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Abstract
This bachelor’s thesis focuses on the development and implementation of a gesture recogni-
tion system on ARM architecture, utilizing the i.MX 93 board and TensorFlow Lite. The
project is grounded in the application of neural networks for the recognition of hand ges-
tures, offering an alternative to traditional device control methods. An integral part of the
work involves a comprehensive analysis of existing gesture recognition solutions, identifying
their strengths and potential improvements. The thesis elaborates on the design, devel-
opment, and optimization of a real-time gesture recognition model specifically for ARM
chips, emphasizing efficiency and performance. Additionally, the thesis covers the creation
of a demonstrative application that visually represents recognized gestures. User testing
is conducted to evaluate the practicality and user experience of the gesture recognition
system, providing valuable feedback for future enhancements.

Abstrakt
Cieľom tejto bakalárskej práce je vývoj a implementácia systému na rozpoznávanie gest
s využitím architektúry ARM, konkrétne s použitím dosky i.MX 93 a TensorFlow Lite. Pro-
jekt sa zameriava na aplikáciu neurónových sietí pre rozpoznávanie gest rúk, čím poskytuje
alternatívu k tradičným metódam ovládania zariadení. Dôležitou súčasťou práce je rozsi-
ahla analýza existujúcich riešení rozpoznávania gest, zameraná na identifikáciu ich silných
stránok a možných vylepšení. Práca detailne opisuje proces navrhovania, vývoja a op-
timalizácie modelu na rozpoznávanie gest v reálnom čase, špeciálne prispôsobeného pre
čipy ARM s dôrazom na efektivitu a výkon. Okrem toho práca aj obsahuje vytvorenie de-
monštračnej aplikácie, ktorá vizuálne reprezentuje rozpoznané gestá. Užívateľské testovanie
je uskutočnené na hodnotenie praktickosti a užívateľského zážitku systému rozpoznávania
gest, čo poskytuje cennú spätnú väzbu pre budúce vylepšenia.
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Rozšírený abstrakt
Cieľom tejto bakalárskej práce je vyvinúť systém na rozpoznávanie gest využívajúci ar-

chitektúru ARM, konkrétne s použitím dosky i.MX 93 a TensorFlow Lite, aby poskytol
efektívnu a účinnú alternatívu k tradičným metódam ovládania zariadení. Projekt sa
zakladá na aplikácii hlbokého učenia, predovšetkým neurónových sietí, na rozpoznávanie
a interpretáciu ľudských gest rúk v reálnom čase.

Práca začína rozsiahlou analýzou súčasného stavu technológií rozpoznávania gest. Skúma
rôzne modely a prístupy, ktoré boli vyvinuté, zameriavajúc sa na ich schopnosti, obmedzenia
a výkon v rôznych prostrediach. Analýza pokrýva techniky optického rozpoznávania gest,
modely založené na senzoroch a nedávne pokroky v strojovom učení, ktoré umožňujú pres-
nejšiu a dynamickú interpretáciu gest.

Po teoretickom prehľade nasleduje podrobný popis návrhu a implementácie modelov
na rozpoznávanie gest špeciálne prispôsobeného pre čipy ARM. Model využíva TensorFlow
Lite na efektívne vykonávanie operácií strojového učenia na platforme ARM, využívajúc
funkcie optimalizácie hardvéru dosky i.MX 93.

Proces vývoja zahŕňa prispôsobenie predtrénovaných neurónových sietí, konkrétne Mo-
bileNetV2 a EfficientDet Lite 2, na rozpoznávanie sady preddefinovaných gest. Tieto
modely boli vybrané pre ich rovnováhu medzi presnosťou a výkonom v prostrediach s nízkym
výkonom. Práca diskutuje úpravy potrebné na optimalizáciu týchto modelov pre inferen-
ciu v reálnom čase, vrátane úprav vrstiev neurónových sietí, postupov tréningu a techník
kvantizácie na zníženie výpočtových nárokov pri zachovaní vysokej presnosti.

Kľúčovou súčasťou projektu je vývoj demonštračnej aplikácie, ktorá graficky zobrazuje
rozpoznané gestá. Táto aplikácia slúži ako dôkaz konceptu aj praktický nástroj na prezentá-
ciu schopností systému. Uskutočňuje sa testovanie s používateľmi na zber údajov o výkone
systému a používateľských skúsenostiach, s dôrazom na odozvu, presnosť a praktickú
použiteľnosť v reálnych scenároch.

Sekcia výsledkov hodnotí účinnosť implementovaného systému z hľadiska presnosti,
rýchlosti, výpočtovej efektívnosti a jednoduchosti užívateľského používania. Práca končí
diskusiou o potenciálnom budúcom vývoji technológií rozpoznávania gest, pričom zohľadňuje
pokračujúci pokrok v neurónových sieťach a vylepšeniach hardvéru.

Táto práca nielenže demonštruje uskutočniteľnosť použitia architektúry ARM a Ten-
sorFlow Lite pre vývoj systému na rozpoznávanie gest, ale tiež prispieva do širšieho poľa
interakcie človeka s počítačom tým, že poskytuje prirodzenejší a intuitívnejší spôsob ovlá-
dania zariadení. Zistenia naznačujú významné dôsledky pre návrh používateľských rozhraní
a vývoj asistenčných technológií, najmä v prostrediach, kde sú preferované bezkontaktné
interakcie.
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Chapter 1

Introduction

This bachelor thesis delves into the realm of gesture recognition and its application in mod-
ern technology, particularly focusing on ARM-based embedded systems. The advantage of
machine learning has opened new avenues in how devices can be controlled, moving beyond
traditional methods like buttons and touchscreens to more intuitive gesture-based interac-
tions. The primary objective of this study is to analyze current hand gesture recognition
methods and to evaluate their advantages over traditional device control mechanisms.

The thesis is structured first to analyze existing gesture recognition techniques. It
includes exploring the various technologies employed, their effectiveness, and how they
compare to conventional control methods in terms of efficiency, user-friendliness, and ap-
plicability in different scenarios. The focus then shifts to the design and implementation of
a real-time gesture recognition model specifically for ARM chips provided by NXP. It in-
volves a detailed examination of the selection of suitable deep learning models and adapting
them to optimal performance within the constraints of ARM-based embedded systems.

A significant part of the project is the development of a demonstration application that
can graphically display recognized gestures. This application serves as a practical example
of how gesture recognition technology can be integrated into real-world scenarios, providing
a tangible interface for users to interact with.

Optimization of the model for maximum performance on ARM chips is a critical aspect
of this thesis. This includes tweaking the model to ensure that it runs efficiently and
making the most of the limited resources available on such devices. The project culminates
with extensive user testing to evaluate the system’s performance, gather user feedback, and
understand user interactions with gesture-controlled interfaces.

Chapter 2 introduces the foundational concepts of artificial intelligence and machine
learning, focusing on their application in gesture recognition. It briefly touches on AI’s
various uses across sectors and emphasizes machine learning’s critical role in deep learning
and neural networks.

Chapter 3 explores the hardware and software pivotal to the thesis, with a detailed look
at the ARM architecture and the i.MX 93 board. The chapter examines the suitability
of the ARM platform for implementing machine learning models and discusses tools like
TensorFlow Lite and Keras that aid in developing applications on embedded systems.

Chapter 4 compares current gesture recognition methods, including optical and sensor-
based techniques, and evaluates them against conventional interfaces such as touchscreens.
The chapter assesses their efficiency and user-friendliness in various contexts.

Chapter 5 describes training machine learning models for optical gesture recognition,
detailing the selection of models optimized for real-time operation on ARM devices. It
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covers data augmentation strategies and adaptations to the MobileNetV2 and EfficientDet
Lite 2 models.

Chapter 6 describes the inference process for analyzing gesture data using machine
learning models on x64 and ARM platforms, including setup and software requirements.

Chapter 7 outlines the development of a demonstration application that showcases the
recognized gestures through a user interface, integrating the gesture recognition model and
user interaction feedback mechanisms.

Chapter 8 presents testing and performance evaluation, including model accuracy, user
testing methodologies, and participant feedback, to assess the application’s practical via-
bility and user acceptance.

Chapter 9 concludes the thesis by summarizing the project challenges and future work
opportunities, including potential enhancements in model training, quantization, and the
exploration of new model architectures and machine learning parameters for practical use.

6



Chapter 2

Background and Theoretical
Framework

This chapter delves into the foundational concepts underpinning machine learning and
artificial intelligence.

2.1 Introduction to Artificial Intelligence
Artificial intelligence (AI), a term coined in the mid-20th century, represents the pursuit
of developing systems that exhibit human-like intelligence. The field, deeply rooted in
philosophy, mathematics, and early computing technology, encompasses a broad range of
domains including problem solving, knowledge representation, learning, natural language
processing, and robotics. Historically, AI has evolved through cycles of optimistic expansion
and subsequent winters of reduced funding and interest, reflecting the technical challenges
and societal impacts of its applications. Both theoretical research and practical applica-
tions have propelled the development of artificial intelligence, affecting various sectors from
healthcare to entertainment [6, 31, 34].

2.1.1 Definition and Scope of Artificial Intelligence

AI integrates theories and practices from various disciplines, with the aim of developing sys-
tems that perform tasks that traditionally require human intelligence. These tasks include
interpreting complex data, solving various problems, and learning from experiences. AI
applications span from virtual domains such as data management to physical applications
such as robotic-assisted medical procedures, demonstrating its crucial role in the advance-
ment of healthcare [49, 16]. Continuously evolving, the field adapts and solves real-world
problems with increasing autonomy, guided by new definitions that emphasize AI’s adaptive
capabilities in scenarios characterized by limited knowledge and resources [51].

2.1.2 Applications of AI

Artificial Intelligence finds extensive applications in various industries, revolutionizing tra-
ditional practices and improving efficiency and productivity. In the telecommunications sec-
tor, AI significantly reduces operating costs, improves network performance, and improves
customer service through predictive maintenance and traffic management for 5G networks
[5]. The integration of AI in manufacturing under Industry 4.0 has transformed produc-
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tion lines, optimizing product consistency, and incorporating robotics to improve human-
machine collaboration [22]. The role of AI is pivotal in addressing complex manufacturing
decisions throughout the product lifecycle, from design to distribution [13]. Moreover, AI
applications in business and engineering are not limited to manufacturing, but extend to
marketing, human resources, and financial services, where they facilitate decision making
and improve operational efficiency [4].

2.2 Machine Learning: The Core of AI
Machine Learning stands as a fundamental pillar within the realm of Artificial Intelligence,
propelling advancements that enhance computational models to automate analytical build-
ing and improve decision-making across various sectors. Machine learning equips systems
with the ability to automate a wide array of activities, mirroring human cognitive functions
[7, 21]. This foundational technology improves the development of intelligent systems, con-
tributing significantly to sectors such as healthcare, manufacturing, and education, driving
more evidence-based decision making [24].

2.2.1 Supervised Learning

Supervised learning, a dominant branch of machine learning, involves training algorithms
on a labeled dataset, providing a learning signal or feedback based on the accuracy of the
predictions made by the model. This methodology facilitates the application of ML in areas
that require precise predictability of outcomes, improving tasks such as classification and
regression [17].

2.3 Deep Learning and Neural Networks
Deep learning, an advanced subset of machine learning, uses complex neural networks to
model and process non-linear relationships in data. The architecture of these networks
involves layers of interconnected nodes or neurons that mimic biological neural networks,
crucial for handling vast and intricate data sets [15, 35].

2.3.1 Training Neural Networks

Training a neural network is a fundamental aspect of deep learning. It involves several
steps, starting with the initial setting of weights. These weights are small random values
assigned to each connection between neurons in different layers. The main goal of training
is to adjust these weights so that the predictions of the network match closely the actual
results [15].

Forward Propagation

The first step in training is forward propagation, where input data is passed through the
network from the input layer to the output layer. Each neuron in a layer receives inputs
from the previous layer, applies a weighted sum followed by a non-linear activation function,
and passes the result to the next layer [50].
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Loss Calculation

Once the network produces an output, the loss function is calculated. This function mea-
sures the difference between the predicted output and the actual target values [52].

Backpropagation and Weight Update

The core of the training process is backpropagation. In this phase, the error of the loss
function is propagated back through the network, allowing the model to adjust the weights
and minimize the error. The weights are updated using optimization algorithms such as
Gradient Descent or its variants, which determine how much weights should be adjusted
based on the gradient of the loss function [50].

Model Evaluation and Iteration

After a forward and backward pass, the model is evaluated on a validation dataset to check
for performance improvements. If the model performs better or meets a specific criterion, it
is retained and used in subsequent epochs. If not, adjustments may be made to the learning
rate or model parameters, and training continues [48].

Regularization Techniques

To enhance model performance and prevent overfitting, where the model learns the training
data too well but performs poorly on unseen data, techniques such as dropout and regu-
larization are used. Dropout involves randomly ignoring neurons during training, which
helps the model to generalize better. Regularization techniques, such as L1 and L2, add
a penalty for larger weights to the loss function, encouraging the model to maintain smaller
weights [11].

2.3.2 Convolutional Neural Networks (CNNs)

CNNs are exceptionally suited for image recognition tasks due to their architecture, which
efficiently processes pixel data. The layers within CNNs can capture hierarchical patterns
in images, making them ideal for applications that require visual recognition [15, 35].

2.3.3 Training Deep Neural Networks

A critical challenge in training deep neural networks is overfitting, where a model learns the
details and noise in the training data to an extent that it negatively impacts the performance
of the model on new data. Techniques such as dropout, regularization, and cross-validation
are essential to mitigate this problem, ensuring that the models generalize well to unseen
data [11].
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2.4 Architecture
In the field of machine learning and artificial intelligence, architecture refers to the struc-
tured design of the network used in models. This architecture outlines how input data are
systematically transformed and analyzed to produce outputs, affecting the model’s perfor-
mance in terms of speed, accuracy, and ability to generalize from training data to unseen
data.

The model architecture is characterized by the configuration of layers in a neural net-
work, each composed of interconnected nodes or neurons. The primary components of
a typical model architecture include:

1. Input Layer: Serves as the entry point for the data, designed to match the shape
and type of the input data.

2. Hidden Layers: These are the core computational units where data are processed,
features are extracted, and transformations are applied. The complexity of the model is
largely determined by the number and types of hidden layers.

3. Output Layer: Delivers the prediction or classifications of the model based on the
processed data.

Different types of neural networks, such as Convolutional Neural Networks (CNNs) and
Recurrent Neural Networks (RNNs), have architectures tailored to specific types of data
and tasks. CNNs are optimized for image data, while RNNs are suited for sequential data
such as text or time series.

Choosing an effective architecture is critical, as it influences the efficiency of the model’s
training and the final performance [15].

2.4.1 MobileNetV2’s Architecture

MobileNetV2 is a notable architecture designed primarily for mobile and embedded based
vision applications, showing high performance in various applications, from image classifica-
tion to object detection. Its architecture design principles 2.1, which focus on efficiency and
effectiveness, make it particularly suitable for use on mobile devices, where computational
resources are limited [39].

Figure 2.1: The architecture of the MobileNetv2 network [41].

A key component of MobileNetV2 is the inverted residual structure, which is a reversal
of the traditional design where inputs and outputs are thin layers and expansion occurs
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in the middle. This design allows the network to maintain high accuracy while being
computationally efficient. Depthwise separable convolutions are used to further reduce
model size and computation cost without significantly affecting performance [39].

One of the defining characteristics of MobileNetV2 is its careful treatment of nonlinear-
ities with the introduction of linear bottlenecks. By limiting the use of activation functions
such as Rectified Linear Unit (ReLU) in the final layer of the bottleneck, important infor-
mation is preserved, improving the efficiency of the network [39].

Additionally, MobileNetV2 employs transfer of knowledge to adapt pre-trained weights
to gesture-specific tasks effectively. This approach reduces the need for extensive training
data while still allowing the model to perform with high accuracy across different environ-
ments and scenarios. The efficient layer configuration of MobileNetV2 significantly helps in
swiftly processing input gestures, thus supporting seamless and intuitive user experiences
in real-time applications [18].

2.4.2 EfficientDet’s Architecture

EfficientDet is an innovative architecture designed primarily for efficient and scalable object
detection, accommodating various computational constraints. This architecture embodies
the integration of a compound scaling method and a novel bidirectional feature pyramid
network (BiFPN), which significantly enhances multiscale feature fusion capabilities [47].

A key innovation in EfficientDet is the weighted BiFPN, which introduces learnable
weights to assess the importance of different input features, enabling effective feature in-
tegration across multiple scales. This advancement addresses the challenge of efficiently
combining multiresolution inputs, which is crucial to improving detection accuracy [47].

In addition, EfficientDet utilizes a compound scaling method that uniformly scales the
resolution, depth, and width of the network, optimizing performance across a spectrum of
resource limitations. This method allows EfficientDet to achieve superior detection accuracy
with fewer parameters and reduced computational complexity compared to prior models
such as YOLOv3 and RetinaNet [47].

EfficientDet has been rigorously tested on various benchmarks and demonstrates state-
of-the-art performance, particularly in environments where computational resources are
a limiting factor. Its ability to scale dynamically with different computational budgets
makes it a versatile choice for deployment in diverse settings, from mobile devices to high-
end servers [47].

2.5 Loss Functions
Loss functions constitute a fundamental component of machine learning algorithms, guiding
the optimization process toward models that can accurately predict or classify data. These
functions evaluate the discrepancy between the algorithm’s predictions and the actual target
values, serving as a measure of performance for the model. In essence, a loss function
quantifies how well the model performs, with lower values indicating better performance
and a closer match to the desired output. In the domain of machine learning, loss functions
can be broadly categorized based on the type of learning task - classification, detection, or
segmentation. For classification tasks, such as gesture recognition using MobileNetV2, loss
functions such as cross-entropy measure the difference between the predicted probability
distribution across classes and the actual distribution. In regression tasks, functions such
as mean squared error calculate the average squared difference between predicted values
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and actual values, providing a straightforward metric for the accuracy of the prediction.
In addition, the choice of the loss function can significantly influence the behavior of the
learning algorithm. It dictates the direction and steps the algorithm takes during the
training process to minimize errors [52].

2.5.1 MobilenetV2 default loss function - Cross-entropy

Cross-entropy is a widely used loss function in machine learning, particularly in classifica-
tion tasks. It measures the difference between two probability distributions —- predicted
and actual —- and is effective in training models such as neural networks. Cross-entropy,
often paired with softmax activation in neural networks, quantifies the “distance” between
the predicted probability distribution and the actual distribution of labels. This function
is especially powerful in significantly adjusting the model weights for mispredicted labels,
thus accelerating learning and improving the accuracy of the model [30, 29]. Furthermore,
advances such as structured entropy and tamed cross-entropy adapt and modify traditional
cross-entropy to tackle specific challenges such as label noise and hierarchical class struc-
tures, enhancing robustness and performance across various scenarios [32, 27]. As shown
in Figure 2.2, the cross-entropy loss function is used to measure the disparity between the
actual class labels and the predicted probabilities, fostering effective learning by adjusting
the model’s predictions towards the actual labels [52].

𝐿(𝑦, 𝑝(𝑦|𝑥)) = − log𝑃 (𝑦|𝑥)

Figure 2.2: Cross-entropy loss function, where 𝑦 is the actual distribution and 𝑝 is the
predicted probability distribution. Adapted from [52].

2.6 Optimizers
Optimizers are crucial in the field of machine learning, particularly in deep learning, where
they significantly influence the efficiency and effectiveness of training models. An optimizer
is essentially an algorithm designed to adjust the parameters of a neural network to minimize
the loss function. This process is pivotal, as it directly impacts the model’s ability to
learn from the data and perform accurately on unseen data. In deep learning, several
optimizers have emerged, each with unique characteristics and mechanisms. The choice of
an optimizer is not trivial and depends on the specific needs of the application, the nature
of the data, and the type of neural network that is being used. Some of the widely used
optimizers include Stochastic Gradient Descent (SGD), Adam, RMSprop, and AdaGrad,
among others. Choosing the right optimizer can significantly affect the speed of training
and the final performance of deep learning models. Each optimizer has its strengths and
weaknesses, making it essential to understand the underlying mechanisms and how they
align with the specific requirements of the machine learning task at hand [36].
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Strengths and Weaknesses

• SGD: Utilizes a stochastic approximation of gradient descent, updating parameters
incrementally for each training example, which can cause fluctuations in the loss
function due to high variance [36].

• Mini-batch SGD: Improves basic SGD by processing a fixed number of samples
(a mini-batch) in each update, balancing computational efficiency with variance re-
duction [36].

• Momentum: Accelerates SGD by integrating a momentum term, which helps navi-
gate through local optima by adding a fraction of the previous update vector to the
current one, thus enhancing the convergence speed [36].

• Nesterov Accelerated Gradient (NAG): Refines the concept of momentum by
calculating the gradient at an approximate future position of the parameters, thus
controlling the update velocity and improving optimization precision [36].

• Adagrad: Adapts learning rates to parameters based on their frequency, with smaller
updates for frequent features. It eliminates the need to manually adjust the learning
rate, but can lead to a decrease in updates over time [36].

• Adadelta: An extension of Adagrad that seeks to reduce its monotonically decreasing
learning rate by limiting the window of accumulated gradients, thus maintaining
a more consistent learning rate over time [36].

• RMSprop: RMSprop is an optimizer that adjusts the learning rate by dividing it
by an exponentially decaying average of squared gradients. This approach helps to
overcome the rapid decrease in the learning rate seen in Adagrad, making it suitable
for handling non-stationary problems and online settings [36].

• Adam: Adam, or Adaptive Moment Estimation, combines ideas from RMSprop and
momentum. It calculates adaptive learning rates for each parameter by considering
the first and second moments of the gradients, allowing for effective handling of sparse
gradients. This versatility makes Adam highly favored for deep learning applications
[36].
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2.6.1 Visualization of Optimizer Performance

An illustrative figure 2.3 shows the trajectory of different optimizers in the landscape of loss
function. This visualization helps to understand how different optimizers navigate toward
the minimum of a complex loss function landscape.

Figure 2.3: Plot of the loss function over epochs during the training of the LSTM-CNN
model for human activity recognition. The x-axis represents the number of epochs, while
the y-axis represents the loss [55].

These insights are crucial in selecting an optimizer that best fits the specific challenges
and requirements of various deep learning tasks [36].
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2.6.2 SGD Optimizer

Stochastic Gradient Descent (SGD) is a cornerstone of optimization in machine learning,
especially in the training of deep neural networks. It updates the model parameters in
the opposite direction of the gradient of the loss function concerning those parameters,
with the goal of minimizing the loss. Although SGD in its pure form is simple, it serves
as the foundation for more complex variants such as SGD with momentum and Nesterov-
accelerated gradient (NAG), which aim to improve convergence rates and training stability.
SGD and its derivatives are crucial for the optimization landscape in deep learning, offering
a balance between computational efficiency and the ability to navigate the complex, high-
dimensional loss surfaces typical of neural networks. Their simplicity, coupled with the
nuanced understanding of their dynamics, makes them invaluable tools in the machine
learning practitioner’s toolkit [36].

2.7 Quantization of a Model
Model quantization is a crucial optimization technique to reduce the memory footprint and
computational requirements of deep learning models, making them suitable for deployment
on various platforms. The process involves converting the data formats of weights and
activations from floating-point to lower-precision formats, such as 8-bit integers. This
transformation can be performed in two primary ways: post-training quantization, which
applies quantization after the model has been trained without the need for retraining; and
quantization-aware training, which simulates low-precision arithmetic during the training
process itself, thus retaining more of the model’s accuracy [20].
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Chapter 3

Hardware and Software

This chapter delves into the hardware and software aspect of running machine learning
applications, namely the TensorFlow Lite, Keras, MobilnetV2 and the ARM architecture,
with a particular focus on the i.MX 93 platform.

3.1 ARM Architecture
ARM architecture is pivotal in the realm of embedded systems, offering a robust framework
for the efficient operation of myriad devices, from simple microcontrollers to complex SoCs
(System on Chips). Originally developed as a project at Acorn Computers, ARM has grown
to become the most widely used architecture in mobile devices, due to its power efficiency
and performance optimization [1].

RISC Principles: ARM is based on the RISC (Reduced Instruction Set Computing)
design, which simplifies the instruction set, allowing for faster processing and lower power
consumption compared to complex instruction set computing (CISC) designs. This sim-
plicity is crucial for devices that require high performance with minimal energy expenditure
[1].

Modularity and Customization: ARM cores are highly modular, allowing hardware
manufacturers to implement only the components necessary for their specific applications.
This modularity extends to the inclusion of various coprocessors and a range of peripherals
that can be tailored to specific needs, from automotive applications to mobile phones [42].

Advancements in Technology: Over the years, ARM has introduced several architec-
tures and technologies that enhance the capability of systems in which they are embedded.
Innovations such as ARM Cortex series, DynamIQ technology, and big.LITTLE processing
not only provide scalable solutions but also integrate advanced processing capabilities like
machine learning and artificial intelligence [42].

Impact on Embedded Systems: The application of ARM architecture extends be-
yond mobile phones to include automotive systems, industrial controls, and Internet of
Things (IoT) devices. Its ability to support a range of operating systems from Linux to
real-time operating systems underpins its versatility in handling various embedded system
requirements [45].
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3.2 i.MX 93
The i.MX 93, which uses ARM architecture, represents a significant advancement in embed-
ded systems, particularly for machine learning applications. It integrates the scalable Arm
Cortex A55 core, which is critical for its best-in-class performance and energy efficiency.
This core, enhanced by Arm’s DynamIQ technology and the latest Armv8-A architecture
extensions, is specifically optimized to accelerate machine learning tasks, making the i.MX
93 an ideal choice for Linux-based edge applications [42]. Additionally, i.MX 93 is notable
for its implementation of the Arm Ethos-U65 microNPU. As the first in the industry, the
Ethos-U65 microNPU offers a blend of performance and efficiency, while maintaining an
optimized footprint suitable for creating cost-effective and energy-efficient ML applications
[42].

Apart from its advanced CPU and NPU capabilities, the i.MX 93 excels in power
management and hardware versatility. Its innovative energy flex architecture enables fine-
grained power control across heterogeneous domains, such as the application domain (Cortex-
A55s), real-time domain (Cortex-M33 peripherals) and flex domains (NPU, DDR, etc.),
ensuring minimal power consumption tailored to specific use cases [42]. The platform also
offers a comprehensive suite of high-speed interfaces and memory options, including USB,
Ethernet, and CAN-FD, catering to a wide range of connectivity and data transfer needs
[42]. These features underscore the i.MX 93’s potential in facilitating robust and efficient
machine learning applications in embedded systems.

3.3 TensorFlow Lite
TensorFlow Lite is an open-source software library specifically designed to run machine
learning models on mobile and embedded devices. [2] It enables on-device machine learning
inference with low latency and small binary size, making it ideal for embedded applications
[44]. The version of TensorFlow Lite optimized for the NXP i.MX 8 and i.MX 93 platforms,
as per the Yocto Linux release, includes features like multithreaded computation with ac-
celeration using Arm Neon SIMD instructions on Cortex-A cores and parallel computation
using NPU hardware acceleration [44].

3.4 Keras
Keras is a high-level neural network API designed for rapid development and experimenta-
tion. It operates on top of several deep learning frameworks, including TensorFlow, which
provides the backbone for building and training sophisticated machine learning models.
Keras simplifies the process of building models through its user-friendly ‘Sequential‘ and
functional API methods, supporting a wide range of network architectures from simple to
complex. It is well suited for beginners and experienced researchers alike, offering easy
model construction, evaluation, and deployment on a wide range of platforms, thus im-
proving productivity and facilitating innovation [10].

3.4.1 Epoch and Batch

In the neural network training process, particularly in frameworks such as Keras, the terms
epoch and batch are critical to understanding how models learn from data over iterations.
An epoch represents one complete pass of the training dataset through the algorithm,
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allowing the model to learn from each example in the dataset. Each epoch consists of
several smaller subsets of the data, known as batches, which are used to perform training
iterations. A batch refers to the number of training examples used in one iteration of model
training. The size of a batch and the number of epochs are adjustable parameters that can
significantly affect the training dynamics and performance of the model. Batch processing
in neural networks helps to efficiently manage computational resources, as using smaller
batches means less memory consumption and often faster processing. However, smaller
batches can lead to a less accurate estimate of the gradient, while larger batches provide
a more stable gradient but with a higher computational cost. Adjusting the number of
epochs is equally important, as it determines how many times the learning algorithm will
work through the entire training dataset. Too few epochs can result in an underfit model,
whereas too many epochs may lead to overfitting. It is crucial to find a balance to achieve
optimal performance [3].

3.5 AI on Embedded Systems
Implementing artificial intelligence in ARM-based embedded systems involves optimizing AI
models for low power, limited hardware environments. TensorFlow Lite and MobileNetV2
are pivotal in this context due to their tailored design for such constraints. MobileNetV2,
known for its lightweight deep neural network architecture, utilizes depthwise separable
convolutions which significantly reduce the number of parameters and computational com-
plexity, making it ideal for real-time applications on embedded devices [39].

3.5.1 Optimizations for Efficient AI on ARM with TensorFlow Lite

TensorFlow Lite facilitates optimizations through techniques such as post-training quanti-
zation and the use of fused operations, which streamline the computational graph. Further-
more, TensorFlow Lite’s integration with the NXP board’s specific hardware accelerators
allows for enhanced processing capabilities, leveraging features such as the NEON SIMD
architecture for parallel data processing [2].

These strategies collectively enable efficient deployment of MobileNetV2 on ARM-
powered NXP boards, maintaining a balance between performance and power consumption,
crucial for mobile and embedded applications.
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Chapter 4

Analysis of Current Gesture
Recognition Methods

4.1 Overview of Existing Gesture Recognition Techniques
Gesture recognition technology has evolved significantly, employing various methods to
interpret human gestures as a means of interaction with devices. This section explores
various existing techniques, each with unique mechanisms and applications.

4.1.1 Optical Gesture Recognition

This method relies on cameras and computer vision algorithms that process visual data
from a 2D or 3D perspective to detect and interpret gestures. Optical systems utilize
depth-sensing technologies and computer algorithms to analyze the shape, movement, and
depth of gestures within a given space, making it possible to interpret complex hand and
body movements without physical contact. Such capabilities are critical in environments
where intuitive user interfaces are necessary, such as in interactive or gaming systems [40].

Despite seeming like a relatively modern development, optical gesture recognition has
roots going back to at least 1997. Earlier systems, such as the one developed by Kobayashi,
used CCD cameras and holographic devices to create vector representations of gestures.
These early efforts laid the foundation for modern and more sophisticated systems, demon-
strating the long-standing interest and continuous evolution in the field of gesture recogni-
tion [26].

4.1.2 Sensor Gloves

Sensor-equipped gloves are another approach, where the glove is embedded with various
sensors such as accelerometers, gyroscopes, and sometimes flex sensors. These gloves can
capture the fine movements and positions of the user’s fingers and hand, translating them
into control signals. Although offering high accuracy, the requirement to wear a glove can
be seen as a limitation in terms of convenience and scalability. Such systems have been
effectively demonstrated to help in gesture recognition for communication, especially in
applications where precise control is necessary, such as interacting with virtual environments
[37].
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4.1.3 Touch-Based Gesture Recognition

Predominantly found in smartphones and tablets, this method uses capacitive touchscreens
to recognize gestures. Simple gestures such as swipes, pinches, and taps are easily recog-
nized. Despite their widespread adoption, the interaction is limited to the two-dimensional
plane of the screen while requiring direct contact with the device, which limits the type
of gestures that can be recognized and may not capture more complex three-dimensional
gestures intended for advanced computational interactions [33].

4.1.4 Wearable Device-Based Recognition

Wearable devices such as smartwatches and fitness bands use embedded sensors to recognize
gestures. These devices primarily use accelerometers and gyroscopes to understand simple
hand movements. Although convenient and increasingly popular, the range of recognizable
gestures is relatively limited compared to more sophisticated systems. The embedded sen-
sors in these devices allow for recognition of a variety of gestures by analyzing movements
of the wrist, which can be crucial for applications that require user-friendly and intuitive
interfaces [8].

4.1.5 Infrared and Ultrasonic Gesture Recognition

These techniques use infrared sensors or ultrasonic wave emissions to detect hand move-
ments. By measuring the time it takes for waves to bounce back from the hand, the system
interprets different gestures. Such methods can be effective for short-range interactions,
but might struggle with precision and complex gesture interpretation [38].

4.2 Advantages of Gesture Recognition Compared to Tradi-
tional Control Methods

Gesture recognition technology offers several advantages over traditional control methods
such as physical buttons, touchscreens, and control sticks. This section highlights the key
benefits of using gesture-based interfaces.

4.2.1 Intuitive and Natural Interaction

One of the primary advantages of gesture recognition is its ability to provide a more intuitive
and natural way of interaction. Unlike pressing buttons or using a mouse, gestures are
a fundamental form of human communication, often perceived as more natural and intuitive.
Studies have shown that users can perform tasks more quickly and with fewer errors using
gestures compared to traditional interfaces [9].

4.2.2 Enhanced Accessibility

Gesture-based interfaces can be more inclusive, especially for people with disabilities. For
those who may find it challenging to use traditional interfaces due to physical limitations,
gesture recognition can offer an alternative means of interaction, as demonstrated in re-
search on accessible technology [9].
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4.2.3 Contactless Control

In scenarios where touchless control is preferable or required for hygiene reasons (like in
medical settings or public kiosks), gesture recognition provides an effective solution. This
contactless nature also makes it suitable for use in environments where touchscreens or
buttons can be prone to damage [57].

4.2.4 Freedom of Movement

Gesture recognition allows for greater freedom of movement, eliminating the need to be
physically close to the device. This can be particularly beneficial in situations such as pre-
sentations or interactive installations, where the user can control the system from a distance
[53].

4.2.5 Space and Cost Efficiency

Implementing gesture control can lead to more space-efficient designs, as it reduces the need
for physical control panels and buttons. This can also translate into cost savings in design
and manufacturing [9].

4.2.6 Scalability and Versatility

Gesture recognition technology can be scaled and adapted to a wide range of applications,
from consumer electronics to industrial control systems. Its versatility allows it to be
implemented in diverse environments and for various purposes [23].

4.2.7 Reduced Wear and Tear

Since gesture-based interfaces do not require physical contact, they typically experience
less wear and tear compared to traditional control methods. This can lead to longer-lasting
devices and a less frequent need for maintenance or replacement [56].

4.3 Current Challenges and Limitations in Gesture Recog-
nition

Despite its many advantages, gesture recognition technology also faces several challenges
and limitations that affect its broader adoption and effectiveness.

4.3.1 Environmental Sensitivity

Gesture recognition systems, especially those based on optical or infrared technologies, can
be highly sensitive to environmental factors. Lighting conditions, background clutter, and
interference or even color of the skin of a human being from other sources can significantly
impact the accuracy of gesture detection [9].

4.3.2 Complexity of Gesture Interpretation

Interpreting complex gestures accurately remains a challenge. Different individuals may
perform the same gesture slightly differently, and the system must be able to account for
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these variations. Furthermore, technology must distinguish between intentional gestures
and random movements [12].

4.3.3 Hardware Limitations

The effectiveness of gesture recognition is often limited by hardware capabilities. High
resolution sensors and advanced processing capabilities are required for precise gesture
detection, which can be costly and power consuming, especially for portable or wearable
devices [19].

4.3.4 User Acceptance and Adaptability

User acceptance can be a significant barrier, as some may find it uncomfortable or unin-
tuitive to use gesture-based controls, especially in public or professional settings. There is
also a learning curve associated with adopting new interaction methods [46].

4.3.5 Privacy and Security Concerns

Camera-based gesture recognition systems raise privacy concerns, as continuous monitoring
and video recording might be perceived as intrusive. Furthermore, ensuring the security of
gesture data is critical to prevent unauthorized access or control [54].

4.3.6 Lack of Standardization

There is a lack of standardization in gestures and gesture recognition technologies, leading
to inconsistencies between different systems and devices. This can confuse users and hinder
the interoperability between different systems and applications [28].
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Chapter 5

Training a Machine Learning
Model for Optical Gesture
Recognition

5.1 Used Models
In this project, two distinct models were utilized to address the challenge of gesture recog-
nition. MobileNetV2 and EfficientDet Lite 2. Both models are well-regarded for their
performance in computer vision tasks and have been adapted to meet the specific require-
ments of real-time gesture recognition on embedded systems.

5.2 Dataset Description
The dataset, sourced from a GitHub repository HaGRID [25], comprises a diverse collection
of images used to train the machine learning model consisting of 19 different hand gestures
5.1. It contains around 554,800 unique persons 5.2 and at least an equal number of unique
scenes. The subjects range in age from 18 to 65 years, offering a broad demographic
representation. The data set was collected primarily indoors with considerable variation
in lighting conditions, encompassing artificial and natural light sources. It also includes
images taken under challenging lighting conditions, such as with subjects facing or backing
to a window. Furthermore, the dataset captures gestures performed at varying distances,
from 0.5 to 4 meters from the camera, adding to the complexity and diversity of the data
used for training the model. This variety ensures that the model is trained in a wide range
of scenarios, enhancing its robustness and applicability in real world settings.
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Figure 5.1: Gestures from the HaGRID dataset

Figure 5.2: Examples of images from the HaGRID dataset
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5.2.1 Dataset Preprocessing

The initial dataset sourced from a GitHub repository contained a wide variety of hand
gestures. To enhance the accuracy and focus of the machine learning model and simplify
real life usage of device control via gesture recognition, the dataset was curated to include
only five gestures that are distinctly different from each other. These gestures-like, dislike,
fist, peace, and stop –were selected to provide clear and varied examples for the model to
learn from, thereby improving its ability to accurately classify these gestures.

From the repository, I extracted 140 images for each of these five gestures. Then each
image was manually cropped to focus solely on the gesture, ensuring that each cropped
image maintained a resolution of 224x224 pixels. This specific resolution was chosen to
comply with the input requirements of the MobileNetV2 model, which is optimized for this
image size due to its architectural constraints and operational efficiency.

The dataset was strategically divided to enhance the training and validation processes:
100 images per gesture were designated for training, while 20 images per gesture were set
aside for validation, and another 20 for testing. This division was aimed at providing
a balanced approach to training the model while allowing for comprehensive validation and
testing to assess the model performance accurately.

For the EfficientDet Lite 2 model, an additional set of 140 images was utilized for each
gesture. However, for this model, the original annotations from the dataset were retained
and converted from the COCO format to the VOC format, which is compatible with the
model’s training requirements. This approach allowed for leveraging the pre-annotated
data effectively, reducing the preprocessing workload while maintaining high data integrity
for training the second model. This method ensured that both models were trained under
optimal conditions with datasets tailored to their specific needs, with the aim of maximizing
the accuracy and effectiveness of the gesture recognition system.

5.2.2 Dataset Augmentation

Data augmentation involves artificially altering the training dataset by applying random,
yet realistic, transformations to the training images. For the MobileNetV2 model, a variety
of augmentations were used to ensure that the model is not only accurate, but also robust
to variations in real-world conditions. These alterations are being performed every epoch
on every image randomly.

MobileNetV2 Augmentations The training dataset for MobileNetV2 was augmented
using the following transformations:

• Rescaling: Each pixel value was rescaled by a factor of 1
255 , converting the pixel

values from a range of 0-255 to 0-1. This normalization helps speed up the training
by improving numerical stability.

• Shear Transformation: A shear range of 0.2 was applied, which slants the shape
of the image, simulating a more diverse set of angles and poses in captured gestures.

• Zoom: The images were randomly zoomed in by up to 20%, helping the model to
recognize gestures from various scales and distances.

• Horizontal Flip: Horizontal Flip was utilized because it allows the model to learn
from mirrored versions of gestures. This is particularly beneficial because a gesture
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shown on the left hand can be transformed to simulate how it would appear if per-
formed with the right hand, thereby doubling the diversity of hand orientation in the
training data without needing additional images.

• Rotation: The images were randomly rotated by up to 30 degrees, allowing the
model to handle variations in the wild where gestures might not be perfectly aligned
with the camera.

Limitations with EfficientDet Lite 2 In contrast, the augmentation capabilities of
EfficientDet Lite 2 were limited by the tools available within the TensorFlow Lite Model
Maker environment used for training. Although MobileNetV2 training could leverage direct
image augmentation through Keras, which provides extensive support for image augmen-
tation through its ImageDataGenerator class, EfficientDet Lite 2 did not support similar
on-the-fly augmentations directly in its training pipeline at the time of implementation. The
setup for EfficientDet Lite 2 required predefined datasets with less flexibility in augmen-
tation, illustrating a trade-off between ease of use and flexibility in training deep learning
models for gesture recognition.

5.3 Implementation Details

5.3.1 Code Overview

The implementation comprises Python and Bash scripts for various stages such as train-
ing, data augmentation, annotation filtering, and converting the model to TensorFlow Lite
format [14]. The TensorFlow and Keras libraries were employed for training, utilizing
the pre-trained layers of MobileNetV2 and adding custom layers tailored for the specific
task. MobileNetV2 was initially trained; however, attempts to quantize this model were
unsuccessful. Due to difficulties encountered during the quantization process, MobileNetV2
could not be effectively prepared for deployment on Neural Processing Units (NPU). Conse-
quently, the EfficientDet Lite 2 model was trained and subsequently quantized successfully,
ensuring compatibility and efficient execution on NPU platforms.

5.3.2 Software Dependencies

The project’s software dependencies are tailored to ensure compatibility and performance
for machine learning development, particularly on x64 platforms using Ubuntu 22.04. The
dependencies are as follows:

• Python Version: 3.10.12 - Chosen for its stability and compatibility with other
libraries required in this project.

• TensorFlow 2.15 - TensorFlow 2.15 supports legacy functionalities with Keras 2,
which were used in the initial stages of this project. While TensorFlow 2.16 was
released during the development process, it was not adopted to ensure stability and
compatibility with the existing codebase, which is tailored for TensorFlow 2.15.

• Keras 2 - Integrated directly within TensorFlow 2.15 to leverage specific legacy
features not available in later versions.
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• OpenCV-Python (cv2) - Utilized for handling image and video data, essential for
data preprocessing and augmentation tasks.

The combination of Python, TensorFlow, and OpenCV-Python creates a powerful and
versatile development environment. This setup is ideal for meeting the project’s demands in
terms of processing speed and data handling. The environment ensures compatibility and
high performance across x64 platforms, providing a robust foundation for the development
and testing phases of the machine learning models.

5.4 Training Process of MobileNetV2

5.4.1 Loading the MobileNetV2 model without top layers

At the beginning of the training process, the pre-trained MobileNetV2 model was loaded
without its top classification layers 5.3. This approach allows for leveraging the learned
features while adapting the model to a new classification task with fewer output categories.

import tensorflow as tf
model = tf.keras.applications.MobileNetV2(weights=’imagenet’, include_top=

→˓ False, input_shape=(224, 224, 3))

Figure 5.3: Loading the MobileNetV2 model without top layers

5.4.2 Freezing the layers of the MobileNetV2 model

The rest of the layers of the pre-trained MobileNetV2 model were frozen to prevent them
from being updated throughout the training process 5.4. This strategy is used to preserve
the intricate features that the model has learned from the comprehensive ImageNet dataset.
By keeping these layers fixed, only the newly added custom layers are trained, allowing
the model to specialize on the narrower task without forgetting the valuable generalized
features.

for layer in model.layers:
layer.trainable = False

Figure 5.4: Freezing the layers of the MobileNetV2 model

5.4.3 Adding custom layers to the MobileNetV2 model

After loading and configuring the base model, custom layers were added to tailor the model
for our specific classification tasks 5.5. These layers include a global average pooling layer
which computes the average output of each feature map from the previous layer followed
by a dense layer for feature reduction and a final dense layer with softmax activation for
classification.
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from tensorflow.keras import layers, models
x = model.output
x = layers.GlobalAveragePooling2D()(x)
x = layers.Dense(1024, activation=’relu’)(x)
predictions = layers.Dense(5, activation=’softmax’)(x)
model_final = models.Model(inputs=model.input, outputs=predictions)

Figure 5.5: Adding custom layers to the MobileNetV2 model

5.4.4 Compiling the MobileNetV2 model with SGD optimizer

The model was then compiled with a stochastic gradient descent (SGD) optimizer, spec-
ifying the learning rate and the momentum 5.6. This sets up the model for training by
defining how it should update its weights (via the optimizer) and how it should measure
its accuracy (via the loss function and other metrics). The learning rate and momentum
values were chosen as the best after numerous iterative experiments with different values.

from tensorflow.keras.optimizers import SGD
optimizer = SGD(learning_rate=0.001, momentum=0.9)
model_final.compile(optimizer=optimizer, loss=’categorical_crossentropy’,

→˓ metrics=[’accuracy’])

Figure 5.6: Compiling the MobileNetV2 model with SGD optimizer

5.4.5 Setting up data augmentation with ImageDataGenerator

During the training phase, a data augmentation strategy was implemented to enhance the
model’s ability to generalize to new unseen data 5.7. This strategy was executed using
an instance of the ImageDataGenerator class provided by TensorFlow’s Keras API, which
applies various transformations to the training images.

train_datagen = ImageDataGenerator (
rescale=1./255,
shear_range=0.2,
zoom_range=0.2,
horizontal_flip=True,
rotation_range=30,

)

Figure 5.7: Setting up data augmentation with ImageDataGenerator

5.4.6 Specifying batch size and training dimensions

Training was carried out with a batch size of 32 5.8, since this value produced the best
training speed for both MobileNetV2 and EfficientDet Lite 2. The value of 20 for the
number of epochs to be trained was chosen because the autostopper with default values
for the MobilnetV2 model always stopped at 20 epochs after not being able to improve the
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model with more epochs. To preserve the same value baseline for both models, this number
was also chosen for EfficientDet Lite 2.

batch_size = 32
epochs = 20
img_height, img_width = 224, 224

Figure 5.8: Specifying batch size and training dimensions

5.4.7 Converting the trained model to TensorFlow Lite format

Following model training, the TensorFlow model was converted to TensorFlow Lite format
5.9, enabling its deployment on the i.MX 93 board.

import tensorflow as tf
converter = tf.lite.TFLiteConverter.from_keras_model(model)

tflite_model = converter.convert()
with open(’model.tflite’, ’wb’) as f:

f.write(tflite_model)

Figure 5.9: Converting the trained model to TensorFlow Lite format
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5.5 Training Process of EfficientDet Lite 2
The training process for the EfficientDet Lite 2 model began by initializing the model
with pre-set specifications 5.10 tailored for lightweight and efficient performance on mobile
devices.

import tensorflow as tf
from tflite_model_maker import model_spec
spec = model_spec.get(’efficientdet_lite2’)

Figure 5.10: Initializing the EfficientDet Lite 2 model

5.5.1 Loading training and validation data for EfficientDet Lite 2

Data for training and validation were loaded using TensorFlow Model Maker’s DataLoader
5.11, which organizes images and annotations from the Pascal VOC format, commonly used
for object detection tasks.

from tflite_model_maker import object_detector
train_data = object_detector.DataLoader.from_pascal_voc(

images_dir="dataset_train", annotations_dir="annotations_train",
→˓ label_map={1:"dislike", 2:"fist", 3:"like", 4:"peace", 5:"stop"},
→˓ num_shards=10

)
validation_data = object_detector.DataLoader.from_pascal_voc(

images_dir="dataset_val", annotations_dir="annotations_val", label_map
→˓ ={1:"dislike", 2:"fist", 3:"like", 4:"peace", 5:"stop"},
→˓ num_shards=10

)

Figure 5.11: Loading training and validation data for EfficientDet Lite 2

5.5.2 Configuring and starting training for EfficientDet Lite 2

Training was carried out with a batch size of 32 with 20 epochs 5.12, as these values yielded
the best ratio of training speed and mode accuracy for both models. The value of 20 for the
number of epochs to be trained was also chosen because the autostopper with default values
for the MobilnetV2 model always stopped at 20 epochs after not being able to improve the
model with more epochs. To preserve the same value baseline for both models, this number
was also chosen for EfficientDet Lite 2.

model = object_detector.create(train_data,
model_spec=spec, batch_size=32, epochs=20, train_whole_model=True,

→˓ validation_data=validation_data)

Figure 5.12: Configuring and starting training for EfficientDet Lite 2
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5.5.3 Quantizing the EfficientDet Lite 2 model

After training, the model was quantized 5.13, which optimizes it for deployment by reducing
the size of the model and potentially improving its speed on compatible hardware. The
quantization settings were specified to use INT8 precision for inference.

from tflite_model_maker.config import QuantizationConfig
config = QuantizationConfig.for_int8(validation_data, inference_input_type=

→˓ tf.uint8, inference_output_type=tf.float32, supported_ops=[tf.lite.
→˓ OpsSet.TFLITE_BUILTINS_INT8])

Figure 5.13: Quantizing the EfficientDet Lite 2 model

5.5.4 Exporting the EfficientDet Lite 2 model in TensorFlow Lite format

Finally, the model was exported in TensorFlow Lite format 5.14, allowing its deployment
on the i.MX 93 board.

model.export(export_dir=’.’, tflite_filename="model.tflite",
→˓ quantization_config=config)

Figure 5.14: Exporting the EfficientDet Lite 2 model in TensorFlow Lite format

5.5.5 Optimizing the Quantized EfficientDet Lite 2 Model for NPU

Once the EfficientDet Lite 2 model was quantized and saved in TensorFlow Lite format,
using Vela Tool, the quantized ‘.tflite‘ model undergoes further transformation that refines
the model for optimal execution on the NPU. This includes restructuring certain layers and
operations to better exploit the parallel processing capabilities of NPUs.

The command to run Vela on the quantized model is straightforward 5.15. Suppose
that Vela Tool is installed and configured on the system.

vela model.tflite

Figure 5.15: Using Vela Tool to optimize the TensorFlow Lite model for NPU execution
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Chapter 6

Inference Process

6.1 Code Overview
The inference process involves loading the TensorFlow Lite model and processing input data
[14], typically from a USB camera connected to the i.MX 93’s board or from a video file. On
the x64 platform, the inference can be run on CPU or on supported GPUs from NVIDIA.
On ARM platform, the i.MX 93’s CPU cores or NPU or both at the same time can handle
the inference, demonstrating the board’s capability to perform real-time machine learning
tasks. The inference script includes preprocessing of the input data, model invocation, and
output of the predictions.

6.1.1 Software Dependencies

The script requires specific libraries and environments to run efficiently. The dependencies
are outlined as follows:

Inference on x64 platform

• Python Version: 3.10.12 - Chosen for its stability and compatibility with other
libraries required in this project.

• TensorFlow 2.15 - TensorFlow 2.15 is the version the models were trained in and as
to have continuity, this version is also required for inference even though the inference
script has no issues with the newest TensorFlow version 2.16.

• OpenCV-Python (cv2) - Utilized for handling image and video data.

• NumPy - Utilized for numerical operations on image data.

Inference on ARM platform

The inference process on ARM platforms, particularly using i.MX 93, is streamlined by
the dedicated version of Embedded Linux customized for this device. The specific version
Embedded Linux for i.MX applications processors 6.1.36_2.1.0 [45], released
on December 1, 2023, includes all the necessary dependencies and libraries required to
efficiently run inference tasks directly out of the box and is tested and compatible with the
project’s inference code and trained models.
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This Linux release is readily available for download from the NXP website following
a simple registration process. Not only does it offer the operating system, but also it
provides comprehensive documentation that assists developers in deploying and optimizing
their applications. The integration of all required software components within this Linux
version ensures that developers can quickly set up their inference environment without
needing to manually install additional packages. This feature is especially beneficial in
embedded systems, where simplicity and efficiency are crucial. For more detailed guidance
on setting up and using this Linux release, refer to the accompanying user guide [43].

6.2 Detailed Implementation

6.2.1 Parsing Arguments

The script starts by defining and parsing command-line arguments 6.1, which allow the user
to customize the execution parameters directly from the command line. This flexibility is
essential for adapting the script to different environments and input types. After parsing,
the script loads these arguments into local variables, which are then used to configure the
execution environment and the path setup for the model file.

# Define and parse input arguments
parser = argparse.ArgumentParser()
parser.add_argument(’--filename’, help=’Name of video or image input file’,

default=’video_device.mp4’)
parser.add_argument(’--graph’, help=’Name of the .tflite file, if different

→˓ than model.tflite’,
default=’model.tflite’)

parser.add_argument(’--input_type’, help=’Type of input: webcam, videofile’
→˓ ,

default=’webcam’)
parser.add_argument(’--platform’, help=’Type of platform: arm, x64’,

default=’arm’)
args = parser.parse_args()

# Load args
inputFile = args.filename
GRAPH_NAME = args.graph
inputType = args.input_type
platformType = args.platform

# Get path to current working directory
CWD_PATH = os.getcwd()
# Path to .tflite file, which contains the model that is used for object

→˓ detection
model_path = os.path.join(CWD_PATH,GRAPH_NAME)

Figure 6.1: Parsing command-line arguments and loading them into the script
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In example, if we wanted to infer on the x64 platform, with model named ”mobil-
netv2.tflit” on input from mp4 video named video_test.mp4 we would run the script with
command described in the following figure 6.2.

python3 inference_mobilnetv2.py
--platform x64
--input_type videofile
--filename video_test.mp4
--graph mobilnetv2.tflite

Figure 6.2: Arguments example

6.2.2 Importing Libraries

Depending on the platform (x64 6.3 or ARM 6.4), the appropriate TensorFlow Lite library
is imported to ensure compatibility. If we want to make an inference on the NPU of i.MX
93, we need to decide whether we also want to import a loader for a delegate 6.5.

import tensorflow as tf
interpreter = tf.lite.Interpreter(model_path=model_path)

Figure 6.3: Importing x64 library

from tflite_runtime.interpreter import Interpreter
interpreter = Interpreter(model_path=model_path)

Figure 6.4: Importing arm library

from tflite_runtime.interpreter import Interpreter
from tflite_runtime.interpreter import load_delegate
ext_delegate = [load_delegate("/usr/lib/libethosu_delegate.so")]
interpreter = Interpreter(model_path=model_path, experimental_delegates=

→˓ ext_delegate)

Figure 6.5: Importing delegate library

6.2.3 Initializing the TensorFlow Lite Interpreter

At the outset, the TensorFlow Lite interpreter is initialized to facilitate the execution of the
pretrained machine learning model. This step is crucial because it prepares the interpreter
to process the input data through the model by loading the model architecture and weights
from the compiled TensorFlow Lite file 6.6.
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interpreter.allocate_tensors()
input_details = interpreter.get_input_details()
output_details = interpreter.get_output_details()

Figure 6.6: Initializing the TensorFlow Lite interpreter

6.2.4 Setting up Video Capture Based on the Input Type

This step configures the video capture based on the input type specified: a webcam or a
pre-recorded video file 6.7. The script checks if the video capture device can be opened
successfully, ensuring that the input source is ready for frame extraction and processing.

if input_type == ’webcam’:
cap = cv2.VideoCapture(0)

else:
cap = cv2.VideoCapture(input_file)

if not cap.isOpened():
print("Error: Could not open video or webcam.")
exit(1)

Figure 6.7: Setting up video capture based on the input type

6.2.5 Preprocessing Frames

During this stage, each frame captured from the video source undergoes a series of trans-
formations to meet the specific input requirements of different models. The frame is first
cropped to the center to ensure that the focus remains on the main subject of the image.
It is then resized according to the required input dimensions of the model: 448× 448 pixels
for the Efficientdet Lite 2 model and 224× 224 pixels for the MobileNetV2 model.

For the Efficientdet Lite 2 model, frames are resized to larger dimensions and kept
in an 8-bit unsigned integer format (uint8) which aligns with the model’s architectural
requirements for handling color depth and intensity directly, as shown in the first code
snippet 6.8.

For the MobileNetV2 model, the resized frames are additionally normalized to have pixel
values between 0 and 1, converting the data type to a 32-bit floating point (float32). This
normalization is crucial, as it scales down the pixel values, facilitating the model’s learning
and prediction processes by maintaining numerical stability and speeding up computation,
as demonstrated in the second code snippet 6.9.
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def preprocess_frame(frame):
min_dim = min(frame.shape[:2])
start_x = (frame.shape[1] - min_dim) // 2
start_y = (frame.shape[0] - min_dim) // 2
cropped_frame = frame[start_y:start_y+min_dim, start_x:start_x+min_dim]
resized_frame = cv2.resize(cropped_frame, (448, 448))
return np.expand_dims(resized_frame, axis=0).astype(np.uint8),

→˓ resized_frame

Figure 6.8: Preprocessing frames for EfficientDet Lite 2 model

def preprocess_frame(frame):
min_dim = min(frame.shape[:2])
start_x = (frame.shape[1] - min_dim) // 2
start_y = (frame.shape[0] - min_dim) // 2
cropped_frame = frame[start_y:start_y+min_dim, start_x:start_x+min_dim]
resized_frame = cv2.resize(cropped_frame, (224, 224))
normalized_frame = resized_frame / 255.0
return np.expand_dims(normalized_frame, axis=0).astype(np.float32),

→˓ resized_frame

Figure 6.9: Preprocessing frames for MobileNetV2 model

These preprocessing steps ensure that the input to each model is consistent and opti-
mized for the best inference performance, taking into account the architectural nuances of
each model.

6.2.6 Performing Inference

Once the frame is pre-processed, it is fed into the TensorFlow Lite model to perform in-
ference. The method of extracting the prediction results varies slightly depending on the
model used.

MobileNetV2 Inference

For the MobileNetV2 model, the processed frame tensor is set as input to the model 6.10.
The model then runs inference and outputs the prediction probabilities for each class.

interpreter.set_tensor(input_details[0][’index’], processed_frame)
interpreter.invoke()
predictions = interpreter.get_tensor(output_details[0][’index’])

Figure 6.10: Inference processing for MobileNetV2
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EfficientDet Lite 2 Inference

For the EfficientDet Lite 2 model, the inference process is similar in setting the tensor and
invoking the model 6.10. However, this model provides detailed outputs, such as the class
indices of the detected objects that were set during training and their respective confidence
scores 6.11.

interpreter.set_tensor(input_details[0][’index’], processed_frame)
interpreter.invoke()
classes = interpreter.get_tensor(output_details[3][’index’])[0] % Class

→˓ index
probabilities = interpreter.get_tensor(output_details[0][’index’])[0] %

→˓ Confidence

Figure 6.11: Inference processing for EfficientDet Lite 2
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Chapter 7

Development of the Demonstration
Application

7.1 User Experience Design
The design of the user interface for the demonstration application focuses on providing
clear visibility and control to developers and users. The interface is crafted to ensure
that all elements are informative and enhance the interaction with the application. The
demonstration application ends by reaching the end of an input video file or, if running
inference from video camera, by pressing the key ”q”.

7.2 Implementation
The demonstration application is implemented to achieve multiple objectives to help both
the development process and the end user experience.

7.2.1 Development Console

A console is integrated into the user interface, showing real-time developer logs. This
console helps to monitor the performance and outputs of inference processes, showing vital
information such as processing times and potential errors. This feature is essential for
developers to understand the application’s behavior under different conditions and to fine-
tune performance.

7.2.2 Camera View Window

The application includes a dedicated window that displays the live camera feed. This setup
allows users to adjust the angle and positioning of the camera to avoid unwanted lighting
conditions or obstructions. Such adjustments are crucial for setting up ideal conditions
for accurate gesture recognition, ensuring that the camera’s input is optimally captured
without interference from external light sources.

7.2.3 Preprocessed Input Display

Another window within the application shows the pre-processed frame that helps users and
developers see what modifications (such as cropping and resizing) have been applied to the
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original camera feed before it is inputted to the model. The visibility of these adjustments
provides transparency in preprocessing, helping to verify that the input data to the model
is as expected and that the model sees the whole gesture, as without this window it would
be difficult to guess from where exactly is the preprocessed image taken from the input
feed.

7.2.4 Predicted Gesture Display

This window displays the predicted gesture. To improve the accuracy and stability of the
gesture displayed, the application calculates an average of the last 20 predicted gestures
before showing the result. This averaging helps smooth out any anomalies in individual
predictions and provides a more reliable output.

7.2.5 Gesture Recognition Overview

Finally, a comprehensive display presents all possible gestures recognized by the model.
This feature provides a complete overview of the model’s capabilities, enabling users to see
the full range of interactions available.

7.3 Graphical Display of Recognized Gestures
Graphical user interface of the demonstration application 7.1 showing different components,
including the development console, camera view, pre-processed input, predicted gestures,
and the gesture recognition overview.

Figure 7.1: Graphical user interface of the demonstration application.
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Chapter 8

Testing

8.1 Performance of Training Process
Training was performed on a 5600x AMD CPU with 32GB of RAM. The dataset consisted
of 100 images per gesture for training across five different gestures, with a validation set of
20 images per gesture. The batch size was set to 32.

For MobileNetV2, training one epoch took approximately 30 seconds. This efficiency
can be attributed to the fact that only the top layers of the model were being trained,
while the rest of the pre-trained layers were frozen. This approach reduces the number of
trainable parameters, significantly speeding up the training process without compromising
the model’s ability to generalize well from the learned ImageNet features.

In contrast, training one epoch for EfficientDet Lite 2 took about 15 minutes. This
longer duration is due to the model’s architecture and the need to train more layers from
scratch compared to MobileNetV2.

8.2 Performance of Inference Process
During inference, various performance metrics were continuously recorded to monitor and
optimize the efficiency of the system 8.1. The primary metrics included cycle times, pre-
process times, inference times, memory usage, and model accuracy.

8.2.1 Real-Time Performance Data Collection

To gather precise data on the performance of the application, specific global variables were
initialized to store times and usage statistics:

• Cycle Times: Time taken for each complete loop of processing, including capturing,
preprocessing, inference, and logging.

• Preprocess Times: Time required to preprocess each frame before feeding it to the
model.

• Inference Times: Duration of the model inference per frame.

• Memory Usages: Memory consumption measured after each inference cycle.

• Model Accuracies: Accuracy of the model’s predictions collected after each infer-
ence execution.
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After completing each cycle, these times and statistics were measured using the Python
‘time‘ library for time measurements and ‘subprocess‘ for memory usage as shown in the
following script segment.

import time
import subprocess

# Example of logging a cycle time
start_cycle_time = time.time()
# Operations...
cycle_time = time.time() - start_cycle_time
cycle_times.append(cycle_time)

# Memory usage example
memory_usage = get_memory_usage()
memory_usages.append(memory_usage)

def get_memory_usage():
try:

mem_usage = subprocess.check_output([’free’, ’-m’]).decode(’utf-8’).
→˓ split(’\n’)

used_memory = mem_usage[1].split()[2]
return int(used_memory)

except:
return -1

# Model certainty example
# Confidence of detected objects
probabilities = interpreter.get_tensor(output_details[0][’index’])[0]
probabilities = probabilities * 100
probability = probabilities[0]
model_accuracies.append(probability)

Figure 8.1: Data collection

8.2.2 Logging Data

After the script was finished inferring, either by reaching the end of an input video file or,
if inference is running from a video camera, by pressing the key ”q”, the performance data
was logged in the log file, providing a historical record for later analysis 8.2.
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import datetime
def log_performance_metrics():

current_time = datetime.datetime.now().strftime("%Y-%m-%d_%H-%M-%S")
log_filename = f"logs/{GRAPH_NAME}_{current_time}.log"

average_cycle_time = sum(cycle_times) / len(cycle_times)
average_preprocess_time = sum(preprocess_times) / len(preprocess_times)
average_inference_time = sum(inference_times) / len(inference_times)
average_memory_usage = sum(memory_usages) / len(memory_usages)
average_accuracy = sum(model_accuracies) / len(model_accuracies)

with open(log_filename, ’w’) as log_file:
log_entry = f"Time: {current_time}\n" +

f"Avg. Cycle Time: {average_cycle_time:.8f}s\n" +
f"Avg. Preprocess Time: {average_preprocess_time:.8f}s\n"

→˓ +
f"Avg. Inference Time: {average_inference_time:.8f}s\n" +
f"Avg. Memory Usage: {average_memory_usage} MB\n" +
f"Avg. Accuracy: {average_accuracy:.2f}%\n"

log_file.write(log_entry)

Figure 8.2: Data logging

This comprehensive logging strategy ensures that all relevant performance data are
captured, enabling ongoing monitoring and optimization of the application’s performance.

8.2.3 Analyzing Data

To ensure consistency in the evaluation of model performance, a single video, available in
the ‘src‘ folder on the GitHub repository [14] with the name ‘video_test.mp4‘, was used
for testing all models. This approach guarantees that all models are tested under identical
conditions, enabling a fair comparison of their inference performance.

Testing Setup

The models tested include the non-quantized MobileNetV2, the natively quantized Effi-
cientDet Lite 2, and the EfficientDet Lite 2 optimized for NPU using Vela Tool. The video
capture setup was standardized using a script that ensures that the gesture is correctly dis-
played for all models by preprocessing the frames to the required dimensions. The relevant
preprocessing steps were referenced in a previous section (see 6.9). The hardware used in
the tests includes the NXP i.MX 93 board [42] and the personal computer with 32 GB of
ram and 5600x AMD CPU.

Inference Performance Results

The performance data collected during the tests are summarized as follows 8.1:
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Table 8.1: Performance Metrics of Different Models on Various Platforms on average

Model Quantization Platform Epochs Cycle Time (ms) ↓ Preprocess Time (ms) ↓ Inference Time (s) ↓ Memory Usage (MB) ↓
Accuracy (%) ↑

MobileNetV2 No x64 20 15 0.4 11 2228
73.01
EfficientDet Lite 2 No x64 60 131 1.6 128 2051
74.08
EfficientDet Lite 2 Yes x64 20 133 0.51 131 729
69.71
EfficientDet Lite 2 Yes x64 5 135 0.57 133 636
30.41
MobileNetV2 No i.MX93 20 220 13 157 367
76.61
EfficientDet Lite 2 Yes i.MX93 20 754 18 679 364
71.73
EfficientDet Lite 2 NPU i.MX93 20 239 15 169 369
64.28

Analysis and Conclusion

The porting of EfficientDet Lite 2 to an NPU via Vela Tool significantly improved the
cycle time, showing a marked decrease compared to the non-optimized quantized model.
Although there is a slight decrease in accuracy, the benefits of reduced cycle time and
lower latency are evident, highlighting the advantage of using NPU optimization for real-
time applications. This improvement demonstrates the potential for NPUs to improve
performance in scenarios where rapid processing is crucial.

Moreover, despite not being quantized or NPU-optimized, MobileNetV2 exhibited the
best cycle time and the highest accuracy among the tested models. This outcome suggests
that MobileNetV2 is inherently well designed for efficient processing and accuracy. All
models were trained with the same amount of data, which underscores the inherent efficiency
of MobileNetV2’s architecture.

Additionally, it is important to note that the MobileNetV2 model was also run on a high-
performance desktop PC, used as a baseline to understand the upper limits of processing
efficiency under optimal conditions. Inference on an i.MX or other ARM-based platform
is expected to be slower due to the less powerful hardware, although the accuracy of the
model’s predictions should not significantly differ.

These results illustrate the effectiveness of hardware-specific optimizations and the im-
pact of quantization and NPU deployment on the performance metrics of deep learning
models. They also highlight the inherent strengths of MobileNetV2’s design, which seems
to excel even without specialized hardware optimizations.

8.3 Methodology and Preparation for User Testing
User testing of the demonstration application was carried out in two main settings to eval-
uate its usability and effectiveness. The demonstration application employed MobilNetV2
as this model had the best ratio of accuracy with inference time. The first setting in-
volved internal tests among colleagues at the NXP branch in Brno, who are well-educated
individuals from technical faculties such as Faculty of Information Technology, Faculty of
Electrical Engineering and Communication and Faculty of Mechanical Engineering from
Brno University of Technology. The second phase of testing occurred during a presentation
at ”perFEKT JobFair 2024” 8.3 with NXP on April 24, 2024, where the application was
demonstrated to students primarily from the Faculty of Electrical Engineering and Com-
munication of Brno University of Technology, as well as various visitors and competitors
from the IT industry.
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8.3.1 Internal Developer Testing

The purpose of this phase was to provide insight and constructive feedback on user interface
design and overall user experience from the developer’s point of view. Colleagues were asked
to interact with the application and suggest enhancements that could make it more intuitive
and effective for end users. Feedback from this phase was instrumental in identifying
features that could enhance user satisfaction, such as the inclusion of confidence scores to
provide transparency about the model’s certainty in its predictions. This internal review
was crucial to refining the user interface and usability of the application before it was
introduced to a wider audience.

8.3.2 Public User Testing at perFEKT JOBFAIR 2024

The second phase took place during the ”perFEKT JobFair 2024”1 8.3 with NXP on April
24, 2024. Here, the application was presented to a diverse group of attendees. This public
demonstration served as a platform to assess the usability and effectiveness of the applica-
tion from an end-user point of view. Feedback was primarily focused on user experience,
interface design, and overall user satisfaction. This event provided valuable information on
how potential users interact with the application in a real-world scenario.

1This image has been included with the consent of the individuals depicted.
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Figure 8.3: The demonstration application presented at the NXP booth during perFEKT
JOBFAIR 2024. Visible in the center of the table is the application being demonstrated,
with myself and colleagues.

8.4 Evaluation of User Reactions and Feedback
Feedback from users highlighted several areas for improvement. Key points included the
need for enhancing the model’s accuracy, as the model struggled in a new untested scenario
with various light sources which in combination of displaying currently predicted gesture
resulted in rapid switching between various gestures as the model struggled to be confident
in only one gesture and oscilated between 2 to 3 different ones. Also, users were initially
confused by the dual-camera displays, not realizing that the smaller window was where
the model expects gestures to be directed for accurate recognition. In addition, there was
strong interest in how confident the model was in its predictions.

8.4.1 Enhancements to Graphical Display

In the latest version of the demonstration application [14], significant enhancements have
been made to improve the user interface and functionality. One major improvement is
the consolidation of the camera display windows. The application has been redesigned to
show only one window, the one that the model uses to view and analyze gestures. This
window has been enlarged to provide a clearer view of the gestures being demonstrated,
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making it easier for users to interact accurately with the inference application. In addition,
confidence scores have been included in the predicted gesture display and along with each
gesture in the gesture recognition overview. This feature significantly aids both users and
developers by providing a quantitative measure of the model’s certainty in its predictions.
The enhancement of the display setup helps mitigate previous user confusion and improves
the overall usability of the application.
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Chapter 9

Conclusion

9.1 Project Challenges
One of the main challenges faced in the project was the initial inefficiency in the training
process. Improving the training required iterative adjustments, fine-tuning the model, and
optimizing the script for better performance. The quality of training was highly dependent
on the learning rate, the loss function used, and, particularly, on factors such as batch size
and dataset size.

Another significant challenge was the unsuccessful attempt to quantify the MobileNetV2
model. Despite various efforts, the quantization of MobileNetV2 was not successful, which
prevented the testing and evaluation of the model’s performance and accuracy after quan-
tization. This issue necessitated the use of an alternative model, the EfficientDet Lite
2, which was successfully quantized and used for further experiments. The inability to
quantize MobileNetV2 highlighted the need to select appropriate models for specific hard-
ware optimizations and the potential limitations of certain architectures when it comes to
deploying them on resources-constrained devices.

9.2 Future Work
The development and testing of the gesture recognition system have shown promising results
in terms of performance and accuracy. However, several opportunities for enhancement
remain that could further improve the system’s effectiveness and broaden its practical
applications.

• Utilization of Docker Containers: To address the challenges associated with
package installations and dependencies, particularly for the EfficientDet Lite 2 model,
future iterations could leverage Docker containers. This approach would standardize
the development environment, reducing setup times and eliminating inconsistencies
across different platforms.

• Enhanced Data Augmentation: Increasing the diversity and volume of training
data through more sophisticated data augmentation techniques could significantly
improve model robustness and accuracy. Preprocessing the input to simplify the data
for the model could also enhance its ability to generalize from the training data to
real-world scenarios.
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• Advanced Image Preprocessing: Currently, the input from the camera is used
as captured without additional preprocessing modifications. To further enhance the
model’s performance and robustness, implementing advanced image preprocessing
techniques could be beneficial. Techniques such as converting images to grayscale,
adjusting contrast, or applying filters to emphasize specific features could significantly
simplify the visual data. This simplification can help the model focus on essential
gestures by reducing background noise and variations in lighting conditions.

• Application Control Integration: While the current application primarily serves
as a demonstration tool, integrating control functionalities to manipulate real-world
objects or software systems could vastly increase its utility. This would transform the
system from a proof-of-concept into a practical tool for interactive technology.

• Exploring Alternative Model Architectures: Future research should also ex-
plore and compare various deep learning architectures. Experimenting with different
hyperparameters, training strategies, and datasets could provide insights into optimal
configurations for speed and accuracy. This comparative analysis would help identify
the most effective models for gesture recognition.
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