
BRNO UNIVERSITY OF TECHNOLOGY
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

FACULTY OF INFORMATION TECHNOLOGY
FAKULTA INFORMAČNÍCH TECHNOLOGIÍ

DEPARTMENT OF INTELLIGENT SYSTEMS
ÚSTAV INTELIGENTNÍCH SYSTÉMŮ

IMPROVING THE GRAALPY INTERPRETER
ZLEPŠOVÁNÍ INTERPRETU GRAALPY

BACHELOR’S THESIS
BAKALÁŘSKÁ PRÁCE

AUTHOR ADAM RUDOLF HRBÁČ
AUTOR PRÁCE

SUPERVISOR Ing. DAVID KOZÁK
VEDOUCÍ PRÁCE

BRNO 2023

Institut: Department of Intelligent Systems (DITS)

Student: Hrbáč Adam

Programme: Information Technology

Category: Compiler Construction

Academic year: 2023/24

Assignment:

1. Familiarize yourself with the GraalVM platform, the Truffle language implementation framework, and
specifically GraalPy, a Python interpreter developed using Truffle.

2.
Gain an understanding of GraalPy and its compatibility with CPython, which serves as the reference
implementation of Python.

3.
Propose enhancements to the GraalPy interpreter, with a focus on improving the compatibility and
stability of the debugger, as well as advancing asynchronous programming capabilities. Implement
the suggested changes accordingly.

4.
Evaluate the implemented modifications using a suitable set of benchmarks.

5. Describe and discuss the attained results, along with potential avenues for further improvement.

Literature:
• Thomas Würthinger, Christian Wimmer, Andreas Wöß, Lukas Stadler, Gilles Duboscq, Christian

Humer, Gregor Richards, Doug Simon, and Mario Wolczko. 2013. One VM to rule them all. In
Proceedings of the 2013 ACM international symposium on New ideas, new paradigms, and
reflections on programming & software (Onward! 2013). Association for Computing Machinery, New
York, NY, USA, 187–204. https://doi.org/10.1145/2509578.2509581

• Thomas Würthinger, Andreas Wöß, Lukas Stadler, Gilles Duboscq, Doug Simon, and Christian
Wimmer. 2012. Self-optimizing AST interpreters. In Proceedings of the 8th symposium on Dynamic
languages (DLS '12). Association for Computing Machinery, New York, NY, USA, 73–82.
https://doi.org/10.1145/2384577.2384587

• Thomas Würthinger, Christian Wimmer, Christian Humer, Andreas Wöß, Lukas Stadler, Chris
Seaton, Gilles Duboscq, Doug Simon, and Matthias Grimmer. 2017. Practical partial evaluation for
high-performance dynamic language runtimes. In Proceedings of the 38th ACM SIGPLAN
Conference on Programming Language Design and Implementation (PLDI 2017). Association for
Computing Machinery, New York, NY, USA, 662–676. https://doi.org/10.1145/3062341.3062381

Requirements for the semestral defence:
The first two points of the assignment and at least some initial work on the third point.

Detailed formal requirements can be found at https://www.fit.vut.cz/study/theses/

Supervisor: Kozák David, Ing.

Consultant: Vojnar Tomáš, prof. Ing., Ph.D.

Head of Department: Hanáček Petr, doc. Dr. Ing.

Beginning of work: 1.11.2023

Submission deadline: 9.5.2024

Approval date: 6.11.2023

Bachelor's Thesis Assignment
154280

Improving the GraalPy interpreterTitle:

Faculty of Information Technology, Brno University of Technology / Božetěchova 1/2 / 612 66 / Brno

Abstract
GraalPy is a Python implementation for the Java Virtual Machine, designed for easy em-
bedding into Java applications. Such embedding is primarily useful for adopting 3rd party
Python packages in existing Java codebases. GraalPy also often has greater performance
compared to CPython, the canonical implementation of Python. This work implements
two major features. First, the async API, one of the last major missing Python features
in GraalPy, used primarily for web development, allowing writing concurrent code with-
out parallelism, using so-called colored async, where each context switch point must be
explicitly annotated. It is composed of two major parts, a library providing an event loop,
asyncio in this work, as well as the syntactic components of Python, providing the way with
which to indicate context switches. The second feature is the tracing API, a CPython API
for implementing Python debuggers, used by integrated debuggers in IDEs, coverage tools,
etc. It works by analyzing the Python bytecode in order to determine whether a new line
is being executed, and if so, invokes a registered callback. This callback is also used when
returning a value, calling a function and raising an exception, allowing a debugger to set a
breakpoint for these events. Both features are part of the GraalPy releases and have had a
notable benefit to compatibility with 3rd party packages.

Abstrakt
GraalPy je implementace jazyka Python pro Java Virtual Machine (JVM), určená pro její
vkládání do Java aplikací. Do existujícího kódu Javy lze takto přidávat Python balíčky
třetích stran. GraalPy také, ve srovnání s CPython jako referenční implementací Pythonu,
často dosahuje vyššího výkonu. Tato práce realizuje dvě významné funkce Pythonu v
GraalPy. První, kterou je API pro asynchronní programování, jedna z posledních hlavních
funkcí jazyka Python co v GraalPy chyběla, a která se využívá hlavně pro programování
webových aplikací, kde umožňuje psaní souběžného kódu bez potřeby vláken použitím takz-
vaného barevného asynchronního programování, kde programátor musí explicitně anotovat
možné změny toku programu. Obsahuje dvě části, knihovnu pro smyčky událostí, v případé
této práce asyncio, a syntax pro anotaci změn toku. Druhou funkcí v této práci je trasovací
API, tedy API CPythonu pro implementaci ladících nástrojů, nástrojů pro pokrytí kódu
testy, apod. Funguje pomocí analýzy bajtkódu Pythonu při kterém se vyhodnocuje zda
je spouštěn nový řádek, a pokud ano, je pro něj zavoláno nakonfigurované zpětné volání.
Pokud běžící kód vrátí hodnotu, zavolá funkci nebo vyhodí výjimku, použije se znovu toto
zpětné volání, což umožní ladícímu nástroji nastavit pro takovouto událost body přerušení.
Obě tyto funkce jsou součástí vydané verze GraalPy a mají významný přínos pro kompat-
ibilitu s balíčky třetích stran.

Keywords
Python, async, debugger, GraalPy

Klíčová slova
Python, async, debugger, GraalPy

Reference
HRBÁČ, Adam Rudolf. Improving the GraalPy interpreter. Brno, 2023. Bachelor’s thesis.
Brno University of Technology, Faculty of Information Technology. Supervisor Ing. David
Kozák

Rozšířený abstrakt
GraalPy je implementace jazyka Python určená pro zjednodušení používání balíčků třetích
stran Pythonu v aplikacích Javy. Za tímto účelem běží přímo na Java Virtual Machine
(JVM), narozdíl od referenční implementace jazyka Python, CPython. Tímto se vyhne práci
s C API obou interpretrů a uživatel se tak vyhne sjednocování různých modelů objektů
obou interpretrů. Dále GrallPy často spouští programy rychleji než CPython díky využití
frameworku pro implementaci jazyků Truffle, který využívá překladače Graal, jenž generuje
nativní kód z JVM bajtkódu a je sám napsaný v jazyce Java.

Práce implementuje dvě významné funkce jazyka Python do GraalPy. První z nich
je takzvané asynchronní programování, používané primárně pro web servery. Narozdíl od
typických programů se souběžnými toky programu pomocí vláken, je při asynchronním
programování potřeba explicitně určit místa, kdy se tok programu může přesunout – tzv
barevný async. Tímto se dá snáze předejít souběhům a podobných chybám. Tato funkce
je postavená na dvou částečně nezávislých aspektech, a to specifické syntaxi a knihovně
poskytující smyčku událostí, v tomto případě asyncio.

Syntaxe umožňuje označit místa, kdy se má tok programu vrátit ke smyčce událostí
pomocí await, a poskytuje alternativy k for smyčkám a with blokům. Tyto alternativy
jsou postaveny na generátorech Pythonu, které byly implementovány v GraalPy před touto
prací. Pro podporu syntaktických prvků byl rozšířen bajtkód GraalPy o vhodné operace,
a implementován jejich překlad do bajtkódu. Dále byly generátory rozšířeny, aby uměly
pracovat i s novými variantami pro asynchronní programování. Poté byly implementovány
tzv. asynchronní generátory, které umožňují programátorům jednoduše zapsat iterátory
pro asynchronní smyčky.

Knihovna asyncio je jedna ze standardních knihoven jazyka Python a je předchůdcem
relevantní syntaxe pro asynchronní programování popsané výše. Dříve fungovala pomocí
generatórů, ovšem právě s přidáním nové syntaxe se stala ergonomičtější a primárním způ-
sobem asynchronního programování v jazyce Python. Pro tuto knihovnu byly části, které
jsou v implementaci CPython napsané v C, přepsány do Javy pro použití GraalPy. Dále
byla implementována datová struktura Hash-Array Mapped Trie (HAMT) pro stav "lokální"
k toku programu, která využívá techniky copy-on-write, čímž se z kopií datové struktury
stává operace s konstantní časovou a paměťovou složitostí.

Druhá funkce je API pro trasování programů. Umožňuje implementaci ladících nástrojů,
nástrojů na měřění pokrytí testů, apod. Narozdíl od asyncio se jedná o implementační
detail implementace CPython, který je ale důležitý z hlediska kompatibility. Funguje na
principu analýzy bajtkódu za běhu a volání callbacku pro každý nový řádek, volání funkce,
chybu nebo vrácení hodnoty z funkce. Tato analýza byla adaptována z interpretu CPython.
Dále trasovací API umožňuje nastavit řádek, který se má vyhodnotit jako další, což ovšem
může výrazně narušit vyhodnocování programu, a tedy je potřeba danou funkcionalitu
vhodně omezit. Za tímto účelem byl adaptován algoritmus z implementace CPython pro
bajtkód GraalPy, který zajišťuje, že tyto změny řádků mohou způsobit jen chyby na úrovni
Pythonu, ne na úrovni Javy, v případě CPythonu C.

Obě zmíněné funkce jsou součástí současných produkčních verzí GraalPy, async od verze
23.2.2, a tracing API od verze 24. Díky async implementaci je možné testovat kompatibilitu
s balíčky, které závisí na async funkcích Pythonu, což umožňuje identifikovat další chyby v
GraalPy. Některé balíčky fungují přímo, například Flask a httpx. Implementace trasování
znamená, že GraalPy aplikace je možné ladit pomocí standardních nástrojů pro Python,
například PDB ze standardní knihovny. Dále je možné měřit pokrytí testů pomocí nástroje
coverage.py. Obecně práce své cíle splnila a její výsledky jsou aktivně používány v praxi.

Improving the GraalPy interpreter

Declaration
Prohlašuji, že jsem tuto bakalářskou práci vypracoval samostatně pod vedením pana Ing.
Davida Kozáka. Další informace mi poskytl GraalPy tým. Uvedl jsem všechny literární
prameny, publikace a další zdroje, ze kterých jsem čerpal.

. .
Adam Rudolf Hrbáč

May 5, 2024

Acknowledgements
Rád bych zde poděkoval mému vedoucímu ing. Davidu Kozákovi za jeho pomoc a trpělivost
s touto prací. Dále bych rád poděkoval týmu GraalPy a obecně Oracle Labs za možnost
věnovat se této práci, a Mgr. Danielu Hrbáčovi za korekturu textu.

Contents

1 Introduction 3

2 Important Technologies 4
2.1 Efficient Interpreters . 4
2.2 Graal Compiler . 5
2.3 Truffle . 6
2.4 GraalPy . 6
2.5 Testing GraalPy . 7

3 Improving Support for Async in GraalPy 9
3.1 Background on Relevant Technologies . 10

3.1.1 Glossary . 10
3.1.2 Language-level Support . 11
3.1.3 Asyncio Internals . 14
3.1.4 State of Async in GraalPy . 15
3.1.5 Task-local State, the contextvars Module and Hash-Array Mapped

Tries . 16
3.2 The Implementation Process . 16

3.2.1 Implementing a Hash-Array Mapped Trie 16
3.2.2 Replicating the _asyncio Module 21
3.2.3 Iterable Coroutines . 21
3.2.4 Other Async Keywords . 21
3.2.5 Async Generators . 22

3.3 Conclusions . 22

4 Python Debugger API Support in GraalPy 23
4.1 Background on Relevant Technologies . 24

4.1.1 CPython Tracing API . 24
4.1.2 Relevant Aspects of GraalPy . 25

4.2 Tracing via Bytecode Execution . 25
4.3 Debugger Jumps . 28
4.4 Avoiding performance penalties . 31
4.5 Conclusions . 32

5 Overall Conclusion 33

Bibliography 34

1

List of Figures

2.1 Partially unrolling the interpreter loop with the knowledge of the bytecode
that will be run, allowing the optimizing compiler to manipulate a sequence
of instructions at once. Colors correspond to opcodes, circles correspond
to instructions as encoded in bytecode, numbers and arrows correspond to
execution order, and rectangles to implementations of instructions. Notice
how the switch branches of unrolled instructions remain in case control flow
returns to them later, for example when the unrolling happens to the body
of a loop. 8

3.1 Colored functions – note how await is needed for async calls. 12
3.2 Using an async context manager to manage an async resource. 13
3.3 Using an async for loop to iterate over an async iterator. 13
3.4 Coroutine receives control flow once the yielded future is done, as set up by

the Task it is wrapped in. 15

4.1 A diagram showing how each invocation of the trace function sets the local
trace function for the rest of the scope. The arrow labels show the event
passed to the trace function and their return value. 25

4.2 Propagation of exception events up the call stack. 27
4.3 A forward jump instruction to a line that is never executed. In grey, note the

implicit return of every python function which the jump is actually targeting.
Example adapted from [33] . 28

2

Chapter 1

Introduction

GraalPy [27], an implementation of the Python programming language utilising the lan-
guage implementation framework Truffle [47], is designed for embedding Python into Java
applications without having to go through the C APIs of the language runtimes. In or-
der to maximize the usability of GraalPy, it is desirable to support as much of Python
as possible. Unlike similar language implementations using Truffle, notably GraalJS [21]
and TruffleRuby [22], the most common Python implementation, CPython [29], leaks its
internals, both via the well-supported C API and the language itself [40], making it almost
useless to implement Python without matching CPython implementation details as well
if the Python ecosystem is desirable. Since a big reason for embedding Python into Java
applications is facilitating the use of Python packages, the ecosystem is indeed desirable.

There are two major features this work implements in GraalPy, the first of which is async
programming, which allows writing concurrent code without parallelism, instead having to
explicitly state where context switches may occur, making it easier to avoid data races and
race condition. This requires two separate components, the syntax, providing the means by
which to indicate where these context switches may happen, as well as async alternatives
to the for loop and the with statement. The second part is the library providing the event
loop in which this concurrency occurs. In this work, asyncio is ported from CPython,
being part of the standard library and the most used such library. Since only fairly small
parts of asyncio are written via the CPython C API, it was not necessary to reimplement
the entire library in Java, only a few key functions. For more details, see Chapter 3.

The second feature is the CPython tracing API, which is primarily used to implement
debuggers, and also backs the popular coverage.py [5] library, used to measure test cover-
age. While GraalPy has its own debugging API provided by Truffle, conventional editors
used for Python tend to have their integrated debuggers written with the CPython API in
mind, making the API desirable to support, despite being considered a CPython implemen-
tation detail. Although it is not reasonably possible to have both APIs behave in identical
ways, CPython itself changes the behaviour heavily between minor versions, meaning minor
differences are acceptable. For more details, see Chapter 4.

Both features are part of mainline GraalPy releases, asyncio since version 23.0.2, and
the tracing API since version 24.

3

Chapter 2

Important Technologies

2.1 Efficient Interpreters
The simplest way to implement an interpreter is by reading instructions and executing
the corresponding operations in a loop until the whole program is done executing. This
is typical of shell languages, esoteric languages, and most importantly so-called bytecode
interpreters, where simple operations are serialized into raw bytes, similar to the language
the CPU itself evaluates. For languages which primarily employ procedural programming,
it is common to compile their source code into bytecode, and then interpret the bytecode
with this interpreter, allowing for greater performance. The typical terminology used for
bytecode interpreters includes:

• Bytecode – The program itself, represented as an array or stream of bytes.

• Instruction – A single operation of the bytecode. Composed of an opcode and zero
or more arguments.

• Opcode – The kind of instruction. For example, an instruction would be load the 10th
local variable, while the opcode of this instruction would be just load local variable.

• Argument – The 10th in load the 10th local variable, used to avoid having to make
separate instructions for cases where it is useful to have one instruction per for a large
number of usually integers. Some instructions have no arguments, usually the no-op
instruction.

A more common way to interpret a programming language involves constructing an
abstract syntax tree (AST) using some parser of choice, then giving each node of this tree a
method, for example evaluate, which calls evaluate on the children of this node, combining
the results in a way that yields the result for the given node, for example left.evaluate()
+ right.evalute() for a node representing an addition. This is called AST walking, and
unlike the previous kind of interpreters, it can support a wider variety of syntaxes and
pre-runtime transformation of the source code, e.g. allowing using a symbol before its
declaration as long as the declaration is present. It is however usually quite lacking in
performance due to the prevalence of dynamic dispatch, though Truffle improves this, as
described later.

A conventionally better method, used by both CPython and GraalPy, as well as most
similar interpreters, involves compiling the source program into some high-level bytecode

4

for a bytecode interpreter as described previously. It is important to note that this com-
pilation usually happens at runtime, as needed (For example, CPython will compile each
module the first time it is imported.). This has the major advantage of allowing a signifi-
cant amount of static inference (both CPython and GraalPy will e.g. number local variables
rather than resolving them by name). The actual compilation target can also be something
other than bytecode as described prior, which is usually helpful for non-procedural lan-
guages, for example interaction nets [15] for functional programming languages, or even
just transforming the AST in some way, but the core idea remains the same: an interpreter
can be made faster by taking some compilation steps, even without generating native code.
While it is possible to optimise code at this level, it is usually not done to a great extent
since this compilation should be quite fast to minimise latency – how long it takes to go
from source code to the result of running the program, leaving fairly little time for complex
optimisation passes.

However, optimizing the code is still desirable, even in interpreters. For this purpose, a
technique called just-in-time (hereafter called JIT) compilation can be used, where runtime
profiling is employed to find the most performance-limiting paths of the program and using
a compiler separate from the bytecode compiler to compile (usually) the bytecode directly
into optimised native code. Some of the fastest interpreters, such as V8 of JavaScript [12],
LuaJit [18], as well the JVM, employ this technique. An interesting example here is Julia [7],
a dynamic language that compiles each function directly into optimized native code for
each combination of types it is called with, allowing for remarkably desirable performance
characteristics for certain use cases, notably scientific computation. This approach does,
however, lead to fairly high latency, since generating optimized native code is a slow and
complex operation, and losing the default option to execute in an interpreter hurts.

There is an in-progress project to employ JIT compilation in CPython [43], though at
the time of this work, the performance benefits are not present. There are other Python
implementations that do in fact employ this technique, though not in the same manner
as was previously described. One such example is Numba [16], a JIT compiler for Python
utilizing LLVM [17], which requires the programmer to explicitly state which functions
should be compiled. While Numba is capable of compiling all Python code, it is primarily
used in so-called nopython mode, where it forgoes compiling all valid Python code for the
sake of performance, instead compiling a statically-typed, object-free, subset, thus all but
eliminating the usual interpreter overhead. An interesting standout is PyPy, an implemen-
tation of Python written in RPython [2], a restricted subset of Python designed for more
efficient interpretation, using RPython to get behaviour akin to JIT compilation without
having to explicitly write a native compiler. GraalPy does also feature JIT compilation, as
is described in Section 2.4.

2.2 Graal Compiler
The Graal compiler is a native compiler for the JVM, that is, it produces optimised native
assembly from JVM bytecode. GraalVM is a JVM distribution which includes this compiler
as the JIT compiler, as well as a suite of other tools built upon it. Unlike previous such
compilers, Graal is written in Java, rather than C++, meaning it has a greater degree
of flexibility without extensive interop efforts. This flexibility is what allows frameworks
like Truffle (see section 2.3), as well as tools like Native Image [45], an ahead-of-time
compiler for JVM applications, to function. Several Truffle types are special-cased in the
Graal compiler, providing the framework with compiler intrinsics, allowing for features such

5

as value types [26] (that is, a composite type that is not an object, but rather a primitive),
something usually inexpressible under the JVM. Of course, the type is a not in fact a primitive
in the JVM bytecode, but once the Graal compiler ends up compiling it into native code, it
will be treated as if it were a primitive.

2.3 Truffle
Truffle is a language implementation framework designed for writing efficient interpreters,
built on the Graal compiler and the Java Virtual Machine. Using Truffle, it is possible
to achieve fairly impressive results, especially when peak performance is measured. For
example Sulong, a Truffle LLVM bitcode implementation is on average only 40% slower
compared to Clang, one of the state-of-the-art ahead-of-time C compilers, in C benchmarks
[39]. A big part of this performance is accomplished by using the aforementioned compiler
intrinsics provided to Truffle by the Graal compiler. It is possible to control the JIT
compilation using domain knowledge of the interpreter that a conventional JIT compiler
would not be aware of, giving the language developer further control of the performance of
their languages compared to using another interpreted language, without the inconvenience
of using a language without a traditional interpreter runtime and thus having to write one
for languages that desire such a runtime [46]. Truffle thus introduces two terms [47]:

A host VM as the name of the runtime Truffle itself runs on, some variant of the JVM,
notably the traditional OpenJDK distribution, where Truffle is delegated to a traditional
JIT interpreter, as the Graal compiler is not present in such a distribution at this time,
GraalVM, where the aforementioned compiler intrinsics can be used for further performance,
and SubstrateVM [23], the runtime used by the aforementioned Native Image ahead-of-time
compiler.

A guest VM is the runtime of the language implemented by Truffle, providing whatever
additional features are needed that the host runtime lacks. For example, in the case of
Python, the guest runtime implements thread-local state, codecs for parsing source code at
runtime, etc. The advantage over writing a whole new runtime as one would in a traditional
interpreter written in C is that certain features can simply be delegated to the host runtime
[47], for example garbage collection and dynamic dispatch.

At the core of Truffle is the Node class. A Node is a Truffle abstraction for creating
abstract syntax trees which can change their code depending on their usage, effectively
doing JIT compilation on the AST directly, allowing for better performance than is usual
for tree-walking interpreters, often matching bytecode interpreters [47].

This is accomplished by rewriting the tree, using several Truffle tools, of which the most
common is a so-called Specialization, where each Node has multiple correct implementa-
tions of its behaviour for various types, for example a + b for two int types, but a.add(b)
for LangObject types (where LangObject can also end up being some boxed integer type).
Truffle then tracks the types used in the Node, and picks the optimal Specialization for
each program point, adjusting as the program runs further.

2.4 GraalPy
GraalPy is an implementation of the Python programming language for the JVM using the
aforementioned Truffle language implementation framework. Unlike a traditional Truffle
tree-walking interpreter, GraalPy uses a bytecode interpreter instead, which allows greater

6

performance even with Truffle, while also making it easier to match CPython behavior in
many cases.

Efficient implementation of Python is difficult, since a significant part of the value of
Python is its library ecosystem, which relies heavily on C extensions. Faster interpreters,
notably PyPy as well as GraalPy, will slow down heavily when having to emulate the C
API, often being beaten by the CPython interpreter, despite its lack of runtime native
compilation. Additionally, Python is a dynamic language with no primitives, with mutable
types and a fully dynamic import system, meaning determining when the tree rewriting of
Truffle should happen is difficult.

As is typical, the core of the bytecode interpreter is a loop with a large switch, dispatch-
ing on the current opcode and choosing the proper logic to run for a given instruction. For
GraalPy, this is implemented in PBytecodeRootNode. This node then adopts a wide variety
of other nodes depending on the bytecode it is executing, allowing each opcode to have its
own specialization, even if they use the same node. For example, a program that calls +
twice would get a separate addition node twice, generated the first time either operator is
run. Truffle does support this sort of runtime ”AST“ generation, though it does require
each such operation to invalidate previous compilations. Since it is common for some code
paths to run exactly once, spending all this time invalidating compilations would be unpro-
ductive. Thus, so-called uncached nodes are used for the first run of a code path, that is,
singleton instances of the regular Truffle nodes – no Nodes are added to tree. They are also
not subject to any of Truffle’s tree rewriting for their children, and are always used in the
interpreter, rather than compiled. If a given code path runs multiple times, it is rewritten
to use the process described previously for additional performance.

Just having a plain bytecode interpreter is still quite slow, no matter how clever the Java
JIT compiler tries to be. However, writing an optimizing compiler from GraalPy bytecode
to native code would be all-but-impossible, since GraalPy is largely limited to running in
the Java Virtual machine. Thus, the compilation is done entirely by the Graal compiler,
which only knows how to compile Java code. On its own, this is more or less a strictly worse
version of having the bytecode interpreter written in a regular compiled language such as
C, due to those compilers having more time to compile the code on the account of doing so
ahead-of-time.

Instead, a technique called partial evaluation [9, 11] is used to help improve the compi-
lation. The PBytecodeRootNode holds a constant byte array representing the bytecode, as
well as the information required to evaluate the bytecode. This allows Truffle to partially
evaluate and unroll the core interpreter loop, allowing further compiler passes to optimise
entire sequences of instructions, rather than each one individually (see Figure 2.1). A similar
technique is employed in CPython, where each instruction predicts the following instruc-
tion, and runs it directly if it predicts right, without going through an entire interpreter
loop iteration.

2.5 Testing GraalPy
When testing programming languages, it is typical to write a large portion of the test suite
in the language being tested, for example [30, 38]. Notably, the CPython test suite is largely
written in Python, and since GraalPy is an implementation of Python, it is possible to reuse
the tests. This is fully intended by the CPython test suite and it does make an effort at
separating CPython implementation details from Python behaviour. For various reasons
(differing error messages, reliance on garbage collector events, feature not yet implemented,

7

Figure 2.1: Partially unrolling the interpreter loop with the knowledge of the bytecode
that will be run, allowing the optimizing compiler to manipulate a sequence of instructions
at once. Colors correspond to opcodes, circles correspond to instructions as encoded in
bytecode, numbers and arrows correspond to execution order, and rectangles to implemen-
tations of instructions. Notice how the switch branches of unrolled instructions remain in
case control flow returns to them later, for example when the unrolling happens to the body
of a loop.

etc.), not every single test passes, meaning some system for determining which tests are
supposed to be passing is needed.

Since the CPython test suite is structured into various modules, the solution is fairly
simple, storing a .txt file for each module with the passing tests of that module. These
tests then run for every pull request. This is a fairly slow process, making it necessary to
split the tests into several batches (15 as of 4/2024) which can then run in parallel, reducing
the time to around 3 hours per test run. This is the primary way in which the result of this
work is tested.

Unfortunately, as was mentioned before, the Python library ecosystem does not always
make the same effort to separate CPython implementation details from core Python fea-
tures, making just the CPython test suite inadequate, even if it is patched in places to
include tests CPython considers implementation details. Thus, it becomes necessary to
run the individual test suites for each library. These tests run weekly since they are slow,
producing reports on which packages regressed or improved [13].

Finally, there are certain features of GraalPy which are unique to GraalPy specifically,
notably anything related to Java interop, which require testing via more traditional Java
unit tests. This is also where GraalPy-specific implementation details are tested, such as
checking for memory leaks. This suite of tests also runs on every pull request, but is much
faster, making it more useful for quickly checking if a pull request has a chance at passing
the greater CPython test suite.

8

Chapter 3

Improving Support for Async in
GraalPy

In recent years, asynchronous programming has seen a rise in popularity within the Python
ecosystem, primarily for web-related tasks. The inclusion of asyncio into the standard
library has allowed the ecosystem to grow to the point async support is expected in just
about every relevant library. This has shifted the situation from async being a weird
gimmick for specialised use cases to being the state-of-the-art way to do web development
in Python. Since running web servers is a usecase of GraalPy, supporting these libraries is
valuable.

As GraalPy gets better at supporting the Python ecosystem, it gets more and more
common to run into popular libraries which do not work due to lacking async support.
The primary goal of this chapter is to eliminate this as a cause for incompatibility. Since
the current stubs can often hard crash or have other undesirable behaviours, running test
suites can get complicated, rather than the tests simply not passing, potentially hiding
other bugs in GraalPy. Following these contributions, async features tend to work with no
additional changes if the remainder of the package does. A current example is Jinja2, a
mostly synchronous templating library with a couple extra async features.

There are async libraries which could work on GraalPy without needing the explicit
async support of this work, as they predate the relevant Python features, have no native
dependencies, and are almost entirely pure Python. They, however, tend to lack ecosystem
support to the extent asyncio does, so they are insufficient for GraalPy. An interesting
standout is Gevent [8], as it can ”convert“ any library into its own kind of async using a
lot of monkey patching and rewriting the stdlib. It uses a few too many implementation
details to work correctly without additional effort, though supporting it would certainly be
a future goal of GraalPy.

9

3.1 Background on Relevant Technologies

3.1.1 Glossary

There are several terms relevant to this topic with differing meanings when talking about
Python in various contexts, use this section as a reference for their meaning in this work:

• Duck-typing – a notion of polymorphism where any object that can operate as
another object is considered to share a type with such an object, for example, a Cat
is any object that can meow, including a e.g. VoiceActor. The name comes from the
phrase ”If it looks like a duck, swims like a duck, and quacks like a duck, then it
probably is a duck.“

• ASGI – async server gateway interface - an API to allow separating http-related
server tasks from web framework logic [3], that is, any ASGI server and any ASGI
web framework can be used together.

• Iterable – any object fitting the iterable protocol, that is, calling the __iter__
method returns an Iterator.

• Iterator – any object fitting the iterator protocol, that is, supports __next__ and
__iter__ returns itself [32]. All iterators are iterables.

• generator – An instance of the built-in generator type.

• generator-like – An object duck-typing compatible with a generator.

• generator function – A function returning a generator.

• coroutine – an instance of the built-in coroutine type.

• iterable coroutine – a generator special-cased to be allowed in await statements,
not awaitable.

• coroutine-like – an object duck typing compatible with a coroutine.

• coroutine function – a function returning a coroutine, coroutine methods also exist.

• awaitable – an object with an __await__ method returning a generator-like object,
for example a coroutine.

• async iterator – any object fitting the async iterator protocol, that is, supporting
the coroutine methods __anext__ and __aiter__.

• Future – a representation of an ongoing async computation to be done later.

• Task – a Future subclass representing an executing coroutine-like object.

• async generator – an instance of the builtin async generator, supports two key meth-
ods, asend and athrow, and is an async iterator, where __anext__ is equivalent
asend(None).

10

3.1.2 Language-level Support

It is important to make the distinction between asyncio – the library providing event loops
as an abstraction around IO multiplexing, and the Python features it uses for the high-
level API. asyncio can be used without async/await (and in fact, predates them), and
the language features can be used without asyncio, as many alternative libraries do, for
example Trio [44].

The very basic abstraction used here is the iterator pattern. In Python, as with most
languages, iteration has language-level support [32], such as for-each loops. For an object
to be an iterator in Python, two methods must be present:__iter__ and __next__ – where
__iter__ must always return self, and __next__ either returns the next value of the it-
erator, or raises StopIteration if the iterator has been exhausted. It is allowed to call
__next__ even on an exhausted iterator, which should raise StopIteration again.

Writing iterators by hand is annoying and error-prone, however. Therefore, generator
functions can be used. Their Python type is still function, but they have a special bit
set in the function flags – a bitset of various attributes a function can have. A generator
function is created by including the yield or yield from keyword in its body, even if it is in
an unreachable position, such as after a return – this allows for creating empty generators.
When a generator function is called, it creates a generator object, but does not actually
execute any of its body, that will only happen when the generator is iterated over.

A generator is an iterator, but it has features beyond the basic protocol. It is its
own type, and can only be created by generator functions (or generator comprehensions,
but those are not relevant for this topic, since they cannot contain yield from). When
another element is requested via __next__, the generator executes up to the next yield,
resuming from where it left off, then pauses, producing the value that was the argument
to the yield. However, generators have two additional methods, send and throw, where
__next__ is equivalent to send(None). Since yield is an expression, the send argument
determines the result of the yield that produced the previous value. Consider the following
generator:
def foo():

bar = yield 1
baz = yield 2
return bar + baz

The first value that is sent to any generator must be None. foo has yet to yield
anything, and thus there is no expression which would result in the send argument. This
send would return 1, pausing the generator, and bar is yet to be assigned. The next send
may have a non-None argument, and that argument will be assigned to bar, say 12 in this
example. foo will continue evaluating until the next yield, and its operand becomes the
return value for send – in this case 2. Once again, baz is yet to be assigned and foo is no
longer evaluating.

Finally, the next send call, say with the argument 13, will assign that argument to
baz. But now, there is no further yield to evaluate to. Thus, the send call will raise
StopIteration, with one argument – the return value of the generator, in this case
12+13=25.

More interesting is throw, which will take the yield the generator is paused at, and
raise an exception at that location. The crucial feature here is that any exception handling
around the yield will trigger for this exception. This is used to report errors back to the
coroutine, as will be described later.

11

Figure 3.1: Colored functions – note how await is needed for async calls.

The final piece of the puzzle is the yield from keyword. Intuitively, the keyword
delegates to another iterator, obtained from the passed iterable. Any throw calls will
propagate up if not handled in the delegated-to generator. And since yield from is an
expression, the return value of the delegated-to generator can be obtained the result of
this expression. This allows composing generators and is the state in which asyncio was
originally designed.

While these features are sufficient for a lot of use cases, there are several issues. Notably,
to quote Python Enhancement Proposal (PEP) 492 [42]:

• It is easy to confuse coroutines1 with regular generators, since they share the same
syntax; this is especially true for new developers.

• Whether or not a function is a coroutine is determined by a presence of yield or
yield from statements in its body, which can lead to unobvious errors when such
statements appear in or disappear from function body during refactoring.

• Support for asynchronous calls is limited to expressions where yield is allowed syntac-
tically, limiting the usefulness of syntactic features, such as with and for statements.

In order to resolve these issues, a fairly elaborate syntactic extension was introduced via
the aforementioned PEP 492. These require fairly minor changes to libraries built atop
the previous abstractions, and are explicitly designed to allow freely mixing old-style and
new-style code [41]. As is typical of Python, minor changes to old code are required (adding
@types.coroutine to every generator that should be used as a coroutine)

The basis for the new abstractions are coroutine functions, created via async def.
These are then allowed to use the remainder of async-specific language features, which are
listed further. Calling a coroutine function is fairly similar to calling a generator function
in that none of the function code is run until the returned coroutine is evaluated. This
evaluation is what the async library of choice is responsible for. This situation where one
needs to be inside a coroutine to call coroutines is what leads to so-called colored async –
there is the async world and the normal world, and the normal world cannot touch the async
world, as shown in Figure 3.1 (except for a single entrypoint). While this approach has
disadvantages, it does make concurrency easier, since unlike with colorless async (e.g. OS

1In this quote, coroutine refers to a generator used for async programming, not yet the Python feature.

12

Figure 3.2: Using an async context manager to manage an async resource.

threads), it is very predictable where a context switch happens – wherever there is an await
or some other async keyword. A perhaps less obvious consequence is that doing anything
that does not properly yield back to the event loop will block every single coroutine until
it finishes. asyncio has a diagnostic to report such a situation at runtime.

A coroutine is similar to a generator, however, unlike a generator, it is not an iterator,
since it doesn’t really make sense to iterate over it. However, it is possible to create so-
called iterable coroutines from generators via the aforementioned @types.coroutine. An
iterable coroutine is a generator with a special flag set to make it possible to use it in await
expressions despite not supporting __await__. A coroutine does however still support
send and throw, with just about the same semantics. An important difference is that
while requesting the next element from an exhausted generator repeatedly simply raises
StopIteration (however, only the first will have the return value, the rest will just have
None), a coroutine will raise a RuntimeError – this is to avoid accidental coroutine reuse.

The semantics of await are very similar to yield from, since it is meant to be a one-
to-one replacement for yield from in these new coroutines, with some notable exceptions:

• Instead of taking iterables, it takes awaitables (and iterable coroutines) and uses
__await__.

• It can only occur inside async functions.

• It sets the origin if the awaited object is a coroutine, allowing for easier debugging.

With async being a first-class citizen in the language, it allows adding new syntax to
simplify common patterns in async code – notably async for and async iteraterables/it-
erators, as well as async with.

Figure 3.3: Using an async for loop to iterate over an async iterator.

13

Async context managers, used via the async with keywords, await the __aenter__
coroutine method, passing its result to its optional binding, then runs its body, finally
awaiting __aexit__ with information on the exception that occured in its body if one did,
making it an error handling facility, similar to a regular context manager. async with is
quite crucial, since an object initializer can’t be async – making async context managers
the only way to sanely initialize async resources, such as database connections (and close
them later, of course) – see Figure 3.2. This often has the consequence of creating deeply
nested code if several such async resources needs to be setup, but it is adequate enough for
most use cases.

Async iteration is similar to regular iteration, __aiter__ is a function (not a coroutine
function, though it used to be one in older Python versions) that returns an async iterator,
and __anext__, a coroutine functions which can be awaited to get the next element of async
iterable, or raises StopAsyncIteration if there are no more elements. It is impossible to
reuse StopIteration since that is used to signal end of iteration in async internals. Thus,
the iterator pattern has language support even in async usecases (see Figure 3.3).

await and async for are also allowed in comprehensions [28], for example [await
foo(i) async for i in bar] and will work as one would expect – async for iterating
over the iterable and producing one item at a time, await awaiting its operand. As one
would expect, they are only allowed in async functions (exempting async generator com-
prehensions, as described later).

The same issue as before exists, however. Writing an async iterator by hand is annoying
and error-prone. And so, coming back full circle , async generators are a way to conveniently
define async iterators, made by including the yield keyword in the body of an async def
function, or via an async generator comprehension. Async generators have the coroutine
methods asend and athrow on top of being an async iterable – they work as one would
expect, though the internals of how they accomplish this are non-trivial [35].

3.1.3 Asyncio Internals

At the core of asyncio stands an event loop. This event loop notably tracks the following:

• Callbacks to run in the next iteration.

• The time at which other callbacks should run.

• File descriptors to watch for reading or writing, and callbacks to run once they become
readable/writable.

An event loop works in iterations. Starting by computing the arguments to a selector, an
operating system primitive for waiting for multiple events at once (usually one of several
sockets becoming readable) – for example epoll [1] on Linux. The timeout is computed as
the time to the earliest callback. Any new callbacks added as a consequence of a callback
are only run on the next iteration, even if it means running a selector with 0 timeout –
which can still result in some callbacks being added if the selector found a readable/writable
file descriptor.

This alone would be quite unwieldy, so the Future class can be used to represent a
result that will eventually be set by an event loop callback. A Future has a reference to
the event loop it belongs to, and will schedule callbacks that should run when it is done. It
can either end up with a result, or with an exception.

14

Figure 3.4: Coroutine receives control flow once the yielded future is done, as set up by the
Task it is wrapped in.

The way this whole set of abstractions connects to coroutines is via the Task class.
The coroutine should yield Futures (which can also be further Tasks), and it will receive
control flow once that future is done, meaning that it also needs to setup the event loop
to complete the yielded future. The Task is responsible for taking these future yields and
setting up the event loop to either send(None) if the future was successful, or throw the
exception if it failed, thus creating the flow shown in Figure 3.4.

For example, asyncio.sleep(1), a coroutine that simply waits one second and returns
None, creates a Future, sets up a callback in the event loop to finish that Future in one
second, then yields the future. A Task running that coroutine then adds a callback to that
future that will then call a method of this Task that will eventually call send(None) on
the coroutine. After one second, the callback that finishes the Future runs, thus triggering
the done callback of the Future, which then calls the Task, which finally runs the sleep
coroutine up to the next yield, or, in this case, the return of None.

3.1.4 State of Async in GraalPy

Prior to this work, generators and yield from worked correctly, so despite the different
internals, the implementation is largely a task of replicating the CPython steps that added
the new async features. This was nevertheless met with some interesting issues, as is
described in Section 3.2.

A generator in GraalPy is effectively an array of Truffle CallTargets, which one can
think of as lower-level ”functions“. Every yield gets its own CallTarget, and thus the
correct place to continue is simply the corresponding CallTarget. This is completely
different from CPython’s solution where frame objects are kept around and have a state
machine attached to track which should execute, but it does result in the same language
feature. yield from is then implemented as per PEP380 [10] , except entirely in GraalPy
bytecode – there are specialised bytecodes SEND and THROW for this purpose (not to be
confused with RAISE, which simply raises an exception).

Unfortunately, the function flags described earlier were not properly implemented in
GraalPy, meaning quite a bit of runtime information that is critical for asyncio and the
syntactic elements to function correctly was not present. Complicating matters further,
unlike CPython, the flags are not the ”source of truth“ for these attributes, instead being
computed at runtime when requested to allow certain libraries to use them to some extent.

15

3.1.5 Task-local State, the contextvars Module and Hash-Array Mapped
Tries

It is often useful to have variables that are local to each unit of concurrency, that is Task,
but which are still global in scope, similar to thread-local variables when dealing with OS
threads. The standard Python contextvars module is ideal for this usecase, as it allows
setting a thread-local namespace called context to an instance of type Context for a given
function call, and any accesses to so-called context variables within that call will refer to
that context. Thus, asyncio can ensure it tracks the context of each coroutine and set the
appropriate context.

It is important to note that when a new Task is spawned from a coroutine, it should
inherit its context, but any changes to this context cannot be allowed to propagate back.
Thus, the context must be copied. However, since changing a context variable is much less
common than starting a new task, it is desirable for copies to be constant-time and space.
Context variables are also accessed by their string name.

These requirements limit the choice of data structure quite heavily. Constant time
copies all but require copy-on-write, but copying the entire data structure on each write
is also undesirable. Since the variables are string-keyed, and most contexts only have few
variables, the data structure of choice will be a hash map of sorts, and to minimize the
amount of copies per write, the data structure should have a tree-like structure. Thus, the
Hash-Array Mapped Trie [4] (hereafter called HAMT) is used in CPython, and in GraalPy
following this work as well. Trees are convenient for copy-on-write since each write only
needs to copy the parent nodes of the modified leaf, that is, a 𝑂(𝑙𝑜𝑔𝑛) amount of memory,
given a balanced tree. Of course, maintaining that balance can often be problematic.
In a HAMT, the hash function is fully responsible for this, and having a poor one will
significantly hinder performance – it must distribute items largely evenly across the whole
hash space. Of course, alternative copy-on-write associate array data structures do exist,
notably the various kinds of search trees, for example the standard Haskell Data.Map library.
However, a HAMT leads to shallower trees, thus allowing for lower overhead in smaller trees,
often fitting them in one or two nodes.

There are certain adaptations needed to use a HAMT in this work, as described in Sec-
tion 3.2.1.

3.2 The Implementation Process

3.2.1 Implementing a Hash-Array Mapped Trie

HAMTs are fairly well explored, and are remarkably popular as the primary associative array
type in functional programming languages (notably Clojure) for their ability to efficiently
operate as an immutable data structure. The basic idea is setting up a tree, and using some
number of bits from the hash of the key to describe a step on the path through this tree. For
GraalPy, the perfect number of bits turns out to be 5, same as CPython and the original
paper [4], yielding at most a 6 deep tree using 30 bits of the hash, that is, the first 5 bits are
used for the root node, the next 5 for the appropriate child, etc. A naive implementation
would simply store 32 pointers per node, however, the memory inefficiencies there would
be quite glaring. Instead, 4 node types are used, as well as null.

Leaf nodes store a key-value pair and have no children.

16

Array nodes are the naive option mentioned before, always having 32 children, some of
which are potentially ⊥. When a node has over 16 children, this node is used, and indexed
by the corresponding 5 bits for its depth.

The magic happens with the so-call bitmap nodes, which store all children in a smaller,
contiguous, array. The issue here is of course figuring out how to determine at which index
is a given child. To do this, we use a 32-bit bitmap, where each set bit corresponds to a
child at that ”index“ – that is, the 5bit slice of the hash. Then, to compute the index in the
array from the hash slice, a mask is used to pick all bits before the corresponding bit, and
then the popcount operation is done (counting the number of ones in an integer). Thus,
the very first set bit will yield 0, the first item in the array, and the later set bits will yield
further items. This node is used for all nodes which have fewer than 16 children.

Additionally, since unlike the original paper, the GraalPy hash is only 32bits long, and
cannot be extended further to distinguish any two unequal keys, a way to handle collisions
is required. Colliding Leaf nodes are simply stored in a flat array, in a so-called Collision
node.

Accessing a specific context variable in a HAMT is done via the algorithm in Function 1.
The key operation for such access is the calculation ℎ𝑎𝑠ℎ(𝑘) ≫ 5 · 𝑑 & 0x1F, which takes
the 5-bit slice of the hash appropriate for the current tree depth. The logic then depends
on the type of the HAMT node – note that a subtree of a HAMT is not a HAMT, due to
starting the hash at a different depth, which is why depth is tracked across recursive calls.

Given a ⊥ node, the HAMT node is empty and, meaning ⊥ is returned, as on line 1.
Given a Leaf node, the HAMT node has one value, if the keys line up, the value was

found and is returned (line 2), otherwise return ⊥ (line 3).
Given an Array node, The appropriate child index is computed and Lookup is recursively

called on the child (line 4). If the child is ⊥, the recursive call with produce ⊥ as well.
The interesting case is the Bitmap node. The index is computed as before, but now,

accessing the item at that index first requires checking whether that index is present – there
is no array with a ⊥ in this case (line 5). If it is, all bits after the bit at that index, and
that bit itself, are masked off, then running popcount is run on that result, yielding the
index of the child (line 6).

A Collision node is largely a generalization of the Leaf node. If any leaf of the Collision
Node has the looked-up key, the corresponding value is returned (line 7), otherwise, ⊥ is
returned (line 8).

17

Within the two algorithms in this chapter, the following notation is used

• ⊥ – the empty node

• ℎ𝑎𝑠ℎ(𝑘) – the 30bit hash of the key 𝑘,

• 𝑎≫ 𝑏 – 𝑎 logically (leftmost bits are 0-padded) bitwise shifted right by 𝑏 places,

• 𝑎≪ 𝑏 – 𝑎 bitwise shifted left by 𝑏 places,

• 𝑎& 𝑏 – the bitwise and of 𝑎 and 𝑏,

• 𝑎 | 𝑏 – the bitwise or of 𝑎 and 𝑏.

Function 1 – Lookup(HAMT node 𝑁 , key 𝑘, depth 𝑑 = 0)
Output: The value associated with 𝑘, or ⊥
begin

if 𝑁 = ⊥ then
1 return ⊥

else if 𝑁 is a Leaf node then
if key of 𝑁 = 𝑘 then

2 return value of 𝑁
else

3 return ⊥

else if 𝑁 is an Array node then
𝑖←− (ℎ𝑎𝑠ℎ(𝑘)≫ 5 · 𝑑)&0x1F
𝑁 ′ ←− child 𝑖 of 𝑁

4 return 𝐿𝑜𝑜𝑘𝑢𝑝(𝑁 ′, 𝑘, 𝑑+ 1)

else if 𝑁 is a Bitmap node then
𝑜←− (ℎ𝑎𝑠ℎ(𝑘)≫ 5 · 𝑑)&0x1F
𝑏←− the bitmap of 𝑁
if 𝑏& (1≪ 𝑜) = 0 then

5 return ⊥
𝑖←− 𝑝𝑜𝑝𝑐𝑜𝑢𝑛𝑡(𝑏& ((1≪ 𝑜)− 1))
𝑁 ′ ←− child 𝑖 of 𝑁

6 return 𝐿𝑜𝑜𝑘𝑢𝑝(𝑁 ′, 𝑘, 𝑑+ 1) /* Bitmap nodes cannot have ⊥ */

else if 𝑁 is a Collision node then
for leaf 𝐿 in 𝑁 do

if key of 𝐿 = k then
7 return value of 𝐿

8 return ⊥

18

While accessing a key in a HAMT is a fairly straightforward, driven almost entirely
by the shape of each node, insertion is a bit more complicated, as seen in Function 2. As
was described previously, rather than to mutate the tree, a new HAMT is returned, which
may share certain nodes with the previous HAMT, implementing copy-on-write behaviour.
Nevertheless, one part remains the same, the action taken depends on the type of node.

Adding an item to the ⊥ node is straightforward, simply return the Leaf node that
should be added.

For adding to a Leaf node, there are four possible cases:

• The new node and the existing node share keys – the new node is returned (line 1).

• The new and existing nodes share hashes, but not keys – a new Collision node is
created for them (line 2).

• The two nodes have distinct hashes at a different depth – they are combined at a
lower depth, and stored at a 1-child bitmap node (line 3).

• The two nodes have distinct hashes at this depth – They are combined at into a
two-child bitmap ndoe. It is important that the node with the lower corresponding
hash slice is the first child of the Bitmap node (line 4).

Adding to an Array node is much more straightforward, the new Leaf is recursively
added to the child at the appropriate index, and the entire node is shallow-copied with that
new child in place. (line 5)

Adding to a bitmap node is probably the most complex case here. There are once again
three cases:

• If there is already a child at that index, as determined by the corresponding bit being
set in the bitmap, the process is the same as with Array nodes (line 6).

• If adding this new child would result in a bitmap node with over 16 items, it is fully
replaced with an Array node (line 7).

• Otherwise, insert a new node at the appropriate position, and add it to the bitmap
by setting the appropriate bit to 1 (line 8).

Adding to a Collision node is once again a generalisation of the 3 Leaf node cases.

19

Function 2 – With(HAMT node 𝑁 , Leaf node 𝐿, depth 𝑑 = 0)
Output: A new HAMT node that contains 𝐿
begin

𝑘 ←−key of 𝐿
𝑣 ←−value of 𝐿
𝑜←− (ℎ𝑎𝑠ℎ(𝑘𝑒𝑦𝑜𝑓𝐿)≫ 5 · 𝑑)&0x1F
if 𝑁 = ⊥ then

return 𝐿

else if 𝑁 is a Leaf node then
𝑘′ ←− key of 𝑁
if 𝑘 = 𝑘′ then

1 return 𝐿

else if ℎ𝑎𝑠ℎ(𝑘) = ℎ𝑎𝑠ℎ(𝑘′) then
2 return a Collision node with two children, 𝑁 and 𝐿

𝑏←− (1≪ 𝑜)|(1≪ 𝑜′) 𝑜′ ←− (ℎ𝑎𝑠ℎ(𝑘′)≫ 5 · 𝑑)&0x1F
else if 𝑜 = 𝑜′ then

𝑁 ′ ←−𝑊𝑖𝑡ℎ(𝑁,𝐿, 𝑑+ 1)
3 return a Bitmap node with one child 𝑁 ′ and bitmap 𝑏

𝐶0,1 ←−

{︃
𝐿,𝑁 𝑜 < 𝑜′

𝑁,𝐿 𝑜 > 𝑜′

4 return a Bitmap node with two children 𝐶0 and 𝐶1, and bitmap 𝑏

else if 𝑁 is an Array node then
𝑁 ′ ←−child 𝑜 of 𝑁
𝑁 ′′ ←−𝑊𝑖𝑡ℎ(𝑁 ′, 𝑘, 𝑣, 𝑑+ 1)

5 return shallow copy of 𝑁 , with child 𝑜 replaced with 𝑁 ′′

else if 𝑁 is a Bitmap node then
𝑏←− bitmap of 𝑁
𝑖←− 𝑝𝑜𝑝𝑐𝑜𝑢𝑛𝑡(𝑏&((1≪ 𝑜)− 1))
if (𝑏≫ 𝑜)&1 = 1 then

𝑁 ′ ←− child 𝑖 of 𝑁
𝑁 ′′ ←−𝑊𝑖𝑡ℎ(𝑁 ′, 𝑘, 𝑣, 𝑑+ 1)

6 return shallow copy of 𝑁 with child 𝑖 replaced with 𝑁 ′′

else if 𝑝𝑜𝑝𝑐𝑜𝑢𝑛𝑡(𝑏) ≥ 15 then
𝑗 ←− 𝑝𝑜𝑝𝑐𝑜𝑢𝑛𝑡(𝑏)− 1
for 𝑗′ ← 0 𝑡𝑜 31 do

if (𝑏≫ 𝑗′)&1 = 1 ∧ 𝑗 ≥ 0 then
𝐴𝑗′ ←− child 𝑗 of 𝑁
𝑗 ←− 𝑗 − 1

else
𝐴𝑗′ ←− ⊥

𝐴𝑜 ←− 𝐿
7 return new Array node with children 𝐴0...31

else
𝑏′ ←− 𝑏|(1≪ 𝑜)

8 return shallow copy of 𝑁 with a new child 𝐿 inserted at index 𝑖

else if 𝑁 is a Collision node then
left as an exercise to the reader

3.2.2 Replicating the _asyncio Module

The native _asyncio module is used by the python asyncio module to improve performance
and pass the test suite – there are some minor differences when internal APIs are monkey-
patched. It also contains native implementations of the Task and Future classes. These
are however not implemented in GraalPy since they only matter for performance, and
functionality was a priority. These are mostly straightforward, with the added importance
of not losing track of None and null. The implementation always stores null in Java code,
and transforms it to None explicitly. This allows Java tooling to keep better track of things,
as well as making it more explicit where None is and is not allowed.

3.2.3 Iterable Coroutines

While most of the implementation was simply about translating CPython code to GraalPy,
iterable coroutines have their own share of complexity. The first obvious problem was
that generators inherit flags (notably CO_ITERABLE_COROUTINE) from the CodeUnit rather
than the Python code object. A CodeUnit is a product of the compiler, and as such its
flags are not affected by @types.coroutine. The solution ends up passing the appropriate
information explicitly to the constructor, rather than trying to reconstruct it into flags.
This does mean flags are incorrect in some places, but it does work and will likely be fixed
fully in the future, avoiding the need for this workaround.

await then of course needs to be aware of this possibility, but that is fairly straightfor-
ward with Truffle specialisations.

A related note is compatibility in the opposite direction, that is, yield from must be
able to work with a coroutine if inside an iterable coroutine. This was solved simply –
yield from always works with coroutines. The bytecode interpreter does not have access
to the python object that holds its code and it would require a major refractor to give it
that awareness.

3.2.4 Other Async Keywords

While await can reuse code of yield from by replacing a single instruction to get the
iterator to delegate to, both async for and async with are exception handlers – async
with passes any exception in its body to __aexit__, and async for has to catch the
StopAsyncIteration exception to find where the async iterable ends. async with is rela-
tively straightforward, since it behaves roughly the same as with, just awaiting rather than
calling.

async for however is quite complex, since it requires keeping a significant amount of
state on the stack, as well as catching StopAsyncIteration in the exact right subsequence
of bytecode. This gets even more complex in async comprehensions, where the nesting
requires special care.

Another interesting note with async comprehensions is that generator comprehensions
are quite special. As was said before, await is only allowed in coroutine functions. This
is however not quite true. Both await and async for are allowed in generator compre-
hensions, and their presence turns such a comprehension into an asynchronous generator
comprehension, producing an async generator. Since they are expressions that produce an
async generator, they are allowed outside async functions, and their result is not implicitly
awaited unlike with a usual comprehension. Thus, for a comprehension to be compiled, one
must check if it contains any async syntax, then check if it allowed to contain this syntax,

21

and produce the appropriate code, implicitly awaiting the result for list, set, and dictionary
comprehensions, but not for generator comprehensions.

3.2.5 Async Generators

Async generators are one of the more involved pieces, since they have to differentiate be-
tween yield as in some awaitable being awaited just yielded something, and yield as
in a yield expression used in the body. In the case of GraalPy, this is done by gen-
erating a special bytecode instruction ASYNCGEN_WRAP, which wraps a value in a special
asyncgen_wrapper object. This object is unreachable from regular Python code, since
async generators do not have .send and .throw. The only way to interact with them
is via the two new awaitables, which must be implemented in Java for GraalPy and are
implemented in C for CPython, allowing them to send and throw despite them not being
exposed to Python code.

These awaitables are created via the .asend and .athrow methods, and are used to
send/throw something to a yield in the async generator body. The GraalPy implementa-
tion is largely a one-to-one port of the CPython implementation, though since the imple-
mentation used goto heavily in C, rewriting in Java ended up being fairly distinct.

3.3 Conclusions
A basic implementation of the standard Python async APIs was merged into GraalPy.
Certain features are missing, notably origin tracing, asyncgen finalizers, as well as warnings
on unawaited coroutines. Since almost all of these are either impossible, or debugging tools,
they are not a priority, though it would be nice to support them in the future.

Following this work, 121 out of 163 CPython tests for the async syntax pass as-is. The
non-passing tests are largely differences in error messages and similar minor things, though
some do indeed fail due to the missing features.

While a large amount of the asyncio CPython test suite does pass, the asyncio test
suite is remarkably extensive, which, combined with asyncio having features for threads
and processes, something GraalPy does not handle as effectively as CPython, means that
running all of them is all but impossible. However, a reasonable subset has been enabled
to avoid regressions.

Currently, the httpx asgi client and fastAPI asgi web framework work fully, but the lack
of an ASGI server makes it hard to put this support into practice. However, the limitation
on the support for ASGI server is no longer async, but rather a variety of other, more minor
issues, creating a clear path towards compatibility.

This work is part of the GraalPy 23.0.2 release, and has been used to improve compat-
ibility with the Python ecosystem.

22

Chapter 4

Python Debugger API Support in
GraalPy

A general goal of GraalPy is allowing Java programs to access the Python ecosystem,
as the ecosystem has certain libraries developed to a greater degree than a possible Java
alternative, e.g. numpy [20] for manipulating multi-dimensional arrays, and PyTorch [6]
for machine learning. Therefore, it is useful to maintain behaviour as close as possible to
CPython, as, although Python does make an effort at separating implementation details
from parts of the language, most of the ecosystem is only tested for CPython, and thus
will not work by default on non-CPython implementations. One of these implementation
details is tracing, a CPython API for implementing debuggers and similar tools. The goal
of this part of the work is supporting this API in GraalPy.

The primary goal is to create a baseline from which to improve support for libraries
such as coverage.py [5], a tool for measuring test coverage, and pdb [34], the standard
python debbuger, as well as the integrated debuggers in PyCharm [14] and VSCode [19].
This should allow significantly easier work with GraalPy in those editors, and saves work
on porting Truffle tooling to each of the editors, which will never be quite as good as the
integrated debuggers.

GraalPy does support a debugger, coverage, etc. even outside of CPython’s tracing,
via the relevant Truffle APIs [25]. However, these are hard to hook into from Python, and
behave differently enough that it is more or less impossible to port existing packages that
depend on tracing to the Truffle APIs. They do however have a number of advantages,
notably in performance and handling of Java-related exceptional cases, such as being able
to manipulate Java stack traces, thus developers targeting GraalPy are likely to want to use
them if possible. Nevertheless, the convenience of just being able to run CPython-targeted
tooling the user may already be familiar with makes this implementation worthwhile.

Due to the recent switch to the bytecode interpreter in GraalPy, it is possible to imple-
ment tracing in a very similar fashion as in CPython. However, line numbers are handled
differently between CPython and GraalPy, requiring a more complex computation on the
GraalPy, since only source offsets are stored. It is impossible to get identical behaviour,
since the bytecode is quite different in places, as will be described later. Nevertheless, most
programs using the tracing API should work, unless they rely on opcode events – that is,
the ability to trace execution at the CPython bytecode level, since GraalPy does not use
CPython bytecode.

23

4.1 Background on Relevant Technologies

4.1.1 CPython Tracing API

The tracing API uses so-called tracing functions to report the currently executing code to
the user. A tracing function takes 3 arguments:

1. frame – the frame object representing the frame entered by the event.

2. event – One of the strings ’call’, ’line’, ’return’, ’exception’, or ’opcode’,
describing the event that caused a tracing function call.

3. argument – An extra argument for certain events, None if unused.

The tracing entry point is the sys.settrace function [36]. It sets the so-called global
tracing function, stored in the thread-local state of the interpreter. This is in contrast
to local tracing functions, which shall be discussed later. The global tracing function is
called whenever a new scope is entered (that is, a new frame is created and a code object
is executed, generally due to a function being executed). Of course, one cannot trace the
inside of a tracing function, as that would recurse infinitely. The event used here is ’call’,
which is the only event possible for the global tracing function. The global tracing function
then should return a tracing function to be set as the local tracing function for the newly
created frame.

The local tracing function is stored on the frame object under the attribute f_trace.
It is updated every time it is called to the return value of the past tracing function (see
Figure 4.1) and is called for the other 4 events:

• ’line’ – Traced whenever a new line of code is executed. It can be disabled via
setting the frame attribute f_trace_lines to False. It is the most complex event to
handle sensibly, since the definition of what is an executing line is not quite exact. In
both CPython and GraalPy, it is mostly defined by the generated bytecode, which,
albeit not perfectly consistent, makes the implementation comprehensible and works
well enough for most tools.

• ’return’ – Traced whenever the scope we are currently in exits, be it due to a yield,
return, or an exception. The argument parameter is set to the return value, or None
if no return value is applicable (e.g. due to an exception). The return value is ignored,
since there is no further execution in the frame to trace.

• ’exception’ – Traced whenever an exception is raised in the current scope. It is
followed by the ’return’ event unless this trace function call returns None. The
argument holds the (exception, value, traceback) exception triple.

• ’opcode’ – Traced for every bytecode instruction executed by the CPython byte-
code interpreter. Not implemented for GraalPy, as the bytecode numbers are not
compatible, making it more or less impossible to actually use without special casing
for GraalPy. Disabled by default in CPython, can be enabled by setting the frame
attribute f_trace_opcodes to True.

24

Figure 4.1: A diagram showing how each invocation of the trace function sets the local
trace function for the rest of the scope. The arrow labels show the event passed to the trace
function and their return value.

4.1.2 Relevant Aspects of GraalPy

With the version 22.3, the implementation of GraalPy switched to a bytecode interpreter,
instead of the original AST interpreter, which Truffle was originally designed for. This has
allowed for greater control over performance, as well as making it easier to track control
flow, which allowed the implementation of tracing in this work.

The bytecode used by GraalPy is stack-based, that is, intermediate values are stored on
a stack, and most instructions either push or pop from the stack. This follows CPython and
is easier to generate and interpret than the often better-performing register-based bytecode.
It is important to ensure that the stack does not underflow, that is, no instruction pops
more from the stack than is on it. In order to avoid this entire category of bugs, the
GraalPy bytecode is generated so that it is possible to statically check the stack depth at
each instruction.

Another consideration when analysing the stack depths is exception handling. GraalPy
features zero-cost exceptions, that is, if no exception is raised, the bytecode interpreter
executes no exception handling related code. This is done via a so-called exception handler
table. Each entry in the table holds 4 values, the start of the exception handling area , the
end of the exception handling area, the start of the handler, all in byte indexes, and the
stack depth to unwind to at the handler. This table is generated so that the handlers never
overlap, and so that there are always enough stack items for the handler. The semantics
are fairly straightforward, if an exception happens and the current byte index is within a
handler, pop 0 or more stack items until the stack depth matches the depth in the handler,
then push the exception object and continue execution from the byte index of the handler.

4.2 Tracing via Bytecode Execution
At the high level, the logic for tracing is the same in CPython and in GraalPy. However, due
to extra optimisations and the lack of a line number table in GraalPy, certain additional
considerations must be made. A description of how each event is detected in GraalPy
follows.

Call Events

Whenever a PBytecodeRootNode is executed, a call event is traced, with one exception
– On Stack Replacement (OSR) loops. OSR is a technique to allow recompiling a loop

25

between its iterations. It is critical to be able to efficiently interpret code such as the
following.

a, b = 0, 1
for i in range(100000):

a, b = b, a + b

Otherwise, it would be impossible to specialise the inner sum if the function containing
it is only called once, so even if a more optimal version of the code were to be created, it
would not be used. However, the way OSR is implemented means that it will execute the
PBytecodeRootNode again, from the correct bytecode index, allowing further specialization.

Checking if the bytecode index is 0 at the start may seem like a solution, but generators
also execute the node at a non-zero index, continuing from after the last yield, and call events
should be emited in that case. Instead, the PBytecodeRootNode is informed whether it
was called from OSR or normally, and uses this to decide whether a call event should be
traced.

Additionally, this logic is responsible for setting the local trace function, stored on the
frame object. This has a severe performance penalty, since materialising a full frame object
is avoided in GraalPy to a maximal degree, but if tracing is enabled (that is, a global tracing
function is set to a non-None value), it needs to be created every time. This cost is not
avoidable while tracing, but can be avoided when not tracing – see Section 4.4.

Return Events

In CPython, goto is used to ensure a return event happens without having to explicitly
enumerate all possible exits from a scope [31]. This is not possible in GraalPy, instead,
each bytecode which can lead to a scope exit is handled separately, and exceptions are
handled in a catch block over the main interpreter loop. To be more specific, there are 2
possible scope exits outside of exceptions:

RETURN_VALUE is a bytecode instruction that is genereted whenever a function returns
a value, be it via the return statement or returning None implicitly. When this opcode
executes, a return event is traced on the frame’s local tracing function, and its argument is
set to the value returned.

YIELD_VALUE is treated in the same manner as RETURN_VALUE, though it is used for
generator yields rather than return values. An interesting edge case arises here – the return
value is ignored, despite the frame continuing to exist, as a new local trace function will be
generated when the generator resumes.

With exceptions, the situation is a little more complicated, since GraalPy can have Java
exceptions which are in no way represented or can be manipulated from the Python side,
e.g. due to native interop errors from Sulong. However, these exceptions generally create
an unconditional interpreter crash, so it is fine to not create a return event. It would of
course be ideal to allow a debugger to inspect the Python state during the crash, but this
is one of the scenarios where the Truffle-specific tooling is better equipped to help.

If it is a simple Python exception or an exception which it makes sense to wrap as a
Python exception (e.g. calling an interop JS function that errors out), and it is not handled
within the same scope – e.g. via try ...catch, a return event is called with None as the
argument. Its return value is also ignored.

26

Figure 4.2: Propagation of exception events up the call stack.

Exception Events

As was alluded to before, exceptions are not quite as straightforward as in CPython, since
the same Java exception can carry many kinds of failures, ranging from someone dividing by
zero in a Python program to an internal Truffle bug. Therefore, an exception event is only
traced if the exception can be represented in Python. It is important to note that unlike
e.g. with statement exits, it is impossible to handle an exception in a traced exception
event.

The exception event is traced even if the exception is handled within the same scope, and
once for every scope. That is, if a function 4-call-levels-deep raises an error, an exception
event will be traced at every call level (unless tracing is disabled for the frame, see Figure
4.2). If the exception is handled, the return value indicates the new local trace function to
be used. If it is not, the return value is ignored.

The argument is the (exception, value, traceback) tuple, where the exception is the type
of the exception, the value is the exception object itself, and the traceback object stores
the stack trace. This allows debuggers comprehensive access to the details of the exception,
making it simple for the user to figure out what is going on.

Line Events

At the most basic level, a line event should be traced whenever the previous bytecode
index has a different line number than the current index. However, this turns out to be
insufficient for jumps due to the way certain common control flow mechanisms are compiled.
Additionally, it can create certain odd edge cases around RESUME_YIELD. It is also interesting
to note that expressions spanning multiple lines do not get multiple line trace events, as the
compiler simply assigns them the same line number. Interestingly, the GraalPy logic ends
up fairly similar to the old CPython logic, before the new line number format, as described
in the notes for the old format [33].

To be more specific regarding jumps, a backward jump must always be traced, even if
it ends up on the same line. This is due to programs like while f(): del y[-1], where
a debugger wants to control the execution of the condition separately from the body, even
though they are on the same line. Additionally since, unlike CPython, GraalPy bytecode
generates no instructions for pass, instead of the single CPython bytecode NOOP, it is
impossible to trace lines with only pass in them. This is not all that much of an issue
outside of breaking a number of CPython tests, however. For the GraalPy tests, del x was
used, since it is only a single bytecode instruction (DELETE_NAME).

In contrast, a forward jump must only be traced if it is a jump to the first bytecode
instruction of a line. This is to ensure we do not create line events where execution is not

27

Figure 4.3: A forward jump instruction to a line that is never executed. In grey, note the
implicit return of every python function which the jump is actually targeting. Example
adapted from [33]

.

happening in certain edge cases, such as else branches on loops. Given the program in
Figure 4.3 with the argument True, the break generates a jump to after the else branch,
where LOAD_NONE and RETURN_VALUE are. They have their line number set to 6, however,
which could make it seem like the print(2) being executed. In other words, if other
instructions on the same line are generated before the jump target, it is likely the jump is
to block cleanup of sorts, rather than user-written code on that line.

In this same example, we can also see a need to rewrite line numbers of return events.
It can be confusing to see a return event on the last line of a function/block, rather than
on the last line that was executed – and thus traced via a line event. Therefore, the frame
object passed to the return event does not get its line number set by the line number
bytecode table, but instead by wherever the last line event was.

4.3 Debugger Jumps
During debugging, it is occasionally useful to arbitrarily move the execution to a specific
line. To allow this, the tracing API allows setting the line number of the frame object
inside a trace function. This can be used to e.g. forcibly exit a loop. There are of course
several issues with this concept – not every such jump (not to be confused with a jump
opcode in bytecode) can work. For example, jumping into the body of a for-each loop
should not work, since there is no iterable for further iterations of the loop to iterate over
(such jumps will be called unsound hereafter), however, jumping from one for-each loop to
another is fine, since there is an iterator on the stack already (such jumps will be called
sound hereafter).

In order to determine whether a jump is sound, it is necessary to analyze the bytecode,
determining what the types on the stack are for each instruction. Four types are considered:

• 𝑂𝑏𝑗 – Generic objects, produced by most instructions.

• 𝐼𝑡𝑒𝑟 – Iterators, produced by compiled for loops and comprehensions.

• 𝐶𝑡𝑥 – Context managers, produced by compiled with statements.

• 𝐸𝑥𝑐 – Exceptions, produced by exception handling.

A jump is sound if the destination stack is a prefix of the source stack, that is, it is possible to
pop items from the source until they are both equal. The analysis is done as per Algorithm
3, adapted from the CPython algorithm for the same task. The basic idea for the analysis
is to start with an empty stack of types for each instruction, then go over each instruction

28

29

Algorithm 1: Analysis of bytecode for the purpose of determining whether a
jump is allowed

Data: bytecode byte array 𝐵, set 𝐻 of exception handlers (𝑠, 𝑒, ℎ, 𝑙) catching
exception from indexes 𝑠 to 𝑒 and handling them at index ℎ at stack level 𝑙

Result: function relation 𝑅 of (𝑖, 𝑆) tuples, where stack 𝑆 corresponds to the
types 𝑂𝑏𝑗|𝐼𝑡𝑒𝑟|𝐶𝑡𝑥|𝐸𝑥𝑐 of the runtime stack before executing the
instruction at index 𝑖. × is used as a placeholder for ignored value.

begin
𝑄←− {0}
𝑅←− {(0,⊥)}
while 𝑄 ̸= ∅ do

𝑖←− 𝑝𝑜𝑝(𝑄)
1 𝑎𝑠𝑠𝑒𝑟𝑡 ∀𝑆′.𝑖𝑅𝑆′ ⇒ 𝑆 = 𝑆′

2 if (𝑖,×, ℎ, 𝑙) ∈ 𝐻 then
𝑎𝑠𝑠𝑒𝑟𝑡 𝑙 ≤ 𝑙𝑒𝑛𝑔𝑡ℎ(𝑆)
create 𝑆′ by removing items from 𝑆 until 𝑙𝑒𝑛𝑔𝑡ℎ(𝑆) = 𝑙
𝑆′ ←− (𝐸𝑥𝑐, 𝑆′)
𝑅←− {(ℎ, 𝑆′)} ∪𝑅
𝑄←− 𝑄 ∪ {ℎ}

3 if 𝑜𝑝(𝐵, 𝑖) = SWAP then
(𝑎, (𝑏, 𝑆))←− 𝑆
𝑅←− {(𝑛𝑒𝑥𝑡(𝐵, 𝑖), (𝑏, (𝑎, 𝑆)))} ∪𝑅
𝑄←− 𝑄 ∪ {𝑛𝑒𝑥𝑡(𝐵, 𝑖)}

4 else if 𝑜𝑝(𝐵, 𝑖) = GET_ITER then
𝑅←− {(𝑛𝑒𝑥𝑡(𝐵, 𝑖), (𝐼𝑡𝑒𝑟, 𝑆))} ∪𝑅
𝑄←− 𝑄 ∪ {𝑛𝑒𝑥𝑡(𝐵, 𝑖)}

else if . . . then
other operations with special handling

else if ℎ𝑎𝑠𝑁𝑒𝑥𝑡(𝐵, 𝑖) then
create 𝑆′ by removing 𝑛𝑅𝑒𝑚𝑜𝑣𝑒𝑑(𝐵, 𝑖) items from 𝑆
for × ← 1 to 𝑛𝐴𝑑𝑑𝑒𝑑(𝐵, 𝑖) do

𝑆′ ← (𝑂𝑏𝑗, 𝑆′)

5 𝑅←− {(𝑛𝑒𝑥𝑡(𝐵, 𝑖), 𝑆′)} ∪𝑅
𝑄←− 𝑄 ∪ {𝑛𝑒𝑥𝑡(𝐵, 𝑖)}
if ℎ𝑎𝑠𝐽𝑢𝑚𝑝(𝐵, 𝑖) then

create 𝑆′ by removing 𝑛𝑅𝑒𝑚𝑜𝑣𝑒𝑑𝑊𝑖𝑡ℎ𝐽𝑢𝑚𝑝(𝐵, 𝑖) items from 𝑆
for × ← 1 to 𝑛𝐴𝑑𝑑𝑒𝑑𝑊𝑖𝑡ℎ𝐽𝑢𝑚𝑝(𝐵, 𝑖) do

𝑆′ ← (𝑂𝑏𝑗, 𝑆′)

6 𝑅←− {(𝑛𝑒𝑥𝑡𝑊𝑖𝑡ℎ𝐽𝑢𝑚𝑝(𝐵, 𝑖), 𝑆′)} ∪𝑅
𝑄←− 𝑄 ∪ {𝑛𝑒𝑥𝑡𝑊𝑖𝑡ℎ𝐽𝑢𝑚𝑝(𝐵, 𝑖)}

return R

in the order they would be evaluated in, removing the appropriate amount of elements from
the stack and pushing the appropriate amount of generic object entries, using the resulting
stack for that instruction, as done in Line 5. To support this analysis, three functions are
defined:

• 𝑛𝑒𝑥𝑡(𝐵, 𝑖) provides the byte index of the instruction following the instruction starting
at 𝐵[𝑖]. For unconditional jumps, this is the jump destination. Conditional jumps
are explained later.

• 𝑛𝑅𝑒𝑚𝑜𝑣𝑒𝑑(𝐵, 𝑖) provides the non-negative number of stack items popped by the in-
struction.

• 𝑛𝐴𝑑𝑑𝑒𝑑(𝐵, 𝑖) provides the non-negative number of stack items pushed by the instruc-
tion.

It may seem that it should suffice to operate on the stack difference, rather than on the
number of added/removed items directly. However, since instructions can pop an item of
one type and push back a generic object, so not explicitly popping the item and pushing
back a generic object could lead to different outcomes depending on code path. This alone is
inadequate for sufficiently complete analysis, there are several groups of instructions which
must be handled in a special way.

The first group are instructions that do conditional jumps, such as jump if true. Here
the analysis is split into two, and continues from both the next instruction sequentially,
and from the jump destination. Usually, attempting such analysis would require placing
some limit, such as up to a fixed point, and even then, no such fixed point may exist
– the GraalPy bytecode is after all, Turing complete. Here is where the aforementioned
generating instructions such that the stack depth can be analyzed statically comes in –
each instruction only ever has one possible stack, that is, if it is reachable from multiple
locations, it must have the same stack from all code paths, as checked in Line 1. This allows
the analysis to finish in roughly linear time. To support the analysis of conditional jumps,
four more functions are defined:

• ℎ𝑎𝑠𝐽𝑢𝑚𝑝(𝐵, 𝑖) holds if the instruction at 𝐵[𝑖] is a conditional jump.

• 𝑛𝑒𝑥𝑡𝑊𝑖𝑡ℎ𝐽𝑢𝑚𝑝(𝐵, 𝑖) provides the jump destination of the conditional jump at 𝐵[𝑖].

• 𝑛𝑅𝑒𝑚𝑜𝑣𝑒𝑑𝑊𝑖𝑡ℎ𝐽𝑢𝑚𝑝(𝐵, 𝑖) same as 𝑛𝑅𝑒𝑚𝑜𝑣𝑒𝑑(𝐵, 𝑖), just in the case the conditional
jump does happen.

• 𝑛𝐴𝑑𝑑𝑒𝑑𝑊𝑖𝑡ℎ𝐽𝑢𝑚𝑝(𝐵, 𝑖) same as 𝑛𝐴𝑑𝑑𝑒𝑑(𝐵, 𝑖), just in the case the conditional jump
does happen.

The previous three functions (𝑛𝑒𝑥𝑡, 𝑛𝑅𝑒𝑚𝑜𝑣𝑒𝑑, 𝑛𝐴𝑑𝑑𝑒𝑑) provide their values if the condi-
tional jump does not happen. Fortunately, other than the next, hasJump and nextWith-
Jump, these operations were already present in GraalPy and used in the compiler, meaning
it was only needed to enumerate all conditional jumps, rather than the stack effect of all
instructions.

The second group is where having multiple types on the stack comes in. A jump between
an exception handler and a for-each loop is just as unsound as a jump into a for-each loop
from the outside. Thus, instructions that generate values used by such statements must be
special-cased to pop and push not only the correct number of values, but also the correct

30

types. There is no shortcut here, every relevant instruction must simply be listed, for
example GET_ITER on Line 4, providing the iterator when compiling a for loop.

The final group are stack manipulation instructions, for example swap. These are used
by the compiler in a wide variety of cases and must be handled in a special manner, since
they are more or less fundamental operations of stack-based bytecodes and there is not
enough of them to make attempts at generalization worthwhile. An example of this is on
Line 3. Notice how there is no need to handle the case where a swap is used with fewer than
2 values on the stack. This is once again because the GraalPy compiler will not generate
invalid bytecode. While it is possible to handwrite bytecode in CPython and GraalPy, it is
acceptable to crash in those cases. Handwriting invalid bytecode is in fact one of the very
few ways to trigger a segmentation fault in CPython without explicit C interop.

Another interesting aspect is handling bytecode exception handlers. As described pre-
viously, every bytecode array carries with it an exception handler table. The correct way
to deal with this table is to check if the currently analyzed bytecode starts an exception
catching area, and if so, treat it as a conditional jump to the corresponding handler, as
done in Line 2. Since the start of an exception catching defines the shallowest point of the
stack for the area, it is the correct place to determine the stack state in the handler. Trying
to handle all exception handlers at the start does not work, since not all exception handlers
are reachable. It may seem like it would be possible to handle them at once at the end of
the non-exception-related analysis, but since an exception handler could only be reachable
from another exception handler, it would require further care to ensure correct behaviour,
and avoid the complexity of looking up an exception handler repeatedly. This does bring
up one limitation of this style of analysis, however.

Jumping to an unreachable bit of code is unsound, since the analysis also doesn’t reach
these instructions, making it impossible to determine what the state the stack should be in
when executing that unreachable code. Even in the compiler itself, exception handlers in
unreachable code paths will not have an unwind depth set, thus making them impossible
to execute, even if such a jump were to be allowed.

Another problem that arises has to do with the performance in GraalPy. A key fac-
tor of the GraalPy interpreter performance is the aforementioned partial unrolling of the
interpreter loop. Of course, since the debugger can choose to jump at any time, non-
deterministically, that optimization is broken. The solution of choice is to pretend that no
jump can happen and discard the compiled node if it does, running the remainder in the
interpreter. This way, performance while simply debugging is unaffected by the option to
perform these non-deterministic jumps.

4.4 Avoiding performance penalties
As was already mentioned, creating a full frame object for every single frame is slow, and
avoided in GraalPy. However, if the global trace function is None, the operation can be
skipped. Unfortunately, even just checking whether the global trace function is set has
severe overhead, as it has to be done for every single bytecode interpreter loop iteration to
determine whether to run the (even more expensive) tracing logic. Any line of code could
end up invoking sys.settrace, and the current frame could have f_trace already set.

Fortunately, Truffle is well equipped to deal with these kinds of APIs. The tool of choice
here is Assumption [24]. The Graal compiler will treat the Assumption as being valid and
constant fold it as true, and Truffle will remember that a given piece of compiled code
was compiled with a given Assumption in mind. When an Assumption is invalidated,

31

Truffle will discard all compiled code depending on the Assumption, starting the compilation
process over again, this time constant folding it as false. This way, compiled code can
avoid the overhead of a check if it can be guaranteed to hold up to a certain point.

In the case of tracing, the invalidation criteria is fairly straightforward: the first call
to sys.settrace with a non-None argument invalidates the assumption. It may seem like
this would invalidate a large part of the already compiled code, but most of the actual
compilation-heavy work happens outside of the PBytecodeRootNode itself, inside one of its
many child nodes. Nevertheless, the performance while tracing is less than ideal, though
performance when not tracing is unaffected.

Unfortunately, since a static path to the Assumption must exist, the Assumption is
shared between all Python interpreters running on the same JVM (more specifically, all
Python interpreters using the same PythonLanguage instance, which is a singleton). This
means that any one of those interpreters starting tracing slows down all the other inter-
preters. However, the typical use case of multiple interpreters in a single JVM is running
multiple workers in parallel, avoiding the GIL, so it is not a severe issue.

4.5 Conclusions
An implementation of the CPython tracing API was implemented for GraalPy, requiring
changes to the core interpreter loop, taking advantage of the recent transition to a bytecode
interpreter. Rather than to strive for pedantic compatibility with the reference implementa-
tion, the effort was placed on keeping the implementation understandable and maintainable.
Moreover, no additional overhead is introduced by the inclusion of this API to programs
that do not use it, which is critical, since the vast majority of programs are not actively
being debugged during their usual operation.

Providing more concrete numbers, this work makes 230 CPython tracing tests pass [37],
of the total 308 (excluding 68 OpCode-related tests). Most of the failures happen due to
different exception handling bytecode in either implementation, as was described above, or
differences in error messages. PDB, the standard debugger for python, is made usable with
these changes, and has been used in GraalPy development and by GraalPy users.

A tracing API feature was added that allows debuggers and other tools to arbitrarily
move control flow to another line, a so-called debugger jump. It is important to ensure these
jumps do not break the interpreter, for which an algorithm was adapted from CPython,
and 12 instructions which require special handling were identified. Additionally, 13 jump
instructions now support accessing the jump destination without evaluating them.

This work has been included in the release 24.0 of GraalPy.
Further work in this area will focus on ensuring individual tools run on GraalPy, for

example coverage and the various integrated debuggers in editors. Additionally, the tracing
API could be expanded to the new monitoring API, which fixes several defects of the old
API.

32

Chapter 5

Overall Conclusion

In this work, two major features were implemented into GraalPy, both being part of a
release and already having had a notable impact on the usability and compatibility of
GraalPy. They are also the last major Python features that were previously missing in
GraalPy, meaning further work on compatibility will be more focused on individual bugs,
rather than implementing major features.

The first of these features was async programming, a way of writing concurrent code
that avoids certain pitfalls of true parallelism. This required changing the internals of
how generators work in GraalPy, implementing bytecode compilation for new syntax, and
porting some parts of the _asyncio module, originally written in C, into Java. As is,
the Python features and asyncio module work enough for 3rd party packages with async
features to either work, or reveal further defects in GraalPy that prevent them from working.
Some examples are FastAPI and httpx working fully as of 4/2024, but since 3rd party
packages are not tested for every change, the set of packages that are supported changes
fairly regularly.

The second of these features was the tracing API, the CPython API for writing de-
buggers, test coverage tools etc. This requires analysis of the bytecode during runtime to
determine when a line is executed, requiring adapting the CPython algorithm to GraalPy
bytecode. Additionally, in order to support the debugger being able to arbitrarily move
control flow, another algorithm for analysis of bytecode is needed, this time tracking the
types on the data stack. This algorithm was also adapted from CPython. This has allowed
most tools using this API to work in GraalPy as they should, notably coverage.py, the
primary tool for measuring test coverage, as of 4/2024.

Overall, this work has succeeded in its goals, and has allowed GraalPy to meaningfully
expand its support for the Python ecosystem, as well as find further areas of improvement
in GraalPy.

33

Bibliography

[1] Epoll - I/O event notification facility [website]. Available at:
https://man7.org/linux/man-pages/man7/epoll.7.html.

[2] Ancona, D., Ancona, M., Cuni, A. and Matsakis, N. D. RPython: a step
towards reconciling dynamically and statically typed OO languages. In: Proceedings
of the 2007 Symposium on Dynamic Languages. New York, NY, USA: Association for
Computing Machinery, 2007, p. 53–64. DLS ’07. DOI: 10.1145/1297081.1297091.
ISBN 9781595938688. Available at: https://doi.org/10.1145/1297081.1297091.

[3] ASGI team. ASGI documentation [sphinx readthedocs]. Accessed 2023-06-07.
Available at: https://asgi.readthedocs.io/en/latest/.

[4] Bagwell, P. Ideal Hash Trees. École Polytechnique Fédérale de Lausanne, 2000.

[5] Batchelder, N. Coverage.py [source code]. Accessed 2024-01-28. Available at:
https://github.com/nedbat/coveragepy.

[6] Batchelder, N. Coverage.py [homepage]. Accessed 2024-04-27. Available at:
https://pytorch.org/.

[7] Bezanson, J., Karpinski, S., Shah, V. B. and Edelman, A. Julia: A Fast
Dynamic Language for Technical Computing. CoRR. 2012, abs/1209.5145. Available
at: http://arxiv.org/abs/1209.5145.

[8] Bilenko, D. Gevent [PyPi package]. Accessed 2024-01-28. Available at:
https://pypi.org/project/gevent/.

[9] Partial Evaluation - Practice and Theory, DIKU 1998 International Summer School.
Berlin, Heidelberg: Springer-Verlag, 1998. ISBN 3540667105.

[10] Ewing, G. Syntax for Delegating to Subgenerators [rst document (english)]. Accessed
2023-06-07. Available at: https://peps.python.org/pep-0380/#formal-semantics.

[11] Futamura, Y. Partial Evaluation of Computation Process–An Approach to a
Compiler-Compiler. Higher-Order and Symbolic Computation. Dec 1999, vol. 12,
no. 4, p. 381–391. DOI: 10.1023/A:1010095604496. ISSN 1573-0557. Available at:
https://doi.org/10.1023/A:1010095604496.

[12] Google. V8 [website]. Accessed 2024-01-28. Available at: https://v8.dev/.

[13] GraalPy Team. GraalPy: Package Compatability [website]. Accessed 2024-04-27.
Available at: https://www.graalvm.org/python/compatibility/.

34

https://man7.org/linux/man-pages/man7/epoll.7.html
https://doi.org/10.1145/1297081.1297091
https://asgi.readthedocs.io/en/latest/
https://github.com/nedbat/coveragepy
https://pytorch.org/
http://arxiv.org/abs/1209.5145
https://pypi.org/project/gevent/
https://peps.python.org/pep-0380/#formal-semantics
https://doi.org/10.1023/A:1010095604496
https://v8.dev/
https://www.graalvm.org/python/compatibility/

[14] JetBrains. PyCharm [website]. Accessed 2024-04-06. Available at:
https://numpy.org/.

[15] Lafont, Y. Interaction nets. In: Proceedings of the 17th ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages. New York, NY, USA:
Association for Computing Machinery, 1989, p. 95–108. POPL ’90. DOI:
10.1145/96709.96718. ISBN 0897913434. Available at:
https://doi.org/10.1145/96709.96718.

[16] Lam, S. K., Pitrou, A. and Seibert, S. Numba: a LLVM-based Python JIT
compiler. In: Proceedings of the Second Workshop on the LLVM Compiler
Infrastructure in HPC. New York, NY, USA: Association for Computing Machinery,
2015. LLVM ’15. DOI: 10.1145/2833157.2833162. ISBN 9781450340052. Available at:
https://doi.org/10.1145/2833157.2833162.

[17] Lattner, C. and Adve, V. LLVM: a compilation framework for lifelong program
analysis & transformation. In: International Symposium on Code Generation and
Optimization, 2004. CGO 2004. 2004, p. 75–86. DOI: 10.1109/CGO.2004.1281665.

[18] LuaJIT team. LuaJIT project [website]. Accessed 2024-04-06. Available at:
https://luajit.org/.

[19] Microsoft. Visual Studio Code [website]. Accessed 2024-04-06. Available at:
https://code.visualstudio.com/.

[20] NumPy team. NumPy [website]. Accessed 2024-04-06. Available at:
https://numpy.org/.

[21] Oracle. GraalJS [source code]. Accessed 2024-04-26. Available at:
https://github.com/oracle/graaljs.

[22] Oracle. GraalJS [source code]. Accessed 2024-04-26. Available at:
https://github.com/oracle/truffleruby.

[23] Oracle. SubstrateVM [website]. Accessed 2024-04-26. Available at:
https://docs.oracle.com/en/graalvm/enterprise/20/docs/reference-manual/native-
image/SubstrateVM/.

[24] Oracle. Truffle Assumption documentation [javadoc (english)]. Accessed 2023-01-31.
Available at:
https://www.graalvm.org/truffle/javadoc/com/oracle/truffle/api/Assumption.html.

[25] Oracle. Truffle Debugger documentation [javadoc (english)]. Accessed 2023-01-31.
Available at: https:
//www.graalvm.org/truffle/javadoc/com/oracle/truffle/api/debug/Debugger.html.

[26] Oracle. ValueType [documentation]. Accessed 2024-01-28. Available at:
https://www.graalvm.org/truffle/javadoc/com/oracle/truffle/api/
CompilerDirectives.ValueType.html.

[27] Oracle Labs. GraalPy [source code]. Accessed 2023-06-07. Available at:
https://github.com/oracle/graalpython.

35

https://numpy.org/
https://doi.org/10.1145/96709.96718
https://doi.org/10.1145/2833157.2833162
https://luajit.org/
https://code.visualstudio.com/
https://numpy.org/
https://github.com/oracle/graaljs
https://github.com/oracle/truffleruby
https://docs.oracle.com/en/graalvm/enterprise/20/docs/reference-manual/native-image/SubstrateVM/
https://docs.oracle.com/en/graalvm/enterprise/20/docs/reference-manual/native-image/SubstrateVM/
https://www.graalvm.org/truffle/javadoc/com/oracle/truffle/api/Assumption.html
https://www.graalvm.org/truffle/javadoc/com/oracle/truffle/api/debug/Debugger.html
https://www.graalvm.org/truffle/javadoc/com/oracle/truffle/api/debug/Debugger.html
https://www.graalvm.org/truffle/javadoc/com/oracle/truffle/api/CompilerDirectives.ValueType.html
https://www.graalvm.org/truffle/javadoc/com/oracle/truffle/api/CompilerDirectives.ValueType.html
https://github.com/oracle/graalpython

[28] Python Foundation. Comprehension documentation [rst document (english)].
Accessed 2023-06-07. Available at:
https://docs.python.org/3/tutorial/datastructures.html#list-comprehensions.

[29] Python Foundation. CPython [source code]. Accessed 2023-06-07. Available at:
https://github.com/python/cpython.

[30] Python Foundation. CPython test suite [source code]. Accessed 2024-04-26.
Available at: https://github.com/python/cpython/tree/main/Lib/test.

[31] Python Foundation. Dispatching the tracing return event [source code]. Accessed
2023-01-31. Available at:
https://github.com/python/cpython/blob/3.10/Python/ceval.c#L4524-L4537.

[32] Python Foundation. Iterator python documentation [rst document (english)].
Accessed 2023-06-07. Available at:
https://docs.python.org/3/library/stdtypes.html#typeiter.

[33] Python Foundation. Notes on line number tables and tracing [plaintext]. Accessed
2023-01-31. Available at:
https://github.com/python/cpython/blob/3.10/Objects/lnotab_notes.txt.

[34] Python Foundation. PDB [rst document (english)]. Accessed 2024-04-06. Available
at: https://docs.python.org/3/library/pdb.html.

[35] Python Foundation. Source code of asend and athrow [source code]. Accessed
2023-06-07. Available at:
https://github.com/python/cpython/blob/main/Objects/genobject.c#L1744-L2370.

[36] Python Foundation. Sys.settrace documentation [rst document (english)]. Accessed
2023-01-31. Available at:
https://docs.python.org/3.10/library/sys.html#sys.settrace.

[37] Python Foundation. Test suite for sys.settrace [source code]. Accessed 2023-01-31.
Available at:
https://github.com/python/cpython/blob/3.10/Lib/test/test_sys_settrace.py.

[38] Raku team. Roast [source code]. Accessed 2024-04-26. Available at:
https://github.com/Raku/roast.

[39] Rigger, M., Grimmer, M., Wimmer, C., Würthinger, T. and Mössenböck, H.
Bringing Low-Level Languages to the JVM: Efficient Execution of LLVM IR on
Truffle. In: Proceedings of the 8th International Workshop on Virtual Machines and
Intermediate Languages. New York, NY, USA: Association for Computing
Machinery, 2016, p. 6–15. VMIL 2016. DOI: 10.1145/2998415.2998416. ISBN
9781450346450. Available at: https://doi.org/10.1145/2998415.2998416.

[40] Ronacher, A. How Python was Shaped by leaky Internals. PyCon Russia. Available
at: https://www.youtube.com/watch?v=qCGofLIzX6g.

[41] Rossum, G. van. PEP 492 vs. PEP 3152, new round [email (english)]. Accessed
2023-06-07. Available at:
https://mail.python.org/pipermail/python-dev/2015-April/139503.html.

36

https://docs.python.org/3/tutorial/datastructures.html#list-comprehensions
https://github.com/python/cpython
https://github.com/python/cpython/tree/main/Lib/test
https://github.com/python/cpython/blob/3.10/Python/ceval.c#L4524-L4537
https://docs.python.org/3/library/stdtypes.html#typeiter
https://github.com/python/cpython/blob/3.10/Objects/lnotab_notes.txt
https://docs.python.org/3/library/pdb.html
https://github.com/python/cpython/blob/main/Objects/genobject.c#L1744-L2370
https://docs.python.org/3.10/library/sys.html#sys.settrace
https://github.com/python/cpython/blob/3.10/Lib/test/test_sys_settrace.py
https://github.com/Raku/roast
https://doi.org/10.1145/2998415.2998416
https://www.youtube.com/watch?v=qCGofLIzX6g
https://mail.python.org/pipermail/python-dev/2015-April/139503.html

[42] Selivanov, Y. PEP 492 - Coroutines with async and await syntax [rst document
(english)]. Accessed 2023-06-07. Available at: https://peps.python.org/pep-0492/.

[43] Selivanov, Y. PEP 744 – JIT Compilation [rst document (english)]. Accessed
2024-04-27. Available at: https://peps.python.org/pep-0744/.

[44] The Trio collective. Trio [PyPi package]. Accessed 2024-01-28. Available at:
https://pypi.org/project/trio/.

[45] Wimmer, C., Stancu, C., Hofer, P., Jovanovic, V., Wögerer, P. et al. Initialize
once, start fast: application initialization at build time. Proc. ACM Program. Lang.
New York, NY, USA: Association for Computing Machinery. oct 2019, vol. 3,
OOPSLA. DOI: 10.1145/3360610. Available at: https://doi.org/10.1145/3360610.

[46] Würthinger, T., Wimmer, C., Wöß, A., Stadler, L., Duboscq, G. et al. One
VM to rule them all. In: Proceedings of the 2013 ACM International Symposium on
New Ideas, New Paradigms, and Reflections on Programming & Software. New York,
NY, USA: Association for Computing Machinery, 2013, p. 187–204. Onward! 2013.
DOI: 10.1145/2509578.2509581. ISBN 9781450324724. Available at:
https://doi.org/10.1145/2509578.2509581.

[47] Würthinger, T., Wöß, A., Stadler, L., Duboscq, G., Simon, D. et al.
Self-optimizing AST interpreters. In: Proceedings of the 8th Symposium on Dynamic
Languages. New York, NY, USA: Association for Computing Machinery, 2012,
p. 73–82. DLS ’12. DOI: 10.1145/2384577.2384587. ISBN 9781450315647. Available
at: https://doi.org/10.1145/2384577.2384587.

37

https://peps.python.org/pep-0492/
https://peps.python.org/pep-0744/
https://pypi.org/project/trio/
https://doi.org/10.1145/3360610
https://doi.org/10.1145/2509578.2509581
https://doi.org/10.1145/2384577.2384587

	Introduction
	Important Technologies
	Efficient Interpreters
	Graal Compiler
	Truffle
	GraalPy
	Testing GraalPy

	Improving Support for Async in GraalPy
	Background on Relevant Technologies
	Glossary
	Language-level Support
	Asyncio Internals
	State of Async in GraalPy
	Task-local State, the contextvars Module and Hash-Array Mapped Tries

	The Implementation Process
	Implementing a Hash-Array Mapped Trie
	Replicating the _asyncio Module
	Iterable Coroutines
	Other Async Keywords
	Async Generators

	Conclusions

	Python Debugger API Support in GraalPy
	Background on Relevant Technologies
	CPython Tracing API
	Relevant Aspects of GraalPy

	Tracing via Bytecode Execution
	Debugger Jumps
	Avoiding performance penalties
	Conclusions

	Overall Conclusion
	Bibliography

