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ABSTRACT A novel kind of non-integer order bilinear filters, named double-order bilinear filters,
is introduced in this work. They are based on the employment of two non-integer orders, offering
the maximum design flexibility in comparison with their fractional-order and power-law counterparts.
An attractive offered benefit is that this is achieved without increasing the circuit complexity, since the
proposed structure is capable of realizing all non-integer kinds of filters. Two design examples are provided,
where it is shown that lead/lag compensators utilized in control applications and low/high shelving filters
employed in acoustic applications are actually bilinear filters with suitably selected pole/zero frequencies.
Simulation and experimental results, using the OrCAD PSpice simulator and a Field Programmable Analog
Array device, respectively, support the findings of this work.

INDEX TERMS Analog filters, bilinear filters, compensators, curve-fitting approximation, field
programmable analog array, fractional-order filters, power-law filters, shelving filters.

I. INTRODUCTION
The term "bilinear filter" is used for the characterization of
filters which are expressed as a ratio of two linear functions.
The transfer function of a first-order bilinear filter is

HIO(s) = GL ·
yτ s+ 1
xτ s+ 1

, (1)

with x, y > 0 being dimensionless scaling factors, τ being
a time constant, and GL being the low-frequency gain of the
filter.

Employing fractional calculus, the transfer function of a
fractional-order bilinear filter is

HFO(s) = GL ·
y(τ s)α + 1
x(τ s)α + 1

, (2)

The associate editor coordinating the review of this manuscript and
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with 0 < α < 1 being the order of the filter.
The transfer function of a power-law bilinear filter of order
0 < β < 1 is given by

HPL(s) = GL ·

(
yτ s+ y0
xτ s+ x0

)β

. (3)

Meanwhile, the standard first-order low-pass and high-pass
filter functions are directly derived from (1), by setting y =

0 and x = y, respectively.
Forms of fractional-order bilinear filter functions have

been realized in [1], [2], [3], and [4], while the corresponding
realization of power-law ones have been presented in [3].
Both the aforementioned kinds of filters offer improved
design flexibility with regards to their integer-order counter-
parts, because of the variable non-integer order of the filters,
which allows the adjustment of the main characteristics of
their frequency behavior.
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In this work, a double-order bilinear filter function is
introduced where two degrees of freedom are offered because
of the employment of two orders, instead of a single order in
fractional-order and power-law filters. This enables having
full control of the characteristics of the filter. This work
is an extension of the work presented in [5]. Two possible
implementations are demonstrated, with the first one based
on the employment of a single Current Feedback Operational
Amplifier (CFOA) as the active element, which also offers the
capability of realizing all non-integer order functions by the
same RC network, and just adjusting the values of resistors
and capacitors. The second implementation is based on the
utilization of a Field Programmable Analog Array (FPAA)
device, which offers design programmability and versatility
in the sense that all kinds of (non-integer order) bilinear filters
can be implemented by re-programming the characteristics of
the intermediate stages.

This work is organized as follows: a systematic review of
the bilinear filter transfer functions, presented in the litera-
ture, is performed in Section II. The proposed generalized
bilinear filter transfer function is introduced in Section II,
where its possible implementations are also discussed. Two
application examples are provided in Section IV, and the
evaluation of the performance of the resulting schemes
is performed through simulation results, obtained with
the employment of the OrCAD PSpice suite and through
experimental results using the FPAAAN231E04 device from
Anadigm [6].

II. BILINEAR FILTER TRANSFER FUNCTIONS
A. INTEGER-ORDER BILINEAR FILTERS
Considering the expression in (1), the time constant is
associated with a characteristic frequencyω0 according to the
formula: τ = 1/ω0, and the pole and the zero are located in
the left-half of the s-plane with their magnitudes being

ωp =
1
xτ

=
ω0

x
, ωz =

1
yτ

=
ω0

y
. (4)

According to (4), the pole (ωp) and zero (ωz) frequencies are
not symmetrically located around the characteristic frequency
having (in logarithmic scale) a distance equal to x and y,
respectively.

Using (4), the transfer function in (1) can be alternatively
written as in (5)

HIO(s) = GL

(
ωp

ωz

)
s+ ωz

s+ ωp
. (5)

The gain at high frequencies (GH ) tends to

GH = GL

(
ωp

ωz

)
= GL

( y
x

)
. (6)

Setting s = jω in (5), the derived gain and phase responses
are given by (7a)–(7b), respectively

| HIO(jω) | = GL ·

√√√√√√ 1 +

(
ω
ωz

)2
1 +

(
ω
ωp

)2 , (7a)

̸ HIO(jω) = tan−1(ω/ωz) − tan−1(ω/ωp). (7b)

Generally, the knee frequencies of the filter are calculated
from (7a) by setting the value of the gain to a desired level.
The most common level is the ±3dB level and this will be
employed in what follows. In order to simplify the analysis,
it is assumed that the pole and zero of the filter are separated
in such a way that they independently determine the behavior
of the filter. The asymptotic (Bode) behavior of the frequency
response is determined by the relative separation between the
pole and the zero of the filter. This will be also assumed
hereinafter for all the types of filters whichwill be considered.

Type-I: ωz > ωp (x > y and GL > GH ), then the gain
response has a constant value equal toGL until the lower knee
frequency ωL , which is equal to the pole frequency, and starts
monotonically decreasing until the higher knee frequency
ωH , which is equal to the zero frequency. After this frequency,
it reaches a constant value equal to GH , due to the effect of
the zero. Therefore,

ωL = ωp =
ω0

x
, ωH = ωz =

ω0

y
. (8)

Type-II: ωp > ωz (x < y or GL < GH ), then the gain
response has a constant value equal toGL until the lower knee
frequency ωL , but now becomes equal to the zero frequency,
and then it monotonically increases until reaching the higher
knee frequencyωH , which is now equal to the pole frequency,
reaching a constant value equal to GH . Thus,

ωL = ωz =
ω0

y
, ωH = ωp =

ω0

x
. (9)

Defining the geometric mean of the knee frequencies as the
mean frequency (ωm)

ωm ≡
√

ωL · ωH , (10)

then, using (8) or (9) and (10), it is readily obtained
that the relationship between the mean frequency and the
characteristic frequency ω0 is

ωm =
ω0
√
xy

. (11)

The gain at the mean frequency (Gm) is defined by (12)

Gm ≡| HIO(jωm) |=

√
GLGH , (12)

which is equal to the geometric mean of the gains at low and
high frequencies.
It is now clear that the relationship between the gains at low
(GL) and high frequencies (GH ), and the gain at the mean
frequency (Gm), is

GL = Gm

√
x
y
, GH =

Gm√
x
y

. (13)

Therefore, the gains of the filter GL and GH (in dBs) are
equally spaced around Gm.
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FIGURE 1. Bode plots of the gain responses of the Type-I (blue) and
Type-II (red) bilinear filters, with notation of their most important
frequency characteristics.

The phase at this frequency (Φm) reaches its mini-
mum/maximum value given by

Φm ≡ ̸ HIO(jωm) = sin−1

(
1 −

x
y

1 +
x
y

)
. (14)

In order to facilitate the reader, the Bode plots associated
with Type-I and II are demonstrated in Fig.1, where the
aforementioned frequency characteristics are depicted.

B. FRACTIONAL-ORDER BILINEAR FILTERS
The pole and zero of the fractional-order filter function in (2)
can be expressed as

ωp =
1

x1/ατ
=

ω0

x1/α
, ωz =

1
y1/ατ

=
ω0

y1/α
, (15)

where the distance between the pole and the zero is controlled
by the order of the filter.
The transfer function in (2) can be alternatively written as

HFO(s) = GL

(
ωp

ωz

)α

·
sα + ωα

z

sα + ωα
p
, (16)

with the gain at high frequencies being

GH = GL

(
ωp

ωz

)α

= GL
( y
x

)
. (17)

Setting sα = ωα
· [cos(0.5απ) + j sin(0.5απ)] in (16), the

gain and phase responses of the filter are given by

| HFO(jω) | = GL ·

√√√√√√ 1 +

(
ω
ωz

)2α
+ 2

(
ω
ωz

)α

cos(0.5απ )

1 +

(
ω
ωp

)2α
+ 2

(
ω
ωp

)α

cos(0.5απ)
,

(18a)

̸ HFO(jω) = tan−1 sin(0.5απ)(ωz
ω

)α
+ cos(0.5απ)

− tan−1 sin(0.5απ)(ωp
ω

)α
+ cos(0.5απ)

. (18b)

Thus, the asymptotic behavior will be as follows:
Type-I: ωz > ωp (x > y, GL > GH ), then the filter’s gain

response has similar behavior as its integer-order counterpart.

The difference is that the low and high knee frequencies are
not equal to the pole/zero frequencies. They depend on the
order of the filter, and they are given by

ωL =
ω0

x1/α
·

[√
1 + cos2(0.5απ) − cos(0.5απ)

] 1/α
,

(19a)

ωH =
ω0

y1/α
·

[√
1 + cos2(0.5απ) + cos(0.5απ)

] 1/α
.

(19b)

Type-II: ωp > ωz (x < y or GL < GH ), and the frequency
behavior is similar to that of the Type-II integer-order filters.
The knee frequencies are given by (19a)–(19b) after x and y
interchanging.
Using (15), it is readily obtained the relationship between the
mean frequency (ωm) and the characteristic frequency ω0 =

1/τ , given by (20)

ωm =
ω0

(
√
xy)1/α

. (20)

The relationship between the low and the high frequency
gains with the gain at the mean frequency is also given by
(13) making them equally spaced around the gain at themean
frequency.
The phase at the mean frequency reaches its mini-
mum/maximum value calculated by (21)

8m = tan−1 sin(0.5απ)√
x
y + cos(0.5απ)

− tan−1 sin(0.5απ)√
y
x + cos(0.5απ)

.

(21)

C. POWER-LAW BILINEAR FILTERS
The pole and zero locations of the filter in (3) are determined
by (4). Thus, the transfer function in (3) becomes

HPL(s) = GL

(
ωp

ωz

)β ( s+ ωz

s+ ωp

)β

. (22)

At high frequencies, the gain tends to the value

GH = GL

(
ωp

ωz

)β

= GL
( y
x

)β

. (23)

The gain and phase responses of the filter are

| HPL(jω) | = GL ·

 1 +

(
ω
ωz

)2
1 +

(
ω
ωp

)2


β/2

, (24a)

̸ HPL(jω) = β ·

[
tan−1(ω/ωz) − tan−1(ω/ωp)

]
. (24b)

The asymptotic behavior of the filter is as follows:
Type-I: ωz > ωp (x > y and GL > GH ), with the gain

response having the same behavior as that of its fractional-
order counterpart. Again, the knee frequencies are not equal

14042 VOLUME 12, 2024



J. Nako et al.: Bilinear Double-Order Filter Designs and Application Examples

to the pole/zero frequencies and they depend on the order of
the filter with their associated expressions given by

ωL =
ω0

x
·

√
21/β − 1, ωH =

ω0

y
·

1
√
21/β − 1

. (25)

Type-II: ωp > ωz (x < y and GL < GH ), where the knee
frequencies are given by (26)

ωL =
ω0

y
·

√
21/β − 1, ωH =

ω0

x
·

1
√
21/β − 1

. (26)

The expression of the mean frequency, derived using
(25)–(26) is the same as that which corresponds to the integer-
order case, i.e., (11).
The phase, is calculated from

Φm = β · sin−1

(
1 −

x
y

1 +
x
y

)
, (27)

and this is the minimum/maximum value.

III. PROPOSED GENERALIZED (DOUBLE-ORDER)
BILINEAR FILTERS
A. FILTERS CHARACTERISTICS
The transfer functions of the integer-order, fractional-order,
and power-law bilinear filters can be generalized according
to the following form

HDO(s) = GL ·

[
y(τ s)α + 1
x(τ s)α + 1

]β

, (28)

with 0 < α, β ≤ 1 being the orders of the filter. According
to (28), the integer-order, fractional-order, and power-law
bilinear filters correspond to α = β = 1, β = 0, and α = 0,
respectively.
The pole and zero of the filter are given by the expression
in (15) and, therefore, the transfer function in (28) can be re-
formed as

HDO(s) = GL

(
ωp

ωz

)αβ
(
sα + ωα

z

sα + ωα
p

)β

. (29)

Hence

GL
GH

=

(
ωz

ωp

)αβ

=

(
x
y

)β

. (30)

The resulting gain and phase responses are described by
(31a)–(31b)

|HDO(jω)|=GL


√√√√√√ 1 +

(
ω
ωz

)2α
+ 2

(
ω
ωz

)α

cos(0.5απ)

1 +

(
ω
ωp

)2α
+ 2

(
ω
ωp

)α

cos(0.5απ)


β

,

(31a)

̸ HDO(jω) = β ·

{
tan−1 sin(0.5απ )(ωz

ω

)α
+ cos(0.5απ)

− tan−1 sin(0.5απ )(ωp
ω

)α
+ cos(0.5απ)

}
. (31b)

TABLE 1. Frequency characteristics of double-order bilinear filters.

The shape of the asymptotic behaviors of the filter is the same
as that of Type-I and Type-II kinds, with the knee frequencies
given by the expressions in (32a)–(32b)

ωL =
ω0

x1/α
·

[√
21/β − 1+cos2(0.5απ) − cos(0.5απ )

] 1/α
,

(32a)

ωH =
ω0

y1/α
·

[√
21/β − 1+cos2(0.5απ) − cos(0.5απ)

]−1/α
,

(32b)

for the Type-I and with the same expressions for Type II after
interchanging x and y.
The expression of the mean frequency of the filter is

also given by (20), while the phase reaches its mini-
mum/maximum value calculated by (33)

8m = β ·

{
tan−1 sin(0.5απ )√

x
y + cos(0.5απ)

− tan−1 sin(0.5απ)√
y
x + cos(0.5απ )

}
. (33)

The most important frequency characteristics of the
generalized bilinear filter are summarized in Table 1. It must
be mentioned at this point that the frequency characteristics
of the integer-order filters (α = β = 1), fractional-order
(β = 0), and power-law (α = 0) bilinear filers could be
readily obtained from this Table.

In order to demonstrate the design flexibility offered by the
double-order filter, for a given set of values {x, y,GL , ω0}
the control of the frequency characteristics of the filter
is described in Table 2. Considering the extra degrees of
freedom {α, β} in the case of the double-order filter, it
is evident from this Table that the five characteristics are
controlled by five parameters, offering the highest possible
freedom to the designer.

B. REALIZATION OF THE PROPOSED GENERALIZED
BILINEAR FILTER
1) MINIMUM ACTIVE COMPONENT COUNT REALIZATION
Let us consider the structure in Fig.2a where a CFOA has
been chosen as the active element [7]. The realized transfer

VOLUME 12, 2024 14043
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TABLE 2. Controllability of the frequency characteristics of integer-order
(I-O), fractional-order (F-O), power-law (P-L) and double-order (D-O)
bilinear filters.

FIGURE 2. (a) CFOA based generalized structure for implementing integer
and non-integer order bilinear filter functions, (b) RC network for
implementing Z2 for Type-I or Z1 for Type-II integer-order filters, and
(c) Cauer-I RC network for implementing Z2 for Type-I or Z1 for Type-II
generalized non-integer order bilinear filters.

function is

H (s) =
Z2
Z1

. (34)

Assuming that the impedance Z2 is realized by the network
in Fig.2b, its value is given by

Z2(s) = R2
R1C1s+ 1

(R1 + R2)C1s+ 1
. (35)

Using (34)–(35) and considering that Z1 = R3, then the
following transfer function is readily obtained

HIO−I (s) =
R2
R3

R1C1s+ 1
(R1 + R2)C1s+ 1

. (36)

Comparing (1) and (36), it is derived that: GL = R2/R3, and
x/y = 1 + R2/R1 > 1. Therefore, this topology implements
the Type-I integer-order bilinear transfer function. The values
of x and y depend on the determination of the time constant.
For example:

• Assuming that τ = RC1, then x = (R1 + R2)/R and
y = R1/R, with R being an arbitrary value resistor.

• Assuming that τ = τz = R1C1 (i.e., equal to the time
constant associated with the zero frequency), then x =

1 + R2/R1 and y = 1.
• Assuming that τ =

√
τpτz =

√
R1(R1 + R2)C1 (i.e.,

equal to the geometric mean of the time constants
associated with the pole and zero frequencies), then
x = 1/y =

√
1 + R2/R1. This choice establishes that

the mean frequency will be equal to the characteristic

frequency (ωm = ω0) and that the pole and zero
frequencies will be symmetrically located around the
mean frequency.

The corresponding Type-II filters are implemented by
interchanging the position of the network that implements Z2
in the previous case with the position of R3. As a result, and
since (34) is still valid, the transfer function becomes

HIO−II (s) =
R3
R2

(R1 + R2)C1s+ 1
R1C1s+ 1

, (37)

where it is obvious that x < y, and the aforementioned
possible choices of the characteristic frequency are still valid.

The realization of the corresponding fractional-order
Type-I and Type-II bilinear filters could be performed
by substituting the capacitor in Fig.2b by its fractional-
order counterpart. The approximation of its impedance
Zα = 1/Cαsα can be performed by Foster or Cauer RC
networks [8]. However, the realization of the power-law and
double-order filters can not be performed by this way, due
to the presence of non-integer orders that are not directly
associated with Laplacian operators.

Therefore, Type-I bilinear non-integer order filter (i.e.,
fractional-order, power-law, and double-order) will be real-
ized by assuming that

Z2(s) = RHDO(s) = RGL

[
y(τ s)α + 1
x(τ s)α + 1

]β

, Z1 = R, (38)

while for the Type-II

Z2 = R, Z1(s) =
R

HDO(s)
=

R
GL

[
x(τ s)α + 1
y(τ s)α + 1

]β

. (39)

Employing a 3rd-order approximation and using the curve-
fitting based approximation employed also in [9], the fre-
quency dependent impedances in (38)–(39) are approximated
by the transfer function in (40)

Zapprox (s) ≃
B3s3 + B2s2 + B1s+ B0
s3 + A2s2 + A1s+ A0

, (40)

with Ai and Bj (i = 0, 1, 2, j = 0, 1, 2, 3) being positive and
real coefficients.
Considering, for example, the Cauer-I network demonstrated
in Fig.2c, the continued fraction expansion of (40) takes the
form

Zapprox(s) = q0 +
1

q1s+
1

q2+ 1
q3s+

1
q4+

1
q5s+q6

, (41)

and the design equations will be given by (42)

R0,c = q0 Ci,c = qi Rj,c = qj i = 1, 3, 5 . . . j = 2, 4, 6

(42)

where qi(j) are the coefficients of the continued fraction
expansion in (41).
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2) PROGRAMMABLE REALIZATION
The programmability of the proposed bilinear filter functions
can be achieved as follows: starting from the transfer function
in (28) and utilizing the curve-fitting based approximation (as
in the previous Section), the resulting transfer function has the
form

Happrox (s) ≃
D3s3 + D2s2 + D1s+ D0

s3 + C2s2 + C1s+ C0
, (43)

with Ci and Dj (i = 0, 1, 2, j = 0, 1, 2, 3) being also posi-
tive and real coefficients. The transfer function in (43) can be
implemented by a multi-feedback structure described by the
transfer function in (44)

CFLF (s) =
G3s3 +

G2
τ1
s2 +

G1
τ1τ2

s+
G0

τ1τ2τ3

s3 +
1
τ1
s2 +

1
τ1τ2

s+
1

τ1τ2τ3

. (44)

The scaling factors and the time constants are calculated by
equating the coefficients of (43) and (44).
The transfer function in (44) can be implemented using

Operational Transconductance Amplifiers (OTAs) as active
elements, with their small-signal electronically controlled
transconductance parameter used for implementing the
scaling factors and time constants [7]. Another alternative
is the utilization of an FPAA device such as the Anadigm
AN231E04 device, where the programmability is achieved
through the utilization of the switched-capacitor technique
[10], [11].

IV. APPLICATION DESIGN EXAMPLES
The transfer functions of integer-order, fractional-order, and
power-law compensators are the following

HIO,C (s) = GL ·
τ s+ 1
xτ s+ 1

, (45)

HFO,C (s) = GL ·
(τ s)α + 1
x (τ s)α + 1

, (46)

HPL,C (s) = GL ·

(
τ s+ 1
xτ s+ 1

)β

. (47)

Therefore, compensators are a special case of bilinear filters
with y = 1. In the case that x > 1, this is a Type-
I compensator known as lag-compensator, while for x <

1 the resulting Type-II compensator is known as lead-
compensator [1], [2], [12], [13], [14], [15], [16], [17], [18],
[19], [20], [21].

The corresponding expressions of shelving filters are

HIO,SF (s) = HSF (s) = GL ·

τ s
x + 1

xτ s+ 1
, (48)

HFO,SF (s) = GL ·

(τ s)α

x + 1

x (τ s)α + 1
, (49)

HPL,SF (s) = GL ·

( τ s
x + 1

xτ s+ 1

)β

. (50)

Consequently, shelving filters are a special case of their
corresponding bilinear filter counterparts, with x = 1/y.

Thus, the case of Type-I shelving filters corresponds to x > 1,
and these are known as low-shelving filters, while for x < 1,
the resulting Type-II shelving filters are known as high-
shelving filters [3], [22], [23], [24].

Concluding, shelving filters and compensators are dif-
ferent aspects of the same core, which is a bilinear filter.
In other words, having available a bilinear filter structure,
it can behave like a shelving filter or a compensator by
choosing suitable values of the pole/zero frequencies. The
only difference between shelving filters and compensators
is related to the considered frequency range; shelving filters
are employed for applications in the acoustic range (i.e.,
20Hz–20kHz), while compensators are employed in control
applications in the range of Hz. In other words, the difference
is in the location of themean frequency or, equivalently, in the
location of the characteristic frequency ω0.
The transfer functions of the proposed compensators and

shelving filters will be

HDO,C (s) = GL ·

[
(τ s)α + 1
x (τ s)α + 1

]β

, (51)

HDO,SF (s) = GL ·

[
(τ s)α

x + 1

x (τ s)α + 1

]β

, (52)

respectively, offering the aforementioned benefits in terms of
design flexibility and circuit complexity.

A. DESIGNS OF COMPENSATORS
Assuming for instance ω0 = 10rad/s, the range of
approximation (10−2ω0, 10+2ω0), and R = 10k�, then the
values of passive elements (rounded to the E96 series defined
in IEC 60063 standard) which are required for implementing
the considered Type-I non-integer order compensators with
GL = 20dB and x = 1/y = 3.162, are summarized in
Table 3a. The corresponding values in the case of Type-II
compensators with GL = 0dB and x = 1/y = 0.3162,
are provided in Table 3b. The values of the passive elements
{R1, R2, R3, C1}, which correspond to the case of integer-
order compensators, are {10k�, 100k�, 10k�, 3.01µF}
and {1.1k�, 10k�, 10k�, 28.7µF} for Types-I and II,
respectively.

The performance of bilinear compensators is evaluated
using the OrCAD PSpice suite, with the AD844 discrete
component biased at ±10V employed as CFOA. Using
the component values in Table 3, the simulated responses
are depicted in Fig.3, where the theoretical plots are
also provided by dashes. The most important performance
characteristics of the non-integer order filters are sum-
marized in Table 4, accompanied by the theoretically
predicted values given in parentheses. The correspond-
ing results in the case of Type-I integer-order compen-
sators are 3.13(3.19)rad/s, 27.43(31.29)rad/s, 9.3(10)rad/s,
10(10)dB, and −55.9o(−54.9o), while for the Type-II the
results are 3.22(3.19)rad/s, 32.98(31.29)rad/s, 10.3(10)rad/s,
10.2(10)dB, and 54.3o(54.9o).
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TABLE 3. Values of the RC-network in Fig.1c for implementing (a) Type-I,
and (b) Type-II non-integer order compensators.

FIGURE 3. Simulated gain and phase responses of (a) Type-I and
(b) Type-II integer-order, fractional-order, power-law, and double-order
compensators implemented using the structure in Fig.2.

FIGURE 4. Time-domain behavior of (a) Type-I, and (b) Type-II
double-order compensators stimulated at their mean frequency by a
2Vp-p sinusoidal input.

The time-domain behavior is evaluated in the case of
Type-I and II double-order compensators. For this purpose,
they are stimulated by a 2Vpeak-to-peak sinusoidal signal
at their mean frequency. According to the waveforms in
Fig.4a, the gain and the phase difference between the output
and input waveforms are equal to {12.1dB, −32.9o} for the
Type-I, with the associated theoretical values being {12dB,
−33.09o}. The simulated values in the case of the Type-II
compensator, derived from Fig.4b, are {8.04dB, 33.6o} close
to the theoretically predicted ones {8dB, 33.08o}.

TABLE 4. Frequency response performance characteristics of (a) Type-I,
and (b) Type-II non-integer order compensators.

FIGURE 5. Monte-Carlo analysis results about the mean frequency of
(a) Type-I, and (b) Type-II double-order compensators.

TABLE 5. Values of the coefficients and time constants in (44) for
implementing (a) Type-I, and (b) Type-II non-integer order shelving
filters.

The sensitivity analysis is performed by employing the
Monte-Carlo analysis, offered by the Advanced Analysis tool
of the OrCAD PSpice. For this purpose, ±5% deviation from
the nominal values of passive elements is assumed and the
obtained histograms, for N=500 runs, of themean frequency
of the Type-I and II compensators are given in Fig.5. The
value of the standard deviation in the case of Type-I compen-
sator is 0.21rad/s, while for Type-II is 0.24rad/s, confirming
that the presented schemes have reasonable sensitivity
characteristics.
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FIGURE 6. Implementation of the proposed generalized bilinear filter (a) Design obtained using the Anadigm Designer®2 EDA software, (b) experimental
setup, and (c) FPAA board with an extra board including the input and output interfaces for single-to-differential conversion and vice versa.

FIGURE 7. Experimental time-domain behavior of (a) Type-I, and
(b) Type-II double-order shelving filters stimulated at their mean
frequency by a sinusoidal input (green:input, magenta:output).

FIGURE 8. Experimental demonstration of the programmability of the
proposed double-order filter for (α = 0.8, β = 0.7) (a) Type-I, and (b)
Type-II (green:input, magenta:output).

B. DESIGNS OF SHELVING FILTERS
Assuming that ω0 = 104rad/s and a range of approximation
(10−2ω0, 10+2ω0), the values of the coefficients and time
constants in (44) for implementing non-integer order Types-
I and II shelving filters with low-frequency gains and time
constant scaling factors the same as in the previous designs,
are provided in Tables 5a–b, respectively. The utilized clock
frequency is equal to 1MHz. Using the Anadigm Designer®2
EDA software, the resulting design is demonstrated in Fig.6a,
while the experimental setup is depicted in Figs.6b-c.

The gain and the input-output phase difference of the filters
measured from the input-output waveforms in Fig.7, which
are obtained in the cases of Type-I and Type-II double-order
shelving filters stimulated by a sinusoidal signal at theirmean

TABLE 6. Values of the coefficients and time constants in (44) for
implementing (a) Type-I, and (b) Type-II double-order shelving filters with
(α = 0.8, β = 0.7) and (α = 0.9, β = 0.8).

FIGURE 9. Experimental demonstration of the programmability of the
proposed double-order filter for (α = 0.9, β = 0.8) (a) Type-I, and (b)
Type-II (green:input, magenta:output).

frequency, are {11.9dB, −33o} for Type-I, and {8.4dB, 29o}
for Type-II. The corresponding theoretical predicted values
are {12dB, −33.08o} and {8dB, 33.08o}.
The programmability feature of the proposed double-order

filter is demonstrated for (α = 0.8, β = 0.7) and (α =

0.9, β = 0.8). The values of the scaling factors and
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time constants for implementing the resulting approximation
transfer functions are given in Table 6. The time-domain
behavior of these filters is demonstrated in Fig.8 for the first
case, while Fig.9 corresponds to the second one. In both
cases, the filters are stimulated by a sinusoidal signal at
their mean frequency. The values of the gain and phase
are {13.04dB, −29o} for the Type-I and {7.46dB, 26o} for
the Type-II filters with (α = 0.8, β = 0.7), when the
corresponding theoretical values are {13dB, -28.95o} and
{7dB, 28.95o}. Respectively, when (α = 0.9, β = 0.8), the
measured values of gain and phase are {12.02dB, −39o} for
Type-I and {8.76dB, 32o} for Type-II double-order shelving
filters, when the corresponding theoretical predicted values
are equal to {12dB, −38.28o} and {8dB, 38.28o}.

V. CONCLUSION
Bilinear filters are applicable in control systems as lead/lag-
compensators and in acoustic systems as low/high-shelving
filters. The employment of non-integer orders in their transfer
functions offers design flexibility but, in general, suffers from
the increased circuit complexity. The proposed double-order
bilinear filter function offers the most economical solution
in terms of the active component count, while the presented
FPAA based implementation offers programmability. All
possible non-integer order versions (i.e., fractional-order,
power-law, and double-order) are implementable by the
same core, just by interchanging the impedances in the case
of active RC implementation, or adjusting the coefficients
of the approximation transfer function. Future research
plans include exploring double-order PID controllers, which
generalize fractional-order controllers.

ACKNOWLEDGMENT
The publication of the article in OA mode was financially
supported by HEAL-Link.

REFERENCES
[1] C. Mu niz-Montero, L. A. Sánchez-Gaspariano, C. Sánchez-López,

V. R. González-Díaz, and E. Tlelo-Cuautle, ‘‘On the electronic realizations
of fractional-order phase-lead-lag compensators with OpAmps and
FPAAs,’’ in Fractional Order Control and Synchronization of Chaotic
Systems. Berlin, Germany: Springer, 2017, pp. 131–164.

[2] S. Kapoulea, G. Tsirimokou, C. Psychalinos, and A. S. Elwakil, ‘‘OTA-C
implementation of fractional-order lead/lag compensators,’’ in Proc. Novel
Intell. Lead. Emerg. Sci. Conf. (NILES), vol. 1, Oct. 2019, pp. 38–41.

[3] S. Kapoulea, A. Yesil, C. Psychalinos, S. Minaei, A. S. Elwakil, and
P. Bertsias, ‘‘Fractional-order and power-law shelving filters: Analysis and
design examples,’’ IEEE Access, vol. 9, pp. 145977–145987, 2021.

[4] F. Sen, A. Kircay, B. Sonbas Cobb, and H. Karci, ‘‘Current-mode
fractional-order shelving filters using MCFOA for acoustic applications,’’
Int. J. Electron. Commun., vol. 163, May 2023, Art. no. 154608.

[5] J. Nako, C. Psychalinos, A. S. Elwakil, and S. Minaei, ‘‘Non-
integer order generalized filters designs,’’ IEEE Access, vol. 11,
pp. 116846–116859, 2023.

[6] Anadigm. AN231E04 dpASP: The AN231E04 dpASP Dynamically Recon-
figurable Analog Signal Processor. Accessed: Jan. 24, 2024. [Online].
Available: https://www.anadigm.com/an231e04.asp

[7] J. Nako, C. Psychalinos, A. S. Elwakil, and D. Jurisic, ‘‘Design of higher-
order fractional filters with fully controllable frequency characteristics,’’
IEEE Access, vol. 11, pp. 43205–43215, 2023.

[8] G. Tsirimokou, ‘‘A systematic procedure for deriving RC networks of
fractional-order elements emulators using MATLAB,’’ Int. J. Electron.
Commun., vol. 78, pp. 7–14, Aug. 2017.

[9] S. Kapoulea, C. Psychalinos, and A. S. Elwakil, ‘‘Power law filters:
A new class of fractional-order filters without a fractional-order Laplacian
operator,’’ Int. J. Electron. Commun., vol. 129, Feb. 2021, Art. no. 153537.

[10] E. Tlelo-Cuautle, A. D. Pano-Azucena, O. Guillén-Fernández, and
A. Silva-Juárez, ‘‘Analog implementations of fractional-order chaotic sys-
tems,’’ in Analog/Digital Implementation of Fractional Order Chaotic Cir-
cuits and Applications. Cham, Switzerland: Springer, 2020, pp. 93–114.

[11] A. M. Hassanein, A. H. Madian, A. G. G. Radwan, and L. A. Said,
‘‘On the design flow of the fractional-order analog filters between
FPAA implementation and circuit realization,’’ IEEE Access, vol. 11,
pp. 29199–29214, 2023.

[12] C. A. Monje, A. J. Calderon, B. M. Vinagre, and V. Feliu, ‘‘The fractional
order lead compensator,’’ in Proc. 2nd IEEE Int. Conf. Comput. Cybern.
(ICCC), Aug./Sep. 2004, pp. 347–352.

[13] C. Yeroglu and N. Tan, ‘‘Classical controller design techniques for
fractional order case,’’ ISA Trans., vol. 50, no. 3, pp. 461–472, Jul. 2011.

[14] M. S. Tavazoei and M. Tavakoli-Kakhki, ‘‘Compensation by fractional-
order phase-lead/lag compensators,’’ IET Control Theory Appl., vol. 8,
no. 5, pp. 319–329, Mar. 2014.

[15] M. C. Boskovic, M. R. Rapaic, T. B. Sekara, P. D. Mandic, M. P. Lazarevic,
B. Cvetkovic, B. Lutovac, andM. Dakovic, ‘‘On the rational representation
of fractional order lead compensator using Padé approximation,’’ in Proc.
7th Medit. Conf. Embedded Comput. (MECO), Jun. 2018, pp. 1–4.

[16] A. A. Dastjerdi, B. M. Vinagre, Y. Chen, and S. H. HosseinNia, ‘‘Linear
fractional order controllers; a survey in the frequency domain,’’ Annu. Rev.
Control, vol. 47, pp. 51–70, Apr. 2019.

[17] G. Maione, ‘‘Design of cascaded and shifted fractional-order lead
compensators for plants with monotonically increasing lags,’’ Fractal
Fractional, vol. 4, no. 3, p. 37, Jul. 2020.

[18] A. Tepljakov, B. B. Alagoz, C. Yeroglu, E. A. Gonzalez, S. H. Hosseinnia,
E. Petlenkov, A. Ates, and M. Cech, ‘‘Towards industrialization of
FOPID controllers: A survey on milestones of fractional-order con-
trol and pathways for future developments,’’ IEEE Access, vol. 9,
pp. 21016–21042, 2021.

[19] I. Petráš,Handbook of Fractional Calculus with Applications, no. 6. Berlin,
Germany: De Gruyter, 2019.

[20] P. Prommee and P. Pienpichayapong, ‘‘Reconfigurable fractional-order
operator and bandwidth expansion suitable for PIα controller,’’ IEEE
Trans. Ind. Electron., vol. 71, no. 5, pp. 5126–5136, May 2024.

[21] G. Avon, R. Caponetto, E. Murgano, and M. G. Xibilia, ‘‘Implementation
of a fully analog feedback loop with a carbon-black-based fractional order
controller,’’ ISA Trans., vol. 135, pp. 105–114, Apr. 2023.

[22] S. Sarkka and A. Huovilainen, ‘‘Accurate discretization of analog audio
filters with application to parametric equalizer design,’’ IEEE Trans. Audio,
Speech, Language Process., vol. 19, no. 8, pp. 2486–2493, Nov. 2011.

[23] V. Välimäki and J. Reiss, ‘‘All about audio equalization: Solutions and
frontiers,’’ Appl. Sci., vol. 6, no. 5, p. 129, May 2016.

[24] G. A. Haidar, R. A. Z. Daou, and X. Moreau, ‘‘Synthesis of a fractional
order audio boost filter,’’ in Proc. 29th Int. Conf. Microelectron. (ICM),
Dec. 2017, pp. 1–5.

JULIA NAKO (Graduate Student Member, IEEE)
received the B.Sc. and M.Sc. degrees from the
University of Patras, Greece, in 2021 and 2023,
respectively, where she is currently pursuing the
Ph.D. degree with the Postgraduate Studies Pro-
gram ‘‘Electronics-Circuits and Systems,’’ Physics
Department. She is a member of the Analog VLSI
Design Team, Electronics Laboratory, working
under the supervision of Prof. Costas Psychalinos.
Her current research interests include the design

of analog integrated circuits and systems for signal processing, including
non-integer order circuits, control systems, and biomedical circuits.

14048 VOLUME 12, 2024



J. Nako et al.: Bilinear Double-Order Filter Designs and Application Examples

COSTAS PSYCHALINOS (Senior Member,
IEEE) received the B.Sc. and Ph.D. degrees in
physics and electronics from the University of
Patras, Greece, in 1986 and 1991, respectively.
From 1993 to 1995, he was a Postdoctoral
Researcher with the VLSI Design Laboratory,
University of Patras. From 1996 to 2000, he was
an Adjunct Lecturer with the Department of Com-
puter Engineering and Informatics, University of
Patras. From 2000 to 2004, he was an Assistant

Professor with the Electronics Laboratory, Department of Physics, Aristotle
University of Thessaloniki, Greece. Since 2004, he has been a Faculty
Member of the Electronics Laboratory, Department of Physics, University of
Patras, where he is currently a Full Professor. His current research interests
include the development of CMOS analog integrated circuits, including
fractional-order circuits and systems, continuous and discrete-time analog
filters, amplifiers, and low voltage/low power building blocks for analog
signal processing. He is a member of the Nonlinear Circuits and Systems
Technical Committee of the IEEE CAS Society. He serves as the Editor-in-
Chief for the Circuit and Signal Processing Section of the Electronics journal
(MDPI). He serves as an Area Editor for International Journal of Electronics
and Communications (AEUE) journal and an Editor for International
Journal of Circuit Theory and Applications. He is an Associate Editor of
Circuits Systems and Signal Processing journal and Journal of Advanced
Research. He is a member of the editorial board of the Microelectronics
Journal, Analog Integrated Circuits and Signal Processing Journal, IETE
Journal of Education, Fractal and Fractional journal, and Journal of Low
Power Electronics and Applications.

FABIAN KHATEB received the M.Sc. degree
in electrical engineering and communication, the
M.Sc. degree in business and management, the
Ph.D. degree in electrical engineering and com-
munication, and the Ph.D. degree in business
and management from the Brno University of
Technology, Czech Republic, in 2002, 2003, 2005,
and 2007, respectively. He is currently a Professor
with the Department of Microelectronics, Faculty
of Electrical Engineering and Communication,

Brno University of Technology; the Department of Electrical Engineering,
University of Defence, Brno; and the Department of Information and
Communication Technology in Medicine, Faculty of Biomedical Engi-
neering, Czech Technical University in Prague. He holds five patents.
He has authored or coauthored over 140 publications in journals and
proceedings of international conferences. His expertise is in new principles of
designing low-voltage low-power analog circuits, particularly for biomedical
applications. He is a member of the editorial board of Microelectronics
Journal, Sensors, Machines, Electronics, and Journal of Low Power
Electronics and Applications. He is an Associate Editor of IEEE ACCESS,
Circuits, Systems and Signal Processing, IET Circuits, Devices and Systems,
and International Journal of Electronics. He was a Lead Guest Editor
for the Special Issues on Low Voltage Integrated Circuits and Systems of
Circuits, Systems and Signal Processing, in 2017, IET Circuits Devices and
Systems, in 2018, andMicroelectronics Journal, in 2019. Hewas also a Guest
Editor for the Special Issue on Current-Mode Circuits and Systems: Recent
Advances, Design and Applications of International Journal of Electronics
and Communications, in 2017.

AHMED S. ELWAKIL (Senior Member, IEEE)
was born in Cairo, Egypt. He received the B.Sc.
and M.Sc. degrees in electronics and communica-
tions from Cairo University, Egypt, and the Ph.D.
degree in electrical and electronic engineering
from the National University of Ireland, University
College Dublin. He also held visiting positions
at Istanbul Technical University, Turkey; Queens
University, Belfast, U.K.; the Technical University
of Denmark, Lyngby, Denmark; and the King

Abdullah University of Science and Technology, Saudi Arabia. He is
currently a Full Professor with the University of Sharjah, United Arab
Emirates; the University of Calgary, AB, Canada; and the Nanoelectronics
Integrated Systems Center (NISC) Research Center, Nile University, Cairo.
He has authored or coauthored more than 350 publications in these areas
(current H-index 45). His research interests include circuit theory, nonlinear
dynamics, chaos theory, and fractional-order circuits and systems with
diverse applications ranging from the modeling of oscillatory networks and
nonlinear behavior in electronic circuits and plasma physics to modeling of
energy storage devices, bio-materials, and biological tissues. He has been
a member of the IEEE Technical Committee on Nonlinear Circuits and
Systems, since 2000. He was a recipient of the Egyptian Government First
Class Medal for achievements in engineering sciences, in 2015, and the UAE
President Award (Khalifa Award), in 2020. He is an International Observer
in the European Cooperation in Science and Technology (COST) action on
fractional-order system analysis synthesis and their importance for future
design (CA15225) and an Expert with the United Nations Development
Program (UNDP). He was on the editorial board of IEEE JOURNAL ON

EMERGING AND SELECTED TOPICS IN CIRCUITS AND SYSTEMS and an Associate
Editor of IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: REGULAR PAPERS.
He currently serves as the Editor-in-Chief for the International Journal
of Circuit Theory and Applications (Wiley) and an Associate Editor
for International Journal of Electronics and Telecommunications (AEUE,
Elsevier).

VOLUME 12, 2024 14049


