar to binary cross-entropy, the function is used
when a probabilistic interpretation is required, but is used in multi-class classification.
It is assumed that the output layer is transformed using the softmax function. The
loss function is defined as 1.11, where 𝐶 is count of classes, 𝑦𝑤 is vector of wanted
probability for all classes, so 𝑦𝑤𝑐 is wanted probability of 𝑐 class and 𝑦𝑤𝑐 is predicted
probability by model for that class.

𝐿 = −
𝐶∑︁
𝑐=1

𝑦𝑟𝑐 log(𝑦𝑤𝑐) (1.11)

• Mean Square Error : It is the average squared difference between the observed and
predicted values. It is used to calculate output error in regression tasks. This is a
simple function that skillfully solves ”punishment“ for a very distant output from the
desired output and at the same time does not focus on small deviations. The formula
for the calculation is 1.12, where 𝑛 is number of training samples in Epoch.

𝑀𝑆𝐸(𝑦𝑟, 𝑦𝑤) =
1

𝑛

𝑛∑︁
𝑖=1

(𝑦𝑟 − 𝑦𝑤)
2 (1.12)

Next part of model training is calculate the gradients and adjust weights of the network by
the calculated gradients.

20

Gradient is a vector that gives the magnitude and direction of the steepest slope [22].
One of the Loss functions is used to calculate the gradient.

Back-propagation algorithm is used to propagate gradients from the output layer
through all hidden layers back to the start of the network and adjust weights in order to
minimize the loss function. This is demonstrated on Figure 1.13.

Figure 1.13: Progress of back-propagation algorithm. Image taken from [12]

The goal is to find the minimum of the loss function for all the training data by stepping
down on the function surface as it is shown on Figure 1.14.

Figure 1.14: Progress of finding minimum loss. Image taken from [12]

21

The way the gradient changes the individual weights of neurons to reduce errors is
defined by the chosen optimization function:

• Stochastic Gradient Descent: Stochastic Gradient Descent is a general optimiza-
tion algorithm. It works by repeatedly sampling a training example and computing
the gradient of the error on the example with respect to the parameters. It updates
the parameters in the opposite direction of the gradient of the loss function with re-
spect to the parameters. Stochastic Gradient Descent updates the parameters after
computing the gradient using a single example or a mini-batch of examples. [8]

• Adagrad: The algorithm adaptively tunes learning rate for each parameter and in
the process performing larger updates for rarely updated parameters. Nevertheless,
Adagrad’s update rule results in a vanishing (decaying) rate which forces the learning
rate to monotonically decrease to a very small amount. A very small learning rate
stalls the algorithm. [15]

• Root Mean Square Propagation (RMSProp): The technique maintains per-
parameter learning rates and is an extension of the stochastic gradient descent algo-
rithm, that attempts to fix the issue of vanishing (decaying) learning rates. A version
of RMSProp optimization algorithm uses momentum - moving average of the squared
gradients for each parameter. [15]

• Adam: Adam means Adaptive Moment Estimation. It is a popular algorithm and
integrates the benefits of Adagrad and RMSProp. It leverages on the moving average
of past gradients to ascertain the direction of descent just as it uses the running
average of past squared gradients to scale (modify) the learning rate. Adam offers
a remarkable improvement on stochastic gradient descent in that it performs well in
practice. It converges fast and enhances the learning speed of neural network models.
[15]

Neural Networks for Natural Language Processing

This types of neural networks are used to solve complex problems like text generation,
speech recognition or language translation. The neural network must not only learn to solve
the problem correctly, but also convert the input data into a format that it understands
and can find a solution for.

One of this types are:

• Convolutional neural networks, or CNN is neural network used mostly for solving
problems include image type input‘s data. For process this type of data, Convolutional
neural network have convolutional and pooling layers on the begging of network to
convert input to better format for Feed-forward network.
Convolutional layer is supposed to apply matrix filters to the input and identify
indicative local predictors in a large structure [8].
Pooling layer resizes output matrix from the Convolutional layer to the smaller one.
These two layers are repeated at the beginning of the neural network until a vector is
created that can be processed by the Feed-forward network 1.2.5. This architecture
is shown on Figure 1.15. Convolutional neural network is used for image classification,
object detection, motion prediction. It can also be used in the processing of natural

22

speech, where the sound stage is transformed into reasonable representations such as
spectrograms and then can be processed by Convolution neural network.

Figure 1.15: Visualization of CNN architecture. Image taken from [19].

• Recurrent neural networks was mentioned in 1.2.5 for its use of its own output
as input in the next step. Recurrent neural network, as language model, computes
the likelihood of a sequence of words and predicts the next word in the sequence.
Sequence of words are saved as inner state and new word is used as input to network.
Input word is added to inner state and network predict next new word. Process of
prediction is shown on Figure 1.16.

Figure 1.16: Process of prediction sequence of new words by Recurrent neural networks .
Image taken from [16].

23

It turns out that this model has difficulties to reconstruct the relation between distant
sequence elements, since gradients tend to vanish or “explode” as the sequences get
longer. Therefore, new Recurrent neural network types have been developed: Long
Short-Term Memory and Gated Recurrent Unit. Both of them introducing
gating mechanisms that allow the model to retain information over longer sequences.
[16]

• Transformer : Transformer is the neural network architecture that can be used for
Natural Language Processing tasks like text generation. Models based on Recurrent
Neural Networks have a major limitation caused by the sequential nature of Recurrent
Neural Network. The number of operations required to determine the relation between
words grows with the distance between positions. The model has to store the relations
between all words simultaneously in a vector, making it difficult to learn complex
dependencies between distant positions. The Transformer directly computes these
relations between words in parallel in one step, instead of relating distant words by a
large number of computation steps. [16]

24

Chapter 2

Large Pre-trained Language
Models

In this chapter, the architecture of Large Pre-trained Language Models, the conversion of
text into tokens and the learning process of neural networks of this type are described.

2.1 Tokens
These models do not understand text representation as one long string datatype. Therefore,
text need to be divide into tokens.

An essential components for this in the architectures of Large Pre-trained Language
models are the encoder and decoder. The encoder processes the input text sequence and
converts it into tokens, while the decoder performs the reverse operation, converting tokens
back into text sequences. To accomplish this, the model utilizes a vocabulary.

2.1.1 Vocabulary

It is essentially a mapping structure where each token is associated with a unique index or
identifier and the corresponding text, which a token represents. The identifier associated
with the token is a reference for the model. Typically, it is represented as an integer data
type and allows the model to efficiently access and manipulate tokens during training and
inference.

Size of vocabulary is not infinite and depends on various factors, such as the size of
the training corpus, the tokenization technique or adding own tokens, imposed on the
vocabulary size. A larger vocabulary can capture a wider range of linguistic variations but
may require more computational resources. [16]

2.1.2 Tokenization

Tokenization is process, where input text is divided into tokens and can be done in the
following ways (For each way, there is example of tokenization of this sentence: ”This is an
example of tokenization.“) :

• Tokenization based on words divide text to separate words and each token rep-
resents one word. Example:

tokens = ["This", "is", "an", "example", "of", "tokenization", "."]

25

• Tokenization based on subwords, where token represents part of word. So for
tokenization of one word is needed more than one token. Example:

tokens = ["This", "is", "an", "example",
"of", "to", "##ken", "##ization", "."]

• Tokenization based on characters, where token represents smallest unit of word.
Example:

tokens =[’T’, ’h’, ’i’, ’s’, ’ ’,
’i’, ’s’, ’ ’,
’a’, ’n’, ’ ’,
’e’, ’x’, ’a’, ’m’, ’p’, ’l’, ’e’, ’ ’,
’o’, ’f’, ’ ’,
’t’, ’o’, ’k’, ’e’, ’n’, ’i’, ’z’, ’a’, ’t’, ’i’, ’o’, ’n’,
’.’]

• Tokenization based on n-grams, where token represents n-number of words [16].
Example:

Bigrams (2-grams):

tokens = [("This", "is"), ("is", "an"),
("an", "example"), ("example", "of"),
("of", "tokenization"), ("tokenization", ".")]

Trigrams (3-grams):

tokens = [("This", "is", "an"),
("is", "an", "example"),
("an", "example", "of"),
("example", "of", "tokenization"),
("of", "tokenization", ".")]

Since the Large Pre-trained Language Model uses a vocabulary, in which all used tokens
should be found so that the model can process them, Byte-pair Encoding, WordPiece
Algorithm and SentencePiece are used to correctly create these tokens.

• Byte-pair Encoding: This method first selects all characters as tokens. Then,
successively the most frequent token pair is merged into a new token and all instances
of the token pair are replaced by the new token. This is repeated until a vocabulary
of prescribed size is obtained. Note that new words can always be represented by a
sequence of vocabulary tokens and characters. Common words end up being a part of
the vocabulary, while rarer words are split into components, which often retain some
linguistic meaning. In this way, out-of-vocabulary words are avoided. [16]

26

• WordPiece Algorithm also starts by selecting all characters of the collection as to-
kens. Then it assumes that the text corpus has been generated by randomly sampling
tokens according to their observed frequencies. It merges tokens in such a way that
the likelihood of the training data is maximally increased. There is a fast variant
whose computational complexity is linear in the input length. [16]

• SentencePiece is a package containing several subword tokenizers and can also be
applied to all Asian languages. All the approaches effectively interpolate between
word level inputs for frequent words and character level inputs for infrequent words.
[16]

As the current definition of tokenization shows, sentences with the same meaning but
in a different languages will be tokenized with different tokens, and the number of tokens
may also be different. Since the thesis is focused on generation medical reports in the
Czech language, an example of sentence tokenization in the English language and the Czech
language will be given to compare the results. For this tokenization is used tokenizer of
LLaMA 3 by META, which use Byte-pair Encoding.

Figure 2.1: Tokenization of the sentence written in the English language.

Figure 2.2: Tokenization of the sentence written in the Czech language

As can be seen in Figure 2.1, given a sentence, that has 14 words and 2 punctuation
marks, it is encoded into 19 tokens. On the Figure 2.2, a sentence, that has 13 words
and 2 punctuation marks, is encoded into 20 tokens. The difference between the better
encoding of these two languages lies in the fact that model is trained primarily with text in

27

English language and thus also its vocabulary contains tokens of English words. It cannot
be concluded from this, that the given model works better with text in English language
than with text in Czech language, but the use of a larger number of tokens results into a
usage of larger amount of required memory.

2.1.3 Token embeddings

They represent the meaning of each word by a vector of real numbers with hundreds of
dimensions and each dimension capture different aspect. Between these vectors can be
computed a sort of relation between different words. Those embeddings can be categorized
into two main types: Simple embeddings and Contextual embeddings.

Simple embeddings assign each token in the vocabulary a unique, fixed-length vector
representation. These representations are pre-computed and remain constant throughout
the duration of a task. It is typically pre-trained on large text corpora using unsupervised
learning techniques. During training, the embeddings are learned by optimizing an objec-
tive function that encourages similar words to have similar embeddings. Simple embeddings
capture both semantic and syntactic information about tokens. Tokens with similar mean-
ings or usage patterns tend to have similar embeddings, which allows the embeddings to
encode semantic relationships between words. They are based on global statistics of lan-
guage usage obtained from the entire training corpus. As a result, they do not consider the
surrounding context in which tokens appear and provide a general representation of words
based on their overall usage patterns. [16]

Common approaches of Simple Embeddings [16]:

• Word2Vec: Word2Vec is a popular simple embedding technique that represents
words as dense vectors in a continuous vector space, which learn embeddings by
predicting neighboring words or context words given a target word.

Figure 2.3: Word2vec predicts the words in the neighborhood of a central word by logistic
classifier L. Image taken from [16].

• Global Vectors for Word Representation is another widely used simple embed-
ding method that learns word embeddings by factorizing the co-occurrence matrix of
words in the corpus. It captures global statistics of word co-occurrences to generate
embeddings that reflect both semantic and syntactic similarities between words.

28

• FastText extends the Word2Vec model by representing each word as a bag of char-
acter n-grams, allowing it to capture morphological information and handle out-of-
vocabulary words more effectively.

Contextual embeddings are a type of word representation in natural language process-
ing that captures the meaning of a word in the context of a sentence or document. Unlike
simple embeddings, which assign fixed representations to each word regardless of context,
contextual embeddings are dynamically computed based on its context within a sentence
or a document, allowing for a more nuanced understanding of word meaning. Contex-
tual embeddings often capture bidirectional context, meaning they consider both preceding
and subsequent words when computing the representation of a word. This bidirectional
context enables contextual embeddings to capture long-range dependencies and semantic
relationships between words within a sentence.

Large Pre-trained Language Models, which use this type of embeddings, are [16]:

• Bidirectional Encoder Representations from Transformers, also known as
BERT, is a transformer-based model that generates contextual embeddings by pre-
training on large text corpora using masked language modeling objectives.BERT rep-
resentations capture bidirectional context through self-attention mechanisms.

• Generative Pre-trained Transformer , shortly GPT, is another transformer-based
model that generates contextual embeddings by pre-training on large text corpora
using autoregressive language modeling objectives. GPT representations capture uni-
directional context and are suitable for generating text.

Contextual embeddings also capture information about the relative positions of words
within sentences, including word order and positional relationships. The embeddings of
words vary depending on their positions within the input sequence, allowing the model to
understand the sequential nature of language. [16]

This is shown on Figure 2.4.

Figure 2.4: Token embeddings for Transformers, like BERT or GPT, contains position
information duo to parallel computations of Transformers. Image taken from [16].

2.1.4 Special tokens

Special tokens play a crucial role in various natural language processing tasks, providing
additional information or a structure to input sequences processed by models. Overview of
special tokens used by BERT or GPT [16]:

29

• [CLS] (Classification) Token represents the aggregation of the input sequence for
classification.

• [SEP] (Separator) Token separates segments of text in tasks involving multiple
text inputs, such as sentence pairs or question-answering.

• [MASK] Token is used in masked language modeling tasks like BERT’s pre-training
objective. Tokens are randomly masked during training, and the model is trained to
predict them based on surrounding context.

• [UNK] (Unknown) Token is used as representation of out-of-vocabulary words or
tokens not present in the model’s vocabulary. This token is used during inference to
handle unknown tokens.

• Beginning-of-Sentence (BOS) Token : Marks the beginning of a sentence in
tokenized sequences.

• End-of-Sentence (EOS) Token: Marks the end of a sentence in tokenized se-
quences.

• End-of-Text (EOT) Token: Marks the end of the entire text or a document in
tokenized sequences.

2.2 Large Pre-trained Language Model‘s Architectures
Large Pre-trained Language Models typically use transformer architecture as their back-
bone. Transformers have become the standard architecture for many natural language
processing tasks due to their ability to efficiently capture long-range dependencies in se-
quences as was mentioned in 1.2.5.

Transformers rely on mechanisms like self-attention and feed-forward neural networks
to process sequential data. This architecture allows them to effectively model relationships
between tokens in a sequence, making them well-suited for tasks such as language modeling,
text generation and machine translation.

30

2.2.1 Attention mechanism

The attention mechanism is a crucial component of transformer architectures in machine
learning, enabling models to focus on relevant parts of input or output sequences during
sequence processing. This mechanism allows models to efficiently learn long-range depen-
dencies in sequences and capture context for better predictions.

Each word or token in the input sequence is represented by a vector. This is input
representation and it is used to generate three vectors: query, key, and value. Query
represents actual token and key represents other tokens in the sequence. [16]

For each token, a scalar is computed between the query and the key of each other token
in the sequence. This scalar expresses the ”importance“ of the query with respect to the
given token. The scalars are normalized using an activation function like softmax to obtain
attention weights. These weights are then used to weight the values corresponding to the
respective tokens. The sum of weighted values forms the output representation for the given
token as it is shown in Figure 2.5.

Figure 2.5: Computation of a contextual embedding for a single token “mouse” by attention
mechanism. Image taken from [16].

31

The attention mechanism is often implemented as multi-head attention, which allows
the model to focus on different aspects of the input. In multi-head attention, the query,
key, and value are linearly projected into multiple spatial subspaces, and then the attention
mechanism is applied to each of these subspaces. The outputs are then concatenated and
linearly combined to obtain the final output. Visual representation of multi-head attention
is shown in Figure 2.6.

Figure 2.6: Visual representation of multi-head attention. Image taken from [16].

Large Pre-trained Language Models typically consist of multiple transformer layers as
it is shown in Figure 2.7. By stacking multiple transformer layers, the model can learn
hierarchical representations of the input sequence. Lower layers capture basic features
and local dependencies, while higher layers capture more abstract features and long-range
dependencies.

32

Figure 2.7: Scheme of stacking multiple transformer layers. Image taken from [16].

2.2.2 BERT

Bert is natural language processing model introduced by Google [9]. Thanks to its archi-
tecture, which was not previously used, it became an effective model in understanding the
semantics and relationships within sentences. The advantage of the architecture lies in the
fact that it takes into account the probability of the occurrence of a word between two
words and not sequentially from one side only.

As opposed to directional models, which read the text input sequentially (left-to-right
or right-to-left), the Transformer encoder reads the entire sequence of words at once. This
characteristic allows the model to learn the context of a word based on all of its surroundings
(left and right of the word). [9]

Another advantage is that it does not only take the sequence of words, but also the
continuity of the sentences themselves.

In the BERT training process, the model receives pairs of sentences as input and learns
to predict if the second sentence in the pair is the subsequent sentence in the original
document. During training, 50% of the inputs are a pair in which the second sentence
is the subsequent sentence in the original document, while in the other 50% a random
sentence from the corpus is chosen as the second sentence. The assumption is that the
random sentence will be disconnected from the first sentence. [9]

BERT is also labeled as an autoencoder model whose main task is to derive context-
sensitive embeddings for tokens. In each layer of BERT, the lower layer embeddings are
transformed by self-attention to a new embedding. The main training task is to predict
words from the input sequence, which have been replaced by a [MASK] token. This is
done by using the last layer embedding of the token as input to a logistic classifier, which
predicts the probabilities of tokens for this position. During training the model parameters
are optimized by stochastic gradient descent. This forces the model to collect all available

33

information about that token in the output embedding. The first input token is the [CLS]
token. During training, it can be used for next sentence prediction, where a logistic classifier
with the [CLS]-embedding as input has to decide, if the first and second sentence of the
input sequence belong together or not. [16]

With additional training for a specific task, the BERT model can provide output to this
task through the [CLS] token.

2.2.3 GPT

GPT has transformer architecture similar to BERT. GPT model is mainly used in text
generation tasks.

Model generate text by predicting the next token in a sequence based on the tokens
that came before it. Since GPT generates the tokens by sequentially applying the same
model, it is called an autoregressive language model and this generate text process is shown
in Figure 2.8. [16]

Figure 2.8: Transformer model predicts the next token in token‘s sequence. Image taken
from [16].

This text generation process is same as text generation by recurrent neural networks
or its variants. GPT uses attention mechanism described in 2.2.1, which is typical for
transformer architecture. Thanks to this attention mechanism, GPT model can provide
better result in text generation task than recurrent neural networks. Blocks used in GPT
are referred to as decoding blocks. Difference between word prediction by BERT and text
generation by GPT is shown in Figure 2.9. Text generation by GPT can be the same
process as word prediction by BERT, if the BERT model predicts word at the end of a
sequence.

34

Figure 2.9: Comparation between word prediction by BERT and text generation by GPT.
Image taken from [16].

2.2.4 LLaMA

LLaMA is natural language processing model introduced by Meta. It is an autoregressive
language model like GPT, but LLaMA uses different type of attention mechanism than
BERT or GPT.

LLaMA uses Grouped-query attention and BERT or GPT uses Multi-head at-
tention. Instead of processing each query independently, queries are grouped into subsets
based on some predefined criteria. For example, queries may be grouped based on their
semantic similarity, syntactic structure, or positional proximity in the sequence. Within
each query group, attention scores are computed independently using the grouped queries
and all key vectors. This means that each query in the group attends to all key vectors,
but only within its own group. The Difference is demonstrated in Figure 2.10.[3]

Figure 2.10: Difference between types of attention. Image taken from [3].

35

The main advantage of this model is that there are fewer parameters than other Large
Pre-trained Language Models [27]. In addition, the benefits of Grouped-query attention
should be noted, as it achieves quality close to multi-head attention while being almost as
fast [3]. As a result, the model can run locally without requiring a lot of performance while
still generating text with good results in a reasonable amount of time.

2.3 Learning
Large Pre-trained Language models are neural network models with a very high number of
parameters, so the training such large models is computationally demanding. Due to this
reason, the training is divided into 2 stages: Pre-training and Fine-tuning. The model
can use the knowledge acquired during Pre-training through transfer learning and thanks
to that, the performance on the fine-tuning task is much better [16].

• In Pre-training, the model is trained on large amount of text documents of various
types and even more various contexts. Unsupervised learning is used for learning in
Pre-training stage, so no manual annotation is required [16]. After completing this
stage of the learning, the model generates text based on the learned probability of
occurrence of a word in a given sequence of words. The model is not yet specialized
for performing the given task.

• Fine-tuning the model is a training process for the specialization of the model, so
that the model provides better results for a given task. For this stage is used far
less samples compare to Pre-training. Supervised fine-tuning is traditional su-
pervised learning, where instead of randomly chosen weights of the model during its
initialization, the weights are given by loading the pre-trained model. Reinforce-
ment Learning with Human Feedback is used to improve the results of the given
model when the real person evaluates the output of the model using feedback. The
model is then either ”punished“ or ”rewarded“ for the answer.

Parameter Efficient Fine-Tuning

It is true that a model with a large number of parameters can solve much more complex
tasks more successfully than a model with a low number of parameters. But with a large
number of parameters, also comes a great need for computing power.

Therefore, fine-tuning all model weights is still a very computationally demanding pro-
cess. By using a PEFT, this computational complexity is reduced. PEFT, stands for
Parameter Efficient Fine-Tuning. It is a set of techniques or methods to fine-tune a large
model in the most compute and time-efficient way possible, without losing any performance
which you might see from full fine-tuning. Really big models is almost impossible to fine-
tune them without spending tens of thousands of dollars for computation resources. When
it is necessary to use such big models for better performance, PEFT comes in. This is done
by fine-tuning only the most important and relevant parameters in the neural network. The
techniques introduce new parameters in the network or freeze the whole model except for
some parts to make it easier to train the model. [18]

LoRA, which stands for Low-Rank Adaptation, is one of PEFT methods. It operates on
a crucial insight. The difference between the fine-tuned weights for a specialized task and
the initial pre-trained weights often exhibits “low intrinsic rank” - meaning that it can be
approximated well by a matrix of low rank. A low-rank matrix has few linearly independent

36

columns, which means, in simple terms, that the matrix is less “complex”. One cool property
of low-rank matrices is that they can be represented as the product of two smaller matrices.
This realization leads to the hypothesis that this delta between fine-tuned weights and
initial pre-trained weights can be represented as the matrix product of two much smaller
matrices as it is shown in Figure 2.11. The key idea is to focus on updating these two
smaller matrices instead of the entire original weight matrix during training, leading to
improved computational efficiency. LoRA contains 2 essential parameters: Rank (r) and
Aplha(r_alpha). [14]

Parameter Rank determines the rank of the low-rank matrices that are introduced to
the model. A lower rank means fewer parameters to fine-tune, leading to faster training
and less memory usage. Alpha is a scaling factor that controls the magnitude of the update
applied to the low-rank matrices.[14]

Figure 2.11: LoRA principle using initial pre-trained weights and two much smaller matri-
ces. Image taken from [10].

2.4 Evaluation techniques
The most crucial part of training an artificial intelligence model is evaluating whether a
given model produces better results than other models. In addition to the fact that a
person can evaluate the results himself, automatic methods can also be applied. A major
disadvantage of this type of artificial intelligence is that automatic methods for evaluating
these models lack credibility, as they would need to understand the overall meaning of the
generated text.

37

Nevertheless, these evaluation methods prove with a large deviation whether the given
model is successful or not.

These techniques are [16]:

• BLEU compares counts of 1-grams to 4-grams of tokens. The BLEU metric ranges
from 0 to 1, where 1 means an identical output with the reference. Although BLEU
correlates well with human judgment, it relies on precision alone and does not take
into account recall—the proportion of the matched n-grams out of the total number
of n-grams in the reference translation.

• ROUGE unlike BLEU is a recall-based measure and determines which fraction of the
words or n-grams in the reference text appear in the generated text. It determines,
among other things, the overlap of unigrams or bigrams as well as the longest common
subsequence between a pair of texts.
Different versions are used: ROUGE-1 measures the overlap of unigram between
the pair of texts. ROUGE-2 determines the overlap of bigrams between the pair of
texts. ROUGE-L: measures the length of the longest sequence of words that is shared
between both texts. This length is divided by the number of words in the reference
text.

• METEOR performs a word-to-word alignment between the translation output and
a given reference translation. The alignments are produced via a sequence of word-
mapping modules.

38

Chapter 3

Assistant for Creating Medical
Reports

Creating medical reports is one of the administrative duties of the examining doctor. By
creating an assistant for creating a report of this kind, it can help the doctor to create these
reports faster, more easily, and it will also contribute to the elimination of errors caused by
human factors.

The use of properly pre-trained language modules will speed up the development of this
assistant, and through the fine-tuning process, the creation of reports will be achieved as
correctly as possible.

The exact task of the assistant consists in summarizing text documents created during
the patient’s hospitalization to a dismissal report.

3.1 Dataset
The dataset was provided by company STAPRO s.r.o., which specializes in the development
of information systems for hospitals, clinics and laboratory facilities.

3.1.1 Entities

The provided dataset contains 5 files and each file contains data and attributes of the entity
it represents. So the dataset contains the data of the entities:

• Patient: Provides data of patient.
• Department: Provides data of department of hospital.
• Hospitalization: Provides data of admission to hospital for treatment.
• Hospitalization_diagnoses: It provides data on diagnoses for a given hospitaliza-

tion episode.
• Document: Provides data to documentation created by doctors.

Further, individual entities consist of the following attributes: For the patient entity,
these are:

patient_id: Unique identifier of the patient.
gender_code: Gender (M for male, Z for female).

39

birth_date: The date of birth of the patient.
death_date: Date of the patient’s death (added after death).

For the department entity, these are:

department_id: Unique department identifier.
department_code: Department code.
department_name: Department name.
parent_department_id: Identifier of the parent department.
department_type: Type of department (A as ambulance, L as bed, etc.).
active: Active department (1 means active).

For the hospitalization entity, these are:

hosp_id: Unique identifier of the hospitalization episode.
hospcase_id: Hospital case identifier (one or more episodes, hospital stay).
hosp_from_date: Date and time of the beginning of the hospitalization episode.
hosp_to_date: Date and time of the end of the hospitalization episode.
hospcase_from_date: Date and time of the start of the hospitalization case.
hospcase_to_date: Date and time of the end of the hospitalization case.
patient_id: Unique identifier of the patient.
department_id: Identifier of the current department, where the patient is hospital-
ized.

For hospitalization’s diagnoses entity:

hosp_id: Unique identifier of the hospitalization episode.
dg_code: Code of diagnose.
dg_name: Name of diagnose.
dg_order : Order of diagnose.

For document entity:

document_id: Unique document identifier.
document_class: Document classification.
document_type: Document type.
document_name: Name of the document.
document_date: The date and time to which the document relates.
document_changed: The date and time of the last modification of the document.
hosp_id: Hospitalization identifier.
patient_id: Unique patient identifier.
document_text: Document text.
department_id: Executive department.

Relationships between entities are shown on 3.1.

40

Figure 3.1: Entity relationship diagram of given dataset.

3.1.2 Dismissal reports

The dismissal report is issued when the patient is dismissed from the hospital. This is a
report, that summarizes the course of a treatment and essential information from other
documents related to the given treatment.

The dismissal report, in accordance with the laws of the Czech Republic, shall include
[1]:

1. brief information about medical history and current illness

2. the duration and course of one-day or inpatient care describing why the patient was
hospitalized and what was the result of diagnostic efforts

3. a summary of the diagnoses for which the patient was provided medical care during
hospitalization

4. a record of previous treatment and the results of examinations that are essential for
the provision of other health services

5. an overview of the medical procedures performed during hospitalization, which are
significant for the further provision of health services, including their results and
information on the complications that have occurred

6. recommendations for the provision of necessary health services, including medical
rehabilitation and nursing care and recommendations for a diet regimen, medicinal
products, food for special medical purposes and their dosage, and recommendations
for medical devices intended for the provider who will provide other health services,
and recommendations for a medical assessment roast

The Preliminary Dismissal Report shall include [1]:

1. basic data on the course of hospitalization

2. a summary of the diagnoses for which the patient was provided medical care during
hospitalization

3. a brief record of previous treatment, medical rehabilitation and nursing care, dietary
regimen, including the indication of medicinal products, food for special medical pur-
poses and medical devices with which the patient is equipped

41

4. recommendations for the next procedure in the provision of health services

This is the foundation. Furthermore, each hospital adjusts the content of the dismissal
report in its own guidelines.

3.1.3 Data for Supervised fine-tuning

The provided dataset contains many entities, but the most important information is found
in the entity Document, more precisely in its attribute document_text, where the text
written by a doctor or other relevant person is stored, and contains information that can
be used to create an assistant.

Attribute document_class indicates the category to which the given document be-
longs. Some of these categories are as follows:

ADL, Nursing Anamnesis, Decubitus, Decours , Education by Nurse,

Epicrisis, Wound Documentation, Hospitalization Report,

Hygiene Regimen, Invasive Entries, Consultation, Laboratory Tests,

Medication Request, Surgical Protocol, General Nursing Documentation,

Abortions, Prescription for Medical and Orthopedic Aid,

Nursing Transfer Report, Admission Report, Discharge Report,

Autopsy Cover Sheet, Radiodiagnostics, Prescription, Social Record,

Further, documents from the category of dismissal report, admission report and Decours
will be used to create the assistant.

Documents of dismissal report, saved in entity Document, are divided into a structures
with the following subsections:

• Anamnesis

• Measured data

• Current illness

• Status praesens

• Status localis

• Diagnostic sheet

• Care plan

From this subsections, Current illness provides information that can be useful in creating
the course of hospitalization and at the same time does not contain a large amount of
additional information that would only unnecessarily take up memory space and increase
the necessary computing power.

42

Structure of Decours documents can be divided to:

• Diagnostic Summary

• Daily Progress Notes

Daily Progress Notes represents an ideal part for adding input information to the model.
It offers information about every single day during hospitalization and these notes are
written in a concise form, which also reduces the memory and computational complexity
required for running the model.

The input to the model will therefore be created by Current illness and Daily Progress
Notes and example looks like this:

onemocnění:

Pacient přijata k provedení diag. koronarografie před
zařazením na waiting list před transplantací ledviny.
Echo srdce: EF LK 60-65%, porucha diastol. relaxace LK,
lehká sym. hypertrofie LK, bez lokálních poruch kinetiky,
bez význam. chlopen.vad

Subj: Neguje bolesti na hrudi, dušnost, palpitace, pre/synkopy.
Denní průběh:
10.3.2022 8:40 Zapsal doktor:

S: bez obtíží
O: afebrilní, eupnoe, AS reg., dýchání alv. čisté, břicho měkké,
nebol., DKK bez otoku, lýtka volná, akra prokrvená, zápěstí po skg klidné
telem: SR 61/min
dimise

The label will then be created from the dismissal report document, which has the
following structure:

• Diagnostic Summary

• Anamnesis

• Current illness

• Status praesens

• Status localis

• Treatment Summary

• Surgical Procedure

• Laboratory Results

• Measured Data

• Hospital Course

43

• Pacient state at dismissal

• Recommendations

• Recommended Therapy
The label will be exactly Hospital Course of dismissal report and example looks like

this:

Pacientka přijata k provedení diag. koronarografie před zařazením
na waiting list před transplantací ledviny. Výkon proveden dne 9.3. s nálezem
koronární tepny bez význ. stenoz (50% RIA, 60% ACD). Pacientka oběh. komp.,
afebrilní, propuštěna, dnes pravidelná dialýza. Odvoz s rodinou.

With provided input, this leads to summarization task.
Other parts of dismissal reports are already created like Anamnesis, Current illness,

Status praesens, Status localis and can be copied from other documents. And for another
parts like Recommendations and Recommended Therapy, the model would need to under-
stand the context of the patient’s current condition with the treatment that was performed
in the past. This of course leads to the need to have access to the given data, which would
be a problem in terms of the need for a large amount of memory and computing power.

Even if the structure of the text documents is obvious, it is only a form of guidance
for doctors and it is not exactly necessary to follow this structure by them. In reality,
doctors have a free hand in creating this documents, which can lead to violations of data
structures. This can complicates data extraction and leads to the creation of a low-quality
dataset, which subsequently leads to the creation of a low-quality assistant.

3.2 Assistant API Gateway
In order to be able to use the assistant without the need to have it running locally, it needs
to run on servers and use API to access it.

3.2.1 API

API is a set of rules and protocols that allows different software applications to communicate
with each other. It defines the methods and data formats that applications can use to
request and exchange information.

API structure can be divided into:

• Headers: Provide metadata about the request, such as authentication tokens.

• Parameters: Include data sent to the API in the URL or body of the request.

To ensures, that only authorized users can access certain endpoints, this methods can
be used: API keys, OAuth tokens, and JWT.

3.2.2 Ollama

It is a framework for setting up and running large language models such as Llama 2,
providing engineers with the tools to build and execute these models locally. It addresses
the need for a flexible and extensible environment to work with advanced machine learning
models, offering a range of functionalities from API interactions to application lifecycle
management. [13]

44

Chapter 4

Implementation and testing

According to the scheme 4.2, the implementation is divided into the following parts:

• Data preparation: In this part, a dataset suitable for learning the Large Pre-trained
Language Model will be created from the data provided by the company STAPRO
s.r.o.

• Choose suitable model: A suitable model will be chosen that can process the given
input text so as to generate the most correct output.

• Learning and set the correct parameters: Choosing the right training procedure
and additional training parameters for the best possible fine-tuning of the model.

• Set an API Gateway: Setting an API Gateway and creating an application that
can communicate with a fine-tuned model using an API.

The current scheme for fine-tuning the model consists of:

Figure 4.1: Simple schema of fine-tuning process of large language model.

4.1 Data preparation
The selected suitable model, where its selection is justified in 4.2 , has a maximum content
length of 4096 tokens. Therefore, samples of these datasets will be evaluated in terms of

45

their content length. A new dataset,where all samples already meet the required content
length, is created from the given dataset. These samples are covered by the Prompt, which
is discussed in 4.2.2, and the Prompt is also included in the content length. This evaluation
and creating new dataset is executed by the eval_dataset.py script written in Python.

3 versions of dataset were created, all of which consist of dismissal report, admission
report and Decours parts as is described in 3.1.3. These versions were created by gradually
improving previous version and removing noises.

4.1.1 1st version of dataset

1st version of dataset is just a combination of Current illness from admission report and
Daily Progress Notes from Decours as input and Hospital Course from dismissal report as
label. Without addictional changes like anonymizing doctor‘s name.

Metric Count
Total samples 5557
Content length below 4096. 5235
Content length higher than 4096. 322

Table 4.1: Evaluation of 1st dataset.

4.1.2 2nd version of dataset

The 1st version of dataset has not only Hospital Course from dismissal report as label,
but also other parts of the dismissal report. This is due to the fact that not all dismissal
reports have the same structure. It may be due to the fact that the doctors can adjust it
for themself.

In 2nd version of dataset is improved label to just contains Hospital Course and doctor‘s
name are anonymized, but only those that could be identified based on their location in
the structure. Doctor‘s name can still be found in freely written text.

Metric Count
Total samples 5557
Content length below 4096. 5265
Content length higher than 4096. 292

Table 4.2: Evaluation of 2nd dataset.

4.1.3 3rd version of dataset

In the 3rd version, the occurrence of abbreviations in the text written by the doctor was
analysed. Doctors do not only write abbreviations that specifically denote types of diseases
or drugs, but also abbreviate words that are commonly used in communication. But some-
times these words are in full form and sometimes in abbreviated form. This can lead to
the fact that the model will take them as words with different meanings, which can lead to
worse results. These words have been adjusted to the full form.

Also label still contained other parts of the dismissal report, so label is improved im-
proved again to just contains Hospital Course.

46

Metric Count
Total samples 5557
Content length below 4096. 5266
Content length higher than 4096. 291

Table 4.3: Evaluation of 3rd dataset.

4.2 Suitable model
From the mentioned models in 2.2, the LLaMA model was chosen due this reasons:

• Computation and memory requirements: Feasible requirements for computation
and memory resources by using versions with low number of parameters. This versions
are 13 bilions parameters and 7 bilions parameters.

• Multilingual: The model can generate text in several languages. One of these
languages is Czech language.

• Open-source: It is open-source and can be fine-tuned locally.

• New: It is a relatively new model, recently released

4.2.1 Model‘s variants

There were tested other multiple types of this model. Each of this model is pre-trained on
different dataset and some have different number of trainable parameters.

These models are:

• togethercomputer/Llama-2-7B-32K-Instruct [26]

• Yukang/Llama-2-13b-longlora-16k-ft [29]

• Yukang/LongAlpaca-13B [30]

• meta-llama/Llama-2-13b-chat-hf [28]

After evaluating the performances of the models, meta-llama/Llama-2-13b-chat-hf
is chosen as the most suitable model. Although the output was generated in English, the
model generates an answer in sentences, as it is necessary for generate the Hospital Course
of dismissal report. Also the output is not generated indefinitely, rather, the model itself
evaluates when it finishes.

4.2.2 Prompt

The prompt is used to better define the input so that the model can understand it. It
contains special tokens and defines the instruction of what the model should do.

Instruction is define as:

instruction= ’’’Vytvořte souhrn v českém jazyce celými
větami o onemocnění a denním průběhu.\n’’’

Prompt template for training of model:

47

<s>
[INST]

<<SYS>>\n
You are a helpful, respectful and honest assistant.
Always answer as helpfully as possible, while being safe.
Your answers should not include any harmful, unethical, racist,
sexist, toxic, dangerous, or illegal content.
Please ensure that your responses are socially unbiased
and positive in nature.\n\nIf a question does not make any sense,
or is not factually coherent, explain why instead of answering
something not correct. If you don’t know the answer to a question,
please don’t share false information.\n

<</SYS>> \n\n
{instruction + input}

[/INST]
Souhrn v českém jazyce ve formě
celých vět o onemocnění a denním průběhu:
{output}

</s>

Prompt template for inference of model:

<s>
[INST]

<<SYS>>\n
You are a helpful, respectful and honest assistant.
Always answer as helpfully as possible, while being safe.
Your answers should not include any harmful, unethical, racist,
sexist, toxic, dangerous, or illegal content.
Please ensure that your responses are socially unbiased
and positive in nature.\n\nIf a question does not make any sense,
or is not factually coherent, explain why instead of answering
something not correct. If you don’t know the answer to a question,
please don’t share false information.\n

<</SYS>> \n\n
{instruction + input}

[/INST]

4.3 Learning
All 3 versions of the dataset were used to train the meta-llama/Llama-2-13b-chat-hf
model.

To reduce the computational complexity and required memory, the quantization tech-
nique is used. It is about reducing the number of bits by which the parameters of the model
are represented. Quantization from the BitsAndBytes library is used and reduction to 4bit.

For the additional necessary performance, the LoRA learning technique is used. For
Models, which are learned on 1st version of dataset and 2nd version of dataset, are used

48

this LoRA parameters r=16, lora_alpha=64. This leads to not quiet good results and
evaluation was done purely by manually checking the result.

Next, the model was trained with the 3rd version of the dataset, which has 5000 samples
and training was set on 3 epochs. LoRA parameters was changed to r=16, lora_alpha=16.
It led to better results, where the model did not give false information so often.

Last version of a model was evaluated using the ROUGH metric. The result over 250
samples that were not part of the training dataset of this model:

Metric Score
rouge1 0.3520777
rouge2 0.2225495
rougeL 0.2886016
rougeLsum 0.3039186

Table 4.4: ROUGE Scores

4.4 Inference and API communication

4.4.1 Inference

The model starts with pre-set parameters. One of these parameters is the temperature,
which determines to what extent the model generates text using chance. This leads to the
fact that the model makes up a lot, but too low again leads to the fact that the model
generates text with information that was learned with a similar input but should not have
been generated with the current input. Temperature is set on 0,4.

Example of generated text by trained model:

Pacient byl přijat k provedení koronarografie pro atypické bolesti na hrudi.
Koronarograficky normální nález na koronárních tepnách, EF LK 60%.
Výkon proběhl nekomplikovaně, zápěstí po intervenci klidné.
Telemetricky po celou dobu hospitalizace sinus. rytmus bez záchytu arytmií.
Pacienta propouštíme v KP kompenzovaném stavu. Odvoz vlastní.

And text written by doctor:

Pacient byl přijat k provedení selektivní koronagrafie pro atypické bolesti na hrudi.
Výkon nekomplikovaně, s nálezem - normální nález na koron.
tepnách, EF 60%. Vyloučena kardiální etiologie obtíží.
Telemetricky trvá eufrekvenční fibrilace síní.
Závěrem dimise do ambulantní péče ve stabilizovaném stavu.

Text generated by GPT3.5 using same input:

Pacient byl odeslán k provedení koronarografie (SKG)
z ambulance kvůli bolestem na hrudi. Echo z 22.
dubna ukázalo ejekční frakci levé komory (EF LK) 55 %,
bez poruchy kinetiky, s mírnou mitrální regurgitací.
Levá síň (LS) má 50 mm, hraniční velikost pravé komory (PK)
a mírná trikuspidální regurgitace.

49

Pacient udává, že se asi rok zadýchává při práci
a při chůzi do druhého patra, ale nezastavuje.
Bolesti na hrudi mívá nejčastěji večer v klidu,
které popisuje jako sekundové tlaky, někdy píchání
a řezání na hrudi, bez vazby na polohu či námahu.
Občas podobné potíže zažívá i při práci.
Neuvádí bušení srdce, otoky ani pre/synkopy.

Denní průběh:
Dne 30.4.2022 v 8:34 zapsal doktor:
Subjektivně se pacient cítí dobře, má pouze nachlazení, rýmu a kašel.
Objektivně je afebrilní, kardiopulmonálně kompenzovaný,
orientovaný a spolupracující, dýchá normálně, bez ikteru a cyanózy.
Srdeční akce pravidelná, bez šelestu, dýchání sklípkové, bez výpotků.
Břicho klidné, nebolestivé, dolní končetiny bez otoků a známek trombózy.
Telemetrie: sinusový rytmus, bez arytmie.
Plán: dimise.

For comparison, the text was also generated by the GPT 3.5 model. The fine-tuned
LLaMA model tries to imitate the performance of a doctor. It is not detailed, but it can
be seen that some factual information does not fit.

GPT, on the other hand, expanded the input text more and did not summarize it as
expected. On the other hand, since it is not fine-tuned to imitate the summarization as the
doctor does, it did not even lead to him inventing the information.

4.4.2 API communication

For backend implementation is used Python framework Flask. And for secure reason is
used API key for communication between Client and server. Server after request provided
by Client starts inference with input data from Client.

Figure 4.2: Client‘s application.

50

Conclusion

The model is quite good at generating text in Czech. When examining the generated output,
it was found that it was correcting grammatical errors. The main problem consists in not
supplying the necessary data for the input as would be needed for the given output. That’s
why I think it leads to adding text to the output that shouldn’t be there. The necessary
data is, however, difficult to extraxt automatically, since doctors do not always follow the
structure of the document. Another slightly smaller problem lies in the abbreviations,
which need to be replace with whole words. And last but not least is the architecture of the
model. It would be necessary for the model to ”understand“ more the context in the given
text. A model with 70B parameters or other architectures would probably handle it better.
Duo the data anonymization, the datasets and trained models are not publicly available.

51

Bibliography

[1] Vyhláška č. 98/2012 Sb. [Ministerstvo zdravotnictví České republiky]. 2012. Dostupné
online: https://www.zakonyprolidi.cz/cs/2012-98.

[2] Abraham, A. Rule-based Expert Systems. In: Sydenham, P. H. and Thorn, R.,
ed. Handbook of Measuring System Design. ISBN: 0-470-02143-8: John Wiley &
Sons, Ltd., 2005, p. Place the page numbers here. Oklahoma State University,
Stillwater, OK, USA.

[3] Ainslie, J., Lee Thorp, J., Jong, M. de, Zemlyanskiy, Y., Lebrón, F. et al.
GQA: Training Generalized Multi-Query Transformer Models from Multi-Head
Checkpoints. 2023.

[4] Banoula, M. What is Perceptron: A Beginners Guide for 2023. Simplilearn. May
2021. Available at:
https://www.simplilearn.com/tutorials/deep-learning-tutorial/perceptron.

[5] Chandra, R. Problem Decomposition and Adaptation in Cooperative
Neuro-evolution. Dissertation.

[6] Cotoia, A. Axon Terminal - The Definitive Guide | Biology Dictionary. Biology
Dictionary. May 16 2020. Available at:
https://biologydictionary.net/axon-terminal/.

[7] Flasinski, M. Introduction to Artificial Intelligence. 1st ed. Cham: Springer Nature,
2016. ISBN 3319400223.

[8] Goldberg, Y. Neural network methods for natural language processing. San Rafael:
Morgan Claypool Publishers, 2017. Synthesis lectures on human language
technologies. ISBN 978-1-62705-298-6.

[9] Horev, R. BERT Explained: State of the art language model for NLP. Towards
Data Science. 2018. Available at: https://towardsdatascience.com/bert-explained-
state-of-the-art-language-model-for-nlp-f8b21a9b6270.

[10] Hu, E. J., Shen, Y., Wallis, P., Allen Zhu, Z., Li, Y. et al. LoRA: Low-Rank
Adaptation of Large Language Models. ArXiv.org. Ithaca: Cornell University
Library, arXiv.org. 2021. ISSN 2331-8422.

[11] IBM Data and AI Team. Understanding the different types of artificial intelligence
[https://www.ibm.com/blog/understanding-the-different-types-of-
artificial-intelligence/]. 2023. Accessed: October 16, 2023.

52

https://www.zakonyprolidi.cz/cs/2012-98
https://www.simplilearn.com/tutorials/deep-learning-tutorial/perceptron
https://biologydictionary.net/axon-terminal/
https://towardsdatascience.com/bert-explained-state-of-the-art-language-model-for-nlp-f8b21a9b6270
https://towardsdatascience.com/bert-explained-state-of-the-art-language-model-for-nlp-f8b21a9b6270
https://www.ibm.com/blog/understanding-the-different-types-of-artificial-intelligence/
https://www.ibm.com/blog/understanding-the-different-types-of-artificial-intelligence/

[12] Kalirane, M. Gradient Descent vs. Backpropagation: What’s the Difference?
January 2023. Available at: https://www.analyticsvidhya.com/blog/2023/01/
gradient-descent-vs-backpropagation-whats-the-difference/.

[13] Mutable.ai. Auto Wiki by Mutable.ai — High-Quality Generated Code
Documentation [https://mutable.ai]. May 2024. Available at: https://mutable.ai.

[14] Niederfahrenhorst, A., Hakhamaneshi, K. and Ahmad, R. Fine-Tuning LLMs:
LoRA or Full-Parameter? An In-Depth Analysis with LLAMA-2. Anyscale Blog.
September 2023. Online publication. Available at: https://www.anyscale.com/blog/
fine-tuning-llms-lora-or-full-parameter-an-in-depth-analysis-with-llama-2.

[15] Okewu, E., Adewole, P. and Sennaike, O. Experimental Comparison of
Stochastic Optimizers in Deep Learning. In: Computational Science and Its
Applications – ICCSA 2019. Springer International Publishing, 2019, vol. 11623,
p. 704–715. Lecture Notes in Computer Science. ISBN 9783030243074.

[16] Paaß, G. and Giesselbach, S. Foundation Models for Natural Language
Processing: Pre-trained Language Models Integrating Media. 1st ed. Springer Nature,
2023. Artificial Intelligence: Foundations, Theory, and Algorithms. ISBN 3031231899.

[17] Page, J., Liechty, Z., Huynh, M. and Udall, J. BamBam: Genome sequence
analysis tools for biologists. BMC research notes. november 2014, vol. 7, p. 829.
DOI: 10.1186/1756-0500-7-829.

[18] Patel, P. Guide to fine-tuning LLMs using PEFT and LoRa techniques [Webpage].
2023. Available at: https://assets-global.website-files.com/
640f56f76d313bbe39631bfd/64ac7af09311957ab6dbecc1_Peft%20finetuning.png.

[19] Phung, V. and Rhee, E. A deep learning approach for classification of cloud image
patches on small datasets. Journal of Information and Communication Convergence
Engineering. january 2018, vol. 16, p. 173–178. DOI: 10.6109/jicce.2018.16.3.173.

[20] Ris Ala, R. Fundamentals of Reinforcement Learning. Cham: [b.n.], 2023. ISBN
3031373448.

[21] Rout, C. and Aldous, C. How to write a research protocol. Southern African
Journal of Anaesthesia and Analgesia. october 2016, vol. 22, p. 101–107. DOI:
10.1080/22201181.2016.1216664.

[22] Russell, S. J. S. J. Artificial intelligence : a modern approach. Third edition;
Authorized adaptation from the United States edition 2010th ed. Boston ; London:
Pearson, 2016. Prentice Hall series in artificial intelligence. ISBN 978-1-292-15396-4.

[23] Sharma, S., Sharma, S. and Athaiya, A. Activation Functions in Neural
Networks. International Journal of Engineering Applied Sciences and Technology.
2020, vol. 4, no. 12, p. 310–316. ISSN 2455-2143. Published Online April 2020 in
IJEAST (http://www.ijeast.com).

[24] Steve, P. Ludské telo: Ilustrovaný sprievodca štruktúrou, funkciami a poruchami
[The Human Body]. Ikar, a. s., 2008. ISBN 978-80-551-1731-7.

53

https://www.analyticsvidhya.com/blog/2023/01/gradient-descent-vs-backpropagation-whats-the-difference/
https://www.analyticsvidhya.com/blog/2023/01/gradient-descent-vs-backpropagation-whats-the-difference/
https://mutable.ai
https://mutable.ai
https://www.anyscale.com/blog/fine-tuning-llms-lora-or-full-parameter-an-in-depth-analysis-with-llama-2
https://www.anyscale.com/blog/fine-tuning-llms-lora-or-full-parameter-an-in-depth-analysis-with-llama-2
https://assets-global.website-files.com/640f56f76d313bbe39631bfd/64ac7af09311957ab6dbecc1_Peft%20finetuning.png
https://assets-global.website-files.com/640f56f76d313bbe39631bfd/64ac7af09311957ab6dbecc1_Peft%20finetuning.png

[25] Sundararajan, N., Saratchandran, P. and Li, Y. Fully Tuned Radial Basis
Function Neural Networks for Flight Control. Boston, MA: Springer US, 2002. The
International Series on Asian Studies in Computer and Information Science. ISBN
1441949151.

[26] togethercomputer. Togethercomputer/Llama-2-7B-32K-Instruct · Hugging Face.
2024. Accessed: 2024-05-17. Available at:
https://huggingface.co/togethercomputer/Llama-2-7B-32K-Instruct.

[27] Touvron, H., Lavril, T., Izacard, G., Martinet, X., Lachaux, M.-A. et al.
LLaMA: Open and Efficient Foundation Language Models. 2023.

[28] Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A. et al. Llama 2:
Open Foundation and Fine-Tuned Chat Models. 2023.

[29] Yukang. Yukang/Llama-2-13b-longlora-16k-ft · Hugging Face. 2024. Accessed:
2024-05-17. Available at:
https://huggingface.co/Yukang/Llama-2-13b-longlora-16k-ft.

[30] Yukang. Yukang/LongAlpaca-13B · Hugging Face. 2024. Accessed: 2024-05-17.
Available at: https://huggingface.co/Yukang/LongAlpaca-13B.

54

https://huggingface.co/togethercomputer/Llama-2-7B-32K-Instruct
https://huggingface.co/Yukang/Llama-2-13b-longlora-16k-ft
https://huggingface.co/Yukang/LongAlpaca-13B

	 Artificial Intelligence
	Symbolic Artificial Intelligence
	Rule-based Expert System

	Machine Learning
	Decision Tree and Random Forest
	Naive Bayes Classifier
	K-Means Clustering
	Q-Learning
	Artificial Neural Network

	Large Pre-trained Language Models
	Tokens
	Vocabulary
	Tokenization
	Token embeddings
	Special tokens

	Large Pre-trained Language Model`s Architectures
	Attention mechanism
	BERT
	GPT
	LLaMA

	Learning
	Evaluation techniques

	Assistant for Creating Medical Reports
	Dataset
	Entities
	Dismissal reports
	Data for Supervised fine-tuning

	Assistant API Gateway
	API
	Ollama

	Implementation and testing
	Data preparation
	1st version of dataset
	2nd version of dataset
	3rd version of dataset

	Suitable model
	Model`s variants
	Prompt

	Learning
	Inference and API communication
	Inference
	API communication

	Bibliography

