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ABSTRACT
This Bachelor’s thesis focuses on the remote control demonstrated on the rotational
inverted pendulum. The objective of this project is to design the control of an inverted
pendulum in Simulink environment and to develop a real-time communication protocol
between the controller created in Simulink and the LabView software running on Com-
pactRIO which will be interconnected with a physical system. The role of the controller
is to maintain the pendulum upright not to swing the pendulum upright - the pendulum
is swung up manually.

KEYWORDS
Rotary inverted pendulum, remote control, data exchange between Simulink and Lab-
View, network control system, system with delay, LQR regulator

ABSTRAKT
V této bakalářské práci bude diskutováno vzdálené řízení demonstrováno na rotačním
inverzním kyvadle. Hlavním cílem je navrhnout řízení inverzního kyvadla v Simulinku a
zajistit komunikaci v reálném čase mezi regulátorem vytvořeném v Simulinku a LabView
programem, běžícím na CompactRIO, který bude propojený s fyzickým systémem. Úkol
regulátoru je pouze udržet inverzní kyvadlo ve vzpřímené poloze, nikoli vyšvihnutí do
vzpřímené polohy (bude provedeno ručně).
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INTRODUCTION
In the last years, Network Control Systems (NCSs) have experienced a significant
growth. They have been applied in the industrial control applications such as au-
tomobiles, aircraft, hospitals, domestic robots, monitoring or manufacturing plants.
Connecting control system components via network can simplify the systems and
reduce investments. Data might be shared efficiently and spread easily over a large
physical space. Furthermore, unnecessary wiring is eliminated. It is easy to add
some components to the system at low cost and without heavy structural modifica-
tions. On the other hand it introduces some constraints which we have to consider
in designing the controller [1].

In this thesis the real-time network communication is developed and the rota-
tional inverted pendulum (Futura pendulum) is controlled over the network. The
goal is to keep the inverted pendulum in its upright position. First, the LabView
program running on National Instrument CompactRIO reads the measurements of
the two angles of the Futura pendulum system then the LabView software sends
those values to Simulink via UDP protocol. In Simulink there is a linear discrete
state space control design based on LQR with an output value representing a voltage
which is returned back to the LabView program. Finally, LabView program sets
the voltage to the DC motor which drives the pendulum’s arm.

The thesis is organized as follows - In the first chapter the reader gets familiar
with all the hardware used in the laboratory. Chapter two provides the reader
with the information about the Hardware Setup. In chapter three I experiment
with different means on how to send data over to the network and choose the best
option. Finally, in chapter 4 I design the control that keeps the pendulum in its
upright position and show the experiments with the certain controller.

The developed system will be used to demonstrate variable delay effects on con-
trol loop in various courses given by the Department of Automation Science and
Engineering at Tampere University of Technology.
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1 SYSTEM HARDWARE
In this chapter we get familiar with all the elements used in the laboratory. The
main QUBE-Servo components are listed and characterized.

1.1 System scheme
There are various options on how to interface QUBE-Servo model with different
I/O interfaces - the QUBE-Servo USB Interface, the QUBE-Servo myRIO Interface
and the QUBE-Servo Direct I/O Interface which is the one used in my experiment.
Only the QUBE-Servo interface includes a built-in Data Acquisition (DAQ) device
and an integrated amplifier. The QUBE-Servo Direct I/O Interface has an amplifier
but it does not have a built-in DAQ system. Instead, an external Q1-cRIO Quanser
module is used for data acquisition which can easily interface with the Quanser
QUBE-Servo.

Figure 1.1: Interaction between QUBE-Servo components [2]

The diagram given in Fig. 1.1 illustrates the interaction between the QUBE-Servo
components. The motor and the pendulum Encoders are connected to the Encoder
Input (EI) channels #0 and #1 of the DAQ device. The power amplifier is con-
nected to the Analog Output (AO) channel #0. The Direct Current (DC) motor
is then driven by the power amplifier. The Q1-cRIO Quanser module is used as
an external DAQ device which is a part of the NI CompactRIO. There is also Lab-
View software running on the NI CompactRIO through which the data is measured
and sent to another computer with Simulink via a UDP protocol. The controller
made in Simulink returns the value representing the voltage and sends it back to
the LabView software which sets the voltage to the physical system [2].
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1.2 Hardware Elements
In Tab. 1.1 there are listed all the elements used for proper communication and
function. The Fig. 1.2 depicts the wiring related to the cRIO-9024 and the QUBE-
Servo module. The cRIO-9024 requires a 35 VDC external power supply [5]. The
QUBE Servo is supplied with the power of 15 V 2 A.

Table 1.1: Hardware elements

ID Component
1 QUBE-Servo (Direct I/O interface)
2 Rotary Pendulum (ROTPEN) module
3 15 V 2.0 A power supply
4 RCA cable
5 Two 5-pin-DIN cables
6 cRIO-9024
7 Q1-cRIO module
8 Ethernet cable
9 35 VDC power supply
10 Red and black power wires
11 Switch HP 1810-8G
12 PC/Laptop

(a) cRIO-9024 (b) QUBE-Servo

Figure 1.2: System elements

11



1.3 QUBE-Servo Hardware components
The QUBE-Servo hardware components are listed in Tab. 1.2.

Introduction of QUANSER

Quanser was set up in 1989 in response to the need in educational system and
research for real-time control systems equipment. It became immediately popular
among the universities around the world for its products control including specific
applications such as unmanned vehicles, robotics, flight control and others.

In 2003 Quanser entered into the partnership with the National Instrument which
led to the development of new series of devices. Quanser innovations proceed and
nowadays it is regarded as being the World leader in education and research for
control of design and implementation. Its products are used in over 2500 education
and research institutions [3].

Table 1.2: QUBE-Servo components [2]

ID Component ID Component
1 Aluminium chassis 10 Rotary pendulum magnets
2 Module connector 11 Pendulum encoder
3 Module connector magnets 12 DC Motor
4 Module encoder connector 13 Motor encoder
5 Power connector 14 QUBE-Servo DAQ/amplifier board
6 Power LED 15 Encoder 0 connector
7 Pendulum link 16 Encoder 1 connector
8 Rotary arm rod 17 Amplifier Input 0 connector
9 Rotary arm hub

12



(a) QUBE-Servo DirectI/O Interface [2]
(b) QUBE-Servo Pendulum module [2]

(c) QUBE-Servo Interior [2]
(d) QUBE-Servo Top View

Figure 1.3: QUBE-Servo components

DC Motor

Inside the aluminium box there is a direct-drive 18 V brushed DC motor. The DC
motor parameters are listed in Tab. 1.3.

Encoder

The Encoders used in the QUBE-Servo system are the US Digital E8P-512-118
single-ended optical shaft Encoders. They measure the angular position of the DC
motor and the pendulum on the QUBE-Servo and convert them to digital code. Its
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output is 2048 counts per revolution in a quadrature mode which means 512 lines
per revolution [2].

Figure 1.4: Interaction of the DAQ device with the QUBE-Servo components [2]

Power amplifier

The PWM voltage-controlled power amplifier situated on the QUBE-Servo circuit
board provides 2 A peak current and 0.5 A continuous current. The output voltage
is between ±10 V [2].

Data Acquisition (DAQ) Device - Quanser Q1-cRIO

The Quanser Q1-cRIO is the data acquisition and control module for the National
Instrument CompactRIO controller. It provides one Analog Input (AI), one AO,
and two single-ended Encoder input interfaces as shown in Fig. 1.5 which enable us
to interface with the pendulum. All inputs and outputs are accessed simultaneously
which allows for the real-time control. The Q1-cRIO requires the Quanser Rapid
Prototyping (QCRP) toolkit for LabView. The Q1-cRIO is used with NI cRIO 9024
[4].
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Figure 1.5: Q1-cRIO module

Amplifier Input Connector

The Amplifier Input RCA connector is single-ended with a range of ±10 V. As
presented in Fig. 1.4, it is connected to the power amplifier which then drives the
DC motor [2].

Encoder Connector

The Encoder connector pin-out is shown in Fig. 1.6. The Encoder 0 and Encoder
1 5-pin DIN connectors output the measurements from the DC motor Encoder and
the pendulum module Encoder [2].

Figure 1.6: 5-pin DIN Encoder pin-out [2]
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Table 1.3: Qube-Servo system parameters [2]

Symbol Description Value
DC Motor

𝑉𝑛𝑜𝑚 Nominal input voltage 18.0 V
𝜏𝑛𝑜𝑚 Nominal torque 22.0 mN·m
𝜔𝑛𝑜𝑚 Nominal speed 3050 RPM
𝐼𝑛𝑜𝑚 Nominal current 0.540 A
𝑅𝑚 Terminal resistance 8.4 Ω
𝑘𝑡 Torque constant 0.042 N·m/A
𝑘𝑚 Motor back-emf constant 0.042 V/(rad/s)
𝐽𝑚 Rotor inertia 4.0 x 106 kg·m2

𝐿𝑚 Rotor inductance 1.16 mH
𝑚ℎ Module attachment hub mass 0.016 kg
𝑟ℎ Module attachment hub radius 0.0111 m
𝐽ℎ Module attachment moment of inertia 0.6 x 10−6 kg·m2

Rotary Pendulum Module
𝑚𝑟 Rotary arm mass 0.095 kg
𝐿𝑟 Rotary arm length (pivot to end of metal rod) 0.085 m
𝑚𝑝 Pendulum link mass 0.024 kg
𝐿𝑝 Pendulum link length 0.129 m

Motor and Pendulum Encoders
Encoder line count 512 lines/rev
Encoder line count in quadrature 2048 lines/rev
Encoder resolution (in quadrature) 0.176 deg/count

Amplifier
Amplifier type PWM
Peak current 2 A
Continuous current 0.5 A
Output voltage range ±10 V
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2 SYSTEM SETUP
This section describes how to connect all elements in the network. The connection
procedure is given below, the wiring is summarized in Tab. 2.1.
I followed these steps to connect all the elements:

1. After ensuring that power supply is switched off, I connected the primary
power supply and the optional secondary supply to the power connector cRIO-
9024.

Figure 2.1: cRIO-9024 Power Connections [5]

2. I connected the cRIO-9024 to an Ethernet network using an Ethernet cable
and an Ethernet port 1 [5].

3. After that I connected the Power input connectors on the Q1-cRIO module
to the power connector cRIO-9024 with the red and black power wires (the
possitive wire to the V1 terminal and the negative to one of the C terminals)
[6].

Figure 2.2: Connection of the cRIO-9024 and the Q1-cRIO module [6]

4. I connected the Analog Output #0 on the Q1-cRIO to the Amplifier Input 0
socket on the QUBE-Servo by using the RCA cable.

5. I connected the Encoder Input #0 on the Q1-cRIO module to the Encoder 0
of the QUBE-Servo using the 5-pin-DIN to 5-pin-DIN cable.

6. I attached the ROTPEN module to the motor hub using the magnets.
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7. I connected the Encoder cable of the ROTPEN attachment to the Encoder 1
connector on the top of the aluminium box of the QUBE-Servo.

8. I connected the Encoder Input #1 on the Q1-cRIO module to the Encoder 1
of the QUBE-Servo using the 5-pin-DIN to 5-pin-DIN cable [2].

Table 2.1: QUBE-Servo wiring [2]

Cable From To Signal
1 Q1-cRIO: Analog

Output #0
QUBE-Servo Ampli-
fier Input #0

Amplifier voltage
driving command

2 Q1-cRIO: Encoder In-
put #0

QUBE-Servo Encoder
#0 connector

Motor encoder mea-
surement

3 Q1-cRIO: Encoder In-
put #1

QUBE-Servo Encoder
#1 connector

Pendulum module en-
coder measurement

Figure 2.3: Connection between the QUBE-Servo and the Q1-cRIO module [2]
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3 DATA EXCHANGE BETWEEN MATLAB
SIMULINK AND LABVIEW

This section presents two methods (Data transfer over TCP/IP and UDP) for data
exchange between the Simulink and the LabView. Another method is a Model
Interface Toolkit (MIT) in the LabView - The simulink model is converted into a
Dynamic Link Library (DLL) model and integrated in the LabView with MIT.

3.1 Data exchange over TCP/IP
TCP/IP is a set of communication protocols used on the Internet and other net-
works. One object typically acts as a server, and one or more objects act as clients.
It is a connection-oriented service (two processes must first "handshake" with each
other before sending away any packets) which provides reliable data transport (er-
ror correction). It is OS-independent and models that run on Simulink allow fast
modifications. It also allows the distribution of computational effort, as Simulink
can run in another computer.

Figure 3.1: Data flow - TCP connection [7]

In this demonstration the LabView acts as a server and the Matlab acts as a
client as shown in Fig. 3.1. First, the server socket (Welcome Socket-door) is created
on the server and is waiting to be contacted by a client. In this case the port number
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2057 identifies the process at the server. When a client sends a connection request to
the server (knock on the door) the Connection Socket is created and TCP connection
then establishes the virtual pipe between Connection Socket at the server and the
Client Socket at the client. Now it is possible to exchange data between the Matlab
and the LabView. In the diagram the data is sent from the LabView to the Matlab
but it might also be done vice versa. At the end, the sockets are closed which also
closes the TCP connection between the client and the server [7].

3.2 Data exchange via UDP
The UDP protocol can also be used to stream data from the Matlab to the LabView.
It is a connectionless service (sends data without ever establishing a connection)
which does not have any integrated error correction mechanisms (requires addi-
tional programming efforts). And like TCP, it is also OS-independent, we can easily
modify the running model on Simulink and it can run on different computer. In my
experiment I use a simple implementation - In Simulink there are UDP Send and
UDP Receive blocks from the DSP System Toolbox [17]. In LabView the program
is based on Simple UDP - Sender.vi.

Figure 3.2: Data flow - UDP connection [7]

In this case, the Simulink and also the LabView can act as a server or a client.
Depending on which port is listening. Nevertheless, both sides only send or receive
packets from or to the other side. In contrast to TCP connection, there is no previous
"handshaking". The example in Fig. 3.2 shows the data exchange from the Server
to the Client using UDP [7].
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3.3 The MATLAB and LabView data exchange
over TCP/IP (running on the same host)

To exchange data over TCP/IP I used and modified the Matlab script and the
LabView code from this webpage [8] - the code is presented and described in the
appendix A and B. To run it in real-time it was necessary to add the Soft Real-
Time Library [9]. Basically, the model generates the sine wave and sends the value
to the Workspace. The block Constant includes a variable which comes from the
LabView - Fig. 3.3a). For setting/getting parameters from/to the Simulink I used
the functions get_param, set_param - appendix A.

(a) Simulink model

(b) LabView code

Figure 3.3: TCP/IP: the Simulink model and the LabView code

In the LabView, SubVI - Listen.vi is a sort of door that is waiting for the knock
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from a client. When the client contacts the server the connection is established and
we can read the data with the block TCP Read. The output of the TCP Read
is a string (in our case a binary string because we send the type Double from the
Matlab). I choose to convert from the binary string to the Double using the function
Unflatten From String. For sending data to the Matlab there is a block TCP
Write - it requires a string (in this case it is again a binary string). I need to use
Flatten To String function which converts anything to a flattened string of binary
values [10]. At the end the connection is closed with the TCP Close Connection.

(a) Data displayed in the Simulink
(b) Data displayed in the LabView

Figure 3.4: TCP/IP: Data exchange

The sampling rate is set to 10 ms. The data exchange demonstration is shown
in Fig. 3.4.

The Fig. 3.5 depicts delta time between the received frames in the Matlab which
are about 16 ms on average. The average is calculated and displayed every 100
ms. In the graph there can be found some peaks. They represent the unsuccessful
(high peaks) or successful (low peaks) packets of delivery causing the increase and
decrease in time.

Figure 3.5: TCP: Delta time between the received packets
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3.4 The MATLAB and LabView data exchange
via UDP (running on the same host)

In Simulink the data is sent and received by the blocks UDP Send and UDP
Receive from the DSP System Toolbox [17]. These blocks also exist in the Instru-
ment Control Toolbox [18]- The main difference is that the blocks from the DSP
System Toolbox are suitable only for one-dimensional vectors whereas the blocks
from Instrument Control Toolbox can be used for multi-dimensional vectors. In this
application I wanted to send and receive only the one-dimensional vectors so I used
the blocks from the DSP System Toolbox. The blocks from the Instrument Control
toolbox will be used later in section 3.5. To run the model in real-time I used the
Soft Real-Time Library again. The model is shown in Fig. 3.6a).

(a) Simulink model

(b) LabView code

Figure 3.6: UDP: the Simulink model and the LabView code
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In the LabView the program is based on examples of a Simple UDP - Sender.vi
and Simple UDP Receiver.vi. Initially the connection is established by the UDP
Open. To read the data there is a block named UDP Read. And like in the TCP
Connection, the output from the UDP Read is a string and that is the reason why
we need to use the Unflatten From String. The code in the LabView (Fig. 3.6b)
does not keep the data all the time - and because of that it goes down to zero among
the received values. We need to check whether the received value is zero or not. If
so, the previous value is used. Next, to send data to the Simulink there is the block
named UDP Write. To send anything via UDP, the block Flatten To String is
necessary again. Finally, the connection is closed by the UDP Closed.

Sample time is set to 10 ms. This speed of data exchange should be enough to
control the inverted pendulum. In Fig. 3.7 we can see that the data is exchanged
continuously, without any breaks on both sides.

(a) Data displayed in the Simulink (b) Data displayed in the LabView

Figure 3.7: UDP: Data exchange

The Fig. 3.8 depicts delta time between the received frames in the Matlab which
is about 11 ms on average. To compare Fig. 3.8 with Fig. 3.5, delta time between
the received packets sent via UDP does not fluctuate as much as over TCP/IP.

Figure 3.8: UDP: Delta time between the received packets
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3.5 Data exchange applied to the actual system
I analysed data transfer from the Matlab to the LabView and vice versa over the
TCP/IP and UDP. Both of them met the requirements. My aim was to study how
fast the data transfer could be. The Round Trip Time should be reached in about 10
ms. In the TCP/IP connection I achieved the time difference of t=16 ms between
the received packets. In the UDP connection I achieved a more desirable result of
t=11 ms which is closer to 10 ms than in the TCP/IP connection. For the remote
control purposes the UDP connection is more appropriate. It does not have an er-
ror correction, it is less complicated and it is faster than the TCP/IP. We do not
need to receive all the packets when controlling the pendulum. If some packets are
dropped it is useless to resend them again - we need an actual value of the pendulum
position. An effort of the TCP/IP connection to resend the packet again and again
might cause the fact that the value will not be actual and the pole may fall down.

When the data transfer is applied to the actual system, the situation becomes more
complicated. The primary problem is that there are two kinds of measurements (the
angle of the pole, and the angle of the arm) which must be sent from the LabView
to the Matlab. It means that we need to send a multi-dimensional vector instead
of one-dimensional. The second issue is that the data transfer does not run on the
same host but it runs on two devices with different IP addresses. As a result, we
can get a greater delay in communication which we have to take into consideration
during the design of the control. In this section I am trying to deal with transferring
of two numbers from the LabView to the Matlab and I am trying to measure the
delay important for the design of control.

In the following application I display values, coming from the LabView, in the
Simulink. In the Simulink I generated the square signal representing the voltage
and sent it to the LabView. The pole was in its downward position. This applica-
tion assured me that I have a proper communication, necessary for the control of
the inverted pendulum. Now I am going to demonstrate how the LabView software
differs from the one in section 3.4. The code is presented in appendix C.

As the first step I will specify the board type in the HIL Initialize block. We
work with q1_single. CL HIL Read block reads the counts from the Encoder
and then Counts to Angles calculates certain angles in radians from the counts.
Before sending the data to the Matlab I need to remove the first 4 bytes because
they represent the header which contains information about the packets. It is done
by the String Subset. In the end, the data coming from Matlab is written on the
board with the CL HIL Write [11]. The rest of the code is the same as it was
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previously described in section 3.4.

Figure 3.9: UDP: Simulink model

In the Simulink the data is sent and received by the blocks UDP Send and
UDP Receive from the Instrument Control Toolbox. The UDP Receive enable
us to receive a multi-dimensional vector as shown in Fig. 3.9 - parameter Data size.
After that the square wave signal representing voltage is generated and sent to the
LabView.

In the LabView the sampling time is set to 1 ms, in the Simulink it is 10 ms. In
the LabView the sampling time is much shorter to avoid possible consequences of an
unsuccessful measurement in the LabView. Basically, if one of the 10 measurements
in the LabView is done correctly then we reach 10 ms sampling time in the Simulink.

The result of the data transfer is shown in Fig. 3.10. It can be observed that the
behaviour of the angles is not particularly symmetrical (theoretically, it should be
symmetrical because it generates square signal). It might be caused by the delay.
If there is a delay in the generated signal in the Simulink then in the LabView the
previous value is used which causes that the positive or negative signal affects the
motor for a longer time. Nevertheless, the position does not matter, in this case the
most important thing is that the data is transferred successfully.

The Fig. 3.11 displays the delta time between the received packets. It is about
15 ms on average. There are some peaks which is a signal that some data is delivered
some of it is lost. As a result there is this fluctuation. The controller dealing with
the balance will be designed based on an average time delay.
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(a) Theta

(b) Alpha

(c) Voltage

Figure 3.10: Data displayed in the Simulink (pole in its downward position)

Figure 3.11: Delta time between reached packets
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4 DESIGN OF THE CONTROL

4.1 Control Law
All linear dynamic systems can be described by the differential equations. Those dif-
ferential equations of any order can be transformed into a set of first order equations
called state-space description. The general state-space description of a continuous
system is expressed as

𝑥̇ = 𝐹𝑥 + 𝐺𝑢,

𝑦 = 𝐻𝑥 + 𝐽𝑢,
(4.1)

where x is a column vector called the state containing n elements for an nth-order
system, u is the 𝑚 × 1 input vector of the system, y is the 𝑝 × 1 output vector, F is
an 𝑛 × 𝑛 system matrix, G is an 𝑛 × 𝑚 input matrix, H is a 𝑝 × 𝑛 output matrix,
and J is 𝑝 × 𝑚1.

I applied the control from the computer through a ZOH. Therefore, the equations
have a discrete representation as

𝑥(𝑘 + 1) = 𝜑𝑥(𝑘) + Γ𝑢(𝑘),
𝑦(𝑘) = 𝐻𝑥(𝑘) + 𝐽𝑢(𝑘),

(4.2)

where

𝜑 = 𝑒𝐹 𝑇 ,

Γ =
∫︁ 𝑇

0
𝑒𝐹 𝜏 𝑑𝜏𝐺.

(4.3)

In theMatlab we can easily transform the continuous system to the discrete one with
a sample period T, using the Matlab Control System Toolbox (CST)

𝑠𝑦𝑠𝐷 = 𝑐2𝑑(𝑠𝑦𝑠𝐶, 𝑇 ). (4.4)

The state-space methods consist of two independent steps. The first one is the
control law and it assumes that we have all the states available for feedback purposes.
The other step is to design an estimator (aka observer), which estimates the entire
state vector based on measurements of the rest of the known states. The final control
design consists of the estimator and the control law based on the estimator states
rather than on the actual states [12]. In our design the estimator is not taken into

1Franklin, Gene F., J. David Powell and Michael Workman. Digital control of dynamic systems.
Page 12. [12]. It is also common to use A, B, C, D instead of F, G, H, J.
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account. We do not need it because two of the states are measured and the two of
them are calculated with a filter (we know all the states).

The control law is simply the feedback of all the state elements multiplied by the
gain K.

𝑢 = −𝐾𝑥 = −
[︁
𝐾1 𝐾2 . . .

]︁ ⎡⎣𝑥1

𝑥2

⎤⎦ . (4.5)

It can be observed that this structure does not allow to set the reference input. The
control law described in Eq. 4.5 assumes that r = 0 and that is the reason why it
is usually referred to as a regulator. To introduce the reference input 𝑟 ̸= 0 requires
further studies that are not necessary for my control [12].

Substituting Eq. 4.5 in Eq. 4.2, I get

𝑥(𝑘 + 1) = 𝜑𝑥(𝑘) − Γ𝐾𝑥(𝑘). (4.6)

The z-transform of Eq. 4.6

(𝑧𝐼 − 𝜑 + Γ𝐾)𝑋(𝑧) = 0. (4.7)

At the end, the characteristic equation of the closed loop system with the control
law looks as follows

| (𝑧𝐼 − 𝜑 + Γ𝐾) |= 0. (4.8)

4.2 State-Space Model for Systems with Delay
In this section I would like to present the discrete state models including a time
delay in the model2. The continuous state-space model including the delay is

𝑥̇ = 𝐹𝑥(𝑡) + 𝐺𝑢(𝑡 − 𝜆),
𝑦 = 𝐻𝑥.

(4.9)

If we separate the system delay 𝜆 into an integer number representing the sampling
periods plus a fraction, we can define an integer l and a number m as

𝜆 = 𝑙𝑇 − 𝑚𝑇,

𝑙 ≥ 0,

0 ≤ 𝑚 ≤ 1.

(4.10)

2Only the main steps are discussed. The formulas are derived step by step in details in the book
Franklin, Gene F., J. David Powell and Michael Workman. Digital control of dynamic systems.
Pages 110-114. [12]
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With this substitution, the discrete system is described as

𝑥(𝑘𝑇 + 𝑇 ) = 𝜑𝑥(𝑘𝑇 ) + Γ1𝑢(𝑘𝑇 − 𝑙𝑇 ) + Γ2𝑢(𝑘𝑇 − 𝑙𝑇 + 𝑇 ). (4.11)

where

𝜑 = 𝑒𝐹 𝑇 , Γ1 =
∫︁ 𝑇

𝑚𝑇
𝑒𝐹 𝜂𝐺𝑑𝜂, Γ2 =

∫︁ 𝑚𝑇

0
𝑒𝐹 𝜂𝐺𝑑𝜂. (4.12)

If we consider l > 1, the equations are

𝑥(𝑘 + 1) = 𝜑𝑥(𝑘) + Γ1𝑢(𝑘 − 𝑙) + Γ2𝑢(𝑘 − 𝑙 + 1). (4.13)

Now it is necessary to eliminate the past controls up to u(k). We introduce l new
variables such that

𝑥𝑛+1(𝑘) = 𝑢(𝑘 − 𝑙), 𝑥𝑛+2(𝑘) = 𝑢(𝑘 − 𝑙 + 1), 𝑥𝑛+𝑙(𝑘) = 𝑢(𝑘 − 1). (4.14)

It results in increasing the dimension of matrices depending on the delay. The final
structure of the system looks like this

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑥(𝑘 + 1)
𝑥𝑛+1(𝑘 + 1)
𝑥𝑛+2(𝑘 + 1)
𝑥𝑛+3(𝑘 + 1)

...
𝑥𝑛+𝑙(𝑘 + 1)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝜑 Γ1 Γ2 0 . . . 0
0 0 1 0 . . . 0
0 0 0 1 . . . 0
... ... ... ... . . . ...
0 0 0 0 0 1
0 0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑥(𝑘)
𝑥𝑛+1(𝑘)
𝑥𝑛+2(𝑘)
𝑥𝑛+3(𝑘)

...
𝑥𝑛+𝑙(𝑘)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
+

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0
0
...
1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
𝑢(𝑘),

𝑦(𝑘) =
[︁
𝐻 0 . . . 0

]︁
⎡⎢⎢⎢⎢⎢⎢⎣

𝑥(𝑘)
𝑥𝑛+1(𝑘)

...
𝑥𝑛+𝑙(𝑘)

⎤⎥⎥⎥⎥⎥⎥⎦ .

(4.15)

In the Matlab we can discretize the continuous state space model with CST

[𝑃ℎ𝑖, 𝐺𝑎𝑚, 𝐶𝑑] = 𝑐2𝑑𝑡(𝐴, 𝐵, 𝐶, 𝑇, 𝑑), (4.16)

where A, B, C are the matrices describing the continuous time system, T represents
the sampling time and d is a time delay.

30



Figure 4.1: System with a delay of more than one period [12]

4.3 LQR Steady-State Optimal Control
One of the possibilities to stabilize the inverted pendulum is by optimal control
methods which are attractive because they can easily deal with MIMO systems.
There are also very efficient computation tools which help designer to find the proper
feedback gain K [12]. For a discrete plant

𝑥(𝑘 + 1) = 𝜑𝑥(𝑘) + Γ𝑢(𝑘), (4.17)

we look for a way to find the State-Variable Feedback (SVFB) control

𝑢 = −𝐾𝑥 (4.18)

that minimize the cost function

𝐽(𝑥𝑘) = 1
2

∞∑︁
𝑘=𝑖

(𝑥𝑇
𝑖 𝑄𝑥𝑖 + 𝑢𝑇

𝑖 𝑅𝑢𝑖) (4.19)

with design symmetric matrices 𝑄 = 𝑄𝑇 ≥ 0, 𝑅 = 𝑅𝑇 ≥ 0 based on the relative im-
portance of the certain states and controls. Matrices must be nonnegative definite3,
which is easily accomplished by choosing matrices to be diagonal with all numbers
on the main diagonal positive or zero. Q is an 𝑛 × 𝑛 matrix and R is an 𝑚 × 𝑚

matrix where m is number of control inputs. For the SISO systems and also in
this case R is a scalar. The weights of those matrices are picked by trial-and-error
method. This method is known as the Linear Quadratic Regulator (LQR), since the
system is linear and the cost is quadratic [12].

Substituting SVFB into Eq. 4.19 and after taking many other steps - described
3It ensures that 𝑥𝑇 𝑄𝑥 and 𝑢𝑇 𝑅𝑢
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step by step here [13], we define the optimal control gain as

𝐾 = (𝑅 + 𝐵𝑇 𝑃𝐵)−1𝐵𝑇 𝑃𝐴. (4.20)

To find P, we solve the Riccati equation for P

𝐴𝑇 𝑃𝐴 − 𝑃 + 𝑄 − 𝐴𝑇 𝑃𝐵(𝑅 + 𝐵𝑇 𝑃𝐵)−1𝐵𝑇 𝑃𝐴 = 0. (4.21)

Finally, we verify the performance. If it is not satisfactory we try again for different
Q, R.

In the Matlab, there is CST for calculation optimal gain K

[𝐾, 𝑆, 𝑒] = 𝑑𝑙𝑞𝑟(𝐴, 𝐵, 𝑄, 𝑅). (4.22)

In addition, it returns S of the associated discrete-time Riccati equation and closed-
loop eigenvalues e = eig(A-B*K) [14].

4.4 Controllability
The procedure before designing the control for a certain system is the verification
of its controllability4. If the matrix C described as

𝐶 =
[︁
Γ ΦΓ . . . Φ𝑛−1Γ

]︁
(4.23)

is nonsingular, then we can convert the model to the canonical form and construct
a control law. The system is controllable provided the rank r of the matrix C is n
where n is a number of states [12].

It is possible to calculate in the Matlab by

𝐶𝑜 = 𝑐𝑡𝑟𝑏(𝑠𝑦𝑠),
𝑟 = 𝑟𝑎𝑛𝑘(𝐶𝑜).

(4.24)

4Further discussed in the book Franklin, Gene F., J. David Powell and Michael Workman.
Digital control of dynamic systems. Pages 345-351.
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4.5 Design of the Control for the actual system
From the Quanser Student workbook [15] I got the description of the linearized
continuous-time state space model

𝐴 =

⎡⎢⎢⎢⎢⎢⎣
0 0 1 0
0 0 0 1
0 149.226 −0.0104 0
0 261.525 −0.0103 0

⎤⎥⎥⎥⎥⎥⎦ 𝐵 =

⎡⎢⎢⎢⎢⎢⎣
0
0

41.718
49.133

⎤⎥⎥⎥⎥⎥⎦ , (4.25)

in which the state vector x is defined as

𝑥 =
[︁
𝜃 𝛼 𝜃 𝛼̇

]︁𝑇
, (4.26)

where 𝜃 is the angle of the arm, 𝛼 is the angle of the pole and 𝜃, 𝛼̇ are their velocities.
In section 3.5 I studied the delay in data transport. As it is presented in Fig.

3.11 the delay is around d=15 ms which is the key factor in the control design. To
discrete the continuous-time model I used the Matlab CST

[𝑃ℎ𝑖, 𝐺𝑎𝑚, 𝐶𝑑] = 𝑐2𝑑𝑡(𝐴, 𝐵, 𝐶, 𝑇, 𝑑), (4.27)

where T represents the sampling period. I experimentally studied and got the best
control results with the sampling period T=0.01 s. Then I got the discrete-time
model

𝜑 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0.0075 0.01 0 0.0019 0.0006
0 1.0131 0 0.01 0.0018 0.0006
0 1.4987 0.9999 0.0075 0.2496 0.2487
0 2.6266 −0.0001 1.0131 0.2475 0.2459
0 0 0 0 0 1
0 0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
Γ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0
0
0
1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (4.28)

It can be noticed that the dimension of the matrices increased by two. It is because
𝑑𝑒𝑙𝑎𝑦 = 1.5 × 𝑠𝑎𝑚𝑝𝑙𝑖𝑛𝑔 period. If we compare system matrix 𝜑 in Eq. 4.28 and
system matrix in Eq. 4.15 we could see that the structures of the matrices are the
same. Even the elements in the matrix Γ2 are non-zeros because the time delay is
not a multiple integer of the sampling period - there is a fraction.

Then I wanted to verify whether the conversion from the continuous time model
to the discrete time model maintains the physical meaning of the states. It might
be made by temporarily defining velocities as outputs C=eye(4), and applying CST
c2dt (4.27).
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The output matrix is then

𝐶𝑑 =

⎡⎢⎢⎢⎢⎢⎣
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0

⎤⎥⎥⎥⎥⎥⎦ . (4.29)

I came to a conclusion that 𝐶 = 𝐶𝑑 which is a proof that the states have the same
physical meaning in both representations which confirms that I do not need any
estimator.

Now there is a discrete model of the actual system with a network delay. Before
I design a controller I first verify that the system is controllable. As it was discussed
in section 4.4 since the controllability matrix is 6 × 6, the rank of the matrix must
be 6. For that purpose I used a Matlab CST

𝐶 = 𝑐𝑡𝑟𝑏(𝑃ℎ𝑖, 𝐺𝑎𝑚),
𝑛 = 𝑟𝑎𝑛𝑘(𝐶).

(4.30)

An expected result was achieved n=6.
We verified that the system is controllable and I should be able to design a

controller achieving the specific requirements. For a discrete Linear Quadratic Reg-
ulator (LQR) controller I can apply a Matlab CST

[𝐾, 𝑆, 𝑒] = 𝑑𝑙𝑞𝑟(𝐴, 𝐵, 𝑄, 𝑅). (4.31)

The matrices Q and R are picked by trial-and-error method which means that I
set the weights on the matrix elements and run the application. According to the
system behaviour I tuned the weights and tried again. This process was repeated
until I reached the desirable result.

The best control result was reached with matrices

𝑄 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

50 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 10 0
0 0 0 0 0 10

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
𝑅 = 1. (4.32)

I put more weight on the previous inputs and the arm position. The more the state
is penalized the more it influences the system behaviour [12]. As a result I got the
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required control gain

𝐾 =
[︁
−1.2329 22.221 −0.5585 1.6634 0.2573 0.4454

]︁
. (4.33)

The Fig. 4.2 shows how the controller is wired in the Simulink. We have two

Figure 4.2: Controller wired in Simulink

measurements 𝜃 and 𝛼 coming from the LabView. In the subsystem States X there
are high pass filters 50𝑠/(𝑠+50) used to compute velocities 𝜃 and 𝛼̇. Although I have
a discrete time controller I can use continuous time filters because the sampling time
is short enough which means that the discrete time signal is close to a continuous
time behaviour. The states are multiplied by the calculated control gain K (4.33).
The control output is a voltage U which drives the pendulum’s arm.

The whole Simulink model is shown in Fig. 4.3. The data transfer is done in the
same way as it was presented in Fig. 3.9. The Enable Balance Control Switch
ensures that the control output is used if | 𝛼 |≤ 10𝑑𝑒𝑔, otherwise zero is returned.

The LabView code is made in the same way as shown in appendix C.
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Figure 4.3: The Simulink model with LQR controller

4.6 Experiments with the designed controller
In this chapter the experiments with the designed controller are shown.

The first experiment confirmed that the controller works properly. I manually
set the pole in its upright position and observed the arm’s and pole’s behaviour.
In this experiment the controller just keeps the pendulum upright and there are no
disturbances affecting the pendulum’s position.

From the Fig. 4.4 it is clear that the pendulum stays upright and does not
fall down. The pole moves in the range of ±1 ° which is sufficient enough for the
balance and I might have observed smooth movements of the arm and the pole
while performing the experiment in the laboratory. Ideally (without delay and
disturbances) the behaviour around the zero point would be periodic and symetrical.
In this case it is not periodic because of variable delay.

Most of the signal which represents the arm position is above zero which means
it does not fluctuate around zero (it seems that zero point is not set to 0 but to
±2 ). This strange performance may be caused by an imperfect controller (when
designing the control I put more emphasis on keeping the pole upright). Another
reason why it performs in such a way could be - when the application is started, the
position of the pole is 180 ° (no matter if the pole is downwards or upwards). The
pole might have been swinging a little when the application was running and the
position of 180 ° might have shifted which would also mean shift 0 ° in the upright
position.

36



(a) Theta

(b) Alpha

Figure 4.4: Behaviour of stable inverted pendulum

In the second experiment it is examined how the controller deals with distur-
bances. The disturbance is generated manually by a slight nudge to the pole. It
is shown in Tab. 4.1 that the generated disturbance causes the peak value -8.612 °
which almost reaches the controlled limit ±10 °.

Table 4.1: Information about the disturbance
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The Fig. 4.5 depicts the response to the disturbance. In Tab. 4.1 we can also
see that the settling time is 5.77 s - this value is not really true because 2 % of
8.612 ° (peak value) is 0.172 ° and the settled position of the pole fluctuates in the
range of ±1 ° (as I found out in the first experiment) which means that if I display
it for a longer time, the settle time in the Tab. 4.1 would probably increase. The
pole position settles in the range of ±1 ° at around t=3 s.

Concerning the arm position, at the beginning there is a huge overshoot reaching
almost -30 °, which represents quick movement of the arm in order to balance the
disturbance. Then the behaviour looks similar to the one in the first experiment.
In the time interval from t=4 s to t=6 s the signal is not so steep as before. The
packets are probably delivered successfully with small delays, the controller in Mat-
lab receives values with minor differences and the final behaviour is more smooth.
In the graph representing the pole position we may notice that the signal fluctuates
really close to zero without any significant peaks.

(a) Theta

(b) Alpha

Figure 4.5: Dealing with disturbance
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5 CONCLUSION
The goal of this thesis was to find the best solution to the problem of how to
interconnect the Matlab Simulink and the Labview software and reach the shortest
possible time delay between the received packets. Afterwards, I was supposed to
design the controller which deals with this time delay and stabilizes the pendulum
in its upright position.

All the Hardware used in the application including the parameters and specifica-
tions is described in the first chapter. The following chapter shows the instructions
of the Hardware Setup and basic wiring.

In chapter three, I compared the TCP/IPand UDP protocols. As it was already
mentioned in chapter 3.5 for data transfer we reached better results with the UDP
protocol. It is less complicated, faster then TCP/IP and it does not have any error
correction. After applying this data transfer application to the actual system I
reached a time delay of t=15 ms as is presented in Fig. 3.11.

In the chapter four I introduced the Control Law, Controllability and the State-
Space Model for Systems with Delay - I mentioned how dimensions of the matrices
change depending on the time delay and then, LQR Steady-State Optimal Con-
trol was discussed. All those discussed topics were utilized for designing the LQR
control for the actual system. For assembling the control design I used the model
description provided by the Quanser, I worked with the sampling period T=0.01 s
and I considered the time delay t=15 ms which was studied in section 3.5. After
fiddling with the parameters of the weighting matrix Q (4.32) I managed to keep
the pendulum upright with the control gain K (4.33). I did not need any additional
estimators because I measured and calculated all necessary states. The estimator
would be useful if some states were not possible to measure or if there was some
noise. Finally, I presented the experiments with the designed controller proving that
the remote control works properly.

All tasks were successfully completed although it was still possible to improve
the balance properties for instance to develop a more complex controller or to im-
plement the controller in another environment. To process the Simulink model is
time consuming. If I built the stand alone application written in a programming
language, the data transfer would be much faster and I would reach more desirable
result.

Now the developed system might be used for the control demonstrations in var-
ious courses presented in the Department of Automation Science and Engineering
at Tampere University of Technology.
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A APPENDIX - MAIN_MINIMAL.M
-----------------------------------------------------------
%connection settings
port=2057; % Server port
host=’localhost’;
samplingrate=10; %Samplingrate in ms

%adding library "Soft Real Time" to Simulink
slblocks

%loading Simulink Model and starting simulation in RT
load_system(’rtc_example’); %loading model
data_received=0;
%setting initial value
set_param(’rtc_example/Constant’,’Value’,’data_received’);
set_param(’rtc_example’,’SimulationCommand’,’Start’);

while(true)
%getting parameter from Simulink to Workspace
rto = get_param(’rtc_example/To Workspace’, ’RuntimeObject’);
data_to_send = rto.InputPort(1).Data;
data_received=exchangeData(port,host,samplingrate,data_to_send)
if(numel(data_received)>0)

%Setting parameter in Simulink
set_param(’rtc_example/Constant’,’Value’,’data_received’);

end;
end

44



B APPENDIX - EXCHANGEDATA.M
-----------------------------------------------------------
function [data_received]=exchangeData(port,host,samplingrate,data_to_send)
%exchangeData - This code allows to exchange data bewteen Matlab
%and Labview over TCP-IP
%
% Inputs:
% output_port - port for communication
% host - host description (only tested with ’localhost’
% samplingrate - samplingrate for data exchange
% data_to_send - data you want to send to Labview
%
% Output:
% data_received - Data from MATLAB

%------------- BEGIN CODE --------------
tic
% java import
import java.io.*
import java.net.Socket

ClientSocket = [];
message=data_to_send;

while true

try

%Client socket - it initiates the TCP connection between client
%and server
ClientSocket = Socket(host, port);

%Creating an output stream
output_stream = ClientSocket.getOutputStream;
d_output_stream = DataOutputStream(output_stream);

%Sending packets
d_output_stream.writeDouble(message);
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d_output_stream.flush;

% Creating an input stream to receive response from the Server
input_stream = ClientSocket.getInputStream;
d_input_stream = DataInputStream(input_stream);

%Reading data and saving to variable data_received
data_received=d_input_stream.readDouble;

%Closing socket
ClientSocket.close;
break;

catch
if ~isempty(input_socket)

input_socket.close;
fprintf(1, ’NO CONNECTION\n’);

end
end

end

time_needed=toc;
fprintf(1, ’\n Time needed: %d\n’,time_needed);

if time_needed<samplingrate/1000
pause(samplingrate/1000-time_needed);

end

end
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C APPENDIX - QUBE-SERVO.VI
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