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ABSTRACT

Image edge detection is one of the most important techniques in digital image processing.
It is used, among other things, as the first step of image segmentation. Therefore,
it remains an area of interest for researchers trying to develop ever-better detection
approaches. The main objective of this Thesis is to find a suitable method for image
edge detection using convex optimisation. The proposed method is based on sparse
modelling, and its main part is formulated as a convex optimisation problem solved
by proximal algorithms. For defining the optimisation problem, it is assumed that the
signal can be modelled as an over-parametrised, piecewise-polynomial signal that consists
of disjoint segments. The number of these segments is significantly smaller than the
number of signal samples, which encourages the use of sparsity. The formulation of
a suitable optimisation problem is first performed on one-dimensional signals since the
implementation and comparison of the different algorithms is significantly easier and less
time-consuming for one-dimensional signals than two-dimensional ones.

The first part of the Thesis introduces the basic theory in signal processing, sparsity,
convex optimisation and proximal algorithms. It also presents a cross-section of the
methods used for image edge detection. The second part of the Thesis focuses on the
formulation and the subsequent evaluation of individual optimisation problems for the
segmentation of one-dimensional synthetic signals corrupted by noise. The evaluation is
conducted in terms of both denoising and breakpoint detection accuracy. The last part
of the Thesis is dedicated to expanding the best-performing approach for breakpoint
detection in one-dimensional signals for the application to image edge detection. The
proposed approach is tested on a standardised dataset of images containing manually
labelled edges of several subjects. The results of the proposed method are evaluated
using precision-recall curves and their maximum F-measure score, and then compared
with other edge detection methods.

KEYWORDS

Signal segmentation, image edge detection, convex optimisation, proximal splitting al-
gorithm, proximal operator, sparsity, total variation, gradient



ABSTRAKT

Detekce hran v obraze je jednou z nejdilezitéjsich technik v oblasti digitalniho zpracov-
ani obrazu. Byva pouzivana, mimo jiné, jako prvni krok segmentace obrazu. | proto
stale zlistava v oblasti zajmu védci, ktefi se snazi vyvijet stale lepsi detekéni pristupy.
Hlavnim cilem této prace je nalezeni vhodné metody detekce hran v obraze pomoci kon-
vexni optimalizace. Navrzend metoda je zalozenad na fidkém modelovani, a jeji hlavni
Cast je formulovana jako konvexni optimalizacni problém, ktery je feSen pomoci proximal-
nich algoritmi. Pro definici optimalizacniho problému se predpoklada, Ze signal mize
byt modelovan jako preparametrizovany po Castech polynomialni signal, ktery se sklada
z disjunktnich segmenti. Pocet téchto segmentl je vyrazné mensi nez je pocet vzorki
signalu, coz vybizi k pouziti fidkosti. Navrh vhodného optimalizaéniho problému nejdfive
probiha na jednorozmérnych signalech, jelikoz implementace a porovnani jednotlivych al-
goritm{ je pro jednorozmérné signaly vyrazné jednodussi a Casové méné naro¢nd, nez
pro dvojrozmérné.

Prvni Cast prace se vénuje predstaveni zakladni teorie z oblasti zpracovani signalu, ¥id-
kosti, konvexni optimalizace a proximalnich algoritmi, a dale prezentuje priifez pouzi-
vanymi metodami pro hranovou detekci v obraze. Druhd ¢ast prace se zamérfuje na
navrh a nasledné vyhodnoceni jednotlivych optimalizacnich problémi pro segmentaci
jednorozmérnych syntetickych signali, které jsou poskozeny Sumem. Vyhodnoceni je
provedeno jak z pohledu presnosti detekce skokl tak i odSuméni. Posledni Cast prace
je vénovana rozsiteni nejlépe fungujiciho pristupu k detekci skokil v jednorozmérném
signalu pro pouziti na detekci hran v obraze. V této Casti je navrzeny pristup testovan
na standardizovaném datasetu obrazkii, ktery obsahuje manudlné oznacené hrany od
nékolika subjektl. Vysledky navrzené metody jsou vyhodnoceny pomoci precision—recall
krivek a jejich maximalniho F skére a nasledné porovnany s ostatnimi metodami hranové
detekce.

KLICOVA SLOVA

Segmentace signal, detekce hran v obraze, konvexni optimalizace, proximalni algoritmy,
proximalni operatory, fidkost, totalni variace, gradient
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INTRODUCTION

Sparse representation has proven to be a very powerful tool in a variety of ap-
plications, especially in signal processing, image processing, machine learning, and
computer vision. The list of specific tasks concerning images, for which sparse repre-
sentation offers a huge potential, contains image inpainting, image denoising, image
segmentation, visual tracking, and more. Another example of a popular topic in
the last few years, where the use of sparse representation is definitely beneficial and
favourable, is image classification. Sparse representation are directly related to com-
pressed sensing, which can be seen as a method for recovering a signal from a small
number of linear measurements.

Specific problems of the mentioned topics, which need to be solved, can be of-
ten represented via convex optimisation problems. Searching for the sparse repre-
sentation contributed to the development of numerical methods for solving convex
optimisation problems — specifically the proximal algorithms, which are iterative
algorithms based on the evaluation of the proximal operators associated with the
optimised function. Optimisation problems can be solved using approximation algo-
rithms, which can be divided into three categories: the greedy algorithms, relaxation
algorithms (which include also the proximal algorithms) and “hybrid” algorithms,
combining different approaches.

The image edge detection is one of the most used techniques in digital image
processing, computer and robot vision. It finds application in many topics such as
object tracking, motion detection, pattern recognition, image segmentation, medical
data processing, etc. An edge in the image is usually defined as a position where
the intensity of an image changes significantly. However, each application requires
a different estimation of what a significant edge is and thus there are several different
approaches suited for each application.

Image edge detection can be viewed as the first step of image segmentation,
therefore, even nowadays, the edge detection is in the focus of researchers who are
still trying to develop better edge detection techniques.

Image segmentation is one of the most important applications in digital signal
processing. Segmentation divides an image into areas (segments) which have similar
features or form logical parts. These segments are disjoint and cover the entire image.
A very interesting and important area of image segmentation is a segmentation of
medical images.

The most frequently used imaging modalities for anatomical structure imaging
in medicine are Computed Tomography (CT), Magnetic Resonance (MR) and Ul-
trasound. Image segmentation is most often applied to CT and MR images. These

imaging modalities are used for diagnostic and treatment planning in various med-
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ical disciplines. In the time of developing 3D printing, the importance of image
segmentation is increasing. Doctors can print segmented organs on a 3D printer
and plan the operation on anatomical models of a particular patient.

This Thesis works with an assumption that an image can be modelled as an
overcomplete piecewise-polynomial image, such as the image consisting of disjoint
piecewise-polynomial patches/segments. The number of the signal segments S is
considerably lower than the number of the signal samples N (S < N), which mo-
tivates to measure and optimise sparsity in parametrisation images. Based on the
above-mentioned assumptions, the convex recovery problem can be formulated.

Our approach was inspired by authors of [11], who used a greedy approach to
solve the optimisation problem for signal segmentation. The presented approach is
using the over-parametrised signal model and ¢;-based convex relaxation methods.
To the best of our knowledge, it is the first time when the ¢;-minimisation-based
approach is used for signal segmentation/edge detection.

First, the convex optimisation problems for one-dimensional signal segmentation
and denoising are formulated since it is easier to implement appropriate algorithms
able to solve such formulated problems, and determine their advantages and disad-
vantages for one-dimensional signals than for two-dimensional signals, i.e. images.
Afterwards, the formulation of the convex optimisation problem for the image edge
detection, later solved by the most promising algorithm from the 1D segmentation
phase, takes place.

This Thesis is divided into several chapters. In Chapter [T, a basic overview, the
notation used, and preliminary knowledge concerning sparse representation, convex
optimisation, and proximal splitting algorithms is presented. Chapter [2| briefly in-
troduces selected topics from signal processing, such as image edge detection and
segmentation. This is followed by Chapter [3| which gives an overview of the image
edge detection techniques used. The aims and objectives of the Thesis are presented
in Chapter [ The entire Chapter [f is dedicated to the solution of the 1D signal
segmentation and denoising problem. It defines the formulation of the 1D signal
model, proposes a general methodology for solving the 1D signal segmentation and
denoising problem, and presents several formulations of the convex optimisation
problem, as well as its solution and evaluation. The most promising method from
Chapter [f is extended and applied to image edge detection in Chapter [6] In this
chapter, a description of the 2D signal model is presented and several experiments
are performed. Various edge detection techniques discussed in Chapter [3| are com-
pared with the final form of the proposed solution. The last part of this Thesis is
the Conclusion, which summarises the whole Thesis and presents further possible

research directions in this area.
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1 PRELIMINARY KNOWLEDGE

In order to cover topics in this Thesis, this chapter provides a basic overview and
preliminary knowledge. In Sec.[I.I} the basic concepts and notation are introduced.
Sec. deals with an explanation of sparse signal representation. Finally, convex

optimisation including the description of proximal splitting algorithms can be found

in Sec. [[L3l

1.1 Concepts and notation

This section presents the notation used, introduces vector and matrix norms, and

presents definitions of vector spaces and bases.

1.1.1 Notation

Scalar variables are marked in italics, i.e. m, N, and vectors are denoted in bold, i.e.
x,y. Unless stated otherwise, the finite-dimensional vectors are considered to be
column vectors. The indexing of the elements of vectors starts with one, and the in-
dex is indicated either in square brackets or as a subscript, i.e. y = [y[1],...,y[N]]T,
x = [x1,...,2n]". The cardinality (the number of elements in a set) is denoted
in the same way as absolute value, i.e. |4,—6,0,8,8, —5| = 6. The support of the
vector supp(x) = {i | z; # 0} is a set of its indexes, where the vector has non-zero
values, i.e. for x = [z1,...,26]" = [0,5,0,0,—4,0]" its support is supp(x) = {2, 5}
and |supp(x)| = 2.

Matrices are also marked in bold, but with capital letters, e.g. A, X. Elements
of matrices are indexed by the respective lower-case letters, i.e. a;;,x; ;. The row
i of the matrix A is denoted as a;., similarly a.; represents the column j. The
symbol * denotes the so-called Hermitian transpose: A* is the matrix formed by
the composition of the transpose of the matrix and the complex conjugate of each
of its elements. It holds (AB)* = B*A*. Identity matrix is denoted as I.

The vectorisation of the matrix is done by the operator vec(-), which stacks the
columns of the matrix one below the other into a single column vector.

Vector spaces are marked as RY, CV, where the upper index denotes the dimen-
sions of the vector space.

Linear operators are marked in italics using capital letters as L. Each linear
operator L: RY — RM  can be always represented by a matrix A of a size M x N,
the operation then works like matrix multiplication y = Ax. The identity operator

is marked as Id.
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1.1.2 Vector norms

The vector norm is a function that assigns a non-negative real number to a vector,
representing the “length” of the vector. The {,-norm of the vector is defined as
follows [12]:
N 1/p
x|, == (Z ]a:i|p> for 1 < p < o0,
=1 (1.1)

N
[x[[p == as|? for 0 <p < 1.
i=1
Strictly speaking, it is a norm only in the case of 1 < p < co. However, the £,-norm

will be used uniformly for all p for simplicity.
For the limit cases of (1.1]), where p = 0 and p = oo, it holds

[1x[lo := |supp(x)],
% [loo := masx;|(z;)].

(1.2)

The ¢p-norm represents the number of non-zero elements of the vector x, and the
{-norm is the maximum absolute value of the vector.

The most commonly used norm is ¢5-norm, the so-called Euclidean norm, which

xllz o= > 1), (1.3)

and if the simplified notation || - || is used, it will mean || - [|z.

is defined as

In this Thesis, the /;-norm, which represents the sum of the absolute values of

the vector, formally
el =D ()], (1.4)

will be used.

1.1.3 Matrix norms

It is also possible to apply a norm to a matrix. The easiest way to apply a norm to
a matrix is to vectorise it and apply the vector norm to the result.
The most commonly used matrix norm is the Frobenius norm, which is defined

as the energy of the elements of the matrix A [12]:

M N )
[A[lr = [ vec(A)[2 = [ > D 1(aiy)]™ (1.5)

i=1 j=1
The Frobenius norm is a special case of general (p, ¢)-mixed norm where p, ¢ = 2.

A general (p, ¢)-mixed norm if p,q > 1 is defined by

Al = (i (Ml @,)F) Z) B (1.6

j=1 \i=
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It can be seen as an application of {,-norm to every column of the matrix A and
then an application of £,-norm to the resulting vector.
The || - ||21 is ¢o1-norm whose input is a matrix Z of size p x ¢ and it is formally

defined as follows:

1Z][21 = [[|z1,:Ml2; 1Z2,:ll2, - - (1 Zp:ll2] s = 2]l + -+ (|22, (1.7)

i.e. the f5-norm is applied to the individual rows of the matrix Z, which results in
a vector of size 1 x q. The resulting vector is evaluated by the ¢;-norm. The ¢;-norm

is used as a convex substitute for the true sparsity measure |13}|14].

1.1.4 Operator norm

Let L be a linear operator between Hilbert spaces, its operator(spectral) norm is

defined as follows:

Lx
IL]| = [[Lllop = sup Ll
xeCN x#£0 ||X||2

For the operator /spectral norm it holds ||L||*> = ||L*L|| = |LL*||, where L* is an

adjoint operator of L, and ||L||? is equal to the largest singular value of the operator
L*L [12].

(1.8)

1.1.5 Vector spaces and bases

A vector space is an algebraic structure satisfying the well-known axioms and its
elements are vectors. In this Thesis, the dimension of the vector space will be a finite
number 0 < N € N.

A system of generators of the vectors space V is a subset of vectors E =
ey,...,ey in V.

A vector space V is generated by a subset of vectors E = eq,...,e) in V. It

means that each vector x € V is a linear combination of generators, formally
X = 1€ + ey + - -+ + cyenr = Ec, (1.9)

where the scalars ¢; are called coordinates.

A vector space V can be generated by more than N systems of generators, which
means that a vector x € V can be determined by several representations, and such
a system is called overcomplete.

The basis of a vector space is the minimal system of its generators. It is the set of
linearly independent vectors. Any vector x in the considered vector space V can be
obtained by a linear combination of these vectors. A basis is any set containing N

linearly independent vectors in a finite space of dimension N, which will be marked
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in bold with capital letters. If B = by, ..., by is a basis, then each element of x € V

can be expressed as

N
x =Y c¢b; =Be. (1.10)
i=1
The basis B = by, ..., by is orthogonal if all the basis vectors are perpendicular

to each other, in other words, their scalar product is zero:

The basis B is normalised if all its vectors have the vector length equal to 1. In
other words, the ¢,-norm of each vector satisfies the condition ||b;|| = 1.

A basis is called orthonormal if it is both orthogonal and normalised.

1.2 Sparse representation of signals

In the beginning, the term “sparse” should be clarified. It can be used to describe
the properties of a matrix or a vector, which can be called sparse if most of its
elements are zero [15].

The term “sparse” can be also used to describe the properties of a signal repre-
sentation. The representation of a signal is sparse if the signal is modelled as a linear
combination of only a few elements from the dictionary A. The dictionary consists
of a set of basis elements (called atoms) and it is always formed with respect to
a specific task [16]. Sparse representation is important for many applications [15].
The advantages of sparse representations include simplifying the interpretation of
data, enabling easy and strong compression or providing numerical stability.

The intention of the sparsity-based methods is to select a few atoms from the
dictionary that best represent given signal y € R¥. Signal y is defined by the linear
system y = Ax, where A € RV ig the dictionary and x € R¥ is the vector with
the transform coefficients [17]. The aim is to find a sparse solution of the given
linear system with as few coefficients as possible.

Sparsity k of the solution concerns the number of non-zero coefficients in a vector
of length N. The sparsity is usually measured by the {y-norm, which refers to the
number of non-zero entries k. A vector is called k-sparse, when its {y-norm is equal
to k. Usually, it holds that k < N or £k < N [1§].

The basic sparse representation problem is formulated as
arg min ||x[[p s.t. Ax=y. (1.12)

The problem is NP-hard and the solution is difficult to approximate. The fy-norm is

a non-convex function and therefore, it is not possible to use any of the algorithms
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of convex optimisation for solving the problem . To be able to use the convex
optimisation, it is necessary to use convex f,-norms, which are convex for p > 1.
The best choice is to use the ¢;-norm, which is the closest convex norm to the fy-
norm and it can be shown that in many cases the solution with ¢;-norm is equivalent

to the solution obtained by fp-norm, see |19], for instance. Therefore, the problem

(1.12) can be relaxed to

arg min ||x[[; st. Ax=y. (1.13)

In the case of noisy signal y, defined as y = Ax + e, where e € R" is noise, the

optimisation problem can be recast to
arg min ||x||; s.t. [JAx —y|2 <0, (1.14)

where 0 is a noise level. It will be shown later that for finding the solution to the
optimisation problem (|1.14]), the convex optimisation can be used.

1.3 Convex optimisation

In mathematics, computer science, and economics, an optimisation problem is de-
termined by finding the best solution among all possible solutions. A general opti-

misation problem can be defined as follows [20]:
minimize fo(x) st fi(x) <6, i=1,...,m, (1.15)

where x is the optimisation variable of the problem, f; is the objective function, f;
are constraint functions, and ¢; are limits of the constraints. The solution to the opti-
misation problem is the vector X producing the smallest objective value among
all vectors satisfying the constraints, i.e. for any z with f1(z) < dy,..., fin(z) < m,
it holds fy(z) > fo(%X).

Convex optimisation problems form a class of optimisation problems, where both

objective and constraint functions are convex, i.e. they satisfy the inequality [20]

filex+By) < afi(x)+Bf(y), j=0,...,m, (1.16)

forall x,y ¢ RY and all o, 3 € R witha+3=1,a > 0,5 > 0.

For finding the exact sparse solution, the fy-norm is used. However, finding the
exact sparse solution of the optimisation problem using the fy-norm is NP-hard.
Such a task is very time-consuming and computationally prohibitive when N is
large. Therefore, such an approach is not suitable for practical applications. The

computational complexity can be reduced, when the approximation algorithms are
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used. In general, such algorithms provide solutions quickly, but at the expense of
accuracy.

Approximation algorithms can be divided into three categories [12]: the greedy
algorithms (e.g. Matching Pursuit |21], Orthogonal Matching Pursuit [22]), ¢, re-
laxation algorithms (e.g. Basis Pursuit [23], modified Least Angle Regression [24],
Iterative Reweighted Least Squares [25], Dantzig Selector [26] and proximal algo-
rithms [27]) and “hybrid” algorithms, which combine approaches of different algo-
rithms (e.g. A* Orthogonal Matching Pursuit [28]).

While greedy algorithms [17,29] usually consist of simpler steps and can be
faster and more predictable, relaxation methods [30}31] rely on convex optimisation,
which can provide better results but can take longer to achieve convergence. The
disadvantage of the greedy algorithms is that there is no guarantee of achievement
of the global minimum, while /;-relaxation algorithms rely on the condition that if
specific conditions are satisfied, accurate solution is acquired. This doctoral Thesis

will focus on solving the convex optimisation problem by proximal algorithms (PAs).

1.3.1 Proximal splitting algorithms

Proximal splitting algorithms (PAs) are in general able to solve unconstrained convex

optimisation problems of type
arg min fi(Lyx) + - + fn(Lun), (1.17)

where functions fi, ..., f,, are convex and Ly, ..., L,, are linear operators [31]. Note,
however, that some algorithms are restricted regarding the number of minimised
functions and linear operators. For instance, the Douglas-Rachford algorithm is
able to find the minimum of the sum of only two convex functions, without linear
operators (i.e. the linear operators are identities).

The PAs are suitable for finding the minimum of a sum of convex functions
during an iterative process. A process of iterations is generally terminated after
a pre-defined number of iterations or if a convergence criterion is met, e.g. the change
in the solution is small enough: [|X"™ — X||2/[|%X||2 < &, where i is the number of
the iteration and ¢ is the parameter of the convergence criterion. Proximal splitting
algorithms are proven to provide convergence to the optimal value. However, in
practice, convergence and its speed are greatly affected by the nature of the functions
and parameters used in the algorithm.

The PAs perform iterations involving the evaluation of proximal operators (see
below) and/or gradients related to the individual functions, which is much simpler
than minimisation of the composite functional by other means. The advantage of

proximal splitting algorithms is that they allow solving the minimisation problems
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even with non-smooth functions. Each non-smooth function is involved via its prox-
imity operator.

In the previous chapter, the constrained optimisation problem is defined.
To be able to use the PAs for solving this problem, it has to be reformulated to its

unconstrained form using the indicator function:
argxmin 1x[[1 + t{x: [ly—Ax]a<s) (1.18)
or it can be transformed to another unconstrained form:
argxminHAx—yH%—1—)\HXH1, (1.19)

which is equivalent to the constrained problem since it holds that to each 9,
it is possible to find A > 0 such that both problems and lead to the
same optimal solution X. The problem is regularised by the second function
called “penalty”. The penalisation weight A influences the result of the optimisation.
Higher values of A penalize non-sparse solutions more than lower values of A, but at
the same time, too large values of A may lead to deviations from the data. Therefore,

the penalisation weight should be tuned carefully.

1.3.2 Proximal operators

Proximal operators are essential elements of proximal algorithms, therefore, their
introduction is important. A proximal operator of a function h maps z € RY to

another vector in RY, such that

prox(z) = arg min h(x) + 1Hz —x|l5. (1.20)
h x€RN 2
Therefore, prox,(z) can be understood as the result of a regularised minimisation
of A in the neighbourhood of z.
The most used proximal operators are described in [31534]. The proximal oper-
ators used in this Thesis are presented below.

The proximal operator of function f = %HP - —yl|3 is defined [31}32] as

prox (z) = (I+(P'P) Y z+(P'y), (1.21)

$IP—y13

where I stands for the identity matrix.
Total variation TV(-) is the relaxed counterpart of ||V - ||o, which is defined as

N—-1
TV(Z) = ||VZH1 = Z ‘Zi—i-l - Zi’. (].22)
=1
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The proximal operator of TV(:) has no closed form, but for 1D signals it can be
computed fast in finite number of operations using e.g. the Condat algorithm [35].

Soft thresholding is the proximal operator of the /;-norm and it is defined as
sc;ft(z) = sgn(z) ® max(|z| — 7,0), (1.23)

where sgn stands for the signum function, and ® represents the element-wise product
of vectors.
The proximal operator of the f5;-norm is
prox (Z) = soft;’"(Z), (1.24)
Tl ll2a

mapping matrix Z = [z; ;] to another [33]. It can be shown that it is a soft thresh-
olding with the threshold 7 over groups consisting of rows of the matrix; specifically,
soft™ is a mapping

23,
HZJHz max(]|z;.[[2 — 7,0). (1.25)

The proximal operator of an indicator function of a convex set C, denoted ¢¢,

Zij

is the projection onto that set: prox, , = projs [32,36]. Consequently, the proximal
operator of t(,.:|y—z|l,<5} = LBsy(y,5) iS the projection on the fy-ball, i.e. the projector

DPTOj 5, (y.5) finds the closest point to z in the fy-ball {z : ||y —z[[» < d}:

. 0(z—y)
prox (z) = proj (z) = .
!By (y.9) Ba(y,0) max(”z - YH7 d)

(1.26)

Given a convex function f, the proximal operator of its Fenchel-Rockafellar
conjugate f* can be computed at virtually the same cost as prox, thanks to the
Moreau identity [32,36]:

prox(u) = u — aprox(u/«) for € R, (1.27)
af* fle

1.3.3 Algorithms used

Several proximal splitting algorithms exist, and their application depends on the
definition of the minimisation problem. There are several minimisation problems
presented in this Thesis, and this section discusses the algorithms used to solve the

respective problems.

Forward-backward (FB) algorithm [31] is able to solve the optimisation prob-
lem of type:
minimise f(x)+ g(x), (1.28)

where both functions are convex. Function f is required to be smooth and differ-

entiable with a -Lipschitz continuous gradient V f [31]. An arbitrary function f is
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differentiable with the S-Lipschitz continuous gradient if for a real constant g > 0
it holds [32]:
IVf(z) = V@) < Bllz =2, Va2’ € RY. (1.29)

Function g can be either smooth or non-smooth.
The FB algorithm is iterative, and each iteration consists of two steps — the

forward step and the backward step:

x* = prox,, (x'—7'Vf(x'), (1.30)

—_——
backward step forward step

where v is a step size, prox is a proximal operator and V stands for a gradient.
Main computations within each iteration are a forward (explicit) gradient step with
respect to f and a backward (implicit) proximal step with respect to g.

In the case of g = 0, the equation is reduced to the gradient method [31]:

xt = x" — 'V f(x). (1.31)

On the other hand, when f = 0, the equation ((1.30]) is reduced to the proximal
point algorithm [31]:

x"*! = prox,;, (x*). (1.32)

According to the above-mentioned assumptions, the FB algorithm can be considered
as a combination of these two basic algorithms and (1.32)).

The general form of the FB algorithm is introduced in Algorithm (1| where 6!
stands for the relaxation parameter and can vary within each iteration same as 7"
However, the parameters 6 and ~ stay fixed for all iterations in practice. Note that

the size of the parameter v depends on f3.

Algorithm 1: The Forward-backward algorithm solving
Input: Functions f,g

Output: x*!

Set € € (0,1/0]

2 Set initial variables x° € RV

[uny

3 for 1 =0,1,... until convergence do
4 | Set~'€le,2/8— ¢

5 | d =x'—7'V[f(x)

Set ' € [e,1]

X" =x' 4+ 0 (prox.;, q' — x')

=]

~

8 return x‘t!
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Douglas—Rachford (DR) algorithm [31] is able to solve the same optimisation
problem as the FB algorithm, i.e. the sum of two convex functions. In contrast
with the FB algorithm, the DR algorithm can be also applied in cases when both
functions are generally non-smooth [31].

The DR algorithm is iterative, and each iteration consists of two proximal steps
related to functions f and g. The general form of the DR algorithm is introduced in
Algorithm 2] where 6% stands for relaxation parameter, which can vary within each

iteration. However, the parameter 6 stays fixed for all iterations in practice.

Algorithm 2: The Douglas—Rachford algorithm solving (1.28)
Input: Functions f, g

Output: x*!
Set e € (0,1),7>0

2 Set initial variables q° € RV

[y

3 for 1 =0,1,... until convergence do

4 x' = prox. q

5 | Set§ €le,2—¢]

6 | q'=q' 460 (prox,(2x' — q') — x')

7 return x't!

Chambolle-Pock (CP) algorithm [37] is tailored to solve optimisation problems
of type:
minimise f(x)+ h(Lx), (1.33)

where functions f and h are convex and possibly non-smooth, and L is a linear
operator.
The CP algorithm is primal-dual and iterative, and consists of two proximal
steps related to functions f and h, combined with the application of L and L'.
The general form of the CP algorithm is introduced in Algorithm [3| where ¢, o
are positive scalars representing “step sizes”, prox,. can be computed at virtually
the same cost as prox, thanks to the Moreau identity (see Eq. (1.27)) [36]. For

6 = 1, the convergence is ensured, when the following condition is satisfied [37]:
CollLl* <1, (1.34)

where || - || denotes the operator/spectral norm. However, a more general algorithm
appeared later in [32] that recovers the CP algorithm as its special case, while the
step parameter could range to even 6 € (0, 2), not losing the convergence guarantee.

The convergence speed can be significantly improved with a higher 6.
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Algorithm 3: The Chambolle-Pock algorithm solving
Input: Functions A, f, linear operator L € RM*N

Output: x*!

Set parameters (,o > 0 and 6 € [0, 1]

2 Set initial primal variables x° € RY and dual variables q° € RM

3 Set initial output variables x° = x°

[y

4 for i =0,1,... until convergence do
5 qit!

6 xitl — prox, (Xi _ QLTqu)

= prox,,- (q° + oL x")

7 ii-ﬁ-l — Xi+1 + H(Xi+1 _ Xi)

8 return x't!

Forward-backward based primal-dual (FBB-PD) algorithm [36] is able to

solve the optimisation problem of type:
minimize f(x)+ g(x) + h(Lx), (1.35)

where f is a smooth, convex and differentiable function having a Lipschitzian gra-
dient with a Lipschitz constant 8 < oo [31,36], functions g and h are convex and
can be either smooth or non-smooth, and L is a linear operator.

The FFB-PD algorithm is primal-dual and iterative, and it is based on the
forward-backward approach combining a gradient step (forward step) and a proximal
step (backward step). Moreover, it is combined with the application of L and L.

The general form of the FBB-PD algorithm is introduced in Algorithm [ where
V stands for gradient and (,o are positive scalars called “step sizes”, Id stands
for the identity operator and ¢’ is the step parameter, which can vary within each
iteration. However, 6 stays fixed for all iterations in practice.

To ensure convergence, the following condition must be satisfied [36]:

B

1/¢ 2+ ollLlP, (1.3

where || - || denotes the operator/spectral norm.
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Algorithm 4: The Forward-backward based primal-dual algorithm solving
Input: Functions f, g, h, linear operator L € RM*N

Output: x*!

Set ¢, 0 € (0,00)

2 Set initial primal variables x° € RY and dual variables v? € RM

[y

3 for 1 =0,1,... until convergence do

a | r'=proxg, (xi —(Vf(xY) + aLTvi))
5 | q' = (Id —prox,,,)(v' + L(2r" — x"))
6 | Choose #' € (0,00)

7| xt = x4 i — x7)

8 vitl = vl + 0i(q' — v?)

9 return x't!

Condat algorithm [32,[38] is tailored to solve optimisation problems of a very

general form

argxmin f(x)+g(x)+ z_: P (LX), (1.37)

where f is a smooth convex differentiable function and its gradient V f is §-Lipschitz
continuous, ¢ and h,, are convex functions, which can be either smooth or non-
smooth, and the operators L,, are linear and bounded.

The Condat algorithm is primal-dual and iterative. Fach iteration consists of
proximal steps related to g and h,,, combined with the application of L,, and L .
The general form of the Condat algorithm is introduced in Algorithm [5] where &, o
and p are parameters of the Condat algorithm.

The convergence of the Condat algorithm is ensured when

M
EB/2+ 0]l S LhLall) < Land p € (0,1, (1.38)

m=1
where § is the Lipschitz constant of f and || - || denotes the operator norm. In the

case of f =0, the convergence of the Condat algorithm is ensured when

M
Eo|| Y. Ly Lyl <1, and p € (0,2). (1.39)
m=1
Note that it is allowed to set some functions to zero, and a linear operator L,,
can be identity Id. Therefore, the Condat algorithm can be used for solving simpler
kinds of optimisation problems. It is shown in [32] that the Douglas—Rachford and
the Chambolle-Pock algorithms are special cases of the Condat algorithm.
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Algorithm 5: The Condat algorithm solving (1.37)

[uny

10

Input: Functions f, g, hy, ..., hy, linear operators Ly, ..., Ly,
Output: x'*!

Set parameters £ > 0,0 >0 and p >0

Set initial primal variables x° and dual variables u?, ... uj,
for : =0,1,... until convergence do

Xt = proxgg(xi — V() = £ Lyul,)

xit! = pxitl 4 (1 — p)x

form=1,2,...,M do

L Wi = prox, . (u), + oL, (2x* —x')

u,t = put 4+ (1 - p)u,

return u,,' ™!

return x‘+!
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2 SELECTED SIGNAL PROCESSING TOPICS

This chapter provides a basic overview of the signal-processing topics used in this
Thesis. It focuses on the basic presentation of selected parts of the image processing
methods, which relate to this Thesis: segmentation, edge detection and enhance-

ment, and denoising/filtering.

2.1 Digital signal processing

Technically, a signal is defined as a function of time, space or another variable. As

a signal, it can be considered, for example, a sound, an image, an electric field, etc.
The basic characterisation of signals is based on the properties of the signal

(discrete/continuous) in the time domain and in its amplitude:

» analogue signal — continuous in time domain and in its amplitude,

» quantised signal — continuous in time domain and discrete in its amplitude,

o sampled signal — discrete in time domain and continuous in its amplitude,

o digital signal — discrete in time domain and in its amplitude.

The real world is full of analogue signals, so it comes as no surprise that people
interact with them on daily basis. Analogue signals carry information about electri-
cal, mechanical, acoustic or physical magnitudes. Often, the real world signals need
to be processed. Nowadays, the processing is done via many different sophisticated
programs/algorithms. The field dealing with it is called digital signal processing
(DSP) and it is done either via computer or digital signal processors, which are used
to analyse, modify, optimise, correct, reconstruct, restore or extract information
from digital signals.

DSP is used in many fields of our lives: telecommunication (voice transmis-
sion, signal compression), commerce (voice and image processing, video effects),
industry (process monitoring and control, CAD systems), army (RADAR, SONAR,
secured connection), science (monitoring, data analysis, simulation, modelling),
medicine (imaging systems (Computed Tomography (CT), Magnetic Resonance
Imaging (MRI), Ultrasound (US)), ECG and EEG analysis), etc.

Digital signal processing methods are capable of processing only finite number
of discrete values. To be able to process analogue signals via DSP, it is necessary
to convert them into their digital form. A digital signal is usually represented as
an array of numbers, e.g. one-dimensional signals are considered as vectors, two-
dimensional signals as matrices, etc.

The analogue signal is simply defined as a function of the continuous variable
y(t), where y represents the signal and ¢ is the continuous variable representing time,

for example. The process of converting the analogue signal to its digital form is
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called digitisation. The digitisation process consists of two main steps: spatial/time
domain sampling and amplitude quantisation.

Sampling means that the values of the continuous-time signal are sampled in
regular time intervals, and the discrete-time signal consists of these sampled values
(see Fig. . The sampled signal is a discrete-time representation of the analogue
signal, and it is denoted as y[n], where n is a discrete variable representing the signal
samples. The relationship between ¢ and n can be expressed by an equation ¢ =
nTy, where Ty represents the sampling period. The relationship between sampling
frequency fs and sampling period T is defined as f; = 1/7;. The analogue signal
can be well reconstructed from the sampled signal if the sampling was done under
specific condition. The sampling condition is called the Nyquist sampling theorem,

which is defined as

fs > 2 fimax, (2.1)

where fi.x is the highest frequency contained in the analogue signal. If the sampling
theorem is not satisfied, the aliasing appears in the reconstructed signal. Aliasing
is an unrecoverable distortion. In the case of images, it is represented by “moiré”
pattern in the reconstructed 2D signal. Sometimes the technical equipment can
not satisfy the requirements of the sampling frequencies, i.e. the processed signal
contains frequencies higher than the equipment is capable of processing due to its
limited sampling frequency. In these cases, the low-pass antialiasing filtering is used
to remove the frequencies above the Nyquist limit, which, of course, leads to the
loss of the signal details. However, this loss caused by low-pass antialiasing filtering

is less damaging than aliasing itself. [39-41]

analogue signal y(t)
= 2N

signal samples y[n|

sampling period

Fig. 2.1: Example of signal sampling.
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The next step of digitisation is amplitude quantisation of the sampled signal (see
Fig. 2.2)). The quantisation is a process, where the continuous-amplitude signal is
converted to the discrete-amplitude signal by expressing each sample value to the
nearest quantisation level defined by the finite number of the digits, which is usually
determined by the number of bits B representing the sample value [40,41]. This
process leads to an unrecoverable non-linear distortion, which is called quantisa-
tion error or quantisation noise. Quantisation error eq[n] is defined as a difference

between the sampled y[n| and quantised value y4[n]:

(2.2)

Fig. 2.2: Example of sampled signal quantisation.

Signals can be also divided based on their dimension. One-dimensional (1D)
signals y|[n| can represent speech signal, measurement of the temperature, commod-
ity price development, ECG signal, etc. Two-dimensional (2D) signals Y[m,n| can
represent images, like photographs, medical images, etc. Three-dimensional (3D)
signals Y[m, n, o] can represent CT scans or video — “2D image changing in time”.

There are several types of images:

« Binary image Y[m,n] — consists only of pixels of zeros or ones. Often this

type of image is used for identifying the object and the background.

o Grayscale image Y[m, n] — consists of values in a certain range that represent

a shade of gray. For example, using 8 bits to represent the shade produces
a range from 0 to 255.

» Colour image Y|m, n] — represented via colour space. The most commonly used

colour space is RGB Ygrgg[m, n], which is composed of three colour channels

Yr[m,n], Yg[m,n], Yg[m,n].
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2.2 Image segmentation

Image segmentation is a part of the image analysis. Segmentation is used to split
the image into objects (segments) based on the characteristics of the pixels, for
example. Formally, image segmentation is defined as splitting of the image Y into
segments Yq,..., Yg, where S is the number of segments. These segments are
disjoint Y; NY; = @,i # j, and cover the whole image Y = U;_, Y; [41].

Therefore, due to segmentation, the representation of the image is viewed as
a smaller group of segments instead of the individual image pixels. This helps to
analyse the image and its objects by another image analysis techniques. People
focus on obtaining different kinds of information from the analysed image, and for
each purpose it is necessary to define such a segmentation task that allows them to
obtained the needed information. Since high variability of segmentation tasks exist,
there is no unitary approach to achieve the best segmentation. Therefore, many
segmentation methods and approaches were developed.

Image segmentation techniques can be divided into several classes [41]:

o Homogeneity of areas based segmentation — it is supposed that an image seg-
ment is homogeneous with respect to the chosen parameter, which can be
described by a scalar or by a vector of high dimensionality (intensity, texture).
The simplest segmentation method, thresholding, belongs to this class.

o Region-based segmentation — these methods directly detect the region instead
of the edges. This approach is suitable for noisy images. The main segmenta-
tion criterion is homogeneity of the region. Homogeneity criterion of the pixels
in the region can be tied to the parameters like colour, texture, shape, etc. To
this class belong methods like region growing [42], region merging [43], region
splitting and merging [44], and watershed [45].

o Edge-based segmentation — it is based on the edge representation of the seg-
mented image and provides borders of the image segments. The edge-based
segmentation uses also the idea of homogeneity of segments. However, no strict
requirements to the homogeneity are required. The only “strict” requirement
is on small changes inside the regions. The ideal detected borders are con-
tinuous and closed, reliable, and describe the segments with good accuracy
of localisation. Nevertheless, the raw edge representation obtained by basic
techniques is far from ideal. Typically, the edges are disconnected, thick and
do not correspond to segment borders, which is often caused by noise in the
image.

« Segmentation by pattern comparison — this approach searches for the chosen
pattern in the image. Since the exact fit of the pattern and the image can not

be expected, the similarity criteria are used.
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o Segmentation via flexible contour optimisation — typically used in segmenta-
tion of medical images, which are noisy and textured, and therefore, the above-
mentioned approaches do not work very well. This group includes methods
such as parametric flexible contours, geometric flexible contours, and active
shape contours [46].

There are some techniques, which can deal with the raw non-ideal edge repre-
sentation and derive as many “ideal” borders as possible. Among such methods
are borders via modified edge representation [47], borders via Hough transform [4§],
boundary tracking [49], and graph searching methods [50]. Starting point of all these
methods is the raw edge representation. Therefore, the success of these approaches
is closely related to the quality of the raw edge representation. The better the raw

edge representation, the better the edge-based segmentation. [41]

2.3 Edge detection and enhancement

Signal enhancement is viewed as a process of improvement of the signal with respect
to some of its properties, where the input is the “imperfect” signal and the output
is the “improved” signal. In connection with image edges, the signal enhancement
usually consists of sharpening.
The edge detection, on the other hand, is a part of image analysis. The goal of
the image analysis, in general, is to provide a description of the analysed image.
Both edge sharpening and edge detection are based on a relation of the analysed

pixel and its neighbourhood.

2.3.1 What is an edge in the image?

An edge can be characterized as a position in the image where is a significant local
change in the image intensity. A stronger change of the intensity causes clearer edge,
which can be detected more easily and more precisely. Edges provide important
visual information, for example each object can be easily described with few key
edges and, therefore, edges are important for human sight. [41,51]

Several types of edges can be recognised: step edge, ramp edge, line edge and
roof edge (see Fig. [2.3)). The ideal edge, from the signal processing point of view, is
the step edge, where the intensity changes from one value to another immediately.
A more common in real world is the ramp edge, where the intensity changes from
one value to another gradually. Another ideal edge is the line edge, which differs
from the step edge in the prompt return to its initial value. However, the roof edges

are more typical than line edges for the real images. [52]
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Fig. 2.3: Examples of different edge types.

A step edge can be detected by the gradient of intensity function of the image.
Step edges are localised as positive maxima or negative minima of the first-order
derivative or as zero-crossings of the second-order derivative (see Fig. . The edge
can be described by the strength and the direction. Both information are contained
in the gradient function. [41},51]

The first derivative of the edge-profile function results in the highest change of
local extrema at the position where the edge is. On the other hand, the second
derivative of the edge profile results in zero-crossing at the edge position. Neverthe-
less, derivatives can not be applied to the digital images. Therefore, the first and
the second derivatives are approximated by directional differences. These differences
can be expressed by local difference operators [41]. See examples of the operators

of the first and second differences for a horizontal and vertical direction below:

0 -1 0 000
AH=10 10, AH=|-11 0],
0 0 0] | 0 0 0]
(2.3)
0 10 0 00
A’H=10 -2 0|, AJH=|1 -2
0 1 0 0 0 0]
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Fig. 2.4: Example of edge localisation via first-order and second-order derivative.

2.3.2 Edge sharpening

Sometimes, the image edges are too blurry for human sight, making it difficult to
perceive finer details in the image. The process of making the edges more visible
is called edge sharpening (see Fig. [2.5)), which is a frequent task of the image en-
hancement. Note that sharpening can only enhance the details in the image but
cannot improve the resolution of the image. Sharpening generally requires a rel-
ative accentuation of the high-frequency components of the image. There is a lot
of methods to make edges more visible, for example Sharpening via subtracting
of the blurred image, Local sharpening masks, Sharpening via Frequency domain,
or Adaptive sharpening. Unsharped/blurred image has a relatively higher content
of low-frequencies than sharp image. Therefore, sharpening can be described as

augmenting the high-frequency image components. [41}51]

Sharpening via subtracting

The aim of the sharpening via subtracting of the blurred image is to relatively
decrease the low-frequency components of the image. At first, the original image
is blurred via an averaging mask. Then, the blurred image is subtracted from the
original image to obtain the image with details. Finally, the detailed image is added

to the original one leading to a sharpened image. [41]

Local sharpening mask

Using the local sharpening masks is another approach to sharpen an image. There
are two ways how this approach can be achieved. The first way is to sharpen the

image by adding the Laplacian-filtered image to the original. The Laplacian-filtered
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Fig. 2.5: Example of edge profile before and after edge sharpening.

image is obtained by applying the Laplace mask on the original image. The Laplace

operators, which are second-order derivative masks, are defined as follows:

0 10 1 11 1 21
Hy=|1 -4 1|, Hy=|1 -8 1|, Hh=|2 —-12 2|, (2.4)
0 10 1 11 1 21

where the upper index L. denotes the Laplace mask and the bottom index represents
the central value of the mask. Convolution of the image with the local Laplace
mask leads to an image with maximum sharpness at the cost of losing the area
intensity information. The sharpened image is then obtained by adding this extra
sharp image to the analysed one.

The second possibility is to create sharpening masks, which are applying both

operations (Laplacian filter and Adding the analysed image) at the same time:

0 -1 0 -1 -1 -1
Hy=|-1 5 —-1| and Hy=| -1 9 —1|. (2.5)
0 -1 0 -1 -1 -1

The output of applying the sharpening filter is the sharpened image itself.

In general, larger sharpening mask leads to an increase of the computational
complexity. In this case, it is preferable to use the convolution properties of the
Fourier transform. Instead of using the convolution of the image with the mask
in the original domain, multiplication of the image spectrum with the frequency

characteristic of the mask in the spectral domain is used. [41]
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Sharpening via frequency domain

Sharpening via frequency domain is a similar approach to the above-mentioned
method. The main operation of this approach is a modification of the image spec-
trum. Low-frequency image components are forced to zero in the frequency domain,

which leads to the detailed image, which is then added to the original image. [41]

Sharpening and noise

Since sharpening relatively increases the high-frequency components of the image,
and the image noise has a relatively higher share of higher frequencies, sharpening
leads to an increased level of the image noise. The image can be degraded even if the
values of the noise in the original image were not high. Note that the noise is more
disturbing for the human sight in flat intensity regions than at highly structured
areas (edges, small details), which is exploited in a process of adaptive sharpening.
[41]

Adaptive sharpening

The principle of the adaptive sharpening is to apply the sharpening only in struc-
tured areas, and leave the flat areas untouched. Before applying the sharpening
algorithm, it is necessary to distinguish the structured areas from the flat ones.
This recognition is done via the application of the local image analysis and subse-
quent evaluation if the criterion has been met or not. Based on these results, the

sharpening is either applied or not. [41]

2.3.3 Edge detection

Edge detection can be interpreted as a transformation of the grayscale or colour
image to the binary image, where white pixels represent the edge position and black
pixels represent the background or vice versa. Finding the place where the change
of the image intensity is strong, is the appropriate way how to find the edges. Many
approaches to the edge detection were designed, which will be discussed in more
detail in Chapter [3] Nonetheless, an easy and very common approach to the edge
detection is application of the edge operators (see Secs. and [3.2)). [41]

Edge strength and orientation

An edge can be described by its strength and orientation. Edge strength and orien-
tation are computed from the results of the convolution of the original image with

the gradient masks for each image position. [41}51]
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Edge detection and noise

The result of the edge detection is significantly affected by noise in the image,
which usually causes the detection of false edges. This phenomena is naturally more
significant with stronger noise and in the case of simple edge detection methods.
These false detected edges should be excluded via post-processing, which takes image

context into consideration. [41]

Edge maps

The result of the edge detection approach is full of edge candidates. The decision
on which candidate is truly an edge and which is not is a very important part of the
post-processing. The simplest method to decide this is to apply thresholding to the
edge strength. The threshold value can be fixed or adaptive. The decision process

leads to the binary image — so-called edge map. [51]

2.4 Denoising/Filtering of signals

Denoising or noise smoothing can be viewed as a signal enhancement, which focuses
on the compensation of the signal imperfections caused by the noise, providing
the assumption of the original “clean” signal [41]. The sharpening and denoising
are conflicting operations and, therefore, it is important to be familiar with the
consequences of using one or the other method. Similarly to sharpening, noise
smoothing is realised mostly by local operators (masks) — linear or non-linear and
space invariant or adaptive.

An image can be corrupted by different kinds of noise. The origin of the noise

plays an important role in choosing the suitable noise-suppressing method.

2.4.1 Types of noise

Noise can be classified into several classes according to different properties [41].

o According to the dependence on the image content, image-dependent and
image-independent noise are recognised. Since the image-dependent noise is
difficult to deal with effectively, handlig image-independent noise is prevalent.

o According to noise amplitude distribution and spatial distribution, the gray
(or white) noise and the impulse noise are identified.

o According to the noise relation to the image content, it is possible to recognise
the additive and multiplicative noise. Additive noise is simply added to the

original image compared to multiplicative noise, where each pixel is multiplied
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by the noise amplitude. From these two types, the additive noise is a more
frequently encountered type of noise in most of the image analysis applications.
o According to noise character in the frequency domain, wideband noise and
narrowband noise are distinguished. The narrowband noise is characterised by
the fact that it occupies only a limited range of frequencies in the frequency

domain. Wideband noise, however, is the most common case.

Additive White Gaussian Noise (AWGN)

Additive White Gaussian Noise is one of the most common types of noise. It is
a type of random noise that can be added to a signal in an acquisition system,
communication/transport channels, data quantisation during the analogue-to-digital
conversion, etc.

“Additive” refers to the fact that the noise is added to the signal, rather than
being inherent in the signal itself. “White” means that the noise has a flat frequency
spectrum, meaning that it has a uniform power across the whole frequency band,
i.e. it is equally present at all frequencies. In images, it is also assumed that the
white noise corrupts all pixels within the image. Finally, “Gaussian” refers to the
statistical distribution of the noise. As a Gaussian noise, it is typically considered
noise with zero mean value and intensities that are substantially smaller than the
maximum intensity of the image pixels. Since the spectrum of AWGN noise is
uniform, which means that all frequencies are corrupted identically, the AWGN

noise is considered as wideband noise. [41]

2.4.2 Noise-suppressing methods

Application of the noise-suppressing methods leads to the loss of the sharpness/im-
age details. The reason is that noise occupies the same frequency range as the image
details. The noise suppressing methods can be divided into three main classes ac-
cording to the type of the noise they deal with — narrowband noise suppression,
wideband noise suppression and impulse noise suppression [41]. Since the Thesis
deals with the wideband noise, for the sake of brevity, only the wideband noise

suppression method will be introduced.

Wideband noise suppression

As mentioned earlier, the wideband noise corrupts all of the pixels in the image.
Since the values of the noise are not known, it is supposed that they are random; in
contrast to the image, where the values are supposed to be fixed (they do not change

in time). Therefore, if there are several realisations of the same image with different
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realisations of the noise, the basic idea is to average all the image realisations. The
result of such an approach improves with the increasing number of the image reali-
sations. Unfortunately, this approach can be used only when there is the possibility
to take several realisations of the identical scene, which is not the usual situation.
More often it happens that only a single realisation of the image is available.

In the latter case, the realisations of the noise are obtained from the analysed
pixel surroundings [41]. The analysed pixel and its surrounding is defined by the
local operator and, therefore, this approach is called local averaging. The principle
of the local averaging is to replace the analysed pixel with average of the values
according to the local operator. This approach can be viewed as the convolution of
the image with the mask operator.

Local operator can have different shape, size and weights and is invariant. Since
the weights defined in the operator can be different, the resulted average can be
weighted. Averaging is the linear operation. Usually, the operators of the size 3 x 3

are used, examples of some mask operators can be seen below:
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The first mask operator represents a simple average, which leads to the best SNR
improvement, however, it causes the highest blurring. The second and third masks
represent the weighted average. These two operators emphasise the influence of the
central pixel, which is analysed. The third mask causes the smallest amount of
blurring of the three.

Local averaging is suitable for the use in flat image areas and unsuitable for the
use in areas with edges, where it causes blurring. If high noise suppression is needed,
larger masks (up to 9 x 9) are used. Unfortunately, high suppression also causes
strong blurring.

To avoid blurring, the adaptive noise suppression can be used. For human sight,
the noise is more disturbing in flat areas than in areas with details. Therefore, the
adaptive approach focuses on high noise suppression in flat areas, and lower or no
suppression in areas with details. For the adaptive noise suppression, the recognition
of the flat area of the image plays a crucial role. The adaptive noise suppression
can be considered as the opposite operation to the adaptive sharpening. For more
details see [41].
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3 HISTORY AND STATE OF THE ART

The edge detection finds applications in many fields such as image segmentation,
medical data processing, object tracking, motion detection, pattern recognition, etc.
As mentioned earlier, an edge is defined as a position where the intensity of an im-
age changes significantly. However, the estimation of edge significance differs from
application to application. Therefore, different approaches are suited for each ap-
plication. The edges in the image are not easy to locate accurately. The reason is
that real images are corrupted by noise, by uneven light intensity, and by defects
or imperfections in the imaging technology [53]. To eliminate the above-mentioned
issues, the authors of [54] suggest that edge detection methods should include three
basic operations: denoising, differentiation, and labelling. According to [55], com-
puter vision depends on correctly identified edges at the right positions, ensuring
they are continuous, and maintaining uniform width. In this section, the different
edge detection approaches will be described.

The authors of [53] divide edge detection methods into three domains: spatial
domain, frequency domain, and wavelet domain. In the spatial domain, gradient
operations are performed directly on the pixels. A lot of methods presented in this
chapter focus on detection in the spatial domain. For frequency domain detection,
it is necessary to convert the image to the frequency domain before applying various
operations, such as phase congruency [56].

In the wavelet case, the image is transformed into partial multi-frequency levels.
Low frequencies are used to extract the coarse or overall structure of the image,
and high frequencies are used to extract contours. Multiresolution analysis [57] is
important for the contour detection. The different approaches to contour detection
are summarised in [58]. As an example of contour detection approaches; it is possible
to mention the active shape model, where the boundary of an object is detected
by finding the optimal position of the active shape model points. In cases where
very accurate edge detection is required, three different subpixel methods have been
developed: curve-fitting (sensitive to noise), partial area effect (computationally
expensive), or moment-based methods (computationally expensive).

The authors of [53] divide edge detection methods into two main groups: classical
edge detection technology and deep learning-based edge detection technology.

The group of classical edge detection includes pixel-based edge detection tech-
nology (which contains gradient-based, wavelet transform-based, fuzzy theory-based,
and genetic theory-based edge detection methods) and edge detection methods based
on sub-pixel level (which includes matrix-based, interpolation-based, and fitting
method-based edge detection methods).

The group of deep learning-based edge detection includes spectral clustering-
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based, cross-layer multiscale fusion-based, and encoding and decoding-based edge
detection.

The authors of [53] provide references to individual papers that use methods
from the categories for edge detection described above, and they also mention the
advantages and disadvantages of the presented types of methods. They suppose
that what will researchers surely focus on is real-time edge detection.

Categorisation of methods is always a difficult task, and as mentioned above,
edge detection methods can be categorised into several different groups based on
various factors and points of view. In the rest of the chapter, the methods are
coarsely divided into 11 sections according to the main principle of the methods,

sorted roughly from the simplest methods to the more complex ones.

3.1 Gradient-based edge detection techniques

Gradient-based (first-order derivative) edge detection is considered a basic and sim-
ple edge detection method. First derivative of the edge profile results in the highest
change of local extrema at the position where the edge is. The first derivative is ap-
proximated by directional differences (see Sec. for using on the digital images.
The basis of this method is a local operator.

The gradient-based edge operators evaluate the value of intensity change in the
pixel neighbourhood. Examples of the well known edge operators are described
below. Edge operators usually consist of two or more edge masks, where each mask
detects only edges of a particular direction. Convolution of the image with each
mask provides an image of potential edges — the so-called parametric image. To
get the edges of all directions, it is necessary to compose the particular parametric
images, which emphasise different edge orientations.

There are several possibilities for how to compose the resulting image of edges —
compute the Euclidean distance, choose the maximum value of particular parametric
images, or sum the absolute values of parametric images. The resulting edges are
relatively thick and should be post-processed by thinning. Also, for each detected

edge, its local direction can be computed. [41}51]

Roberts operator is one of the simplest and oldest edge operators. This operator

consist of two diagonal masks H}, and Hit of size 2 x 2, defined as follows [51]:

HF:[I O], H§~=[ ; 1]. (3.1)
0 —1 -1 0

Prewitt, Sobel and Kirsch operators approximate the first derivative using

differences [51]. All these operators are directional, which means that they detect
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edges only in a specific direction. The detection in other directions is very low or
none. The basis of each operator consists of two directional masks — one for the
horizontal and one for the vertical direction. Prewitt operator uses the masks H_,
H; , which compute the average gradient components across neighbouring lines or
columns, defined as follows:

-1 0 1 -1 -1 -1
H=|-10 1| and H'=| 0 0 0]. (3.2)
-1 01 11 1

Sobel operator consists of masks HS, HS, which are similar to Prewitt masks, with
the difference that Sobel masks assign higher weight to the central line or the column,

defined as follows:

-1 01 -1 -2 -1
Hi=| -2 0 2| and Hj=| 0 0 0| (3.3)
-1 0 1 1 2 1

Kirsch operator consists of two masks H,', H,* defined as follows:

-5 3 3 -5 -5 -5
Hf=|-50 3| and Hi=| 3 0 3]. (3.4)
-5 3 3 3 3 3

Compass detectors consist of the set of eight directional masks. All Prewitt,
Sobel and Kirsch operators can be extended to compass detectors, which are less
sensitive to the edge orientation [41,51]. Each detector consists of eight masks with
orientations spaced at 45°. See example of four directional masks Hj to HS of the

Sobel compass detector:

-1 0 1 -2 —1 0
Hy=1-2 0 2|, H=|-1 0 1},
-1 0 1 0
(3.5)
-1 -2 -1 0 —1 -2
Hy=|0 0 o0, H=|1 0 -1
1 2 1 2 1 0

The remaining four masks are the negatives of the first four. Kirsch and Prewitt
compass detectors are created in a similar manner.

The advantages of gradient-based methods include, among others, their sim-
plicity, speed, and ease of implementation. Another advantage is that edges are
detected together with their orientation. On the other hand, the disadvantages

include sensitivity to noise and inaccurate edge detection. [59,60]
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3.2 Laplacian based edge detection techniques

Laplacian based edge detection techniques use the second-order derivative. The
second-order derivative of the edge profile results in zero-crossing at the edge posi-
tion. Therefore, unlike the first-order operators, the edge is not described by a high
value but by a zero. As with the first derivative, the second derivative is approxi-
mated by directional differences in mask form (see Sec. for the use on digital
images. Laplacian operator approximates the second derivative. Unfortunately,
Laplacian itself is very sensitive to noise. Therefore, the Laplacian is not used alone

but in combination with a smoothing filter. [41]

3.2.1 Laplacian of Gaussian

The first to combine the Laplacian operator and the Gaussian filter was Marr and
Hildreth in 1980 [61], who introduced the so-called Laplacian of Gaussian (LoG).
First, the analysed image is smoothed using a Gaussian filter, and then the Laplacian
operator is applied to the smoothed image. There is no need to apply the individ-
ual steps sequentially. The combination of the Gaussian operator and Laplacian

operator leads to the Laplacian of Gaussian (LoG) operator H™C defined as

0 0 -1 0
0 -1 =2 -1 0
H*C =] -1 -2 16 -2 -1 |. (3.6)

0 -1 -2 -1 0
0O 0 -1 0 0

Convolution of the image with the LoG operator produces the image where zeros
denote edge positions. To get only the positions of edges, it is necessary to provide
some post-processing of the LoG image. The post-processing can be provided by

using the 3 x 3 “cross” mask

01 0
I x 11, (3.7)
0 1 0

which considers 4 closest neighbours of the analysed pixel. The pixel is marked as
edge, if the following conditions are satisfied:
o at least one of the considering neighbours has a different sign than the others,
o the value difference between two extreme differently-signed neighbours is greater
than a chosen threshold,
o the value of the analysed pixel lies in between the values of the extreme

differently-signed neighbours.
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If at least one condition is not satisfied, the analysed pixel is marked as non-edge
(background). Edges produced by the LoG operator are thin and usually more
precisely localised than edges produced by operators based on the first derivative
[41].

The advantage of LoG is an accurate edge detection. The disadvantage is that

some edges may not be found [59).

3.3 Canny operator

The Canny detector is one of the most widely used edge detectors in image processing
and it is still often considered state of the art. In practice, it is often used as a
standard image preprocessing technique [62]. The Canny detector was first presented
in 1986 by Canny [63]. The Canny detector was inspired by the use of the Gaussian
operator presented in a paper [61] on Marr-Hildreth edge detection [53].

The Canny detector consists of 4 steps: noise suppression/smoothing, gradient
computation, non-maximal suppression, and hysteresis thresholding [62]. A Gaus-
sian filter is used for noise suppression. The gradient is computed by convolution
with gradient operators in horizontal and vertical directions. Non-maximum sup-
pression consists in suppressing the points that do not have a maximum value in the
gradient direction. Hysteresis thresholding requires setting two thresholds — high
and low. When gradient magnitude values are greater than the high threshold, they
are considered to be edges, values less than the low threshold are suppressed, and
if the value lies between the high and low thresholds, the neighbourhood of the
analysed point is evaluated to determine whether it is part of an edge or not.

The Canny detector has the advantage of good detection and accurate localisa-
tion, robustness to noise, and good edge-tracking capability in various directions.
The Canny detector is able to detect long edges, which is positive in subjective
evaluation [62,/64]. The disadvantages may be that it is more computationally in-
tensive than using simpler edge operators and that the choice of thresholds affects
the accuracy of edge detection |65]. Also, the Canny detector is designed primary

for detection of step edges.

3.4 Oriented energy approach

In the late 1980s and 1990s, the development of edge detection dealt with the use of
a family of filters of different orientations and scales. Such filtered images provided
more information for proper edge detection. This approach is called the oriented

energy approach. The authors of [66] and [67] use quadrature pairs of odd and even
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symmetric filters. The paper [68] describes and proposes a filter with automatic
scale selection.

The paper [66] mentions that methods whose decision phase follows the appli-
cation of linear filtering introduce systematic errors in the localisation of composite
edges (the Canny detector also faces this problem). A composite edge is a combi-
nation of several different profiles, e.g. lines, steps, and roofs. If quadratic filtering
is used instead of linear filtering, this problem disappears. Perona and Malik use
image convolution with pairs of odd and even quadratic filters to detect edges in an
image. If a point in the filtered image satisfies a set of rules, it is marked as an edge.
In the paper, a comparison of this method and Canny detector is shown, where the
example shows that the Canny detector breaks the edge connections.

The paper [67] presents an architecture to synthesise an arbitrarily oriented filter
based on a linear combination of basis filters. These filters are denoted as directed
filters. The concept of forming steered filters can be extended from 2D to 3D. The
steered filters can be formed in quadrature pairs. In this paper, an experiment
on edge detection at the circle and the square is performed, comparing the Canny
detector with a method using steered filters. Steered filters give good edge detection
for both the circle and the square. Unlike the Canny detector, which detects the
circle well but detects double edges in the square.

The problem with the edge detectors described earlier is determining how much
smoothing to choose in the smoothing stage. Greater smoothing yields higher noise
suppression, which makes edge detection easier, but this come at the cost of poorer
localisation. Less smoothing will improve edge localisation at the cost of a worse
signal-to-noise ratio. In other words, the scale level affects the result of edge detec-
tion. In general, different parts of the image need different scale levels. Therefore
Lindeberg [68] proposed an edge detection method with automatic selection of the
scale level. For this method, it was necessary to introduce a new concept of scale-
space edges, for which (i) the magnitude of the gradient reaches a local maximum in
the gradient direction and (ii) the normalised strength of the edge response is locally
maximum in the whole scale. This definition allows the scale level to vary along the
edge. To achieve a trade-off between edge detection and right edge localisation, the
detector needs to allow the scale level to vary over the image. By automatically se-
lecting the scale level, the need for an external scale level choice is eliminated. The
proposed method first detects scale-space edges and then ranks them according to
their significance based on predefined rules. It is then up to the user to decide how
many of the most significant edges to display. The proposed method gives better
results than extracting edges at a fixed scale level since the analysing system does

not know which scale level will be best for a given image.
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3.5 Use of texture, brightness and colour features

Another direction in local edge detection is to use combinations of coloured and tex-
ture information (features) of the image to learn classifiers. The papers mentioned
below point out that methods based only on local features, such as the Canny de-
tector, do not take into account context, mid-level or high-level information, or local
features at multiple scales, which is important for good detection and localisation
of the edges. This approach is utilised, for example, by [69-71]. For all the pa-
pers mentioned, the Berkeley image dataset [72] were used with manually drawn
boundaries for learning purposes.

The paper [69] states that an edge in a natural image is characterised by several
changes in properties such as colour, brightness, and texture. Therefore, the paper
focuses on extracting selected local image features for each image patch. These fea-
tures are oriented energy, brightness gradient, colour gradient, and texture gradient.
The extracted features then serve as an input to a classifier that determines the pos-
terior probability that the analysed pixel is an edge or not. For optimal classifier
setup and feature extraction, train data with manually labelled boundaries in the
image are used. The proposed method (called Pb) achieves better results than the
Canny detector. The Canny detector fails to detect boundaries between texture re-
gions and falsely detects edges within these regions. This is because it only focuses
on the brightness change in the image.

The author of [73] focused on creating a classifier that combines features ex-
tracted from different scales (different image patch sizes). Using a large scale, the
detection is robust but has poor localisation and suppresses details, while using a
small scale preserves details but is sensitive to noise and texture. This paper dis-
cusses how to properly combine the acquired features to make edge detection as
good as possible. The author uses a combination of multi-scale features obtained
from the local operators developed in [69]. The features obtained in this way are
extended with a localisation feature for each scale (describing the distance of the
pixel to the nearest response peak) and a relative contrast feature. The final classi-
fier is then trained on these features. According to the author, the combination of
multi-scale features compared to the use of single-scale features yields a 20 % — 50 %
improvement in edge detection. The proposed classifier gives better results than the
Pb classifier presented in [69].

In paper [71], the authors propose a novel supervised learning algorithm for
edge and object boundary detection, which they refer to as Boosted Edge Learning
(BEL). The edge decision is made independently of the location in the image and is
based on a large number of extracted features. It is a classifier that learns on a large

number of features (tens of thousands) extracted across different scales. The features
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for each pixel are obtained by analysing its neighbourhood-image patches of large
size (50x50), where the analysed pixel is in the patch centre. For example, Haar
wavelets are also used to extract the features. In the case of colour images, features
are extracted for each colour channel. A Probabilistic Boosting Tree classification
algorithm [74] was used for the learning process. The whole learning process is highly
adaptive, so there is no need to tune any parameters. The output of the proposed
method is the edge probability. In decision-making, the method combines low and
mid-level information with context information across different scales. The authors
mention that the classification phase is more challenging and that the selection of the
discriminative algorithm is more sensitive as a disadvantage. The proposed method
gives similar results to the Pb algorithm presented in [69].

The paper [70] presents a multiscale discriminative framework based on learned
sparse representations and its application to edge detection and class-specific edge
detection. It has been trained and evaluated on the Berkeley dataset. First, the
Canny detector was applied, and its output was compared with manually segmented
images. Based on this comparison, the pixels were divided into two categories:
namely those that are close to the manually segmented edges and those that are
not. Subsequently, 14 local classifiers were independently trained using different
image patch sizes and two resolutions. The outputs of the classifier were divided
into two dictionaries, one for edges and one for non-edges. For both dictionaries, the
reconstruction error curves were computed as a function of the sparsity constraint.
The resulting linear logistic classifier was then trained based on the curves thus
obtained. The proposed method gives similar results to the algorithms presented
in [69] and [71].

3.6 Contour grouping methods

Processing the outputs of the local operators to obtain smooth contours is another
direction in edge detection methods. Contour grouping methods start with edge
detection, often using local operators. They attempt to connect the short edges
thus obtained such that the resulting edges are distinct and best describe the ob-
jects in the image. Finding such edges is easy in clean images with well separated
contours, but it is already a difficult task in natural images where noise and textures
are present. The simplest way is to combine edge fragments with a high gradient.
Methods that use more complex ways of joining edge fragments into a smooth con-
tour will be described below. A common feature of these methods is that they use
local detectors developed in [69]. Methods presented below use the Berkeley image
dataset.
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The authors of [75] use curvilinear continuity, which has scale-invariant prop-
erties, to add contextual information between local edge fragments. The danger
in using edge completion is the addition of false boundaries. Therefore, the au-
thors performed an analysis and found that edge linking with the proposed method
achieves better detection than the output of local operators in all cases. First, the
Pb algorithm is used, whose output is discretised into linear segments. The poten-
tial connectivity is then generated using constrained Delaunay triangulation (CDT),
which is scale invariant. Two curvilinear continuity models are developed, a simple
local model and a global model using conditional random field (CRF) [76] to select
the best of the proposed interconnections by Delaunay triangulation. The simple
model considers only the local context and is suitable for studying relevant features.
The global model is used to build a joint probabilistic model over all edges. The
trained models and the Pb algorithm have been tested, among others, to the Berke-
ley dataset. The global model achieves better results than the local model, and the
Pb algorithm gives the worst results.

The authors of [77] present an approach to edge detection by estimating a set
of curves in an image. The method is based on a statistical model of a scene with
multiple curves and an estimation of the optimal curves (edges). The input of the
algorithm is a set of short-oriented segments that connect pixels in the image to
their neighbours. The individual short segments are either part of the curve or the
background. The authors assume that the curves are drawn from a Markov process
that favours smooth curves and a scene description using fewer curves. The estima-
tion of the optimal curves is done using a minimum-cover framework that is simple
and powerful. Unfortunately, the min-cover problem is NP-hard and therefore needs
to be approximated by a greedy approximation algorithm that sequentially selects
objects minimising a “cost per pixel” measure. The presented method shows that
curves can be generated by a sequential growth that starts from small segments.
Continuous evaluation of the quality of the curve during the algorithm is an im-
portant parameter to determine at which curve the growth should continue and at
which should be stopped. The output of the presented algorithm is a small set
of curves that describes the analysed image. The presented method improves the
quality of edge detection relative to Pb [69] and CRF [76].

The authors of [78] propose a contour grouping method based on a 1D topol-
ogy. They assume that a set of edges that have a well-defined ordering, and the
connections between these edges strictly follow this ordering, can be described using
a 1D topology. The paper presents a weighted graph formulation with a topologi-
cal curve grouping score evaluating both the separation from the background and
disentanglement within the curve. The weights measure a directional collinearity

between adjacent edges. All edges detected by the Pb method are arranged in a
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graph and scored. Based on this generated graph, the 1D contour topology has to
be selected according to a defined criterion. The edge grouping criterion used is
called untangling cycles. It is challenging to find the edge topology by optimising
topological criterion, so the authors propose encoding the combinatorial problem as
a circular embedding problem. For this, the computation of the dominant complex
eigenvectors/eigenvalues of the random walk matrix of the contour grouping graph
is required. The authors compared their method with CRF and min-cover, mention-
ing that their approach yielded improvements in edge detection, and visually their
results yielded cleaner edges.

The authors of [72] describe an edge detector that combines several local fea-
tures into a powerful globalisation framework based on spectral clustering. Inspired
by the Pb detector, the authors propose their own multiscale Pb (mPb) detector
and a globalisation method they run on top of this detector. The mPb detector
computes oriented gradients for brightness, colour, and texture across three scales.
The computed local features (multiscale brightness, colour, and texture features)
for each position in the image define an affinity matrix that represents the similarity
between pixels. For this constructed matrix, they define an eigenproblem and solve
it for a fixed number of eigenvectors. The information obtained from the eigenvec-
tors is combined to provide the spectral component of the boundary detector sPb.
The output classifier, called the globalised probability of boundary (gPb), is defined
as the weighted sum of the outputs of the local (mPb) and spectral (sPb) detector.
The authors show that the use of both sPb and mPb detectors alone increases the
edge detection success rate compared to the classical Pb method. The best results

are achieved using the gPb detector (a combination of sPb and mPb detector).

3.7 Non-derivative edge detector

Another edge detector is SUSAN (Smallest Univalue Segment Assimilating Nucleus),
which was introduced in [79]. This method does not require any image derivation or
noise reduction. The SUSAN method ignores the noise as long as the noise is small
enough.

The basis of the method is to evaluate each point in the image based on the
similarity of the central element of the circular mask to its surroundings. The
central element of the circular mask is called the Nucleus. The brightness of each
pixel of the mask is compared with the brightness of the nucleus. If the difference in
brightness of the compared pixel with the nucleus is less than a defined threshold,
then it is marked as similar. The region of the mask that has the same or similar
brightness value is called the USAN (Univalue Segment Assimilating Nucleus) — the

area is defined as a sum of similar pixels.
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The USAN region contains information about the structure of the image. The
USAN area decreases as the nucleus approaches the edge and reaches a local mi-
nimum in the corner. The USAN outputs for each point can be displayed in a 2D
graph where edges and two-dimensional features are strongly highlighted. Therefore,
the method is called SUSAN. A USAN area is marked as an edge if it is smaller
than a fixed threshold (so-called geometric threshold). The direction of the edge
is then found using moment calculations. Sometimes it is still necessary to apply
post-processing methods such as non-maximum suppression, thinning, or sub-pixel
estimation. The authors of [53] state that the method is considered robust, noise-

resistant, and reliable compared to gradient-based methods.

3.8 Fuzzy-logic based detection

Another direction for edge detection is the use of fuzzy logic. Fuzzy logic was
first introduced by Lofti Zadeh [80] in 1965. Compared to Boolean logic, where
values can only take binary values of 0 and 1, in fuzzy logic, values can come
from the interval 0 to 1. Edge detection using fuzzy logic consists of several steps
[81]. As a first step — pre-processing, features (in context with the surrounding
pixels) are extracted for every pixel in the analysed image. A vector of features
can be used to describe the pixels. The second step is fuzzy classification, where
the image pixels are transformed into predefined classes based on the extracted
features. Each class is defined using the same features that describe the image
pixel. A fuzzy classifier classifies pixels into individual classes. The third step is
to compare the pixel membership thus obtained with predefined rules (the so-called
[F-THEN rules), which determine whether the pixel is an edge. Several rules can be
defined, depending on the user. Without this step, the output of the classifier would
result in thick edges. By applying the rules, the edges are made thinner. The last
step can be post-processing, which, for example, removes short edges. The output
of the whole algorithm is then an edge map.

The authors of [53] mention that this technique is flexible and gives good results.
The advantage of this method is that it can deal with noise, and a user can easily
define and change the IF-THEN rules or class membership parameters. Fuzzy logic
for edge detection is used by many authors, e.g. [81,182]. Several other papers are

mentioned in [53].
3.9 Evolutionary algorithms

Evolutionary algorithms (EA) belong to the set of general stochastic search algo-

rithms [83]. EA is a metaheuristic optimisation algorithm working with the concept
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of population. It is suitable for various optimisation problems with limited com-
putational capability and insufficient or imperfect information. EA is inspired by
mechanisms of biological evolution such as reproduction, mutation, recombination,
and selection. Although there are many different variations of EA, they all have
a common idea, namely natural selection (survival of the fittest) — there is com-
petition for resources among individuals in an environment with limited resources,
and only the fittest survive. The basis of EA is established on two factors: variation
operators (recombination and mutation), which ensure the necessary diversity in the
population, and selection, which provides an increase in the average quality of the
solution [84]. The initial steps of EA are:

« initialisation of the population with random characteristics,

« evaluation of the fitness of individual members of the population.
Subsequently, an iterative process is performed until a termination condition is sat-
isfied. The steps of each iteration are as follows:

« selection of parents (i.e. members of the population with the highest fitness),

e recombination of the characteristics of the parents,

o mutation of their offspring,

« evaluation of all the new offspring,

« selection of members for the next generation.

Examples of EA include the following specific algorithms: particle swarm optimi-
sation, bacterial foraging algorithm, ant and bee colony optimisation, genetic algo-
rithm, and so on [53]. EAs can be applied to an image with initial edge estimation to
find the optimal threshold for selecting the true edges (e.g. [55], for more references,
see [h3] and the references therein). Some authors have combined the application of
fuzzy logic with the application of EA (e.g. [85,|86]). In these cases, EA is applied
to the output of the fuzzy classifier.

3.10 Deep learning

Deep learning methods have become a popular tool in image processing in the last
few years. Therefore, many researchers focus their efforts on using deep learning
methods to detect edges. Based on the type of learning method, deep learning
techniques are divided into three main categories: supervised, semi-supervised, and
unsupervised. Supervised learning needs a train dataset that consists of input images
and their evaluation (e.g. manually labelled edges). Unsupervised methods need
a train set, but it does not contain the evaluation of the input images, e.g. clustering.
In semi-supervised training, the train set contains a small number of rated images

and a large number of unrated images.
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The authors of [87], dedicate their work to making a comprehensive analysis
and special research on edge detection algorithms. They divided the methods into
two classes — traditional approaches (all methods before deep learning) and algo-
rithms based on deep learning, such as multi-scale feature fusion, codec, network
reconstruction, etc. The provided analysis showed that the traditional image edge
detection methods had been developed until 2016, and from 2014, the researchers
have focused mainly on algorithms based on deep learning. The provided experi-
ments on Berkeley Segmentation Dataset (BSDS500) and other datasets indicated
that the performance of the deep learning approaches is very close to the human
visual level.

Codec-based edge detection methods use a codec, which accepts input image
of any size and produces an image of the same size, such that the final output
correspond to every pixel in the original image. This approach contains an en-
coder and decoder network. Among this approach belongs, for example, CEDN [88],
CASENet [89], and RINDNet [90].

Network reconstruction-based methods use a combination of various network
modules based on deep learning. Different modules have different advantages for
a task, so their combination for specific tasks provides better results. As examples of
such methods, it is possible to mention N*-Fields [91], COB [92], and AMH-Net [93].

Multi-scale feature fusion-based methods improve edge detection performance
by fusing features of different scales. The features are extracted by layer-by-layer
abstraction, where a higher-layer network has a strong ability to characterise se-
mantic information, while a lower-layer network has a strong ability to characterise
geometrical detail information. These methods include, for example, DeepEdge [94],
HED [95], BDCN [96], DexiNed [97], and PiDiNet [9§].

Other deep-learning approaches for image edge detection are mentioned in [53,
87,99-101].

3.11 Piecewise-polynomial signals

Some authors take advantage of the fact that a 1D signal can be viewed as a piecewise-
polynomial signal that consists of several independent segments. Using this under-
standing, the image can be considered as a set of independent piecewise-polynomial
patches. The authors of [102,/103] showed that images, to a great extent, can be
modelled as piecewise smooth 2D functions.

Individual segments are described by several basis polynomials. A signal is then
obviously overcomplete in terms of the number of parameters. To find a solution to
the signal segmentation, a recovery problem needs to be defined.

The authors of [11] use a greedy approach [29] to solve an over-parametrised
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variational problem using sparse representation. The paper shows applications to
both 1D and 2D signals. This paper mainly deals with linear over-parametrisations
and shows how the proposed method can be used for denoising, segmentation, and
geometric inpainting of images. The main output of this approach is a segmented
image and as the side product the edge map. This approach suppresses the texture
of the objects, and thus the obtained gradient map of the segmented image mainly
highlights the object boundaries. This gradient map can be used for edge detection.

Variously defined optimisation recovery problems for signal segmentation can
be solved using different approaches, e.g. greedy approach |11] or weighted /¢;-
minimisation. The paper [11] was the inspiration for this Thesis, which focuses
on recovery problems that can be solved with convex relaxation techniques. In
our paper [9] about image edge detection, the optimisation problem for image edge

detection solved via proximal splitting algorithm is introduced.

3.12 Comparison

The authors of [72] compare the edge detection performance of all the methods
described in Secs. [3.1 - [3.6 on the Berkeley Segmentation Dataset (BSDS300) [72]
using the precision-recall curves with their maximum F-measure score [69], which
is described in more detail in Sec. [6.3] The dataset includes several human edge
annotations for each image. This comparison illustrated in Fig. shows that
their proposed gPb method (see Sec. produces the best results. In the graph,
the F-measure score obtained for human edge annotations is illustrated as a green
dot, which indicates the average agreement between human subjects. The iso-lines
represent the positions of equal F-measure score. The graph shows that methods
producing only raw edge detection (i.e. methods without post-processing) give sig-
nificantly worse results than methods that include post-processing.

This comparison allows the method developed within this Thesis to be compared
with a wide range of different edge detection methods. The proposed method,
however, does not include any post-processing, so its comparison with methods that
produce raw edge detection (such as classical gradient-based method (Prewitt, Sobel,
Roberts) and Laplacian of Gaussian) will be particularly important.

The authors of [101] compared their RDS (relaxed deep supervision) approach
with the gPb method on the Berkeley Segmentation Dataset (BSDS500) [72] and
achieved better results with their proposed method RDS (see Fig. . They also
compared their method with other deep learning methods (i.e. DeepEdge, HED,
HFL, see the references therein). From the results, it seems that the deep learn-
ing methods provide at this time the best results, compared to methods based on

different approaches (i.e. gPb, SE, Sketch Tokens, see the references therein).
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Fig. 3.1: Comparison of edge detection techniques on the Berkeley Segmentation
Dataset Benchmark (BSDS300). The techniques in the legend are ranked according
to their maximum F-measure. The image is taken from .
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4 THESIS AIMS AND OBJECTIVES

The main aim of the Thesis is to propose, implement, and evaluate an effective
method for image edge detection.

To do this, the first step is to propose a suitable convex optimisation problem
that can deal with the problem of edge detection. Since there are many methods
for solving convex optimisation problems, appropriate optimisation algorithms will
be chosen to solve the problem numerically.

The authors of [11] used greedy approach to solve the optimisation recovery
problem for signal segmentation. Inspired by this work, the intent of this Thesis is
to explore how the ¢;-based convex relaxation methods will deal with the recovery
problems for 1D signal segmentation and denoising. To the best of our knowledge,
it will be the first time when the ¢;-minimisation-based approach will be used for
signal segmentation/breakpoint detection.

First, the convex optimisation problems for one-dimensional signal segmentation
and denoising will be formulated. It is easier to formulate the recovery problems,
implement appropriate algorithms able to solve such formulated problems, and de-
termine their advantages and disadvantages for one-dimensional signals than for 2D
signals, i.e. images.

One of the advantages of the the 1D case is that segmentation and denoising
are performed simultaneously. Denoising can be considered as a side-product of
this solution. Furthermore, each detected segment can be denoised separately once
again, to obtain a better denoising effect.

The first step will be to compare these methods on 1D signals, and then the
method that gives the most promising results on 1D signals will be extended for the
use in the higher dimension. Afterwards, the convex optimisation problems for the
detection of edges in images will be formulated, which will then be solved by the
most promising algorithm from the 1D segmentation phase.

A necessary part of the Thesis is the evaluation of the obtained results, which
will be performed on a generated dataset of 1D synthetic signals and a public image
dataset (BSDS500). Several evaluation metrics described in the Thesis will be used
to evaluate the results on 1D and 2D signals.

Following the idea of reproducible research, the implementations of the algo-
rithms for 1D signal segmentation and denoising and for image edge detection will
be made publicly available.

The following sections treat the Thesis goals in more detail.
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4.1 1D signal segmentation and denoising

At first, the whole concept of 1D signal segmentation and denoising needs to be
designed. It will be necessary to formulate the signal model, define the specific
recovery problems, create a dataset of testing 1D signals, and explore different types
of polynomial bases.

Based on the assumptions observed from the signal model formulation, the re-
covery problem of the signal approximation consisting of convex functions will be
formulated. The Thesis will focus on solving the convex optimisation problem via
proximal splitting methods. In general, a recovery problem can be solved by more
than one proximal splitting algorithm, and all the chosen algorithms for solving
the problem will be implemented in Matlab. The aim is to find the appropriate
recovery problem and method that converges fast, is robust to noise, and has a low
computational cost.

Finally, the evaluation metrics will be proposed and all obtained results will be
evaluated according to these metrics to find the most promising approach for the
1D signal segmentation and denoising process. The best-performing approach will

be then extended to the two-dimensional case.

4.2 Image edge detection

This part of the Thesis will focus on the problem of image edge detection, which will
be performed on both grayscale and colour images from the public image dataset
BSDS500. In the case of colour images, image edge detection will be applied to
each colour channel separately. A suitable merging approach must then be found to
compose the outputs from each channel into a single output.

The results of the proposed edge detection algorithm will be evaluated according
to the evaluation metrics and will be compared to other approaches presented in
Chapter [3] The comparison will be performed on a test set of images from the

public dataset BSDS500, widely used by image processing researchers.

4.3 Algorithm implementation

All chosen algorithms will be implemented in Matlab, some proximal algorithms for
convex optimisation will be implemented using the UnLocBox toolbox [34].

A repository of Matlab implementations of the developed 1D signal segmenta-
tion and denoising algorithms and image edge detection algorithm will be created,

including also the test datasets of 1D signals, images, and bases.

29



5 SEGMENTATION OF 1D SIGNALS

This section deals with the 1D signal segmentation and denoising process. First, the
general description of the proposed method is provided, which includes signal model
formulation, definition of processed signals, description of basis generation, and the
proposition of individual steps of the 1D signal segmentation and denoising process.
Then the used evaluation metrics are defined and signal datasets for experiments
are presented. Finally, four different approaches to 1D signal segmentation and

denoising are proposed and evaluated.

5.1 General description of the proposed method

In this section, a general concept of the proposed 1D signal segmentation process
is introduced with the aim to explain the basic idea of the proposed methodology.
This section is divided into several subsections describing individual parts, which are
important for the segmentation process. First, the description of the signal model
is formulated, which is a very important part since the proposed process is largely
based on the assumptions derived from the signal model formulation. Then, types
of processed signals and used bases are introduced. Finally, the whole concept of

the 1D signal segmentation/denoising process is described.

5.1.1 Signal model description

In continuous time, a polynomial y(t) of degree K can be described as a linear

combination of basis polynomials

y(t) = xopo(t) + z1p1(t) + - - - + xxpk(t), teR, (5.1)

where scalars zp, k = 0,..., K, are the expansion coefficients in such a basis. The
system {py(t)}, is required to form a basis of the space of continuous-time poly-
nomials of degree up to K.

In a discrete-time setting and with time instants n = 1,..., N, the elements of

a polynomial signal are represented as
y[n] = zopo[n] + x1p1[n] + - + 2xpr[n], n=1,...,N, (5.2)

where N can be simply defined as the length of the signal y.

N oo Apk ]}, which is

For a given discrete-time polynomial basis {pg[n]
assumed to be fixed, every signal given by Eq. (5.2)) is determined uniquely by the set
of coefficients {z; }4_,. This uniqueness is broken when these coefficients are allowed

to change in time by using the time index

y[n] = zo[n|po[n] + z1[n]p1[n] + - - - + zx[n|pk[n], n=1,...,N. (5.3)
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This may seem meaningless at this moment, however, such an excess of parame-
ters makes the representation of the signal {y[n]}_; extremely overcomplete, which
will be exploited later on. It is convenient to write this relation in a more compact

form, for which a new notation needs to be introduced:

yl1] (1] P[]
y=1| |, xx=1] ¢ |,pe=]| ¢ |, k=0,... K. (5.4)
y[NV] zi[V] Pi[N]
Then
Y=PoOXo+ -+ Px OXg (5.5)

with ® denoting the elementwise (Hadamard) product. To convert Eq. (5.5) to
a form involving the standard matrix—vector product, it is necessary to define

P, = diag(px) = , k=0,....K, (5.6)
0 pk[N]
allowing to write
y = Poxo+ -+ + Pgxk, (5.7)
or even more shortly
X0
y=Px=[Po| - |Px||:], (5.8)
X

where the length of x is (K + 1)V and P is a fat matrix of size N x (K + 1)N. Such
a description of a N-dimensional signal is obviously overcomplete in terms of the
number of parameters. When the polynomials in P are fixed, (K + 1) N parameters
are used to characterise the signal.

Nevertheless, it is assumed that y is piecewise-polynomial and that it consists of
S independent segments. Each segment s € {1,...,S} is then described by K + 1
basis polynomials. This can be achieved by letting all the vectors x; be piecewise-
constant within the particular segments, with the change at the segment borders.
See Fig. for illustration. The positions of the segment borders are unknown and
they will be the subject of the search.

Due to the facts described above, if x;, are piecewise-constant, the finite difference
operator V applied to vectors x; produces sparse vectors Vxj, where each such
a vector Vx;, has S — 1 non-zeros at maximum. Moreover, the non-zero components

of each Vx; occupy the same positions across k£ = 0,..., K. Operator V computes
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0 10 20 30 40 50 60

Fig. 5.1: Example of piecewise-quadratic signal parametrisation. The top plot shows
the clean piecewise-quadratic signal y consisting of four segments. The middle plot
shows three basis polynomials pg, p1, p2- The bottom plot shows the parametrisa-
tion coefficients xg, X1, X5. Notice that infinitely many other combinations of values
Xo, X1, Xo generate (in combination with basis polynomials pg, p1, p2) the same sig-

nal, however, here is shown the piecewise-constant case.

simple differences of each pair of adjacent elements in the vector, i.e. V: RY — RV-!
such that Vz = [z — 21, ..., 28 — 2y_1] .

The above-mentioned formulations describe a clean polynomial signal without
noise corruption. In the real world, however, it is usual that signals are corrupted
by different types of noise. In this Thesis, it is assumed that the observed signal
is corrupted by uncorrelated Gaussian noise with zero mean and non-zero variance.

The definition of such a signal is
y =Px+e, (5.9)

where e represents the noise vector of length N.
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5.1.2 Types of processed signal

The experiments can be performed on synthetic and real signals. However, the main
aim of this chapter is to find the most promising method for 1D signal segmentation,
which will be easily done on a large dataset of synthetic signals. Therefore, it is not
necessary to extend this chapter with the experiments on real data, however, they
can be found in our article [7] and a conference paper [8].

The process of the synthetic signal generation is described in detail in the fol-

lowing section.

Synthetic signal

This section explains how the synthetic signals are generated. For the generation
of piecewise-polynomial signals, several parameters need to be set. Such input pa-
rameters are: length of the signal N, degree of the polynomial signal K, number of
signal segments S, range of jump height between signal segments h = [hy, ..., hz],
where L is the number of jump levels, and signal-to-noise ratio (SNR). If the signal
consists of S segments, it has S — 1 segment borders and their positions are set
randomly. The minimal length of a signal segment is set to 5 signal samples.

At first, the noiseless piecewise-polynomial signal of degree K and of length N
is generated, which is denoted ycean. With the use of the modified standard basis S
consisting of K + 1 basis polynomials (see Sec.[5.1.3)), S polynomial signal segments
of prescribed length are randomly generated. These signal segments are connected
to each other, such that no jumps between signal segments are allowed — the jump
height is zero. After that, jumps of prescribed height h; are created between the
signal segments in this clean signal. The value h; is added to all samples of even
signal segments of y¥ean. This means that the jump height is the same for all jumps
in the signal. According to this process, L signal variants of the piecewise-polynomial
signal without jumps are created. The variants differ from each other in the height
of the jump between the signal segments. Outputs of such a process are L + 1 clean
piecewise-polynomial signals Yeean (L with and 1 without jumps).

All clean signals are corrupted by the Gaussian i.i.d. noise e, resulting in noisy

signals Ynoisy, such that
Ynoisy = ¥Yclean +e, e~ N(O: 0-3)' (510)
With these signals, the signal-to-noise ratio (SNR) can be determined as

HYClean ”2

SNR (ynoisya YClean) =20- 108;10 “y (511)

isy — YCleanHQ .
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To generate a signal with a defined SNR, the standard deviation o, of the respective

noise needs to be computed such that

HycleanH2 ‘
VN 1070

It can be noticed that the resulting o, is influenced by the energy of the clean signal

0o = (5.12)

as well.

Real signal

As a real signal suitable for testing can be selected the OTDR signal. This signal is
acquired by an Optical Time Domain Reflectometer (OTDR) instrument.

Optical Time Domain Reflectometry |104] is a basic method used for character-
ising and evaluating the quality of optical fibres in optical networks. The OTDR is
used to measure the total loss, the losses or reflectance of splices and connectors,
and to locate fibre breaks and defects. The principle is to send a pulse of light
into an optical fibre and measure the travel time and the strength of its reflections
— the back-scattered light is measured. The OTDR uses the effects of Rayleigh
scattering and Fresnel reflection. Since the reflections follow an exponential model,
the acquired data are subject to logarithmisation, which makes the measurement
linearised.

Measured OTDR signal shows the events on the fibre, the vertical axis is the
power axis, where the events are noticeable (jumps), and the horizontal axis is the
distance axis. The event is characterised by loss or reflections, which can be caused

by connections or damages of the optical fibre. |[104-106]

5.1.3 Types of bases

Several types of discrete-time polynomial bases can be used for signal representation
according to Eq. . The motivation for using several types of bases is to explore
whether bases with different properties can influence the quality of signal segmen-
tation. Using certain types of bases can bring advantages in form of no additional
need of tuning the parameters. These parameters are used to suppress or benefit
some basis vectors of the used basis and they will be described in more detail in the
following sections.

In this Thesis, the bases are divided into groups according to their orthogonality
and normalisation. All the polynomial bases consist of K + 1 basis vectors, which
are linearly independent discrete-time polynomials pi. The basis vectors px can be
viewed as the columns of the N x (K + 1) matrix and they form the diagonals of
the matrix P in the model (5.8). The newly defined matrix of size N x (K + 1) is
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marked with different letters (S, B, N, O, R) according to the properties of the
particular polynomials.

In the following subsections, the terms orthogonality, orthonormality, and nor-
mality are used, see the definitions in Sec. [[.1.5]

The discrete version of the orthogonal continuous basis is obtained by its sam-
pling. This discretisation process, however, does not lead to obtaining a discrete

orthogonal basis. Such obtained discrete basis is not necessarily orthogonal.

Standard basis

Most of the papers that explicitly model the polynomials utilise directly the standard

basis, defined in continuous time as follows:

po(t) = 1,pi(t) =t,...,px(t) =t~, (5.13)

and in discrete time
po[n] = n’ pi[n] =n', ... px[n] = n", (5.14)

which is clearly not orthogonal either in the continuous or discrete setting.
In our previous papers [5,6] and also in [11], the standard basis is used. It
was observed that using the standard basis leads to numerical problems for even

moderate N. Personal communication with the authors of [11] confirmed this issue.

Modified standard basis (S)

To avoid the above-mentioned problems, a modified version of the standard basis is
used in this Thesis for bases generation and experiments. The modification consists
in changing the range of the values in the particular polynomials. The maximum
value of standard basis polynomial p; is N*¥ and the range of its values is from 1
to N*¥ for k = 0,..., K. The modification caused that the maximum value of all
modified standard basis polynomials py is 1, the range of the values in the modified
standard basis polynomial p; is from ﬁ to 1 for £ = 0,..., K. The modified
standard basis polynomials are, in contrast to Eq. , defined as follows:

n

k
pk[n]:(N) ,form=1,...,N, and k=0,..., K. (5.15)

The differences between the standard basis and the modified standard basis S
are shown in Fig. [5.2]
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Fig. 5.2: The standard basis and the modified standard basis S consisting of three
basis polynomials of length 300.

Non-orthogonal bases (B)

In this Thesis, the group of the non-orthogonal bases B includes bases that are non-
orthogonal and non-normalised at the same time. The modified standard basis S be-
longs to this group. The modified standard basis can be used for the generation of the
other B-bases according to formula B = SD; ADs. First, the columns of the modified
standard basis S are normalised using a diagonal matrix D; € RE+DXE+D) thep
mixed using a random Gaussian matrix A € RETDXE+D and finally dilated to dif-

(K41 which has uniformly random entries

ferent lengths using matrix Dy € R(K+1
at its diagonal. B-bases acquired this way are non-orthogonal and non-normalised.

Example of the B-basis is shown in Fig. [5.3al

Normalised bases (N)

In this Thesis, the N-bases are non-orthogonal and normalised at the same time.
Such N-bases are obtained in a simple way — by normalising the length of the B-
basis polynomials — according to formula N = BDj3, where the diagonal matrix
D3 € REFDXEHD) provides the length normalisation. Example of the N-basis is
presented in Fig. [5.3b

Orthogonal bases (O)

In this Thesis, the O-bases are orthogonal and normalised at the same time. The
N-bases are the foundation for O-bases generation. O-bases are obtained by ortho-
gonalisation of N-bases. A matrix N is decomposed by the singular value decompo-
sition (SVD) [107], i.e.

N=UxV'". (5.16)
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Fig. 5.3: Examples of B-basis, N-basis and O-basis. B-basis was generated from
S-basis, N-basis was obtained from B-basis and O-basis was obtained from N-basis.

All bases consist of three basis polynomials of length 300.

Matrix U consists of K +1 orthonormal columns of length N. The new orthonormal
system is obtained simply by O = U. See Fig. for the example of O-basis.
The new O-basis spans on the same space as N-basis does because the N has
full rank, 3 contains K + 1 positive values on its diagonal and V € RE+FD)x(K+1)
is orthogonal. The new O-basis is still consistent with any polynomial basis on R
since both N and U can be substituted by their continuous-time counterparts, thus

generating the identical polynomial.

Random orthogonal bases (R)

R-bases are randomly generated bases, which are, in this Thesis, orthogonal and
normalised at the same time. Also for R-bases, the N-bases are the foundation
for their generation. The generation process of R-bases differs from the O-bases

generation process as follows: the first step is the same — the SVD is applied to
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the N as in Eq. (5.16), with using new symbolisation, N = UnEnVY, where
Un € RVXEHD 510 @ RHDX(E+D) and Vg € REHDX(+1).

The second step is the generation of random matrix A of size (K +1) x (K 4+ 1),
where each element independently follows the Gaussian distribution.

The third step is the application of the SVD to the random matrix A, A =
UaXA V), where Uy € REHDX(EHD 55 ¢ REHFDXEFD) "and Vo € RECFDX K+,

Finally, the obtained matrices Un and U, are used for the new R-basis gener-
ation as follows: R = UnU,a. Since both matrices Un and Uy, are orthonormal,
the columns of R form an orthonormal basis spanning the desired space. Elements

of U, determine the linear combinations used in forming R.

A note on other polynomial bases

In this Thesis, the predefined orthogonal polynomial bases as Chebychev or Legendre
bases, for example, are not used. Such bases are defined in continuous time and
therefore, they are orthogonal with respect to an integral scalar product [10§]. For
the needs of this Thesis, the discrete polynomial bases are required. Sampling
of such systems does not lead to discrete orthogonal bases, orthogonalisation of
sampled system via SVD significantly changes the course of the basis vectors. No
predefined discrete-time orthogonal polynomial bases were found during working on
this Thesis. Because the result of the sampling and follow decomposition is similar

to the above-mentioned O-bases, this type of bases was omitted from this Thesis.

5.1.4 Formulation of the whole concept of signal segmenta-

tion and denoising

Several methods for 1D signal segmentation and denoising are proposed in this
Thesis. Each of the proposed methods can be divided into three main steps, common
to all these methods. Therefore, the general method for 1D signal segmentation and
denoising can be defined and formally described by these main steps:
o Optimisation step using a proximal splitting algorithm,
e Segmentation and denoising,
— Detection of segment borders (breakpoints),
— Smoothing of detected segments.
Individual steps of the processed signal are illustrated in Fig.
Proposed methods differ from each other only in the first step (i.e. the optimisa-
tion step using a proximal splitting algorithm), specifically in the problem formula-
tion and the proximal splitting algorithm used. A detailed description of particular

steps is presented in the following subsections.
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Using proximal splitting algorithm

Detection of segment borders

Smoothing of detected segments

Fig. 5.4: Process of 1D signal segmentation. The diagram shows how the observed

signal is processed during the 1D signal segmentation and denoising.

Optimisation step using a proximal splitting algorithm

At first, the general recovery problem suitable for the solution of the 1D signal
segmentation and denoising needs to be defined. The below-mentioned assumptions
are taken into account to formulate the general recovery problem:
e Observed signal y can be approximated by a linear combination of basis poly-
nomials py.
e The number of the signal segments S is considerably lower than the number
of the signal samples N (S < N), which motivates to utilize sparsity.
o Observed signal y is corrupted by Gaussian noise.
The above-mentioned assumptions, which are based on the signal model descrip-
tion (see Sec. imply that parametrisation coefficients x; are sparse under the
difference operator V. According to these assumptions, the general recovery prob-

lem consists of two main terms: data fidelity term and penalisation term (penalty).
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General formulation of the recovery problem can be written as follows:
X = arg min data__ fidelity_term(x) + penalisation_term(x), (5.17)

where x are the obtained parametrisation coefficients of length (K 4+ 1)N, and N is
the length of the signal y and K is polynomial degree. The vector x is defined as a
set of obtained parametrisation coefficient vectors {Xy }5_.

The proposed recovery problem is an optimisation program consisting of convex
functions, which can be solved by using proximal splitting algorithms.

In this Thesis, several recovery problems suitable for the solution of the 1D signal
segmentation/denoising process are proposed. Particular solutions to the proposed

recovery problems are introduced in the following sections.

Segmentation and denoising

Parametrisation coefficients X obtained as optimisers of the recovery problem ([5.17))
allow simple estimation of the underlying noiseless signal y (see Fig. according
to ¥y = Px. Unfortunately, this approach has two disadvantages. The first dis-
advantage is that this way, the segment ranges are not obtained. The second one
is that the jumps are typically underestimated in size, which comes from the bias
inherent to the ¢;-norm (see [109,110] and our conference paper [5]) as part of the
optimisation problem.

Obtained parametrisation vectors X, should be optimally piecewise-constant and
after application of the difference operator V, the vectors VXq, ..., VX should have
S — 1 non-zero values (in each vector) indicating the segment borders (breakpoints).
However, it is almost impossible to achieve truly piecewise-constant optimisers Xj.
Therefore, the vectors VX, are in practice full of small values. Besides these small
values, larger values can be found in the vectors, which indicate possible segment
borders. Because the underlying signal is assumed to be piecewise-polynomial, the
two-part procedure is applied to obtain the segmented and denoised signal. In the
first step “Detection of segment borders,” the breakpoints are detected to obtain
individual segments. Then each detected segment is denoised individually in the

second step called “Smoothing of detected segments.”

Detection of segment borders

“Detection of segment borders” is the second main step in the 1D signal segmentation
and denoising process. The process of breakpoint detection tries to avoid false
detection caused by small values in the difference vectors VX;. The assumption is
that the significant values in VX, are situated at the same positions. This property

is very convenient for this detection procedure. As a base for breakpoint detection,
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a single vector d € R¥~! is computed out of all obtained Vx; using the weighted

lo-norm according to the formula

d[n] = J(@VRo[n))? + -+ + (axVig[n])? forn=1,...,N—1,  (5.18)

where scalars ay,...,ax are positive factors computed as o = 1/max(|VXy|),
serving to normalise the range of values in the parametrisation vectors differences.

Then, a moving median filter is applied to d and the obtained filtered signal is
subtracted from d, yielding d (see Fig. . This approach keeps the significant
values and pushes small values to zero in d. Values in d satisfying the condition

d| > X constitute the detected breakpoints. The threshold A has to be set properly.

Occasionally, it can happen that two or more detected breakpoints are adjacent
to each other. Since it does not make sense to keep and process segments of zero
length, in such a situation only one of these indexes is chosen — the one with the
largest absolute value. Finally, after this step, the positions of possible breakpoints
are estimated, which defines the range of each detected segment precisely. The total

number of detected segments is S.

Smoothing of the detected segments

In this final step, each detected signal segment § =1, ... ,5' is smoothed/denoised
separately, independently of the other segments. This smoothing process of detected
segments can be viewed as a sequential process where the number of iterations is
equal to the number of detected signal segments S - exactly one detected signal
segment is smoothed/denoised in each iteration. Smoothing/denoising is done sim-
ply by forming a regression matrix A consisting of K + 1 basis polynomials as its
columns, and performing an ordinary least squares method on the observed noisy
signal y restricted to the segment range. In this step, it does not matter what kind
of polynomial basis is used. From the mathematical point of view, it is better to
use the orthogonal matrix, since the following procedure requires inversion of the
matrix.

For each detected segment §, a set of parametrisation coefficients C; is found

according to

Cs = (A{Ay)'Alys, (5.19)

where C; = {ck}fzo is set of constants ¢, of detected segment 5. The matrix Aj; is
created by restricting P to the segment range, and y; is the detected segment in
observed signal y. In Matlab, this can be simply written as C; = A;\ys. Constants
cr in C; form the particular piecewise-constant part in parametrisation vectors xy,

which are restricted to the segment range and are grouped in matrix X; as follows:

Xs=[co-1s,...,cx - 14, (5.20)
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Fig. 5.5: Post-processing of the parametrisation coefficients X, X, leading to d.
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where 1; is a vector of ones with length N; of the 5-th detected segment, and the
matrix X; € RV:*(E+1) contains constant parts of the parametrisation vectors Xy.
After the determination of all X; for all detected segments S, the complete

parametrisation vectors can be determined as follows:

X
X=1:|=[k ...,%xg], for k=0,...,K;5=1,...,8. (5.21)
X

By utilising this process, a new parametrisation coefficient set {x;}X_; is obtained,
which is now constant on the segment-by-segment basis.

According to y = Px, the complete denoised and segmented signal y is then
reconstructed (see Fig. [5.6b)). The least-squares refit could be seen as a procedure
usually termed “debiasing,” commonly used in LASSO-type estimation [13,/111],

which is inherently biased by the use of the ¢;-norm.
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(a) result of optimisation step (b) result of post-processing

Fig. 5.6: Comparison of the signal before and after post-processing. The left-hand
side figure shows the noisy signal y (observed) and the approximation y obtained
by the optimisation step (before post-processing). The right-hand side figure shows
the observed signal and signal y obtained by post-processing (breakpoint detection

and signal denoising).

5.2 Evaluation

Two points of view are used for the evaluation of the results of the 1D signal segmen-
tation and denoising process. The first one is the evaluation of the quality of signal
segmentation, i.e. breakpoint detection accuracy. The second one is the evaluation

of obtained signal denoising.
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5.2.1 Evaluation of breakpoint detection accuracy

For the evaluation of the quality of the breakpoint detection process, it is necessary
to know the true positions of the breakpoints. The positions of breakpoints are
known for synthetic signals, but in the case of real signals, the positions of the
breakpoints need to be labelled manually. For such an evaluation, several metrics
are defined and described in the following sections. These markers are based on the
vector 61, which is forced to be non-negative using an absolute value (see Sec. .
At first, indexes of each evaluated signal and the respective values have to be divided
into disjoint sets — HV;, OV;, and HV,, OV, respectively. The process of creating

such sets is defined below.

Highest values (HV): The HV is described by two sets HV; and HV,. The
number of breakpoints in synthetic test signals is known — each tested signal contains
S — 1 breakpoints. The HV; group thus gathers the indexes of S — 1 highest values
in d that are likely to represent breakpoints, the S — 1 highest values in d form the
set HV,. These S — 1 indexes are selected iteratively. The number of iterations is
equal to the known number of breakpoints S — 1. In each iteration, the largest value
in d is chosen and assigned to HV,, and its index is assigned to HVj;. It can happen
that more high values appear next to each other. To avoid detection of neighbouring
values, the two neighbouring indexes (of the chosen highest value) to the left and
two to the right are omitted from the largest value detection in the further iteration
step. After this iteration process, the HV; contains S — 1 indexes of highest values

ind and H V, contains S — 1 those respective values.

Other values (OV): Also OV is described by two sets OV; and OV,. The OV;
group contains the remaining indexes in d (in relation to HV;). The indexes excluded
during the HV; selection are not considered in OV;. The OV, set contains the
remaining values in d. This way, the number of elements in OV; and OV, is N
minus (S — 1) and minus a particular number of omitted indexes, depending on
the particular course of the HV selection process. This means that the number of

indexes in OV; differs with each tested signal.

AAR

AAR is abbreviation for the average of values in HV,, to average of values in OV,
ratio. For each tested signal, the ratio of averages of the values belonging to HV,

versus values belonging to OV, is computed as follows:

avg(HV,)

AAR= ——_~
R avg(OV,)’

(5.22)
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where the operator avg represents the arithmetic mean.
This indicator describes if there is a significant difference between the chosen
S — 1 highest values and the rest of the values in d. The AAR indicator should be

as high as possible to ensure safe recognition of the breakpoints.

MMR

MMR indicator is the abbreviation of minimum-to-maximum ratio. Specifically, it
is defined as a ratio of the minimum of HV, values to the maximum of the OV,

values, formally
min(HV,)

max(0OV,)
This indicator describes if there is a significant difference between the last chosen
breakpoint and the highest value in the OV,,. The higher the difference is, the better
the detection of the breakpoints.

MMR = (5.23)

NoB

The last and most important evaluation parameter is the number of correctly de-
tected breakpoints (NoB). The indexes in HV; (positions in d) are taken as detected
breakpoints in the tested signal. The noise in the tested signal can influence the
finding of the correct breakpoint positions and therefore, it is considered that the
breakpoint is detected correctly if the indicated position lies within an interval of
+ two indexes from the true breakpoint position in the tested signal. The NoB can
be the integer value from 0 to S — 1. If all breakpoints are correctly detected, then
NoB=S5-1.

5.2.2 Evaluation of signal denoising performance

The quality of signal denoising is evaluated by two measurements — SNR and MSE;,
which are defined in the following subsections. To measure the denoising success,
the clean y ean and denoised Ygenoisea Signals are needed. Two variants of denoised
signals are produced during the whole process of signal segmentation. The first one
y is the signal obtained after using a proximal splitting algorithm (§ = PX). The
second one y is obtained after denoising of all detected signal segments (y = Px).
The evaluation of signal denoising can be performed, since the experiment dataset

consists of noisy synthetic signals for which their clean variant is known.
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SNR

With clean and denoised signals, the signal-to-noise ratio (SNR) can be determined,
and it is defined as
||YClean||2

oised — Yclean “2 ‘

SNR (ydenoiseda yclean) - 20 : logl() “yd (524)

For the above-mentioned variants of denoised signals, the respective variants of SNR
(SNRy, SNRy ) are obtained.

MSE

The mean square error (MSE) measures the average distance of the denoised signal

from the noiseless original, and is defined as

1
MSE(ydenoised7 yclean) = N ”ydenoised - ycleanug- (525)

For the above-mentioned variants of denoised signals, the respective variants of MSE
(MSEy, MSEy) are obtained.

5.3 Datasets for experiments

For the experiments, test datasets of synthetic signals and bases are created. The
dataset of synthetic signals is in this Thesis represented by the group of piecewise-

linear and piecewise-quadratic signals. The process of generating the synthetic signal
is specified in Sec. [5.1.2

5.3.1 Synthetic piecewise-linear signals

As elementary signals for creating a dataset of linear signals, 10 random piecewise-
linear signals yejean (K = 1) with 6 signal segments (S = 6), and without jumps of
length NV = 300 are generated. For each elementary signal, 10 variations of the signal
with L = 10 levels of the jump height h = [hy, ..., hio] are generated, examples of
such signals are shown in Fig. Maximum jump height hyg is 1/3 of the signal
dynamic range, defined as the difference between the maximum and minimum value
of Yelean, formally max(yeiean) — Min(Yelean). Minimum jump height h is 1/10 of the

maximum jump height. Formally, h; is defined as follows:

l=1,...,L. (5.26)
Five SNR values are prescribed for the experiments: 15, 20, 25, 30, and 35dB. For

each signal and each SNR, 50 realisations of noise are generated, making a set of

27,500 noisy signals y in total. Examples of clean test signals y.ean are depicted in

Fig. [5.8a

76



50 T

45

40

30

25

2 L
O0 25

50

75

L
100

L
125

L
150 175

L L
200 225

L
250 275 300

Fig. 5.7: Examples of used clean synthetic piecewise-linear signal with different jump

heights hg, hs, hg, h1o, Where hg means zero jump height.
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Fig. 5.8: Examples of used synthetic piecewise-linear and piecewise-quadratic sig-

nals. The left-hand side figure shows the examples of used clean synthetic piecewise-

linear signals — signal 2, 6, and 10. The right-hand side figure shows the examples

of used clean synthetic piecewise-quadratic signals — signal 12, 14, and 15.

5.3.2 Synthetic piecewise-quadratic signals

The dataset of piecewise-quadratic signals is created using the same process as the

dataset of piecewise-linear signals, with one difference. At the beginning, 10 ran-

domly piecewise-quadratic signals yeean (K=2) are generated, instead of the set of

10 randomly generated piecewise-linear signals.

Examples of clean test signals y.ean are depicted in Fig. |5.8b
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5.3.3 Bases

For the experiments, several types of bases are exploited. For most of the experi-
ments, only the modified standard basis S (see definition ({5.15))) is used.

Out of four types of bases defined in Sec. [5.1.3] only the groups of the O-bases
and R-bases are generated and used in this Thesis. This bases selection is formed on
the results presented in our article [10], where it was shown that these two types of
bases give the best results. Each group consists of 20 particular bases. Both O-bases

and R-bases are generated according to the formulas described in Sec.

5.4 Recovery problem — Total variation

It is supposed that the clean signal consists of several polynomial segments S, which
do not have to be connected at the borders, hence jumps are allowed from segment
to segment. The number of the segment borders is S — 1. The main aim is the
detection of positions of segment borders, which are used for signal segmentation. As
a secondary aim, denoising of the signal can be considered. According to the signal
model description in Sec. [5.1.1] the parametrisation coefficients x; are piecewise-
constant and positions of the breakpoints should be clearly identifiable in individual
Vxj — the non-zero values indicate the positions of segment borders. Estimation
of such parametrisation coefficients x of the observed signal y is needed. Then the
breakpoints are found in the estimated parametrisation coefficients X.

According to the above-mentioned assumptions, the following optimisation prob-

lem is formulated as
X =arg min ||Vxgllo+ - + || Vxkllo st. |y —Px]2 <9, (5.27)

where x are parametrisation coefficients, X are estimated parametrisation coeffi-
cients, V is the difference operator, y is the observed signal, P is the matrix of basis
polynomials and ¢ is the parameter reflecting the noise level and model error.
According to the assumptions that the number of signal segments S is consid-
erably lower than the length of the signal NV and that Vx; are sparse, the aim is
to minimise the number of non-zero values in these vectors. Therefore, the func-
tional || - ||o, which counts the non-zero elements of the vector, is used. The ||V - ||o
indicates the number of possible breakpoints in the vector. Using this functional
|V - |lo on each parametrisation vector xj, the possible breakpoints in each indi-
vidual parametrisation coefficients (xg,...,Xx) are estimated. The aim is to find
piecewise-constant parametrisation coefficients with a minimum number of possible

segment borders, which satisfy the condition ||y — Px|z < 6.
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The model is over-parametrised, having K + 1 times as many unknowns
as the signal samples N, and profits from comprehensible prior knowledge about the
behaviour of the parameters.

Whereas the solving of the problem is NP-hard, this problem is unafford-
able in practical applications. In the following subsection, relaxation techniques are

used and therefore the problem ([5.27) must be reformulated.

5.4.1 Definition of recovery problem

As noted in Sec. [1.3.1], the proximal algorithms are designed to solve the optimi-
sation problems in unconstrained form. Therefore, the recovery problem ([5.27)) is

reformulated to the unconstrained version as follows:
1
X = arg min 5 ly — Px|3 + 70 TV(xo) + - - - 4+ 7, TV (xx), (5.28)

where x are parametrisation coefficients, X are estimated parametrisation coeffi-
cients, y is the observed signal, P is the matrix of polynomials, TV(-) is the total
variation, and 7 are regularisation weights, which are set carefully according to the
noise level and prior experience.

The formulation ([5.28)) is ¢;-based unconstrained approximation of formulation
(5.27)), where the total variation TV(:) is the relaxed counterpart of |V - ||o, which

is defined as follows:
N—1

i=1

Because the below-described experiments are performed on both linear and
quadratic signals, the definition of the general recovery problem can be easily
simplified for these special cases. For simplification, the recovery problem is intro-
duced only for the linear signal. For the piecewise-linear signal, K is set to K = 1.
In the case that the modified standard basis S (see definition (5.15)) is used, each
linear segment can be individually parametrised by a constant offset and a constant
slope. Therefore, the used polynomial matrix P contains these two standard poly-
nomials — constant offset and constant slope. The basis polynomial pg is a vector of

ones, which means that Py is the identity matrix, and p; is a vector with linearly

1 2 3
N>N» N> *

The recovery problem for a linear signal is defined as follows:

growing entries ., 1, where N represents the number of signal elements.

1
X = arg min 5 ly — Px||5 + 70 TV(x0) + 71 TV(xy), (5.30)

where the first term is the “data fidelity” term, enforcing the estimate to approx-
imately correspond to the observation y. The Euclidean fs-norm reflects the fact

that gaussianity of the noise is assumed.
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The second term 79 TV (xg) + 7 TV(x;) in the problem is the “penalisa-
tion” term. This functional mathematically transcripts the desired properties of the
estimate.

Numerical solution of the recovery problem ([5.30) using the Forward-backward

and the Douglas-Rachford algorithms was presented in our paper [5].

5.4.2 Algorithms used

The recovery problem ([5.28) can be solved via either the Forward-backward or the

Douglas—Rachford algorithm. These two mentioned algorithms are able to
minimise  f(x) + g(x). (5.31)

According to the general recovery problem , the functions are assigned such
that f(x) = 1|y — Px||3, which is smooth, and function g(x) = g(xq,...,Xx) =
70 TV (x0) + - - - + 7k TV(xg), which is non-smooth.

According to the recovery problem for linear signals, smooth function

1

f(x) = illy — Px||3 and non-smooth function g(x) = g(xo,%1) = 70 TV(x0) +

71 TV (x;) are assigned.

Forward-backward algorithm

The Forward-backward algorithm (FB) solves the problem ({5.31]) where function f is
p-Lipschitz differentiable with constant 5 < oo [31], and function g is a non-smooth
function. The main computational steps within each iteration of the FB algorithm
are the gradient step with respect to f and the proximal step with respect to g. The
general form of the FB algorithm is presented in Sec. in Algorithm [1]

For the differentiable function £, its gradient must be found, whichis P (P - —y).
For the FB algorithm, its Lipschitz constant § also needs to be established to guar-
antee convergence. It can be shown that [ equals the square of the maximum
singular value of P, which is the operator/spectral norm of P. Since it is known
that for spectral norms it holds |P||> = [|[PTP| = ||[PP"|, it is sufficient to find
the maximum eigenvalue of PP . Since the rows of P are mutually orthogonal, the
product PP is a diagonal matrix with diagonal elements. And since eigenvalues of
the diagonal matrix are exactly the elements on its diagonal, the spectral norm of
the matrix is the maximum element on the diagonal.

For the standard basis consisting of K + 1 polynomial, the largest element is in
the lower-right corner and § = K + 1.

For the standard basis consisting of 2 polynomials, where K = 1, the product
PP is a diagonal matrix with diagonal elements [1 + (%)2 , 1+ (%)2 oo L1
Therefore, the desired constant is § =2 = K + 1.
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Function g is a non-smooth function and for the FB algorithm, the proximal oper-
ator of g must be found, which will be readily done utilising the fact that xg, ..., xg

are separable. Plugging ¢ into Eq. (1.20]), the following operator is obtained:
Zg
. - 1 )
prox(x) = arg min g : + =z — x||5
9 z=[z0, ..., zxc|ERN (K+1) 2

7K

1
= arg min 79 TV(z) + §HZO —xol[3 4+

Z0, ..., ZK 1 (532)
+7r TV(2x) + 5 llzx — xx||3
PTOX v () (o)
ProX . mv(.)(Xk)
For the linear signal, it applies
prox(x) = ProXsry() (Xo) , (5.33)
g pTOXnTV(-)(Xl)

i.e. stacking two independent half-size vectors, containing (scaled) proximal opera-
tors of the TV functional.

In contrast to the general form of the FB algorithm (see Algorithm , the pa-
rameters 6 and ~ are set once at the beginning, instead of resetting these parameters
in each iteration step.

The FB algorithm for polynomial signals is defined in Algorithm [6] The par-
ticular structure of the modified standard basis P can be exploited to derive the
following form of the FB algorithm for the linear signal defined in Algorithm [7]
Note that acceleration techniques like FISTA [112] can be applied.

Douglas—Rachford algorithm

The Douglas—Rachford (DR) algorithm is also suitable for solving when both
functions are generally nonsmooth (nevertheless, the DR algorithm can be applied in
the case of smooth function f as well) [31]. Each iteration consists of two proximal
steps related to functions f and g. The general form of the Douglas—Rachford
algorithm is presented in Sec. in Algorithm 2]

Functions f and g are defined in the same way as above. The main difference
between the FB and the DR algorithm is that in the DR algorithm, no gradient step
is exploited but rather the proximal operator of f is used, see Eq. . For the
defined function f, it is clear that ( = 1 and plugging f into Eq. results in

pr;)x(x) = (I+PP)'(x+Ply), (5.34)
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Algorithm 6: The Forward-backward algorithm solving (5.28)) —polynomial signal

Input: Functions f, g, input signal y € RY
+1

Output: X = x°
Sete=1/(K+1)—0.01,y=¢+0.01=1/(K+1) and § =0.99

2 Set initial variables x° € RN(E+1)

[y

3 for 1 =0,1,... until convergence do
4 | d=x"—y(P"(Px—y))

X% PTOX, 70TV (- (qé) Xé
5 x*t =140 : _

sz PTOX, 1TV () (Qfx) sz

6 return x'+!

Algorithm 7: The Forward-backward algorithm solving (/5.30]) —linear signal
Input: Functions f, g, input signal y € R¥

Output: x = x'*!

Set ¢ =0.49, v = 0.5 and 6 = 0.99
Set initial variables x° € R2V

3 for i =0,1,... until convergence do

i Xé X(i) + Plxli
4 a=1|"|- . A
X] P, (xj + Pix7)

5 | xtl= [XQ] +6 (
X

6 return x‘+!

[uny

N

y
Py

|

prOX'yTQTV(-) (qé) _ Xé
prOX,le TV() (qll ) le

where I is the identity matrix. Note that (I4+P"P)~! and P"y can be precomputed.
Computation of the inverse matrix is time-consuming and precomputation helps to
make the algorithm faster. Theorem [I] in the Appendix [A] introduces the explicit
formula for computing the inversion, which is possible thanks to the multi-diagonal
structure of P'P.

The proximal operator of g for a general polynomial signal is defined in and
for a linear signal in ([5.33)) — it is the same for both the FB and the DR algorithms.

In contrast to the general form of the DR algorithm (see Algorithm [2)), the
parameter 6 is set once at the beginning — instead of resetting this parameter in
each iteration step.

The DR algorithm for the polynomial signal is presented in Algorithm [§] and for
the linear signal is defined in Algorithm [9
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Algorithm 8: The Douglas—Rachford algorithm solving (5.28]) —polynomial signal

Input: Functions f, g, input signal y € RY
+1

Output: X = x'
1 Set initial variables q° € RV(K+1)
Set v = 0.01, e = 0.01, 6 = 0.99

3 for 1 =0,1,... until convergence do

N

: -1,
4 x' = (I + PTP) (q’ — PTy)
q6 PIOX, ;v () (2X(ZJ - q%]) X%)
5 | afl= ] +0 : — |
ax prOXWKTV()(ZX% - qf) X
6 return x'*!

Algorithm 9: The Douglas—Rachford algorithm solving (|5.30]) —linear signal

Input: Functions f, g, input signal y € RY
+1

Output: % = x°
1 Set initial variables q° € R?V
2 Set v =0.01, e = 0.01, = 0.99
3 for 1 =0,1,... until convergence do

= (1eP)” @ Py)

+9 prOX'yToTV(-)<2Xé - q%)) o X6
prOXq/TlTV(-)<2X11 - q21> Xll

'

aj

qt! = Z
q;

[S)}

6 return x'+!

5.4.3 Experiments

In this section, the results obtained from the 1D signal segmentation and denoising
process with the recovery problem solved by the Forward-backward (FB) and
the Douglas-Rachford (DR) algorithms are evaluated.

The experiments are performed on datasets of linear and quadratic synthetic
signals, which are introduced in Sec. For the purpose of these experiments, the
modified standard basis (P = S) of size N x (K + 1) is used, see Sec. for more
details. For the first experiments with linear signals, the used modified standard
basis consists of 2 polynomials (K = 1), and for the second experiments, it consists
of 3 polynomials (K = 2). For experiments on quadratic signals, only the modified
standard basis consisting of 3 polynomials (K = 2) is used.

The results obtained by the FB and the DR algorithms are evaluated in relation

to the signal properties and used polynomial basis, and compared to each other.
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Several parameters need to be set for both the “Optimisation step” and the
“Detection of segment borders step”.

The first group of parameters is set for the “Optimisation step” using proximal
splitting algorithm. The list of parameters for the experiments using the FB algo-
rithm is given in the Table —for K =1 and K = 2. The list of parameters for
the DR algorithm is given in the Table . Parameters of the FB algorithm (5, ¢, v,
and 0) and parameters of the DR algorithm (e, and 6) are explained in Sec. [1.3.3|
The FB and the DR algorithms are stopped if either the convergence criterion or
the maximum number of iterations (MAXr) is reached.

Regularisation weights 75, are set with respect to 0., where o, is the standard
deviation of the noise, which is known from the stage of creating synthetic noisy
signals (see Sec. . Tables and show that the regularisation parameters
7 most favour the constant offset. The influence of polynomials p, with higher £ is
decreasing. The regularisation parameters 7, are created by a product of the noise
level, which is represented by o., and influence of the particular polynomial pg,
which is described by a constant. These constants are set manually according to the
previous experience — they have been tuned to obtain the parametrisation coefficients
as close to piecewise-constant as possible — and are the same for processing of all
the synthetic signals. Anyway, the regularisation weights 7, differ with each type
and SNR of the analysed signal due to the changing value of .. It is possible that
the individually tuned regularisation parameters 7, for each particular signal can
lead to better results, but the individual tuning of the regularisation parameters for
thousands of signals would be an incredibly time consuming process. Therefore, the
above-described compromise in setting of the regularisation parameters was chosen.

The second group of parameters is set for “Detection of segment borders” step
and they are listed in Tables [5.1] and [5.2] The parameter [, represents the window
length of the median filter. The parameter A is a threshold, which decides on the
selection of the potential positions of segment borders.

The obtained results are evaluated from two points of view — breakpoint detec-
tion accuracy, and signal denoising performance. The metrics used for evaluating
the breakpoint detection accuracy are AAR, MMR, and NoB, which are described
in Sec. [5.2.1] Furthermore, the metrics for the evaluation of the signal denoising
performance are SNRy and MSEy, and they are introduced in Sec. [5.2.2]

In addition SNRy and MSEy, SNRy and MSEy were also introduced. In the fol-
lowing evaluation, only metrics computed on y will be used, i.e., the output signal
of the whole “1D signal segmentation and denoising process”. The signal y is the
output signal of the FB/DR algorithm. Comparisons of the SNR and MSE results
between the quadratic signals § and y are shown in Figs.[5.9/and[5.10] The character

of the results is the same for all testing cases independently on the optimisation algo-
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Tab. 5.1: Parameter settings for the FB algorithm. Table contains the specific
setting of parameters needed in 1D signal segmentation and denoising process using
the FB algorithm.

Setting
Step Parameter ‘ Value (for K =1) ‘ Value (for K = 2)

FB algorithm MAX;t 3000 3000

1G] 2 3

€ 0.49 1/3—-0.01

v 0.5 1/3

0 0.99 0.99

To O+ D O+ D

T ¢+ 3.5 ¢+ 3.9

Ty — Oc 2.5
Detection of I 5 5

segment borders A 0.2 0.2

Tab. 5.2: Parameter settings for the DR algorithm. Table contains the specific
setting of parameters needed in 1D signal segmentation and denoising process using
the DR algorithm.

Setting
Step Parameter ‘ Value (for K =1) ‘ Value (for K = 2)
DR algorithm MAXyr 3000 3000
€ 0.01 0.01
v 0.01 0.01
0 0.99 0.99
To . - 200 .+ 200
1 o - 150 o - 150
T - o - 130
Detection of I 5 )
segment borders A 0.2 0.2
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Fig. 5.9: Comparison of SNRy and SNRy, for the FB algorithm for quadratic signals.

rithm (FB vs DR) and the test signal dataset (linear vs quadratic). From Fig. |5.9al,
it follows that SNRy is growing with the signal SNR, and for particular signal SNR,
the increase in SNRy is almost independent of the jump height. The increase in
SNRy is slightly higher for the smaller jump height. The SNRy is increasing with
higher signal SNR and greater jump height (see Fig. [5.9b)). For the signals with
small jump height, the results are better for SNRy. The reason is that when the
detected segments are interpolated by a polynomial, the deviation from the original
signal can increase because the signal segments could be wrongly detected, which
is more often in signals with lower SNR and lower jump height. According to the
above-mentioned conclusions, only the SNRy is used for the evaluation. The same
applies to the MSE metric (see Fig. and, therefore, only MSEy is chosen for
the evaluation (MSEy is omitted). Between the SNRy and MSEy there is an indirect
proportion — the higher the SNRy, the lower the MSE;.

All evaluation metrics are calculated for each test signal. To be able to evaluate
the success of an algorithm, the average across the signals is computed according
to specific criteria — the type of signal, jump height, and SNR. For both linear and
quadratic signals, 55 averages are calculated — each across of 500 signals with the
same SNR and jump height. Results of particular evaluation metrics are shown in
the form of graphs, where each column of the graph represents the average across
signals with the same SNR and jump height. Comparisons of the two algorithms are
also represented as graphs, where each bar of such a graph represents the difference
between the averaged values obtained via the compared algorithms. This comparison

is done for each evaluation metric.
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Fig. 5.10: Comparison of MSEy; and MSEy for the DR algorithm for quadratic

signals.

All the experiments in this and all further sections were performed using Matlab,

and for some of the proximal algorithms, the UnLocBox toolboxE| [34] was used.

Linear synthetic signals

The first set of experiments is performed on the dataset of linear synthetic signals,
which consists of 27,500 noisy signals in total. For the purpose of these experiments,
the polynomial basis P is the modified standard basis S of size N x (K + 1), where
K =1 or K =2 (depending on the type of the experiment). Two items are subject
to vary within the experiments, configuring the problem ([5.30)):

e the input signal y,

« regularisation parameters 79, 71 (and 7 for K = 2).

Evaluation of the FB algorithm At first, the results obtained using the 2-
polynomial basis P are evaluated. AAR metric is shown in Fig. [5.11al For smaller
jump height, the AAR is higher for the lower SNR. For greater jump height, the effect
is opposite. For both MMR and NoB, it holds that the value is higher with greater
jump height and higher SNR, see Figs. and p.11¢. From NoB evaluation, it
follows that the maximum of correctly detected breakpoints is easier to achieve with
higher SNR (lower noise level) and significant jump height between signal segments,
as expected. Due to the character of the processed signals, the maximum achievable
NoB is 5. The SNRy is more increasing with greater jump height between the signal
segments. MSEy, values are closely related to the resulting SNRy values — the higher

SNRy the lower MSE; — see Fig. compared with Fig. [5.12al

thttps:/ /1ts2.epfl.ch /unlochox
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Fig. 5.11: AAR, MMR and NoB results for the FB algorithm using 2-polynomial
basis P and their comparison with the DR algorithm. The left-hand side figures show
the results for the FB algorithm. The right-hand side figures show the difference
between results obtained with the FB and the DR algorithm. Presented results are

for linear signals.
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Fig. 5.12: SNRy and MSEy results for the FB algorithm using 2-polynomial basis
P and their comparison with the DR algorithm. The left-hand side figures show
the results for the FB algorithm. The right-hand side figures show the difference
between results obtained with the FB and the DR algorithm. Presented results are

for linear signals.

The synthetic linear signals were also processed using a 3-polynomial basis P.
From the results it follows that using 2-polynomial basis for processing of linear
signals gives better results in most cases. This result can be explained by the
fact that the 2-polynomial basis contains 2 linear polynomials compared to the 3-
polynomial basis with 2 linear polynomials and 1 parabolic polynomial. Modelling
of the linear signal is easier with only linear polynomials, since the usage of the

exponential polynomial can in this case cause some deviation.

Evaluation of the DR algorithm Also, for the DR algorithm, the 2- and 3-
polynomial bases P were used. The character of the results is very similar to the
results obtained with the FB algorithm — for both 2- and 3-polynomial bases.
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Comparison of the FB and the DR algorithm results The comparison of
the FB and the DR algorithms is shown in the form of graphs in Figs. and
where the left-hand side graphs show the results for the FB algorithm using 2-
polynomial basis and the graphs on the right-hand side show the difference between
results obtained with the FB and the DR algorithms. Values above zero mean that
better results are achieved with the FB algorithm and values below zero mean better
results for the DR algorithm — this applies for AAR, MMR, NoB and SNRy values;
for MSEy, it applies the opposite.

Evaluation of the breakpoint detection reveals that the DR algorithm provides
better results than the FB algorithm. Results are a little bit tricky, because the
AAR evaluation is undoubtedly better for the FB algorithm. Nevertheless, MMR
and NoB values are better for the DR algorithm. The most important evaluation
criterion in breakpoint detection is the NoB, i.e., the number of correctly detected
breakpoints. From this point of view, better results in breakpoint detection are
obtained with the DR algorithm (see Fig. [5.11)). Better AAR result for the FB
algorithm can be connected with the fact that AAR is computed from the average
of the points with the highest value, but these points do not have to be the right

detected breakpoints. Evaluation of the denoised signal is in both cases better for
the FB algorithm (see Fig. [5.12).

Quadratic signals

The second set of experiments is performed on the dataset of quadratic synthetic
signals, which consists of 27,500 noisy signals in total. For the purpose of these
experiments, the polynomial basis P is the modified standard basis S of size N x
(K + 1), where K = 2. Two items are subject to vary within the experiments,
configuring the problem (|5.28]):

e the input signal y,

o regularisation parameters 7, 7 and 7.

Evaluation of the FB and the DR algorithm The results are shown in the
form of graphs, see Figs. 5.13| and [5.14]  In both figures, the graphs on the left-
hand side show the results obtained using the FB algorithm, and the graphs on the
right-hand side show the comparison of results obtained using the FB and the DR
algorithms in form of differences, in the same way as for the linear signals. The
character of the results is very similar to the results obtained for linear signals. For
AAR, MMR, NoB and SNRy, the results are better with higher SNR and greater
jump height. For MSEy, it applies the opposite. This can be seen on the left-hand
side graphs. The comparisons of the FB and the DR algorithms show that AAR

90



80 1 1 1 1 16 1 1 1 1
mm SNR 15 dB mm SNR 15 dB
mmSNR 20 dB 141 |mmSNR 20 dB :
60 - mm SNR 25 dB 121 mm SNR 25 dB i
—ISNR 30 dB —ISNR 30 dB
CSNR 35 dB 10 | |=2SNR 35 dB 4
e ~
= 40| I 8f |
< <
6 [ -
20 |- 4 B
| LR
0 L L i i 0 ln II I II || I
0 1 2 3 4 5 6 7 8 9 10 0 1 2 3 4 5 6 7 8 9 10
jump height jump height
(a) AAR for the FB algorithm (b) AAR, FB vs DR algorithm
5 Il Il Il Il
mm SNR 15 dB . - .
= SNR 20 dB U 1" m '|| il w W
4 |mmSNR 25 dB
==SNR 30 dB
—1SNR 35 dB —021 i
=B 0 =]
= =
=1
| <
2 —04| 'mmSNR 15 dB :
= SNR 20 dB
11 = SNR 25 dB
CSNR 35 dB
0 - - - o T T T T T T T T T T T
0 1 2 3 4 5 6 7 8 9 10 0 1 2 3 4 5 6 7 8 9 10
jump height jump height
(¢c) MMR for the FB algorithm (d) MMR, FB vs DR algorithm
5 E—
0.2 i
4 [
|U I |DD| i
3 = (TN e
[an} <)
2 Z,
ol M) | <
mm SNR 15 dB —02} mmm SNR 15 dB | |
= SNR 20 dB mm SNR 20 dB
1l E= SNR 25 dB == SNR 25 dB
ISNR 30 dB _04l ISNR 30 dB | |
C——SNR 35 dB ’ C——SNR 35 dB
0 - - B B T T T T T T T T T T T
01 2 3 4 5 6 7 8 9 10 01 2 3 4 5 6 7 8 9 10
jump height jump height

(e) NoB for the FB algorithm

(f) NoB, FB vs DR algorithm

Fig. 5.13: AAR, MMR and NoB results for the FB algorithm and their comparison
with the DR algorithm. The left-hand side figures show the results for the FB
algorithm. The right-hand side figures show the difference between results obtained
with the FB and the DR algorithms. Presented results are for quadratic signals.
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Fig. 5.14: SNRy and MSEy results for the B algorithm and their comparison with
the DR algorithm. The left-hand side figures show the results for the FB algorithm.
The right-hand side figures show the difference between results obtained with the

FB and the DR algorithms. Presented results are for quadratic signals.

and MSEy results are better for the FB algorithm, MMR and NoB results are better
for the DR algorithm for almost all signals. The SNRy, results do not point out the
clear winner — for some signals, it is better to use the FB algorithm, and the DR

algorithm for the others.

5.4.4 Partial conclusions

In the experiments comparing the FB and DR algorithms on both the linear and
quadratic signals, in general, it holds that better results are achieved with signals
of higher SNR and greater jump heights for all metrics, except the AAR.

For processing of the linear signals, it is better to use 2-polynomial basis instead
of the 3-polynomial basis for both the FB and the DR algorithms (note that graphs
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of this comparison are omitted for brevity).

From the comparison of the FB and the DR algorithms, it follows that the de-
noising process of both linear and quadratic signals is better when the FB algorithm
is used. Nevertheless, the difference in the case of linear signals is only marginal.
However, the NoB is the most important metric for evaluation of breakpoint detec-
tion. From this point of view, the NoB results show that it is better to use the DR
algorithm for the breakpoint detection instead of the FB algorithm for both linear

and quadratic signals.

5.5 Recovery problem — /5-norm

The presented recovery problem from Sec. does not ensure finding the
possible breakpoint candidates at the same positions across all difference vectors
VX, because that approach utilises TV to treat each x; separately. Therefore, the
correct breakpoints may not be detected in all difference vectors Vxy, and it might
happen that they are eliminated during the “Detection of segment borders” process.

According to the signal model description in Sec. [5.1.1] it can be inferred that
that parametrisation coefficients in x; are strongly related, and the breakpoints in
all difference vectors Vx;, appear at the same positions. This assumption needs to be
included in composing the optimisation problem. The so-called mixed f5;-norm [113]
(see Sec. is used to enforce joint breakpoints across all the difference vectors
Vx;, in the following optimisation problem:

x =arg min ||[oVXo,..., Tk VXkl|ly; s.t. |ly — Px]l2 <9, (5.35)

where x are parametrisation coefficients, X are estimated parametrisation coeffi-
cients, V is the difference operator, 7, are K + 1 positive regularisation weights
corresponding to the individual polynomial degrees, y is the observed signal, P is
the matrix of basis polynomials, and 9§ is the parameter reflecting the noise level and
model error.

The f51-norm is used as a regulariser that promotes sparsity across rows of the
matrix. In our case, the columns of the matrix are the difference vectors 7. Vx;, and
thus, the joint sparsity of the differences is enforced. Therefore, the non-zero values
of the differences should be concentrated only in a few rows on the same positions,
and the remaining positions should be occupied by zeros. The rows with non-zero
values correspond to breakpoints.

In the following subsections, the relaxation techniques are used and, therefore,

the recovery problem ([5.35)) can be reformulated.
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5.5.1 Definition of recovery problem

Similarly to the previous section, the recovery problem ([5.35) is reformulated to the

unconstrained form as
% = arg min ;Hy _Px|2 4+ ([0 V%os - VR (5.36)
and it can be easily rewritten into more compact form:
X = argxmin ;Hy — Px||3 + |[reshape(Lx)||,, , (5.37)

where X are estimated parametrisation coefficients, x are parametrisation coeffi-
cients, y is input signal, P is matrix of polynomials, operator L represents the

stacked differences such that

TQVXO
oV .- 0 —
L=\ . |, Lx=| 1 |, (5.38)
0 - 7V _

TKVXK

with the difference operator V: RY — R¥~1 and K +1 regularisation weights 7, cor-
responding to the individual polynomial degrees. For the linear operator L, it holds
L: REFDN s RCFDIN=1) * The operator reshape(): RE+HNN= _y RIN-1x(K+1)

takes the stacked vector Lx to the form of a matrix with disjoint columns:
reshape(Lx) = [TOVXO |- TKVXK} . (5.39)

In problem , the first term is the “data fidelity” term, enforcing the estimate
to approximately correspond to the observation y. The Euclidean f>-norm reflects
the fact that gaussianity of the noise is assumed.

The second term in the problem is the “penalisation” term. This functional
mathematically transcripts the desired properties of the estimate and assigns high
values to vectors x that lack such properties.

Numerical solution to the recovery problem using the Forward-backward
based primal-dual algorithm and the Chambolle-Pock algorithm was presented in

our conference paper [6] and journal article [7].

5.5.2 Algorithms used

The recovery problem can be solved via either the Forward-backward based
primal-dual algorithm or the Chambolle-Pock algorithm. These two algorithms are
able to

minimise  f(x) + h(Lx), (5.40)
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where both functions f and h are convex and L is a linear operator.
According to the defined recovery problem ([5.37]), smooth function f(x) = %Hy—

Px||2 and non-smooth function h(Lx) are assigned, such that

h(Lx) = ||reshape(Lx)||21 = ||[[ToVXo | - -+ | Tk VXK]]|21- (5.41)

Forward-backward based primal-dual algorithm

The Forward-backward based primal-dual (FBB-PD) algorithm [36] is primal-dual
and iterative, and it is able to minimise the sum of tree functions, see problem
(1.35). However, when g = 0 in , the FBB-PD algorithm can be used to solve
the problem , where function f is [-Lipschitz differentiable with constant
f < oo [31], and function h is a (possibly) non-smooth function. Each iteration
of the FBB-PD algorithm consists of the gradient step with respect to function f
and the proximal step with respect to function hA. The general form of the FBB-PD
algorithm is presented in Sec. in Algorithm [4]

The gradient step requires a gradient of the function f, which is in this case
computed as PT(P - —y). The Lipschitz constant 3 needs to be established because
it plays an important role in ensuring convergence. In Sec. [5.4.2] it was shown that
g = K +1 for the modified standard basis (P = S) consisting of K + 1 polynomials,
which corresponds to the operator/spectral norm of P.

The function A is a non-smooth function and its proximal operator has been
established in definitions and , where 7 = 1.

The FBB-PD algorithm utilises the linear operator L and its transpose L'. The
linear operator L is defined in and its transpose LT: REFDIN-1 _y RE+HN
is defined as follows:

18 1) T()VTUO

L'wy=L"||:||=| : |, (5.42)

Uux TV ug

with VT of size N x (N — 1) and vector u € RV=DE+D - Operator V' can be

implemented as efficiently as V since it holds

0
Vu=V||-u|]. (5.43)
0

For the needs of the FBB-PD algorithm, the transpose of the operator reshape()
needs to be defined. The operator reshape’ (): RN-Dx(E+) _ REFDIN-1) takeg

the matrix with disjoint columns to the form of a stacked vector:
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o

reshape " ({uo |- uKD = :]. (5.44)

Ug

To ensure convergence of the FBB-PD algorithm, the following sufficient condi-
tion must be satisfied [36]:
1/¢ = B/2+ol||L|%, (5.45)

where [ is the Lipschitz constant, o and ( are positive scalars called “step sizes,”
and the upperbound of ||L|| is derived as follows:
2 2
IL]I" = max |[Lx]];
[[x[|l2=1

= max ||[VXo, ..., T Vxg]|?
[Ix[|2=1

— max (HTOVXOH§ + -+ HTKVXK”g)

[[x[[2=1

(5.46)

< 12 max ||Vxoll5 4 - + 74 max ||Vxgl;
[Ixl[2=1 [Ixll2=1

<nlIVIP+-- +7&lIVIP
< 45 4+ i),

since it can be easily shown that |V|| < 2. From here, it follows that ||L| <

2/ Xm0 i = 2|72

The form of the FBB-PD algorithm minimising the problem ({5.37]) is defined in
Algorithm [I0] where the Id stands for the identity operator.

Algorithm 10: The Forward-backward based primal-dual algorithm solving (5.37))
Input: Functions f, h, input signal y € R, polynomial matrix P,

linear operators L, LT
Output: % = x'*!
Set ( =1/8,0 = 3/2||L||?, 6 = 0.99
Set initial primal variables x° € RN+ and dual variables v0 € R(W-1)x(K+1)
3 for i =0,1,... until convergence do
4 | r'=x"—(PT(Px’—y)— (oL reshape’ (v
5 | q' = (Id —soft))7) (v + reshape(L(2r' — x")))

6 xit = xi + O(r' — x1)

[uny

N

7 vitl = vi +0(q’ — v')

8 return x't!
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Chambolle—Pock algorithm

The problem ((5.37)) can also be solved via the Chambolle-Pock (CP) algorithm [37].
Same as the FBB-PD algorithm, the CP algorithm is primal-dual and iterative.
The main difference between the FBB-PD and the CP algorithm is that the CP
algorithm uses the proximal operator of f instead of its gradient. The general form
of the CP algorithm is presented in Sec. in Algorithm [3]

Functions f and h are specified in the same way as above. The proximal oper-
ator of f has been established in , and the proximal operator of h has been
established in and , where 7 = 1. Moreover, the relation for the
conjugate function should be used. The operators L, its transpose L', reshape(),
reshape’ (), and the upper bound on ||L|| are defined above. Convergence of the
CP algorithm is guaranteed for (o < 1/(4]|7]|3), where ( a o are positive scalars
representing “step sizes” and 7 € RE*! is vector of 7.

In the described setting, the particular CP algorithm minimising the problem
(5-37) is presented in Algorithm [I1] where the Id stands for the identity operator.
Note that the matrices P’y and (I +¢ PTP)_1 can be precomputed, and the explicit

formula for computing the inversion is introduced in Theorem([I]in the Appendix [A]

Algorithm 11: The Chambolle-Pock algorithm solving (5.37)
Input: Functions f, h, input signal y € R, polynomial matrix P,

linear operators L, LT
Output: x = x*!
Set parameters ( = 1/||L||,o = 1/||L||
Set parameter 0 = 0.99

3 Set initial primal variables x° € RN+ and dual variables q° € RWV-Dx(K+1)
0

[uny

N

Set initial output variables X° = x

'y

5 for : =0,1,... until convergence do

6 | "' = (Id—soft})y) (q'/o + reshape(L x'))

7 | xtl= (I + CPTP)_1 (xi — (L'reshape ' (') + CPTy)
s | %t =xitl 4 g(xit! — xi)

9 return x'+!

5.5.3 Experiments

In this section, the results obtained from the 1D signal segmentation and denois-
ing process with the recovery problem ([5.37) solved by the FBB-PD and the CP

algorithms are evaluated.

97



As in the previous section, the experiments are performed on datasets of linear
and quadratic synthetic signals, which are introduced in Sec. [5.3] For the purpose
of these experiments, the modified standard basis (P = S) is used, see Sec. [5.1.3]
for more details. For the first experiments with linear signals, the used modified
standard basis consists of 2 polynomials (K = 1), and for the second experiments,
it consists of 3 polynomials (K = 2). For experiments on quadratic signals, the
modified standard basis consisting of 3 polynomials (K = 2) is used.

The results obtained by the FBB-PD and the CP algorithms are evaluated in
relation to the signal properties and used polynomial basis, and also results of both
algorithms are compared to each other.

Several parameters need to be set for both the “Optimisation step” and the
“Detection of segment borders step” The list of parameters for the experiments
using the FBB-PD algorithm is given in Table —for K =1 and K = 2. The
list of parameters for the CP algorithm is given in Table Parameters of the
FBB-PD algorithm (3, (, o and #) and parameters of the CP algorithm (¢, o and 0)
are explained in Sec. [I.3.3] The FBB-PD and CP algorithms are stopped if either
the convergence criterion or the maximum number of iterations (MAX;r) is reached.
Regularisation weights 75 are set in the same way as in the previous section. The
parameter [, represents the window length of the median filter. The parameter A
is a threshold, which decides on the selection of the potential positions of segment

borders.

Tab. 5.3: Parameter settings for the FBB-PD algorithm. Table contains the specific
setting of parameters needed in the 1D signal segmentation and denoising process
using the FBB-PD algorithm.

Setting
Step Parameter ‘ Value (for K =1) ‘ Value (for K = 2)
FBB-PD algorithm MAX;r 300 300
B 2 3
- 1/IL]? 3/2/I[LI
¢ 0.5 1/3
0 0.99 0.99
To ¢+ D ¢+ D
T1 Oc 3.5 Oc 3.5
To - Oc - 2.5
Detection of I 5 5
segment borders A 0.2 0.2
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Tab. 5.4: Parameter settings for the CP algorithm. Table contains the specific

setting of parameters needed in the 1D signal segmentation and denoising process

using the CP algorithm.

Setting
Step Parameter ‘ Value (for K =1) ‘ Value (for K = 2)
CP algorithm MAX;r 300 300
¢ I Iz
o 1/|IL] 1/|IL]
0 0.99 0.99
To ¢+ D ¢+ D
T Oc 3.5 Oc 3.5
To — Oc+ 2.5
Detection of I 5 5
segment borders A 0.2 0.2

The obtained results are evaluated from two points of view — breakpoint detec-
tion accuracy, and signal denoising performance. The used evaluation metrics are
identical to the previous section, so as the graphs demonstrating the results of the

algorithms.

Linear synthetic signals

The first set of experiments is performed on the dataset of linear synthetic signals,
which consists of 27,500 noisy signals in total. For the purpose of these experiments,
the polynomial basis P is the modified standard basis S of size N x (K + 1), where
K =1 or K =2 (depending on the type of experiment). Several items are subject
to vary within the experiments, configuring the problem ([5.37)):

o the input signal y,

« regularisation parameters 79, 71, (and 75 for K = 2),

o parameter ¢ in the FBB-PD algorithm,

o parameters o and ( in the CP algorithm.

Evaluation of the FBB-PD algorithm At first, the results obtained by the
2-polynomial basis P are evaluated. The AAR results are shown in Fig. [5.154]
For all jump heights, the AAR is higher for the lower SNR. The MMR results are
shown in Fig.[5.15¢ For greater jump heights, it holds that the value increases with
increased SNR. For smaller jump heights, the values of MMR are similar for all SNR.
For NoB, it holds that the values are higher with greater jump height and higher
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SNR, as expected, see Fig. [5.15¢ Due to the character of the processed signals,
the maximum achievable NoB is 5. The SNRy, increases with greater jump height
between the signal segments. MSEy values are closely related to the resulting SNRy,
values — the higher SNRy, the lower MSEy — compare Fig. with Fig. [5.16a]
The synthetic linear signals were also processed using a 3-polynomial basis P.
From the results, it follows that using 2-polynomial basis for processing of linear
signals gives better results in AAR, MMR, SNRy. In the case of NoB, the better
results are achieved with 3-polynomial basis. For signals with smaller jump heights
and lower SNR, it is better to use 3-polynomial basis to get higher MSEy, for the

rest of signals, it is better to use 2-polynomial basis.

Evaluation of the CP algorithm Also, for the CP algorithm, the 2- and 3-
polynomial bases P were used. For the 2-polynomial basis, the character of the
results is very similar to the results obtained with the FBB-PD algorithm. Signif-
icant difference between the FBB-PD and the CP algorithm is in AAR, where for
smaller jump heights, the AAR is higher for lower SNR. For greater jump heights,
the effect is opposite. The results show that using 2-polynomial basis gives better
results for MMR, SNRy, and MSEy, and using 3-polynomial basis gives better results
for AAR and NoB.

Comparison of the FBB-PD and the CP algorithm results The comparison
of the FBB-PD and the CP algorithms is shown in the form of graphs in Figs. [5.15
and [5.16] where the left-hand side graphs show the results for the FBB-PD algorithm
using 2-polynomial basis and the graphs on the right-hand side show the difference
between results obtained with the CP and the FBB-PD algorithm. Values above
zero mean that better results are achieved with the CP algorithm and values below
zero mean better results for the FBB-PD algorithm — this applies for AAR, MMR,
NoB and SNRy values; for MSEy, it applies the opposite.

The results of evaluating the breakpoint detection accuracy suggest that using
the FBB-PD algorithm is better for lower SNR for almost all the jump heights.
Nevertheless, for higher SNR, the results are better for the CP algorithm. From
NoB point of view, slightly better results in breakpoint detection are obtained with
the FBB-PD algorithm (see Fig. . Evaluation of the denoised signal is in both
cases better for the FBB-PD algorithm (see Fig. [5.16]).
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Fig. 5.15: AAR, MMR and NoB results for the FBB-PD algorithm and their com-
parison with the CP algorithm. The left-hand side figures show the results for the

FBB-PD algorithm. The right-hand side figures show the difference between results
obtained with the CP and the FBB-PD algorithms. Presented results are for linear

signals.

02 Il Il Il \D|:|;
| 0 7_| . Ill_n w0 0] I_H rH I’H L
ST
& —04F a
g
1 4-06|
mm SNR 15 dB
—0.8 mm SNR 20 dB |
B = SNR 25 dB
1t E=mSNR 30 dB |
——SNR 35 dB
T 712 T T T T T T T T T T T
01 2 3 4 5 6 7 8 9 10

jump height

(f) NoB, CP vs FBB-PD, 2-pol. basis

101



50

4 - [ — i
0 ||H |IIH |||[J |||U ||H |HD |HD ‘lﬂu |HT
30
- | B
o
Z,
- 20 Ep————
mm SNR 15 dB mm SNR 15 dB
= SNR 20 dB r = SNR 20 dB
10 mm SNR 25 dB mm SNR 25 dB
= SNR 30 dB 1 SNR 30 dB
——JSNR 35 dB | C—JSNR 35 dB | |
0 - B B - - B B T T T T T T T T T T T
01 2 3 4 5 6 7 8 9 10 01 2 3 4 5 6 7 8 9 10

jump height
(a) SNRy, FBB-PD, 2-polynomial basis

jump height
(b) SNRy, CP vs FBB-PD, 2-pol. basis

12 ——1L 1 0.15
mm SNR 15 dB
10 mm SNR 20 dB | 0.1F |
mmSNR 25 dB
==SNR 30 dB
0.8 | |[=3SNR 35 dB : 0.05 ‘ ‘ ‘ ‘ ‘ :
>
(2) O,J Iu ID II I I IL,
=
0051 mm SNR 15 dB | |
mm SNR 20 dB
mm SNR 25 dB
—0.1} ==SNR 30 dB | |
C——ISNR 35 dB
_0»15 T T T T T T T T T T T
01 2 3 4 5 6 7 8 9 10 01 2 3 4 5 6 7 8 9 10

jump height

(c) MSEy, FBB-PD, 2-polynomial basis

jump height
(d) MSEy, CP vs FBB-PD, 2-pol. basis

Fig. 5.16: SNRy and MSEy results for the FBB-PD algorithm and their comparison
with the CP algorithm. The left-hand side figures show the results for the FBB-PD
algorithm. The right-hand side figures show the difference between results obtained
with the CP and the FBB-PD algorithms. Presented results are for linear signals.

Quadratic signals

The second set of experiments is performed on the dataset of quadratic synthetic
signals, which consists of 27,500 noisy signals in total. For the purpose of these
experiments, the polynomial basis P is the modified standard basis S of size N x
(K + 1), where K = 2. Several items are subject to vary within the experiments,
configuring the problem :

e the input signal y,

« regularisation parameters 7y, 7 and 7o,

o parameter o in the FBB-PD algorithm,

o parameters ¢ and ¢ in the CP algorithm.
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Evaluation of the FBB-PD and the CP algorithm The results are shown in
the form of graphs, see Figs. and [5.18 In both figures, the graphs on the left-
hand side show the results obtained using the FBB-PD algorithm, and the graphs
on the right-hand side show the comparison of results obtained using the CP and
the FBB-PD algorithms in form of differences, in the same way as for the linear
signals.

The character of the results is very similar to the results obtained for linear
signals. For AAR, MMR, NoB and SNRy, the results are better with higher SNR
and greater jump height. For MSEy, it applies the opposite. This can be seen on
the left-hand side graphs.

The comparisons of the FBB-PD and the CP algorithm show that MMR, SNRy,
and MSEy results are better for the FBB-PD algorithm. For AAR metric, it holds
that the FBB-PD algorithm gives better results for signals with lower SNR, and the
CP algorithm performs better results for signals with higher SNR. For NoB, it holds
that the FBB-PD algorithm produces better results for signals with greater jump
heights, and the CP algorithm achieves better results for signals with smaller jump
heights.

5.5.4 Partial conclusions

In all experiments, it holds that better results are achieved with signals of higher
SNR and greater jump heights for all metrics. The only exception is the AAR
evaluation of the FBB-PD algorithm with 2-polynomial basis for linear signals.

It is not so evident (like in the case of the FB and the DR algorithm), if it is
better to use 2- or 3-polynomial bases for processing of the linear signal (note that
graphs of this comparison are omitted for brevity). The most important metric
for measuring the breakpoint detection accuracy is the NoB, and from this point
of view, it is better to use 3-polynomial basis for both algorithms. Nevertheless,
the differences between 2- and 3-polynomial basis are marginal. In the other hand,
the most important metric for denoising is SNRy, and from this point of view, it is
better to use 2-polynomial basis for both algorithms.

From comparison of the FBB-PD and the CP algorithms, it follows that the
denoising process of the linear signals is better when the FBB-PD algorithm is used.
In case of breakpoint detection, it seems that two conclusions can be drawn — the
signals with higher SNR have better results using the CP algorithm, and the signals
with lower SNR have better results with the FBB-PD algorithm.

For quadratic signals, the FBB-PD algorithm gives better results for almost all

signals.
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Fig. 5.17: AAR, MMR and NoB results for the FBB-PD algorithm and their com-
parison with the CP algorithm. The left-hand side figures show the results for the
FBB-PD algorithm. The right-hand side figures show the difference between re-
sults obtained with the CP and the FBB-PD algorithms. Presented results are for

quadratic signals.
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Fig. 5.18: SNRy and MSEy results for the FBB-PD algorithm and their comparison
with the CP algorithm. The left-hand side figures show the results for the FBB-PD
algorithm. The right-hand side figures show the difference between results obtained
with the CP and the FBB-PD algorithms. Presented results are for quadratic signals.

The f5;-norm was added to the recovery problem with the aim of achieving
better results than the simple total variation (see Sec. . The /5;-norm guarantees
the same position of possible breakpoint candidates through the difference vectors
VX. The comparisons of the results obtained via the FBB-PD algorithm solving the
recovery problem and the FB algorithm solving the recovery problem
are shown in the form of graphs in Figs. [5.19]and [5.20f The left-hand side graphs
show the comparisons for linear signals and the right-hand side graphs present the
results for quadratic signals. Values above zero mean that better results are achieved
with the FBB-PD algorithm and values below zero mean better results for the FB
algorithm — this applies for AAR, MMR, NoB and SNRy, values; for MSEy, it applies
the opposite.

The comparison between the FBB-PD and the FB algorithms shows that for all

105



300 1 1 1 1 1 1 1 1

mmSNR 15 dB 15 mm SNR 15 dB | |
250 + ([mm SNR 20 dB B mm SNR 20 dB
= SNR 25 dB = SNR 25 dB
200 - |[=3SNR 30 dB ISNR 30 dB
——ISNR 35 dB 10 C—ISNR 35 dB | |
~ 150 - 4 ~
<< <<
<< <<
< 100 @ 1<
5 [ -
‘ ‘ 1 ‘ *
= o e o WUl . Iun IDD I[]D IDD IDL, |
EEERY Iu Ik |
_50 T T T T T T T T T T T T T
0 1 2 3 4 5 6 7 8 9 10 0 1 2 3 4 5 6 7 8 9 10
jump height jump height
(a) AAR, FBB-PD vs FB — linear (b) AAR, FBB-PD vs FB — quadratic
1~2 Il Il Il Il 3 Il Il Il Il
mm SNR 15 dB mm SNR 15 dB
1 |mmSNR 20 dB . : 2.5 - |mmSNR 20 dB :
== SNR 25 dB I o == SNR 25 dB N
0.8 |- |[==3SNR 30 dB M 8 2 |- | SNR 30 dB I 11
. —1SNR 35 dB —1SNR 35 dB M
£ 06 1 E15f .
= =
= =
q 0.4r 1 g 1 B
0 , | AU L | Y R H Nl I {1 .IIL,
70-2 T T T T T T T T T T T 70.5 T T T T T T T T T T T
0 1 2 3 4 5 6 7 8 9 10 0 1 2 3 4 5 6 7 8 9 10
jump height jump height
(¢) MMR, FBB-PD vs FB - linear (d) MMR, FBB-PD vs FB — quadratic
0'25 Il Il Il Il Il Il Il Il
mmm SNR 15 dB 0.8 mmm SNR 15 dB |
0.2 | |mmSNR 20 dB 8 " | |mmSNR 20 dB .
mm SNR 25 dB = SNR 25 dB ||
0.15 | |==1SNR 30 dB . 0.6 -|==9SNR 30 dB il
—SNR 35 dB ——SNR 35 dB
2 01 T
Z Z 041 b
0 ,J ol Ml I I . I H il | H= I 0 Wil | 0.2 ‘ ‘ N N M
) | | |3
70-1 T T T T T T T T T T T T T T T T T T
01 2 3 4 5 6 7 8 9 10 0 1 2 3 4 5 6 7 8 9 10
jump height jump height
(e) NoB, FBB-PD vs FB — linear (f) NoB, FBB-PD vs FB — quadratic

Fig. 5.19: Comparison of AAR, MMR and NoB results of the FBD-FB algorithm
with the results of the FB algorithm. The left-hand side figures show the difference
between results obtained with the FBB-PD and the FB algorithms for linear signals.
The right-hand side figures show the difference for quadratic signals.
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Fig. 5.20: Comparison of SNRy and MSEjy results of the FBB-PD algorithm with the
results of the FB algorithm. The left-hand side figures show the difference between
results obtained with the FBB-PD and the FB algorithms for linear signals. The

right-hand side figures show the difference for quadratic signals.

metrics, the results of the FBB-PD algorithm are better than the results of the FB
algorithm for both linear and quadratic signals. The only exception to this is the
MSE; for linear signals, for which the FB algorithm provides slightly better results.
The use of the f51-norm has led to a significant improvement in the results compared
to the simple total variation-based approach using the FB algorithm. Compared to
the results obtained by the DR algorithm, the ¢5; norm-based FBB-PD approach,

however, represents an improvement only for quadratic signals.

5.6 Recovery problem —imitation of non-convexity

Another way how the breakpoint detection could be improved is the imitation of

non-convexity. As mentioned in Sec. [I.2] fp-minimisation is often relaxed to ¢;-
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minimisation for computational reasons. However, the solution of /;-minimisation
does not have to be “the sparsest” in the ¢y sense. To enhance the sparsity of the
solution, it is possible to imitate the non-convexity via a series of convex programs.
This approach is not new in general, it has been both theoretically and practically
justified in [13], for example. Such a series of convex problems is formulated such
that the parameters of the currently solved convex problem depend on the solution
of the latest problem. The optimisation problem that extends problem from

previous section by the change of parameters can be formulated as follows:
%V = arg min ||[reshape(LYx) |21 s.t. ||y — Px]y <6, (5.47)

where the linear operator LU) includes parameters, which change with each problem
repetition, where j = 0,...,.J represents the counter for problem repetitions, (/)
are estimated parametrisation coefficients, x are parametrisation coefficients, y is
the input signal, P is the matrix of polynomials, ¢ is the parameter reflecting the
noise level and model error, and reshape() operator is defined in the same way as in
the previous section (see Eq. (5.39)).

After a defined number of inner iteration (IT) of the proximal splitting algorithm,
the parameters in the operator LU) are recomputed. The parameters are usually
called weights, and are adaptively changed after each repetition (7). Therefore, the
process of re-computation is called re-weighting in this Thesis. The points that
are most probably the breakpoints would be gradually assigned lower weight, thus

penalised less. The re-computation is described later in this section in more detail.

5.6.1 Definition of recovery problem

The unconstrained version of the problem (5.47)) can be formulated as follows:
%) = arg min ||[reshape(LYx)||2; + Uz: |y—z|<s) (PX), (5.48)

where (o denotes the indicator function of a convex set C, the reshape() operator is
defined in (5.39), the operator L) = WOV REHDN — RIKFDIV=1) g the linear
operator, where V: RV — RV~ is the difference operator and the matrix of weights
W) is defined as

diag(w(()j)) e 0
W) — : - 5 : (5.49)
0 e diag(w%))
where W](i,j) = 7w\ are K + 1 vectors of weights. Vector wi/) € RV=1 is a common

vector for w,(cj), which will be adaptively changed at the end of each repetition.
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T are K + 1 regularisation weights, corresponding to the individual polynomial
degrees. They are set and stay fixed according to the noise level and prior experience.

Therefore, the linear operator LY is defined as follows:

[ diag(w(()j) )Vxq ]
diag(w(()j))v e 0 —_
L0 — : :  Ix= : . (5.50)
0 o diag(w?)V —
_diag(w%))Vx K|

The linear operator LU) is updated after a suitable number of the algorithm

iterations by recomputing the weights

G+ — 1
O (G () T
where (-)s denotes the s-th component of a vector, where s = 1,...,.S, parameter

e > 0 provides numerical stability and prevents division by zero in the case of
a zero-valued component in Vf{,(cj ).

It is shown in [13] that e should be set slightly smaller than the expected non-
zero magnitudes of Vf(,(f ). For the non-weighted variant of the Condat algorithm,
the weights are not needed. Therefore, the vector of weights w is set to vector of
ones.

The first term of is the “penalisation” term. Because the piecewise con-
stant vectors x; suggest that these vectors are joint-sparse under the difference
operator V, the f51-norm is used.

The second term in the problem is the “data fidelity” term. The Euclidean
lo-norm reflects the fact that gaussianity of the noise is assumed and it should be
lower than the noise level 9.

Numerical solution to the recovery problem ([5.48) using non-weighted and re-

weighted variants of the Condat algorithm was presented in our paper [§].

5.6.2 Algorithm used

The recovery problem ([5.48) can be solved via Condat algorithm (see Sec. [1.3.3)),
which is able to solve general problems in the form of (1.37)). In this case, the problem
reduces into the form of minimising the sum of two convex functions, formally

minimise hl(ng)X) + hao(Lox) (5.52)

where both functions h; and hs are convex and ng) and Lo are linear opera-
tors. With respect to the defined recovery problem, it is assigned f(x) = 0,
g(x) =0, hl(ng)x) = |lreshape(LY)x)||2; = ||reshape(WWVx)||y; and hy(Lox) =
Uz lly—all2<o} (PX).
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The Condat algorithm

The Condat algorithm is described in more detail in Sec. [[.3.3] The general form
of the Condat algorithm is presented in Algorithm Since functions f and g
are zero, Vf = 0 and prox, = Id. The proximal operator of function h; is the
group thresholding defined in and , where 7 = 1. Finally, the proximal
operator of function hy is the projection onto By(y,d) defined in .

The Condat algorithm operates with the linear operators ng ), L, and their
transposes (ng))T, Lj, where Ly = P and Ly = PT. The operator LY = L0 s
defined in and its transpose (L{)T: REFDINV-1) _y REHDN g

| [ diag(w)V Ty |
(ng))T(u) — (L(j))T(u) - (L(j))T : = : , (5.53)
U | _diag(w%))VTuK_

with VT of size N x (N — 1) and vector u € RV=DE+D " For the needs of the

Condat algorithm, the transpose of the reshape() operator is defined in 5 44)).
The convergence of the Condat algorithm is guaranteed for §a||( )TL

Ly Lo|| < 1, where ¢ and o are parameters of the Condat algorithm. The 1nequahty

(L)LY 4 LT Ly|| < ||ILY||2 + || Lo||? is used, therefore the upper bound of ||L]|

and || Lol is needed Obviously, ||Ly||* = ||P||?> = K + 1. The upper bound on the

operator norm ||L H is derived as follows:
: 2

70 diag(w)) Vg
IL2) = max LY = max -
lIxl[2= [Ix[l2=1

T diag(w)Vxg | |,

= max (z | ding(w >vkaj> -
< Z (max HTk diag(w(j))kaHz>

lIx[l2

K
< Z (i max(w\))? | V][* < d(max(w!))? 3~ 7,
k=0

k=0

and thus ¢o(K + 1 4 4(max(w))?||7|2) < 1. Because of the re-weighting, the
weights get changed, and therefore, it is necessary to recompute the operator ng ),
and its transpose, as well as the norms after a defined number of iterations.

The non-weighted Condat algorithm is presented in Algorithm [12] and the re-

weighting variant is presented in Algorithm [I3]
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Algorithm 12: The Condat Algorithm solving (5.48) for j =0

Input: Functions Ay, ho, linear operators L; € RNE+HD)X(N=1(K+1)
LT € RV-DE+DXNE+) [, ¢ RVXN(E+D) [T ¢ RNE+)xN,
parameter 0 for proximal operator of function hs

Output: x = x(*V

Set parameters £, 0 > 0 and p € [0, 2]

2 Set initial primal variables x(©) € RNE+D and dual variables

ugO) € RIN-Dx(K+1) uéo) c RN

3 fori=0,1,..., MAX;r do

[uny

4 x(+1) (X(z‘) _ §(L1TreshapeT(ugi)) I L;ug)))
5 (1) p}z(iﬂ) + (1 - p)x(z’)

6 ﬁ§i+1) — PYOXah;(%” + areshape(Ll(ch(i“) . x(i)))
7| ulY = a4 (1 - p)uf?

8 ﬁg“rl) = prOXgh;(uéz) + ULZ(QX(Z'H) _ x("))

o | ug’+1) _ pl—léi—i-l) (1 p)u;i)

10 return x(

Algorithm 13: Re-weighting Condat Algorithm solving (|5.48|)

Input: Functions hy, hy, linear operators Ly, L], Ly, Ly , maximal number
of iterations MA Xyt of the Condat algorithm, number of
re-weighting iterations MAXgrgw, parameter e for recomputing of
weights, 758, parameter § for proximal operator of function hs

Output: x = %)

1 Set initial vector of weights w(® = 1, and initial linear operators L{”, L]
Compute || 1”2

3 for j=0,1,..., MAXggw do

4 « Compute the Condat algorithm (Algorithm
— Input: ng), L] hy, hy, 7s, 6, MAXp

— Return: %)

5 « Compute new weights using (5.51):

— Input: w9 e

— Return: with

6 o Redefine , and recompute :
— Input: wltD, 78

— Return: LYY, LJG+D || L0+)2

N

7 return x)
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5.6.3 Experiments

In this section, the results obtained from the 1D signal segmentation and denoising
process with the recovery problem solved by the re-weighted and the non-
weighted Condat algorithms are evaluated. The main aim is to find out which
variant of the algorithm is systematically better.

As in the previous sections, the experiments are performed on datasets of linear
and quadratic synthetic signals, which are introduced in Sec. [5.3] For the purpose
of these experiments, the modified standard basis (P = S) is used, see Sec. for
more details. For the first experiments on linear signals, the used modified standard
basis consists of 2 polynomials (K = 1), and for the second experiments, it consists
of 3 polynomials (K = 2). For experiments on quadratic signals, a basis consisting
of 3 polynomials (K = 2) is used.

Several parameters need to be set for both the “Optimisation step” and the
“Detection of segment borders step”. The list of parameters for the experiments
using the Condat algorithm is given in Table —for K =1 and K = 2. The
Condat algorithm is stopped if either the convergence criterion or the maximum

number of iterations (MAXjr) is reached.

Tab. 5.5: Parameter settings for the non- and re-weighted Condat algorithm. Table
contains the specific setting of parameters needed in the 1D signal segmentation and

denoising process using the Condat algorithm.

Setting
Step Parameter ‘ Value (for K =1) ‘ Value (for K = 2)
Condat algorithm | o | VLD + L)) | VUL + | LalP)
¢ LVULD I + 1Lal?) | 1/ ULDI2 + L)1)
1.99 1.99
To O+ D O+ D
T1 ¢+ 3.5 e+ 3.5
Ty - Oc 2.9
5 le]? - 1.05 le]? - 1.05
non-weighted MAX;t 3000 3000
settings MAXgew 0 0
re-weighted MAXsr 1000 1000
settings MAXgrgw 3 3
Detection of I 5 5
segment borders A 0.2 0.2
€ 1 1
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The obtained results are evaluated from two points of view — breakpoint detec-
tion accuracy, and signal denoising performance. The used evaluation metrics are
identical to the previous sections, so as the graphs demonstrating the results of the

algorithms.

Linear synthetic signals

The first set of experiments is performed on the dataset of linear synthetic signals,
which consists of 27,500 noisy signals in total. For the purpose of these experiments,
the polynomial basis P is the modified standard basis S of size N x (K + 1), where
K =1 or K =2 (depending on the type of experiment). Several items are subject
to vary within the experiments, configuring the problem ([5.48|):

o the input signal y,

« regularisation parameters 79, 71, (and 7 for K = 2),

o parameters d, 0 and £ in the Condat algorithm.

Evaluation of the non-weighted Condat algorithm At first, the results ob-
tained by the 2-polynomial basis P are evaluated. The AAR, MMR and NoB results
are shown in form of graphs on the left-hand side in Fig.[5.21] The AAR results are
shown in Fig.[5.21a] For all jump heights, the AAR and MMR is higher for the lower
SNR. The MMR results are shown in Fig. 5.21d According to the assumptions, it
holds that NoB values are higher with greater jump height and higher SNR, see
Fig. [5.21el Due to the character of the processed signals, the maximum achievable
NoB is 5.

The synthetic linear signals were also processed using a 3-polynomial basis P.
Note that the graphs for 3-polynomial bases were omitted for brevity. However, from
the results, it follows that using 2-polynomial basis for processing of linear signals
gives better results in AAR, MMR, MSEy. In the case of NoB, slightly better results
are achieved with 3-polynomial basis. For signals with smaller jump heights, it is
better to use 3-polynomial basis to get higher SNRy, for the rest of signals, it is
better to use 2-polynomial basis.

The SNRy and MSEy results are shown on the left-hand side in Fig. [5.22]
Fig. shows that the SNRy increases with greater jump height between the
signal segments. The MSEy values decrease with higher SNR see Fig. . For
the lowest SNR value, it holds that the MSEy increases with greater jump height.

Comparison of the non-weighted and the re-weighted Condat algorithm
The comparison of the non-weighted and the re-weighted Condat algorithms is shown
in the form of graphs on the right-hand side in Figs. and[5.22] Values above zero
mean that better results are achieved with the non-weighted Condat algorithm and
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Fig. 5.21: AAR, MMR and NoB results for the non-weighted Condat algorithm
(CA) and their comparison with the re-weighted Condat algorithm. The left-hand
side figures show the results for the non-weighted Condat algorithm. The right-hand
side figures show the difference between results obtained with the non-weighted and
the re-weighted Condat algorithms. Presented results are for linear signals using

2-polynomial basis.
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Fig. 5.22: SNRy and MSE; results for the non-weighted Condat algorithm (CA)
and their comparison with the re-weighted Condat algorithm. The left-hand side
figures show the results for the non-weighted Condat algorithm. The right-hand
side figures show the difference between results obtained with the non-weighted and
the re-weighted Condat algorithms. Presented results are for linear signals using

2-polynomial basis.

values below zero mean better results for the re-weighted Condat algorithm — this
applies for AAR, MMR, NoB and SNRy values; for MSEy, it applies the opposite.

At first, the results obtained by the 2-polynomial basis are evaluated. For higher
SNR, the AAR results are better using the re-weighted Condat algorithm. For lower
SNR, the AAR results are better using the non-weighted Condat algorithm. Never-
theless, for the MMR and NoB, the results are better for the non-weighted variant.
For almost all signals, the SNRy results are better for the non-weighted Condat
algorithm. The MSEy results are better with the re-weighted Condat algorithm
for signals with lower SNR. For higher SNR, the MSEy results are better for the
non-weighted Condat algorithm.

115



At second, the results obtained by the 3-polynomial basis are evaluated. For
higher SNR, the AAR results are better using the re-weighted Condat algorithm. For
lower SNR, the AAR results are better using the non-weighted Condat algorithm.
Nevertheless, for the MMR and NoB, the results are better for the non-weighted
variant. For signals with small jump height and for signals with greater jump height
and lower SNR, the SNRy results are better for the non-weighted Condat algo-
rithm. For signals with greater jump height and higher SNR, it is better to use
non-weighted Condat algorithm. The MSEy results are better with the re-weighted

Condat algorithm for almost all signals.

Quadratic signals

The second set of experiments is performed on the dataset of quadratic synthetic
signals, which consists of 27,500 noisy signals in total. For the purpose of these
experiments, the polynomial basis P is the modified standard basis S of size N x
(K + 1), where K = 2. Several items are subject to vary within the experiments,
configuring the problem (|5.48|):

e the input signal y,

o regularisation parameters 7y, 7, and 7y,

o parameters §, o and £ in the Condat algorithm.

Comparison of the non-weighted and the re-weighted Condat algorithm
The results are shown in Figs. and [5.24 In both figures, the graphs on the
left-hand side show the results obtained using the non-weighted Condat algorithm,
and the graphs on the right-hand side show the comparison of results obtained using
the non-weighted and the re-weighted Condat algorithms in form of differences, in
the same way as for the linear signals.

For greater jump heights, it holds that the AAR and the MMR values increase
with increased SNR. For smaller jump heights, the values of MMR are similar for
all SNR and the values of AAR increase with lower SNR. Using the non-weighted
Condat algorithm, the character of the NoB, SNRy, and MSEy results is very similar
for both the quadratic and linear signals.

The comparisons of the non-weighted and the re-weighted Condat algorithm
show that AAR and MMR results are better for the non-weighted Condat algorithm.
The NoB results show that the re-weighted Condat algorithm is better for signals
with lower SNR, however, the non-weighted Condat algorithm remains better for
signals with higher SNR. SNRy and MSEy results for almost all types of signals are
better for the non-weighted Condat algorithm.
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Fig. 5.23: AAR, MMR and NoB results for the non-weighted Condat algorithm
(CA) and their comparison with the re-weighted Condat algorithm. The left-hand
side figures show the results for the non-weighted Condat algorithm. The right-hand

side figures show the difference between results obtained with the non-weighted and

the re-weighted Condat algorithms. Presented results are for quadratic signals.
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Fig. 5.24: SNRy and MSEy results for the non-weighted Condat algorithm (CA)
and their comparison with the re-weighted Condat algorithm. The left-hand side
figures show the results for the non-weighted Condat algorithm. The right-hand
side figures show the difference between results obtained with the non-weighted and

the re-weighted Condat algorithms. Presented results are for quadratic signals.

5.6.4 Partial conclusions

In all experiments, it holds that the results improve with a higher SNR and greater
jump heights for all metrics, except for the AAR and MMR in the case of linear sig-
nals. This holds for both the non-weighted and the re-weighted Condat algorithms.

From comparison of the non-weighted and the re-weighted Condat algorithm,
it follows that the denoising process of both linear and quadratic signals is better
when the non-weighted Condat algorithm is used. The only exception can be found
in the case of the MSEy, results for linear signals with higher SNR. Generally, in the
case of breakpoint detection, it holds that for the both linear and quadratic signals,

it is better when the non-weighted Condat algorithm is used. Except for the NoB
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results for quadratic signals with lower SNR.

The comparison of the Forward-backward based primal-dual (FBB-PD) algo-
rithm and the non-weighted Condat algorithm is shown in form of graphs — on the
left-hand side for linear signals and on the right-hand side for quadratic signals, see
Figs. and[5.26] Values above zero mean that better results are achieved with the
FBB-PD algorithm and values below zero mean better results for the non-weighted
Condat algorithm — this applies for AAR, MMR, NoB and SNRy values; for MSEy,
the opposite applies.

The comparison of the FBB-PD and the non-weighted Condat algorithm indi-
cates that the results of the FBB-PD algorithm solving the recovery problem (|5.37)
are better than results of the non-weighted Condat algorithm solving the recovery
problem for quadratic signals. It can be shown that the unconstrained ver-
sions of the recovery problems and are the same, when the X is found
(see Sec. [1.3.1)).

For the linear signals, the results are a little bit tricky. The AAR and MMR
results are better using the non-weighted Condat algorithm. However, the NoB
results are undoubtedly better using the FBB-PD algorithm. Better SNRy results
are obtained with FBB-PD algorithm, except the signals with small jump height
and low SNR. According to the MSEy results, it is better to use the non-weighted
Condat algorithm for the signals with lower SNR, and the FBB-PD algorithm for
the signals with higher SNR.

In contrast with the FBB-PD algorithm, it was necessary to set one more pa-
rameter for the non-weighted Condat algorithm — the parameter ¢ for the proximal
operator of function hy. It is not easy to set the parameter 6 to get the best results
for all SNR. The parameter § can be set in the way to improve the results for higher
SNR but for costs of deterioration of the results for the signals with lower SNR. For
the signals with big jump heights and high SNR, the differences between FBB-PD

and the non-weighted Condat algorithm are not so significant.

5.7 Testing different types of bases

In the previous sections, the modified standard basis was used in all experiments.
The disadvantage of using the modified standard basis is that it is necessary to set
the regularisation weights for the individual polynomials of the basis, because the
influence of the individual polynomials on the segmentation process is not equal and
the achieved results are worse without weighting.

The aim of this section is to reduce the number of tunable parameters caused by
using the modified standard basis. Therefore, different types of bases introduced in
Sec. will be exploited, which will avoid the weighting of basis polynomials.
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Fig. 5.25: Comparison of AAR, MMR and NoB results of the non-weighted Con-
dat algorithm (CA) with the results of the Forward-backward based primal-dual
(FBB-PD) algorithm. The left-hand side figures show the difference between results
obtained with the non-weighted Condat algorithm and the FBB-PD algorithm for

linear signals. The right-hand side figures show the difference for quadratic signals.
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Fig. 5.26: Comparison of SNRy and MSEy, results of the non-weighted Condat algo-
rithm (CA) with the results of the Forward-backward based primal-dual (FBB-PD)
algorithm. The left-hand side figures show the difference between results obtained
with the non-weighted Condat algorithm and the FBB-PD algorithm for linear sig-

nals. The right-hand side figures show the difference for quadratic signals.

This approach was already presented in our article , where it was demon-
strated that using another types of bases is a promising way how to improve the
segmentation results of the non-weighted Condat algorithm. The paper shows that
the best results are achieved with R-bases and O-bases. Therefore, the experiments
in this section will be performed only for these two types of bases.

From the comparison between the Forward-backward based primal-dual (FBB-
PD) algorithm and the non-weighted Condat algorithm in Sec. , it seems that it
is advantageous to use the FBB-PD algorithm. However, the non-weighted Condat
algorithm offers a better opportunity for solving the task in more dimensions. The
question is, whether using other types of the polynomial bases can help to improve

the results of the non-weighted Condat algorithm. The aim is to find an algorithm
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producing the best possible results with a minimal number of tunable parameters.

The optimisation problem for this section is formulated as follows:
X = arg min |[reshape(Lx)||s1 s.t. ||y — Px]|2 <6, (5.55)

where L is a linear operator, X are estimated parametrisation coefficients, x are
parametrisation coefficients, y is input signal, P is the matrix of polynomials, ¢ is
the parameter reflecting the noise level and model error, and reshape() operator is
defined in the same way as in previous sections (see definition ([5.39))).

The linear operator L represents the stacked differences as defined in Eq.
for the FBB-PD algorithm. Since the non-weighted Condat algorithm is used, the
definition of the linear operator L is identical as for the FBB-PD algorithm.

The optimisation problem is identical as in Secs. 5.5 and

5.7.1 Definition of the recovery problem

For the purposes of this section, the FBB-PD algorithm and the non-weighted Con-
dat algorithm are used. Therefore, two unconstrained versions of the recovery prob-

lem ([5.55]) have to be defined.
The unconstrained version of the recovery problem (5.55)) for the needs of the
FBB-PD algorithm is formulated as follows:

1
X = arg min §||y — Px||5 + |[reshape(Lx)||, - (5.56)

On the other hand, the unconstrained version of the problem ((5.55)) for the needs

of the non-weighted Condat algorithm is formulated as follows:
X = arg min |[reshape(Lx)||21 + t{z: |y—z|l,<s} (PX), (5.57)

where 1o denotes the indicator function of a convex set C.

5.7.2 Algorithm used

The recovery problem ([5.56)) is solved via the FBB-PD algorithm (see Sec. [1.3.3)).
The FBB-PD algorithm is able to

minimise  f(x) + h(Lx), (5.58)

where both functions f and h are convex and L is a linear operator. According
to the defined recovery problem (5.56]), smooth function f(x) = i|y — Px||? and

2
non-smooth function h(Lx) = |[reshape(Lx)]||2; are assigned.

The FBB-PD algorithm is defined in the same way as in Sec. [5.5.2] Individual
steps of the algorithm are described in Algorithm [I0]
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The recovery problem (5.57)) is solved via the non-weighted Condat algorithm
(see Sec. [1.3.3). The non-weighted Condat algorithm is able to

minimise hl([qX) -+ hQ(LQX), (559)

where both functions h; and hy are convex and L; and Lo are linear operators. With
respect to the general ability of the Condat algorithm to solve (1.37)), according to
the defined recovery problem ([5.57)), it is assigned: f(x) =0, g(x) = 0, hy1(L1x) =
|[reshape(Lx)||21 and ho(LoX) = Liz:|ly—z|.<s} (PX).

The non-weighted variant of the Condat algorithm is defined in the same way as
in Sec. [5.6.2] and individual steps of the algorithm are described in Algorithm [12]

5.7.3 Experiments

The experiments are performed, as in the previous sections, on datasets of linear and
quadratic synthetic signals, which are introduced in Sec. [5.3] However, in contrast
to the previous experiments, the number of signals in the datasets is decreased for
these experiments. For the purpose of these experiments, set of 20 orthogonal bases
(P = O) and set of 20 random orthogonal bases (P = R) are used, see Sec.
and Sec. [5.3.3] for more details. Since the number of testing bases is increased, the
number of signals in the datasets is decreased to maintain an acceptable cost of the
computational time. For each combination of signal, jump height and SNR, only
20 realisations of noise are generated instead of 50. These are the main differences
compared to the experiments of the previous sections. For all experiments on linear
and quadratic signals, the used bases consist of 3 polynomials (K = 2).

The results obtained by the non-weighted Condat algorithm and the FBB-PD
algorithm are evaluated in relation to the signal properties and the results of both
algorithms are compared to each other.

Several parameters need to be set for both the “Optimisation step” and the
“Detection of segment borders step”. The list of parameters for the experiments
using the non-weighted Condat algorithm is given in Table — for K = 2 with the
difference in 7 parameters settings, where 7o = 7 = 75 = 1. The list of parameters
for the experiments using the FBB-PD algorithm is given in Table [5.3] - for K = 2
with the difference in 7, parameters settings, where 7o = 7 = 7 = 0., and MAXt =
500. Both algorithms are stopped if either the convergence criterion or the maximum
number of iterations (MAXyr) is reached.

The obtained results are evaluated from two points of view — breakpoint detection
accuracy, and signal denoising performance. The evaluation metrics are identical as
in the previous sections. Also, the graphs demonstrating the results of the algorithms

are created in a similar way as the graphs in the previous sections. The individual
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bar values in the presented graphs are averaged across the results of all 20 O-bases

and 20 R-bases, respectively.

Linear synthetic signals

The first set of experiments is performed on the dataset of linear synthetic signals,
which consists of 11,000 noisy signals in total. For the purpose of these experiments,
the polynomial bases P are the orthogonal bases O or random orthogonal bases R
of size N x (K + 1), where K = 2. Several items are subject to vary within the
experiments, configuring problem ([5.55)):

o the input signal y,

o the polynomial basis P,

» parameter ¢ in the Condat algorithm,

« regularisation parameters 7y, 7, and 73 in the FBB-PD algorithm,

o parameter ¢ in the FBB-PD algorithm.

Evaluation of the FBB-PD algorithm using O-bases and R-bases At first,
the results obtained using O-bases are evaluated. The AAR, MMR and NoB results
are shown in form of graphs on the left-hand side in Fig. [5.27] The AAR results
are shown in Fig. [5.27a} for all jump heights, the AAR is higher for the lower SNR.
The MMR results are shown in Fig. [5.27¢} for almost all jump heights, the MMR is
higher for the lower SNR. For NoB, it holds that the values are higher with greater
jump height and higher SNR, see Fig. From the NoB evaluation, it follows
that the maximum of correctly detected breakpoints is achieved with higher SNR
(lower noise level) and significant jump height between signal segments, as expected.
Due to the nature of processed signals, the maximum achievable NoB is 5. Note
that the maximum of detected breakpoints is not achieved.

The SNRy and MSEy results are shown on the left-hand side of Fig. [5.28
Fig. indicates that the SNRy increases with increasing jump height. The
MSEy values decrease with higher SNR see Fig. [5.28¢

The synthetic linear signals were also processed using R-bases. The character of

the results using R-bases is very similar to the results obtained using O-bases.

Comparison of the FBB-PD algorithm and the non-weighted Condat algo-
rithm using O-bases and R-bases At first, the results obtained using O-bases
are evaluated. The comparison of the FBB-PD algorithm and the non-weighted Con-
dat algorithm is shown in the form of graphs on the right-hand side of Figs. [5.27]and
(.28 Values above zero indicate that better results are achieved with the FBB-PD

algorithm and values below zero mean better results for the non-weighted Condat
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Fig. 5.27: AAR, MMR and NoB results for the FBB-PD algorithm using O-bases
and their comparison with the non-weighted Condat algorithm using O-bases. The
left-hand side figures show the results for the FBB-PD algorithm. The right-hand
side figures show the difference between results obtained with the FBB-PD algorithm

and the non-weighted Condat algorithms. Presented results are for linear signals.
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Fig. 5.28: SNRy and MSE;y results for the FBB-PD algorithm using O-bases and
their comparison with the non-weighted Condat algorithm using O-bases. The left-
hand side figures show the results for the FBB-PD algorithm. The right-hand side
figures show the difference between results obtained with the FBB-PD algorithm

and the non-weighted Condat algorithms. Presented results are for linear signals.

algorithm — this applies for AAR, MMR, NoB and SNRy values; for MSEy, the
opposite applies.

The AAR and MSE, results are better using FBB-PD algorithm. For higher
SNR, the MMR results are better using the non-weighted Condat algorithm. For
lower SNR, the MMR results are better using the FBB-PD algorithm. It is not
evident, if the NoB results are better with using the FBB-PD algorithm or the non-
weighted Condat algorithm. For almost all signals, the SNRy results are better for
the FBB-PD algorithm.

The character of the results using R-bases is almost similar with the results using
O-bases.
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Quadratic signals

The second set of experiments is performed on the dataset of quadratic synthetic
signals, which consists of 11,000 noisy signals in total. For the purpose of these
experiments, the polynomial bases P are the orthogonal bases O or random orthog-
onal bases R of size N x (K + 1), where K = 2. Several items are subject to vary
within the experiments, configuring the problem ([5.55)):

e the input signal y,

o the polynomial basis P,

o parameter 0 in the Condat algorithm,

o regularisation parameters 7y, 71, and 7» in the FBB-PD algorithm,

o parameter ¢ in the FBB-PD algorithm.

Evaluation of the FBB-PD algorithm using O-bases and R-bases At first,
results obtained using O-bases are evaluated. The character of the AAR, SNRy,
and MSEy results for quadratic signals is very similar to the results obtained for the
linear signals. For MMR results, it holds that for lower jump heights, the MMR is
higher for the lower SNR. For the greater jump height, the opposite holds. For NoB
results, it holds that for the three biggest jump heights and the two highest SNR,
the maximum NoB of 5 is achieved.

The synthetic quadratic signals were also processed using R-bases. The character

of the results using R-bases is very similar to the results obtained using O-basis.

Comparison of the FBB-PD algorithm and the non-weighted Condat al-
gorithm using O-bases and R-bases At first, the results obtained using O-
bases are evaluated. The character of the AAR, MMR, SNRy, and MSEy results
for quadratic signals using the O-bases is similar to the results for linear signals
using the O-bases. The NoB results have, however, different character, for almost
all signals, better results are obtained with the non-weighted Condat algorithm.
Comparing the results using the O-bases and R-bases on quadratic signals leads
to a similar conclusion as in the case of linear signals, i.e. the character of the results

remains the same independently on the type of the basis used.

Comparison of the non-weighted Condat algorithm using O-bases and R-
bases Because the non-weighted Condat algorithm is assumed to be the preferred
option for signal segmentation, the comparison of R-bases and O-bases is done only
with the non-weighted Condat algorithm, which is shown in Figs. and The
left-hand side graphs show the comparison for linear signals and the right-hand side
graphs present the results for quadratic signals. Values above zero mean that better

results are achieved with the R-bases and values below zero mean better results for
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the O-bases — this applies for AAR, MMR, NoB and SNRy, values; for MSEy, the
opposite applies .

At first, the linear signals were evaluated. For almost all signals, the AAR
results are better using R-bases, see Fig.[5.29al For MMR, it holds that the results
are better using O-bases, see Fig. [5.29¢ From the NoB point of view, the results
for half of the signals are better with O-bases and for the second half of the signals
with the R-bases, see Fig. [5.29¢] For the signals with lower SNR, it holds that the
SNRy results are better with the R-bases. For the signals with higher SNR, it holds
that the SNRy results are better with the O-bases, see Fig. . For the signals
with lower SNR, it holds that the MSEy results are better with the O-bases. For the
signals with higher SNR, it holds that the MSEy results are better with the R-bases,
see Fig. [5.30d

The results for the quadratic signals suggest that for almost all signals, the AAR,
MMR, NoB, and SNRy, results are better using R-bases, see Figs.[5.29b] [5.29d] [5.291]
. The only exception is the MSEy, results, where better results were obtained
using O-bases, see Fig. [5.30d]

5.7.4 Partial conclusions

In this section, two types of bases (O-bases and R-bases) were used. Based on the
results from Sec. 5.6 the experiments were performed for the FBB-PD algorithm
and also for the non-weighted Condat algorithm. For both linear and quadratic
signals, it applies that the AAR, MMR, SNRy, and MSEy results are better for the
FBB-PD algorithm. Nevertheless, the NoB results give better results with using the
non-weighted Condat algorithm. From the segmentation process point of view, the
NoB metric is the most important. Therefore, the non-weighted Condat algorithm
seems to be a preferred option.

As a consequence, the comparison of R-bases and O-bases was done only for
the non-weighted Condat algorithm, see Figs. [5.29] and [5.30l The results for the

quadratic signals suggest that for almost all signals it is better to use R-bases.

However, for the linear signals, the maximum of NoB was not achieved using either
algorithm (the FBB-PD or the non-weighted Condat algorithm) and type of the
basis (O-bases and R-bases). From the results in Sections and [5.6] it follows
that it is recommended to use the modified standard basis S for the linear signals

instead of the 3-polynomial R-bases and O-bases.
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Fig. 5.29: Comparison of AAR, MMR and NoB results of the non-weighted Condat
algorithm using R-bases with the results of the non-weighted Condat algorithm using

O-bases. The left-hand side figures show the difference between results obtained for

linear signals and the right-hand side figures show the results for quadratic signals.

Values above zero mean better results for R-bases and vice versa.
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Fig. 5.30: Comparison of SNRy and MSEy results of the non-weighted Condat al-
gorithm using R-bases with the results of the non-weighted Condat algorithm using

O-bases. The left-hand side figures show the difference between results obtained for

linear signals and the right-hand side figures show the results for quadratic signals.

SNRy, values above zero mean better results for R-bases and vice versa, however, for

MSE;y results, it holds the opposite.
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6 EDGE DETECTION IN IMAGES

From the previous chapter, it is evident that the presented 1D signal segmentation
process provides promising results in breakpoint detection. This process can be
easily extended for the use in 2D as well. The process of breakpoint detection on
images is called edge detection and it is described in more details in the following

sections.

6.1 General description of the proposed method

In this section, a general concept of the proposed image edge detection is introduced.
This section is divided into several subsections describing individual components,
which are needed for the edge detection process. First, the description of the 2D
signal model is formulated. Then, the types of processed signals and the bases used
are introduced. Finally, the entire concept of the image edge detection process is

presented.

6.1.1 2D signal model description

The 2D signal model used in this Thesis is a natural extension of the 1D signal
model described in Sec. [5.1.I] Therefore, the images are assumed to consist of
non-overlapping piecewise-polynomial patches. The edges in the image represent
positions where the adjacent patches (segments) change their polynomial character-
isation. Within the patches (segments), the respective representation stays steady.

Recall that a piecewise-polynomial 1D signal is described as follows:
y:Px:{P0|---]PK} | =PoOXo+ -+ Pr OXp, (6.1)

where y € R¥ is the 1D signal, P, € RV*Y is the polynomial matrix with the
polynomial p;, on its diagonal, and x;, € RY are the parametrisation vectors.

Let the 2D signal (image) Y € RM*YN contain entries Y[m,n], m = 1,..., M,
n = 1,...,N. The image is modeled in the similar way as the 1D signal (see

Eq. (6.1)):

Y =Py ®Xg+Py ©Xg1 + -+ Prr ® XKk, (6.2)

where X;,; are matrices of parametrisation coefficients of the size M x N, and Py,
are basis images of size M x N as defined below in Eq. (6.3)).
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The image Y is assumed to be piecewise-polynomial and consists of S indepen-
dent patches (segments). Each patch s € {1,...,S} is described by (K + 1)? basis
polynomial images Py;. Matrices Xy; are assumed to be piecewise-constant within
the particular patches, with the change at the patch borders.

RM*N are needed instead

For the images, the polynomial basis images Py €
of the polynomial vectors pg. The extension from the polynomial vectors to the
polynomial basis images is done through the Kronecker product of 1D polynomial
vectors pre € RY and p;, € RY, where the subscripts “v” and “h” represent the
vertical and the horizontal directions of the 1D polynomial vectors, respectively.
And the subscripts “k£” and “l” represent the degree of the vertical and horizontal
polynomials, respectively. Note that for the definition of the 2D signal model, the
degrees of the polynomials in the vertical and the horizontal direction are supposed
to be identical, i.e. K.

The set of basis 2D polynomials are formed by all the combinations of px, and

P, where £k =0,..., K and [ =0, ..., K such that

P7’00 = Pov - Pgh
I_)01 = Pov - P1Th

PKK = PKv - P1T<h

making altogether (K + 1)? polynomial basis images. When both the vertical and
horizontal polynomial vectors form the respective 1D orthonormal bases, the new
generated polynomial basis images form the 2D orthonormal basis, the proof of this
statement is given in the Appendix [A| (see Proof .

Also, the 2D signal model can be expressed as a matrix-vector multiplication
y = Px. (6.4)

To show this, the vectorised form y and x of the image Y and parametrisation
matrices Xy, respectively, need to be defined. Also, the polynomial matrix P is
defined in a different way than in Eq. . The below-introduced definitions of
y, P, and x are used in the entire Chapter [0 Vectorisation can be easily done with
the vectorisation operator vec(-), which stacks the image columns, one after another,

into a single column.

The model (6.2)) reads

y = PooXo0 + -+ Prr - Xkk, (6.5)
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where
y = vee(Y),

P, = diag(vec(Py)), (6.6)
Xkl — VGC(XM).

In a short and more convenient form,

y=Px=[Po| | Prxl | i
XKK (6.7)
vee(Xoo)
= [diag(vec(f’oo)) | diag(vec(f’KK))} : ;
VGC(XKK)

where y € RMN P € RMNX(E+1)?MN 44 x € RIE+1)?MN,

For the parametrisation vectors x;;, it holds the same as for the parametrisation
vectors xj, in 1D signal model description. Vectors xy; are assumed to be piecewise-
constant. The finite difference operator V (defined in Sec. applied to them
produces sparse vectors Vxy; with non-zero components occupying the same posi-
tions across k =0,..., K and [ =0,..., K.

The above-mentioned formulations describe a clean polynomial image without
noise corruption. Unfortunately, in the real world, it is common that the images
are corrupted by noise. For the purpose of this Thesis, uncorrelated Gaussian noise

with zero mean and non-zero variance is used. The definition of such an image is
y = Px + vec(E), (6.8)

where E represents the noise matrix of size M x N.

6.1.2 Formulation of the whole concept of image edge de-

tection

Concept of the image edge detection is divided into two main steps:

o Optimisation using a proximal splitting algorithm,

« Edge identification.
These steps are similar to the 1D signal segmentation and denoising process the
steps, except for the last step “Smoothing of detected segments,” which is not utilised
in proposed image edge detection method. Since vectorised images are used for the
process of the image edge detection, the illustration in Fig. demonstrates the

133



individual steps of both 1D and 2D process (except the last step “Smoothing of
detected segments”). The definition of the first step is the same as for 1D approach,

presented in the Sec. [5.1.4]

Edge identification

Parametrisation coefficients x obtained as the optimisers of the recovery problem
allow simple estimation of the underlying noiseless signal y according to
y = Px. There are two approaches to edge detection.

The first approach is simple. First the denoised reconstructed image Y is ob-
tained by the matrisation of the signal y. Since the denoising is often the first step
in edge detection, one can think about the application of the Sobel operator (see
Sec. to the reconstructed image to obtain an image of differences D (raw edge
detection).

The second approach starts with the matrisation of parametrisation vectors
X Obtained parametrisation matrices Xkl should be optimally piecewise-constant
within the particular patches. After the application of the edge operator, the partic-
ular images of differences Dy, should have non-zero values (in each matrix) indicating
the edges at the same positions. It was decided that the multiple information con-
tained in Xy, will be exploited. Therefore, the Sobel operator is computed on all
individual parametrisation matrices resulting in images of differences Dy;. After-
wards, a single image of differences (raw edge detection) D is computed out of all

obtained Dy; using the />-norm according to the formula

D{m,n] = ¢/(Doo[m,n))? + -~ + (Dgx[m,n])2, form=1,...,.M;n=1,...,N.
(6.9)

6.2 Datasets for experiments

For the experiments, datasets of images and bases are needed. The image dataset

is divided into three groups: train, validation, and test group.

6.2.1 Natural images

For the experiments, the Berkeley Segmentation Data Set and Benchmarks 500
(BSDS500) [72] is used. This dataset consists of 500 natural RGB images Ygrap.
Each image of the BSDS500 dataset was manually annotated on average by five
different subjects (see some examples of the natural images and their annotations
in Fig. . Further information on how the annotations were taken can be found
in [69]. The BSDS500 is divided into 3 groups: 200 train images, 100 images for
validation, and 200 test images. BSDS500 with its human annotations serves as the

ground truth for comparing different segmentation and edge detection methods.
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Fig. 6.1: Several examples of RGB natural images of BSDS500 dataset with their

annotations by humans.

For the testing, also the Berkeley Segmentation Data Set and Benchmarks 300
(BSDS300) |72] is used. This dataset consists of 300 natural RGB images Yrag,
and is divided into 2 groups: 200 train images, 100 test images. The train subset of
BSDS300 is equal to the train subset of BSDS500 and the test subset of BSDS300
is same as the validation subset of BSDS500.

The algorithm presented in this Thesis was tuned only on the train and validation

groups of images. The final evaluation is performed on the test group of images.

6.2.2 Types of processed images

RMXN are used.

For the purpose of this Thesis, three groups of real images Y €

The first group of images consists of the set of RGB images denoted as Yrgp.
The second group of images consists of the grayscale images Y gy, which were
obtained from the first group of RGB images by converting the RGB image to the
grayscale image. For the conversion, the Matlab function “rgb2gray” was used. By
converting, the hue and saturation information are eliminated while the luminance
is retained.

The third group is formed with noisy grayscale images Y ,us,. The Gaussian

ii.d. noise E is added to the grayscale images Y.y, resulting in grayscale noisy
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images Y yoisy, such that
Yooisy = Yeray + B, €mn ~ N(0,07). (6.10)

With these images, the signal-to-noise ratio (SNR) can be determined, defined as

[ Y gray|2
”Ynoisy - Ygray ||2

SNR (Ynoisy7 Ygray) - 20 : ].Oglo (611)
To generate an image with a defined SNR, the standard deviation og of the respective

noise needs to be computed such that

Y
op = I Yerayll2 (6.12)

VMN - 107"
It can be noticed that the resulting o is influenced by the energy of the “clean”

image as well.

6.2.3 Bases

For the experiments, two types of bases consisting of the (K +1)? basis images, where
K = 2, are used. The generation process of polynomial basis images is defined in
Eq. and it is independent of the particular choice of the basis type.

The first one is a standard basis S, which was generated using the polynomials
of the modified standard basis S (see Sec. [5.1.3|) using Eq. . See Fig. for
examples of standard basis images of S.

The second one is an random orthonormal basis R, which was generated using
the polynomials of the orthonormal basis R (see Sec. using Eq. . See
Fig. for examples of orthonormal basis images of R..

6.3 Evaluation

The evaluation of the edge detection accuracy in natural images is not an easy task.
There is a lot of edges with different significance in natural images. The assessment
of significance of edges is a very subjective task. However, there exist datasets of
natural images with human annotations of image edges/segments. These are used
for the evaluation of the edge detection accuracy and for the comparison of the
results of different algorithms.

For evaluation of the edge detection accuracy, the precision-recall curve and
F-measure score [69)] are used.

The parametric curve reflects the relation between the precision and the recall

for changing threshold value of the edge detector.
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Fig. 6.2: Examples of polynomial images Soo, So1, S12, Sa0 of size 321 x 481, gener-
ated from the 1D modified standard basis S of degree K = 2.

Precision (P) is defined as a ratio of true positive (TP) detections to the sum of

false positive (FP) and true positive (TP) detections:

TP

P=——. 1
FP +TP (6.13)

Recall (R) is defined as a ratio of true positive (TP) detections to the sum of
false negative (FN) and true positive (TP) detections:

TP

R:FN+TP'

(6.14)

F-measure score (F) is defined as a harmonic mean of precision and recall:

P.
5 R

=2——0. 6.15
P+R ( )

The optimal threshold value of the detector gives the maximal F-measure score along
the curve.
Recall to the positions of the edges in natural images are subjective, the output

of the edge detector has to be compared with several manually annotated edges
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Fig. 6.3: Examples of polynomial images Ry, Ri1, Rai, Ra of size 321 x 481,

generated from the 1D random orthonormal basis R of degree K = 2.

separately. The edge pixel is counted as false positive (FP) only if there is no match
with any human manual annotations of the edges. Since the manual annotations
contain edge localisation errors, the correspondence procedure has to tolerate small
localisation errors at the cost of permitting multiple detection. If no localisation
errors were permitted, it would lead to overpenalisation of algorithms that generate
usable, though slightly mislocalised edges. The exact procedure of determining true
positive (TP), false positive (FP) and false negative (FN) detection in relation to
manual annotations for each pixel is presented in .
A simplified description of the correspondence procedure is:
o Create ground truth binary boundary maps from the manual annotations of
edges/segments.
o Set thresholds for the output of the edge detector.
e For each threshold:
— create binary boundary map of the thresholded edge detector’s output,
— apply thinning to the boundary map,
— compare the new binary boundary map with the ground truth maps.
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o Compute the R, P and F-measure.

o Create the precision-recall curve.

A similar metric to precision—recall curve is the receiver operating characteristic
(ROC) curve. ROC graph is created with fallout and recall. Recall is the same as
above, and fallout is a probability that a true negative is labelled as a false positive.
ROC curves are not suitable for quantifying boundary detection, since the fallout
depends on the size of the pixels and therefore, it is not a meaningful quantity for

a boundary detector [69].

6.4 Recovery problem — verticals and horizontals

Since it is assumed that the clean image consists of several non-overlapping poly-
nomial patches, the piecewise-constant parametrisation coefficients {xys}x ¢, which
are sparse under the difference operator V, can be found. The image consists of
edges with different orientations. To successfully detect the edges in the image, it
is necessary to seek the edges in at least two perpendicular directions (usually the
vertical and horizontal direction). Therefore, two forms of the difference operator
are used — the horizontal and the vertical one. As mentioned before, the analysed
image is supposed to be corrupted by an i.i.d. Gaussian noise.

These assumptions lead to the following formulation of the constrained optimi-

sation problem
X = arg min {H reshape(LyX)||21 + Al reshape(LhM(x))Hgl}
X v h
st. |ly — Px|l <4, (6.16)

where the vector X represents the obtained optimal parametrisation coefficients, y is
the vectorised image Y, x are the vectorised parametrisation coefficients X, and P
is a matrix of polynomial bases images. The parameter ¢ reflects the noise level and
the model imperfections. The operator L, represents the stacked vertical differences
such that

VXOO
L, = , Lx= , (6.17)
\%5.9797%

with the difference operator V: RMN — RM-UN = For the linear operator L., it
holds L,: REFD?MN _y RIKFD*M-DN = The gperator Ly, represents the stacked

horizontal differences and it is defined similar as the operator L, with the only
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difference in V, where now V: RMN — RMW-1)_ Therefore, it is necessary to
tweak the entries of x such the horizontal differences can be computed. For this
rearrangement, the operator M is used. The operators L, and M are defined as
follows:

V vec(X )

Ly, = . LyM(x) = : , (6.18)
0 -V V vee(X o)

where the matrix Xy, is obtained by matrisation of vector xy;.

For the linear operator Ly, it holds L: RE+D*MN _y REHDM(N-1) ) g
a non-negative weighting scalar parameter, which can be set to emphasise the
vertical over the horizontal edges and vice versa. If A = 1, the importance of
vertical and horizontal edges is equal. If the size of the image grows propor-
tionally in both directions, the parameter A should not change. The operator

reshape, () : RUCHD*M=1) _y RIM-1)x(K+1)* takes the stacked vector Lyx to the form

of a matrix with disjoint columns:
reshape, (Lyx) = [Vxoo | -+ | Vg - (6.19)

The operator reshape, (): RE+TD*(N-1) _y RIN-Dx(K+1)* takes the stacked vector

Ly, M(x) to the form of a matrix with disjoint columns:

reshape, (LpbM(x)) = {V vece(Xgo) |-+ | VVGC(X]T(K)] . (6.20)

6.4.1 Recovery problem

The unconstrained version of the problem ({6.16)) can be formulated as follows:

X = arg min {|| reshape(Lyx)||21 + Al resllllape(Lh./\/l(x))HQl} + Uz y—z] <5} (PX),
(6.21)

where 1o denotes the indicator function of a convex set C.

The first term of the problem is the “penalisation” term. Parametrisa-
tion vectors xj; are supposed to be piecewise-constant and joint-sparse under the
difference operators V. Therefore, the f;-norm (see Eq. (L.7))) is used.

The second term in the problem is the “data fidelity” term. The Euclidean
lo-norm reflects the fact that gaussianity of the noise and the image imperfections
are assumed and they should be lower than the noise level §. The parameter
should be tuned carefully.

Numerical solution of the recovery problem using the Condat algorithm

was presented in our paper [9].
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6.4.2 Algorithm used

The recovery problem ([6.21]) can be solved via Condat algorithm (see Sec. [1.3.3)),
which is able to solve general problems in the form of (1.37). In our case, the

problem reduces into the form of minimising the sum of three convex functions:
minimise hl (L1X> + hg(LgX) + h3(L3X) (622)

where functions h,, are convex and L,, are linear operators. With respect to the

defined recovery problem ([6.21)), it is assigned

hy(L1x) = || reshape(Lyx)]|o1, (6.23a)
ho(Lox) = Al resliape(LhM(x))Hgl, (6.23b)
h3(L3X) = L{Z: lly—z|2<6} (PX) (6.230)

From the above-mentioned equations, it can be derived that L; = L., L, = Ly, and
L3 =P.

The Condat algorithm

The general form of the Condat algorithm is presented in Algorithm |5 Since the
functions f and g are zero, Vf = 0 and prox, = Id. The proximal operator of
function h; and hy is the group thresholding defined in and , where
7 = 1. Finally, the proximal operator of function hj is the projection onto Bs(y, d)
defined in ((1.26]), which finds the closest point in the ¢y-ball {z : ||y —z||2 < §} with
respect to the input point.

The Condat algorithm exploits linear operators L,, and their transposes L

for m = 1,...,3. The operator L; = L, and its transpose L] : RETD*M-DN _,
REFD?MN ¢ defined as follows:
Upo VT1100
Liwy=Liw=L] || : [|=| + |, (6.24)
|UKK | _VTUKK_

with VT of size MN x (M — 1)N and vector u € RM-DNE+)  The trans-
pose of the Ly, = Ly is defined similarly as L], with the difference in sizes —
VT has size MN x M(N — 1) and vector u € RMWV-DE+D  Transpose of the
Ly = P is defined as Ly = PT. For the needs of the Condat algorithm, the
transpose of the reshape, () and reshape, () operators needs to be defined. The op-
erator reshape, (): RIM-DNx(K+1)?* _, RIM=DN(K+D® takes the matrix with disjoint
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columns back to the form of a stacked vector:

o

reshape ({uo |- uKD =|:]. (6.25)

Ug

The operator reshape, (): RMOV-Dx(K+1)* _, RMN-1)(K+1) i defined similar to the
reshapej () with the only difference in size. Based on the properties of M, it holds
that MT = M.

To ensure convergence of the Condat algorithm the following sufficient condition

must be satisfied:

Eo||L)Ly + LyLy + LiLs|| <1, (6.26)
where || - || denotes the operator norm and £ and o are internal parameters of the
Condat algorithm. The inequality ||L{L1+ Ly Lo+ L3 Ls|| < ||L1|*+ || La||*+ || Ls]|? is
used, therefore the upper bounds of ||L;||, || L2|| and ||L3|| are needed. The operator

norm || L,|| is derived as follows:

IZ4]* = |ILy|]* = max [|Lyx]|3
[Ix[l2=1
K K ,
= max (Z > ||Vvec(xkg)||2>
a1 \ = =

3> (s, 19 et ) o

k=0 =0 \Ixll2=1

K K
<D VIP = (IVIP(E +1)* < 4(K +1)%,

k=0 (=0
and the same holds for ||Lq||. Finally, the upper bound of ||Ls|| = ||P|| has to be
found, ||P||?> = ||PP|| and thus it is sufficient to find the maximum eigenvalue of

PP'. Since P has a multi-diagonal structure, the product PP is a diagonal matrix
and thus it suffices to find the maximum element on the diagonal. Therefore, the

convergence of the Condat algorithm is guaranteed in the case
¢o (max(diag(PP)) + 8(K +1)%) < 1. (6.28)

The Condat algorithm solving the recovery problem (6.21]) is presented in Algo-
rithm [14l

6.5 Experiment — image edge detection

In this section, the results obtained from the image edge detection process defined
in the recovery problem ([6.21) solved by the Condat algorithm (see Alg. are
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Algorithm 14: The Condat Algorithm solving (6.21))
Input: Functions hy, ho, hs, linear operators Ly, L{ , Ly, Ly , L3, L3 , M, M,
parameter A for proximal operator of hs, parameter ¢ for proximal

operator of hg
Output: % = x(+1)
1 Set the parameters £, 0 > 0 and p € [0, 2]
2 Set the initial primal variable x(¥’and dual variables u§°), uéo), u§°>
3 fori=0,1,..., MAX;r do

4 x(H) = x() _ ¢ (LI reshapej(ugi)) + MTL} reshapeg(ug)) + PTug,f)>
5 | x0H) = pxH) 4 (1 - p)x®

6 pi=ul’ +o reshape, (L, (2x0F) — x®)))

7 ﬁgi-i-l) =p1 — SOft%roup(pl)

s | ™= pal (1 - ppuf’

9 pr=uy 4o reshapey, (L, M (2x0+D) — x®))
10 ﬁgﬂ) = P2 soft§ " (pa) ‘

11 ugz-‘rl) :'pl—lgt-‘rl) + (1 . p) (27,)

12 | py=ul’ + o P2x0D) — x0)

13 ﬁgﬂ) =p3s—0 projBQ(y,a)(pg/U)

14 i uz()’z—l-l) _ pﬁ;(>,1+1) + (1 . p)u;(;)

15 return x(+

evaluated. The aim of the experiments is to set the optimal parameter ¢ for image
edge detection for both grayscale and RGB images.

For the purpose of the experiments, 200 train + 100 validation RGB images
Yres, and 200 train + 100 validation grayscale images Y gy are used. The process
of generating grayscale images is described in Sec. [6.2.2]

In Sec. , two types of bases (g, R) are introduced. Based on the promising
results obtained using the random orthonormal bases R in Sec. 5.7 the aim was to
use random orthonormal basis R for the experiments in 2D. Unfortunately, the use
of random orthonormal basis R requires almost eight times as many iterations for
convergence than the use of modified standard basis S, and the time for detecting
edges in the image is thus beyond an acceptable time. Therefore for the purpose of
these experiments, only modified standard basis S consisting of the (K + 1)? basis
images, where K = 2, is used for the experiments. It is necessary to create a new
basis S (see Sec. for each processed image, since the image dimensions (M, N)
change with each image.

The “Optimisation step” requires setting of several parameters. The list of pa-

rameters for the experiments using the Condat algorithm is given in Table [6.1]
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Tab. 6.1: Parameter settings for the Condat algorithm. Table contains the specific

setting of parameters needed in the image edge detection process using the Condat

algorithm.
Setting
Step Parameter ‘ Value (for K = 2)
Condat algorithm o 1/\/(||L1||2 + || L2||?) + || Ls]|?)

e UL~ L) + 1LolP)
P 1.99

To — T8 1
) € {1000, 2000, ..., 11000}
A 1

MAX;r 1000

The Condat algorithm is stopped if either the convergence criterion or the max-
imum number of iterations (MAXr) is reached. The parameter § changes within
the experiments.

The obtained results are evaluated via precision—recall curves and their maximum
F-measure score (see Sec. [6.3). The output of the method for each value of the
parameter 0 is an image of differences D, based on which the precision—recall curve
is generated. Since the aim is to find the optimal value of the parameter 9, all
obtained precision-recall curves (for the defined set of § values) are plotted into
a common graph. For each curve, the highest F-measure score is found. Based on

the highest F-measure score, the optimal value of § is determined.

6.5.1 Training phase

For the purpose of the first experiments, the train dataset of BSDS500 consisting of
200 natural images is used. Parameter ¢ is changes within the experiments, since

the aim is to find its optimal value for edge detection in the images.

Experiments with grayscale images
The first set of experiments is done for the grayscale images Y g,y. The parameter

d takes values from the set § € {1000, 2000, ..., 10000}.

Results for grayscale images The precision-recall curves for 10 parameters
6 € {1000, 2000, ...,10000} are plotted in Fig. [6.4 The green dotted circle (in all

figures shown in the training phase) represents the typical human F-measure score.
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It is only an approximation from the validation and test subsets, as the exact value
of the human F-measure scores for the train subset is not known. The highest F-
measure score obtained across all § settings is F = 0.539 for § = 6000. Refinement
of the parameter ¢ will be done during the validation phase in Sec.[6.5.2] Examples

of edge detection results are presented in Fig. [6.12]

! N Typical human
0.9 I 8 Iso Lines
AN | |[—6 = 1000 (F = 0.49587)
: —— 6 = 2000 (F = 0.50615)
0.7 1|6 = 3000 (F = 0.5176)
— 6 = 4000 (F = 0.52541)
g 0.6 | |— 6 = 5000 (F = 0.53661)
Z 05 i § = 6000 (F = 0.53941)
2 — 6 = 7000 (F = 0.53666)
- 04 1]--- 6 = 8000 (F = 0.53119)
0.3 1|--- 6 = 9000 (F = 0.52948)
§ = 10000 (F = 0.52478)
02} i
0.1} :
0 |

0 01 02 03 04 05 06 07 08 09 1
Recall

Fig. 6.4: Precision—recall curves with their maximum F-measure scores for § settings.

Presented results are for train subset of BSDS500 consisting of 200 grayscale natural

images.

Experiments with RGB images

The second set of experiments is performed on the RGB images. The parameter
0 takes values from the set 6 € {1000,2000,...,11000}. Since the RGB image
consists of tree colour channels — R,G,B, the image edge detection is computed for
each channel separately. Detected images of differences of the individual channels
need to be merged into a single output, which can be done by several approaches.
In these experiments, four merging approaches are proposed:

o approach V1 — the maximum value of the differences detected across all the

channels, computed as
Dvy[m, n] = max(Dg[m, n], Dg[m, n|, Dg[m,n)), (6.29)

e approach V2 — mean value of the differences detected across all channels,

computed as

Dy [m, n] = avg(Dgr[m,n], Dg[m, n], Dg[m, n]), (6.30)

145



o approach V3 — mean value of the two highest differences detected across all

channels, computed as
Dy3[m, n] = avg(sum(Dg[m, n], Dg[m, n|, Dg[m, n])
— min(Dg[m, n|, Dg[m, n|, Dg[m,n])), (6.31)

o approach V4 — RGB to the Y component of the YCbCr model, computed as

65.738 129.057 25.064
D D
256 Lrlm i+ —g—Dalm.n] +

Dvy[m,n] =16 +

Experimenting with RGB images has two aims — determine the colour channel
that contains the greatest amount of edge information, and determine the best

merging approach with its optimal J.

Results for RGB images — R,G,B channels The precision-recall curves for
10 parameters § € {1000, 2000, ...,11000} are plotted in Fig.[6.5] The highest F-
measure score obtained across all § settings for R channel is F = 0.545 for § = 7000,
for G channel it is F = 0.539 for § = 6000, and for B channel it is F = 0.536
for 6 = 8000. According to the results, there are only small differences between
the colour channels. However, the results indicate that most edge information is
contained in the R channel. The results also show that F-measure score obtained
from each of the RGB channels is very similar to the best F-measure score obtained

for grayscale images. Examples of the edge detection results for each colour channel

are presented in Fig. [6.6]

Results for RGB images — merging approaches The precision—recall curves
for 10 parameters § € {1000, 2000, . .., 11000} for each merging approach are plotted
in Fig. [6.7, and the maximum obtained F-measure scores are shown in Fig. [6.§
The highest F-measure obtained across all § settings for merging approach V1 is
F = 0.576 with 6 = 7000, for V2 it is F = 0.559 with 6 = 10000, for V3 it is
F = 0.564 with 6 = 7000, and for V4 it is F = 0.550 with § = 10000. The
obtained F-score results suggest that the preferred approach of merging the edge
information from the RGB channels is the V1 approach, i.e. the maximum value
of the detected differences. Examples of edge detection results for each merging

approach are presented in Fig. [6.9

6.5.2 Validation phase

Since the steps sizes between the § parameters were quite large, additional experi-
ments are performed to refine the optimal ¢ value. Refinement of the parameter §
is the only aim of the experiments on validation dataset. For the purpose of these

experiments, the validation set of BSDS500 consisting of 100 natural images is used.
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Fig. 6.5: Precision-recall curves with their maximum F-measure scores for § settings
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(c) blue channel

BSDS500 consisting of 200 RGB natural images.
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Fig. 6.6: Examples of edge detection results for individual colour channels. From
the left: RGB channels, R channel, G channel and B channel. From the top: original
image Y, reconstructed image Y, image of differences D, thresholded and thinned

image of differences. Presented results are for RGB train image subset of BSDS500.

Experiments with grayscale images

The first set of experiments is done for the grayscale images with the aim to refine
the optimal §. The parameter § takes values from the set § € {5000, 5250, ...,7000}.

Results for grayscale images The precision—recall curves for 9 parameters § €
{5000,5250, . ..,7000} are plotted in Fig. [6.10] The highest F-measure score ob-
tained across all § settings is F = 0.528 for 6 = 6250. The optimal value of § for
edge detection in grayscale images is, therefore, set to 6 = 6250, and it will be used
for experiments on the test dataset in Sec. [6.6]

Experiments with RGB images

The second set of experiments is performed on the RGB images. Since the aim is
to refine the parameter ¢, only the best merging approach V1 (the maximum value
approach) from the training phase is used. The parameter ¢ takes values from the
set ¢ € {6000, 6250, ...,8000}.
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Fig. 6.7: Precision—recall curves for ¢ settings for each merging approach V1-V4,
which were obtained for train subset of BSDS500 consisting of 200 RGB natural

images.
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Fig. 6.8: Maximum F-measure scores in dependency of parameter ¢ for each merging
approach V1-V4.

Fig. 6.9: Examples edge detection results for individual merging approaches. From
the left: V1 approach, V2 approach, V3 approach and V4 approach. From the
top: original colour image, differences of the reconstructed image, thresholded and

thinned differences. Experiments were performed on RGB train image subset of
BSDS500.

Results for RGB images Similarly to the case of grayscale images, the precision—
recall curves for § € {6000, 6250, ...,8000} are displayed in Fig. . According to
these results, the highest F-measure score obtained across all § settings is F = 0.557
for 6 = 7500. Therefore, the value 7500 for the parameter ¢ is assumed to be the

optimum for RGB images and will be used for the experiments on the test dataset

in Sec. [6.6

150



Typical human
* Iso Lines
— = 5000 (F = 0.52262)
| |—6 = 5250 (F = 0.52468)
. 6§ = 5500 (F = 0.52644)
— 0 = 5750 (F = 0.52816)
g 1 |— 6 = 6000 (F = 0.52801)
g i § = 6250 (F = 0.52831)
g —§ = 6500 (F = 0.52802)
1 ]--- 6 = 6750 (F = 0.52767)
1 |--- 6 = 7000 (F = 0.52677)
0.2 .
0.1F =
0 |

0 01 02 03 04 05 06 07 08 09 1
Recall

Fig. 6.10: Precision-recall curves with their maximum F-measure scores for 9 set-

tings. Presented results are for validation subset of BSDS500 consisting of 100

grayscale natural images.
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Fig. 6.11: Precision-recall curves with their maximum F-measure scores for 9 set-

tings. Presented experiments are for validation subset of BSDS500 consisting of 100

RGB natural images.

6.6 Comparison with other methods

Since the results of some presented edge detection methods (see Chapter [3) are com-
puted on the test subset of BSDS300 dataset and others on BSDS500, the proposed
image edge detection method with optimal  is run on both mentioned datasets.
For testing on BSDS500 dataset, the optimal parameters ¢ obtained from the
validation phase are used.
The test subset of BSDS300 consists of 100 natural images. This test subset is
equal to the validation subset of BSDS500. Since the train subsets of both datasets
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BSDS300 and BSDS500 are the same, it is not allowed to use the optimal value of
0 obtained from the validation phase, and thus the optimal ¢ for testing phase on
BSDS300 was determined based on the results of the training phase.

Examples of edge detection results for both RGB and grayscale images are pre-
sented in Fig. [6.12]

Fig. 6.12: Examples of edge detection results for RGB and grayscale images of
BSDS500 test subset. From the top: original colour image, reconstructed RGB im-
age, thresholded and thinned differences of the reconstructed RGB image, grayscale
image, reconstructed grayscale image, thresholded and thinned differences of the

reconstructed grayscale image.
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6.6.1 Results on BSDS300

For grayscale images, the parameter 9 is set to 6 = 6000. For RGB images, the
parameter 0 is set to = 7000. The precision—recall curves for grayscale and RGB
images are plotted in Fig.[6.13|on the right-hand side. The precision-recall curves of
other approaches described in Sec. |3|and presented in [72] are displayed in Fig.[6.13
on the left-hand side.

The highest obtained F-measure score for grayscale images is F' = 0.528, and
for RGB images it is F = 0.555. The proposed image edge detection method for
both grayscale and RGB images gives better results in terms of F-measure score than
the classical gradient-based edge detection techniques (Prewitt, Sobel, and Roberts)
and Laplacian of Gaussian. One of the most important results is that the proposed
approach achieves better results than other “standard” methods without special
post-processing. However, it turns out that the post-processing plays a critical role
in successful image edge detection and the “standard” methods are not competitive
with the more sophisticated methods with post-processing or deep learning-based
methods.
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Fig. 6.13: Precision-recall curves with their maximum F-measure scores for ¢ set-
tings. The precision—recall curves of other approaches described in Sec. |3| are dis-
played on the left-hand side. The precision—recall curves of the proposed approach
for RGB and grayscale images are plotted on the right-hand side. Presented results
are for test subset of BSDS300 consisting of 100 natural images.
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6.6.2 Results on BSDS500

For the final evaluation, 200 test RGB images Ygrap, and 200 test grayscale images
Yoy are used. For grayscale images, the parameter ¢ is set to 6 = 6250. For RGB
images, the parameter 9 is set to = 7500. The precision—recall curves for grayscale
and RGB images are plotted in Fig.[6.14]on the right-hand side. The precision-recall
curves of other approaches described in Sec. |3| and presented in [101] are displayed
in Fig. on the left-hand side. The precision-recall curves of the Canny detector
and other approaches presented in |[101] are displayed in Fig. on the left side.

The highest obtained F-measure score for grayscale images is F = 0.560, and for
RGB images it is F = 0.603, which is a little bit higher than the F-measure score of
the Canny detector (F = 0.600).

Compared to the results on the BSDS300 dataset, the edge detection results on
the BSDS500 dataset are available only for the Canny detector and more sophis-
ticated methods. However, they are more relevant for the proposed method since
the parameter 0 could be fine-tuned on the validation subset. The proposed method
achieved comparable and even slightly better results than the Canny detector, which
is considered as the standared in image edge detection and contains some additional
post-processing. Nonetheless, also the results on the BSDS500 points out the supe-
rior performance of the methods that are either based on deep learning or employ

sophisticated post-processing techniques.
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Fig. 6.14: Precision-recall curves with their maximum F-measure scores for ¢ set-
tings. The precision-recall curves of other approaches described in Sec. [3] are dis-
played on the left-hand side. The precision—recall curves of proposed approach for
RGB and grayscale images are plotted on the right-hand side. Presented results are
for test subset of BSDS500 consisting of 200 natural images.
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6.7 Edge detection in noisy images

Apart from the experiments on the clean images, experiments on noisy images to
examine the performance of the proposed method under noise are designed.

For the purpose of these experiments, 200 test grayscale images from BSDS500
dataset are used. Grayscale images of BSDS500 are assumed to be clean. All 200
grayscale images were corrupted by Gaussian i.i.d. noise in line with the process
described in Sec. [6.2.2] resulting in SNR € {15, 20, 25, 30, 35} dB.

Note that the parameter ¢ should be adjusted according the noise level for opti-
mal performance. However, attempting to fine-tune the parameter ¢ for each image
or noise level can be impractical and time consuming. Moreover, compared to this
testing scenario, the noise level in real-world images is often unknown. Therefore,
this experiment focuses purely on evaluating the general noise-robustness of the
proposed method using the best value of parameter ¢ obtained from the validation
phase on images without additional noise (6 = 6250).

A comparison of edge detection results for images with different noise levels is
shown in Fig.[6.15] and the resulting precision—recall curves for images with different
noise level are displayed in Fig.

6.8 Partial conclusions

The experiments performed on grayscale and RGB images were divided into three
phases — training phase, validation phase, and testing phase. The BSDS500 dataset
of natural images was used for these experiments.

In the training phase on grayscale images, the optimal parameter 6 = 6000
was chosen for the proposed image edge detection method, which resulted in the
highest F-measure score for the dataset of train images. For RGB images, multiple
criteria were evaluated in the training phase. The main reason is that the proposed
image edge detection method was applied to each colour channel separately, and
the resulting edge estimates need to be merged into one common output. To do
so, four merging approaches have been proposed. For the train dataset, merging
approach denoted V1 (the maximum value approach) gave the best F-measure score
(for § = 7000). It was further evaluated that the R channel carries most of the
edge information among all channels. The edges extracted from each colour channel
carry approximately the same amount of edge information as the edges extracted
from the grayscale images. Merging the outputs from the R, G, and B channels
increases the final F-measure score by approximately 0.03 (i.e. 5.5 %).

The validation phase was used to refine the optimal 0 value. In the training

phase, the steps between the values of § were quite large. Thus, in the validation
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Fig. 6.15: Examples edge detection results for noisy grayscale images from BSDS500
test subset. From the left: SNR = 15 dB, SNR = 25 dB, SNR = 35 dB and
clean grayscale image. From the top: noisy grayscale image, reconstructed image,

differences of the reconstructed image, thresholded and thinned differences.

phase, the steps were reduced to a quarter. The obtained optimal § values were then
used in the testing phase. For grayscale images, the optimal § was set to § = 6250.
For RGB images, only the V1 merging approach was used, and the optimal § value
for the image edge detection method was set to o = 7500.

In the testing phase, the experiments were performed on two test subsets of
the BSDS300 and BSDS500 datasets. The maximum F-measure score achieved was
compared with other edge detection methods presented in Sec.[3] For the test subset
from the BSDS300 dataset, the values obtained from the training phase, i.e. § for
RGB images and ¢ for grayscale images, were determined as the optimal 6. The
reason is that the train subsets of both datasets are identical and the validation
subset of the BSDS500 dataset matches the test subset of the BSDS300 dataset.
For the BSDS500 test dataset, the optimal § parameter for RGB and grayscale
images was set to values obtained from the validation phase.

In the case of the BSDS300 dataset, the proposed image edge detection method
for both grayscale and RGB images gives better results than gradient-based edge

detection techniques (Prewitt, Sobel, and Roberts) and Laplacian of Gaussian.
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Fig. 6.16: Precision-recall curves with their maximum F-measure scores for optimal
0 setting. Presented results are for test subset of BSDS500 consisting of 200 noisy
grayscale natural images with SNR, € {15, 20, 25, 30,35} dB.

In the case of the BSDS500 dataset, the proposed image edge detection method
for grayscale images gives worse results than the Canny detector. In case of RGB
images, the results are slightly better than results of the Canny detector.

Compared to the results on the BSDS300 dataset, the edge detection results on
the BSDS500 dataset are available only for the Canny detector and more sophisti-
cated methods. However, they are more relevant for the proposed method since the
parameter 0 could be fine-tuned on the validation subset.

The proposed image edge detection method cannot be compared with more so-
phisticated edge detection methods because the output of our method is only raw
edges. Better results would certainly be obtained by applying post-processing to
the output. Further work could be done in this direction.

The next part of the experiments was performed on grayscale noisy images from
the BSDS500 test dataset with different noise levels (SNR € {15, 20, 25, 30,25} dB).
The aim was to determine how the proposed method would behave when processing
noisy images. From the outputs, it can be seen that at a lower noise level (SNR €
{25,30,25} dB), the resulting F-measure score is similar to the F-measure score
obtained on the clean grayscale images. Unfortunately, it is not possible to evaluate
the level of denoising using e.g. SNR or MSE metrics because the § parameter was

set to the value at which the best edge detection is achieved.
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CONCLUSION

This Thesis dealt with breakpoint/edge detection in 1D and 2D signals using sparse
signal representation and convex optimisation. The main objective of this Thesis
was to provide a novel method for detecting edges in an image. Several suitable
approaches were selected and tested on 1D signals and the best of them was subse-
quently extended to 2D.

Chapter (1| included a basic overview, the notation used and explained sparse sig-
nal representation and convex optimisation, including proximal splitting algorithms,
which were implemented in this Thesis.

Chapter [2| presented a discussion of a selection of topics from the field of image
processing that were relevant to this Thesis. This included image segmentation,
edge detection and enhancement, and denoising.

Chapter [3| gave an overview of the edge detection methods used. The methods
were divided into sections according to their main principle, from the simplest to
the more complex. The simplest techniques included, for example, the Sobel’s edge
operator and the Laplacian of Gaussian. The more complex algorithms included
methods using texture, brightness, and colour features, and the Canny detector,
which is considered to be the standard in image detection. Detection methods
based on fuzzy logic, evolutionary algorithms or deep learning, and methods using
optimisation recovery problems were presented as the most complex methods.

In Chapter |5, the input data and the general concept for the 1D signal segmen-
tation and denoising were introduced, several possible solutions were designed, and
the experiments and their results were evaluated. The main aim of Chapter [5| was
to find the most promising algorithm for breakpoint detection in a 1D signal, which
was then extended for the use in 2D in Chapter [6]

Sec. introduced a general concept of the proposed 1D signal segmentation
process intending to explain the basic idea of the proposed methodology. For this
purpose, the description of the signal model was formulated first. This was a very
important part since the proposed procedure was largely based on the assumptions
derived from the signal model formulation. Then, the processed type of 1D signal
and the polynomial bases used for the experiments in Chapter [5| were introduced,
including the process of their generation. Finally, a general framework common
to all the proposed methods used in Chapter [5| for 1D signal segmentation and
denoising was presented. The general method was divided into two main steps —
“Optimisation step using a proximal splitting algorithm” and “Segmentation and
denoising step”. The methods proposed in Chapter [5 differed from each other only
in the first step, namely in the particular formulation of the problem and in the

proximal splitting algorithm that was used.
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The definition of the evaluation metrics was discussed in Sec. [5.2] Two perspec-
tives — the quality evaluation of segmentation and denoising — were used to evaluate
the results of the experiments. For the experiments in Chapter 5] a dataset of
synthetic 1D piecewise-linear signals, synthetic 1D piecewise-quadratic signals, and
a number of polynomial bases was created, and described in more detail in Sec. [5.3]

In Sec. [5.4] an ¢;-based unconstrained formulation of the recovery problem us-
ing the total variation was proposed, and two proximal algorithms (the Forward-
backward (FB) and the Douglas—Rachford (DR) algorithm) were used to solve this
recovery problem. The carried experiments revealed that the denoising process is
better when the FB algorithm is used. However, the DR algorithm obtained a better
breakpoint detection than the FB algorithm. Considering that noise reduction was
only a by-product of the proposed algorithm, performance in breakpoint detection
were more important.

Since the total variation treated each parametrisation vector separately, it did
not ensure that possible breakpoint candidates were found at the same positions
across all difference vectors. Therefore, the correct breakpoints could be discarded
by this approach. To avoid this phenomenon, the fs;-norm was used to enforce
joint breakpoints over the difference vectors. The recovery problem presented in
Sec. was solved using the Forward-backward based primal-dual (FBB-PD) and
the Chambolle-Pock (CP) algorithm. For both denoising and breakpoint detection,
the FBB-PD algorithm gave better results than the CP algorithm. The comparison
of the FBB-PD algorithm with the FB algorithm revealed that the FBB-PD algo-
rithm provided better results in all areas. Based on these results, a conclusion can
be made that the use of the f5;-norm has led to a significant improvement in the
results, compared to the simple total variation-based approach.

Another idea to improve the breakpoint detection was to imitate non-convexity
via a series of convex programs, where the parameter of the currently solved convex
problem depended on the latest solution. In this sense, the extended unconstrained
recovery problem from Sec. [5.5| was presented in Sec. [5.6] and it was solved using the
re-weighted and non-weighted variants of the Condat algorithm. The comparison of
the non-weighted and re-weighted Condat algorithms showed that the breakpoint
detection and denoising was better when the non-weighted Condat algorithm was
used. Thus, there was no confirmation that the imitation of non-convexity would
bring an improvement in the detection of breakpoints. Compared to the FBB-
PD algorithm, the non-weighted Condat algorithm achieved worse results in the
breakpoint detection and denoising. With the non-weighted Condat algorithm, it
was necessary to adjust the ¢ parameter according to the noise level. The differences
between FBB-PD and the non-weighted Condat algorithm were not so significant
for the signals with big jump heights and high SNR.
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Sec. [5.7 focused on the use of different types of bases, specifically O- and R- bases,
in contrast to Sections [5.4] — [5.6l where a modified standard S-basis was used. The
recovery problem was the same as in Sec. and the FBB-PD and the non-weighted
Condat algorithms were used to solve it. From the comparison between the FBB-
PD algorithm and the non-weighted Condat algorithm in Sec. [5.6] it appeared that
it was advantageous to use the FBB-PD algorithm. However, for solving the task
in more dimensions, the non-weighted Condat algorithm offers a better possibility.
From the breakpoint detection point of view, it was evaluated that the non-weighted
Condat algorithm gave better results than the FBB-PD algorithm for both O- and
R-bases. The results showed that the standard modified basis performed the best
for linear signals and R-bases were the best for quadratic signals.

Chapter [6] dealt with edge detection in images. First, the general concept of the
proposed image edge detection is introduced, followed by the presentation of the
image dataset and the evaluation metric used, and finally, by the description of the
specific image edge detection solution, including experiments and their evaluation.
A comparison with other edge detection approaches was also included in this chapter.

Sec. [6.1] concentrated on the formulation of the 2D signal model description,
which is an extension of the 1D signal model, and the general concept of image
edge detection, which was divided into two main steps — “Optimisation step using
a proximal splitting algorithm” and “Edge identification”.

Sec. described the 2D polynomial bases and the natural image datasets
BSDS500 and BSDS300 (Berkeley Segmentation Data Set) that were used in the
experiments. These datasets are often used for the comparison of segmentation and
edge detection methods containing manually annotated image edges/segments used
as the ground truth. The BSDS500 dataset is divided into three classes: train,
validation, and test subset, and the BSDS300 is only a subset of the BSDS500 con-
taining only images from the train and validation subsets. To evaluate the accuracy
of the edge detection, the precision-recall curve and the F-measure score, defined in
Sec. [6.3] were used.

The extended recovery problem from Sec. for the use with 2D signals is
presented in detail in Sec. [6.4 A suitable algorithm for solving the defined recovery
problem seemed to be the non-weighted Condat algorithm, which obtained the most
promising results when used on 1D signals.

Sec.[6.5]focused on experiments on grayscale and colour images from the train and
validation subsets of the BSDS500 dataset. A standard modified basis was chosen
for the experiments, since our experiments showed that the computational time
requirement using R-basis is unacceptable for image processing. The experiments
were divided into two phases — a training phase and a validation phase. The output

of the proposed edge detection was compared with the image annotations from the
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BSDS500 dataset.

In the training phase, several values of parameter o were tested. The output of
the training phase was the ¢ with the highest F-measure score (for both grayscale
and RGB images). In the case of RGB images, the image edge detection algorithm
was applied to each colour channel separately. It was necessary to compose the
outputs of the channels into one output. Therefore, four merging approaches were
proposed, and the best merging method was selected for the other experiments.

The purpose of the validation phase was to refine the parameter § settings, where
the steps between the tested values of parameter § were smaller than in the training
phase. The § parameter with the highest F-measure scores was identified as the
optimal setting for the testing phase.

In Sec. [6.6] the proposed edge detection method was compared with several
other algorithms presented in Chapter The comparison was made on the test
subset of the public datasets BSDS300 and BSDS500. The edge detection method
obtained better results for RGB images than for its grayscale variants. Our pro-
posed method (for both RGB and grayscale images) obtained better results on the
BSDS300 dataset than the classical gradient-based edge detection techniques (Pre-
witt, Sobel, and Roberts) and the Laplacian of Gaussian, whose output is a raw
edge detection. Considering that our proposed approach did not involve any post-
processing, such as merging parts of edges into a continuous whole, the results
obtained were very good in terms of the raw edge detection. All methods that per-
formed better than the proposed approach included some post-processing, or were
much more sophisticated. Considering that the more sophisticated methods require
some initial estimation of edges (raw edge detection) their results could be even
better when combined with our proposed method. The method was also tested on
the BSDS500 dataset, where it gave slightly better results on RGB images than the
Canny detector, which includes post-processing.

Sec. 6.7l was devoted to experiments on noisy grayscale images from the BSDS500
test subset. The aim was to find out how our proposed method copes with edge
detection on noisy images with varying levels of noise. The results showed that on
less noisy images (SNR € {25,30,35}), the method gave almost the same results,
according to the F-measure score, as when used on “clean” images.

The experiments were performed using Matlab, and for the proximal algorithms,
the UnLocBox toolbox was used. Software package for 1D signal segmentation
and image edge detection containing all implemented methods was made publicly
available on GitHub at:

https://github.com/xnovosll/breakpoint_edge detection.
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Other ideas and possible directions for future research can be considered. De-
composing the image into LAB channels instead of RGB channels could be a pos-
sible approach to improve edge detection in colour images. Furthermore, the input
data for the “Optimisation using proximal splitting algorithm” step could be not
only intensity images but also parametric maps, which could be obtained, for ex-
ample, by texture analysis of the processed image. The resulting outputs could
then be combined with the outputs from the individual colour channels. Moreover,
the coupling of the colour channels can be already incorporated into the recovery
problem [114, Chapter 6], instead of applying the proposed method to each colour
channel separately. As a final direction for future development, the extension of
the proposed method by post-processing to produce compact, thin edges can be

considered.
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LIST OF SYMBOLS AND ABBREVIATIONS

Symbols

\Y% the finite difference operator

Qg normalized positive factors

1) the noise level

A threshold for breakpoint detection

o noise standard deviation

Th regularisation weights

B non-orthogonal basis

d {o-norm of differences of parametrisation coefficients

d post-processed d

D image of differences

e Gaussian i.i.d. noise vector

E Gaussian i.i.d. noise matrix
F-measure score

hy jump height

1 identity matrix

Id identity operator

K degree of the polynomial signal

[ window length of the median filter

L linear operator

M number of rows in the matrix

N number of the signal samples / number of columns in the matrix

N normalised basis

O orthogonal basis

Pk basis polynomial

P precision
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P matrix of polynomials / polynomial basis

Py polynomial basis image

R recall

R random orthogonal basis

R random orthogonal basis consisting of basis images
s segment of the signal

S detected segment of the signal

S number of the signal segments

S number of the detected signal segments

S modified standard basis

S modified standard basis consisting of basis images
Wy vector of weights

\)\% matrix of weights

X parametrisation coefficients

X obtained parametrisation coefficients

X parametrisation coefficients of denoised signal y
X matrix of parametrisation coefficients

y observed polynomial signal

y obtained polynomial signal

y denoised polynomial signal

Yeclean clean piecewise-polynomial signal

Y denoised denoised piecewise-polynomial signal

Ynoisy noisy piecewise-polynomial signal

Y 2D signal / image

Y oray grayscale image

Y hoisy noisy image

YreB RGB image

Y obtained polynomial image
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Abbreviations

AAR Average of values in HV to average of values in OV Ratio
AWGN Additive White Gaussian Noise

BDCN Bi-directional cascade Network

BEL Boosted Edge Learning

BSDS Berkeley Segmentation Dataset
CAD Computer-Aided Design

CA Condat Algorithm

CDT Constrained Delaunay Triangulation

CEDN Convolutional Encoder-Decoder Network

CNN Convolutional Neural Network
COB Convolutional Oriented Boundaries
CP Chambolle-Pock (algorithm)

CRF Conditional Random Field

CT Computer Tomography

DR Douglas—Rachford (algorithm)
DSP Digital Signal Processing

EA Evolutionary Algorithm

ECG Electrocardiogram

EEG Electroencephalogram

FBB-PD  Forward-Backward Based Primal-Dual (algorithm)
FB Forward-Backward (algorithm)

FISTA Fast Iterative Shrinkage/Thresholding Algorithm

FN False Negative

FP False Positive

gPb Globalized Probability of boundary
HED Holistically-Nested Edge Detection
HFL High-for-Low
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HV
LASSO
LoG
MMR
mPb
MR(I)
MSE
N*-Fields
NoB
NP-hard
OTDR
ov

PA

Pb
PiDiNet
RADAR
RDS
RGB
ROC
sPb

SE

SNR
SONAR
(S)USAN
SVD

TP

TV

Us

Highest values

Least Absolute Shrinkage and Selection Operator
Laplacian of Gaussian
Minimum-to-Maximum Ratio

Multiscale Probability of boundary
Magnetic Resonance (Imaging)

Mean Square Error

Neural Network Nearest Neighbor Fields
Number of Breakpoints
Nondeterministic Polynomial-time Hard
Optical Time-Domain Reflectometry
Other values

Proximal algorithm

Probability of boundary

Pixel Difference Networks

Radio Detection and Ranging

Relaxed Deep Supervision

Red Green Blue

Receiver operating characteristic
Spectral Probability of boundary
Structured Edges

Signal-to-Noise Ratio

Sound Navigation and Ranging
(Smallest) Univalue Segment Assimilating Nucleus
Singular Value Decomposition

True Positive

Total Variation

Ultrasound
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A APPENDIX

A.1 Inversion matrix theorem

Theorem 1 Let P = [I D D?... D’f] be a matriz with D = diag (dy, ..., dy)
square and diagonal. Then for the inversion of the N(k + 1) x N(k + 1) matrix
I+ AP'P with A € R* it holds

(I+APP)  =1-A(IxC)PP,

where the identity matrices I are of appropriate sizes, symbol & denotes the Kro-
necker product and the N x N matriz C is defined by

k
C=I+A) D*=I+)PP".
=0
Proof: In the definition of matrix C, we utilize the fact that PP’ = [I Dk] :

1...DH = £F,D¥ We have 1©C)"" = (I& C™') and we use this fact to
find the product:
(I+AP'P) - (I+AP'P)
=[I-A(TeC")P'P|- (1+\P'P)
=I-A(IeC )PP+ P'P-\(IeC)P'PP'P
=1+ (I®C™") [-1+(I® C) - AP'P| AP'P.

Now, since
I+AYF D% ... 0
I®C= : Ep :
and _ .
I D D2 ... D*
D D? D? ... DF!
PTP _ D2 D3 D4 o Dk+2
D' D DM . D
we see that
AY0D¥  —AD —AD? ...  —)\DF
—-\D AXia D? —-\D? Y b L
—I1+(I®C)-\PP=| —-AD? —AD?  AY,,D* ... —\Dk2
i —\DF —\D*t1 —\D*+2 RS Zi;ﬁk D2i_
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Multiplying this matrix from right by AP'P results in the zero matrix.
Since I + AP'P is symmetric, so it is its inverse, and it is not necessary to prove
the multiplication in the opposite order. O]
We note that the theorem could be proven with the help of the (Sherman-—
Morrison-Woodbury) inversion lemma [115,/116], but we prefer the presented ap-

proach for clarity.

A.2 Orthonormal basis theorem

Theorem 2 Let {py}r—o,. . x and {pm}i—o.. x be two orthonormal bases of a K-
dimensional space. Then, the set {Py}, i=0,...,K, j=0,...,K, defined as

Pij = Piv - P]Thy
forms an orthonormal basis of the space of matrices of order (K + 1), equipped with
the usual Frobenius inner product (A, B) = trace (ATB).

Proof: For {P;;} to form an orthonormal basis, we first need to show that it is an
orthonormal system, i.e.

_ 1 it i=k =1,

(Pij, Pra) =

0 otherwise,

= trace (Pjh PiTkav pﬁl)
~———
ik
= 0, trace (pthlTh)
= kPP

= 0i0j1-

Both d;; and 0, were obtained using the fact that {piy tr—o.. x and {pm}ti—o. . x are
orthonormal bases. The relation trace (pjhp;J = p]ThPZh could be proven directly
by computing the diagonal entries of the matrix p;,pj},-

It remains to show that the system {f’ij} spans the whole space. This is trivial,
since we have an orthonormal system of (K +1)? elements in a (K + 1)*-dimensional

space.
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