

Validation Plan (VALP) for 2016 validation of ACAS Xa

Document information		
Project Title	TCAS Evolution	
Project Number	09.47.00	
Project Manager	Honeywell	
Deliverable Name	Validation Plan (VALP) for 2016 validation of ACAS Xa	
Deliverable ID	D26	
Edition	00.01.00	
Template Version	03.00.00	
Task contributors		
Honeywell, Airbus, DSNA, Eurocontrol		

Abstract

This document provides the Technical Validation Plan for the second phase of ACAS Xa validation activities planned within the task T026 scope of SESAR 9.47 project focusing on performance evaluation of surveillance functions (STM) of ACAS Xa. While the first phase of validation defined in P9.47-D20 was conducted as fast-time simulation (with model based on Run13 version of ACAS X system), the second phase focuses on the technical validation of ACAS Xa surveillance in real European environment, when SESAR 9.47 ACAS Xa experimental platform will track the real traffic in the proximity of Toulouse airport via fixed roof-top antenna installation. The results obtained from roof-top validation, will be consequently compared with results obtained during Run13 STM evaluation (D21).

Authoring & Approval

Prepared By - Authors of the document.		
Name & Company	Position & Title	Date
Eva Adamová, Honeywell	Project Manager	13/10/2015

Reviewed By - Reviewers internal to the project.		
Name & Company	Position & Title	Date
Ruy Brandao, Honeywell	Project Member	13/10/2015
Jean-Luc Robin, Airbus	Project Member	16/10/2015
Petr Cásek, Honeywell	Project Member	30/10/2015
Martina Stehliková, Honeywell	SESAR Contribution Manager	19/10/2015

Reviewed By - Other SESAR projects, Airspace Users, staff association, military, Industrial Support, other organisations.		
Name & Company Position & Title Date		Date
<name company=""></name>	<position title=""></position>	<dd mm="" yyyy=""></dd>

Approved for submission to the SJU By - Representatives of the company involved in the project.		
Name & Company	Position & Title	Date
Stephane Marche, Honeywell	Chief Architect, SESAR 9.49 Project Member	30/10/2015
Martina Stehliková, Honeywell	Contribution Manager	19/10/2015
Jean-Luc Robin, Airbus	Project Member	16/10/2015
Below mentioned representatives per member "Approved by default"		
Christian Aveneau / DSNA Project Member 29/10/2015		
Eric Potier / EurocontrolProject Member29/10/2015		29/10/2015

Rejected By - Representatives of the company involved in the project.		
Name & Company Position & Title Date		Date
<name company=""></name>	<position title=""></position>	<dd mm="" yyyy=""></dd>

Rational for rejection

None.

Document History

Edition	Date	Status	Author	Justification
00.00.01	08/10/2015	Draft	Eva Adamová	New Document
00.01.00	29/10/2015	First Version	Eva Adamová	Document updated based on review comments

Intellectual Property Rights (foreground)

This deliverable consists of SJU foreground.

founding members

Avenue de Cortenbergh 100 | B -1000 Bruxelles www.sesarju.eu

Table of Contents

TABLE OF CONTENTS		
LIST OF TABLES		
LIST OF FIGUR	ES	5
EXECUTIVE SI	IMMARY	6
		U
1 INTRODUC	;TION	7
1.1 PURPO	DSE OF THE DOCUMENT	7
1.2 INTENI		7
1.3 STRUC	TURE OF THE DOCUMENT	/
1.5 ACROI	VYMS AND TERMINOLOGY	8
2 CONTEXT	OF THE VALIDATION	10
2.1 SCOPE	-/PERIMETER OF THE VALIDATION	. 10
2.2 STAKE	HOLDER IDENTIFICATION, NEEDS AND INVOLVEMENT	10
2.3 Matur	RITY LEVELS	11
3 VALIDATIO	IN APPROACH	12
3.1 VALID	ATION APPROACH AT OFA LEVEL	12
3.2 VALID	ATION OVERVIEW	12
3.3 STAKE	HOLDERS VALIDATION EXPECTATIONS	13
3.4 DEVIA	TIONS WITH RESPECT TO THE VALIDATION STRATEGY AND TRANSVERSAL REFERENCE	12
3.5 BENER	TT MECHANISMS OVERVIEW	.13
3.6 VALID	ATION OBJECTIVES	14
3.7 VALID	ATION SCENARIOS	15
3.8 VALID	ATION ASSUMPTIONS	16
3.9 VALID	ATION REQUIREMENTS	17
3.9.1 Val.	dation SUT Requirements	. 17
3.10 INTEG	RATION AND PRELIMINARY VALIDATION ACTIVITIES	. 17
3.11 VALID	ATION EXERCISES LIST	18
3.12 VALID	ATION EXERCISES PLANNING	18
4 VALIDATIO	NACTIVITIES	20
		20
4.1 VALID/ 411 Exe	ATION EXERCISE #624 PLAN – EXE-09.47-VP-624	20
4.1.2 Exe	ercises Planning and management	. 23
4.1.3 Ana	alysis Specification	. 25
4.1.4 Lev	el of Representativeness/ limitations	. 25
5 REFEREN	CES	27
51 APPLI	CARLE DOCUMENTS	27
5.2 REFER	RENCE DOCUMENTS	27
APPENDIX A	SAFETY PLAN	28
		29
APPENDIX C		30
APPENDIX D	HUMAN PERFORMANCE ASSESSMENT PLAN	31

founding members

Avenue de Cortenbergh 100 | B -1000 Bruxelles Avenue us sa www.sesarju.eu

3 of 34

Project Number 09.47.00 D26 - Validation Plan (VALP) for 2016 validation of ACAS Xa		Edition 00.01.00
APPENDIX E	KPI DATA COLLECTION FOR PERFORMANCE KPIS	
APPENDIX F	BENEFIT MECHANISMS	

founding members

Avenue de Cortenbergh 100 | B -1000 Bruxelles www.sesarju.eu

©SESAR JOINT UNDERTAKING, 2015. Created by HONEYWELL for the SESAR Joint Undertaking within the frame of the SESAR Programme co-financed by the EU and EUROCONTROL. Reprint with approval of publisher and the source properly acknowledged

4 of 34

List of tables

Table 1: Concept Overview	10
Table 2: Maturity levels table	11
Table 3: Planned validation activities at OFA level	12
Table 4: Stakeholders' expectations	13
Table 5: Benefit mechanisms overview	14
Table 6: Validation Objective layout	15
Table 7: Validation Scenario layout	16
Table 8: Validation Assumptions overview	17
Table 9: Validation System Under Test Requirement layout	17
Table 10: Validation Exercise layout	18
Table 11: Resources	24
Table 12: Detailed time planning	25

List of figures

Avenue de Cortenbergh 100 | B -1000 Bruxelles www.sesarju.eu

Executive summary

This document provides the Technical Validation Plan for the second phase of ACAS Xa validation activities, planned within the task T026 scope of SESAR 9.47 project, focusing on performance evaluation of surveillance functions (STM) of ACAS Xa. While the first phase of validation defined in P9.47-D20 was conducted as fast-time simulation (with model based on Run13 version of ACAS X system), the second phase focuses on the technical validation of ACAS Xa surveillance in real European environment, when SESAR 9.47 ACAS Xa experimental platform will track the real traffic in the proximity of Toulouse airport via fixed roof-top antenna installation.

This validation plan consists of one exercise EXE-09.47-VP-824 with three main objectives:

- to validate the overall performance of ACAS Xa surveillance in real environment (roof –top),
- to compare the performance of ACAS Xa surveillance in real environment (roof-top) with results obtained during Run13 STM fast-time evaluation, and
- to evaluate the suitability of ACAS Xa surveillance settings for in current environment considering the active/passive surveillance data usage and 1030/1090 MHz frequency load.

Targeted maturity level within SESAR1 is V2 and this Validation Exercise concludes ACAS Xa validation within SESAR 9.47 and the results are expected to be used as input for next ACAS Xa development and validation activities planned within the scope of SESAR2020.

founding members

Avenue de Cortenbergh 100 | B -1000 Bruxelles www.sesarju.eu

1 Introduction

1.1 Purpose of the document

This document provides the Technical Validation Plan for the second phase of ACAS Xa validation planned within the task T026 of SESAR 9.47 project. While the first phase of validation defined in P9.47-D20 was conducted as a fast-time simulation (based on Run13 version of ACAS Xa system), the second phase focuses on the technical validation of ACAS Xa surveillance in real European environment, when SESAR 9.47 developed experimental ACAS Xa platform will track the real traffic in the proximity of Toulouse airport via fixed roof-top antenna installation.

1.2 Intended readership

This document is addressed to all stakeholders with the aim to clearly describe ACAS Xa 2016 Technical Validation strategy within SESAR 9.47 project to elicit their feedback on the planned activities and validation goals.

1.3 Structure of the document

This document is organized in the following way:

- General context of the validation is provided in Chapter 2.
- Validation approach as well as its objectives, scenarios and assumptions are specified in **Chapter 3**.
- Validation exercise EXE-09.47-VP-824 is described in details in Chapter 4.
- And Chapter 5 consists of the list of references.

1.4 Glossary of terms

Active surveillance - a type of surveillance including active tracking, where the tracking data about the target are obtained through interrogation of its transponder and subsequent analysis of transmission characteristics (delay, incoming direction) of its reply.

Passive surveillance – a type of surveillance including passive tracking, where the tracking data about the target are obtained through ADS-B reports.

True data – are the estimation of the true flown aircraft position and velocity. For real measured data this information is not known and it is obtained through post-processing by combining both active and passive data in order to exclude jitter, bias and latency errors from recorded measurements. For sensitivity study the "true" data are known and are represented by simulated trajectory before its degradation by surveillance errors.

- Jitter random deviation of measurements.
- Bias systematic offset between measurements and true values.

Latency – systematic time delay between real time of measurement and time of applicability.

founding members

Avenue de Cortenbergh 100 | B -1000 Bruxelles www.sesarju.eu

1.5 Acronyms and Terminology

Term	Definition	
ACAS	Airborne Collision Avoidance System	
ACAS Xa	ACAS X - Active	
ADD	Algorithm Design Description	
ADS-B	Automatic Dependant Surveillance – Broadcast	
АТМ	Air Traffic Management	
СРА	Closest Point of Approach	
DOD	Detailed Operational Description	
E-ATMS	European Air Traffic Management System	
E-OCVM	European Operational Concept Validation Methodology	
FAA	Federal Aviation Administration	
GA	General Aviation	
IRS	Interface Requirements Specification	
INTEROP	Interoperability Requirements	
КРА	Key Performance Area	
МІТ	Massachusetts Institute of Technology	
MOPS	Minimum Operational Performance Standards	
OFA	Operational Focus Areas	
OSED	Operational Service and Environment Definition	
RA	Resolution Advisory	
SESAR	Single European Sky ATM Research Programme	
SESAR Programme	The programme which defines the Research and Development activities and Projects for the SJU.	
SJU	SESAR Joint Undertaking (Agency of the European Commission)	
SJU Work Programme	The programme which addresses all activities of the SESAR Joint Undertaking Agency.	
SPR	Safety and Performance Requirements	

founding members

<u>्</u>

Avenue de Cortenbergh 100 | B -1000 Bruxelles

Avenue de de de www.sesarju.eu

8 of 34

Edition 00.01.00

Project Number 09.47.00 D26 - Validation Plan (VALP) for 2016 validation of ACAS Xa

Term	Definition
STM	Surveillance and Tracking Module
SUT	System Under Test
ТА	Traffic Advisory
TAD	Technical Architecture Description
TCAS	Traffic Alert and Collision Avoidance System
TRM	Threat Resolution Module
тѕ	Technical Specification
VALP	Validation Plan
VALR	Validation Report
VALS	Validation Strategy
VP	Verification Plan
VR	Verification Report
vs	Verification Strategy

founding members

Avenue de Cortenbergh 100 | B -1000 Bruxelles www.sesarju.eu

2 Context of the Validation

2.1 Scope/perimeter of the validation

Validation Exercise ID and Title	EXE-09.47-VP-824 : ACAS Xa validation in real environment (roof-top testing)
Leading organization	Honeywell
Validation exercise objectives	Evaluate the surveillance performance of ACAS Xa in real environment and compare it with Run13 performance
Rationale	The aim of this validation is to evaluate surveillance functions of ACAS Xa in real environment for the first time (in Europe) and compare observed performance with Run13 using model STM developed during P.09.47-T021.
Supporting DOD / Operational Scenario / Use Case	The overall performance of ACAS Xa system
OFA addressed	OFA 03.04.02 Enhanced ACAS operations
OI steps addressed	CM-0808 Enhanced ACAS logic adapted to Trajectory Based Operations
Enablers addressed	AC/54-A Enhanced Airborne Collision Avoidance (ACAS)
Applicable Operational Context	All airborne operations in En Route & TMA.
Expected results per KPA	Surveillance performance contributing to Increase in Safety
Validation Technique	Roof-top testing
Dependent Validation Exercises	N/A

Table 1: Concept Overview

2.2 Stakeholder identification, needs and involvement

- SESAR 9.47 project consortium partners as this validation plan address the activities within the tasks T9.47-028.
- SESAR 4.8.1 (Enhanced safety nets for en-route TMA operations) and OFA 3.4.2 (Enhanced ACAS Operations) as the proposed activities complement their validation work.
- EUROCAE WG 75/RTCA SC-147 and FAA ACAS X program as the proposed activities should help to mature the surveillance requirements for ACAS Xa and provide feedback for future development.

founding members

Avenue de Cortenbergh 100 | B -1000 Bruxelles www.sesarju.eu

2.3 Maturity levels

The planned work addresses the enabler CM-0808: <u>Enhanced Airborne Collision Avoidance adapted</u> to Trajectory based operations (CM-0808).

As shown in Table 2, the initial maturity level of Enhanced ACAS (Step 2 OI CM-0808) is V1.

The targeted maturity level within SESAR1 is V2 and this Validation Exercise conclude ACAS Xa validation within SESAR 9.47. Next ACAS Xa development and validation activities are planned within the scope of SESAR2020.

Operational Package	Operational Sub-	Operational Focus Area	Ols	Initial Maturity	Target Maturity level		t ty	Reused validation material from past
	level	V1	V2	V3	Rod Initiatives			
PAC03 Moving from Airspace to Trajectory Management	SPC03.04 Air Safety Nets	OFA03.04.02	CM-0808	V1		~		SESAR 9.47 – D21

Table 2: Maturity levels table

founding members

Avenue de Cortenbergh 100 | B -1000 Bruxelles www.sesarju.eu

3 Validation Approach

3.1 Validation Approach at OFA level

Table 3 summarises planned (and already completed) validation activities at OFA level, as well as the contributions of the primary projects participating to **OFA03.04.02** (Enhanced ACAS operations). These validation activities cover a series of OI Steps to validate the evolution of airborne safety net (i.e. ACAS) over the three Steps of the SESAR Concept Story board.

Operational Ols		Step	Planned va SES4	alidation act in AR P04.08.0 [.]	Planned validation activities in SESAR P09.47			
			V1	V2	V3	V1	V2	V3
	CM-0802 ACAS Resolution Advisory Downlink	1		✓ (VP-332)	✓ (VP- 066)			
OFA03.04.02 Enhanced ACAS	CM-0808 Enhanced ACAS logic adapted to Trajectory Based Operations	2	✓ (04.08.02 : VP-M192)	 ✓ (VP-703, 704, 705, 706, 707, VP- 582, 812, 813, 814) 		✓ (VP- 807,808, 809)	(VP- 810 VP- 824 -> this VALP)	

Table 3: Planned validation activities at OFA level

Exercise numbers written in **bold**, are under preparation.

As part of SPC03.04 (Air Safety Nets), **OFA03.04.02 (Enhanced ACAS) only contributes to the Safety KPA**. There are no targets on this OFA for other KPA (i.e. capacity, environment, etc...).

The main goal of OFA03.04.02 is to ensure that Airborne Safety Net (i.e. ACAS) will continue to play a major role as the last safety barriers against collision in future En-Route and TMA environment as envisaged for the three Steps of the SESAR Concept Story Board.

3.2 Validation Overview

Project SESAR 9.47 is part of OFA03.04.02 (Enhanced ACAS), and its contribution to validation activities at OFA level is described in table above.

The validation exercise defined in this document aims to validate the behaviour of Run14 ACAS Xa surveillance in real European environment, and together with human performance assessment (performed within P04.08.01) conclude European Run14 validation.

During this P09.47 validation, ACAS Xa experimental platform will be installed at a roof-top testing facility in Airbus lab in Toulouse to track real traffic in the proximity. The surveillance performance in real environment will be evaluated, and results obtained using installed system will be compared to results from previous PC-based evaluation of Run13 STM. Consequently the suitability of ACAS Xa surveillance setting in current European environment will be assessed.

founding members

Avenue de Cortenbergh 100 | B -1000 Bruxelles www.sesarju.eu

3.3 Stakeholders Validation Expectations

Stakeholder	External / Internal	Involvement	Why it matters to stakeholder	Performance expectations	Exercise Identifier
Flight Crew	Internal	Direct (ACAS user)	Last safety barrier against the risk of mid- air collision Their lives are at risk	Last safety barrier against the risk of mid- air collision Their lives are at risk	
Executive Controller (ATCO) / Air Navigation Service Provider (ANSP)	Internal	Direct (Alerted of ACAS event)	Last safety barrier against the risk of mid- air collision ACAS can save an accident	Maintaining or increasing current safety level in their airspace Increasing compatibility with their practises (e.g. reducing undesirable alert in their airspace)	EXE-09.47- VP-824
Airborne equipment manufacturer	External	Indirect	Developer and seller of ACAS	Validated operational, performance and safety requirements allowing evaluating impact on the avionics. A good understanding of benefits and benefits mechanisms.	EXE-09.47- VP-824
Airlines	External	Indirect	Buyer of ACAS	Maintaining or increasing current safety level on their aircraft Reducing disruption of their aircraft trajectories	EXE-09.47- VP-824
Standardisation bodies (EUROCAE / RTCA)	External	Indirect	Developer of ACAS MOPS	Mature and beneficial changes to ACAS	EXE-09.47- VP-824

Table 4: Stakeholders' expectations

3.4 Deviations with respect to the Validation Strategy and Transversal Reference Material

No deviations.

founding members

Avenue de Cortenbergh 100 | B -1000 Bruxelles www.sesarju.eu

13 of 34

3.5 Benefit Mechanisms Overview

Project Number 09.47.00

The benefits investigated and presented in this document are those of ACAS X. Table below provides benefit mechanisms of ACAS Xa produced within operational project P04.08.02 [4] (now P04.08.01).

Feature	Impact Area	Indicators		Benefit or negative impacts		Key Performance Area / Transversal Area
	Safety of ACAS	Number of mid-air and near mid-air collisions	Ť	Safety of ER / TMA operations	↑	Safety
ACAS Xa	Alerting performance of ACAS	Number of not operationally relevant resolution advisories	Ť	Compatibility of ACAS with ATM operations	ſ	Safety
	Alerting performance of ACAS	Number of not operationally relevant resolution advisories	Ŷ	Pilot acceptability of ACAS alerts	↑	Safety & Human Performance

Table 5: Benefit mechanisms overview

Validation activities described in this document address primarily the performance of the new surveillance functions and its impact on the overall system behaviour - and therefore also on the targeted benefits.

3.6 Validation Objectives

[OB.]]

OBJ-09.47-VALP-Xa14-0001
Validate the overall performance of ACAS Xa surveillance in real environment
ACAS Xa surveillance validation in real environment
<in progress=""></in>

IOBJ Tracel

L			
Relationship	Linked Element Type	Identifier	Compliance
<satisfies></satisfies>	<v&v objective=""></v&v>	V&V Objective Identifier (VALP,VALS)	<full></full>
<covers></covers>	<atms requirement=""></atms>	Requirement Identifier(OSED, SPR)	N/A
<covers></covers>	<v&v requirement="" sut=""></v&v>	V&V SUT Requirement Identifier	N/A
<covers></covers>	<oi step=""></oi>	CM-0808	N/A
<allocated_to></allocated_to>	<operational area="" focus=""></operational>	OFA 03.04.02	N/A
<allocated_to></allocated_to>	<project></project>	09.47	N/A
<changed because="" of=""></changed>	<change order=""></change>	Change Reference	N/A

[OBJ Suc]

Identifier	Success Criterion
CRT-09.47-VALP-	The probability that true state of intruder lies outside of sigma sample area shall
0001-0001	be lower than (or equal to) 5%.
CRT-09.47-VALP-	The accuracy of tracked values shall be better than the accuracy of the input
0001-0002	surveillance data.

[OB.]]

Identifier	OBJ-09.47-VALP-Xa14-0002
Objective	Compare the performance of ACAS Xa in real environment (roof-top) with results obtained during Run13 STM fast-time evaluation.
Title	Surveillance performance comparison
Status	<in progress=""></in>

founding members

Avenue de Cortenbergh 100 | B -1000 Bruxelles www.sesarju.eu

14 of 34

[OBJ Trace]

Relationship	Linked Element Type	Identifier	Compliance
<satisfies></satisfies>	<v&v objective=""></v&v>	V&V Objective Identifier (VALP,VALS)	<full></full>
<covers></covers>	<atms requirement=""></atms>	Requirement Identifier(OSED, SPR)	N/A
<covers></covers>	<v&v requirement="" sut=""></v&v>	V&V SUT Requirement Identifier	N/A
<covers></covers>	<oi step=""></oi>	CM-0808	N/A
<allocated_to></allocated_to>	<operational area="" focus=""></operational>	OFA 03.04.02	N/A
<allocated_to></allocated_to>	<project></project>	09.47	N/A
<changed because="" of=""></changed>	<change order=""></change>	Change Reference	N/A

[OBJ Suc]

Identifier	Success Criterion
CRT-09.47-VALP-	The probability that true state of intruder (during roof-top validation) lies outside
0002-0001	(62%).
CRT-09.47-VALP- 0002-0002	The accuracy of tracked values (during roof-top validation) shall be better than accuracy of the input surveillance data when compared with Run13 STM
	evaluation results.

[OBJ]

Identifier	OBJ-09.47-VALP-Xa14-0003
Objective	Evaluate the suitability of ACAS Xa surveillance settings for current environment.
Title	Suitability of ACAS Xa surveillance settings
Status	<in progress=""></in>

[OBJ Trace]

Relationship	Linked Element Type	Identifier	Compliance
<satisfies></satisfies>	<v&v objective=""></v&v>	V&V Objective Identifier (VALP,VALS)	<full></full>
<covers></covers>	<atms requirement=""></atms>	Requirement Identifier(OSED, SPR)	N/A
<covers></covers>	<v&v requirement="" sut=""></v&v>	V&V SUT Requirement Identifier	N/A
<covers></covers>	<oi step=""></oi>	CM-0808	N/A
<allocated_to></allocated_to>	<operational area="" focus=""></operational>	OFA 03.04.02	N/A
<allocated_to></allocated_to>	<project></project>	09.47	N/A
<changed because="" of=""></changed>	<change order=""></change>	Change Reference	N/A

[OBJ Suc]

Identifier	Success Criterion
CRT-09.47-VALP-	The probability of cross-validation failure for ADS-B data quality shall be less
0003-0001	than 5%.
CRT-09.47-VALP-	Evaluation of active/passive data usage rate completed.
0003-0002	
CRT-09.47-VALP-	The usage or 1030/1090 MHz frequency shall not be higher than with TCAS II
0003-0003	with extended hybrid surveillance capability.

Table 6: Validation Objective layout

3.7 Validation Scenarios

[SCN]	
Identifier	SCN-09.47-VALP-Xa14-0001
Scenario	ACAS Xa experimental platform tracking real traffic in the proximity of roof-top antenna installation
Status	<in progress=""></in>

[SCN Trace]

Relationship	Linked Element Type	Identifier	Compliance
<justifies></justifies>	<v&v objective=""></v&v>	V&V Objective Identifier (VALP,VALS)	N/A
<changed_because_of></changed_because_of>	<change order=""></change>	Change Reference	N/A

[SCN] Identifier

	SCN-09.47-VALP-Xa14-0002
--	--------------------------

founding members

Avenue de Cortenbergh 100 | B -1000 Bruxelles www.sesarju.eu

15 of 34

Scenario	Use of surveillance data recorded during roof-top evaluation within Run 13 fast
	time simulations.
Status	<in progress=""></in>

[SCN Trace]

Relationship	Linked Element Type	Identifier	Compliance
<justifies></justifies>	<v&v objective=""></v&v>	V&V Objective Identifier (VALP,VALS)	N/A
<changed_because_of></changed_because_of>	<change order=""></change>	Change Reference	N/A

Table 7: Validation Scenario layout

3.8 Validation Assumptions

ldentifier	Title	Type of Assumption	Description	Justification	Flight Phase	KPA Impacted	Source	Value(s)	Owner	Impact on Assessment
ASS-00.09.47-VALP- Xa.0001	Represe ntativen ess of traffic sample	Traffic Characteristics	Traffic sample recorded during roof- top testing will represent typical European fleet equipment.	The validation should assess ACAS X performance in European environment	N/A	Environment	Expe rt judge ment	N/A	N/A	Low
ASS-00.09.47-VALP-2	Data sample	Airport Characteristics	Data collected during the validation will be sufficient for adequate data analysis and generating of representati ve results.	The validation will be performed using roof- top installation only, tracking aircraft near Toulouse airport.	N/A	Environment	Expe rt judge ment	10- 12 hour s reco rded	9.47	High

Avenue de Cortenbergh 100 | B -1000 Bruxelles www.sesarju.eu

16 of 34

ldentifier	Title	Type of Assumption	Description	Justification	Flight Phase	KPA Impacted	Source	Value(s)	Owner	Impact on Assessment
ASS-00.09.47-VALP-Xa.0003	ADS-B quality require ments decreas ed	Aircraft Equipage / Technology	ADS-B data with SIL=1 and SIL=2 will be allowed to pass to TRM	There is a requirement, that only ADS-B with SIL=3 can be qualified to pass to TRM. In current environment , this requirement would not be met.	N/A	Environment	Expe rt judge ment	N/A	9.47	Medi um
ASS-00.09.47-VALP- Xa.0004	ACAS X software version	Aircraft Equipage / Technology	The same software version that will be used for 04.08.01 human aspects validation will be used for this validation.	This will in the end enable to provide a full picture of Run14 ACAS X performance in European environment	N/A	Safety	Over all valid ation goal	N/A	9.47	Medi um

Table 8: Validation Assumptions overview

3.9 Validation Requirements

3.9.1 Validation SUT Requirements

REQ-09.47-VALP-Xa.0001
ACAS Xa shall have the same interface as TCAS II.
ACAS Xa interface
<in progress=""></in>
ACAS Xa is being developed with assumption of compliant interface with
TCAS II.
<interface></interface>
<expert group=""></expert>
<inspection></inspection>

[REQ Trace]

[]			
Relationship	Linked Element Type	Identifier	Compliance
<induced_by></induced_by>	<v&v objective=""></v&v>	OBJ-09.47-VALP-Xa14-0001	N/A
<satisfies></satisfies>	<v&v requirement="" sut=""></v&v>	REQ-09.47-VALP-Xa.0001	<full></full>
<allocated_to></allocated_to>	<project></project>	P.09.47	N/A
<changed because="" of=""></changed>	<change order=""></change>	Change Reference	N/A

Table 9: Validation System Under Test Requirement layout

Avenue de Cortenbergh 100 | B -1000 Bruxelles www.sesarju.eu

17 of 34

3.9.2 Other Validation Requirements

Other validation requirements (not related to Validation Platform or SUT) are as follows:

• On-time availability of ACAS Xa experimental platform integrated with roof-top installation

3.10 Integration and preliminary Validation activities

The validation exercise will be performed using fixed roof-top installed antenna at Airbus lab facility in Toulouse. First of all, a slot at lab has to be assured (coordination of Honeywell and Airbus). Prior to start of validation itself, the Run14 experimental platform has to be available (Honeywell / DSNA / Airbus coordination), integrated and correctly tested at Airbus lab roof-top testing facility. Prototype is verified as successful if sample recording shows that required data were correctly recorded.

3.11 Validation Exercises List

[EXE]	
Identifier	EXE_09.47_VP_824
Status	<in progress=""></in>

[EXE Trace]			
Relationship	Linked Element Type	Identifier	Compliance
<embeds></embeds>	<v&v objective=""></v&v>	OBJ-09.47-VALP-Xa14-0001	N/A
<embeds></embeds>	<v&v objective=""></v&v>	OBJ-09.47-VALP-Xa14-0002	N/A
<embeds></embeds>	<v&v objective=""></v&v>	OBJ-09.47-VALP-Xa14-0003	N/A
<executes></executes>	<v&v scenario=""></v&v>	SCN-09.47-VALP-Xa14-0001	N/A
<executes></executes>	<v&v scenario=""></v&v>	SCN-09.47-VALP-Xa14-0002	N/A
<changed_because_of></changed_because_of>	<change order=""></change>	Change Reference	N/A

Table 10: Validation Exercise layout

3.12 Validation Exercises Planning

2	015	2016						
November	December	January	February	March	April	May		
	Experimental unit available for DSNA 4.8.1 evaluation	4.8.1. human aspect evaluation (EXE- 04.08.01- VP-582)						
			E	xercise #8	24			

Avenue de Cortenbergh 100 | B -1000 Bruxelles www.sesarju.eu

18 of 34

2	015	2016					
November	December	January	February	March	April	May	
			Prototype integration at Airbus lab facility and data recording				
				Data analysis			
					VALR preparation and delivery		
						(T29) STM Technical Specifications refinement	

Figure 1: Validation timeline

founding members

Avenue de Cortenbergh 100 | B -1000 Bruxelles www.sesarju.eu

©SESAR JOINT UNDERTAKING, 2015. Created by HONEYWELL for the SESAR Joint Undertaking within the frame of the SESAR Programme co-financed by the EU and EUROCONTROL. Reprint with approval of publisher and the source properly acknowledged

19 of 34

4 Validation Activities

4.1 Validation Exercise #824 Plan – EXE-09.47-VP-824

4.1.1 Exercise Scope and Justification

4.1.1.1 Exercise Level

Level of EXE-09.47-VP-824: Function level

4.1.1.2 Description of the Operational concept being addressed

From intended function perspective, there are two key modules in the ACAS X design:

- Surveillance and Tracking Module (STM), which detects aircraft in the vicinity and tracks their position, and
- Threat Resolution Module (TRM), which identifies threats and provides resolution guidance.

Within this exercise, the ACAS Xa STM functions will be primarily evaluated in real environment. In previous phase, ACAS Xa (Run13) surveillance processing was evaluated [9] using fast-time simulations, and the impact of imperfect surveillance information on the performance of ACAS Xa logic is currently being evaluated within SESAR 9.47 – T022 (to be delivered in November 2015 as D22).

This exercise is considered as second phase of ACAS Xa validation, for the first time using complete ACAS Xa implementation in a hardware unit. In parallel with preparation of this roof-top validation, a preparation of P04.08.01 evaluation is ongoing, addressing human aspects of the system.

Targeted maturity level within SESAR1 is V2 and this Validation Exercise concludes ACAS Xa validation within SESAR 9.47. Next ACAS Xa development and validation activities will continue within the scope of SESAR2020.

4.1.1.3 Stakeholders and their expectations

The list of internal and external stakeholders for whom the exercise outcomes matter is provided in section 3.3.

4.1.1.4 Validation objectives and hypothesis

Identifier	OBJ-09.47-VALP-Xa14-0001
Objective	Validate the overall performance of ACAS Xa surveillance in real environment
Title	ACAS Xa surveillance validation in real environment
Status	<in progress=""></in>
Identifier	Success Criterion
CRT-09.47-VALP-	The probability that true state of intruder lies outside of sigma sample area shall
0001-0001	be lower than (or equal to) 5%.
CRT-09.47-VALP-	The accuracy of tracked values shall be better than the accuracy of the input
0001-0002	surveillance data.

Validation objectives and success criterions (defined in 3.6) are as follows:

founding members

Identifier

Avenue de Cortenbergh 100 | B -1000 Bruxelles

OBJ-09.47-VALP-Xa14-0002

www.sesarju.eu

20 of 34

Project Number 09.47.00 D26 - Validation Plan (VALP) for 2016 validation of ACAS Xa

Objective	Compare the performance of ACAS Xa in real environment (roof-top) with results obtained during Run13 STM fast-time evaluation.
Title	Surveillance performance comparison
Status	<in progress=""></in>
Identifier	Success Criterion
CRT-09.47-VALP- 0002-0001	The probability that true state of intruder (during roof-top validation) lies outside of sigma sample area shall be lower or equal to Run13 STM evaluation result (62%).
CRT-09.47-VALP- 0002-0002	The accuracy of tracked values (during roof-top validation) shall be better than accuracy of the input surveillance data when compared with Run13 STM evaluation results.

Identifier	OBJ-09.47-VALP-Xa14-0003
Objective	Evaluate the suitability of ACAS Xa surveillance settings for current environment.
Title	Suitability of ACAS Xa surveillance settings
Status	<in progress=""></in>
Identifier	Success Criterion
CRT-09.47-VALP-	The probability of cross-validation failure for ADS-B data quality shall be less
0003-0001	than 5%.
CRT-09.47-VALP-	Evaluation of active/passive data usage rate completed.
0003-0002	
CRT-09.47-VALP-	The usage or 1030/1090 MHz frequency shall not be higher than with TCAS II
0003-0003	with extended hybrid surveillance capability.

4.1.1.5 Validation scenarios

Two validation scenarios were defined:

- 1. ACAS Xa experimental platform as a roof-top installation tracking real traffic in Toulouse airport vicinity.
- 2. Use of surveillance data recorded during roof-top evaluation within Run 13 fast time simulations.

4.1.1.5.1 Reference & Solution Scenarios

The system will be used in real traffic environment. The behaviour of the ACAS Xa will be analyzed and compared with the expected system behaviour and results obtained during 9.47 D21 [9].

4.1.1.5.2 Airport Information

N/A

4.1.1.5.3 Airspace Information

The considered airspace will be delimited by the surveillance range of the roof-top antenna installation, so it will be primarily Toulouse TMA.

4.1.1.5.4 Traffic Information

Real traffic in the proximity of the roof top antenna installation will be used. High ratio of ADS-B Out equipped traffic is desirable for the system testing, nevertheless, the results analysis will be of course adapted to the observed traffic sample.

4.1.1.5.5 Simulation

N/A

founding members

💽 🤶 🚆

Avenue de Cortenbergh 100 | B -1000 Bruxelles www.sesarju.eu

4.1.1.5.6 Additional Information

4.1.1.5.6.1 Additional info #1

N/A

4.1.1.6 Exercise Assumptions

Refer to 3.8 for list of validation assumptions.

4.1.1.7 Exercise Tool, Validation Technique and/or Platform

This exercise will be performed at the Airbus facility in Toulouse, France. The developed ACAS Xa system will be integrated in the Airbus Lab and connected to the roof-top antenna installation. In addition a logging device will be connected to the ACAS X unit for data recording.

4.1.1.8 Entrance criteria

Experimental platform with Run14 ACAS Xa system integrated, and verified by Honeywell, delivered to Toulouse and installed in the Airbus lab.

4.1.1.9 Exit Criteria

Expert's judgement about the adequacy of recorded traffic sample.

4.1.1.10 Validation Requirements

4.1.1.10.1 Validation System Under Test Requirements

N/A

4.1.1.10.2 Other Validation Requirements

Other validation requirements (not related to Validation Platform or SUT) are as follows:

• On time availability of ACAS X experimental platform integrated with roof-top installation

4.1.1.11 Platform Configuration

The validated ACAS Xa platform will be installed in Airbus integration laboratory with logging device for data recording.

4.1.1.12 Links to other Validation Exercises

Exercise described in this document is the continuation of validation activities addressed in EXE-09.47-VP-807, EXE-09.47-VP-808, EXE-09.47-VP-809 [9] and EXE-09.47-VP-810 [upcoming P09.47-D22]. This exercise (with focus given on STM) together with human aspect evaluation (focusing on TMR) will provide a compact overview of ACAS X Run14 performance.

Indirect link exists with EXE-04.08.01-VP-582, a human performance evaluation of ACAS Xa led by DSNA, which will take place just before this exercise, and will use the same HW platform as is planned to be used for roof-top validation. EXE-04.08.01-VP-582 together with EXE-09.47-VP-824 will provide a complex insight to Run14 performance.

founding members

Avenue de Cortenbergh 100 | B -1000 Bruxelles www.sesarju.eu

22 of 34

4.1.1.13 Dependent and Independent variables

The real traffic with diverse ADS-B quality will be used for this exercise.

4.1.2 Exercises Planning and management

4.1.2.1 Activities

4.1.2.1.1 Preparatory activities

- ACAS Xa (Run14) implementation into experimental platform;
- Platform delivery to Toulouse;
- Platform installation at the Airbus lab;
- Logging tool integration with ACAS Xa;

4.1.2.1.2 Execution activities

- Roof-top validation;
- Results comparison with fast-time simulation (Run13) results;

4.1.2.1.3 Post execution activities

- Data analysis
- Validation report preparation (deliverable, D27)
- ACAS Xa STM Technical Specifications refinement (D29)
- Results dissemination

4.1.2.2 Roles & Responsibilities in the exercise

Validation roles and responsibilities corresponds to what was defined in the latest project baseline:

Honeywell

- ACAS Xa platform delivery
- Integration support at the Airbus lab
- ACAS Xa data recording setting
- Data post-processing analysis
- Results consolidation into validation report

Airbus

- ACAS Xa platform integration at Airbus laboratory
- Preparation, follow-up and execution of exposure of the ACAS Xa unit during high traffic density (8h-11h or 16h30-19h) on CNS bench with real top antenna located at the roof of Airbus lab building

founding members

Avenue de Cortenbergh 100 | B -1000 Bruxelles www.sesarju.eu

23 of 34

- Recording device connection
- Delivery of recorded data to Honeywell

Eurocontrol

• Review of validation results

DSNA

- Provision of advice on the technical validation or during post-processing analysis
- Review of validation results

4.1.2.3 Human Resources

		Effort (%)						
Activities	Detail	TCAS Experts	Integration Engineers	ATM Researchers				
	ACAS Xa development	Leader (100%)						
Preparatory	ACAS Xa verification	Contributor (30%)		Leader (70%)				
	ACAS Xa integration	Contributor (20%)	Leader (80%)					
Execution	Performing test session	Contributor (20%)	Contributor (30%)	Leader (50%)				
Post- Exercise	Data analysis	Contributor (50%)		Leader (50%)				
TOTAL by resource provider (units)								
TOTAL (units)								

Table 11: Resources

4.1.2.4 Training

N/A

4.1.2.5 Time planning

Activity	Weeks of year 2015/2016								
	45-50	51	51-5	6	7	8	9-15	16	17-20
ACAS Xa (Run14) implementation & testing									
ACAS Xa unit delivery (for P04.08.01 human performance									

founding members

Avenue de Cortenbergh 100 | B -1000 Bruxelles www.sesarju.eu

24 of 34

Activity		Weeks of year 2015/2016							
	45-50	51	51-5	6	7	8	9-15	16	17-20
validation)									
P04.08.01 validation activities									
Unit hand-over (P04.08.01 > P09.47) & integration									
Roof-top validation									
Results analysis & comparison									
VALR preparation & delivery									
ACAS X STM TS update									

Table 12: Detailed time planning

4.1.2.6 Risks

• Run14 ACAS X platform not available on time

4.1.2.7 Errors and Observation handling

Each observed error or unexpected behaviour will be carefully analysed into detail in order to identify the cause, and then documented. Potential implementation errors will be corrected and the analysis will be repeated with the updated implementation.

4.1.3 Analysis Specification

4.1.3.1 Data collection methods

Experimental data will be recorded using a dedicated logging device connected directly to ACAS Xa unit. This device was already used in other projects and it does not have any impact on the ACAS Xa function.

4.1.3.2 Analysis method

Data from STM processing will be statistically analysed and compared with results obtained from previous validation exercise (D21).

4.1.3.3 Data logging requirements

All required data will be logged at 1 Hz frequency.

4.1.4 Level of Representativeness/ limitations

Validation Exercise #824 will be performed using a roof-top antenna installation, thus considered airspace will be delimited by the surveillance range around Toulouse airport.

ACAS X currently requires SIL=3 for ADS-B data to be validated as a sufficient surveillance source. Since there is only a limited number of aircraft who will meet this requirement, for this exercise we will founding members

Avenue de Cortenbergh 100 | B -1000 Bruxelles www.sesarju.eu

25 of 34

Project Number 09.47.00 D26 - Validation Plan (VALP) for 2016 validation of ACAS Xa

consider SIL=1 and 2 to be sufficient as well, in order to have more frequent use of passive data as expected for future with new ADS-B Out installations.

founding members

Avenue de Cortenbergh 100 | B -1000 Bruxelles www.sesarju.eu

5 References

5.1 Applicable Documents

- [1] Template Toolbox 03.00.00 https://extranet.sesarju.eu/Programme%20Library/SESAR%20Template%20Toolbox.dot
- [2] Requirements and V&V Guidelines 03.00.00 <u>https://extranet.sesarju.eu/Programme%20Library/Requirements%20and%20VV%20Guidelines.doc</u>
- [3] Templates and Toolbox User Manual 03.00.00 <u>https://extranet.sesarju.eu/Programme%20Library/Templates%20and%20Toolbox%20User%</u> <u>20Manual.doc</u>
- [4] European Operational Concept Validation Methodology (E-OCVM) 3.0 [February 2010]
- [5] EUROCONTROL ATM Lexicon <u>https://extranet.eurocontrol.int/http://atmlexicon.eurocontrol.int/en/index.php/SESAR</u>

5.2 Reference Documents

The following documents provide input/guidance/further information/other:

- [6] V&V Road Map latest version of reference
- [7] ATM Master Plan https://www.atmmasterplan.eu
- [8] WPB.01 Integrated Roadmap Latest version
- [9] 09.47-D21 Validation Report from Initial STM Performance Evaluation, June 2015

27 of 34

Appendix A Safety Plan

Not Applicable.

Avenue de Cortenbergh 100 | B -1000 Bruxelles www.sesarju.eu

Appendix B Security Plan

Not Applicable.

founding members

Avenue de Cortenbergh 100 | B -1000 Bruxelles www.sesarju.eu

Appendix C Environment Plan

Not Applicable.

founding members

Avenue de Cortenbergh 100 | B -1000 Bruxelles www.sesarju.eu

©SESAR JOINT UNDERTAKING, 2015. Created by HONEYWELL for the SESAR Joint Undertaking within the frame of the SESAR Programme co-financed by the EU and EUROCONTROL. Reprint with approval of publisher and the source properly acknowledged

30 of 34

Appendix D Human Performance Assessment Plan

Not Applicable.

Avenue de Cortenbergh 100 | B -1000 Bruxelles www.sesarju.eu

Appendix E KPI Data Collection for Performance KPIs

No Performance KPIs related to Fuel Efficiency, Airspace Capacity, Airport Capacity, Predictability and Cost Effectiveness are planned to be collected, as the OFA03.04.02 (Enhanced ACAS) only deals with Safety KPA.

founding members

Avenue de Cortenbergh 100 | B -1000 Bruxelles www.sesarju.eu

Appendix F Benefit Mechanisms

The benefit mechanisms are described in 3.5.

founding members

Avenue de Cortenbergh 100 | B -1000 Bruxelles www.sesarju.eu

-END OF DOCUMENT-

Avenue de Cortenbergh 100 | B -1000 Bruxelles www.sesarju.eu

©SESAR JOINT UNDERTAKING, 2015. Created by HONEYWELL for the SESAR Joint Undertaking within the frame of the SESAR Programme co-financed by the EU and EUROCONTROL. Reprint with approval of publisher and the source properly acknowledged

34 of 34