
BRNO UNIVERSITY OF TECHNOLOGY
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

FACULTY OF INFORMATION TECHNOLOGY
FAKULTA INFORMAČNÍCH TECHNOLOGIÍ

DEPARTMENT OF INTELLIGENT SYSTEMS
ÚSTAV INTELIGENTNÍCH SYSTÉMŮ

COMPARATOR OF TEST RESULTS
KOMPARÁTOR VÝSLEDKŮ TESTŮ

BACHELOR’S THESIS
BAKALÁŘSKÁ PRÁCE

AUTHOR PATRIK ČERBÁK
AUTOR PRÁCE

SUPERVISOR Ing. ALEŠ SMRČKA, Ph.D.
VEDOUCÍ PRÁCE

BRNO 2024

Institut: Department of Intelligent Systems (DITS)

Student: Čerbák Patrik

Programme: Information Technology

Category: Software analysis and testing

Academic year: 2023/24

Assignment:

1. Learn about unit testing, integration testing, and Jenkins CI. Get familiar with Jenkins plugins for
processing test results and their issues over huge datasets. Get familiar with the testing of OpenJDK
in Red Hat Czech.

2. Design a tool which would be able to compare results among various configurations and different
runtime environments. The tool should effectively identify different test results.

3. Implement such a tool as a CLI or web-based application with a focus on direct usage from the
Jenkins environment.

4. Evaluate the tool on the results of testing OpenJDK in Red Hat Czech and Eclipse Adoptium
organization.

Literature:
• V. Armenise. Continuous Delivery with Jenkins: Jenkins Solutions to Implement Continuous

Delivery. 2015 IEEE/ACM 3rd International Workshop on Release Engineering, Florence, Italy,
2015, pp. 24-27, doi: 10.1109/RELENG.2015.19.

• Parsons, D. Unit Testing with JUnit. In: Foundational Java. Texts in Computer Science. Springer,
Cham. 2020. https://doi.org/10.1007/978-3-030-54518-5_10

Requirements for the semestral defence:
The first two steps of the assignment

Detailed formal requirements can be found at https://www.fit.vut.cz/study/theses/

Supervisor: Smrčka Aleš, Ing., Ph.D.

Consultant: Jiří Vaněk

Head of Department: Hanáček Petr, doc. Dr. Ing.

Beginning of work: 1.11.2023

Submission deadline: 9.5.2024

Approval date: 29.11.2023

Bachelor's Thesis Assignment
156966

Comparator of Test ResultsTitle:

Faculty of Information Technology, Brno University of Technology / Božetěchova 1/2 / 612 66 / Brno

Abstract
This bachelor’s thesis deals with the topic of OpenJDK testing in Red Hat and how to make
this testing more efficient. One of the main problems when testing is comparing whether
a particular test failed on only one variant of a test suite or on multiple variants (one
test suite with the same tests has many variants – they differ, for example, in operating
systems, runtime architecture, etc.). Because of this, in this thesis, a tool is designed
and implemented to compare test results on different variants of a test suite. This tool is
implemented in the Java programming language and can run standalone as a CLI program
or in a dedicated web environment. This comparator is also part of a so-called Jtreg
plugin, which is an open source plugin to Jenkins that is used by the OpenJDK QA team
at Red Hat. The tool itself allows you to do a lot of things, such as filtering test suites
for comparison, creating a failed tests comparison table, a failed tests stack trace similarity
table, or a table comparing the build result of individual test suites.

Abstrakt
Tato bakalářská práce se zaobírá tématem testování OpenJDK ve firmě Red Hat a jak
toto testování zefektivnit. Jeden z hlavních problémů při testování je porovnání, zda určitý
test spadl pouze na jedné variantě testovací sady nebo na více variantách (jedna testo-
vací sada se stejnými testy má mnoho variant – liší se například v operačních systémech,
běhové architektuře, atd.). Kvůli tomuto je v této práci navrhnut a implementován nástroj
pro porovnávání výsledků testů právě na odlišných varintách jedné testovací sady. Tento
nástroj je implementován v programovacím jazyce Java a může běžet samostatně jako CLI
program nebo ve speciálním webovém prostředí. Tento komparátor je zároveň součástí
takzvaného Jtreg pluginu, což je open source rozšíření do nástroje Jenkins, které se používá
v OpenJDK QA týmu firmy Red Hat. Samotný nástroj umožňuje spoustu věcí, napřík-
lad filtrování testovacích sad pro porovnání, vytvoření porovnávací tabulky spadlých testů,
tabulky s podobností stack trace spadlých testů nebo třeba tabulky porovnávající výsledek
sestavení jednotlivých testovacích sad.

Keywords
comparator, OpenJDK, testing, Red Hat, quality assurance, Java, Jenkins, unit tests, JU-
nit, Jtreg

Klíčová slova
komparátor, OpenJDK, testování, Red Hat, quality assurance, Java, Jenkins, jednotkové
testy, JUnit, Jtreg

Reference
ČERBÁK, Patrik. Comparator of Test Results. Brno, 2024. Bachelor’s thesis. Brno
University of Technology, Faculty of Information Technology. Supervisor Ing. Aleš Sm-
rčka, Ph.D.

Rozšířený abstrakt
Během psaní této bakalářské práce jsem byl zaměstnán jako stážista ve firmě Red Hat

Czech, konkrétně v OpenJDK QA týmu. Jelikož OpenJDK je velký projekt, jeho testování
je složitá záležitost. Existuje spoustu testovacích sad (například sady s jednotkovými testy
OpenJDK, sady s integračními testy, sady testující správnost implentace Javy, benchmarky,
atd.) a každá z nich má více různých variant – jako třeba varianty jedné testovací sady na
více operačních systémech, více architekturách procesoru, více nastavení OpenJDK a jiné.
Každá jednotlivá testovací sada obsahuje až statisíce různých jednotlivých testů, které jsou
během testování spuštěny.

Jedním z hlavních problémů během testovaní je tedy právě zjistění, zda určitý test, který
spadnul, spadnul pouze na jedné variantě testovací sady nebo na více variantách, případně
kterých (může jít třeba o test, který padá pouze na určité verzi operačního systému, ne
jinde) a jestli na všech těchto variantách spadnul ze stejného důvodu. Tento problém byl
dříve řešen zejmána manuálně – bylo třeba ručně najít a zkontrolovat výsledky právě na
rozdílných variantách.

Právě na vyřešení tohoto problému byla vytvořena tato práce – Komparátor výsledků
testů. Tento komparátor je naprogramovaný v jazyce Java a je dostupný jako samostatný
program spustitelný přes terminál, ale také k němu existuje speciální webové rozhraní přes
které jde spoustět. Celý tento projekt je open source a je součástí speciálního Jtreg pluginu
do nástroje Jenkins (nástroj na automatizaci sestavování a testování softwaru), jelikož tento
plugin/rozšíření je již používán (v infrastruktuře Red Hatu) pro zpracovávání výsledků testů
OpenJDK.

Samotný nástroj umožňuje uživateli filtrovat testovací sady (a také jednotlivé sestavení
těchto sad a jednotlivých testů) na základě specifikovaných parametrů, aby uživatel mohl
pracovat pouze s určitou podmnožinou testovacích sad, které ho zajímají (například varianty
jedné testovací sady na různých operačních systémech). Nástroj podporuje dva základní
druhy tohoto filtrování – první je pomocí názvu testovacích sad (například pomocí reg-
ulárního výrazu) a druhé je pomocí hodnot, které jsou uloženy v různých konfiguračních
souborech dané sady (filtrovat se můžou hodnoty z XML, JSON nebo properties souborů).

Poté, co jsou sady vyfiltrovány, komparátor provede jednu z operací, kterou uživa-
tel specifikoval. Kromě pomocných operací (operace bez nějakého většího informačního
charakteru pro uživatele) má komparátor tři základní operace – vytvoření tabulky spadlých
testů na vybraných testovacích sadách (řádky v tabulce jsou pro jednotlivé spadlé testu a
sloupce pro jednotlivé sestavení testovacích sad, uvnitř tabulky jsou znaky X, kde test
z řádku spadl na sestavení ze sloupce), vytvoření tabulky výsledků jednotlivých sestavení a
vytvoření tabulky podobnosti stack trace jednotlivých spadlých testů (místo znaku X jsou
v tabulce procenta reprezentující podobnost stack trace k referenčnímu sestavení, spočítané
pomocí Levenštejnovy vzdálenosti).

Nástroj byl otestován na OpenJDK QA infrastruktuře v Red Hatu, pro kterou byl
zároveň primárně vyvíjen (a během celého procesu vývoje byl nasazený a průběžně kolegy
využívaný), ale také na lokální testovací infrastruktuře, která byla vytvořena, aby simulo-
vala testovací infrastruktru organizace Eclipse Adoptium (jejich Jenkins instance je veřejně
dostupná, včetně možnosti stáhnout si výsledky jejich testů), která poskytuje velmi pop-
ulární předsestavené OpenJDK. Výsledek tohoto testování byl pozitivní, jelikož komparátor
funguje na obou infrastrukturách “out of the box” a je možné jej bez většího/težšího nas-
tavení využít.

Comparator of Test Results

Declaration
I hereby declare that this Bachelor’s thesis was prepared as an original work by the author
under the supervision of Ing. Aleš Smrčka, Ph.D. The supplementary information was
provided by Mgr. Jiří Vaněk. I have listed all the literary sources, publications and other
sources, which were used during the preparation of this thesis.

. .
Patrik Čerbák

May 5, 2024

Acknowledgements
I would like to thank my supervisor Ing. Aleš Smrčka, Ph.D., and my consultant Mgr. Jiří
Vaněk from Red Hat Czech, for leading me through the process of creating this thesis and
giving me helpful advice along the way. I am thankful for the support I got from both of
them, I appreciate it.

Contents

1 Introduction 4

2 Technologies and Process of Testing the OpenJDK 5
2.1 Important technologies and terminologies 5

2.1.1 Java, JVM, JDK, and JRE . 5
2.1.2 OpenJDK . 5
2.1.3 Unit testing . 6
2.1.4 Integration testing . 6
2.1.5 JUnit and its test output . 7
2.1.6 Jtreg . 7
2.1.7 Jenkins . 7

2.2 The process of testing OpenJDK in Red Hat 10
2.2.1 Critical Patch Update . 10
2.2.2 Building and testing the OpenJDK 11
2.2.3 Checking the results . 11
2.2.4 A place for comparator . 11

3 Designing the Comparator Tool 13
3.1 Comparator requirements . 13

3.1.1 Filtering the suites by name and other properties 13
3.1.2 Showing on what variants did the tests pass and on what failed . . . 13
3.1.3 Filtering the individual tests to compare 13
3.1.4 Showing only volatile tests . 14
3.1.5 Showing how the test results differ in time 14
3.1.6 Listing matched test suites . 14
3.1.7 Showing a table with the results of a build 14
3.1.8 Comparing test stack traces . 14
3.1.9 Integration into Jenkins . 14

3.2 Designing the Tool . 15
3.2.1 The way to use this tool . 15
3.2.2 Basic workflow . 15
3.2.3 Getting and parsing arguments . 16
3.2.4 Getting all available test suites . 16
3.2.5 Filtering by suite names . 17
3.2.6 Filtering by suite attributes . 18
3.2.7 Getting suite builds . 19
3.2.8 Filtering the builds . 19
3.2.9 Comparing test failures on multiple variants in a table 21

1

3.2.10 Listing matched test suites and builds 22
3.2.11 Showing a table with the results of builds 22
3.2.12 Comparing test stack traces . 23
3.2.13 Formatting the tool output . 25
3.2.14 Integration into Jenkins . 25

4 Implementing the Comparator 28
4.1 Jtreg plugin codebase and the place for comparator 28
4.2 Implementing the features . 29

4.2.1 Parsing arguments . 29
4.2.2 Getting all suites . 29
4.2.3 Filtering the suites . 30
4.2.4 Getting and filtering the suite builds 31
4.2.5 Comparing test failures . 31
4.2.6 Listing matched suites and builds . 31
4.2.7 Showing build result table . 32
4.2.8 Comparing test stack traces . 32
4.2.9 Formatters . 32
4.2.10 Web interface and integration into Jenkins 33

4.3 Command line switches . 34

5 Evaluating the Tool in Existing Environments 38
5.1 Evaluating the tool in Red Hat . 38

5.1.1 First situation – checking other OSs 39
5.1.2 Second situation – checking if a test failed because of the same reason 40
5.1.3 Third situation – investigating when test began to fail 42
5.1.4 Concluding testing in Red Hat . 43

5.2 Evaluating the tool on Eclipse Adoptium results 44
5.2.1 Adoptium testing infrastructure . 44
5.2.2 Creating local environment . 44
5.2.3 Testing the comparator . 46
5.2.4 Concluding testing on Adoptium’s data 49

6 Conclusion 51

Bibliography 52

A Installing the Tool 54
A.1 Install OpenJDK 17 and Maven . 54
A.2 Download and install Jenkins . 54
A.3 Compile and install the tool and plugin . 55

A.3.1 Install the plugin . 55
A.4 Installing test jobs . 55
A.5 Running the comparator from CLI . 56
A.6 Setting the web service . 56

B Extending the Tool 57
B.1 A place in the code to extend . 57
B.2 Contributing to the tool . 57

2

List of Figures

2.1 A diagram showing the Java compilation process. 6
2.2 A screenshot of the XML output of a JUnit test. 7
2.3 A screenshot of the Jenkins create new job screen. 8
2.4 A screenshot of a report page of the Jtreg plugin. 10
2.5 A chart showing a simplified workflow of our team while checking results

(with the comparator tool). 12

3.1 A simplified flowchart depicting the basic workflow of the comparator. . . . 16
3.2 A diagram showing the process of argument parsing. 16
3.3 A diagram depicting the process of setting a filter and filtering. 19
3.4 A flowchart depicting the whole process of filtering test suites. 20
3.5 A graph showing the process of getting and filtering the suite’s builds. . . . 21
3.6 A diagram showing the creation and usage of links to the comparator. . . . 26

4.1 A simplified class diagram of classes associated with argument declaration
and parsing. 30

4.2 A simplified class diagram of classes associated with getting all suites. . . . 30
4.3 A simplified class diagram of classes associated with filtering the suites by

their names. 31
4.4 A simplified class diagram of classes associated with formatters. 33
4.5 A screenshot of the comparator web wrapper. 34
4.6 A screenshot of the form for adding links to the comparator. 35

5.1 A screenshot of the left column on the job page with the two last builds shown. 40
5.2 A screenshot of the result table created by the comparator. 40
5.3 A screenshot of a stack trace of the test shown on the build’s report page. . 41
5.4 A screenshot of the result table with percentages created by the comparator. 42
5.5 A (cut) screenshot of the result table created by the comparator. 43
5.6 A screenshot of Jenkins with the local “Adoptium” jobs. 46
5.7 A screenshot of the matched jobs’ builds. 47
5.8 A screenshot of the table of failed compiler tests. 48
5.9 A screenshot of the table of build results. 48
5.10 A screenshot of the list of matched builds with the Grinder job. 50

3

Chapter 1

Introduction

At the time of writing this thesis, I am employed as an intern in an OpenJDK Quality
Assurance team at Red Hat. My main job there is to help with the processing of test
results and to make this process easier for the whole team.

Since OpenJDK is an extensive project with a lot of customers depending on it, there
are thousands of tests run every single build, so the task of processing the results can get
really difficult very easily. This is where the aim of this bachelor’s thesis comes in. I was
asked to design and implement a tool for comparing results from different test suite variants
(one test suite with the same tests can have many variants – they differ, for example, in
operating systems, runtime architecture, etc.).

This tool will be part of an open source plugin for Jenkins, and it should be usable as
a stand-alone tool through the terminal or a web interface. It should also be intuitive and
easy to use but also as generic as possible so that it can be used by the Red Hat OpenJDK
team and other teams and institutions that use similar infrastructures as we do.

In this thesis, all necessary technologies and tools are described to understand our
infrastructure and the process of testing OpenJDK in Red Hat. Then, the design and
implementation processes of the comparator tool are described. Lastly, there is a chapter
that evaluates this tool on our infrastructure and the infrastructure of the Eclipse Adoptium
organization.

4

Chapter 2

Technologies and Process of
Testing the OpenJDK

In this chapter, the technologies and tools necessary for understanding our team’s processes
and this thesis as a whole are described. It contains a basic description of unit and inte-
gration testing and other technologies (for example, the Jenkins tool) that are important
to understand.

There is also the analysis and description of our team’s testing of the OpenJDK. From
an outside perspective, this process can seem a bit difficult and confusing, but it is described
in detail to shine a light on it.

2.1 Important technologies and terminologies

2.1.1 Java, JVM, JDK, and JRE

Java is a high-level object-oriented language that is also platform agnostic. This is achieved
because rather than compiling into machine code, the Java compiler compiles a given code
into a so-called byte code. This byte code is then interpreted by Java Virtual Machine (or
JVM for short).

This JVM can be installed on a wide range of different platforms. So, for example, a
program compiled on Linux can then be run on Windows, MacOS, and many more platforms
without changing the original code. The visualization of this process can be seen in image
2.1. As you can tell, the files with Java code have a .java extension, and the compiled
byte code has a .class extension.

To install Java, you can choose between two things. If you want to develop Java software,
you need a Java Development Kit (or JDK for short), which contains all the necessary tools
for development, mainly the Java compiler (called javac), tools for packaging compiled
classes into JAR archives, debugger, and the JVM for running the Java programs. However,
when you just need to run the already compiled programs, only Java Runtime Environment
(or JRE), containing JVM, is needed.[10]

2.1.2 OpenJDK

You can get JDK and JRE binaries directly from Oracle (the company behind Java), but
there is also an OpenJDK, which is a free and open source implementation of Oracle’s
Java Platform, Standard Edition.[7] There are a lot of companies and foundations that are

5

Figure 2.1: A diagram showing the Java compilation process.

building and distributing their build/version of OpenJDK, for example, Red Hat, Microsoft,
Eclipse Adoptium, etc.

So, this is precisely where my team comes in. We are testing Red Hat’s build of Open-
JDK, which is then used in Red Hat Enterprise Linux or Fedora package repositories (but
Red Hat also distributes containers with their OpenJDK build or even a Windows build).

2.1.3 Unit testing

Generally, testing is a process for evaluating whether or not a system meets its specified
requirements. This process results in finding the difference between the expected and actual
results. Software testing consists of finding bugs, errors, or even missing requirements in
software.[3] Testing is a crucial (some may even say the most important) part of developing
any software. Especially when dealing with large and complicated software that is used in
production by millions of companies and people.

Probably the most common type of software testing is so-called unit testing. Unit testing
focuses on testing a single unit of code, like a method or a class.[11] With unit testing, each
individual piece (or component) of software is tested separately, without the interference
of other pieces. Ideally, every part of any software should have some unit tests written
with explicitly given criteria for the tests to pass (the criteria should be based on the
expected behavior of the piece of code that they test), and the tests should be ideally run
automatically with every change to the code (for example during the compilation process).

2.1.4 Integration testing

Another greatly used type of software testing is integration testing. This testing is done
when all the individual units of a program are formed together to create a functioning
program (or a bigger part of a program). It emphasizes the interaction between multiple
software units.[6]

So unlike unit testing, where each test is separate and does not interact with the interface
of other pieces of the program, integration testing does that and tries to cover the inter-unit
interactions.

6

2.1.5 JUnit and its test output

JUnit is an open source and probably the most popular unit testing framework for Java,
written by Kent Beck and Erich Gamma. Together with many other frameworks for different
programming languages, it is collectively in an xUnit framework family.[11]

The output of every JUnit test is saved into an XML file when run. These XML
files have a single standardized structure (equal to all the test frameworks from the xUnit
family). The main element is the <testsuite> element with some properties describing it
and <testcase> child elements for every test. When a failure occurs, a <failure> element
is generated with the test’s stack trace. You can take a look at an example of this XML
file from a test called RectangleTest in figure 2.2.

Figure 2.2: A screenshot of the XML output of a JUnit test.

2.1.6 Jtreg

Jtreg is a test harness tool (it started as a regression test harness, but it also supports unit
and other types of tests) for testing the JDK itself. It was created in 1997, and around
that time, JUnit did not exist yet. For a long time, this was a proprietary tool and closed
source. However, nowadays, it is open source and still the main method for testing the Java
Development Kit.[5]

Jtreg currently supports multiple different types of tests, including API tests, which
test the running of some program and whether it returns normally or not, compiler tests,
which whether some source files compile or not, applet tests, which test Java applets in
some HTML and shell tests which run a shell file and other files for testing some other
parts of the JDK.[8]

2.1.7 Jenkins

According to its website, “Jenkins is a self-contained, open source automation server which
can be used to automate all sorts of tasks related to building, testing, and delivering or
deploying software.”[4] Generally speaking, Jenkins is a tool for continuous integration of
software.

7

The Jenkins build system is written in Java and is very easily extensible thanks to its
architecture. Because of that, Jenkins has a very vast plugin ecosystem and is very flexible
in the tasks it can do.[1]

Jenkins jobs

In Jenkins, the users can define jobs (or projects), which are a set of defined tasks that
happen when a predetermined condition is met. These jobs are the core part of Jenkins
because all of the automation happens within them.

Figure 2.3: A screenshot of the Jenkins create new job screen.

When creating a job, the user can select when the job triggers. This can, for example,
be when a new push is made into a certain Git branch, after other projects are built,
or it can trigger periodically or even manually. After a job is triggered, a set of build
steps is run. These build steps can range anywhere from executing a shell command to
invoking compilated build and test scripts. Since there are a lot of plugins for Jenkins, the
possibilities are almost endless.

8

Then, finally, after all the build steps are done, post-build actions are executed. These
actions are, for example, used for packaging and publishing test results (or making a report
of the test results), but they can also be used for sending notifications that the job has
finished.

Results of builds

Every build of a Jenkins job can end up with a few different results depending on how
successful it was. These results are as follows:

• success – no test in this build failed

• unstable – some tests in this build failed, but the build itself did not crash

• failure – the build crashed while building or testing

• aborted – the build was aborted

• not built – the build was not built (can be for many reasons)

Jtreg plugin

Jtreg plugin1 (or officially jenkins-report-jtreg) is, in our infrastructure, a really impor-
tant Jenkins plugin. This plugin’s main purpose is to process results of JUnit, Jtreg, and
TCK/JCK (Technology/Java Compatibility Kit – a suite of tests for checking whether a
given implementation of a software, Java language in this case, is correct and according to
the specification. It also contains tools for running the tests and reporting the results.[12]).
The plugin reads archived XML files produced by these frameworks and creates summaries,
which then show the results of tests in detail.

These archives contain thousands of XML files with the failed tests’ stack traces and
other data concerning the tests’ running. To optimize this process, the plugin creates
two JSON files from them, one with only failed tests and their stack traces and one with
complete listings of all of the tests. Now, only these two files need to be accessed by the
plugin, speeding up the process immensely because opening thousands of small files instead
is inefficient and would take a lot of time.

Together with another plugin, chartjs-api2 it can also generate graphs on the project’s
page showing the number of failures (and how they change in time) or the total number of
tests run.

Even though this plugin was primarily created for our infrastructure and needs, it is
open source and licensed under the MIT license. It is also a part of the official Jenkins
plugin repository3.

1https://github.com/jenkinsci/report-jtreg-plugin
2https://github.com/jenkinsci/chartjs-api-plugin
3https://plugins.jenkins.io/report-jtreg/

9

https://github.com/jenkinsci/report-jtreg-plugin
https://github.com/jenkinsci/chartjs-api-plugin
https://plugins.jenkins.io/report-jtreg/

Figure 2.4: A screenshot of a report page of the Jtreg plugin.

2.2 The process of testing OpenJDK in Red Hat
This section focuses on the analysis and description of the process of testing the OpenJDK
in our team at Red Hat and all of its pitfalls.

2.2.1 Critical Patch Update

First, explaining what a Critical Patch Update (or CPU for short) is is important. Critical
Patch Updates are updates to Oracle’s products (including the JDK) that mainly provide

10

security patches. They are released on the third Tuesday of January, April, July, and
October.[9] The OpenJDK also follows this release structure.

2.2.2 Building and testing the OpenJDK

Each time a CPU to JDK comes, the QA team’s job is crucial. The team needs to build
all the supported versions of OpenJDK to all platforms (x86, ARM, etc.) and operation
systems (Red Hat Enterprise Linux, Fedora Linux, etc.) Red Hat supports. Then, after an
OpenJDK for any of these is built, a huge set of test suites is run on it, testing many aspects
of the OpenJDK as a whole. There are suites for unit tests, regression tests, Technology
Compatibility Kit tests, GUI tests, and cryptography tests, as well as benchmark and stress
tests to check if there is no loss in performance with the new versions.

Each of these test suites is run in many different runtimes with many different JDK
configurations. These configurations include whether or not to have debug symbols, whether
or not to run with a default or alternative garbage collector, whether or not to run on x11
or Wayland display servers, whether or not to have the JDK Flight Recorder (an event
recorder built in OpenJDK) on or off, and so on.

Each of these individual test suites has around a hundred thousand to half a million
different tests run.

So, to sum up, each version of OpenJDK is built on many platforms and OSes. Each
of these has a set of test suites with different configurations, and each suite runs hundreds
of thousands of individual tests that all need to be recorded.

This whole process is automated using Jenkins. In our infrastructure, each test suite
has a unique name depending on the OpenJDK version, operating system, platform, and
configuration, and each suite is treated as an independent Jenkins job. An example of this
name can be:

tck-jp8-ojdk8~rpms-el8.aarch64-fastdebug.sdk-el8.aarch64.beaker-x11.
defaultgc.fips.lnxagent.jfroff

When is this name split by a dot or a hyphen character (. or -), each part of the name
represents a different configuration.

When the tests are finished, Jenkins publishes the results for plugins to process them.
The Jtreg plugin then reads those results and generates a report page for every build.

2.2.3 Checking the results

Members of our team then check the reports for any critical test fails or new fails on suites
that were stable before. However, when encountering a failure, it is also important for my
colleagues to know why the test they observe failed. One of the most important checks is
to look at whether the test failed only on one platform (or configuration) or more. Another
thing they might want to know is whether the test failed on the same problem as the build
before (or the build with a different configuration).

2.2.4 A place for comparator

This is where this thesis’ comparator tool comes in. It should speed up this process by
comparing the results of the tests across the desired platforms and configurations and
showing where the tests differ. As my team’s whole testing pipeline is done using Jenkins,

11

the comparator tool will be implemented as a part of the above-mentioned Jtreg plugin.
However, the main core should be usable as a standalone command line tool. But more on
that in the next chapter.

Figure 2.5: A chart showing a simplified workflow of our team while checking results (with
the comparator tool).

12

Chapter 3

Designing the Comparator Tool

This chapter describes the comparator tool’s design and its place in our team’s infrastruc-
ture. First, an analysis of the tool’s requirements and capabilities is conducted, and then
the design is described, including how it should function and operate.

3.1 Comparator requirements
This section contains a review of every main requirement set for the comparator. Each
requirement has a heading and a short description explaining its meaning.

3.1.1 Filtering the suites by name and other properties

It is crucial for the tool’s usability to provide a simple solution for filtering which suites to
work with since working with all of the suites would make the tool unusable. For example,
the user may only want to compare suites that differ in the operating system but not
anything else. This is where a good and easy system for filtering the suites comes in.

There are two major things the user should be able to filter the suites by. The first
thing is the name of the suite (the name of the job in Jenkins), and the second is the job
properties saved in some configuration files in the job’s directory.

3.1.2 Showing on what variants did the tests pass and on what failed

This is probably the comparator’s most important feature since this is where the results
are compared. After thinking about this problem and discussing it with my team, the most
effective and comprehensive solution that came to mind was showing the user a results
table.

In this results table, each column should represent a different variant of a test suite (for
example, a test suite ran on different operating systems), and each row should represent a
specific test from this suite. This table’s contents (in the middle) should be a character X
when the test failed on the given variant from the column.

3.1.3 Filtering the individual tests to compare

Every test that failed at least in one variant should be shown in the table by default.
However, if the user wants to just see a few predetermined tests, they should have the ability
to do so. The comparator should have the option to filter tests by regular expressions.

13

3.1.4 Showing only volatile tests

There are tests that always fail in all variants. To avoid cluttering the table with them,
users may wish to filter them out and not show them. The comparator should be able to
do that and not show the tests (so only tests that fail in at least one variant, but not all,
should be shown).

3.1.5 Showing how the test results differ in time

Another important thing for the comparator to be able to show is the evolution of the test
result in time. This can be achieved by adding a possibility for the user to specify how
many builds of every matched suite (a build of a Jenkins job) into the history they want to
analyze. The tool should then take the last N builds of a job instead of just one and extend
the results with them.

3.1.6 Listing matched test suites

This feature should be available mainly for users who are getting accustomed to the tool. It
should match jobs (and their builds) based on all the criteria set by the user. Instead of cre-
ating a table of failed tests and cross-comparing them (or performing any other comparator
operation), it should just print a list of those matched jobs.

3.1.7 Showing a table with the results of a build

Sometimes, it is convenient to show a table with the general results of the whole build of a
test suite. This table should take all matched builds, get their result (according to 2.1.7),
and just print a table of them.

3.1.8 Comparing test stack traces

Apart from just comparing where tests failed, the tool should also be able to compare
whether the tests failed on the same problem – one way of doing this is by comparing the
stack traces of the tests.

This functionality should give a similar table as the test failure compare functionality,
but instead of putting Xs into the table, there should be percentages of how similar the
stack trace of a given test is to the stack trace of a referential build.

The referential build should be automatically chosen by some criteria (probably using
the first build the tool finds is enough), but the user should also have the ability to choose
a different referential build.

3.1.9 Integration into Jenkins

To integrate this tool more into the QA infrastructure, it should be easily accessible from
Jenkins. On every report page of the Jtreg plugin, there should be an adjustable set of
links that take the user to the comparator tool with preset arguments so the user can easily
look at the results without writing the arguments themselves.

14

3.2 Designing the Tool
Based on these criteria for the tool, the next section focuses on designing the comparator.
It starts by describing how this tool should be used. Then, it continues with an explanation
of the basic workflow of the program, and lastly, it describes the individual parts of the
tool (each individual part solves some requirement).

Even though this design is general and not specific, the tool is programmed in Java, so
it references some Java-related terminology or technologies.

3.2.1 The way to use this tool

There are two basic ways the user can use this tool – running it in the command line by
running the binary itself and running it through a web interface/wrapper, which runs the
tool and returns the output to the user.

Running the tool in the command line is pretty straightforward. The user can run Java
with the classpath (an option to locate external classes the JVM can use during runtime[2])
option to specify the location of the compiled comparator jar archive together with all of
its dependencies. The tool takes arguments directly from the user, specifying them in the
CLI. It can then show the output in multiple different formats, including text or HTML.

Another option is running the tool from a web interface – this interface is a simple
wrapper around the tool, which takes arguments through the interface, runs the tool in the
background, and then prints the output to the user (this is where the HTML formatting
makes the most sense). This webpage contains the basic help prompt of the tool as well as
an input field to specify the tool arguments and two output frames for the tool’s standard
output and the tool’s error output.

This webpage can also take the comparator arguments from the HTTP GET method,
enabling them to be encoded directly in the URL. This makes links from Jenkins to the
comparator possible.

The tool, with all of its tooling, is a part of the Jtreg plugin since there are already classes
and methods for getting test results and other things that are helpful for implementing the
comparator.

3.2.2 Basic workflow

Now, in this section, a description of the basic workflow is provided in bullet points. This
is important for understanding the whole comparator work process and its parts. Each of
these is described in detail later in this chapter.

1. getting arguments from the user, parsing them, and saving the options the user chose

2. getting all available test suites

3. filtering the suites

4. getting builds of these filtered suites

5. filtering the builds

6. running a comparator operation on the filtered builds

7. format and print the output to the user

15

Figure 3.1: A simplified flowchart depicting the basic workflow of the comparator.

3.2.3 Getting and parsing arguments

The users will normally specify the arguments through the command line. These arguments
are then parsed using an argument-parsing method, and the user-set options are saved to
a specialized class (with some default values pre-set). This class is then available for other
methods that can get the information through it.

If the parsing method encounters an unknown argument or a bad argument value, it
throws an exception informing the user that the input was wrong. The method also checks
for any missing mandatory arguments (also throwing an exception when missing).

Figure 3.2: A diagram showing the process of argument parsing.

3.2.4 Getting all available test suites

Since a test suite is a Jenkins job and every Jenkins job has its own directory (which implies
that every Jenkins job/test suite has a unique name), the system for getting the test suites
works by accessing the filesystem, getting all directories from a given parent directory, and
loading them into a list, which will be used later.

The user must specify the parent directory from which the tool will take the suites with
an argument. This argument is mandatory because the tool cannot work without loading
the test suites.

After loading all of the suites, the next step is to filter them to show only those that
the user desires. The next two sections discuss this.

16

3.2.5 Filtering by suite names

When thinking about filtering the suites by their name, the first thought was to create a
special query string system. This system can be very effective, but it only works in an
infrastructure that follows our naming convention.

It works by splitting every job name by . or - characters and comparing each split part
with a user-defined query string. The query string consists of N parts separated by spaces
(or other whitespace characters), and each of these parts corresponds with the 1st up to
the Nth part of the split job name.

You can see a LL(1) grammar of this syntax here:

⟨𝑠𝑡𝑎𝑟𝑡⟩ → ⟨𝑒𝑥𝑝𝑟⟩⟨𝑒𝑛𝑑⟩
⟨𝑒𝑥𝑝𝑟⟩ → ⟨𝑒𝑥𝑝𝑟⟩ ⟨𝑒𝑥𝑝𝑟⟩
⟨𝑣𝑎𝑙𝑢𝑒⟩ → value
⟨𝑒𝑥𝑝𝑟⟩ → ⟨𝑣𝑎𝑙𝑢𝑒⟩
⟨𝑒𝑥𝑝𝑟⟩ → !⟨𝑣𝑎𝑙𝑢𝑒⟩
⟨𝑒𝑥𝑝𝑟⟩ → *
⟨𝑣𝑎𝑙𝑢𝑒𝑠⟩ → ⟨𝑣𝑎𝑙𝑢𝑒⟩,⟨𝑣𝑎𝑙𝑢𝑒𝑠⟩
⟨𝑣𝑎𝑙𝑢𝑒𝑠⟩ → ⟨𝑣𝑎𝑙𝑢𝑒⟩
⟨𝑒𝑥𝑝𝑟⟩ → {⟨𝑣𝑎𝑙𝑢𝑒𝑠⟩}
⟨𝑒𝑥𝑝𝑟⟩ → !{⟨𝑣𝑎𝑙𝑢𝑒𝑠⟩}
⟨𝑒𝑥𝑝𝑟⟩ → 𝜀

⟨𝑒𝑛𝑑⟩ → $

In this syntax, there are some rules with terminal symbols that require further expla-
nation:

• value – a part of a job’s name. Only jobs that have exactly this value on the corre-
sponding position of their split name will be matched.

• { and } – an array with multiple values separated by commas (without spaces), jobs
with one of the values in the array on the corresponding position of their name will
be matched.

• ! – reverses the matches, everything but this will be matched. It also works with
arrays – everything but its contents will match.

• * – works as a wildcard that will match anything in this position.

• $ – the end of the query string, it is not written. It is just a helping symbol in the
syntax.

An example of this syntax:
"jtreg~full jp17 * {f37,el8} !aarch64 !{fastdebug,slowdebug} * * *"

• jtreg~full – specifies that the job’s first part should be exactly jtreg~full.

• jp17 – specifies that the job’s second part should be exactly jp17.

17

• * - asterisk is a wildcard that matches everything, so in this example, the job’s parts
on the 3rd, 7th, 8th, and 9th positions do not matter – the tool takes everything on
these positions.

• {f37,el8} – this is an array of possible matches, so the jobs’ part in the 4th position
can be either f37 or el8. There can be as many elements as a user wants, but commas
must split them with no spaces between them.

• !aarch64 – ! before a name is another wildcard that reverses the match, so this
matches everything, but aarch64.

• !{fastdebug,slowdebug} – the exclamation mark also works before arrays. It matches
everything but the values in the array.

This system works on our infrastructure because every test suite (Jenkins job) follows
this naming convention. However, for this tool to be as generic as possible, there is a second
way to filter the suites by their name, and that is by filtering with regular expressions.
Matching with regex is very broad and works on every kind of infrastructure that uses
unique names for every suite variant, but it can be harder to write than the simple query
string. These two systems cannot be combined, so the user must choose if they want to
filter with the query system or a regex.

3.2.6 Filtering by suite attributes

The comparator is able to filter the suites not only by name but also by their attributes.
That is done because not every infrastructure has enough information in the job name to
distinguish between the variants just by the name, but rather distinguishes between them
by some file with their properties. After discussing the file formats that are widely used,
the comparator supports XML, JSON, and basic properties (key : value pairs) files.

Now, continuing with the description of how this works. There is a file reader that finds
a value for each of these file types. The values from XML files can be found using XPath,
which is a special syntax for addressing parts of XML documents. The path primarily con-
sists of one or more individual parts separated by / character, which together form a path to
a node/nodes in the XML.[15] An example of this path: /variants/properties[3]/names
/gc. Java has a parser for this path in its standard library.

Values from JSON files can be found using a simple subset of JSONpath1. This subset
supports objects separated by dots, where the main object can (but it is not necessary)
be represented by the dollar symbol, and getting a value from an array can be done using
brackets. (This syntax was chosen because it is widely used in many programming languages
for getting data from a JSON object, and many people are familiar with it.) An example
of this query: $.variants.properties[3].names.gc.

Lastly, values from properties files can be found using a key from the pair.
While using this filter, the user declares it in a special argument. In this argument, they

specify the file they want to look in for the specific value, specify how to look for the value
(an XPath, JSONpath, or a key), and what the value is named (they can choose anything).
After that, a new argument will be dynamically generated based on the user-specified value
name. This argument takes a regular expression as a value and filters the suites by the
specified value in files by the regex. The user can define as many filters as they want.

1https://www.rfc-editor.org/rfc/rfc9535.html

18

https://www.rfc-editor.org/rfc/rfc9535.html

Figure 3.3: A diagram depicting the process of setting a filter and filtering.

This filtering by properties from files is more general than filtering just by suite name
and can be used in more infrastructures. As figure 3.4 depicts, the user can combine the
filtering by name and properties together.

3.2.7 Getting suite builds

Now, when the test suites are filtered comes the phase where the tool gets builds of each
suite. Similar to the suites itself, the builds are stored in the filesystem. Each Jenkins job
has a directory inside called builds in which there are directories corresponding for every
build. These directories are called by their build number (so simply 1, 2, 3, etc.).

So, to get the list of all builds, the tool goes through the filtered list of jobs, finds the
builds directory, and gets all directories inside of it. When it has the list of all builds, it
sorts and reverses the list (so the largest number is first – the latest build of the job). Now,
the tool takes 𝑁 jobs from the front of the list (the newest builds). By default, 𝑁 = 1.
However, the user has the option to change this number and take more builds. The 𝑁
builds are now filtered, and all those that match the filter are added to a list of all matched
builds from all matched jobs.

When a test suite is new, and the user wants to compare more builds into history than
there are, the tool simply compares all the available builds it can get. Also, by default,
the tool only compares builds of a suite that were successful or unstable, but it skips failed
builds. So when the user wants to see 𝑁 builds into history and 𝑀 of them failed and
others were successful/unstable, the tool only shows 𝑁 −𝑀 builds.

3.2.8 Filtering the builds

As with suites, builds can also be filtered. Since filtering the builds by their name makes
no sense (the name is always just a number), only filtering by build attributes (like their
build ID or other build artifacts) is applied. It functions almost the same as the filtering

19

Figure 3.4: A flowchart depicting the whole process of filtering test suites.

of jobs by their properties (section 3.2.6), but it has its own argument for setting a filter
(setting what file, name of the property, and where to find it in the file). The user can then
use a dynamic argument for the filtering itself, which is the same as with the suite filtering.

One filter is there by default, which is the filter to only take successful or unstable builds
(since there is a guarantee that all tests have a result). But if the user wishes to take all
builds, even failed, there is a switch for that, which disables this filter.

The whole process of getting and filtering the builds can be seen in the figure 3.5.

20

Figure 3.5: A graph showing the process of getting and filtering the suite’s builds.

3.2.9 Comparing test failures on multiple variants in a table

Moving on to the actual comparison operation that this tool is able to perform. This is
probably the most important feature and will be used the most. It is also the reason why
this tool was created in the first place.

The tool first takes a list of all individual tests that failed for each applicable build (there
are already methods for getting the failed tests in the Jtreg plugin, so those are used) and
then composes those failed tests into a table, where each row of the table represents a test
that failed in at least one of the builds and each column is assigned to one of the builds. If
a certain test fails in a certain build of a suite, a character X is put in the cell that matches
the test’s row and the build’s column.

To make the table more easily readable and tight, the tool gives the user a choice not to
show builds without any failed tests (since there can be a lot of builds, and the table would
be quite wide). However, this option is not enabled by default. The user has to specify
that they want that with a special argument.

Another option for the user to edit this table is the ability to, first, show only volatile
tests – meaning that tests that failed in all of the builds are not shown. And second,
filtering the tests to be shown – meaning that the user has the ability to specify a regular
expression and only tests that match this expression are put into the table. Both of these
options have a separate argument that the user can use (and also combine).

An example of how this table can look (with example data) is shown in table 3.1.
From the table, users can easily see how the tests they are investigating differ from

variant to variant. It can also give interesting patterns the user is looking for (a very
simple example can be that a few tests concerning handling objects failed on variants with

21

• 1: suite_A – build: 45

• 2: suite_A – build: 44

• 3: suite_A – build: 43

• 4: suite_A – build: 42

• 5: suite_B – build: 69

• 6: suite_C – build: 37

1 2 3 4 5 6
failed_test_1 X X X X
failed_test_2 X X X
failed_test_3 X X

Table 3.1: A failed test comparison table example with example data.

a default garbage collector but were successful on variants with a Shenandoah garbage
collector), which would otherwise take a long time to cross-check manually.

There are two arguments for choosing this operation. The first one generates the ta-
ble normally as described here, and the second one switches the rows and columns (but
otherwise works the same).

3.2.10 Listing matched test suites and builds

As already mentioned in the requirements section, this operation will be for the users who
want to try the tool and check how the filtering system works but do not want to wait for
the tool to generate the comparison table. The tool normally matches all suites, gets all
the builds that match the criteria, and prints the resulting matched data.

Another similar operation the tool will be able to do is to filter suites with the query
string and print the variant groups. It matches the suites, but instead of printing them in
a list, it splits the suite names by the . or - characters, and from each of the matched jobs,
it puts the split parts together into groups (first part to the first group, second to second,
etc.), enumerates these groups and prints them.

Both of these operations are not important for the comparator to function. However,
they can help with getting accustomed to the tool and mainly the system of filtering the
suites and builds. Both of these operations have a separate argument.

3.2.11 Showing a table with the results of builds

As was already described, sometimes it is convenient to also show a table of the result of a
whole build (how the build ended up, not the individual tests). That is why this operation
will be available.

The tool first filters all the jobs and then the builds, and after that, it looks into a file
called build.xml, where the result of the build is stored (however, the user can change this
default by setting a filter for the result value) and finds it.

When the file is missing, the comparator tracks it as if the build is currently running.
But since the file can also be missing in the case of a, for example, very nasty crash, the

22

RUNNING keyword in the table has a question mark next to it to remind the user that the
tool cannot be sure about that.

After that, the tool creates a table where rows represent all of the available results of
the build (already described in section 2.1.7), and columns represent each matched build.
Then, the character X is put in cells where the result in rows matches the build’s result. An
example of this is shown in table 3.2.

• 1: suite_A – build: 23

• 2: suite_A – build: 22

• 3: suite_A – build: 21

• 4: suite_A – build: 20

• 5: suite_B – build: 42

• 6: suite_C – build: 78

1 2 3 4 5 6
SUCCESS X
UNSTABLE X X X
FAILURE X
ABORTED X
NOT_BUILT
RUNNING?

Table 3.2: A build result table example with example data.

This operation has its own argument, and it is going to be the only operation that the
user can combine with other operations since it can sometimes be helpful to show this table
together with, for example, the table of individual test results.

3.2.12 Comparing test stack traces

With the operations that were already established in this thesis, users of this tool will be
able to determine which variants of a test suite the tests failed and which variants they
were successful in. However, it is also helpful to know if the test failed due to the same
reason on all variants or not.

This is where this operation comes in. The tool first matches all jobs and their builds
and gets all of the failed tests of the builds (till now, this has been the same process as
getting the results for just the test failure comparison table – section 3.2.9). After that,
instead of just creating a table of where the tests failed, the tool takes the outputs of
all of the failed tests (each test can have multiple outputs, for example, standard output,
standard error output, etc.), concatenate these outputs together and compare the similarity
of them (in percentages). After the tool finishes running, it shows the output to the user
in a table.

23

Levenshtein Distance

This comparison is done using an algorithm called the Levenshtein Distance. Levenshtein
Distance is an algorithm created by mathematician Vladimir Levenshtein. The distance
itself represents the number of operations (insert character, delete character, replace char-
acter) that need to be done to turn a string into another.[16]

An algorithm for calculating this distance, taken from Wikipedia (and adjusted for
easier code integration based on a GitHub repository of a project called similars[13]), can
be seen here:

𝑠 is the first string, and 𝑡 is the second string to compare.[14]
𝑑← [𝑠.length() + 1, 𝑡.length() + 1]
𝑖← 0
𝑗 ← 0
for 𝑖 ≤ 𝑠.length() do

for 𝑗 ≤ 𝑡.length() do
if 𝑖 = 0 then

𝑑[𝑖][𝑗]← 𝑗
else if 𝑗 = 0 then

𝑑[𝑖][𝑗]← 𝑖
else

if 𝑠.charAt(𝑖− 1) = 𝑡.charAt(𝑗 − 1) then
𝑠𝑢𝑏← 𝑑[𝑖− 1][𝑗 − 1] // substitution

else
𝑠𝑢𝑏← 𝑑[𝑖− 1][𝑗 − 1] + 1

end if
𝑖𝑛𝑠← 𝑑[𝑖][𝑗 − 1] + 1 // insertion
𝑑𝑒𝑙← 𝑑[𝑖− 1][𝑗] + 1 // deletion
𝑑[𝑖][𝑗]← minimum(𝑠𝑢𝑏, 𝑖𝑛𝑠, 𝑑𝑒𝑙)

end if
𝑗 ← 𝑗 + 1

end for
𝑖← 𝑖+ 1

end for
return 𝑑[𝑠.length(), 𝑡.length()]
Then, to calculate the similarity percentage from this distance, this formula will be

used:
100− 100 · 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒

maximum(𝑠.length(), 𝑡.length())

Creating the table

These similarities are calculated for all stack traces from different builds that failed on the
same test (or a single line in the table). By default, they take the first matched build as a
referential and compare the other builds on a line to it. However, the user has the ability
to change the referential build with an argument.

After that, the table with the percentages is printed. An example of how this can look
is shown in the table 3.3.

24

• 1: suite_A – build: 45

• 2: suite_A – build: 44

• 3: suite_A – build: 43

• 4: suite_A – build: 42

• 5: suite_B – build: 69

• 6: suite_C – build: 37

1 2 3 4 5 6
failed_test_1 100 91 91 91
failed_test_2 100 34 89
failed_test_3 100 100

Table 3.3: A stack trace comparison table example with example data.

3.2.13 Formatting the tool output

The tool will be able to print the output in different formats. The user can choose a
formatter with an argument, but the default is always the plain formatter – meant for
printing into the command line without any color or styling, just the text.

Another option for the user is printing with color formatting, which utilizes ANSI escape
codes to add color or other formatting to the command line output. However, the contents
of the output itself remain the same.

The last option for the user is HTML formatting, which utilizes HTML tags and CSS
styling. It is the main output format for using the tool through the web interface.

These formatters are already present in the Jtreg plugin. However, they need to be
extended. Mainly, a feature for printing tables through them needs to be added. Printing
tables in HTML is easy since there are already tags for tables, but the job will get harder
while implementing table printing to the command line because the table needs to be aligned
with the right amount of spaces to be readable.

An example of this ASCII output of a table with example data can be seen below.

1) job_A - build:45
2) job_A - build:44
3) job_A - build:43
4) job_B - build:78

| 1 | 2 | 3 | 4 |
failed_test_1 | X | X | | X |
failed_test_2 | | X | X | |
failed_test_3 | | | | X |

3.2.14 Integration into Jenkins

One of the goals of this tool was to be as easily usable as possible, ideally even without
knowing all its different arguments and settings. To achieve that, the tool will be integrated
into the Jenkins’ Jtreg plugin.

25

Specifically, the report pages of some builds (report pages from the Jtreg plugin) will
have dynamically generated links (or buttons) with already pre-filled comparator arguments
that take users to the comparator web wrapper. So the Jenkins administrator can set the
links in the Jenkins settings.

In the settings, the administrator can create multiple sets of links. Each set contains
a regular expression and is only shown on report pages of suites whose names match the
regular expression (because it can be unnecessary to have all links on all types of suites).
For each set of links, the administrator can then define multiple links – each link contains a
name shown on the report page, and each link has a field to write the comparator arguments
(one on each line) that will be encoded in the URL.

Apart from this, in the Jenkins settings, there will also be forms in which the user can
define a suite and build filters (there will be fields for four things in those forms: config file
name, whether it is a job or build filter, name of the config item and how to find the config
item) for looking into files. The data from these fields will then be compiled and added
automatically as filter definition arguments to the links. The administrator can then only
need to enter the dynamic argument with the value by which to filter (to individual links
declaration), nothing else (it is primarily meant to make the declaration of arguments more
straightforward).

Figure 3.6: A diagram showing the creation and usage of links to the comparator.

Macro system

For these links to the comparator to function properly, they need to be generated dy-
namically (meaning that they are different on every report page). For this reason, the
administrator can define some macros in the arguments field, and they will be replaced

26

with a value from a specific suite’s or build’s name or value from configuration files when
a user loads the Jtreg plugin’s report page with those links.

Since these macros work with a suite’s name, there is one more field when declaring a
link to the comparator, a spliterator – this field takes a regular expression by which the
suite’s name is split into parts. There will then be macros that refer to a specific part of
the split name.

Those macros look like this, %{macro}, and there are multiple types of macros the
administrator can use:

• %{x}, where the administrator will replace x with a number corresponding with the
“xth” split part of the suite’s name (indexing starting with 1), t will be replaced with
that part.

• %{N-y}, where y will be replaced with a number corresponding to the “yth” split part
of the suite’s name from the back, and it will be replaced with that part. If just %{N}
was entered, it will be replaced with the last part of the name.

• %{SPLIT} or %{S} will be replaced verbatim with the regex from the spliterator field.

• %{dynamic}, where dynamic is replaced with the name of a config item specified in
the filter declaration section. It will be replaced by a value from the corresponding
config file from the current job and build.

For an example of this system, let’s say that there is a job with the job name jtreg~full-
jp11-ojdk11~rpms-f36.x86_64-fastdebug.sdk-f36.x86_64.testfarm-x11.defaultgc.
legacy.lnxagent.jfroff, spliterator is set to [.-] and a build filter with the name of the
config item set to nvr (its evaluation in the config file is java-17-openjdk-17.0.6.0.9-0.4.
ea.el8).

Now, if the administrator were to set these two arguments

--regex "%{2}%{S}%{N-1}_rhel9_%{N}"
--nvr "%{nvr}"

it would be evaluated and replaced with

--regex "jp11[.-]lnxagent_rhel9_jfroff"
--nvr "java-17-openjdk-17.0.6.0.9-0.4.ea.el8"

27

Chapter 4

Implementing the Comparator

This chapter describes the process of implementing the comparator tool based on the design
from the previous chapter. It digs into the codebase of the Jtreg plugin and describes the
modules and where the comparator is placed. Then, it describes where each feature of the
comparator is implemented.

4.1 Jtreg plugin codebase and the place for comparator
The comparator tool itself is part of an already mentioned Jenkins plugin, the Jtreg plugin.
This plugin already contains classes and tools for analyzing test results, which were used
when implementing the comparator. Since plugins for Jenkins are programmed in Java
(including this plugin), the comparator tool is also written in Java.

One of the tasks while implementing the comparator was to split the codebase of the
Jtreg plugin from one big module (as it was before) to multiple modules, each for a logical
part of the plugin. This was done so the comparator (and a diff tool that is described
below) can be used independently as a command line tool without having dependencies on
any Jenkins classes. You can read a brief description of each module in the list below.

• report-jtreg-lib – This module is a library module, it contains classes, that are
used by the other modules. It, for example, contains formatting classes that are
used for formatting the tools’ output (plain text, formatting with color or HTML
formatting), model classes that describe the model structure of the tests, their results,
and whole suites (an abstraction used by the plugin), a class for constants, and many
more useful tools.

• report-jtreg – This module is the module for the Jenkins plugin itself, it has classes
and other files that describe the graphical interface of the plugin as well as settings
and all the other classes, that in some way extend the classes of Jenkins itself.

• report-jtreg-diff – This module contains a standalone tool that shows differences
between two builds of a test suite. It can show many differences, such as the number
of tests run, the number of tests that were fixed, or the number of new fails. It can
be viewed as a “spiritual predecessor” to the comparator.

• report-jtreg-service – This contains a service that is used for running the diff tool
(and also the comparator tool) and showing the output. It acts as a web application

28

that takes the tool arguments from the user and runs the corresponding tool with
them. After the tool finishes running, it shows the output to the user.

• report-jtreg-comparator – The comparator is placed into this module.

The Jtreg plugin uses Apache Maven for its build system. The top-level directory of
the plugin contains a pom.xml file in which there is a description of all the modules. Each
module also contains a pom.xml file that describes the building process of the module. Most
of the modules simply build into a single JAR file (an archive of compiled Java classes),
but the report-jtreg module builds into an HPI file – Jenkins uses this file format for
plugins. Thanks to this partitioning, the comparator tool can be built separately and used
as a stand-alone command line tool.

4.2 Implementing the features
If not specified otherwise, all of the Java classes described in this section are located in the
report-jtreg-comparator module, specifically inside of the report-jtreg-comparator/
src/main/java/io/jenkins/plugins/report/jtreg/main/comparator directory. That
means that every class in this directory has io. Jenkins.plugins.report.jtreg.main.
comparator package.

The main class is called VariantComparator.java, and it calls all other comparator
classes and operations.

4.2.1 Parsing arguments

There are four classes used for parsing and saving arguments from the user:

• arguments/Arguments.java – This is a template class for all available arguments/-
command line switches of this tool. It stores their name, help text for it, and the
usage of it (the information about whether an argument is expected after the switch
and what kind).

• arguments/ArgumentDeclaration.java – The specific arguments are declared in this
class.

• Options.java – This class saves all of the options the user specifies through the
arguments. It is created while parsing arguments and then passed to other classes
that use the values saved into it. It also has dynamic lists for the filters from properties
the user can specify.

• arguments/ArgumentsParsing.java – This class takes the arguments from the main
class and parses them one by one. The result of this parsing is saved into the Options
class (even the dynamic argument filters).

4.2.2 Getting all suites

These classes are used for getting (or “listing”) all of the suites:

• listing/DirListing.java – This is an interface for other classes that do the listing
of the suites (Jenkins jobs). It declares only one method, getJobsInDir(), which
returns a list of all jobs it finds.

29

Figure 4.1: A simplified class diagram of classes associated with argument declaration and
parsing.

• listing/FsDirListing.java – An implementation of this interface that finds the
job in the file system. It looks into a user-set directory (the directory with all the
Jenkins jobs) and returns all jobs it finds.

• listing/ListDirListing.java – This is another implementation of the interface,
and it is only used in unit tests, as it replaces looking into the filesystem by just
returning a list the user gives it in the constructor.

Figure 4.2: A simplified class diagram of classes associated with getting all suites.

4.2.3 Filtering the suites

There are four classes that are used for filtering suites by their name, specifically:

• jobs/JobsProvider.java – This is an interface for other classes that filter by name.
It defines methods for adding jobs to it, filtering them, and returning them, as well
as methods for parsing (and listing possible) additional arguments that these filters
can get to specify the filtering behavior further.

• jobs/JobsByRegex.java – This is an implementation of this interface for filtering
the jobs by their name using regular expressions.

• jobs/JobsByQuery.java – This is an implementation of this interface for filtering
the jobs by their name using a query string described earlier.

• jobs/DefaultProvider.java – This is also an implementation of this interface, and
it is used as the default if no filter by name is specified. It just returns all of the jobs.

30

Figure 4.3: A simplified class diagram of classes associated with filtering the suites by their
names.

In the report-jtreg-comparator module, there is also a class named JobConfigFilter
.java that is only used for filtering the jobs by properties saved in their config files. For
looking into config files and finding values in them, it uses a class from the report-jtreg-
lib module called ConfigFinder.java.

This class takes the file to look into, the name of the value to find (so it can cache the
value and not look for it in the filesystem multiple times during one run of the tool), and
a query by which to find the value in the file (e.g. XPath) as arguments in its constructor.
It also has a method called findInConfig() for finding the value and returning it. It
currently supports finding in XML files by XPath, JSON files by a subset of JSONpath,
and properties files by a key.

4.2.4 Getting and filtering the suite builds

The class for getting and filtering the builds is called Builds.java. There is a method
called getBuilds() inside that gets the builds of a given job, filters them according to the
filters, and returns them in a list. Apart from that, there are also methods for getting
information about a single build, such as the build number or the name of a job to which
this build belongs.

4.2.5 Comparing test failures

The main logic of this functionality is located in a FailedTests.java class. There are
two public methods in this class. The first one is createFailedMap(), and it creates a
hash map with builds and their respective tests that failed in the builds. The second one
is named printFailedTable(), and it takes the hash map as an argument and creates a
table of builds and their failed tests (with the X characters in it) and prints it using the
chosen formatter.

This class gets the failed tests of a build using other classes from the report-jtreg-lib
module, mainly BuildSummaryParser.java and BuildReportExtended.java. The func-
tionality for filtering which tests to show in the table and the functionality to show only
volatile tests is also implemented here.

4.2.6 Listing matched suites and builds

For this, there is a JobsPrinting.java class. It has two methods: printJobs() for printing
all of the matched jobs and builds and printVariants() for printing and enumerating the
matched jobs’ variants. Both of these are meant to be used with some filters set.

31

4.2.7 Showing build result table

For printing a table of the builds’ results (or a “virtual table” as it is called in the tool),
there is a VirtualJobsResults.java class. The first method is private, and it is called
getBuildResult(). It finds the result of the build in the builds’ build.xml file (or another
file if the user sets it differently than the default) using the ConfigFinder.java class from
the lib module. If no result was found (null was returned), it marks the build with
RUNNING? result, as it is most likely currently building.

The second method, printVirtualTable(), is public, and it creates the table from the
builds’ results it gets and prints it using a formatter.

4.2.8 Comparing test stack traces

The last main operation of this tool is located in a class called StackTraceCompare.java,
and it has multiple important methods:

• getTestTrace() – A private method that gets a stack trace of a failed test of a
build. As was already mentioned, every test can have multiple different outputs
(like standard output, error output, etc.). In this method, a status line of a test
together with every one of these outputs is taken and concatenated together. Since
these outputs can be very long and the Levenshtein distance algorithm takes a lot
of memory, there are four ways the user can choose to cut this output and make it
shorter:

– Head – Concatenate the outputs first and then take N characters from the be-
ginning of the whole string.

– Tail – Concatenate first and take N characters from the end.
– HeadEach – Take the first N characters from each of the outputs and then con-

catenate them together into a string.
– TailEach – Take the last N characters from the outputs and then concatenate

them together.

• getTraceSimilarity() – This private method does the comparison of the similarity
of two stack traces. It uses Levenshtein distance for it and converts it into percentages
as was described in section 3.2.12. The Levenshtein distance algorithm is implemented
according to the similars project.1

• compareTraces() A public method that takes the failed test hash map from the
FailedTests.java class as an argument, creates a table with percentages represent-
ing the similarity of stack traces from it (using the other methods) and prints it to
the user using a formatter.

4.2.9 Formatters

The formatters for printing output of this tool are located in the jtreg-report-lib mod-
ule because they are, apart from the comparator, also used by the diff tool, meaning that
they existed before work on the comparator was started. They were just extended. Specifi-
cally, they are all located in the report-jtreg-lib/src/main/java/io/jenkins/plugins
/report/jtreg/formatters directory.

1https://github.com/judovana/similars

32

https://github.com/judovana/similars

There are multiple classes in this directory, but the ones that are important for the
comparator are as follows:

• Formatter.java – The interface class for the formatters. It defines methods for
printing lines, adding styles, printing tables, generating headers for the tables, etc.

• BasicFormatter.java – This is an abstract class that implements the interface and
defines functionality for the main methods like printing into the command line.

• PlainFormatter.java – A class with the plain formatting implementation. The
methods for adding styles do nothing in this class. It extends the BasicFormatter
class.

• ColorFormatter.java – A class with the color formatting – methods for adding styles
print ANSI escape sequences for colors or other formatting like making the text bold.
It extends the BasicFormatter class.

• HtmlFormatter.java – A class with the HTML formatting – methods for adding
styles print HTML tags with styles. The method for printing a table does so using
HTML tags. It also extends the BasicFormatter class.

Figure 4.4: A simplified class diagram of classes associated with formatters.

4.2.10 Web interface and integration into Jenkins

The whole report-jtreg-service module works as a web interface for the comparator.
The web interface was initially created for the diff tool, not the comparator, but it was
reworked, and it now supports both tools.

As for the integration into Jenkins – the creation of links to a preset comparator, multiple
classes deal with that in the report-jtreg module:

• ConfigItem.java – This class is meant for saving the information about job/build
filters from config files the user can set in the Jenkins settings.

• LinkToComparator.java – This class is for saving information about a single link to
the comparator. It saved data about the label, a spliterator for the job name, and
the list of arguments (with unparsed dynamic macros).

33

Figure 4.5: A screenshot of the comparator web wrapper.

• ComparatorLinksGroup.java – This class holds a list of individual links to the com-
parator as well as a regular expression, so the group of links is only shown on the jobs
that match it.

• JenkinsReportJckGlobalConfig.java – This class is for getting user-given data
from the forms in settings and creating individual classes from them.

• BuildReportExtendedPlugin.java – This is a class for the build report page that is
generated for every build by the Jtreg plugin. It gets all of the groups of links that
the user specified and checks if some of the groups’ regex matches the name of the
job this report belongs to. If so, it takes the links from this group, converts all of the
dynamic macros to data for the specific build, and puts those links at the top of the
report page.

4.3 Command line switches
In the table below, you can see every command line switch that the comparator supports,
a type of value that is expected after the switch, and a text describing the argument (most
of the descriptions are taken directly from the comparator’s help message, which is located
in the HelpMessage.java class).

34

Figure 4.6: A screenshot of the form for adding links to the comparator.

Switch name Expected value format Description
--path a system path to a direc-

tory
A system path to a directory with your
Jenkins jobs. This argument is mandatory.

--query a query string Filtering of the jobs by a query string. The
tool splits every job name by . or - char-
acters and compares each split part with
the query string. The query string consists
of N parts separated by spaces (or other
whitespace), and each of these parts corre-
sponds with the 1st to the Nth part of the
split job name.

--exact-length a number Meant to be used in combination with
--query. It filters only the jobs that have
this specified length (number of elements
in its name).

--regex a regular expression The jobs will be filtered by the specified
regex. Either --query or --regex can be
used, not both together.

--force – Used for forcing vague filters (used with
--query or --regex), that could poten-
tially take a long time.

--print – Print all jobs and their builds that match
the rest of the arguments without actually
doing any operation on the builds or tests.

--enumerate – Print lists of all variants of jobs (that
match the rest of the arguments).

--compare – Print a table of all failed tests (of matched
job builds) and the builds where they
failed.

--list – Print the same table as with --compare,
but switch the rows and columns.

--compare-traces – Print a table of all failed tests (of matched
job builds) with the similarities (in per-
centages, calculated with Levenshtein dis-
tance) of the stack traces to the referential
build’s (by default the left-most build in
each table row) stack trace.

35

Switch name Expected value format Description
--virtual – Print a table of all matched jobs’ builds

and their result (e.g. SUCCESS, UNSTABLE,
etc.). Can be used as a standalone op-
eration or combined with any other op-
eration. Probably should be run with
--skip-failed set to false.

--help – Prints a help message.
--skip-failed a boolean Specify whether the comparator should

skip failed tests (only take successful and
unstable) or take all. The default value is
true.

--history a number Specify the maximum number of builds to
look into from every job.

--only-volatile a boolean Specify true to show only non-stable tests
in the failed test table (shows only tests
that are NOT failed everywhere). The de-
fault value is false.

--formatting plain, color or html Specify the formatting the output of the
tool will have. The default is plain.

--exact-tests a regular expression Specify (with regex) the exact tests to
show only. The rest of the tests will be
ignored.

--use-default-build a boolean If set to true and no matching build with
the given criteria was found, the tool will
use the latest (default) build instead. The
default value is false.

--hide-passes a boolean If set to true, when printing the compare
table, only builds with at least one failed
test will be shown. The rest will be hidden
to make the table smaller. Set to false by
default.

--set-referential job name:build number Use with --compare-traces operation if
you want to set a different referential build
than the left-most one in a row. Rows
where the referential build passed (the test
is successful) will be skipped.

--cut-trace head, headEach, tail or
tailEach:number of charac-
ters

Since Levenshtein distance consumes a lot
of memory, long stack traces need to be
cut. There are 4 options to cut them
with this argument: head – concat all
outputs and cut N characters from the
start, headEach – if any test output is
longer than N cut from the start from each,
tail/tailEach – similar as head, but cut
from the end. Default is tailEach and
5000 characters.

36

Switch name Expected value format Description
--job-config-find config file name:name of

the config item:query
This argument is used for declaring job/-
suite filters. First, the name of a config
file needs to be specified, then the name of
the config item this filter is for (anything
can be chosen), and then a query to de-
fine how to find the item in the config file.
This query can be XPath for XML files,
a subset of JSONpath for JSON files, or
a key for properties files. After declaring
this argument, you can use a new dynamic
argument with the name you have chosen.
It takes regex as a value, and it will filter
the jobs by it. This argument can be used
multiple times.

--build-config-find config file name:name of
the config item:query

Same as --job-config-find, but declares
a filter for builds, not jobs.

--dynamic a regular expression Replace dynamic with the name of a con-
fig item declared through one of the two
arguments above. An example of the dy-
namic arguments: --build-config-find
"changelox.xml:nvr/build/nvr" was
declared. Now, --nvr "java-17-.*" can
be used to match only builds, that have
changelog.xml file in their build direc-
tory and the value on XPath /build/nvr
in that file matches "java-17-.*.

37

Chapter 5

Evaluating the Tool in Existing
Environments

This chapter focuses on evaluating the usage and capabilities of this tool. It starts with
an analysis of the tool on our infrastructure in the Red Hat OpenJDK QA team and then
continues with an analysis on the infrastructure of the Eclipse Adoptium organization.

The main things it tries to dig into are the usability of the tool and its ability to save
time by giving the users the features they are looking after.

5.1 Evaluating the tool in Red Hat
Since this tool was tailored to our infrastructure and needs, it was deployed on our server
from the start of development. That means that the tool should work as intended in our
infrastructure. This section focuses on how it is used and how my teammates can achieve
tasks using it.

Since the Jtreg plugin was already in our infrastructure, adding the new features to it
required only making a release and updating the plugin through Jenkins. On our internal
server, there is also a systemd service that runs the web service with the comparator, and
it has its own port from which it is accessible.

A simple methodology for testing was chosen – comparing how many web pages need
to be visited in order to achieve a task (there are three tasks in this section) without and
with the comparator tool. Comparing time may seem like a better methodology for this,
however, it can be really misleading since every person has a different pace when achieving
these tasks, and the speed of loading Jenkins’ web pages and generating result tables with
the comparator can also play a role in making it biased. That is why counting the number
of visited web pages was chosen instead. The time difference between the comparator and
non-comparator approaches can be easily deduced from these numbers.

Three different situations (based on real problems that can occur) in Red Hat’s Open-
JDK QA infrastructure were created to test whether this tool is useful and can help with
the testing. The first situation covers a simple check of whether or not a test also failed on a
different variant of a job or not. The second situation covers checking whether a test failed
because of the same reason on other variants of a job or not (by calculating the similarity
of their stack traces). Lastly, the third situation involves going into a history of a build and
checking when a test started to fail.

38

These three situations cover all of the comparator’s main functionalities that are actively
used in Red Hat while testing the OpenJDK, so the testing should paint a convincing picture
of whether or not the comparator works as expected in the Red Hat’s infrastructure – which
is the goal of this testing.

5.1.1 First situation – checking other OSs

In the first situation, there is a test suite called

jtreg~tier1-jp17-ojdk17~portable-el7portable.x86_64-release.sdk-el7z.
x86_64.vagrant-x11.defaultgc.legacy.lnxagent.jfroff

(as the name of the suite suggests, it runs on Red Hat Enterprise Linux 7) with a test called

runtime/os/TestHugePageDecisionsAtVMStartup.java#THP_enabled#
TestHugePageDecisionsAtVMStartup_THP_enabled

which failed in the 52nd build of this suite. The goal is to check whether or not the test
also failed on other operating systems (at least RHEL 8 and Fedora 39) or not.

Without comparator

First, let’s see how would this problem be tackled without using the comparator tool. Let’s
say that the starting point is on the report page (generated by the Jtreg plugin) of the 52nd
build of this suite. On this report page, it is clearly shown, that the test failed.

To check the suite on another operating system, one of the easiest ways to do it manually
is to take the suite name, change the value corresponding to OS, and use the search field
in Jenkins to find the suite.

So, to get RHEL 8 and Fedora 39 versions of this suite, the el7z in the name has to be
replaced either with el8 or f39 and searched through the search bar. The search result is
a page of a suite, not of a build. So, on the page, the user needs to click the most recent
build from the column on the left, and after the page of the build loads, they need to get
to the Jtreg report by clicking a button.

Now, they are on the desired report page, where they can see that the test has not
failed. It took loading and going through three web pages to get the information about one
different OS, so it took six to get the information about both RHEL 8 and Fedora 39.

With comparator

With the comparator tool available, this task is much easier. The starting point is again
the report page of the 52nd build, however, instead of manually rewriting the suite name to
other OSs and checking the results manually, there is a link generated on this page called
Compare OSs, which takes the user to a webpage with the result we are looking for.

So, with the comparator, this task took just one click and only a few seconds.

Results

As the comparator was designed mainly for tasks similar to this one, it excelled, and it was
much quicker to get the results than by checking manually. Without the comparator, 7
pages needed to be loaded. With the comparator, only 2 – the initial report page and the
page with the comparator results.

39

Figure 5.1: A screenshot of the left column on the job page with the two last builds shown.

Figure 5.2: A screenshot of the result table created by the comparator.

5.1.2 Second situation – checking if a test failed because of the same
reason

This situation revolves around a test called

compiler/uncommontrap/TestDeoptOOM.java#id0#TestDeoptOOM_id0

which fails in

jtreg~tier1-jp21-ojdk21~portable-el7portable.x86_64-fastdebug.sdk-el7z.
x86_64.vagrant-x11.shenandoah.ignorecp.lnxagent.jfroff

suite (in its build number 7) and its variant on different operating systems. The goal of
this task is to check if the test failed on these variants (at least on RHEL 8 and 9) because
of the same reason or not (involves checking the stack traces).

The starting point of this task is the report page of the mentioned suite.

40

Without comparator

To tackle this problem without a comparator, the process is similar to the process described
in section 5.1.1.

Since the task starts on the report page of the first suite, the user can already see the
first stack trace of the test. To see the stack traces on different operating systems, the user
needs to change the suite name (change el7z to el8z and el9z) and search for this suite
through the search bar. Then, they need to choose the latest build, open the build’s page,
and then go to the build’s report page, where they can see the stack trace printed and check
whether it was the same as on other variants or not.

This again takes 3 different pages to load for each variant, so 6 in total.

Figure 5.3: A screenshot of a stack trace of the test shown on the build’s report page.

With comparator

To achieve this with comparator, the user can again just click the Compare OSs button on
the first report page, and it takes them to the page with comparator. However, there is
only a table of where the test failed (there are only Xs in the table, not percentages), not
why.

For this reason, the switch for operation needs to be changed in the input field there.
After it is changed from --compare to --compare-traces, a table with the percentages
representing similarities between the stack traces shows up. So, the user needed to visit 3
pages in total.

However, it is important to note that this step can be skipped by defining a new button
in the Jenkins settings. This button can already exist directly for comparing stack traces.
But since it is not defined in our infrastructure (at least not yet), the process was shown
as it is now.

Results

The comparator is again much quicker and more efficient for this task. Without it, the user
needs to visit 7 web pages in total, whereas with the comparator, only 3 (with editing a
command line switch).

41

Figure 5.4: A screenshot of the result table with percentages created by the comparator.

It needs to be said that while checking the stack traces manually, the user can also see
the specific stack trace, but when using the comparator, they can just see how similar the
stack traces are. This is one of the things that this tool lacks (as of the time of writing this
thesis), but it is one of the first features that are planned to be implemented in the future
– comparing two stack traces.

5.1.3 Third situation – investigating when test began to fail

The last testing situation described in this section involves getting information about when
a test started to fail. There is a test suite called

jtreg~full-jp17-ojdk17~upstream~cpu-el7.x86_64-hotspot.release.sdk-el7z.
x86_64.vagrant-x11.shenandoah.ignorecp.lnxagent.jfroff

and in its 23rd build, a test called

java/nio/channels/FileChannel/directio/DirectIOTest.java#DirectIOTest

failed. The goal of this task is to determine in what build of the suite the test first started
to fail. The task again starts on the build report page.

Without comparator

Without the comparator, the best way to tackle this problem would be to get to the page
of the job from the report page. This can be done by searching for the job in the Jenkins
search field or just editing the URL in a browser to cut the last part of it.

On this page, the user can choose any builds in the left column to open and inspect
whether the test they are investigating failed or not.

To check the last 20 builds for this failing test, the user would need to visit 20+ pages
and manually check for the test.

With comparator

To achieve the completion of this task with the comparator, the user can again just click
a button (it can again be the Compare OSs button, but also any other since we only care
about the current suite now, which is always in the comparison) and it takes them to a
page with a generated table.

42

To show only relevant results, some pre-filled arguments need to be edited or added:

• --regex ... to --regex jtreg~full-jp17-ojdk17~upstream~cpu-el7.x86_64-
hotspot.release.sdk-el7z.x86_64.vagrant-x11.shenandoah.ignorecp.
lnxagent.jfroff – this is done to only show results of the suite, not other suites (as
the link to the comparator intents)

• --history 5 to --history 20 – change the number of builds the comparator should
look into

• add --exact-tests java/nio/channels/FileChannel/directio/DirectIOTest.
java#DirectIOTest – this limits the table to just the one test that is needed to be
investigated

• add --skip-failed false – do not skip failed builds, the user might be interested
in them while solving this task

The correct results are shown to the user when submitting the form with the edited
arguments. It took loading 3 pages and editing data in a form.

Figure 5.5: A (cut) screenshot of the result table created by the comparator.

Results

Once again, the comparator showed that it was suited for this task, and the user needed to
visit much fewer web pages (3 with the comparator, 20+ manually) to get all the information
they needed. It is also important to mention that if the buttons to comparator were set
differently, they could achieve this task even without editing the command line arguments
in the form (it is not currently necessary for our team because this task is not as common
as other) and make the comparator approach even more efficient.

5.1.4 Concluding testing in Red Hat

In conclusion, the testing of this tool on OpenJDK QA infrastructure in Red Hat was a
success. The tool was created for our infrastructure, so it suits it well and works as intended.
The situations that were described in this section were all taken directly from real testing,
and the comparator helped speed up all of them.

43

There are, of course, many more features of the comparator that were not looked at in
this section. However, the main features (that were the most important for the comparator
to be useful) were looked upon, and the result was great – the tool is capable of saving
important time.

5.2 Evaluating the tool on Eclipse Adoptium results
Eclipse Adoptium is one of the organizations (their working group is composed of many
companies, including Microsoft, Google, Red Hat, Canonical, or IBM) that provide prebuilt
binaries of the OpenJDK. Their build of the OpenJDK is called Temurin. It is openly
available, and it is currently one of the most popular builds.

This section describes their infrastructure for testing the Temurins, creating a local
testing environment based on it (with test results downloaded directly from them), and
testing whether the comparator works on it.

The evaluation of this tool on Adoptium’s infrastructure/data is important for this
thesis because one of the goals of this tool was to be as general as possible so it can be
used in other infrastructures than Red Hat’s. There is also an effort for Adoptium to adopt
the Jtreg plugin, so the compatibility of the comparator should be tested. Adoptium also
publishes test result archives of some builds of their jobs publicly on the internet, so it is
easy to get example data from them.

The result of this testing should be proof that the comparator will work flawlessly on
their infrastructure.

5.2.1 Adoptium testing infrastructure

Adoptium also uses Jenkins to run its builds and tests. Their Jenkins instance is available
to be looked at by the public1. As opposed to Red Hat’s OpenJDK infrastructure, their
jobs (test suites) do not have names with every information about that job’s configuration.
Most of this is saved in a properties file every job and build contains.

In addition to normal jobs that run a set of tests (for example, Jtreg tests, JCK tests,
etc.) and return the results normally, there is also a special job called Grinder. This job
comes into play when other jobs fail, and a user wants to rerun the job. The job will be
rerun with the same parameters (but it is also possible for the user to just rerun the failed
tests, not the whole build), but it will not be under the original job. It will be under the
Grinder job (the build of the Grinder will have a properties file and tags specifying the
original job).

Apart from this, the infrastructure is very similar to Red Hat’s. The jobs running Jtreg
tests (and other compatible types of tests of the Jtreg plugin) normally generate archives
with XML files with the test results, so the Jtreg plugin/comparator tool should work with
it.

5.2.2 Creating local environment

To create the local environment, a fresh instance of Jenkins with the Jtreg plugin was
installed. Then, 7 test jobs (based on real jobs that run Jtreg tests in Adoptium) were
created:

1https://ci.adoptium.net/

44

https://ci.adoptium.net/

• Test_openjdk11_hs_sanity.openjdk_s390x_linux

• Test_openjdk11_hs_sanity.openjdk_x86-64_windows

• Test_openjdk17_hs_dev.openjdk_x86-64_linux

• Test_openjdk17_hs_dev.openjdk_x86-64_linux-alpine

• Test_openjdk17_hs_sanity.openjdk_aarch64_linux

• Test_openjdk22_hs_extended.openjdk_x86-64_linux

• Test_openjdk23_hs_sanity.openjdk_s390x_linux

The pipeline of each of these jobs consists of downloading one of two (only one in some
jobs to have them be stable) possible archives with test results (these results are downloaded
directly from Adoptium in each run), copying a testenv.properties file with information
about the build (the example data in these files correspond to the build’s parameters like
test type, Java version, architecture, specific operating system, etc.) and processing this
with the Jtreg plugin.

An example of the shell script these jobs run for copying the environment properties file
and downloading the archives can be seen here:

#!/bin/bash
mkdir jtreg

cp $HOME/testenvs/testenv-0.properties testenv.properties

if (($RANDOM % 2)) then
VERSION=12

else
VERSION=13

fi

wget https://ci.adoptium.net/view/Test_openjdk/job/
Test_openjdk23_hs_sanity.openjdk_s390x_linux/$VERSION/artifact/
openjdk_test_output.tar.gz -P jtreg/

For the simulation of the Grinder job, a job that runs a script that downloads a ran-
dom result archive from a build of one of these 7 other jobs and copies the corresponding
environment variable to it was created. This simulates a rerun of one of the other jobs on
Grinder. The bash script (shortened to not take much space here) used for that can be
seen here:

#!/bin/bash
mkdir jtreg

NUM=$((RANDOM % 7))

case $NUM in
0)

TESTENV=0

45

BUILD=Test_openjdk23_hs_sanity.openjdk_s390x_linux/13
;;

. . .

6)
TESTENV=6
BUILD=Test_openjdk23_hs_sanity.openjdk_s390x_linux/14
;;

esac

cp $HOME/testenvs/testenv-$TESTENV.properties testenv.properties
wget https://ci.adoptium.net/view/Test_openjdk/job/$BUILD/artifact/

openjdk_test_output.tar.gz -P jtreg/

After setting the environment, each job was run a few times to download the results to
the local system, and then the web service with comparator was set up according to the
guide in section A.6. Now, the local environment is ready for the testing itself.

Figure 5.6: A screenshot of Jenkins with the local “Adoptium” jobs.

5.2.3 Testing the comparator

Two different approaches were used to test the comparator. One approach was to only
compare (create a table of failed tests on multiple variants) normal jobs, and the second
was to compare results from one job with its builds in the Grinder job.

Comparing test results from jobs

To check whether the comparator works on normal Adoptium jobs, it was tested by solving
a task using the combination of filtering by the job names and the properties file that is in
every build.

The task was to compare compiler failed tests of the last 3 builds of all jobs running
on any version of Red Hat Enterprise Linux. To achieve this, these arguments of the
comparator were used (the --path argument to the Jenkins jobs directory is already preset):

• --compare – the operation for creating the table of failed tests

46

• --regex ".*linux$" – for only getting the jobs that match this regular expression
(jobs running on Linux)

• --build-config-find "archive/testenv.properties:os:OS_SPECIFIC" – for set-
ting a build filter that looks into archive/testenv.properties file and finds the
value with the OS_SPECIFIC key

• --os "rhel" – for only getting the builds that have rhel value with the OS_SPECIFIC
key

• --history 3 – for getting the 3 last builds

• --exact-tests ".*compiler.*" – for only matching and showing compiler tests

• --formatting html – for HTML formatting

As can be seen in pictures 5.7 and 5.8 and after cross-checking manually with the
testenv.properties files and test results on Jtreg report pages, the matched jobs and
their builds are correct, as well as the matched and shown tests. All of the results shown
correspond to the manually checked data.

Figure 5.7: A screenshot of the matched jobs’ builds.

47

Figure 5.8: A screenshot of the table of failed compiler tests.

To expand on this task, the comparator was also tried with --compare-traces argument
instead of --compare to check the similarity of the test stack traces. The result of this was
the same table as in 5.8, but instead of Xs, there were only percentages. Specifically, there
were only 100s in the table. And indeed, after checking the test stack traces through the
Jtreg plugin, they were all the same.

The last thing that was checked was creating a table with the results of the whole builds
with the --virtual argument. This generated a table that can be seen in image 5.9, and
after checking the build results through Jenkins, a conclusion can be made that also this
table was generated correctly.

Figure 5.9: A screenshot of the table of build results.

Comparing results from jobs with Grinder

Now, in this section, there is a simulation of the comparison of results from jobs with their
equivalent builds in Grinder. To do that, a job called Test_openjdk11_hs_sanity.openjdk
_s390x_linux needs to be taken, and its builds’ testenv.properties file needs to be
looked at. Based only on the properties in the file (using no filters by job name), the last
3 builds of the job should then be matched. This should only get the original job’s builds
and some Grinder’s builds.

These comparator arguments were used:

• --print – setting the comparator operation to only print the matched jobs with their
builds (this testing situation is more about matching the correct builds rather than
comparing the results)

• build config file filters – I used 3 build config file filters for the testing because 3
were enough to match only the original job’s builds. However, with more jobs, more

48

would probably need to be used (or the matching could be done by some tag in some
config file the build’s directories contain).

– --build-config-find "archive/testenv.properties:suite:SUITE_TYPE" – for fil-
tering by the test suite type

– --build-config-find "archive/testenv.properties:version:JAVA_VERSION" – for
filtering by the Java version

– --build-config-find "archive/testenv.properties:os:OS" – for filtering by the
operating system

• values to those filters – I used these values to be matched using the filters:

– --suite "sanity"

– --version "11"

– --os "linux"

• --history 10 – Even though only the 3 last builds are needed, the number of builds
needs to be set to a larger number because there are also other job’s builds in the
Grinder, and to find the 3 from the original job, the tool needs to search more in the
job’s build history.

• --formatting html – for HTML formatting

As can be seen in picture 5.10, the builds that these commands matched are the ones
that were expected. It matched builds from the original job as well as builds of this job in
Grinder (these builds were also manually checked in Jenkins to be sure they were really of
the original job).

The only setback to this is the fact that the --history argument needs to be used
with a larger value than 3, even though getting only the last 3 builds is enough. That is
because Grinder has builds of multiple jobs, and there is no clear way to tell what builds
are of which jobs before filtering them, and the comparator only looks at the last N builds
(based on the --history argument) regardless of whether it matches the filters or not –
the matching is done after getting the builds.

5.2.4 Concluding testing on Adoptium’s data

To sum up the testing on Adoptium’s data, it would be fair to say it was a success. The
tool (with the Jtreg plugin) works pretty much “out of the box” on the data directly taken
from Adoptium, and the different structure of jobs does not seem to be an issue.

The tool was capable of doing the main operations on the normal Adoptium jobs as well
as in combination with the Grinder job, and in my opinion, it can also be useful in their
infrastructure and save them time.

49

Figure 5.10: A screenshot of the list of matched builds with the Grinder job.

50

Chapter 6

Conclusion

In this thesis, I designed and created a tool for comparing the results of tests on multiple
variants of a single suite, such as different operating systems, architectures, configurations,
etc.

There were many challenges along the way, mainly in the tool’s design stage, since I
needed to develop an ideal way of showing the tool’s results to the user from the ground
up. Fortunately, this tool was continuously deployed in our infrastructure with every major
change, so most design flaws were captured right in the beginning without being dealt with
in later stages.

The tool’s implementation was done according to the plan, which is also described in
this thesis. The tool is programmed in Java, and it can be used independently through a
terminal or a special web interface, which works as a wrapper around the tool.

This tool was mainly meant for Red Hat’s OpenJDK QA team, which I am a part of,
but it was created with the usage elsewhere also in mind. Because of that, the tool is very
generic (there is a minimum of infrastructure-specific functions there), and it is ready to
be used in other teams that test the OpenJDK or even other projects with a similar test
structure (the Jtreg plugin of which the comparator is a part of, supports archives of XML
test results from JUnit/xUnit, Jtreg, and JCK).

The tool was tested on Red Hat’s OpenJDK QA test results (it was directly tested
in the infrastructure) and on the test results from Eclipse Adoptium. This testing was a
success – the tool worked as intended on both.

To sum up, I would say that the tool’s design and implementation were successful since
it is already running in our infrastructure and is actively used by my colleagues to check
the results of the OpenJDK tests. The plugin with this tool has also been published as an
open source project on GitHub1 and is in the Jenkins’ plugins repository2.

1https://github.com/jenkinsci/report-jtreg-plugin
2https://plugins.jenkins.io/report-jtreg/

51

https://github.com/jenkinsci/report-jtreg-plugin
https://plugins.jenkins.io/report-jtreg/

Bibliography

[1] Armenise, V. Continuous Delivery with Jenkins: Jenkins Solutions to Implement
Continuous Delivery. In: 2015 IEEE/ACM 3rd International Workshop on Release
Engineering. Florence: IEEE, May 2015, p. 24–27. ISBN 978-1-4673-7070-7.
Available at: https://doi.org/10.1109/RELENG.2015.19.

[2] IBM Corporation. IBM i 7.5 Documentation: Java classpath online. IBM
Corporation, october 2023. Available at:
https://www.ibm.com/docs/en/i/7.5?topic=usage-java-classpath. [cit. 2024-04-07].

[3] Jamil, M. A.; Arif, M.; Abubakar, N. S. A. and Ahmad, A. Software Testing
Techniques: A Literature Review. In: 2016 6th International Conference on
Information and Communication Technology for The Muslim World (ICT4M).
Jakarta, Indonesia: IEEE, November 2016, p. 177–182. ISBN 978-1-5090-4521-1.
Available at: https://doi.org/10.1109/ICT4M.2016.045.

[4] Jenkins documentation contributors. Jenkins User Documentation: What is
Jenkins? online. Jenkins. Available at: https://www.jenkins.io/doc/. [cit.
2024-03-25].

[5] Kasko, A.; Kobylyanskiy, S. and Mironchenko, A. Testing OpenJDK.
In: OpenJDK Cookbook. 1st ed. Birmingham, UK: Packt Publishing, January 2015,
p. 165–202. ISBN 978-1-84969-840-5.

[6] Leung, H. K. N. and White, L. A study of integration testing and software
regression at the integration level. In: Proceedings. Conference on Software
Maintenance 1990. San Diego, USA: IEEE, November 1990, p. 290–301. ISBN
0-8186-2091-9. Available at: https://doi.org/10.1109/ICSM.1990.131377.

[7] OpenJDK website contributors. OpenJDK online. Available at:
https://openjdk.org/. [cit. 2024-03-26]. Path: Home.

[8] OpenJDK website contributors. An Introduction to jtreg. OpenJDK online.
Available at: https://openjdk.org/projects/code-tools/jtreg/intro.html. [cit.
2024-04-06]. Path: Home; jtreg harness; An Introduction to jtreg.

[9] Oracle Corporation. Critical Patch Updates, Security Alerts and Bulletins.
Oracle online. Available at: https://www.oracle.com/security-alerts/. [cit.
2024-04-03]. Path: Home; Resources; Critical Patch Updates;.

[10] Parsons, D. The Java Story. In: Foundational Java: Key Elements and Practical
Programming. 2nd ed. Cham, Switzerland: Springer International Publishing,

52

https://doi.org/10.1109/RELENG.2015.19
https://www.ibm.com/docs/en/i/7.5?topic=usage-java-classpath
https://doi.org/10.1109/ICT4M.2016.045
https://www.jenkins.io/doc/
https://doi.org/10.1109/ICSM.1990.131377
https://openjdk.org/
https://openjdk.org/projects/code-tools/jtreg/intro.html
https://www.oracle.com/security-alerts/

September 2020, p. 1–10. Texts in Computer Science. ISBN 978-3-030-54518-5.
Available at: https://doi.org/10.1007/978-3-030-54518-5_1.

[11] Parsons, D. Unit Testing with JUnit. In: Foundational Java: Key Elements and
Practical Programming. 2nd ed. Cham, Switzerland: Springer International
Publishing, September 2020, p. 251–278. Texts in Computer Science. ISBN
978-3-030-54518-5. Available at: https://doi.org/10.1007/978-3-030-54518-5_10.

[12] Søndergaard, H.; Korsholm, S. E. and Ravn, A. P. A Safety-Critical Java
Technology Compatibility Kit. In: Proceedings of the 12th International Workshop on
Java Technologies for Real-Time and Embedded Systems. New York, USA:
Association for Computing Machinery, October 2014, p. 1–9. JTRES ’14. ISBN
978-1-4503-2813-5. Available at: https://doi.org/10.1145/2661020.2661021.

[13] Vaněk, J. FindDupes.java. Similars GitHub repository online. 14. november 2023.
Available at: https://github.com/judovana/similars/blob/main/FindDupes.java. [cit.
2024-04-07]. Path: Repository home; FindDupes.java.

[14] Wikipedia contributors. Levenshtein distance. Wikipedia, The Free Encyclopedia
online. 23. february 2024. Available at:
https://en.wikipedia.org/wiki/Levenshtein_distance. [cit. 2024-04-07].

[15] World Wide Web Consortium. XML Path Language (XPath) Version 1.0
online. Edited by Clark, James and DeRose, Steve. World Wide Web Consortium,
november 1999. Available at: https://www.w3.org/TR/xpath-10/. [cit. 2024-04-17].

[16] Zhang, S.; Hu, Y. and Bian, G. Research on string similarity algorithm based on
Levenshtein Distance. In: 2017 IEEE 2nd Advanced Information Technology,
Electronic and Automation Control Conference (IAEAC). Chongqing, China: IEEE,
March 2017, p. 2247–2251. ISBN 978-1-4673-8979-2. Available at:
https://doi.org/10.1109/IAEAC.2017.8054419.

53

https://doi.org/10.1007/978-3-030-54518-5_1
https://doi.org/10.1007/978-3-030-54518-5_10
https://doi.org/10.1145/2661020.2661021
https://github.com/judovana/similars/blob/main/FindDupes.java
https://en.wikipedia.org/wiki/Levenshtein_distance
https://www.w3.org/TR/xpath-10/
https://doi.org/10.1109/IAEAC.2017.8054419

Appendix A

Installing the Tool

The guide in this section assumes you are using Debian 12. However, if you edit some of
the commands, it should also work correctly on other Linux distributions. Even though
there are pre-compiled binaries in the binaries directory, this guide assumes that you will
compile the code yourself. If you want to use the pre-compiled binaries, you can do so, but
you will have to edit the paths in some commands.

A.1 Install OpenJDK 17 and Maven
Other OpenJDK versions (the more recent ones, to be precise) might also work, but I
recommend using 17. If you are using Debian, you can install both packages by running:

sudo apt install openjdk-17-jdk maven

A.2 Download and install Jenkins
There are multiple ways to download and use Jenkins. However, I will focus on running the
Jenkins from the .war file you can download from https://www.jenkins.io/download/ (I
recommend using the current LTS version that is listed there).

After you download the file, you can run it with this command (assuming you are in
the same directory as the downloaded file and the file is called jenkins.war):

java -jar jenkins.war

Then, you can open the webpage localhost:8080 in your browser and enter the pass-
word that is shown in the command line output.

After that, you can follow the instructions on the web page:

1. Install suggested plugins – wait for them to install

2. Create first admin user – you can either enter the data or click the “Skip and
continue as admin” button (and use the initial password from the terminal earlier)

3. Instance configuration – you can keep the default or choose a different address

4. Jenkins is ready! – click the Start using Jenkins button

54

https://www.jenkins.io/download/

A.3 Compile and install the tool and plugin
First, extract the source code (it is located in the src directory) from this thesis into a
directory and navigate to it through the terminal. (Note that you can use the upstream
code from https://github.com/jenkinsci/report-jtreg-plugin. However, you must
edit and set some things yourself – especially in the report-jtreg-service module. I will
assume you are using the code that was submitted with this thesis.)

Now, you can compile the plugin and comparator by running:

mvn clean install

When running this for the first time, all of the dependencies are downloaded, so it might
take some time.

A.3.1 Install the plugin

On your local Jenkins instance, navigate into Manage Jenkins, Plugins and Advanced
Settings.

Here, under the Deploy Plugin header, you can click the Browse button, navigate
into the source code directory, and then navigate into report-jtreg/target. Choose
the report-jtreg.hpi file and click the Deploy button.

On the next page, you can check the box to restart Jenkins when the installation is
done. After Jenkins restarts, the plugin should be installed.

A.4 Installing test jobs
In the archive that was submitted with this thesis, there is also a directory called test-jobs,
which contains some empty (without any builds) example jobs you can use for trying the
tool without compiling and testing the OpenJDK itself.

If you have not changed the default Jenkins directory, you can install those test jobs by
running this command after navigating into the directory with the test jobs:

cp -r * $HOME/.jenkins/jobs/

Now, when you open the Jenkins homepage (it might need to be restarted), you should
see the test jobs added.

However, these jobs do not contain any results. You have to supply them yourself
(the archives with results are very large, so none were attached with this thesis to save
space). You can get some archives with compatible results, for example, from https:
//ci.adoptium.net/view/Test_openjdk/ – unstable builds should have a tar.gz file with
the test results.

The example jobs then expect exactly three archives located in the user’s home directory:
results-0.tar.gz, results-1.tar.gz and results-2.tar.gz – you can download some
test archives from Adoptium, put them into your home directory and rename them to this
(or change the jobs’ configurations to take other archives, if you have different ones).

Now, you can run each job multiple times and then proceed to test the comparator tool
itself.

55

https://github.com/jenkinsci/report-jtreg-plugin
https://ci.adoptium.net/view/Test_openjdk/
https://ci.adoptium.net/view/Test_openjdk/

A.5 Running the comparator from CLI
You are now ready to run the comparator tool from the CLI. To do so, you first need to
navigate to the source directory with the compiled Jtreg plugin, and then you can run the
comparator by entering:

java -cp report-jtreg-comparator/target/report-jtreg-comparator.jar:\
report-jtreg-lib/target/report-jtreg-lib.jar:\
$HOME/.m2/repository/com/google/code/gson/gson/2.10.1/gson-2.10.1.jar \
io.jenkins.plugins.report.jtreg.main.comparator.VariantComparator \
--help

If you followed this guide, this should work out of the box and print a help prompt.
However, if it does not, chances are that the path to the gson jar file (a dependency of this
tool) is different, and you need to change it.

Now, you can change the --help argument to other arguments and use the tool as was
described in this thesis.

A.6 Setting the web service
To start the web service for running the comparator, you first need to change the permissions
to some files by running this (assuming you are located in the parent directory of the source
code in a terminal):

chmod +x run_comparator_tool.sh && chmod +x run_diff_tool.sh

And then, you can start the web service itself by running this from the compiled source
code directory:

java -cp report-jtreg-service/target/report-jtreg-service.jar:\
report-jtreg-comparator/target/report-jtreg-comparator.jar:\
report-jtreg-diff/target/report-jtreg-diff.jar \
io.jenkins.plugins.report.jtreg.main.Service \
run_diff_tool.sh run_comparator_tool.sh 9090

This runs on port 9090, so you can visit it by entering localhost:9090/comp.html
into your browser and try it for yourself. The path to the Jenkins jobs directory is already
set, so you do not need to set the argument yourself. If this does not work or throws an
exception in the bottom field on the website, the run_comparator_tool.sh file located
in the top directory of the source code may be an issue, and you need to edit the file (to
change the paths to dependencies or the --path argument to the directory with Jenkins
jobs).

However, if you have followed this guide, this should work. Now, you can set links to
the comparator in Jenkins and simulate the workflow in a real infrastructure.

56

Appendix B

Extending the Tool

B.1 A place in the code to extend
If you find yourself in a situation where you use this tool but lack some features, you can
easily extend it yourself. Since the tool is programmed in Java, the extension should be
pretty straightforward.

If you are reading this, you will most likely want to extend the features of the compara-
tor. The comparator is located in the report-jtreg-comparator module, and its relevant
classes are all described in the chapter 4, so you can take a look at that chapter and see
where your new feature may fit.

Other modules that are part of this project as a whole you may be interested in extending
are report-jtreg-lib, where some common classes other modules use are, report-jtreg,
where the classes that extend the functionality of Jenkins are, or report-jtreg-service,
where the classes used for running the comparator as a web service are.

Every modern Java IDE should work correctly with a multi-module project and guide
you on where to look for the classes, what packages they belong to, and what dependencies
they have. It is also important to mention that the tool (and the whole plugin) uses Apache
Maven as its build system, so some basic knowledge of how to use it is needed.

B.2 Contributing to the tool
Since this tool is open source and licensed under the MIT license, contributions are welcome,
whether you extend it with new functionality or fix bugs.

The repository with the code is located here https://github.com/jenkinsci/report-
jtreg-plugin, and you can either open an issue or a pull request with your code. Both
would be appreciated.

57

https://github.com/jenkinsci/report-jtreg-plugin
https://github.com/jenkinsci/report-jtreg-plugin

	Introduction
	Technologies and Process of Testing the OpenJDK
	Important technologies and terminologies
	Java, JVM, JDK, and JRE
	OpenJDK
	Unit testing
	Integration testing
	JUnit and its test output
	Jtreg
	Jenkins

	The process of testing OpenJDK in Red Hat
	Critical Patch Update
	Building and testing the OpenJDK
	Checking the results
	A place for comparator

	Designing the Comparator Tool
	Comparator requirements
	Filtering the suites by name and other properties
	Showing on what variants did the tests pass and on what failed
	Filtering the individual tests to compare
	Showing only volatile tests
	Showing how the test results differ in time
	Listing matched test suites
	Showing a table with the results of a build
	Comparing test stack traces
	Integration into Jenkins

	Designing the Tool
	The way to use this tool
	Basic workflow
	Getting and parsing arguments
	Getting all available test suites
	Filtering by suite names
	Filtering by suite attributes
	Getting suite builds
	Filtering the builds
	Comparing test failures on multiple variants in a table
	Listing matched test suites and builds
	Showing a table with the results of builds
	Comparing test stack traces
	Formatting the tool output
	Integration into Jenkins

	Implementing the Comparator
	Jtreg plugin codebase and the place for comparator
	Implementing the features
	Parsing arguments
	Getting all suites
	Filtering the suites
	Getting and filtering the suite builds
	Comparing test failures
	Listing matched suites and builds
	Showing build result table
	Comparing test stack traces
	Formatters
	Web interface and integration into Jenkins

	Command line switches

	Evaluating the Tool in Existing Environments
	Evaluating the tool in Red Hat
	First situation – checking other OSs
	Second situation – checking if a test failed because of the same reason
	Third situation – investigating when test began to fail
	Concluding testing in Red Hat

	Evaluating the tool on Eclipse Adoptium results
	Adoptium testing infrastructure
	Creating local environment
	Testing the comparator
	Concluding testing on Adoptium's data

	Conclusion
	Bibliography
	Installing the Tool
	Install OpenJDK 17 and Maven
	Download and install Jenkins
	Compile and install the tool and plugin
	Install the plugin

	Installing test jobs
	Running the comparator from CLI
	Setting the web service

	Extending the Tool
	A place in the code to extend
	Contributing to the tool

