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Abstract
Deep neural network architectures designed for traditional signals like regularly sampled
images and grids do not straightforwardly translate to irregularly sampled and triangulated
surfaces, point clouds, and other geometric representations. As the acquisition tools that
produce such 3D data are becoming broadly available, this generalization is increasingly
needed for treatment planning in digital medicine. This work aims to examine the ap-
plication of deep learning techniques for the analysis of triangular meshes. A recurrent
multi-view approach is proposed for the task of segmentation of teeth in surface dental
scans, an industry-desirable automation. On complex real-world orthodontic cases contain-
ing dental irregularities or scanned appliances, the proposed method outperforms both the
conventional segmentation algorithm based on 3D Graph-Cut, and non-Euclidean methods
that analyze point clouds or directly meshes. It achieves an average weighted IoU score of
0.966 and Hausdorff distance at 95 percentile of 0.382 mm. The results are promising for
a deployment in dental planning software, enabling clinicians to streamline their workflow
and devote more attention and focus on the treatment itself.

Abstrakt
Architektúry hlbokých neurónových sietí navrhnuté pre tradičné signály, ako sú pravidelne
vzorkované obrázky a mriežky, sa nedajú priamo previesť na geometrické reprezentácie
s nepravidelným charakterom, ako napríklad triangulované povrchy či mračná bodov. Keďže
nástroje, ktoré produkujú tieto 3D dáta sú čoraz dostupnejšie, toto rozšírenie je pre pláno-
vanie zákrokov v digitálnej medicíne stále viac a viac potrebné. Cieľom tejto práce je preskú-
mať využitie techník hlbokého učenia na analýzu trojuholníkových sietí. Na úlohu automat-
ickej segmentácie zubov v povrchových skenoch čeľustí, automatizácie žiadanej v priemysle,
je v tejto práci navrhnutý a vyhodnotený prístup založený na rekurentných viacpohľadových
neurónových sieťach. Tento algoritmus prekonáva jednak konvenčný segmentačný algorit-
mus založený na metóde 3D Graph-Cutu, rovnako ako aj iné neeuklidovské metódy spra-
covávajúce mračná bodov či priamo štruktúru mešov. Na komplexných ortodontických prí-
padoch obsahujúcich skeny s krivými zubami či naskenovanými ortodontickými aparátmi
dosahuje navrhnutý prístup hodnôt 0,966 na metrike váhovaného IoU a 0,382 mm na
metrike 95 percentilu Hausdorffovej vzdialenosti. Výsledky sú sľubné pre nasadenie do
softvéru na plánovanie zubných zákrokov, čo by zubným lekárom zefektívnilo pracovný
postup a umožnilo im venovať viac pozornosti na samotnú liečbu.
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Rozšírený abstrakt

Úvod a cieľ práce

Optické skenery produkujúce 3D povrchové modely čeľustí sú čoraz bežnejšou súčasťou
moderných zubných kliník. Umožňujú digitalizovať proces plánovania zubných zákrokov
rôzneho charakteru, ako napríklad plánovanie zubných implantátov či nápravu nepravidel-
ností chrupu, čeľustných a tvárových anomálií. Digitálny proces síce znižuje pacientský
čas strávený na klinike, no častokrát prináša nové manuálne kroky pre zubných lekárov,
ktoré čiastočne degradujú celkovú efektivitu pri tomto druhu plánovania. Jedným z týchto
pracných a časovo náročných krokov je manuálne určenie regiónov zubov v 3D skene, keďže
táto informácia nie je priamo obsiahnutá pri skenovaní.

Metódy hlbokého učenia dosahujú v posledných rokoch vynikajúce výsledky v mnohých
úlohách analýzy 2D obrazových dát. To nasvedčuje tomu, že ich efektívny spôsob extrakcie
charakteristických informácií zo vstupných dát by mohol byť vhodným aparátom na tvorbu
automatických systémov spracuvávajúcich 3D polygonálne modely. Toto rozšírenie na 3D
neeuklidovské dáta však nie je priamočiare, keďže charakter polygonálnych modelov je
značne iný ako charakter pravidelne vzorkovaných obrázkov. Typicky používané operácie
akou je napríklad konvolúcia je preto nutné prispôsobiť na nepravidelný tvar povrchových
modelov.

Cieľom tejto práce je preskúmať techniky hlbokého učenia na analýzu 3D dát geomet-
ricky reprezentovaných ako polygonálne modely. Praktickým cieľom je ďalej návrh a ap-
likovanie týchto metód na úlohu automatickej segmentácie zubných regiónov v povrchových
skenoch čeľustí ortodontických pacientov (viz obr. 1). Je pritom nutné vziať do úvahy
vysokú variabilitu týchto dát, keďže v bežnej klinickej praxi tieto dáta reprezentujú čeľuste
so značne pokrivenými zubami, či čeľuste naskenované s ortodontickými aparátmi akými
sú napríklad strojčeky. Systém robustný voči týmto rysom by dokázal zubným lekárom
značne zefektívniť pracovný postup a umožnil im tak venovať viac času na samotnú liečbu.

(a) Vstupný polygonálny model (b) Vysegmentované regióny zubov navrhnutou
metódou

Obrázok 1: Ukážka vstupného povrchového skenu čeľusti (a) a príslušného výs-
tupu (b) metódy na automatickú segmentáciu zubných regiónov na 3D modeli.
Cieľom tejto práce je určenie triedy každého polygónu vstupného mešu do jednej zo šest-
nástich tried zubov a triedy reprezentujúcej ďasno.



Návrh riešenia

Práca primárne prezentuje prístup založený na rekurentných viacpohľadových neurónových
sieťach [41, 66]. Tento prístup je založený na extrakcii príznakov zo sekvencie hĺbkových
máp a máp krivosti vyrendrovaných z analyzovaného 3D objektu. Takto definované rieše-
nie obchádza nepravidelný charakter neeuklidovských dát a zároveň prináša do učenia
jednoduché aplikovanie overených techník z analýzy 2D obrazových dát [71]. Navrhnutý
viacpohľadový systém ďalej obsahuje jednotky ako analýzu spojitých komponent či “re-
gion voting”. Druhá spomínaná jednotka využíva istotu predikcií na určenie finálnej triedy
v prekrývajúcich sa častiach automaticky nagenerovaných regiónov a zároveň umožňuje
analyzovať neisté časti získaných výsledkov.

Práca ďalej prezentuje použitie dvoch neeuklidovských architektúr, ktoré priamo využí-
vajú geometrické príznaky na ich vstupe. Prvá z týchto metód je založená na architektúrach
PointNet [56] a PointNet++ [57], a teda prevádza vstupný meš na mračno bodov, ktoré
je následne analyzované. Druhá využíva ako simplex hranu trojuholníkovej siete a teda
redefinuje operáciu konvolúcie a poolingu práve nad hranou. Je teda založená na rodine
architektúr vychádzajcich z architektúry MeshCNN [24, 26].

Experimenty a dosiahnuté výsledky

Experimentálna časť tejto práce prezentuje výsledky po dvoch osiach. Najskôr je do hĺbky
vyhodnotená hlavná metóda formou ablačnej štúdie. V týchto experimetoch je preukázaný
konkrétny prínos jednotlivých komponent systému spolu s ukážkami chýb, ktoré sú pri
generovaní segmentačných másk jednotlivými komponentami potlačené. Okrem ablačnej
štúdie je s hlavnou metódou experimentované v kontexte najoptimálnejšieho nastavenia
viacpohľadovej konfigurácie a taktiež s analýzou neistoty pomocou “region voting” kompo-
nenty. Metóda nie je robustná voči prípadom s úzkymi medzizubnými priestormi, avšak na
komplexných ortodontických prípadoch obsahujúcich skeny s krivými zubami či naskeno-
vanými ortodontickými aparátmi dosahuje navrhnutý prístup hodnôt 0,966 na metrike váho-
vaného IoU a 0,382 mm na metrike 95 percentilu Hausdorffovej vzdialenosti.

Vyhodnotenie po druhej osi následne zasadzuje najlepšie dosiahnuté výsledky viacpo-
hľadového výstupu do porovania s inými metódami. Pre prinesenie férových porovnaní
je hlavný prístup porovnaný s dvoma vyššie spomínamými neeuklidovskými metódami,
ktoré sú vrámci tejto práce natrénované na tom istom datasete. Presnosť metódy je
zároveň porovnaná s výstupmi konvenčného segmentačného algoritmu založenom na al-
goritme Graph-Cut. Hlavná metóda dosahuje najlepšie výsledky v porovnaní so všetkými
inými navrhnutými prístupmi a to po kvalitativnej i kvantitatívnej stránke vyhodnotenia.
Metóda je najpresnejšia i vrámci experimentu s rôzne nateselovanou geometriou vstupných
dát.

Po konzultovaní výstupov s expertmi vo sfére vývoja 3D softvéru na plánovanie zubných
zákrokov bude teda metóda otestovaná na väčšej testovacej množine a po preukázaní jej
funkčnosti na testovacej množine s ešte väčšou anatomickou a geometrickou variabilitou
bude zaintegrovaná do aplikácie a následne nasadená do produkcie.
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Chapter 1

Introduction

Computer-aided design (CAD) has recently been widely promoted in various branches of
medicine. One of them is digital orthodontics, a pivotal segment in modern dental health
care, where CAD dental systems assist in deletion, extraction, or rearranging of the teeth
in a variety of treatment procedures. To do so, orthodontists need to manually segment
teeth within the dental scan of the patient’s jaw, which is time-consuming and expertise-
dependent. Therefore, there is a great need for a reliable framework that would allow for full
automation of this step. Convolutional neural networks (CNNs) have demonstrated their
tremendous ability to analyze Euclidean data like images, so they appear to be a reasonable
means to build such an automatic system.

When employing CNNs for teeth mesh segmentation, two considerations should be taken
into account. The first one stems from the nature of the domain and the data itself. The
prevalence of dental anomalies and dental irregularities is substantially high, particularly
among orthodontic patients. The patient’s arch may be asymmetric or incomplete (either
caused by extractions, craniofacial malformations, retention, or tooth agenesis). Occasion-
ally, dental appliances such as braces or wires are present. Positional tooth anomalies are
also frequently seen among patients (rotations, teeth transpositions or transmigrations).
Second, surface meshes are characterized by the non-regular structure and the ambigu-
ously defined neighborhood. The direct application of operations defined in the Euclidean
domain, such as convolution, is therefore more challenging.

This work aims to examine the application of deep learning techniques for the analysis
of non-Euclidean data geometrically represented as triangular meshes. Among the plethora
of approaches that either bypass the challenges associated with the structural narrative of
3D models or redefine the necessary CNN operations over non-Euclidean data, a method
based on multi-view approach is proposed for the task of mesh teeth segmentation. The
method is further extended with features such as recurrent unit that provides spatial correla-
tion between viewpoints, deep supervision units, voting process, and connected component
analysis.

The method was extensively evaluated on a test dataset of challenging real-world or-
thodontic cases, by means of the suggested overlap and boundary metrics. The effectiveness
of the individual components of the proposed framework was evaluated in an ablation study.
The method was compared with a conventional solution based on the Graph-Cut algorithm
as well as with custom trained non-Euclidean approaches based on PointNet [56], Point-
Net++ [57] and SparseMeshCNN [26]. The proposed method outperforms all the mentioned
approaches, achieving an average weighted IoU score of 0.966 and a Hausdorff distance at
95 percentile of 0.382 mm. The results show a potential increase in the effectiveness of
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digital orthodontic planning. The method’s deployment in dental planning software would
enable clinicians to streamline their workflow and devote more attention and focus on the
treatment itself.

The text of this thesis is structured as follows. First, in Chapter 2, the reader is
introduced to the role of 3D data in medicine, with a focus on digital orthodontics. Then, in
Chapter 3, key aspects of various 3D representations are presented in order to understand
the pitfalls of applying convolution to 3D data. Chapter 4 follows with an overview of
the literature that addresses such pitfalls along with a review of current approaches to
teeth segmentation. The proposed methods are then presented in Chapter 5 together with
the data used in this work. To facilitate the replication of the work, technologies and
details of the implementation are introduced in Chapter 6. The experiments and results
are summarized in Chapter 7.

4



Chapter 2

Leveraging 3D Data for Medicine
and Dental Treatment Planning

3D imaging and CAD/CAM (Computer-Aided Design/Computer-Aided Manufacturing)
systems have emerged as powerful tools in a variety of fields, including medicine. 3D imaging
techniques enable to capture the inner three-dimensional anatomical structures, allowing
for detailed and accurate visualization of bones, organs, or other tissues. On top of that,
they enable to capture intricate geometric details of the surface, which is of significant im-
portance in dental treatment planning. CAD/CAM systems transfer the flow of diagnostic
and treatment methods into a digital format, making treatment more comfortable for the
patient with reduced chair and laboratory time. The captured images are easier to store
and transport [52], and allow better communication with patients thanks to the simple vi-
sualization of the treatment outcome. Generally, there are two prevalent forms of 3D data
used in digital medicine and dentistry:

• volumetric data resulting from CT/CBCT (Computed Tomography/Cone Beam
Computed Tomography) or MRI (Magnetic Resonance Imaging) acquisition, and

• surface data, which are usually obtained by various reflective surface scanners, or
by surface extraction from volumetric data [47].

Since volumetric representations reveal internal anatomical structures, they are commonly
used in medical diagnoses related to various areas of the body, including head and neck (di-
agnosing conditions affecting brain, skull, jaw, and teeth), or chest and abdomen area (di-
agnoses of lung and liver diseases). Volumetric modalities have also found their way into
digital dentistry, such as in dental implant planning or orthodontics. Surface data are
predominantly used in digital orthodontics for aligner fabrication and in digital dental
prosthesis for the design and fabrication of dental restorations, such as crowns, bridges,
and implants. Since the chosen task addressed in this thesis is focused on automating the
orthodontic planning process, a section that describes the orthodontic planning procedure
follows.

2.1 3D Data in Computer-Aided Orthodontics Treatment
Orthodontics is the branch of dentistry that deals with the diagnosis and treatment of mal-
positioned teeth and jaws. This usually includes straightening crooked teeth, correcting
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irregular bites, and straightening opposing jawbones into alignment [63]. Traditionally, the
whole treatment process has been purely analogue. To produce orthodontic appliances (such
as archwires or brackets) in the conventional procedure, wax impressions and casts of the
patient’s teeth have been modeled. Subsequently, these were modeled into target-aligned
dental arches [79]. The advent of CAD/CAM systems has transferred this flow into a digital
format, bringing all the benefits mentioned above to dentistry diagnoses and treatment
planning.

2.1.1 Acquisition of Digital Jaw Surface Models

There are two approaches to obtaining 3D dental surface data. The indirect method refers
to the scanning of wax impressions with laboratory scanners, while the direct method refers
to the scanning of the teeth and surrounding oral structures directly with IOS (intra-oral
scanners) devices (see Figure 2.1). Despite the fact that IOS scanners are becoming more
and more available, models scanned from cheaper indirect scanning are still more common.
This has the effect, among others, that 3D models used in orthodontics typically do not
contain information about color and materials.

(a) Indirect scanner of wax impressions (b) Intra-oral scanning device

Figure 2.1: Example of hardware devices for scanning prepared wax impres-
sions (a) and for direct scanning of human jaws (b). Indirect scanners are usually
cheaper and still prevalently used. Direct scanners typically come with displays for real-
time visualization of scanned teeth and produce models with color information. Device
pictures are adapted from [32, 54].

From a computational perspective, both scanners produce point clouds that are subse-
quently triangulated into a 3D mesh.1 Final digital impression usually lacks information
about colors and contains information about geometry only. However, some modern IOS
devices might output color information as well. The quality of the resulting meshes then
depends on several factors that are generally influenced by two aspects:

1There are typically other intermediate steps such as outlier removal, point cloud simplification, estima-
tions of normal vectors, and others.
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• Technical specifications of the scanner. It influences the resolution of the mesh,
quality of interdental spaces in digital impression, the truthfulness of colors (if any),
and others.

• Clinician’s proficiency. The resulting mesh might contain holes, blurred geometry,
incomplete scans at the end of the dental arches (completely omitted or insufficiently
scanned molars), and others.

Examples of digital impressions are shown in Figure 2.2. Digital impressions are then
exported — typically in STL2 or OBJ3 format — to dental planning software, where or-
thodontics treatment is performed.

(a) Digital impression of maxilla without
color

(b) Digital impression of mandible with color
information

Figure 2.2: Examples of digital impressions obtained by scanning devices. The
model in (a) was scanned using indirect scanner (no color information), and the one in (b)
was obtained by IOS scanner. Overall, the quality of these models is high – there are no
scanning artifacts and meshes contain more than 300 000 faces each. However, right 2nd
Molar was not completely scanned in (a).

2.1.2 Digital Workflow in Orthodontic Treatment

Modern CAD-based orthodontic software typically supports treatment planning using two
types of appliances: dental braces and clear aligners. For both, the clinician can plan the
final position of the teeth and how the teeth will change during the time of treatment
with almost no patient chair time. To do so, the clinician must first denote which
regions of the mesh belong to individual teeth or gingiva. The software then allows
the clinician to manipulate the teeth positions in the 3D scene to get them in the desired
arrangement. Based on the difference in the positions of the misaligned and aligned teeth,
it is then possible to export a series of 3D models of clear aligners, which the patient
progressively replaces. As the process of producing clean aligners contains the action of
manual, laborious and time-consuming segmentation of teeth, the whole process could be

2https://docs.fileformat.com/cad/stl/
3https://docs.fileformat.com/3d/obj/
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accelerated by automating the segmentation process. The aligner generation flow is shown
in Figure 2.3.

(4) Generate intermediate teeth
positions as treatment steps

+
export clear aligners for 

treatment steps

(3) Manipulate with 
segmented 

teeth to arrange them 
in 

aligned position

(1) Digital
impression
acquisition

Model with aligned 
teeth in target 
arrangement

Digital impression 
with segmented teeth

3D surface scan of 
digital impression

(2) Manual segmentation 
of 

individual teeth regions in 
mesh

Figure 2.3: Flow of clear aligner generation in dental planning software. In order
to manipulate individual teeth to attain the ideal arrangement, the tooth regions initially
need to be manually segmented by a clinician.
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Chapter 3

Key Properties of 3D Data and
Their Relevance for Deep Learning

Three-dimensional data are the center and main commodity in fields such as computer
graphics, computational geometry, computational fabrication, and computer vision. They
serve as a valuable asset that provides rich information about the geometry of real-world
objects and scenes. In addition to advances in acquisition, representation and analysis of
surfaces of natural entities (i.e. surface models), 3D data might also enable one to reveal
the inner structure of scanned objects. To decrease computational complexity and thus
facilitate data processing and analysis, 3D data are usually represented in a discretized
way. Optimally, the representation should meet several requirements, such as generality,
compactness, unambiguity, and processing efficiency. However, it is difficult to have a single
representation that meets all the listed requirements. As an example, storing a non-rigid
model with an extensive amount of fine details completely, accurately, and in a memory-
efficient way, while providing efficient processing techniques, is an ambitious task. For that
reason, 3D data are represented in different forms. Each aims to prioritize different require-
ments, finds usage in different use-cases, and varies in structure and geometric properties.
Figure 3.1 shows some of the core representations of the 3D data. There exist various tax-

Figure 3.1: Different representations of the same 3D object. The Stanford Bunny
represented by (from left to right) voxel grid with resolution of 107 × 107 × 88 voxels,
multi-view representation with 13 rendered images from various viewpoints (blue cameras),
triangular mesh with 18 000 faces and point cloud with 13 115 points. The two leftmost
representations are examples of Euclidean data, in contrast mesh and point cloud are both
cases of non-Euclidean data.

onomies offering their comprehensive overview. Since this work deals with the application
of deep learning techniques for the analysis of 3D data, the division into Euclidean and non-
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Euclidean data is the most relevant one. For neural networks, the premise is the underlying
grid structure of Euclidean data, which allows for a global parametrization and a common
system of coordinates. In addition, in Euclidean data, functional proximity coincides with
physical proximity, which introduces an important inductive bias.

The aforementioned facts allow the use of deep learning techniques that are known
from the image domain, namely the application of convolutional neural networks (CNNs).
The following sections gradually demonstrate that the representations classified as non-
Euclidean do not satisfy the properties of Euclidean geometry mentioned earlier. Therefore,
it is important to understand the structure and relationships between both Euclidean and
non-Euclidean representations in order to extend deep learning techniques to the analysis
of non-rigid objects with irregular structure.

Note that from the plethora of 3D representations, only those important for proper
comprehension of the remaining chapters of this text are described in detail, although there
exist many others [53, 61].

(a) Regular data (b) Irregular data

Figure 3.2: Comparison of structured (e. g. image) and unstructured 2D data
(e. g. undirected graph). (a) Determination of neighborhood samples is trivial, as all
samples lie on a uniform grid. (b) In unstructured data, the neighborhood is determined
ambiguously. In given graph, many nodes are closer to the square node in terms of Euclidean
distance (all within the blue circle), but the actual neighborhood is specified by adjacent
vertices (connected by an edge).

3.1 Euclidean-Structured Discrete Data
Data emanating from the Euclidean domain are characterized by having a regular spatial
structure. These data include characters, words, sentences, or sounds in R, images lying in
R2, and videos or volumetric data as modalities lying in R3. See Figure 3.3 for examples.
Let’s briefly examine the importance of regular spatial structure of Euclidean data on
images. Formally, an image ℐ is a function

ℐ : Ω→ {0, 1, ..., 255}𝑐 (3.1)

where Ω = {0;𝑚 − 1} × {0;𝑛 − 1} are image pixels, 𝑚 and 𝑛 are the number of rows
and columns (image resolution) and 𝑐 is the number of channels (usually 𝑐 ∈ {1, 3}). In
terms of data representation, image pixels are organized into a regular matrix. This implies
that there is a clear notion of using vectors to denote the pixel’s position. That is, ℐ(𝑖)
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is the intensity of the image at the 𝑖-th position in the image ℐ, where 𝑖 ∈ Ω. When
considering the grid structure and the vector notion, the 𝑖-th position in ℐ can be referred
to as the vector (𝑥0, 𝑦0). The image value at another pixel 𝑑 units along the 𝑥 direction is
then calculated as ℐ(𝑥0 + 𝑑, 𝑦0) which is a vector (𝑑, 0) added to (𝑥0, 𝑦0). This property is
immensely useful when defining filter operations like convolution. Convolution operation is
a key element in CNNs as it exploits the translation equivariance of images [4]. Let

𝑓, 𝑘 : Ω ⊂ R2 → R (3.2)

be two functions that are defined on the image ℐ and let 𝑘 be the convolution kernel with
a local spatial support. Convolution, denoted by *, is calculated by the following formula:

(𝑓 * 𝑘)(𝑥) =
𝑎∑︁

𝑠=−𝑎

𝑏∑︁
𝑡=−𝑏

𝑘[𝑠, 𝑡] · 𝑓 [𝑖− 𝑠, 𝑗 − 𝑡], (3.3)

such that 𝑥 = [𝑖, 𝑗]. The vector notion for pixel position can be generalized to define
a planar translation of the image-based function by a vector 𝑣 ∈ R2, which is calculated
as follows:

𝜏𝑣(𝑓(𝑥)) = 𝑓(𝑥− 𝑣). (3.4)

Putting these together, the translation equivariance simply means that the planar transla-
tion commutes with convolution:

𝜏𝑣(𝑓 * 𝑘) = 𝜏𝑣(𝑓) * 𝑘. (3.5)

Demonstrated convolution property — the translation equivariance 𝜏𝑣 — is a key factor
contributing to the effectiveness of CNNs [8]. It enables the trainable weights sharing,
resulting in a significant reduction in the amount of network parameters. This reduction
facilitates generalization and reduces overfitting [19]. The dependence of CNNs on the
spatial structure of Euclidean data, particularly the concept of locality, is evident. The
receptive field of a CNN inherently reflects the grid-like spatial structure present in the
data, emphasizing the importance of the regular spatial arrangement in this context.

3.1.1 Voxel Grids

Voxel grids, also known as volumetric data, are formally described as a set 𝒢 of sam-
ples (𝑥, 𝑦, 𝑧, 𝑣), representing the value 𝑣 of some property of the data, at location (𝑥, 𝑦, 𝑧)
within R3. Typical examples of recorded properties include physical quantities such as den-
sity, pressure, and temperature. The special case of volumetric data are binary volumes,
where 𝑣 ∈ {0, 1} with 0 indicating void voxels (background) and 1 indicating solid voxels
(the object). 𝒢 is typically 𝑖𝑠𝑜𝑡𝑟𝑜𝑝𝑖𝑐 as it contains samples retrieved at regularly spaced
intervals along three orthogonal axes. Alternatively, a rectilinear grid is employed. Since
the set of samples is defined on a regular grid, a 3D array is typically used to store the
values. Therefore, volumetric data are representative of a modality lying in Euclidean R3.
It implies that the definition of the voxel neighborhood can be derived by a trivial extension
from 1D or 2D, defining a convolution in 3D. In the basic setup, for each voxel, feature
vector 𝑓𝑣 with the value and dimensionality of 𝑣 are used as input to the neural network
(voxel-wise features), similarly to pixel values in images.
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(b) Image as an example of 2D data

Figure 3.3: Examples of Euclidean data in R and R2. (a) Typical representatives of
1D Euclidean data are text or speech. The processed data are organized in a 1D matrix, so
for each sample/token, it is trivial to state the neighboring elements as well as the distances
to any other samples/tokens. (b) Image of a bunny serves as an example of 2D Euclidean
data. Pixels form a regular grid, which again enables simple determination of neighboring
pixels or distances to other pixels using vectors.

3.1.2 Octrees

Storing volumetric data of significant size without employing any auxiliary acceleration
structure can lead to memory inefficiency. A common choice is a tree data structure called
octree. In a voxel octree, volume decomposition starts with a single large voxel. Such
a voxel completely encompasses the space occupied by the grid. Then, each internal node
has exactly eight children, subdividing the respective part of the space. If a particular
subdivision does not contain any further voxels, or there is exactly one, the recursion in given
branch stops. Through this approach, large empty chunks of space do not unnecessarily
take up memory. This three-dimensional analogue of a quad-tree finds usage in the nearest
neighbor search [15] or computer graphics [48]. The neighborhood of a voxel stored in
an octree is determined based on its position within the octree hierarchy, for example,
by exploring its adjacent nodes. Stored values can serve as the input features for neural
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networks in a voxel-wise manner, in the same fashion as in voxel grids. See Figure 3.4 for
a visualization of the space decomposition by both voxel grids and octrees.

(a) Voxel grid (b) Space decomposition of an octree (three levels)

Figure 3.4: Visual examples of voxel grid and voxel octree. (a) Voxel grid in terms
of data structure forms a 3D matrix. (b) Octrees are of tree structure, which reduces the
exploration of blank regions of the space (blue boxes illustrate occupied areas of the space at
given tree level). Please note that for presentation purposes, the illustrated decomposition
in (b) divides the space in four parts only.

3.1.3 Multi-View

Multi-view representation enables to represent 3D non-Euclidean data by a series of 2D
Euclidean renderings. That is, the 3D shape is formed by a setℳ𝒱 of functions ℐ (defined
in Equation 3.1), which are simply 𝑐-channel images with the analyzed/processed object
rendered under distinct viewpoints. Content of individual elements ofℳ𝒱 is parametrized
by several settings called viewpoint settings:

• extrinsic camera parameters – camera positions and rotations with regards to the
world coordinate system,

• projection type – perspective or orthographic with corresponding additional settings
like view angle in perspective projection, and

• rendering configuration – lightning, shading, selection of reflectance model, etc.

In addition to viewpoint settings, viewpoint number is an important variable in defining
a multi-view representation. Its value is equal to |ℳ𝒱|. To fully capture the 3D shape,
both properties are generally difficult to set. The optimal value of |ℳ𝒱| remains an open
question, as computational costs are directly related to its value. Regarding viewpoint set-
tings, unwise camera setup might result in a situation where the entire 3D shape properties
are not completely captured, resulting in undesirable loss of information. The configura-
tion of the multi-view rendering should always be re-considered with regard to the inherent
geometric characteristics of the data and the intended purpose of the generated output.

In addition to surface rendering, 2D images such as depth maps or normal maps can
be obtained. Analyzed 3D data are usually a priori uniformly scaled to fit the viewing
volume and translated into the origin of the coordinate system. After the transformation
to |ℳ𝒱|, the 3D shape can be analyzed using conventional 2D CNNs. The input features
are the pixel values of the images. These pixel values may encode the visual and geometric
properties of the analyzed mesh, depending on the type of map employed. Examples of
multi-view representation are depicted in Figure 3.5. In the example, two different sets of

13



a multi-view representation are presented – one consisting of depth maps and one of surface
renderings.

3.2 Non-Euclidean Data
When considering data representation, non-Euclidean data are unorganized and irregularly
distributed within its domain. The analysis is to be done on a complex curved surface
and not a flat structure like an image. As an example, a discrete graph in arbitrary
dimension can be constructed as a sample set of a surface. Yet, the nature of curved
surfaces in the context of convolutional neural network processing does not allow for a simple
extension of the concepts used when processing Euclidean data [4].

A notable concern arises from the lack of shift equivariance in the convolution operator
(as well as other similar filter operators) in contrast to the Euclidean domain (the property
and its importance is demonstrated in Section 3.1). The reason is that translation on
a curved surface is path-dependent as distance and direction of movement are not
invariant under translation. A more detailed explanation of this phenomenon can be found
in the literature on differential geometry [9]. The absence of a translation-equivariant filter
operator brings difficulties in effective weight sharing within neural networks. Another con-
sideration is the ambiguously defined neighborhood. In images, functional proximity
coincides with physical proximity, which introduces an important inductive bias into learn-
ing. However, for example in graphs, the Euclidean distance (or other distance metrics such
as the Manhattan distance) does not necessarily encode information about node neighbors,
but connectivity does, as shown in Figure 3.2. To provide an additional example, the deter-
mination of a sample’s neighborhood within a point cloud relies on proximity queries, which
can take various forms. The consequence of these considerations is that the established 2D
image processing techniques (or in general techniques applicable to Euclidean data) like
the operation of convolution are not always directly and straightforwardly applicable to
non-Euclidean data. The techniques by which this generalization is secured in the context
of deep learning analysis are the focus of Chapter 4. The remaining part of this section will
proceed to examine several prominent non-Euclidean representations.

3.2.1 Point Clouds

Point clouds are an example of raw 3D data. Formally, a point cloud 𝒫 is a set of unordered
points {𝑝𝑖}𝑛𝑖=1 sampled from some connected smooth surface, representing the scanned ob-
ject [20]. Each measurement (i. e. each point) might contain additional information like
color or its normal. Point clouds are usually obtained by scanning real-world objects or
environments. The sampling density should be sufficient to ensure that the geometry of the
real-world object is preserved. In general, this representation preserves the original geomet-
ric information without any discretization but suffers from measurement errors, resulting
in points sampled inaccurately near the surface.

Point clouds do not carry explicit information on connectivity. To exploit the principle
of locality, neighborhood of points is examined. Neighborhood of a point 𝑝𝑖 ∈ 𝒫 is a set
𝑁 of 𝑘 points close to 𝑝𝑖 with respect to some metric, such that 𝑁 ⊂ 𝒫. There are
several neighborhoods used in point cloud processing and analysis – k-nearest neighborhood,
ball-neighborhood and Delaunay neighborhood, among others. K-nearest neighborhood of
𝑝 ∈ 𝒫 is formed by the first 𝑘 points of 𝒫 sorted in ascending order by their distance
to 𝑝. Ball-neighborhood contains all points of 𝒫 that are of a smaller distance to 𝑝 than
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(a) Visualization of extrinsic camera parameters

(b) Multi-view representation as depth images (upper row) and rendered geometry (bottom row)

Figure 3.5: Multi-view representation of a triangular mesh. In this particular
illustration, a triangular mesh of Stanford Bunny is rendered under 8 distinct viewpoints.
Corresponding cameras are illustrated within scene in (a) as blue pyramids. Individual
cameras follow a circular trajectory around mesh, with the focal point being the same as
the mesh’s centroid. (b) shows two multi-view representations capturing the same objects
under the same camera viewpoint settings, obtained using perspective projection. While
the first row represents a multi-view representation composed of depth maps, the second
row contains renderings of the geometry. Illumination and shading parameters are not
specified in the example, although the individual elements of the multi-view representation
would look different with them set up differently.
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some 𝑟. In both cases, it depends on the algorithm design whether 𝑝𝑖 is included within its
neighborhood or not. To obtain the Delaunay neighborhood, 𝑁 is projected on a tangent
plane at the processed point 𝑝𝑖 and the projected points are Delaunay-triangulated. All
points that share an edge with 𝑝𝑖 within the triangulation form the Delaunay neighborhood
of 𝑝𝑖 [3]. To apply learning over point clouds, each point 𝑝 ∈ 𝒫 is attached with a feature
vector 𝑓𝑢 ∈ R𝑑. Typical values stored in 𝑓𝑢 are the position of the point in R3, color, normal
point, or geometric values derived from them such as local curvature.

3.2.2 Graphs

Graph is a fundamental geometric structure since graphs come in many applications either
naturally (e.g. protein analysis) or are latent (social networks, recommendation systems,
or physics). Graph data structure is often denoted as 𝒢(𝑉,𝐸), where 𝑉 is a finite set of
graph vertices or nodes and 𝐸 is a finite set of edges. If two vertices 𝑥, 𝑦 ∈ 𝑉 are adjacent
in the graph, they are incident to an edge, and so there is a corresponding entry in 𝐸:
{𝑥, 𝑦} ∈ 𝐸. Each node (and edge, but let’s consider nodes only) can be associated with
a real-valued attribute vector. These feature vectors, 𝑓𝑛 ∈ R𝑑 usually form the input to
a neural network. Node neighborhood is a fundamental aspect to describe the receptive field
of (spatial) convolutions on a graph. The i-th neighborhood 𝑁𝑖(𝑥) of a node 𝑥 is the set of
nodes at most 𝑖 steps (or hops) from the target node. There are multiple types of graphs
based on their characteristics (directed vs. undirected, cyclic vs. acyclic, connected vs.
disconnected, among many others). If interested in their specification or other terminology
from graph theory, the reader is referred to the literature [17].

An adjacency matrix A of 𝒢 is a binary 𝑛-by-𝑛 matrix, where 𝑛 = |𝑉 |. Each non-zero
element corresponds to an edge from 𝑥𝑖 to 𝑥𝑗 , such that ∀𝑥𝑖, 𝑥𝑗 ∈ 𝑉,A𝑖𝑗 = 1. A degree
matrix D is a diagonal matrix of A where each entry is the number of incident edges. The
most prominent matrix for deep graph learning, the Laplacian graph, is L = D −A. L is
a symmetric, positive semi-definite matrix, thus an eigendecomposition of the matrix yields
a full set of eigenvectors. Then, the graph information can be projected into the spectral
domain, where the convolution of graphs is defined as multiplication [17]. See Figure 3.6
for examples of these matrices.

The representation of 3D shapes or 3D data in the form of a graph is not considered
to be inherently natural. However, despite this, graphs are frequently utilized in practice
due to their advantageous properties and the effectiveness of algorithms from graph theory.
Other types of representations (like meshes and point clouds) are frequently transformed
into graphs, to allow the use of these algorithms. This pattern also holds for deep learning
methods.

3.2.3 Polygonal Meshes

Polygonal mesh representation, or mesh, for short, approximates surfaces of 3D shapes via
a set of 2D polygons in 3D space and can be formally denoted as a tuple ℳ = (𝑉,𝐸, 𝐹 )
defined by a set of vertices, 𝑉 ∈ R𝑁×3, a set of edges E that connect the vertices, and finally
by a set of faces 𝐹 ∈ R3 formed by a set of vertices – three in case of triangular meshes,
which are connected by edges: 𝐹 = {(𝑢, 𝑣, 𝑞) | 𝑢, 𝑣, 𝑞 ∈ 𝑉 ∧(𝑢, 𝑣), (𝑢, 𝑞), (𝑞, 𝑣) ∈ 𝐸}. In some
literature, the polygonal mesh definition is extended by an additional element. This element
A, the adjacency matrix, defines the connection between two vertices (for example A𝑖,𝑗 is
set to 1 if vertex 𝑖 is connected with vertex 𝑗, otherwise A𝑖,𝑗 is set to 0). Neighborhoods
𝑁 on meshes are often defined in terms of 𝑘-ring neighborhoods, 𝑘 ∈ N. For example, a 1-
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(d) Laplacian L = D−A

Figure 3.6: Representation of sample graph 𝒢 via various matrices. 𝒢 in (a) can
be represented by adjacency matrix A (b), degree matrix D (c) or by subtracting A from
D, obtaining graph Laplacian L (d).

ring neighborhood 𝑁𝑖 of the vertex 𝑣 ∈ 𝑉 contains all the points connected to 𝑣 by 𝑒 ∈ 𝐸.
Although the vertex neighborhood is the most commonly utilized type of neighborhood, its
size cannot be universally predetermined, as it is dependent on the number of vertices that
are connected. This property is analogous to that of point clouds and graphs; however,
in the case of meshes, the neighborhoods for other mesh elements, such as edges or faces,
can be defined. In situations where certain general assumptions are met, such as mesh
manifoldness or closeness, the sizes of these neighborhoods become fixed, such as for edges.
Figure 3.7 visualizes some of the neighborhood phenomena in meshes.
Likewise, it is also feasible to compose per-element feature vectors for any mesh elements.
For example, for each 𝑣 ∈ 𝑉 , it is possible to construct 𝑓𝑣 ∈ R𝑑 with extrinsic and/or
intrinsic features. Extrinsic features depend on the mesh transformation, i.e. change when
the mesh is translated or rotated within the scene – for example, vertex position or normal.
Intrinsic parameters are invariant under translations and rotations: various angle ratios,
adjacent face areas, and such.

An essential concept, similar to the one from graph theory, is the Laplacian matrix
L, as it completely encodes the intrinsics of a mesh and allows its analysis in the spectral
domain [59]. Given 𝑛 = |𝑉 |, it is calculated as L = M−1C, where M ∈ R𝑛×𝑛 is the diagonal
matrix whose 𝑖-th entry along the diagonal is twice the influence area of the vertex 𝑣𝑖, and
C is the sparse cotangent weighted matrix defined as follows:

C𝑖𝑗 =

⎧⎪⎨⎪⎩
−(𝑐𝑜𝑡𝛼𝑖𝑗 + 𝑐𝑜𝑡𝛽𝑖𝑗) 𝑖 ̸= 𝑗, 𝑣𝑗 ∈ 𝑁1(𝑣𝑖),∑︀

𝑣𝑗∈𝑁1(𝑣𝑖)
(𝑐𝑜𝑡𝛼𝑖𝑗 + 𝑐𝑜𝑡𝛽𝑖𝑗) 𝑖 = 𝑗,

0 𝑣𝑗 /∈ 𝑁1(𝑣𝑖),

(3.6)

where 𝑁1(𝑣𝑖) is the 1-ring neighborhood of the vertex 𝑣𝑖 ∈ 𝑉 , and 𝛼𝑖𝑗 and 𝛽𝑖𝑗 are angles
opposite to the edge formed by vertices 𝑣𝑖 ∈ 𝑉 and 𝑣𝑗 ∈ 𝑉 [13]. An analogous parallel can
be drawn with graph processing: the eigendecomposition of L enables the transformation
into the spectral domain, where many mesh characteristics can be examined, similar to
graphs. Typical applications of mesh Laplacian are, in general, out of the scope of this
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work, but important for a group of neural mesh learning approaches that operate in the
spectral domain (discussed later in Section 4.2.4).

v1

v2

e1 e2

Figure 3.7: Various 1-ring vertex neighborhoods and fixed edge neighborhoods.
Given two vertices from meshℳ, such that 𝑣1, 𝑣2 ∈ 𝑉 , the sizes of 𝑁1(𝑣1) and 𝑁1(𝑣2) does
not equal. However, if ℳ is manifold and closed, edges 𝑒1, 𝑒2 ∈ 𝐸 are guaranteed to have
fixed 1-neighborhood of 4 edges.
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Chapter 4

Current Approaches towards Deep
Learning Analysis of 3D Geometry

Deep learning methods have brought promising results in many 2D computer vision tasks.
These representation-learning methods with multiple-level representations of various ab-
stractions take advantage of natural signals: local connections, shared weights, pooling,
and the use of numerous stacked layers. The convolutional layer detects local conjunc-
tions of features from the previous layer, whereas the pooling layer merges semantically
similar features into one [42]. However, this concept inspired by neuroscience is strongly
based on the regular spatial structure of Euclidean data (see Section 3.1 and Section 3.2).
Hence, extending this concept to irregular structures like 3D meshes is non-trivial yet of
high potential, based on the success of the concept in regular domains.

Deep learning for 3D shapes

Euclidean methods

Volumetric

ShapeNet [77]
O-CNN [72]

Ad O-CNN [73]

Multi-view

MV-CNN [66]
MV-RNN [41]
MLVCNN [33]

Non-Euclidean methods

Point-based

PointNet [56]
PointNet++ [57]
PointConv [76]
PointCNN [43]

Edge-based

MeshCNN [24]
SpMeshCNN [26]
MeshWalker [39]

Face-based

SubdivNet [31]
MeshNet [16]

Graph/
Spectral

DiffNet [60]
Lap2Mesh [13]
HodgeNet [64]

Figure 4.1: Euclidean/non-Euclidean taxonomy of deep learning 3D shape anal-
ysis. This taxonomy classifies works according to whether the core operations of neural
networks are defined in the Euclidean or non-Euclidean domain. Please notice that it is not
a comprehensive listing of all papers in the literature, but a selection of the most significant
ones in each of the categories.

This chapter provides a comprehensive overview of the existing literature on deep learning
methods for 3D geometry analysis. It starts with the introduction of general techniques
known as Euclidean methods. These methods bypass the challenges posed by irregular
mesh shapes and neighborhood ambiguity by converting the mesh geometry into Euclidean
forms. Subsequently, the chapter discusses Non-Euclidean methods. To exploit the natural
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potential of such data, these techniques redefine convolution and pooling operations over
non-Euclidean representations. Note that this is one of many taxonomies that might be
employed. Since this work was conceived in this way in the previous chapter as well, this
division is followed for methods descriptions as well. Refer to Figure 4.1 for a visualized
taxonomy and overview of significant works for each category. In the concluding section,
the text discusses how these general approaches are applied to a specific task in medicine
– segmentation of teeth in surface dental scans, which is the task addressed in this thesis.

4.1 Euclidean Methods
An effective approach to leveraging deep learning techniques for 3D shape analysis involves
the conversion of input mesh into a Euclidean representation. This approach allows for
direct utilization of the established concepts of convolutional neural networks commonly
applied in regular domains. Within the literature, the following approaches have arisen:
the conversion of meshes into volumetric grids or octrees, followed by 3D convolutional
processing, and the efficient representation of meshes in a form of view-based 2D descriptors.

4.1.1 Volumetric-Based Methods

In volumetric-based methods, triangular mesh is modeled as a function sampled on voxel
grid, for example by the rasterization process. Since the volumetric representation pre-
serves a regular spatial structure, it is possible to use principles known from the analysis
of volumetric data, such as CT or MRI scans. Due to the variety of tasks addressed in
the analysis of medical CT and MRI images, research has yielded many methods built on
top of 3D convolution and pooling [14]. The pioneering work in mesh-to-grid approaches
was that of Wu et al., and is called 3D ShapeNet [77]. In this study, the authors represent
the 3D mesh using a binary tensor with a value of 1 indicating that the voxel lies inside
the mesh, while a value of 0 indicates an empty space voxel. 3D convolution and pooling
layers are then used to extract features from the voxelized mesh, as depicted in Figure 4.2.
However, baseline ShapeNet is affected by two major shortcomings:

• Method is limited to low-resolution grids. In the original paper, a grid of size
30× 30× 30 was used in experiments.

• Their approach is computationally intensive, since it performs a significant fraction
of calculations on empty parts of the grid.

Additionally, due to the significant undersampling, intricate details of geometry are lost,
making the method unsuitable for tasks that analyze geometry with intricate details, such
as in medicine. Various works have sought to remedy these shortfalls. Of note, for example,
are the works of Wang et al. [72, 73], who introduced O-CNN and its adaptive version – ar-
chitectures that use an octree representation of volume. 3D CNN operations are performed
on the sparse octants occupied by the boundary surfaces of 3D shapes only, making training
and inference more memory and computation efficient. Convolution for a particular octant
is computed from the feature vectors of neighboring octants, i.e. those in the same depth
of the tree. The pooling operator resembles max-pooling from 2D images: the largest value
in a given octet is selected. Both O-CNNs and Adaptive O-CNNs offer advantages in terms
of memory efficiency and reduced computation times, enabling the analysis of larger grids,
such as 256× 256× 256, on powerful graphics cards in the order of seconds. However, the
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experiments conducted in this study demonstrated that these methods may exhibit lower
accuracy than non-Euclidean approaches, particularly in classification tasks.

0.97 Bunny

Input triangular
mesh

Mesh voxelized into 
regular grid

3D convolutions, 
subsampling, and FC layer Output

0.03 Elephant

Figure 4.2: High-level overview of ShapeNet-based classifier. Input 3D mesh is at
first voxelized into regular 3D grid. Then, features are extracted using 3D convolution and
pooling. Fully connected layer is connected at the end, producing final output probability
tensor.

4.1.2 Multi-View Approaches

As discussed in Section 3.1.3, in multi-view representation, 3D mesh is represented by a se-
ries of 2D renderings. Learning over such representation then aims to obtain a function that
models each 2D view separately (i. e. extraction of view-based features using 2D CNNs)
with the final joint optimization of all functions into a compact object descriptor [66]. This
approach is often referred to as MV-CNNs (Multi-View Convolutional Neural Networks).
Therefore, the basic principle can be thought of as a general feature extractor from 3D
meshes and can be used to solve downstream tasks such as classification and segmentation.
Furthermore, a significant advantage of this approach is the ability to utilize pre-trained
models from the 2D domain. The authors in [41] extend this idea to address the task of
semantic segmentation of human body parts. In this paper, they interpreted individual
2D views as a sequence and hence adopted a recurrent network, specifically LSTM [29].
The first module employed in this approach is the CNN module, responsible for generating
a boundary map for each view, indicating the boundaries of the segmented regions. How-
ever, the authors discovered that the produced boundary maps exhibited issues related to
poor localization and inconsistency. It was observed that treating the inputs individually
did not guarantee viewpoint consistency, which is a crucial aspect in the segmentation pro-
cess. Figure 4.3 outlines these modules. The second significant part of the framework — the
LSTM module — exploits the power of LSTM loop connections, which allow the network
to capture long-range dependencies by gates and memory structures, resulting in correlated
multiple views and consistent boundary maps. The authors showed by experiments that
combining multi-view CNNs and recurrent units into so-called MV-RNNs is meaningful,
since this combination outperformed both the MV-CNN frameworks and conventional seg-
mentation algorithms. This approach was consequently generalized and described in detail
in [33].
This approach has, however, its shortcomings. The problem is the multi-view configura-
tion, which cannot be determined generically for all domains and tasks. The number of
viewpoints and the distribution of viewpoints within scene must always be tailor-made for
each task. On top of that, without satisfying the assumption of consistently aligned input
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Figure 4.3: Overview of the multi-view RNN approach. Authors render input
mesh as a sequence of ordered 2D geometry renders. Each of the rendered map is passed
to a CNN (shared weights among viewpoints) to obtain a boundary probability map. This
map is correlated by a two-layer LSTM followed by a fully connected layer. The consistent
edge images from multiple views are transformed to 3D, followed by a region growing and
CRF for boundary smoothing. Whole pipeline can be trained in an end-to-end manner.
Outline adapted from [41].

mesh (for example upright oriented around a specific axis), one does not know beforehand
which camera parameters would yield the most informative views. The latter is partially
addressed in [51], so the network can learn on sequences of most informative views and
subsequently infer the next view in a next-best-view fashion.

4.2 Non-Euclidean Geometry Analysis
Methods that belong to this category attempt to preserve the native representation of non-
Euclidean 3D representations, so they redefine necessary operators over geometric struc-
tures. Individual methods then differ in what simplex is considered as the basic element:
vertex, edge, or triangle (possibly an arbitrary polygon), analogous to pixels or voxels in
Euclidean domains. Alternatively, some methods use principles of deep learning on graphs
(GDL), typically by analyzing meshes in the spectral domain. What these methods have
in common is that they operate directly on the irregular structure of non-Euclidean rep-
resentations. This has the effect of coming up with a redefinition of convolution and
pooling, the basic building blocks of convolutional neural networks, and exploiting vari-
ous geometric features such as mesh curvature. Please note that the distinction into these
classes might be blurry, as some methods may fall into several categories.

4.2.1 Point-Based Methods

Point-based methods typically sample points from input shape either by neglecting the
mesh adjacency and thus taking the vertices as the input point cloud or by sampling points
on faces. As point clouds avoid the combinatorial irregularities and complexities of meshes,
they are typically easier to learn from. This is one of the reasons why deep learning on point
sets has gained momentum more quickly compared to learning over surfaces. The pioneering
work was that of Stanford University researchers called PointNet [56], a universal framework
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Figure 4.4: PointNet architecture for classification and segmentation. Encoder
(blue part) consists of series of applied learnable transformations and feature extractions
using MLPs. The global feature is calculated using the permutation-invariant max-pool
symmetry function. For the per-point scores (yellow part), the global feature is transformed
to the desired dimensionality by using shared MLP units. Figure adapted from [56].

for learning on a set of unordered points that, in addition, well respects the permutation
invariance of points in the input. In the basic setting, PointNet operates over vectors of
point’s (𝑥, 𝑦, 𝑧) coordinates, possibly extendable by other features like normal vectors. The
framework is composed of several components (see Figure 4.4):

• Input and feature transform. Small trainable neural network (named T-Net) is
learned to generate an 𝑁 ×𝑁 transformation matrix, where 𝑁 is the dimensionality
of the points in a given layer. The idea is that there might be a better coordinate
system (translated/rotated point cloud) in which it is easier to extract the features.
This matrix is applied to the input, preserving its shape.

• Learnable MLP units. Each point forms an input to a shared multi-layer percep-
tron, increasing the dimensionality.

• Permutation-invariant maxpool. Maxpool is implemented as a symmetry func-
tion to aggregate the information form each input point. As it takes the maximum,
no matter what order the points are in, the maximum will be the same.

Authors argue that such approach is invariant under transformations, respects the interac-
tion among points (neighboring points form a meaningful subset), and respects the nature
of the unordered set of points, while using simple concepts like MLPs.

As PointNet uses single maxpooling operation only to aggregate the whole point set,
it lacks the ability to capture local context at different scales. Hence, the work has been
extended by hierarchical clustering of points where larger and larger regions are abstracted
progressively along the hierarchy, similar to deep networks operating over images. This
approach is called PointNet++ [57]. To introduce a hierarchical learning structure over
point sets, authors introduce set abstraction levels where, at each level, a set of points is
processed and abstracted to produce a new set with a reduced number of point samples.
Each set is composed of three key layers:
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1. Sampling layer. It selects a set of points from input samples at a given set abstrac-
tion, representing the centroids of local regions using iterative farthest point sampling.
Note the difference with CNNs that scan the vector space agnostic of data distribu-
tion; point sets typically come with non-uniform density in different areas, so this
strategy generates data-dependent receptive fields.

2. Grouping layer. This layer constructs new sets of local regions by examining the
neighborhoods of the centroids sampled. In images, the local region of a pixel consists
of pixels within certain Manhattan distance (defined by kernel size in CNNs). In point
sets, one must specify a metric distance and some range query to define a local region
of a point (see Section 3.2.1). Authors in this work employ the ball query as it
guarantees a fixed region scale.

3. PointNet layer. Small PointNet network is used for local pattern learning in grouped
local regions.

Figure 4.5 illustrates the PointNet++ architecture. Combination of hierarchical structure
and thoughtful aggregation of multi-scale information according to local point densities
enabled the framework to achieve state-of-the-art performance on classification and seg-
mentation benchmarks of 3D point clouds. It continues to serve as an important work even
as other compelling approaches have emerged [43, 76].
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Figure 4.5: Illustration of PointNet++ hierarchical feature learning architec-
ture. This example shows high-level PointNet++ application for 2D point set segmentation
and classification. Figure adapted from [57].

4.2.2 Edge-Based Methods

Research in this category of methods gained momentum after the publication of the work by
Hanocka et al. [24], presented in 2019 at SIGGRAPH conference. The authors introduced
a general architecture operating directly over triangular meshes called MeshCNN, allowing
to solve domain-specific downstream tasks like mesh classification or segmentation. As
their approach is considered edge-based, convolution, pooling, and unpooling layers are
applied on the mesh edges. Such a formulation comes with certain assumptions about the
input mesh. In order to define a clear neighborhood of each edge, each 3D shape must be
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represented as a manifold triangular mesh with possibly boundary edges. This guarantees
that each edge is incident to two triangles at most and thus adjacent to two or four other
edges. Taking this into account, the authors defined the order-invariant mesh convolution
for an edge 𝑒 and its four adjacent edges as follows:

𝑒𝑟 = 𝑒 · 𝑘0 +
4∑︁

𝑗=1

𝑘𝑗 · 𝑒𝑗 , (4.1)

where 𝑒𝑗 is the feature vector of 𝑗𝑡ℎ convolutional neighbor of target edge 𝑒, and 𝑘0 and 𝑘𝑗
are corresponding kernels. To achieve the invariance to the ordering of the input data, a set
of simple symmetric pairs is applied, resulting in the following definition of the receptive
field of edge 𝑒:

(𝑒1, 𝑒2, 𝑒3, 𝑒4) = (|𝑎− 𝑐|, 𝑎+ 𝑐, |𝑏− 𝑑|, 𝑏+ 𝑑), (4.2)

where 𝑎, 𝑏, 𝑐, and 𝑑 are the 1-ring neighbors of 𝑒. Following the convolution operation,
a new feature tensor is generated, where the new number of features is equal to the number
of kernels in the same way as in images.

e

a

b
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d

(a) Edge features
and mesh

convolution

a

e

c
d

b p = avg(a, b, e)

q= avg(c, d, e)

(b) Mesh pooling

Figure 4.6: Fundamental building blocks of edge-based methods. (a) shows the 1-
ring edge neighborhood of edge 𝑒. Features of each edge are composed of intrinsic geometry
properties: dihedral angle (the one between two incident triangles), inner angles and two
edge-length ratios (between edge and the perpendicular dotted line). (b) demonstrates the
mesh pooling accomplished by edge collapse. The red edge collapses into a point and the
four blue edges merge into two edges. In a one edge collapse step, five edges are converted
into two and a new vertex is created. Both illustrations are adapted from [24].

Another key feature of MeshCNN is the mesh (un)pooling operation that is capable of
spatial adaptation to eliminate less informative features. For the downsampling process,
the authors adapted the mesh simplification technique called edge collapse. Unlike conven-
tional edge collapse presented by Hoppe [30], which removes edges that introduce minimal
geometric distortion, mesh pooling chooses collapse candidates in a task-specific manner.
The collapsed edges are those whose features contribute the least, so the network learns
the shape parts of importance with respect to its objective. The operation transforms five
edges into two, averaging the corresponding edge features. The mesh unpooling records the
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mesh topology before pooling the mesh and then reinstates the same mesh connectivity.
See Figure 4.6 for an illustration of the basic MeshCNN building blocks.

The authors chose intrinsic geometric features as input features. They form a five-
dimensional vector for every edge: the dihedral angle, two inner angles and two edge-
length ratios for each face, where the edge ratio is between the length of the edge and the
perpendicular line for each adjacent face. When selecting intrinsic geometric features, the
framework becomes invariant to translation, rotation, and uniform scale of the input shape.

Overall, their work yields an interesting new approach to extracting features from
meshes. However, there are some limitations. First, the evaluation was performed in-
sufficiently in terms of the chosen metrics, especially to experiment with the segmentation
network. Second, the chosen method is limited by the resolution of the input mesh – the
work set an upper limit of 750 edges for classification tasks and 2 250 edges for segmenta-
tion tasks. From the perspective of applying their framework to medical data, where fine
meshes capturing subtle anatomical properties need to be analyzed, the task formulated in
this way is inapplicable. The latter was addressed in the work of Hansen et al. [26]. With
these limitations in mind, they presented SparseMeshCNN. When the mesh unpooling is
performed in the decoder, the situation is not that straightforward as in data over a regular
grid (images or voxel structures). It is necessary to store information about collapsed edges
during downscaling, so when expanding, the proper edges are unpooled. To diminish the
memory requirements, the information about edge collapses is stored in a sparse matrix
rather than a dense one. Their framework can process meshes with more than 60 000 edges
with the same memory requirements. Other interesting works have been built on the basic
idea of MeshCNN [25, 39].

4.2.3 Face-Based Methods

Face-based methods focus on efficient information sharing between neighboring faces. One
of the first works in which the face is considered the primary data element is the one
of Xu et al. [78]. For the task of semantic shape segmentation, the authors proposed
a rotationally invariant k-ring neighbor convolution guided by face curvature. Several other
methods have advanced the idea of k-ring convolutions for various tasks [16, 28]. Such
methods, however, typically lack regular and uniform downsampling scheme to establish
a fine-to-coarse mesh hierarchy – analogous to a 2D image pyramid.

The authors in [31] proposed so-called SubdivNet which aims to achieve the closest anal-
ogy to hierarchical processing over regular data. To aggregate local features into large-scale
features at different levels, the authors employ subdivision surfaces – a smooth surfaces
produced by refining coarse mesh. There are many mesh subdivision algorithms (for ex-
ample Catmull-Clark subdivision [6] or Loop subdivision [46]), while in the work presenting
SubdivNet, the Loop subdivision was used due to its Loop property. As a result, the
Loop subdivision scheme always gives a 1-to-4 face mapping between coarse and fine mesh,
leading to a uniform fine to coarse hierarchy when applied several times. The 4-to-1 face
mapping establishes a step-by-step injection of faces from input mesh to the finest one,
allowing local to global feature aggregation.
The framework expects a closed 2-manifold triangular mesh on the input, where each face
is exactly surrounded by 3 other faces. This 3-regular property is analogous to the lattice
connectivity of pixels in 2D images and allowed the authors to introduce a general mesh
convolutional operation that allows variable kernel size, stride, and dilatation, as well as
pooling and unpooling. See Figure 4.7 for the visualization of various convolution kernel
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Figure 4.7: Fundamental building blocks of SubdivNet. (a) shows face convolution
kernels with different kernel size 𝑘 and dilation 𝑑 (upper row) and corresponding 2D con-
volution kernels (bottom row). (b) depicts pooling and two types of upsampling: nearest
and bilinear based on face distance, to provide smoother interpolation. Both illustrations
are adapted from [31].

patterns and pooling/upsampling techniques. In the experiments carried out, each face was
represented by a 13-dimensional vector composed of shape and pose descriptors (face area,
interior triangle angles, inner products of face normal with vertex normals, face center, and
face normal). The method outperformed other point- and edge-based approaches in both
classification and segmentation tasks by a large margin. However, the proposed method
expects remeshing of the input mesh, so the whole feature extraction is performed on a topo-
logically different mesh. In addition, the method is still limited by memory requirements,
though less memory-sensitive compared to, for example, MeshCNNs.

4.2.4 Methods Based on Graph Representation and Spectral Analysis

One of the important strands of literature in this category is formed by methods, where
learning is performed on locally encoded points. There, the kernel functions mimic those
from the image domain. In other words, learning is carried out on parameterized shapes.
Several different approaches appear in the literature, which differ in the parameterization
method used. For example, the authors in [50, 55, 69] parameterize geodesic fields (e.g.
tangent planes) to apply surface convolution. Alternatively, the global parametrization is
used by authors in [21, 49]. Due to parametrization, the methods are insensitive to different
tessellation and meshing.

The other group of methods relies on the basic principles of learning over graph struc-
tures. Note that this is a widely studied field, so only the most relevant methods for mesh
analysis are covered in the text. The graph learning methodology is typically divided into
two classes: spatial and spectral methods. Convolution is defined spatially on the graph by
analogy to convolution on a regular domain, whereas in spectral methods, graph signals are
transformed from the vertex domain to the spectral domain. Although many important
concepts can be found in spatial methods [18, 22, 34], spectral methods are used mainly
in the context of 3D shape analysis, so they will be addressed. The graph can be trans-
lated to the spectral domain using graph Laplacian L (see Section 3.2.2). To do so, the
eigendecomposition of L is performed by calculating the eigenvectors and the corresponding
eigenvalues:
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L = UΛ̂U𝑇 , (4.3)
where U = [u𝑇

0 , . . . ,u𝑇
𝑛−1] are the Fourier bases of 𝑛 eigenvectors and Λ̂ = diag([𝜆0, . . . , 𝜆𝑛−1])

the diagonal matrix of the eigenvalues [11]. Then, one of the spectral convolution approaches
define operation of convolution over graph signals as follows:

𝑓 * g = U((U𝑇 𝑓)⊙ (U𝑇 𝑔)), (4.4)
where ⊙ is element-wise multiplication [5]. Although more computationally optimal ap-
proaches emerged later [23], the main takeaway message is the principle: from graph signal,
the Laplacian is calculated, and thanks to its properties, eigenvectors produced by eigen-
decomposition are used to define convolution in spectral domain, which becomes simple
multiplication.

Laplacian transform Pooling Pooling Pooling

Inverse-Laplacian 
transform

UnpoolingUnpoolingUnpooling

Figure 4.8: Laplacian pooling and unpooling, various number of low-frequency
eigenvectors selection for building the spectral basis. From left to the right, the
less smallest eigenvectors used, the less high-frequency features are preserved in the spectral
surface reconstruction. The basic building blocks for hierarchical understanding: Laplacian
pooling and unpooling are based upon this idea. Figure adapted from [13].

Similarly to signals like images and graphs, 3D shape information with varying frequency
can be encoded in spectral domain as a set of eigenvectors and corresponding eigenvalues.
In the rest of this section, L refers to mesh Laplacian (recall the definition in Section 3.2.3).
L completely encodes the intrinsic geometry. The eigendecomposition of the Laplacian
matrix L enables the transformation between the spatial and spectral domains, similar to
the graphs presented above. Upon conducting eigendecomposition, it is possible to choose
𝑘 eigenvectors that correspond to the 𝑘 smallest eigenvalues. This selection Φ is in fact
a low-pass filter, as the lower the number of eigenvectors of smallest eigenvalues is selected,
the less high-frequency geometry is preserved when the spectral surface reconstruction is
performed. Based on this idea, Dong et al. recently presented Laplacian2Mesh [13]. The
authors construct an input feature matrix G ∈ R𝑛×39 in the spatial domain, where 𝑛 is
the cardinality of vertex set 𝑉 of input meshℳ. The authors employ various intrinsic and
extrinsic features to define this synthesized descriptor, such as vertex positions, normals, 1-
dimensional Gaussian curvature, Heat Kernel Signature [68], and low-frequency eigenvectors
corresponding to the 20 lowest frequencies. This feature matrix, upon projected to the
spectral domain, becomes:

G̃ = Φ𝑇
𝑘 G, (4.5)

and enables to encode meshes of arbitrary topology, complexity, and geometry, into a 𝑘 × 39
matrix G̃. Then, G̃ serves as the input to the neural network. The key element of Lapla-
cian2Mesh framework is the usage of various spectral bases Φ𝑇

𝑘 to simulate the hierarchical
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processing of regular data. To do so, authors select three different resolutions of G̃. The
resolution depends on the number of low frequency eigenvectors used to construct corre-
sponding Φ that generates G̃. The three spectral matrices are then processed by regular
convolution blocks. Using similar idea for Laplacian pooling and unpooling, authors built
architectures for different tasks, such as classification and segmentation. For better under-
standing, see Figure 4.8, which demonstrates how these concepts look after spectral surface
reconstruction.

Laplacian2Mesh is, of course, just one of several graph-inspired spectral domain meth-
ods, but provides an insight into neural mesh analysis in the spectral domain. As an
example, HodgeNet [64] also operates in the spectral domain but is based on the mapping
via the calculation of the Hodge star operator [12]. As spectral methods like [60, 64] are
conceptually more difficult, interested readers are referred to the original papers.

4.3 State-of-the-Art in Mesh Teeth Segmentation
Prior to the advent of deep learning techniques, several non-learning attempts has launched
to address the challenging dental mesh segmentation. These traditional geometry-based
methods utilize hand-crafted features, such as curvatures and surface contour lines. These
features are used to design decision rules for conventional segmentation algorithms such as
thresholding [38], watershed-based region growing [44], active contours [35], and such [74,
80]. Apart from the fact that these methods often require thresholds to be manually
regulated or key points to be sequentially annotated in order to fine-tune the resulting
segmentation, these methods lack the robustness required to represent intricate tooth shapes
and complex anatomical abnormalities, which make the segmentation process error-prone.

Several works tackle this problem using deep learning methods, although their frequency
in literature is relatively limited, and, moreover, all approaches are based on a very similar
design principle. As already discussed, among the 3D representations, the 3D point cloud
became popular in many narrow tasks, mainly due to its flexibility and memory efficiency.
This is also true for the task of automatic mesh teeth segmentation, where, the goal of
the automatic framework is to perform per-face-classification of teeth regions and gingiva
within input mesh. Although pioneering works such as PointNet [56] and PointNet++ [57]
are capable of learning characteristics on different contextual scales, their performance is
limited in the task of segmenting teeth. From that reason, several frameworks have been
built on this idea that extend it to be applicable to the intricate character of dental scans.
For example, the authors in [67] employ a coupled segmentation and dense correspondence
network stacked on existing graph convolution network architectures. Similarly, by analyz-
ing point cloud representation, Cui et al. [10] propose a method for distance-aware tooth
centroid voting scheme and confidence-aware cascade segmentation module. Alternatively,
the method in [75] is defined as a two-stage framework, where, first, the teeth regions
are segmented using iMeshSegNet network [45], and landmarks are subsequently regressed
within the proposed ROIs (regions of interest, that is, teeth regions).

Although the results of the CNN-based approaches are promising and far beyond the
results of conventional methods, these automatic frameworks are often evaluated on simple
anatomical cases, and it is not clear how they would generalize on commonly occurring
complicated orthodontic cases and hence how helpful they would be in industry. In ad-
dition, the methods often combine the task of detecting landmarks and segmenting teeth
(performed in varying order). However, from a practical point of view, it is a desirable
practice to separate these two tasks, as correction of the positions of detected orthodontic
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landmarks is less time-consuming than correcting the segmented tooth regions. Finally,
current state-of-the-art methods in the mesh teeth segmentation task do not dispose of
any public benchmark dataset. This, combined with often poorly designed metrics, yields
limited credibility in method evaluations and comparisons, so it is non-trivial to determine
which of the current methods is superior.
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Chapter 5

Proposed Solutions for Automatic
Teeth Segmentation in Surface
Scans

To address the problem of automatic teeth segmentation in surface meshes, in this the-
sis, three supervised solutions are proposed. The main contribution of this work is the
multi-view segmentation approach. This is a novel approach to tackle this task, as to
my knowledge, there is no solution in the literature that experiments with this Euclidean
approach on this particular task. For fair comparisons, two non-Euclidean geometric ap-
proaches are further proposed: one is based on the PointNet [56] and PointNet++ [57]
architectures (i.e., they operate on point clouds) and one is based on SparseMeshCNN [26],
i.e., directly analyses the mesh representation. The first part of this chapter formally de-
fines the problem to be solved. Subsequently, the dataset is introduced as a key element of
supervised methods. After establishing an insight into the dataset, the proposed methods
are presented in detail.

(a) Input triangular mesh (b) Segmented regions by proposed method

Figure 5.1: Example of an input surface dental scan (a) and generated output
(b) of methods dealing with automatic teeth segmentation. Goal of this framework
is to segment the input mesh into separate regions that represent individual teeth and
gingiva.
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5.1 Problem Definition
Given the 3D shape represented as a triangular meshℳ = (𝑉,𝐸, 𝐹 ); see the full definition
in Section 3.2.3. Unless stated otherwise, there are no assumptions about ℳ with regard
to manifoldness, closeness, resolution, orientation, or size. It is expected to be a geometric
object representing a single human dentition – either a maxillary or a mandibular dental
arch. The problem solved in this work is then formally denoted as

ℱ ⊆ 𝐹 × 𝒞, (5.1)
where 𝒞 is a set of classes. The function ℱ can be perceived as a mapping from a set of
mesh faces to a set of classes, which is in fact how the downstream task of segmentation
or per-element classification is formulated. In this work, individual classes have following
semantics:

𝒞 = {𝐿1, 𝐿2, 𝐿3, . . . , 𝑅1, 𝑅2, 𝑅3, . . . , 𝐺}, (5.2)
such that |𝒞| = 17. They represent sixteen classes for individual teeth regions encoded
as 𝐿(eft) or 𝑅(ight) quadrant followed by a number starting from central incisor to 3rd
molar (1 to 8), and one class 𝐺 that represents gingiva. In the context of this work, no
distinction is made between the upper and lower jaw, i.e. both are treated equally (the
lower jaw is aligned to match the upper jaw). See Figure 5.2 for a visual demonstration
of the target regions and nomenclature. Note that the region colors and nomenclature
hold throughout the work. Mapping ℱ is injective, since each face from ℳ is assigned
a specific class. However, it is not surjective, since in majority of cases the scanned dental
arch is incomplete, i.e. teeth are missing, therefore some classes may not be associated
with any face. Example of an input mesh ℳ and visualized mapping ℱ is presented in
the teaser image, Figure 5.1. Each face is assigned a class (injectivity property), but some
classes like L8 and R8 are not present, as corresponding teeth are missing (which means
that surjectivity is not satisfied). Faces of each class should always form a single connected
component.

Left 3rd Molar (L8) Right 3rd Molar (R8)

Right 2nd Molar (R7)

Right 1st Molar (R6)

Right 2nd Premolar (R5)

Right 1nd Premolar (R4)

Right Canine (R3)

Right Lateral Incisor (R2)

Right Central Incisor (R1)

Left 2nd Molar (L7)

Left 1st Molar (L6)

Left 2nd Premolar (L5)

Left 1st Premolar (L4)

Left Canine (L3)

Left Lateral Incisor (L2)

Left Central Incisor (L1)

Figure 5.2: Visual notation and naming convention of segmented classes em-
ployed throughout the thesis. This work aims to segment 17 different classes, out of
which sixteen correspond to individual teeth in human jaw. Mesh faces that are colored in
gray represent gingiva class 𝐺.
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5.2 Dataset of Surface Dental Scans of Orthodontic Patients
The dataset consists of 142 triangular meshes, with an nearly ideally balanced distri-
bution of the upper and lower jaws (76 represent the human maxilla and the remaining
66 represent mandibles). All data samples are real orthodontic cases scanned by various
intra-oral scanners and by indirect scanners of wax impressions. The cases were anonymized
so it was not possible to undertake a thorough analysis in regards to the ethnic, gender, or
age; however, data come from multiple clinical sites across several continents. The major-
ity of the data are from patients scanned prior to the orthodontic procedure. This brings
a necessary and, moreover, natural complexity in terms of malocclusion and teeth shifts,
providing a rich source of data for training and evaluation. In addition, there are scans with
dental braces and wires in the dataset – that reflects the orthodontic nature of data, and
it is desirable that the method is robust towards such cases. Finally, some cases contain
geometry with blurred geometric signals, for example, at the tooth-gingiva boundary or
inbetween two teeth.

Table 5.1: Exploratory data analysis. Table contains essential characteristics about
the geometry of the samples in the dataset, which is important to consider when designing
neural mesh analysis approaches. This exploratory analysis also contains characteristics
important for non-Euclidean methods, such as mesh closeness, self-intersections, and man-
ifoldness. †Physical dimensions were measured from oriented bounding box.

Train Set Test Set

Vertex count
min 42 837 49 374
mean, std 74 783± 40 524 71 686± 14 551
max 531 584 102 749

Face count
min 85 670 98 744
mean, std 149 560± 81 051 143 356± 29 101
max 1 063 188 205 494

Edge count
min 257 010 296 232
mean, std 448 698± 243 154 430 107± 87 305
max 3 189 564 616 482

Physical dimensions
(𝑊×𝐻×𝐷)† [mm]

min 34.60× 52.11× 12.74 26.33× 50.18× 13.70
mean 49.24× 63.33× 17.83 46.53× 61.65× 17.62
max 64.79× 81.06× 25.04 52.68× 68.91× 20.02

Percentage of closed meshes [%] 100 100
Meshes with self-intersections [%] 0 0
Non-manifold cases [%] 0 0

All provided scans contain geometry information on vertex positions and topology, with
an average face count of approximately 150 000, and do not carry any information on
colors or textures. Regarding mesh topology and quality, meshes with self-intersections,
non-manifold edges, or flipped normals are not present in the dataset. Table 5.1 provides
in-depth insight into the fundamental geometric properties of the dataset. The geometry
across the data is of varying complexity, most noticeable on the occlusal surfaces of the
molars, where a number of samples contain intricately detailed cups and grooves, but others
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have a contrasting absence of detail, with the occlusal surface comprising a rather smooth
geometry (for a visual demonstration, zoom in on the molars in Figure 5.3).

Table 5.2: Rate of presence of teeth region classes within the dataset. Values
represent the percentage of cases in which the (annotated) tooth is present. The values for
categories represent the percentage of cases in which at least one of the teeth of that category
is present. Note that the 3rd molar class (circled in red) is significantly underrepresented.

Incisors Canines Premolars Molars
L1, R1 L2, R2 L3, R3 L4, R4 L5, R5 L6, R6 L7, R7 L8, R8

by category [%] 96.41 94.65 96.41 91.66
by tooth [%] 96.41 96.16 94.65 96.02 93.98 90.83 83.51 11.52○

Individual tooth regions (segmentation masks) for each data sample were accurately
labeled by a clinician in each case and subsequently reviewed and refined (quality-controlled)
to ensure high quality of the labels. The shapes of the regions (except for the gingival region)
follow typical tooth anatomy and vary primarily across tooth categories (incisors, canines,
premolars, and molars). Minor nuances in shapes caused by anatomical variability are
evident. The greatest variation in the segmentation regions occurs across tooth categories.
Thus, Table 5.2 shows the data distribution of teeth classes and their categories. Except
for the 3rd molar region, all classes are fairly uniformly represented. Note that each region
is always formed by a single connected component.

Figure 5.3: Example cases from the test set. From left: case with minor anomalies
(sample from basic test set), case with severe transposition of lateral incisors, case with
smooth incisal surfaces, and case with wire on lingual surfaces.

In order to ensure the best coverage of data diversity, 30 cases were thoroughly selected
to form a test set. The process of rigorous selection of the test cases was assisted and
discussed with an experienced dental planning software tester from TESCAN 3DIM, s.r.o.
This holdout set was then divided into two smaller sets: basic test set with 10 cases with
minimal or no dental irregularities and complex test set of 20 complex cases with various
positional anomalies, scanned dental braces and wires and/or smooth surface parts without
clear geometric features. See Figure 5.3 for sample dental scans of both the normal and
abnormal subsets. Generally speaking, the tooth segmentation method must be able to
segment teeth with as little error as possible, not only in simple cases but also especially
in complicated orthodontic cases, in order to be usable in clinical practice. Splitting the
test set can indicate whether the method is able to generalize well or whether there is
a significant difference between the accuracy in the simple and complicated test set.
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Figure 5.4: Schematic overview of the multi-view framework. Orthodontic land-
marks are automatically detected using my previously published method [37]. Subsequently,
teeth regions are individually segmented in aligned mesh by applying multi-view approach
with inter-view context (Per-Tooth Stage). Teeth regions are post-processed in 3D by re-
gion voting and connected component analysis (Scan-Level Stage).

5.3 Recurrent Multi-View Segmentation Approach
A schematic view of the proposed multi-view deep learning framework is given in Figure 5.4.
The whole pipeline consists of two automatic steps, with an intermediate conventional
computation of alignment matrix:

1. Automatic teeth detection. This automatic module detects two occlusal/incisal
landmarks on each tooth. Running tooth detection first has two advantages. In case
of failure of the automatic method, from a practical standpoint, it is less laborious
and much faster for the clinician to adjust the positions of the points than to adjust
the boundaries of the 3D masks on the mesh. Second, preserving information about
the location of landmarks makes it easier to solve other tasks by allowing for local
processing. Since this part is not the focus of this work, the technical details are
not further elaborated. The automatic module used in this work was designed and
experimented within my Bachelor’s thesis [36]. It is based on a multi-view representa-
tion, and it detects two anatomical landmarks on the occlusal/incisal surface of each
tooth. If interested in the details of this step, refer to that thesis or to the published
paper [37], which will provide a brief insight into how the method works. Note that
any other teeth detection module could be employed.

2. Jaw alignment. To further facilitate the segmentation task, the positions of the
detected points are used to align the model to a common coordinate system. Using the
input points and employing the ICP algorithm [2], this step generates a transformation
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matrix, that is applied to the analyzed geometry and is always upright oriented along
the z-axis.

3. Automatic teeth segmentation. This step is the main goal of this thesis and will
be the focus of the rest of this chapter.

To model the function ℱ , step 3. consists of two stages: (1) per-tooth stage, which is applied
on each detected tooth separately – computations for each tooth can run in parallel, and
(2) scan-level stage, which merges the per-tooth predictions and applies post-processing
methods.

Per-Tooth Stage

Since the work relies on prior automatic detection and subsequent alignment to a common
coordinate system, it is possible to perform feature extraction and mask generation locally,
separately for each tooth. Thus, the 2D neural network has a higher yield of useful
intricate geometric information at the input compared to a situation where a rendering
of the entire 3D shape would form the input (considering the same amount of trainable
parameters and input map size). Intuitively, when the third molar segmentation mask is
generated in the left quadrant, the shape of the jaw in the right quadrant is irrelevant.
This makes the method robust to positional teeth anomalies and, moreover, it suppresses
errors that would be introduced by underrepresented tooth classes. The following sequence
of steps is performed on each tooth individually:

1. Generating input maps using next-view sampler. Thanks to prior occlusion
alignment, it is possible to obtain suitable initial camera extrinsic. The camera is
positioned in a way that allows capturing the entire occlusal surface of the tooth,
together with the nearby neighborhood, to preserve the contextual information of
the adjacent teeth. A neighborhood of ±12mm is captured with additional 3mm for
molars. The following views are obtained by moving the camera in a spherically spiral
manner with constant angular increase. The camera is always pointing at the center
of given tooth (position is derived from landmarks). The multi-view configuration
(viewpoint number and step size) is subject to experiment.

2. Extraction of 2D segmentation masks. From each camera viewpoint 𝑣, the
following 2D input maps of size 𝐻 ×𝑊 are generated:

𝐷𝑣 ∈ [0, 1]𝐻×𝑊 , and (5.3)
𝑁𝑣 ∈ [−1, 1]3×𝐻×𝑊 , (5.4)

such that 𝐷𝑣 is the depth map where 0 indicates intersection at infinity, i.e. no
intersection with the analyzed mesh ℳ, and the remaining values are normalized
lengths of rays cast orthogonally in the direction of camera’s direction (look-at) vector
until first hit with ℳ (distance between camera’s 𝑧 coordinate and 𝑧-coordinate of
hit primitive). 𝑁𝑣 is the normal map obtained in a similar fashion, but the tuple in
each pixel holds information about the normal vector of first hit primitive (normal
vectors in screen-space). Figure 5.5 visualizes the aforementioned map renderings.
The depth map brings the 3D context into 2D processing, while the normal map
yields information about curvature. These maps are then stacked to form a single
input for the network:
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𝐼𝑣 := {𝐷𝑣, 𝑁𝑣} ∈ R4×𝐻×𝑊 . (5.5)
Defined in this way, the method is also robust against various lightning, shading,
reflectance models, etc. Since the network is based on a multi-view approach, there
is a set of such inputs 𝐼 = {𝐼𝑣,1, . . . , 𝐼𝑣,𝑛}, where 𝐼𝑣,𝑖 is the map from the 𝑖-th
(1 ≤ 𝑖 ≤ 𝑛) position of camera, and 𝑛 the total number of viewpoints. Each element
of 𝐼 then serves as an input for the segmentation network denoted as CNN1. This
network is shared across all viewpoints and adapts U-Net shape [58], with minor
modifications (see Section 6.3 for details). U-Net is chosen because it is a well-
known fully-connected network architecture, achieving huge success in biomedical
image segmentation.
Since the configuration of next-view sampler is fixed, the set 𝐼 can be perceived as
a sequence of 𝑛 samples. As the outputs of CNN1 lack the inter-viewpoint context,
further tuning by ConvLSTM [62] is employed, to ensure correlation of views and
consistency of the boundaries of the segmentation regions. As the input
sequence 𝐼 can be generated prior to the 2D segmentation mask prediction, it is
possible to employ Bi-Directional ConvLSTM [7], allowing to capture the context of
the sequence in both directions. So, the FCN components extract intra-view context,
whereas the next RNN components can concentrate on the inter-view context.
The weights of the FCN and RNN components can be trained end-to-end, and together
form the 2D segmentation mask extraction function. The output of this function for
each tooth is then a sequence of 2D binary segmentation masks 𝑂 = {𝑂𝑣,1, . . . ,𝑂𝑣,𝑛},
where each 𝑂𝑣,𝑖 ∈ {0, 1}𝐻×𝑊 for each 𝑖 in (1 ≤ 𝑖 ≤ 𝑛).

3. Unprojection of the predictions to R3. In this step, the sequence of output
maps 𝑂 is transformed into a set of faces 𝐹𝒞 ⊆ 𝐹 representing the segmented tooth.
For each output map 𝑂𝑣,𝑖, the extrinsic of camera is set to the same as when the
corresponding input has been generated. Then, the rays are cast orthogonally only
through those pixels of 𝑂𝑣,𝑖, whose value is 1. For each face 𝑓 ∈ 𝐹 hit by any of the
rays, the value of 𝐹𝒞 is set to 𝐹𝒞 ∪ {𝑓}.

inf

d

0

norm(d)
(n(x), n(y), n(z))

inf
(0, 0, 0)

n

Figure 5.5: Rendering procedures of 2D maps for multi-view network inference.
Pixel values in depth maps (left) correspond to the normalized value from camera’s z-
position to mesh intersection. RGB values of normal map (right) correspond to 𝑥, 𝑦,
𝑧 values of normal vector of hit triangle, respectively.
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Scan-Level Stage

Once the previous sequence of steps is applied to each tooth, it is necessary to merge all
the regions on the target mesh ℳ. There are two major issues that might arise from the
independent generation of the per-tooth region: (1) some faces 𝑓 ∈ 𝐹 might be assigned
to multiple classes from 𝒞, and (2) the unprojected regions do not form a single connected
component, although it is a desirable behavior based on the definition of the problem.
The former is solved by region voting, whereas the latter is solved by connected component
analysis. Both situations are illustrated in a simplified case in Figure 5.6.

1. Region voting. To tackle the cases when a face 𝑓 ∈ 𝐹 is assigned to multiple classes
from 𝒞, let’s first define multi-view certainty 𝑈 as

𝑈 ⊆ 𝐹 × 𝒞 × 𝑃, (5.6)

such that 𝑃 = {𝑝 | 𝑝 ∈ [0, 1]}. Intuitively, each tuple (𝐹𝑖, 𝒞𝑖, 𝑝𝑖) ∈ 𝑈 defines certainty
𝑝𝑖 of face 𝐹𝑖 being a member of class 𝒞𝑖, and is obtained as the ratio of the number
of views from which the face was hit by a cast ray, and the number of views from
which the face was initially visible. For a clearer demonstration, 𝑈 can be perceived
as a mapping

𝑈 : 𝐹 × 𝒞 ↦→ [0, 1]. (5.7)

This mapping then assigns per-face class in the following fashion:

ℱ ←

⎧⎨⎩argmax
𝑐∈𝒞

𝑈(𝑓, 𝑐) if max
𝑐∈𝒞

𝑈(𝑓, 𝑐) ̸= 0,

𝐺 if max
𝑐∈𝒞

𝑈(𝑓, 𝑐) = 0.
(5.8)

This means that each face is assigned to the class with highest multi-view certainty.
If the certainty is 0 for each teeth classes, the face is associated with the class that
represents the gingiva.

2. Connected component analysis. As previously stated, the problem is formulated
in a manner in which each tooth in the dental scan corresponds to a single connected
region. Therefore, it is necessary to remove all outlying faces. Face is considered
outlying, when it is not part of the largest segmented region of given class. The CCA
approach from graph theory is used to accomplish the removal of outlying faces. In
case there is a class which is represented by more than one component, only the com-
ponent with the highest face count is preserved. Faces of the remaining components
are associated with classes respecting the multi-view certainty.

5.4 Proposed Non-Euclidean Frameworks
As an alternative to proposed recurrent multi-view framework, two other non-Euclidean
approaches are proposed. They will primarily serve as a fair comparison of the previously
introduced method to other approaches (so that they are trained and evaluated on the
same dataset). In these two non-Euclidean frameworks, one considers vertices as the main
element, and the other one considers edges as the main element. Both methodologies share
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U(f, blue) = 0.975
U(f, green) = 0.250

Region Voting

(a) Region voting

CC1 CC2
CCACC3 CC3

(b) Connected component analysis

Figure 5.6: Scan-level stage operations. In (a), five faces are assigned to two classes
(blue and green classes overlap there). When the multi-view certainty is examined, given
faces are assigned to the blue class, as it’s of higher value. In (b), only CC3 region is
retained, as it is the component with highest number of primitives. Note that both cases
may occur commonly in the task where the regions are classes of teeth: masks overlap on
the adjacent teeth, isolated triangles arise for instance from backprojection step.

a common design principle in which they require prior teeth detection (see beginning of
Section 5.3). This prerequisite is critical in their practical use, as it facilitates the analysis
of mesh cuts comprising only a limited vicinity of the segmented tooth. Such an approach
ensures that the analysis preserves intricate geometric details, which would be otherwise
lost by severe undersampling of the analyzed point cloud or heavy mesh decimation. Note
that undersampling/decimation would become necessary when analyzing the entire jaw
simultaneously, given the memory limitations imposed by the non-Euclidean neural network
architectures.

5.4.1 Point-Based Segmentation Approach

In a similar fashion as in the multi-view framework, feature extraction and region proposal
is applied in per-tooth manner:

1. Generating input point cloud of interest. Given tooth center point 𝑐 ∈ R3 (de-
rived from landmarks), the target mesh ℳ is first cut by six planes parallel to co-
ordinate planes, such that the point-plane distance 𝑑 of individual planes and point
𝑐 define the amount of contextual information that will be provided to the neural net-
work. The value of 𝑑 is set to 12 mm (15 mm in case of molars) so that the geometry
of the adjacent teeth is preserved in the cut mesh. The resulting mesh is then a tuple
ℳ𝑐𝑢𝑡 = (𝑉𝑐𝑢𝑡, 𝐸𝑐𝑢𝑡, 𝐹𝑐𝑢𝑡), where 𝑉𝑐𝑢𝑡 ⊆ 𝑉 , 𝐸𝑐𝑢𝑡 ⊆ 𝐸, and 𝐹𝑐𝑢𝑡 ⊆ 𝐹 . Then, the mesh
to point cloud procedure follows. As the modeled function ℱ assigns classes to faces,
it is necessary to preserve a correspondence between the points in the analyzed point
cloud and the target faces. So, the input point cloud 𝒫𝐼 = {𝑝𝑖𝑥, 𝑝𝑖𝑦, 𝑝𝑖𝑧, 𝑛𝑖

𝑥, 𝑛
𝑖
𝑦, 𝑛

𝑖
𝑧}𝑛𝑖=1

yields the position of the point in R3 and its normal vector obtained as follows. For
each face 𝑓 ∈ 𝐹𝑐𝑢𝑡, a point is sampled using barycentric coordinates 𝑢, 𝑣, 𝑤:

(𝑝𝑥, 𝑝𝑦, 𝑝𝑧) = 𝑢𝑓1 + 𝑣𝑓2 + 𝑤𝑓3, (5.9)
where 𝑓1, 𝑓2, and 𝑓3 are the vertices of triangle 𝑓 , and values of 𝑢, 𝑣, and 𝑤 are
randomly generated so the point lies within the face 𝑓 (0 ≤ 𝑢, 𝑣, 𝑤 ≤ 1 and also
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𝑢 + 𝑣 + 𝑤 = 1). Random placement brings small perturbations, especially
beneficial in training phase, which is advantageous as it reduces network’s sensitivity
to noise. The normal vector (𝑛𝑥, 𝑛𝑦, 𝑛𝑧) is simply the normal of the corresponding
face 𝑓 . Note that if only one point is sampled from each face, the cardinality 𝑛 of 𝒫𝐼
equals to the number of faces of ℳ𝑐𝑢𝑡, but multiple points can be sampled from one
face, increasing the resolution of the point cloud. The whole procedure is illustrated
in Figure 5.7.

2. Extraction of point segmentation mask. Point cloud 𝒫𝐼 then directly forms an
input to a neural network, which is designed as PointNet++ [57] (experiments were
also performed with PointNet [56]). The result of inference is a set

𝑂 = {𝑜 | 𝑜 ∈ {0, 1} ∧ |𝑂| = 𝑛}, (5.10)

where zero indicates that the corresponding point does not contribute to the tooth
region, and 1 indicates that it does.

3. Mapping point predictions to target mesh. Each predicted value of 𝑂 corre-
sponds to a point 𝑝 ∈ 𝒫𝐼 , and that point corresponds to a face 𝑓 ∈ 𝐹𝑐𝑢𝑡, which is
also included in the set 𝐹 of the target mesh ℳ. Using these correspondences, the
prediction is transitively mapped to the target mesh.

The scan-level stage is then limited by the fact that there is no possibility for region
voting, as the certainty of prediction can not be directly derived as in multi-view approach.
It would be possible if multiple points were sampled for each triangle, however, the resulting
point cloud would be prohibitively large for processing on average GPUs. Consequently,
the scan-level stage resorts solely to connected component analysis, which satisfies the
requirement of producing single region segmentation masks.

d

d
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Input for
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Figure 5.7: Input preparation procedures for proposed non-Euclidean frame-
works. For each tooth within input scan, a mesh cut is first obtained by cutting the mesh
by 6 planes, with distance 𝑑 from tooth center 𝑐 (for simplicity, only two planes are shown).
This cut is either directly used as an input for edge-based method, or it is transformed into
point cloud. In the latter, applied sampling technique randomly picks a point from each
face by barycentric coordinates.
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5.4.2 Edge-Based Segmentation Approach

Following the per-tooth computation principle, the edge-based solution also takes a tooth
cut ℳ𝑐𝑢𝑡 as an input, which is defined the same way as the point-based method. For each
edge 𝑒 ∈ 𝐸𝑐𝑢𝑡, a 5-dimensional feature vector 𝑓𝑒 is calculated and is composed of the dihe-
dral angle, two inner angles, and two edge-length ratios for each face, such that the edge
ratio is calculated from the length of the edge and the perpendicular line for each adjacent
face. The use of these intrinsic features is inspired by the approach presented in [24].
Segmentation network based on the SparseMeshCNN architecture is employed [26], and it
directly takes the 3D shape ℳ𝑐𝑢𝑡 as input in the form of an edge-feature tensor. Suppose
𝑛 to be |𝐸𝑐𝑢𝑡| in this setup, the output is a set 𝑂 with cardinality of 𝑛, containing class pre-
dictions of the same format as in Equation 5.10. Note that these predictions are per-edge.
These predictions are effectively propagated to each 𝑓 ∈ 𝐹 by examining the predicted
class labels of its incident edges in the same fashion as presented in [24]. Subsequently,
after mapping the regions to ℳ for each tooth, the analysis of connected components is
calculated at the scan level.
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Chapter 6

Implementation and Training
Details

This chapter outlines the details of the implementation of proposed methods. It provides
a detailed overview of the equipment used, together with comprehensive information on the
training and evaluation parameters. The objective is to adhere to the principles of repro-
ducible research, ensuring that the readers have the necessary information and resources to
accurately reproduce the results presented in this study.

6.1 Toolset
The entire segmentation framework is implemented using Python1 due to its preeminent
position within the domain of deep learning research. For building, training, and evaluating
neural network models, open-source framework PyTorch2 was used. Since PyTorch does
not provide its users with a platform for monitoring training processes, evaluation runs
and other visualizations, WandB3 platform was employed for this particular purpose. For
CPU computations, the NumPy4 was utilized, as it provides vectorized versions of all the
necessary computations required for this work. For all mesh and point cloud processing
and visualization, Trimesh5 package was used. It provides an abstraction for analyzed 3D
shapes and point clouds as well as a viewer for programmable visualization of 3D geometry.
This library does not provide implementation for some mesh processing operations, so other
3D shape analysis libraries were used as well, such as Open3D6 for the ray casting method
and PyMeshLab7 for various mesh augmentation techniques.

6.2 Training and Evaluation Infrastructure
In order to facilitate the training and experimentation of the proposed approaches, it was
necessary to devise a thoughtful infrastructure. This was particularly crucial given the
utilization of diverse representations of 3D shapes, a range of networks that process various

1https://www.python.org/
2https://pytorch.org/
3https://wandb.ai/site
4https://numpy.org/
5https://trimsh.org/index.html
6https://github.com/isl-org/Open3D
7https://pymeshlab.readthedocs.io/en/latest/index.html
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input types, and others. It also allowed for seamless experimentation with different subsets
of the dataset, augmentations, and other variables. The following sections provide brief
descriptions of crucial components of the infrastructure, their interconnections, and how
the other libraries are used. It also clarifies a portion of the code that was adapted from
existing implementations (several classes for point-based and edge-based approaches). Note
that unless explicitly specified, the code is an original implementation.

Data Handling

Datasets are organized in JSON8 format. The reason for this is twofold: in addition to
geometry and segmentation masks information, each data sample contains annotated land-
mark positions, alignment matrix, jaw type, and others. These metadata need to be prop-
erly organized to allow for their seamless processing. Second, this brings a simple way
to merge multiple datasets, calculate dataset statistics, versioning, and querying for spe-
cific records. Each data sample (i.e. each record in JSON dataset) is represented as an
instance of GenericMesh class. This abstraction contains reference to a TriMesh object,
i.e. the geometry of given 3D shape, and all other annotations and metadata in the form
of class variables. Within the behavior, methods like jaw alignment or visualizations are
defined. Instances of GenericMesh also contain a reference to a list of ToothMeshCut in-
stances. These represent data samples of individual teeth, since the proposed methods
operate locally on each tooth. When instantiating, it is possible to specify the width of
the cut – how far are the planes that cut the geometry of parent GenericMesh from given
tooth center. More important is the behavior of the ToothMeshCut class, which contains
methods for converting local mesh to multi-view representation, point cloud representa-
tion, and a representation suitable for the MeshCNN-based method.9 These methods can
be used either to pre-generate the dataset of input features on disk or for on-the-fly sam-
pling during training and evaluation procedures. Prior to any dataset analysis (before
any conversion of JSON records to a list of GenericMesh instances), the processing goes
through JsonInterface layer. This class contains endpoint-like methods for filtering only
cases with specific characteristics. This is handy for experimenting with particular sub-
sets of the dataset. It is possible to filter for example by jaw types or only cases with
a specific tooth present. Individual fully parameterizable augmentation techniques are
implemented within classes Augmentator2D and Augmentator3D. Finally, datasets for in-
dividual approaches are wrapped by classes DatasetMultiView, DatasetMultiViewLSTM,
DatasetPointNet, and DatasetMeshCNN. These inherit from PyTorch’s Dataset10 class.
Combined with DataLoader11, the filtered JSON records in the form of ToothMeshCut in-
stances are possible to automatically sample in batches, process in parallel, and others,
which simplifies the training procedure. The values of the monitored metrics and loss
functions are stored within WandB run specified by the corresponding experiment configu-
ration and unique id. The platform is also used to store trained weights and traced models
throughout training.

8https://www.json.org/json-en.html
9Input feature generation adapted from https://github.com/s183983/Sparse_MeshCNN_w_Attention.

10https://pytorch.org/docs/stable/data.html#torch.utils.data.Dataset
11https://pytorch.org/docs/stable/data.html#torch.utils.data.DataLoader
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Training and Evaluation Pipeline

The hyperparameters of each training run are specified by command-line arguments for
individual training scripts (each of the proposed approaches runs different script – for
example train_multi_view.py and train_point_based.py). Furthermore, each run is
presented by a unique identifier that is used for associating experiments, trained models,
and evaluation results. The specified hyperparameters and unique identifier are also used
to create a training run on the WandB logging platform. The training procedure is carried
out in the Trainer class. In its constructor, objects of appropriate classes are initialized,
according to the specifications: one of the aforementioned Dataset classes for handling data,
network architecture to be trained – UNet2D, UNetLSTM, PointNetSeg12, PointNet2Seg13,
or SparseMeshCNNSeg14, loss functions, optimizers, and other parts needed for training. To
evaluate the performance of the framework based on a specific training configuration, it is
essential to define a training run. The provided script automatically loads the corresponding
weights and executes the evaluation process. The evaluation metrics obtained during this
process are stored in a JSON format, facilitating easy visualization and analysis of the
quantitative results. This enables comparisons between different runs and approaches,
aiding in the analysis and interpretation of the performance.

6.3 Architectures of Employed Models
A deep neural network architecture was designed for each of the proposed approaches. In
the following subsections, the individual architectures are introduced, with the primary
focus on the main method of this work – the multi-view approach with recurrent blocks.

6.3.1 Recurrent Multi-View Segmentation Model

As already discussed in Section 5.3, the task of automatic tooth region segmentation in
2D is approached as a sequence processing. First, the fully-connected CNN component
constructs a feature map 𝑓𝐹𝐶𝑁 for each of the viewpoints. It aims to extract visually object-
relevant information (e.g. intricate tooth surface geometry), while the object-irrelevant
information is discarded. Then, the recurrent component concentrates on the inter-view
context by processing 𝑓𝐹𝐶𝑁 maps sequentially, adjusting the displacements of produced
masks and thus bringing consistency on the boundaries. Please refer to Figure 6.1 to see
details of the designed multi-view segmentation model. The FCN part is formed by a U-
shaped encoder-decoder, inspired by the U-Net architecture [58]. Common characteristics
with U-Net are employed skip connections, which enable the flow of information between
the contracting (encoder) and expanding (decoder) stages at multiple resolutions. These
connections help in preserving and combining low-level and high-level features during the
upsampling process, allowing to access both local and global information of analyzed maps.
To reduce overfitting by regularization, additional batch normalization layers were added
in each stage of the encoder, between the convolutional and ReLU layers. Upsampling is
accomplished by transposed convolutional layers. The architecture consists of four stages
and a bottleneck. With hidden features dimensionality set to 32, 64, 128, and 256, the
network is of sufficient capacity given the task, size and character of the analyzed data. It

12Model architecture adapted from https://github.com/yanx27/Pointnet_Pointnet2_pytorch.
13See footnote 12.
14Model architecture adapted from https://github.com/s183983/Sparse_MeshCNN_w_Attention.
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is trained to extract features from input maps of size 256 × 256 × 4, which correspond to
stacked depth and normal map, and producing a feature map 𝑓𝐹𝐶𝑁 with dimensionality of
256 × 256 × 1. Additionally, deep supervision [71] is employed in the fully connected part
of the network. To take the advantage of deep supervision, the total loss value ℒ𝑡𝑜𝑡𝑎𝑙 is
defined as follows:

ℒ𝑡𝑜𝑡𝑎𝑙 =
𝑆−1∑︁
𝑖

ℒ𝑖 + ℒ𝑓𝑖𝑛𝑎𝑙, (6.1)

where ℒ𝑖 is the loss value computed at the decoder stage 𝑖 and ℒ𝑓𝑖𝑛𝑎𝑙 corresponds to the
loss value computed from the output layer. Deep supervision provides shorter paths for
gradients to flow during backpropagation and amplifies hierarchical feature learning.

To capture the dependencies between features obtained from individual viewpoints, they
are fed into a recurrent unit. The recurrent unit is composed of two layers of bi-directional
convolutional LSTM (ConvLSTM) [7], where input, forget, and output gates of LSTM
cells are computed through convolutional operations instead of fully connected layers. The
feature size of each of the LSTM units is 32. In the training process, the loss is finally
computed as the sum of the deep supervision losses and a final loss value, and optimized
through the final FCN layer and the recurrent unit.

6.3.2 Design of Point-Based and Edge-Based Architectures

The architectures of the two chosen non-Euclidean approaches are conceptually the same
as the U-Net-like architecture employed in the multi-view approach. Obviously, they differ
in the operators used in each layer, as presented in Section 4.2, as well as in the input
format. In their principle, the architectures follow an encoder-decoder structure with skip-
link concatenations. Thus, it is sufficient to define the dimensionality of the features at each
level, together with the corresponding point cloud/mesh resolutions. Refer to Table 6.1 to
see the values of the architecture parameters of the best-performing designs. Additionally,
for the edge-based method, attention modules were added to two bottom layers.

6.4 Mesh Pre-Processing and Augmentation Techniques
Prior to any processing and analysis, all shapes are uniformly scaled to fit into a unit cube.
In addition. All augmentation techniques that are common for all approaches are directly
applied on the 3D shape. As the edge-based approach is similarity-invariant, applying ran-
dom mesh rotation, translation, or isotropic scaling would not generate new informative
data samples. For that reason, anisotropic scaling of vertex locations is applied. Values
are sampled from a normal distribution with 𝜇 = 1 and 𝜎 = 0.1. Random vertex dis-
placements are also employed, where 30% of vertices are displaced by a random value from
range ⟨0.0mm, 0.08mm⟩. This produces new features mainly for point-based approach. To
improve the robustness to various geometry tessellations, operations like random edge flips
and edge collapses are applied on the shapes.

Most of the augmentation techniques focus on the geometric aspect of the input shape.
To further increase the robustness and generalization ability of multi-view solutions, one
can benefit from the augmentation techniques used in the image domain. When rendering
the maps, the focal point of the camera is perturbed by ±0.2 mm and the viewing direction
is altered by an angle up to ±8∘ during sequence generation. 2D maps are augmented by
random scaling factor of range [0.90, 1.10] and rotation of range [−30, 30] degrees.
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Figure 6.1: Detailed scheme of proposed multi-view recurrent segmentation
network. Blue part of the scheme represents the fully-connected CNN part. Deep super-
vision module is present only during training. Yellow part represents the recurrent module
with bi-directional ConvLSTM units.

6.5 Specification of Training Configurations
To simplify the reproducibility of this work, this section presents the configurations of the
training parameters for the best-performing setup of each of the proposed approach (multi-
view, point-based, and edge-based). All important parameter values are summarized in
Table 6.1. The augmentation specifications are excluded from the table, as they are already
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presented in Section 6.4. The most sensitive to changes in configuration is the edge-based
approach, where even slight changes in hidden features dimensionality drastically decrease
method’s performance.

Table 6.1: Summary of training configurations for proposed approaches. Table
shows hyperparameters for the best-performing configurations. *Extrinsic geometric fea-
tures in point-based methods are formed by a vector of point position and normal vector.
†Intrinsic geometric features in edge-based method are composed of dihedral angle (the one
between two incident triangles), inner angles, and two edge-length ratios.

Hyperparameter multi-view solution point-based edge-based
architecture design U-Net + ConvLSTM PointNet++ SparseMeshCNN
iteration count 400 000 200 000 200 000
initial learning rate 0.001 0.001 0.001
learning rate scheduler cosine annealing cosine annealing cosine annealing
lr scheduler patience (# iterations) 25 000 10 000 10 000
optimizer AdamW AdamW AdamW
betas for optimizer (0.9, 0.999) (0.9, 0.999) (0.9, 0.999)
weight decay 0.001 0.01 0.01
loss function 2D Dice 3D Point Dice 3D Edge Dice
expected input resolution 256 × 256 px 16 384 points 65 536 edges
type of input features depth + normal map extrinsic* intrinsic†
batch size 2 8 4
hidden features dimensionality [32, 64, 128, 256] [32, 64, 128, 256, 512] [16, 32, 64, 128, 256]
resolutions (in encoder) [2562, 1282, 642, 322] [4 086, 1 024, 256, 64, 16] [20𝑘, 16𝑘, 8𝑘, 4𝑘, 2𝑘]
2D deep supervision ✓ - -
self-attention edge blocks - - ✓
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Chapter 7

Conducted Experiments and
Achieved Results

The main objective of the experiments is to investigate whether the proposed multi-view
method handles tooth segmentation in simple cases, while being able to generalize on com-
plex cases (refer to Section 5.2 to see the description of individual datasets). Only in such
a case the proposed approach is applicable to clinical practice. Moreover, the aim is to show
how individual design decisions affect the quality of the outputs. This may be relevant for
future research since it will become apparent which parts of the framework contribute to
the overall performance and what kind of errors they can suppress. All of this forms the
first axis of experimentation, focusing on the primary method of this thesis. In Section 7.2,
experiments with this method are presented in turn, primarily in the form of an ablation
study.

Subsequently, in Section 7.3, an evaluation along the second axis is presented. In this
group of experiments, the best configuration of the main multi-view method is selected,
which is then compared to several variants of the proposed non-Euclidean approaches
(point-based and edge-based) and one conventional segmentation algorithm based on the
idea of Graph-Cut. The goal is to determine which of the approaches is best suited for the
task of segmentation of teeth. Furthermore, it is also desirable to determine what may be
causing the underperformance of some of the approaches. These experiments also include
comparisons with the state-of-the-art tooth segmentation methods in the literature. How-
ever, since none of these methods provides a public implementation and it is also unclear
what the nature of their dataset is, this comparison is not entirely fair. However, in general,
it can provide a preliminary assessment of the comparative performance of the methodology
proposed in this study with respect to current state-of-the-art approaches.

For the experiments conducted in this work, NVIDIA GeForce RTX 3060 with 12GB of
memory was utilized to assess the performance.

7.1 Evaluation Metrics
For meaningful and fair quantitative evaluation, two complementary metrics are employed:
one overlap and one boundary metric. Each of them reveals distinct types of errors in the
generated segmentation masks. Together, they provide a more comprehensive assessment of
segmentation performance [1]. To give an example, if only a boundary metric was employed,
it might not be sufficient to identify the issue of over-segmentation, as it does not provide
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information about the extent to which the predicted regions are correctly overlapping with
the ground truth. Alternatively, a good result on the overlap metric would not indicate
a poor boundary localization in the form of narrow but long false positive or false negative
blobs. The section follows with the formulation of particular metrics employed. Please
note that the performance is always evaluated on the mapped target masks in R3 in
original physical scan dimensions.

Overlap Metric – Weighted Intersection over Union

In contrast to the IoU computed, for example, over images, where each pixel is usually of
the same size, this metric takes into account the fact that various triangle sizes contribute
differently to the final value. The W-IoU is calculated as follows:

W-IoU =

∑︀
𝑓∈𝐹∩

𝐴𝑓∑︀
𝑓∈𝐹∪

𝐴𝑓

, (7.1)

where 𝐴𝑓 is area of face 𝑓 , 𝐹 and 𝐹 are faces of ground truth and prediction masks,
𝐹∩ = 𝐹 ∩ 𝐹 , and 𝐹∪ = 𝐹 ∪ 𝐹 . W-IoU detects errors such as under/over-segmentation,
or shift errors. Note that the use of an overlap metric that does not weight values by the
polygon area is considered inaccurate and incorrect. Refer to Figure 7.1 which illustrates
the superior performance indication compared to the unweighted version.

(a) GT Mask (b) IoU = 0.69
W-IoU = 0.69

(c) IoU = 0.75
W-IoU = 0.48

Figure 7.1: Impact of weighting factor on IoU metric. Red mask is the prediction,
that overlaps the GT mask, but also produces false positive prediction of a triangle stripe
above. Attempting to predict the mask depicted in (a), the weighting has no effect in
(b), since all triangles have a uniform area equal to 1. However, (c) clearly shows the
importance of weighting. Area-wise, there is larger error in the prediction as compared to
(b). However, the metric without employed weighting in fact reports a smaller error, since
the area is composed of less triangles.

Boundary Metric – Symmetric Hausdorff Distance at 95 Percentile

Let 𝑉 be a point cloud of ground truth boundary vertices (vertices forming the edges of
the mask boundary), and 𝑉 be a point cloud of prediction boundary vertices. Let 𝑑 be the
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Euclidean distance in R3. Symmetric Hausdorff distance, 𝑑𝐻 , is calculated as

𝑑𝐻(𝑉 , 𝑉 ) = max(𝑑V̂ V , 𝑑V V̂ ) = max{max
𝑥∈𝑉

min
𝑦∈𝑉

𝑑(𝑥, 𝑦),max
𝑦∈𝑉

min
𝑥∈𝑉

𝑑(𝑥, 𝑦)}. (7.2)

𝑑𝐻95 is its 95th percentile. This metric detects artifacts in segmented masks such as missing
details or narrow protruding parts. The value corresponds to real-world dimensions in
millimeters (mm).

7.2 Evaluation Axis 1: the Recurrent Multi-View Approach
This section presents in-depth experiments with the proposed recurrent multi-view method.
The ablation study, the effect of multi-view configuration, and the exploitation of multi-view
certainty to highlight possible errors in the detected mask are presented in turn.

7.2.1 Ablation Study of Key Framework Components

Quantitative results of the ablation study are summarized in Table 7.1. Further elaboration
on the presented results follows.

Usefulness of Different Types of Information in Input Maps

The results regarding the input format demonstrate two things. First, the depth information
is crucial for robust representation of intricate tooth shapes, whereas normal maps alone
represent the teeth less informatively. Second, stacking normal maps with depth maps
brings into learning a promising inductive bias for improving the results at the tooth-
gingiva boundary. Curvature information in normal maps enables the network to generate
smoother and more consistent segmentation results, particularly in complex and irregular
boundary regions. So, for all the remaining experiments with multi-view solution, the
combination of these two maps is always considered.

Table 7.1: Measured results for the ablation study. Ds: depth maps. Ns normal
maps. Deep Sup: deep supervision. LSTMs: bi-directional ConvLSTM units. Voting:
region voting. CCA: connected component analysis. Values in the table present means
calculated on all teeth in cases of particular test sets.

Method Component Basic cases Complex cases
Ds Ns Deep Sup LSTMs Voting CCA W-IoU ↑ 𝑑𝐻95 ↓ W-IoU ↑ 𝑑𝐻95 ↓
✓ 0.8799 1.3742 0.8613 1.4060

✓ 0.8515 1.6715 0.8492 1.8221
✓ ✓ 0.9112 1.1621 0.8898 1.3199
✓ ✓ ✓ 0.9154 1.1500 0.8815 1.2986
✓ ✓ ✓ ✓ 0.9222 1.0372 0.9071 1.2435
✓ ✓ ✓ ✓ ✓ 0.9718 0.4311 0.9503 0.5400
✓ ✓ ✓ ✓ ✓ ✓ 0.9781 0.3611 0.9553 0.4033
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Deep Supervision

Next, the contribution of training under deep supervision was analyzed. When applied to
the training process, one can observe increased training stability and faster convergence.
These two aspects of training are particularly important when training on medical data (or
on any limited datasets in terms of size), decreasing the risk of overfitting. Furthermore,
there is a visible marginal improvement in performance metrics. These findings support
the notion that the multi-view approach yields good results also because it draws on the
well-studied field of 2D CNNs, from which concepts like deep supervision can be easily
applied for the analysis of geometric data. Please refer to Figure 7.2 for the illustration of
deep supervision module on the stability of the training.
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Figure 7.2: Impact of deep supervision on training stability and convergence.
With employed deep supervision during the training process, both the values of the loss
as well as of measured metrics are more stable, oscillate less, and converge faster. The
semi-transparent plots represent the original Dice values on validation set, while the bold
lines are their versions smoothed by 1D Gaussian with sigma of 2.

Recurrent Bi-Directional ConvLSTM Blocks

Without imposing an inter-view context, the generated segmentation masks have incon-
sistent region boundaries. This results in region boundaries appearing unnatural in some
cases, for example, spiky and jagged artifacts can be seen. Recurrent units bring substan-
tial increase in performance metrics, which support the hypothesis of the importance of
inter-view coherence. The presence of a wider 3D context mainly results in generation of
more consistent and coherent tooth region boundaries. To demonstrate the influence of
recurrent blocks, multi-view certainty (previously described in Section 5.3) is used. Indeed,
the inconsistency in region boundaries should be reflected in decreased multi-view certainty
on triangles close to the boundary, as they are less often hit from all viewpoints. The graph
and visualization in Figure 7.3 shows that this is true for cases from all teeth categories.
Without the recurrent units, even though the triangles were assigned to a given tooth class,
the certainty near the boundaries was lower by approximately 20%. In the medical com-
munity, certainty of predictions fosters trust and acceptance of the technology, and overall
might help in clinical decision making (a more detailed attempt will also be introduced in
Section 7.2.3). In this particular case, it mainly serves as a tool for model selection and
comparison.

51



1.0

0.8

0.6

With ConvLSTMs
Without ConvLSTMs

0.4

0.2

0.0
Premolars Canines IncisorsMolars

M
ul

ti-
vi

ew
 c

er
ta

in
ty

(a) Quantitative multi-view certainty comparison at mask boundaries

(b) Visual comparison with certainty on teeth masks encoded into green-to-red color map

Figure 7.3: Comparison of multi-view certainties at region boundaries with
and without bi-directional ConvLSTM units. Values in (a) are measured on 5-ring
neighbourhood of segmented region boundary and are trimmed by ones and values less than
0.2. In (b), certainty is encoded into heatmap, where green indicates high segmentation
certainty. Left visualization shows the certainty encoding for a setup with incorporated
recurrent units and the one on the right without. Measured with viewpoint number set to
49.

Region Voting

The inclusion of the region voting procedure resulted in the largest improvement in the
segmentation performance of all components. For example, in terms of the overlap metric,
the increase was around 5% on both test sets. This is due to the fact that, in the successive
backprojection of each tooth, it was simply sufficient to induce inaccuracy from one view
that superimposed on the previous tooth. However, this can be easily corrected thanks to
the computed multi-view certainty. The significant impact of this module on qualitative
results can be seen in the randomly selected test cases in Figure 7.4. There, it is evident
that it suppresses significant errors on surfaces close to areas of contacts of neighboring
teeth, also resulting in notable performance improvement in terms of both overlap and
boundary metrics.
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Figure 7.4: Impact of region voting in post-processing. Top row: segmentation
masks before region voting. Note the artifacts of superimposed neighboring class masks.
Bottom row: masks after region voting with suppressed neighbor class artifacts.

Connected Component Analysis

Connected component analysis is the last component of the pipeline. First, it fulfills the
assumption that every region is composed of a single connected component. Second, often
miniature isolated regions form the smaller components that need to be removed. Their
manual correction by the clinician would be a challenging task due to the difficult localiza-
tion of elements such as single false positive triangles. These isolated islands were present
in approximately 93% of the test cases, with a connected compound count of 11± 8 across
both test sets altogether. Isolated false positive islands form less than 1% of the whole
detected mask (47±69 triangles). The impact of CCA on performance is minor in terms of
overlap metrics, as the areas of the isolated islands are typically very small but notable for
the boundary metric, which is another indication of why it makes sense to combine metrics
from these two families of metrics.

7.2.2 Multi-View Configuration

One of the biggest concerns in adopting a multi-view approach is how to properly distribute
the camera positions and what the optimal number of these cameras is. In the exper-
iments, the method is evaluated with different numbers of cameras that are distributed
proportionally in a helix, as described in Section 5.3. The quantitative results in Table 7.2
provide compelling evidence that with increasing viewpoint number, performance increases,
although it begins to converge at around 16 viewpoints. Therefore, the final viewpoint num-
ber should be set as a trade-off between performance and inference time. From the analysis
of Figure 7.5, again, the steady convergence of performance is evident. Its increment starts
to be negligible and unfavorable from the perspective of the segmentation quality to the
computational time ratio. The final number of cameras is set to 49. The reason is that
from the aspect of the multi-view certainty and its subsequent use in post-processing, it
is advisable to set this number slightly higher, as this increases the certainty depth. With
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(b) Trade-off curve between inference time and overlap metric

Figure 7.5: Trade-offs between viewpoint number and overall performance.
Graph in (a) reveals a clear upward trend in performance for smaller number of view-
points, with an incipient convergence from around 16 viewpoints. Graph in (b) illustrates
the relationship between overlap metric and incipient single sequence – single tooth. Tri-
angles connected by line correspond to values from upper graph, stars are additional values
to emphasize the convergence. Integer values in graph correspond to viewpoint number.
Inference time was measured as an average of 200 runs and GPU warm-up was excluded
from measurements. Note that for clear visualization only overlap metric is shown, but
a very similar trend can be observed when analyzing the boundary metric.

higher certainty depth, it is possible to express the certainty more precisely and bring more
reliable post-processing, which is of great importance for high-quality segmentation results.
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Table 7.2: Quantitative results for various multi-view settings. The angular in-
crease during sampling is always set to cover the entire upper hemisphere with a spiral.
Provided values are the averages calculated from all samples within given test set.

Test suite Viewpoint number & metric
𝑁 = 9 𝑁 = 16 𝑁 = 25 𝑁 = 49

W-IoU ↑ 𝑑𝐻95 ↓ W-IoU ↑ 𝑑𝐻95 ↓ W-IoU ↑ 𝑑𝐻95 ↓ W-IoU ↑ 𝑑𝐻95 ↓

Basic cases 0.8415 3.782 0.9442 0.880 0.9547 0.509 0.9781 0.361
Complex cases 0.8303 3.911 0.9172 2.062 0.9402 0.655 0.9553 0.403

7.2.3 Multi-View Certainty Analysis

The multi-view certainty provides a meaningful asset to help with the final model selection.
It is possible to examine whether this apparatus can be exploited to locate potential error
regions in segmented masks. This is based on the hypothesis that parts of the masks with
less certainty are more likely to introduce errors. If the hypothesis was true, these regions
could be highlighted to the clinician. The software could then guide clinicians’ attention
towards areas of potential errors for further investigation and corrective actions.

This particular preliminary experiment was empirically evaluated on meshes from a com-
plex test set. They were per-face colored by multi-view certainty encoded into green-to-red
color map, indicating high to low segmentation certainty. The results of some of the cases
are visualized in Figure 7.6. In the experiment, the focus was directed to parts of the model
with complex geometric features, such as braces, wires, blurred transitions between teeth
or crooked teeth. In fact, these are the most likely to show reduced certainty.

The analysis has shown that, in most cases, the decreased certainty coincides with com-
plex geometric phenomena, as mentioned above. The exception is crooked teeth. However,
these findings do not correlate as well with the lower quality of segmented results. Usually,
although the certainty is lower in geometrically complex areas, the segmentation quality it-
self is overall very good. The outstanding case was found in the data sample that contains
extremely blurred tooth-gingiva and tooth-tooth boundaries. There, the alarmingly low
certainty correlates with the low segmentation quality. In conclusion, further investigation
will be needed to get the best separation of false positive and true positive error region
alarms in order to make the segmentation process more efficient.

In summary, the final number of cameras is set to 49. The reason is that from the aspect
of the multi-view certainty and its subsequent use in post-processing, it is advisable to set
this number slightly higher, as this increases the certainty depth. With higher certainty
depth, it is possible to express the certainty more precisely and bring more reliable post-
processing, which is of great importance for high-quality segmentation results.

7.3 Evaluation Axis 2: Comparative Analysis
This section presents the results of experiments, where the best-performing multi-view
method was compared to other approaches. First, the method was compared with cus-
tom proposed non-Euclidean frameworks (point-based and edge-based solutions, see Sec-
tion 5.4.1 and Section 5.4.2, respectively), which were trained and evaluated on the same
dataset as the multi-view solution. Additionally, the method was compared with a conven-
tional mesh segmentation algorithm that is based on Graph-Cut. Its implementation was
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Figure 7.6: Certainty analysis in anatomically/geometrically complex models.
Top row: detected segmentation masks. Bottom row: corresponding certainty maps. The
certainty is of lower values at geometry representing incompletely scanned molar, fractured
cusp, visible tooth root, or wires. On a shape with extremely smooth geometry, the certainty
is very low, which correlates with low segmentation accuracy.

provided by TESCAN 3DIM, s.r.o., and I am not the author of the method. All these ap-
proaches will be referred to as in-house approaches. The objective of these experiments is to
investigate the limitations of these methods in various aspects (segmentation performance
and inference time). This comparison is the most fair that can be provided in this work,
since none of the state-of-the-art teeth segmentation solutions provides an open dataset
or trained models. For completeness, the remaining part of this section presents a rough
comparison with the performance derived from state-of-the-art publications [10, 45, 67, 75],
although all were trained and evaluated on different datasets, so the comparison may not
be entirely fair.

7.3.1 A Comparative Study of In-House Approaches

Three main experiments are presented with in-house methods: general quantitative and
qualitative comparison, inference times, and tessellation robustness. The best-performing
multi-view solution is compared with the provided Graph-Cut solution, with four point-
based versions, varying in employed architecture and input features, and with two versions of
edge-based methods, which vary in the architectural design. Note again that all supervised
solutions are trained on the same dataset and all solutions are evaluated on the same test
sets.

Qualitative and Quantitative Comparison

Table 7.3 showcases the quantitative comparison between our method and other in-house
approaches. These experimental findings reveal several important pivotal results:

• The multi-view solution surpasses the performance of all other approaches. Although
the performance increase is not that significant, this also holds true for the Graph-
Cut method, which is considered to be tuned as best as possible and is an industry
solution in a commercial software. This shows that when thoughtfully designed, even
simple 2D Euclidean approaches are capable of effective handling of intricate patterns,
variations, and nuances present in real-world 3D geometric medical data.
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• Each segmentation method shows a drop in performance on cases from complex test
set. More importantly, the greatest generalizability with regard to data complexness
is evident in edge-based methods. Compared to multi-view solution, these methods
report a smaller performance drop in overlap metric and only a slightly larger drop in
boundary metric. Apparently, this non-Euclidean approach is capable of meaningful
feature extraction that enables it to uncover intricate patterns in the geometry.

• The inclusion of curvature information (normal vectors) in point-based methods brings
a significant improvement in both suggested metrics for the PointNet version only.
However, for the approach based on PointNet++, the improvement is negligible for
basic cases, and it even decreases the performance on complex cases. As PointNet
operates on each point individually, normal vectors provide additional geometric in-
formation about each point, enabling the model to capture finer details and better
understand the local surface characteristics. In the PointNet++ version, it might
cause redundancy within the hierarchical feature learning, which indicates that for
this particular task and architecture, such geometric information is irrelevant.

In addition to quantitative metrics, other valuable insights into the performance of the meth-
ods were obtained by visually examining the segmentations. Qualitative analysis revealed
several notable findings regarding typical error patterns of individual approaches.
The Graph-Cut solution is based on spreading the segmentation mask from landmarks on
cusps until some significant change in curvature is found. That should represent the tooth-
gingiva boundary. However, in cases where such a boundary is blurred, the central pit of
the occlusal surface is deep, or dental appliances are present, the method fails. Outputs
for PointNet-based approach without normal vector information are characteristic by over-
segmentation. As there is no curvature information, the method learns blobs around teeth
that are not bounded by the tooth-gingiva transition. On the other hand, the remaining
point-based methods produce masks with higher false negative triangle count (underseg-
mentation). During the qualitative evaluation of edge-based methods, it was observed that
in some cases, the generated masks exhibit incompleteness, where the mask is not fully
connected, and small unconnected blobs or areas within the mask are present. Finally,
the Euclidean multi-view solution introduces errors in teeth areas that are occluded dur-
ing rendering, such as in narrow interdental spaces. For illustration, see example cases in
Figure 7.7 and Figure 7.11.

Segmentation Performance versus Inference Time

Another important aspect that should be evaluated for all methods is the ratio between
inference time and segmentation quality. Trade-offs are visualized in Figure 7.8. The
observed trends show that the fastest methods are those that process raw point clouds. For
a case when PointNet architecture is employed and the feature vector contains normals, the
trade-off seems even more favorable than for multi-view solutions. The slowest methods are
those based on SparseMeshCNN, which is also reflected in training time. To give a rough
indication, it takes on average 10 times longer to converge to this state, in which the
performances are comparably good with other methodologies.

Tessellation Robustness

Finally, robustness experiments toward various geometry tessellations are introduced. Nat-
urally occurring small changes in topology and geometry may be observed in the acquired
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Table 7.3: Segmentation performance of in-house methods evaluated on both
test sets. Notation in brackets: presence (+) or absence (-) of normal maps in the input
point cloud (n) or edge self-attention blocks in two bottom stages of SparseMeshCNN (a).

Segmentation method Basic cases Complex cases Perf. drop
W-IoU ↑ 𝑑𝐻95 ↓ W-IoU ↑ 𝑑𝐻95 ↓ both ↓

Graph-Cut 0.9622 0.413 0.9318 0.625 3.0%; 0.21 mm
PointNet (-n) 0.8020 1.615 0.7654 2.121 3.6%; 0.50 mm

PointNet (+n) 0.9516 0.515 0.9279 1.198 2.3%; 0.68 mm
PointNet++ (-n) 0.9167 0.758 0.8883 1.302 2.8%; 0.54 mm

PointNet++ (+n) 0.9182 0.741 0.8696 1.517 4.8%; 0.77 mm
SparseMeshCNN (-a) 0.9284 0.646 0.9196 0.701 0.8%; 0.05 mm

SparseMeshCNN (+a) 0.9444 0.598 0.9401 0.653 0.4%; 0.05 mm
MV-RNN 0.9781 0.361 0.9553 0.403 2.2%; 0.04 mm

data, as they can be influenced by the scanning properties, which may vary across different
clinics. To verify the robustness to geometric and topological changes, the test sets were
modified with subsequent methods:

• Random vertex displacements. Vertices were displaced by a value randomly sam-
pled from range ⟨0.0mm, 0.08mm⟩. It is expected that the methods will demonstrate
good robustness towards these changes as a similar augmentation is applied during
training.

• Planar flipping optimization. Edge flip is a common operation in the process
of increasing the quality of the mesh. This operation is often performed to increase
the local triangle quality. Again, a similar procedure is applied during training data
augmentation.

• Explicit remeshing. This method, by repeatedly applying edge flip, edge collapse,
relax and refine, improves triangle quality and topological regularity.

• Laplacian smooth. This operation averages each vertex position with weighted
positions of neighbor vertices. The original version that does not preserve the surface
of a triangular mesh was applied in three iterations [65].

These operations still preserve the semantic characteristic of the represented object. See
Figure 7.9 for an illustration of the mesh modifications mentioned above. The results of
the analysis for key method configurations are presented in Table 7.4. Overall, all methods
are robust toward perturbations in vertex positions and changes in topology. The highest
drop in performance is observed when a random vertex displacement is applied, as this
method introduces the biggest spatial geometry changes. This drop is noticeable especially
in results of Graph-Cut and multi-view approaches. In the former, this is caused by evident
changes in curvature, for which the algorithm would have to be additionally fine-tuned. In
the latter, the performance drop is caused by false positive and false negative predictions
at mask boundaries, where the generated outputs are still smooth. Another interesting
observation is that methods which improve the quality and regularity of the mesh slightly
increase the performance of edge-based methods. Despite these, no other significant trend
was observed.
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(a) Graph-Cut (b) PointNet (-n)

(c) other point-based (d) edge-based

Figure 7.7: Typical error patterns occasionally present in results of alternative
in-house approaches. Graph-Cut (a) method incorrectly assesses the mask boundary
during its propagation based on geometric properties. (b) PointNet without normals gen-
erates oversegmented masks due to lack of curvature information. (c) other point-based
approaches occasionally produce undersegmented masks with jagged boundaries. Finally,
edge-based approach (d) intermittently generates masks with holes. For typical error pat-
tern of multi-view approach, see Figure 7.11.

7.3.2 Comparison with State-of-the-Art in Teeth Segmentation Methods

Comparison of the results achieved with other studies is limited and therefore very rough.
This is because the works do not present a public test dataset and evaluate the outputs
on different metrics. Moreover, the authors do not always precisely specify the dataset
employed, so it is often challenging to determine how the methods would perform in complex
real-world cases. Nevertheless, overlap metric results have been extracted from papers
discussing the same problem, as not every paper provides an evaluation on some boundary
metric. These are summarized in Table 7.5. For the most proximate comparison, the table
presents values of the best-performing method (MV-RNN) on two additional metrics: the
unweighted IoU and the Dice score, as these are the ones frequently found in the papers.
The results suggest that the proposed 2D solution is comparable to and even outperforms
some of the previous works. However, because the nature of the data is not clear, no specific
conclusion can be drawn from this experiment. Rather, it sheds light on the desirability of
having a public benchmark dataset for the task of surface teeth segmentation.
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Figure 7.8: Average overlap metric results for combined test sets and infer-
ence times for segmentation in a dental scan representing complete denti-
tion (16 teeth). Inference times of supervised methods were measured in Python as
an average of 200 runs and GPU warm-ups were excluded. Graph-Cut computation was
measured from C++ implementation within commercial dental planning software. Note
that input generations from meshes are excluded from computations. Numbers at blue
triangles represent the viewpoint number used in given multi-view setup. Average W-IoUs
of both tests sets are plotted within the graph.

Table 7.4: Robustness of methods towards various geometry tessellations. Ab-
breviations of topology adjustment methods: RVD: Random Vertex Displacements, PFO:
Planar Flipping Optimization, ER: Explicit Remeshing. Lap. Smooth stands for 3 iter-
ations of Laplacian Smoothing. For simplicity, the reported results omit the boundary
metric, but a very similar trend was also observed on this metric. Notation in brackets:
(+n) presence of normal maps in the input point cloud and edge self-attention blocks in
two bottom stages of SparseMeshCNN (+a).

Segmentation method Topology Adjustment & Performance
Reference RVD PFO ER Lap. Smooth
W-IoU ↑ W-IoU ↑ W-IoU ↑ W-IoU ↑ W-IoU ↑

Graph-Cut 0.947 0.911 0.940 0.943 0.952
PointNet (+n) 0.939 0.923 0.921 0.919 0.938

PointNet++ (+n) 0.893 0.849 0.899 0.892 0.885
SparseMeshCNN (+a) 0.942 0.931 0.949 0.944 0.958

MV-RNN 0.966 0.931 0.963 0.965 0.963

7.4 Summary of Results
This section summarizes the findings and contributions made. Collectively, the results
presented on both evaluation axes appear consistent with the good performance of the
proposed Euclidean surface teeth segmentation framework.
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Figure 7.9: Example cases for tessellation robustness experiment on central
incisors of randomly selected case. From left to right: reference mesh, random vertex
displacements, planar flipping optimization, explicit remeshing, Laplacian smooth (two
iterations).

Table 7.5: Performance comparison of proposed multi-view method and state-
of-the-art approaches. Proposed method outperforms other methods when complex
cases are excluded from the evaluation. When evaluated on combined test set, it still
outperforms two out of four methods proposed in the literature.

Segmentation method Metric
Unweighted IoU ↑ Dice Score ↑

Hao et al. [27] 0.9392 –
Cui et al. [10] – 0.9690
Sun et al. [67] – 0.9612
Wu et al. [75] – 0.9530
MV-RNN (this work), basic set 0.9531 0.9880
MV-RNN (this work), combined 0.9358 0.9668

Overall results. The proposed recurrent multi-view approach reliably segments teeth
with an average W-IoU score of 0.966 and Hausdorff distance at 95 percentile of 0.382 mm
on combined test sets. Extensive results carried out together with a thoughtful division of
the test set into two subsets of various complexity show that this method performs well not
only on simple anatomical and geometric cases, but also on complex shapes with braces,
wires, croocked teeth, or smooth transitions between teeth/gingiva. This generalization is
of high importance for the practical application of the method, as orthodontic cases are

61



usually of this nature. Since the method is defined as a binary segmentation that operates
locally on each tooth, it performs equally well on all teeth, so irregularities in the position
of the teeth and the underrepresentation of the 3rd molars are not issues. There are also no
significant differences in performance on maxillae and mandibles (for example the difference
in the overlap metric is less than 1%). Refer to Figure 7.10 for additional qualitative results.

Ablation study. The ablation study conducted found evidence that each component of
the method yields increasingly good results. The multi-view configuration was examined in
the context of segmentation performance, inference time, and the importance for multi-view
certainty analysis. The results also demonstrated that the multi-view certainty analysis can
be considered when selecting the final model. If further examined, it appears that it might
provide a promising way for highlighting potential errors in segmented regions, and so it
could serve to draw the doctor’s attention to such error areas.

Comparative analysis. The method was compared directly with a conventional
method based on Graph-Cut and two proposed non-Euclidean supervised approaches. In
general, the Euclidean method obtained the most robust results. The Graph-Cut solution
fails if the shape is not perfectly concave, so it is error-prone to any unusual geometry,
such as wires or deep buccal grooves. Custom trained non-Euclidean approaches are of
higher complexity, but also provide interesting results. Point-based methods introduce
better trade-off between performance and inference times, whereas edge-based methods
generate masks with consistent boundaries. Overall, each methodology introduces a spe-
cific error pattern in the segmentation (Figure 7.7), which is true also for the multi-view
method (Figure 7.11).

The proposed method was also indirectly compared with other state-of-the-art methods.
The results indicate that the performance of this work is similar to or even better than the
results presented in the works. It must be noted that they were trained and evaluated on
different datasets.

Academic and industrial contribution. As part of an extensive evaluation, a large
number of aspects of the Euclidean approach to geometric data segmentation were investi-
gated and proven to be meaningful. Altogether with a comparison with conventional and
non-Euclidean algorithms and the eventual release of the test sets, the results are valuable
for researchers in designing and/or evaluating similar methods.

The preliminary results were consulted with experts in the development of commercial
dental planning software. As these results on the limited test dataset indicate a higher
accuracy than the currently used method, once tested on a larger dataset, the proposed
method will be further fine-tuned and subsequently deployed in production.

7.5 Limitations and Future Work
Although the results demonstrate strong evidence for direct clinical application, they present
some limitations, such as when the analyzed dental scan contains narrow inter-
dental spaces or, in general, when there are occluded geometry parts that are not
visible given multi-view configuration. In 29 out of 30 test cases, dental scans contain con-
nected teeth without interdental details, which implies good performance of the 2D method.
The limitation becomes clear in the one case with separated teeth, in which the interdental
space is occluded from each camera viewpoint. In that particular case, primitives that form
the mesial and distal tooth surfaces are incorrectly assigned to the gingiva class. See Fig-
ure 7.11 for visualization. Another limitation of this method stems from the presence
of unclear geometric transitions between adjacent teeth or between teeth and
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Figure 7.10: Qualitative results of multi-view approach on randomly selected
test cases. The proposed method reliably segments teeth in geometrically and anatomi-
cally complex shapes.

the gingiva. In cases where the transition is smooth but still visually distinguishable, the
method performs well with the necessary minor corrective actions. Such cases can be ob-
served in Figure 7.10. However, there is one extreme case in the test set where it is difficult
to determine the tooth regions correctly even for an expert in the field (empirically verified
by letting the case be segmented by an experienced dental planning software tester). In
this case, the method performs poorly (see the output in Figure 7.6), which indicates that
the curvature information is essential in feature extraction. Finally, it should be noted that
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the size of the test set is not sufficiently large to reliably detect all the patterns of defects
that can be encountered in data within the medical domain and with this characteristic.

Figure 7.11: Detailed visualization of segmented region boundaries at interden-
tal space vicinity. In vast majority of the cases, teeth are not completely separated (first
three images) but rather fused together. When the interdental space is evident, the method
does not correctly segment such space due to occlusions.

Interesting questions for future research that arise from the multi-view method are
for example learnable estimation of the next-best camera position or the replacement of
CNN blocks by vision transformers (ViTs) [70]. Further investigation could also focus on
enhancing the method’s robustness in handling instances characterized by narrow inter-
dental spaces. One possible solution could be based on a combination of Euclidean and
non-Euclidean approaches, which could lead to a more expressive encoding of the input
shape by the combination of visual and geometric features in latent space [40]. In fact, this
extension might be reasonable since it has been observed in the evaluation that methods
from these categories produce different kinds of error. Lastly, it would be valuable for the
research community to provide a public evaluation dataset for a fair comparison of methods.
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Chapter 8

Conclusion

This work aimed to examine various approaches towards the analysis of 3D geometric
medical data via deep learning. In the task of teeth mesh segmentation, three approaches
were proposed and extensively evaluated.

The main Euclidean framework employs a multi-view approach. It bypasses the irregular
nature of triangular meshes, and at the same time benefits from the well-studied field of
2D deep learning. The proposed method contains components like inter-viewpoint spatial
correlation, deep supervision, and thoughtful post-processing steps. This approach was
compared with other supervised methods based on PointNet [56], PointNet++ [57] and
SparseMeshCNN [26] that are known as non-Euclidean since they directly tap into the
geometric nature of the data.

The experimental part presents an ablation study of the main method. It provides
strong evidence that the method is designed thoughtfully and that each of its components
contributes to better performance. Evaluation of multi-view configuration and certainty
follows. On a dataset of real-world orthodontic cases, the main method achieves an average
weighted IoU score of 0.966 and Hausdorff distance at 95 percentile of 0.382 mm. The
second axis of the experiments presents a comparative analysis. There, the main method
was compared with the proposed point-based and edge-based methods, along with Graph-
Cut algorithm. The main method yields superior results compared to any other in-house
method. Lastly, in a rough comparison with current state-of-the-art methods, it achieves
competitive results, but it is difficult to ascertain it since any of the work provides an open
dataset.

Though the test set utilized in this work covers a wide range of possible anatomical
or geometric anomalies (teeth dislocations, malocclusions, scanned appliances, or blurred
boundaries between teeth), it is vital to further experiment with larger test set due to
tremendous variance in data from the geometric and medical domains. Yet, the results
that were achieved within the scope of this work are promising for the deployment of the
method in dental planning software. This integration is approved by competent people.
Furthermore, it is planned to publish a shortened version of this research and release the
test set, allowing fair comparisons to be observed in future academic publications.
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Appendix A

Contents of the Included Storage
Media

• data/test/ Folder with polygonal models for testing.1

• data/train/ Folder with data for network training.2

• trained-weights/ Folder with trained network weights.

• src/ Folder with source files.

• src-tech-report/ Folder with LATEX source files.

• LICENCE Project licence.

• poster.pdf Poster summarizing this work.

• README.md Project description.

• requirements.txt List of required Python libraries.

• tech-report.pdf Technical report (this text).

1Note that the provided data are for demonstration purposes only and they are just a small portion of
the whole dataset. The complete dataset of 3D scans provided by TESCAN 3DIM, s.r.o. as well as the
generated input data in this work are not available for privacy reasons.

2See footnote 1.
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Appendix B

Poster

INTRODUCTION & METHODS

CONCLUSION

RESULTS

Deep Learning for 3D 
Geometry Analysis 
in Medicine

Author: Tibor Kubík
Supervisor: Michal Španěl

Consultant: Oldřich Kodym

Goal: 
robustly segment teeth regions in 3D
surface orthodontic scans using deep 
learning techniques

METHOD INPUT PREDICTED OUTPUT

- the main MVRNN approach provides promising results for deployment into clinical practise
- further testing will follow to ensure the utmost value for clinicians all over the globe 

- the main method is superior 

- achieves an average weighted IoU score of 0.966 and a Hausdorff distance at 95 
percentile of 0.382 mm

- for majority of the real-world orthodontic test cases, the results are directly applicable in practise

Three methods are proposed: 
(1) main recurrent Bi-ConvLSTM multi-view approach

(2) point-based approach (PointNet and PointNet++) 
 (3) edge-based approach (MeshCNN-inspired)
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study, comparative analyses, certainty analysis, multi-view configuration 

evaluation, tessellation robustness, and more.
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