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Abstract—This paper presents novel implicit and explicit
discrete-time permanent magnet synchronous motor models.
Both derived models solve the problem of numerical instability
and poor precision of motor currents’ discrete-time prototypes
formed using the forward Euler method and preserve the tol-
erable complexity of resulting descriptions. Discrete-time models
of currents are derived based on the linear time-varying systems
approach, considering the electrical angular velocity time-varying
parameter. Angular velocity and angle are discretized by using
the linear multistep methods. The implicit variant of the model
is dedicated to parametric estimation tasks, and the explicit
variant is to model predictive control. The derived descriptions
are validated within the simulation by comparing the original
continuous-time model and Euler approximation with the explicit
model. Furthermore, the prediction capabilities of the explicit
model and Euler approximation are compared as well.

Index Terms—discrete-time systems, mathematical models,
model checking, parameter estimation, permanent magnet mo-
tors, predictive control, predictive models, systems modeling.

I. INTRODUCTION

Due to their reliable construction, high efficiency, and power
density, permanent magnet synchronous machines (PMSMs)
are commonly used in robotics, industrial drives, and vehicular
propulsions. Because of its reliable operation and relatively
easy implementation, numerous PMSM applications rely on
field-oriented (vector) control. The linear control methods,
however, can not guarantee sufficiently high performance of
the PMSM drive system due to the existence of nonlinear-
ities. In recent years, model predictive control (MPC) has
been considered a promising alternative for controlling power
converters and drives [1] - [3].

In general, MPC utilizes the discrete-time model of PMSM
to predict a controlled system’s states. The information about
expected states is then reflected in a cost function, and
the desired control actions are obtained by minimizing this
cost function. Therefore, the performance of MPC is highly
influenced by the quality of the prediction model. Currently,
authors primarily utilize the discrete-time model derived from
the continuous-time description by the forward Euler method.
This method provides satisfactory results only if the rate of
change of approximated state variable is neglectable in the
sampling period. However, the rates of change of PMSM’s
currents depend on the electrical angular velocity that can grow
significantly, eventually leading to the poor precision of Euler

approximation and numerical instability at higher velocities.
This problem can be partially solved by utilizing higher
terms of Taylor series expansion [4] or applying multistep
discretization techniques [5]. However, these solutions lead
to complex discrete-time descriptions compared to the Euler
approximation.

Other approaches that require a sufficiently precise discrete-
time model of PMSM are related to adaptive control and
online parametric estimation. In recursive parametric estima-
tion, parameters of the discrete-time models are adjusted to
achieve a minimum difference between the model’s outputs
and measured waveforms, for example, in terms of the least
squares. Since models are compared with obtained data and no
predictions are evaluated, unlike in MPC, implicit models can
be utilized for parametric estimation. In this area, however,
authors still primarily utilize the discrete-time model derived
by the forward Euler method [6] or steady-state models [7] -
[8] that are not valid during the transients. Since both these
descriptions have limited use, novel discrete-time prototypes
are needed. Discrete-time models are then applicable even
in fault diagnostics [9], where the model-based principles
commonly require the knowledge of healthy motor behavior.

The paper is organized as follows. The implicit description
is derived in Section II, and its explicit variant is formed in
Section III. Section IV then provides the stability analysis
of traditionally used Euler approximation and derived explicit
model. Section V validates the derived explicit model by com-
paring its outputs with the original continuous-time prototype
and Euler approximation within the simulation.

II. IMPLICIT DISCRETE-TIME MODEL

The continuous-time rotor reference frame model of PMSM
can be described as in

d

dt

[
λd(t)
λq(t)

]
=

[
−Rs

Ld
ωe(t)

−ωe(t) −Rs

Lq

]
︸ ︷︷ ︸

A(t)

[
λd(t)
λq(t)

]
+

[
u∗
d(t)

uq(t)

]
(1)

where

u∗
d(t) = ud(t) +

Rs

Ld
λpm

λd(t) = Ldid(t) + λpm λq(t) = Lqiq(t). (2)



In (1) and (2), id(t) and iq(t) are the rotor reference frame
(d − q) currents, ud(t) and uq(t) represent d − q voltages,
λd(t) and λq(t) are d − q fluxes, Rs is the equivalent stator
windings’ resistance, Ld symbolizes the direct axis inductance,
Lq denotes the quadrature axis inductance, and λpm stands for
the permanent magnet flux linkage. Electrical angular velocity
ωe(t) and angle θe(t) are then some time-dependent functions
with significantly slower dynamics than currents. However,
θe(t) is sampled with the same sampling period Ts as stator
currents. This sampling rate is crucial since θe(t) is utilized in
the rotor reference frame transformation of currents. Electrical
angular velocity is then estimated from measured angle wave-
form, for example, using an angle tracking observer. Note that
the sampling rate designed for currents’ dynamics is highly
overrated for velocity, and only minor changes of this variable
occur during one sampling period. Therefore, the following
implicit velocity approximation is applicable:

ωe(t) ≈ ω̄e =
ωe(k + 1) + ωe(k)

2
kTs ≤ t < (k + 1)Ts

(3)

where k is the current step of discrete-time equivalent. Due to
approximation (3), even the system matrix is constant over the
sampling period A(t) = A(ω̄e) = A. Voltage control actions
can then be approximated using the zero-order hold as in

ud(t) = ud(k) kTs ≤ t < (k + 1)Ts

uq(t) = uq(k) kTs ≤ t < (k + 1)Ts. (4)

As mentioned by Tóth et al. in [10], the discrete-time
equivalent of linear time-varying system (1) with the constant
parameters over the sampling period (A(t) = A(ω̄e) = A
on kTs ≤ t < (k + 1)Ts) is calculated as the discrete-time
equivalent of a linear time-invariant system. We have[

λd(k + 1)
λq(k + 1)

]
= eATs

[
λd(k)
λq(k)

]
+

∫ Ts

0

eAtdt
[
u∗
d(k)

uq(k)

]
(5)

where the exponential of system matrix A can be calculated
based on the following similarity transformation:[

λd(t)
λq(t)

]
= e

−Rs(Ld+Lq)

2LdLq
t
[
λx(t)
λy(t)

]
. (6)

Substituting (6) into (1) provides the transformed system
matrix Ã as in

Ã =

[
Rs(Ld−Lq)

2LdLq
ω̄e

−ω̄e −Rs(Ld−Lq)
2LdLq

]
. (7)

Matrix Ã is in a unique form which satisfies quadratic polyno-
mial Ã

2
= ρI, where I = I2×2 is the identity matrix. Bernstein

and So derived the matrix exponential for such matrices in
[11]. We have

eÃTs = cosh (Ts
√
ρ) I +

sinh
(
Ts

√
ρ
)

√
ρ

Ã (8)

where

ρ = β2 − ω̄2
e β =

Rs(Ld − Lq)

2LdLq
. (9)

The exponential of original system matrix A can then be
calculated using the similarity transformation (6) as in

eATs = e−αTseÃTs α =
Rs(Ld + Lq)

2LdLq
. (10)

Since ρ takes positive and negative values, the matrix ex-
ponential is generally split into two expressions valid for
particular velocity intervals. To prevent this division, the
matrix exponential can be approximated by the Taylor series
close to the point ρ = ρ0 = −ω̄2

e . Suppose the approximation
of function cosh

(
Ts

√
ρ
)

as follows:

f(ρ) ≈
n∑

i=0

f (i)(ρ0)

i!
(ρ− ρ0)

i =

n∑
i=0

f (i)(−ω̄2
e)

i!
β2i

f(ρ0) = cosh (Ts
√
ρ0)

f ′(ρ0) =
Ts

2

sinh
(
Ts

√
ρ0
)

√
ρ0

f ′′(ρ0) =
T 2
s

4

cosh
(
Ts

√
ρ0
)

ρ0
− Ts

4

sinh
(
Ts

√
ρ0
)

ρ0
√
ρ0

f (i)(ρ0) =
di

dρi0
f(ρ0). (11)

Note that the derivatives f (i)(ρ0) in (11) are weighted by
higher powers of 1/ω̄e and Ts, converging rapidly toward zero
and can be neglected. Since sinh

(
Ts

√
ρ
)
/
√
ρ = 2f ′(ρ)/Ts,

the same thing can be observed even for the approximation of
sinh

(
Ts

√
ρ
)
/
√
ρ. Furthermore, since the

√
−ω̄2

e = j|ω̄e|, the
hyperbolic functions can be replaced by trigonometric ones.
Then the approximated matrix exponential read

eATs ≈ e−αTs

(
cos (Tsω̄e) I +

sin (Tsω̄e)

ω̄e
Ã
)

(12)

where α is defined as in (10) and Ã as in (7).
The input matrix of the discrete-time equivalent of system

(1) is obtained by integrating the matrix exponential with
respect to time (5). We have∫ Ts

0

eAtdt =∫ Ts

0

e−αt cos (tω̄e) dt I +
1

ω̄e

∫ Ts

0

e−αt sin (tω̄e) dt Ã =

e−αTs
sin (Tsω̄e)

ω̄e
I − 1

ω̄e

∫ Ts

0

e−αt sin (tω̄e) dt adj (A) (13)

where adj (A) is the adjugate of system matrix A. The integral
in (13) can then be evaluated analytically as follows:

I =

∫ Ts

0

e−αt sin (tω̄e) dt

I =
ω̄e

α2 + ω̄2
e

− e−αTs
α sin (Tsω̄e) + ω̄e cos (Tsω̄e)

α2 + ω̄2
e

. (14)

However, the primitive function I contains rational expression
1/(α2 + ω̄2

e), which is unhandy for parametric estimation.



Therefore, the integral is evaluated numerically by using
Simpson’s 1/3 rule. We have

I ≈ Î =
Ts

6

(
4e−

α
2 Ts sin

(
Ts

ω̄e

2

)
+ e−αTs sin (Tsω̄e)

)
.

(15)

The intervals of α and ω̄e feasible values have to be specified
to analyze the error of approximation (15). A current’s loop
bandwidth mostly limits the electrical angular velocity. As
mentioned by Sul in [12], the maximum of this bandwidth can
reach up to 2π/(3.5Ts). Hence, the velocity can be described
using a scaling factor sω as ω̄e = 2πsω/(3.5Ts), where
sω ∈ ⟨−1, 1⟩. Parameter α then represents the average of
the reciprocal values of d − q time constants. The sampling
period must be smaller than these time constants to correctly
track d − q currents’ changes. The most restrictive limitation
of parameter α is then given as α < 1/Ts leading to
description α = sα/Ts, where the scaling factor sα ∈ (0, 1).
Afterward, the percent error of the integral’s approximation
δ = 100

∣∣∣(I − Î)/I
∣∣∣ can be expressed as a function of scaling

factors δ = f(sα, sω) and plotted on feasible sα and sω
intervals. Figure 1 visualizes the percent error of utilized
approximation (15).
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Fig. 1. Percent error of integral approximation (15)

As seen in Figure 1, the percent error of approximation (15)
will not exceed 0.6 %.

The discrete-time model derived for fluxes can be expressed
using currents as state variables. We have[

id(k + 1)
iq(k + 1)

]
= Ad

[
id(k)
iq(k)

]
+ Bd

[
ud(k)

uq(k)− ω̄eλpm

]
(16)

where the discrete-time state and input matrices Ad and Bd

read

Ad =

L−1︷ ︸︸ ︷[
1
Ld

0

0 1
Lq

]
eATs

L︷ ︸︸ ︷[
Ld 0
0 Lq

]

Ad ≈ e−αTs

(
cos (Tsω̄e) I +

sin (Tsω̄e)

ω̄e

[
β

Lq

Ld
ω̄e

−Ld

Lq
ω̄e −β

])

Bd =L−1

∫ Ts

0

eAtdt

Bd ≈ e−αTs
sin (Tsω̄e)

ω̄e

[
1
Ld

+ Ts

6
Rs

LdLq

Ts

6
ω̄e

Ld

−Ts

6
ω̄e

Lq

1
Lq

+ Ts

6
Rs

LdLq

]
+

2

3
Tse

−α
2 Ts

sin
(
Ts

ω̄e

2

)
ω̄e

[
Rs

LdLq

ω̄e

Ld

− ω̄e

Lq

Rs

LdLq

]
. (17)

In (17), parameters α and β are defined as in (10) and (9).
The following differential equations describe electrical an-

gular velocity and angle:

d

dt
ωe(t) =

p

J
τe(t)−

p

J
τl(t)

τe(t) =
3

2
p
(
λpmiq(t) + (Ld − Lq)id(t)iq(t)

)
d

dt
θe(t) = ωe(t) (18)

where p is the number of pole pairs, J stands for the moment
of inertia, τe(t) is the electromagnetic torque of a motor, and
τl(t) is a torque load. Since only minor ωe(t) changes occur
during the sampling period, the electrical angular velocity can
be implicitly approximated by using the second-order Adams-
Moulton method (trapezoidal rule) as in

ωe(k + 1) = ωe(k) +
p

J
Ts(τ̄e − τ̄l)

τ̄e =
1

2

(
τe(k + 1) + τe(k)

)
τ̄l =

1

2

(
τl(k + 1) + τl(k)

)
. (19)

Similarly, the electrical angle reads

θe(k + 1) = θe(k) + Tsω̄e (20)

where the average velocity ω̄e is defined as in (3). Note that,
according to expression (20), the arguments Tsω̄e and Tsω̄e/2
of trigonometric functions in (17) can be replaced by angle
differences θe(k + 1)− θe(k) and

(
θe(k + 1)− θe(k)

)
/2.

III. EXPLICIT DISCRETE-TIME MODEL

In the implicit discrete-time model described in Section II,
the information about the angular velocity in step k + 1 is
required to calculate d − q currents in step k + 1 (a similar
statement can be observed for velocity in step k + 1 that
is calculated by using d − q currents in step k + 1). The
implicit formulation of the model can be utilized in parametric
estimation tasks; however, for the purpose of model predictive
control, the implicit model can not be used. Therefore, the
discrete-time model has to be expressed in an explicit way
(where state variables in step k + 1 depend only on state
variables and inputs in step k). To obtain an explicit model
with the same precision as the implicit one, equations (16),
(19), and (20) must be solved in terms of variables id(k+1),
iq(k+1), ωe(k+1), and θe(k+1). However, the complexity of
the problem would lead to unnecessarily complicated results.
Therefore, to preserve the tolerable complexity of the discrete-
time model, the explicit model is formed using less precise



numerical approximations. Since the rate of change of ωe(t)
and θe(t) is neglectable in the sampling period, the Euler
approximation is used to discretize these variables. We have

ωe(k + 1) = ωe(k) +
p

J
Ts

(
τe(k)− τl(k)

)
θe(k + 1) = θe(k) + Tsωe(k). (21)

In Section II, rotor reference frame currents were discretized
using the implicit velocity approximation (3). However, to
obtain an explicit formulation, the angular velocity can be
approximated by the value obtained at the beginning of the
sampling period as follows:

ωe(t) ≈ ωe(k) kTs ≤ t < (k + 1)Ts. (22)

Then the explicit discrete-time prototype of d− q currents is
obtained by substituting ωe(k) for ω̄e in (16) and (17).

IV. STABILITY ANALYSIS

One of the most remarkable contributions of the derived
discrete-time models can be observed by analyzing the stabil-
ity of discretized currents. First, suppose the Euler approxi-
mation of d− q currents as in[

id(k + 1)
iq(k + 1)

]
= Ad,E

[
id(k)
iq(k)

]
+ Bd,E

[
ud(k)

uq(k)− ωe(k)λpm

]
Ad,E =

[
1− Ts

Rs

Ld
Ts

Lq

Ld
ωe(k)

−Ts
Ld

Lq
ωe(k) 1− Ts

Rs

Lq

]

Bd,E =

[
Ts

Ld
0

0 Ts

Lq

]
. (23)

System (23) is stable if and only if the velocity-dependent
eigenvalues of the system matrix Ad,E lie inside the unit circle
in the complex plane. The calculated eigenvalues read

ζE1,2 = (1− αTs)± jTs

√
ωe(k)2 − β2 (24)

where j is the imaginary unit. According to the stability
condition |ζE1,2| < 1, the following velocity limitation can be
derived:

|ωe(k)| <

√
1

Ts

Rs(Ld + Lq)

LdLq
− R2

s

LdLq
. (25)

The limitation (25) is very restrictive compared to the velocity
bandwidth reaching up to 2π/(3.5Ts). Hence, the discrete-
time model derived by the Euler approximation is unstable
for higher velocities.

The problem with instability is resolved by the discrete-
time models derived in the previous sections. The eigenvalues
of the explicit variant of system matrix Ad (17) read

ζ1,2 = e−αTs cos
(
Tsωe(k)

)
±j

√
ωe(k)2 − β2

ωe(k)
sin
(
Tsωe(k)

)
(26)

where function
√

ωe(k)2 − β2/ωe(k) does not have extremum
and converges toward 1 with the growing velocity. If this limit

value is substituted for the original function, the absolute value
of eigenvalues can be calculated as in

|ζ1,2| =
√

e−2αTs cos2
(
Tsωe(k)

)
+sin2

(
Tsωe(k)

)
. (27)

Hence, the stability condition |ζ1,2| < 1 results in requirement
α > 0, and therefore the derived implicit and explicit discrete-
time prototypes of d − q currents are stable over the entire
velocity range.

V. MODEL VALIDATION

As mentioned in Section III, the explicit model is less
precise than the implicit one. Therefore, the validation is
aimed at the explicit model. This model is compared with
its continuous-time equivalent (1), (2), and (18) and the
discrete-time model (23), and (21) obtained by the forward
Euler discretization method within the MATLAB Simulink
simulation. The continuous-time model is solved using the
ode45 (Dormand-Prince) MATLAB variable-step solver with
the maximum step size 100 µs and relative tolerance 1×10−6.
The discrete-time parts utilize the sampling period of 100 µs.
Parameters of the simulated motor are presented in the table
below:

TABLE I
PARAMETERS OF THE SIMULATED MOTOR

Parameter Value Parameter Value

Rs [mΩ] 6 p [-] 10

Ld [µH] 100 J [kg m2] 0.03

Lq [µH] 200 Udc [V] 400

λpm [mWb] 12 Imax [A] 200

where Udc stands for the DC bus voltage and Imax describes
the limitation of current vector.

In one part of the validation experiment, all the models
utilize the same inputs ud(k), uq(k), and τl(k), and the
output rotor reference frame currents and electrical angular
velocity are compared. Voltage inputs are generated by the
field-oriented control system that controls the velocity of the
continuous-time model to the setpoint. The input waveforms
are visualized in Figure 2.
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Fig. 2. Shared inputs to the discrete and continuous-time models

Figure 3 then shows the velocity responses of models to
shared voltage and torque load inputs and the error of the



explicit model ∆ωe
evaluated as the difference between the

continuous-time model and the explicit one in 100 µs steps.
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A similar comparison of d − q currents responses and errors
is displayed in Figure 4.
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Figures 3 and 4 illustrate that the forward Euler method-based
model exhibits instability at relatively low angular velocities
compared to the entire motor’s bandwidth. Since the model

is tested in the open loop using voltages generated for the
stable continuous-time description, its numerical instability
remains unaddressed. Including the closed-loop control in the
comparison could partially address the instability, but voltage
errors arise. On the other hand, the explicit model tracks the
continuous responses even on high angular velocities, and its
errors of velocity and currents are mostly neglectable relative
to the velocity value and the current’s vector amplitude.

In the other part of the validation experiment, the prediction
capabilities of the explicit model and Euler approximation
are compared. The simulated motor is driven to the angular
velocity setpoint, and in time 2.5 s, the torque load step of
10 Nm is realized. Discrete-time models are then utilized
to predict the value of currents, voltages, and velocity after
10 steps of the closed-loop system. Predicted values are
compared with the results calculated using the continuous-
time prototype, and the error of the explicit and Euler models
are evaluated. Comparisons of predicted voltages, currents,
and velocities by different models are visualized together with
errors in Figures 5, 6, and 7. As seen in these figures, the errors
of the Euler model are much more significant than that of the
explicit model, especially in areas where rapid variable change
occurs. Predictions of velocities are mostly comparable since
both models utilize the same discrete-time velocity prototype.
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Fig. 5. Voltages predicted in 10 steps horizon and prediction errors

Updating the forward Euler method-based model requires
approximately 9 parameters, 11 multiplications (×), and 8
summations (+), while the update of the explicit model
requires about 16 parameters, 26 ×, 16 +, and evaluation
of functions cos(x), sinc(x), and sinc(x/2), which can be
replaced (assuming only the feasible values of ω̄e) by their
fourth-order Taylor series, necessitating 9 ×, and 6 +.



0 0.5 1 1.5 2 2.5 3
t [s]

-200

-100

0

100
I [

A
]

iq(t)  cont.

iq(k) expl.

iq(k) eul.

id(t)  cont.

id(k) expl.

id(k) eul.

0 0.5 1 1.5 2 2.5 3
t [s]

-10

-5

0

5

10

"
I [

A
]

"id
(k) eul.

"id
(k) expl.

"iq
(k) eul.

"iq
(k) expl.

Fig. 6. Currents predicted in 10 steps horizon and prediction errors
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VI. CONCLUSION

In this paper, the discrete-time modeling of PMSM was
discussed, and two models were derived. The more pre-
cise implicit discrete-time model is dedicated to parametric
estimation tasks, and the explicit model is then to model
predictive control. Both these models solve the problems of
poor precision and instability of the commonly used forward
Euler method-based model and preserve tolerable complexity.
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