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Abstract
Complex fractional-order (CFO) transfer functions, being more generalized versions
of their real-order counterparts, lend greater flexibility to system modeling. Due to
the absence of commercial complex-order fractance elements, the implementation
of CFO models is challenging. To alleviate this issue, a constrained optimization
approach that meets the targeted frequency responses is proposed for the rational
approximation of CFO systems. The technique generates stable, minimum-phase, and
real-valued coefficients based approximants, which are not always feasible for the
curve-fitting approach reported in the literature. Stability and performance studies of
the CFO proportional-integral-derivative (CFOPID) controllers for the Podlubny’s,
the internal model control, and the El-Khazali’s forms are considered to demonstrate
the feasibility of the proposed technique. Simulation results highlight that, for a prac-
tically reasonable order, all the designs achieve good agreement with the theoretical
characteristics. Performance comparisons with the CFOPID controller approximants
determined by the Oustaloup’s CFO differentiator based substitution method justify
the proposed approach.
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1 Introduction

Applications of fractional calculus, the branch of mathematics that is regarded as
a generalization of classical calculus, are ever-increasing across all domains [37,
38]. Fractional-order (FO) differentiation/integration (differintegration) generalizes
the traditional derivation from an integer to any real or complex number [58]. Various
definitions of FO derivatives are available in the fractional calculus literature. Caputo’s
definition of fractional derivative allows a similar representation of initial conditions
to that of the integer-order derivative because initial conditions are determined by
integer derivatives. Hence, it provides an interpretation of initial conditions to be
used in real-world problems more easily than the Riemann-Liouville definition [36].
However, many researchers dispute the ability of Caputo’s definition to take properly
into account initial conditions if used to define or simulate fractional-order systems.
In synthesis, there is a discussion on the respective benefits and drawbacks of the
two mentioned (or other) definitions. In detail, the Caputo and the Riemann-Liouville
derivatives of a function f (t) are respectively defined as

C
a D

α
t f (t) = 1

�(n − α)

∫ t

a

f (n)(τ )

(t − τ)α+1−n
dτ, (1.1)

RL
a Dα

t f (t) = 1

�(n − α)

dn

dtn

∫ t

a

f (τ )

(t − τ)α+1−n
dτ, (1.2)

where n is an integer, n − 1 ≤ α < n, and �(·) denotes the gamma function [17].
From the input–output control point of view, initial conditions are usually set to zero
such that transfer functions are considered, then the problem of initial conditions is
not significant.

The dynamical systems can be represented by FO differential equations; hence,
the linear time-invariant models can be represented by using fractional-order transfer
functions (FOTFs). Due to the presence of additional tuning knobs, the FO models
can more effectively capture the dynamics of real-world systems. Applicability of FO
systems is reported in control systems, signal processing, circuit theory, biomedical
engineering, etc. [26, 56].

The majority of the literature has dealt with the design and implementation of
FOTFs comprising real-valued exponent of s. The simplest transfer function in this
regard is H(s) = sα , which can be obtained by taking the Laplace transform of
(1.1) and (1.2) with zero initial conditions. Assuming α ∈ �+, we may write
F(s) = s psα−p = s psγ , where p is an integer such that p = �α�. Therefore,
γ = α − p implies γ ∈ (0, 1). Fitting, numerical, optimization, and continued-
fraction expansion techniques help to approximate the frequency responses of sγ

using a finite-order rational transfer function for a specified bandwidth [1, 19, 21, 43,
44, 48, 54]. From the perspective of signal processing, FR(s) = sγ represents a real-
order FO differentiator (RFOD) for γ ∈ (0, 1), whereas γ ∈ (−1, 0) corresponds to
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its inverse function [33]. The transfer function of the classical proportional-integral-
derivative (PID) controller has been generalized as CR(s) = Kp + Kis−λ + Kdsδ ,
where 0 ≤ λ, δ ≤ 1; K p, Ki , and Kd are the proportional, integral, and derivative
gains [55]. The traditional filters, including the special types, are also extended to the
FO domain [6]. The FOTF can be practically implemented by replacing one or more
traditional capacitor/inductor with the constant phase element (CPE), such as the FO
capacitor/inductor [15]. Several works experimentally demonstrated the performances
of FO circuits and systems (controllers, filters, etc.) employing the CPEs [16, 28]. The
CPEs are not yet available as commercial devices in the market; though, proposals to
implement the FO systems for industrial applications are drawing attraction [50, 66].
The impedance characteristics of the CPE can be emulated using passive or active
emulator circuits [30, 31]. However, the hardware complexity of the emulators is
substantial compared to a single element fractor.

An alternative approach that avoids usingCPEs in realizing the FO systems involves
determining the integer-order approximation of the FOTF. Such models may be
obtained through direct substitution of the rational approximant of sγ operator in
the FOTF [67]. For the non-commensurate type or more complicated FOTFs, the sub-
stitution method incurs large overhead. Hence, numerical or optimal approaches are
the preferred approximation tools [11, 42].

1.1 Complex fractional-order controller

The generality introduced by fractional calculus allows complex FOTF-based system
modeling, i.e., the exponent of smay be a complex number. For instance, the RFOD is
a subset of the complex FO differentiator (CFOD) FC (s) = sα+ jβ , where α ∈ [0, 1]
and β ∈ � [68]. The complex FOTFs provide more degrees-of-freedom in modeling
as compared to their real-order counterparts. The complex-order derivative of a sine
function at steady-state is expressed as

Dα+ jβ sin(ωt) = ωα [cos{β ln(ω)} + j sin{β ln(ω)}]
×

[
sin

(
ωt + απ

2

)
cosh

(
βπ

2

)
+ j cos

(
ωt + απ

2

)
sinh

(
βπ

2

)]
, (1.3)

where j = √−1 and ω is the angular frequency variable expressed in radians per
second (rad/s) [40].

The third-generation CRONE controller is a seminal work that deals with the design
and application of complex-order models [35]. Other application areas of complex-
order derivatives can be found in the locomotion control of robots [51, 61], chaotic
oscillators [52, 53], system identification [5, 29], filter modeling [2], viscoelasticity
[8], optimization algorithms [7, 39] and neural networks [32]. The effectiveness of
complex fractional-order PID (CFOPID) controller was demonstrated on time-delay
process [3]. The improved time-domain responses yielded by the genetic algorithm
based complex FO controllers as compared to the classical and real-order FO con-
trollers were justified [64]. Tuning rules for the CFOPID and CFOPI controllers were
proposed in [23, 59]. Modeling of CFODs and CFOPIDs in the discrete-time domain
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was also carried out [9, 40, 57]. Stability analysis of complex-order fractional dif-
ference equation was reported in [10], while [47] investigated the geometrical and
physical interpretation of the complex-order fractional integral.

1.2 Motivations for this work

The effectiveness of complex FOTF modeling has not been experimentally validated
since implementing such transfer functions requires the complex-order fractance ele-
ments; realizing such elements has not yet receivedmuch attention in the literature [22,
60]. Therefore, the rational approximation of the complex FOTFs remains a feasible
choice. The motivation for carrying out this research is based on the limitations of the
existing methods, as discussed below.

1.2.1 Limitations of fitting routines

Curve-fitting techniques were employed for the approximation of analog CFOD
[14], CFOPID [13], and complex-order filter [12]. The fitting technique is based on
the Sanathanan-Koerner algorithm with Levy’s cost function [14]. The fifth-order
approximation of the CFOPID controller reported in (28) of [14] is given by

FC (s) = 1 + 1

s0.8+0.1 j
+ s0.8+0.1 j

≈ −2353s5 + 2.14 × 106s4 + 7.53 × 106s3 + 3.77 × 106s2 + 2922s − 55.91

s5 − 1.43 × 104s4 + 4.58 × 106s3 + 1.63 × 105s2 − 100s − 0.03
. (1.4)

The approximated model in (1.4) comprises real-valued coefficients for both
the numerator and denominator polynomials. However, the poles of the ratio-
nal approximant are located at {13972, 327.8301, 8.19 × 10−4,−0.0362,−2.21 ×
10−4}, whereas the zeros lie at {912.9844,−2.9027,−0.6036,−0.0043, 0.0035}. The
reported CFOPID approximant is an unstable and non-minimum-phase system, since
three poles (13972, 327.8301, 8.19 × 10−4) and two zeros (912.9844, 0.0035) exist
on the right-half s-plane.

Vector Fitting (VF) [24, 25] is another popular technique to fit the frequency-
domain responses with rational functions. The VF method is applied for a bandwidth
of [0.001, 1000] rad/s with 1000 sample points to generate the fourth and fifth-order
approximations of the theoreticalCFOPIDcontroller given in (1.4). The corresponding
approximants are given by

FC (s) ≈ 307s4 − 12272s3 + 1781582s2 + 256374s + 71.9481

s4 + 1383s3 + 418560s2 + 1247s + 0.0851
, (1.5)

FC (s) ≈ 1389.97s5 + 68427s4 − 819142s3 + 3320489s2 + 52141s + 62.24

s5 + 5875s4 + 1273888s3 + 109639s2 + 315.95s + 0.2286
. (1.6)

The zeros of the VF-based fourth-order approximant lie at
{−0.000281,−0.1434, 20.0588±73.5296 j}; the poles reside at {−0.000069,
−0.002909,−447.338,−935.659}. For the fifth-order approximant, the locations
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Fig. 1 Magnitude and phase plots of the VF-based fourth and fifth-order approximations for the theoretical
CFOPID controller given in (1.4)

of zeros and poles are obtained as {−59.7594, 5.2730±3.5107 j,−0.0143,−0.0013}
and {−5649.5172,−225.3966,−0.0831,−0.0016,−0.0013}, respectively. The VF
technique can generate a stable approximant since all the poles reside on the left-
half s-plane. However, the presence of two right-half plane zeros (occurring in
complex-conjugate form) for both the approximants highlight non-minimum phase
behavior. Such systems may lead to stability issues in a feedback control mechanism.
The magnitude and phase plots for the VF-based approximants are presented in
Fig. 1. It can be seen that both the approximants fail to attain good conformity with
the theoretical response.

1.2.2 Limitations of a built-in MATLAB function

Using the MATLAB function invfreqs with minimization of the norm of the gradient
(with parameter iter set as 30 and considering 1000 sample points), the fourth and
fifth-order approximations of the theoretical CFOPID controller function given by
(1.4) are respectively determined as

FC (s) ≈ 8.26 × 1017s4 + 2.49 × 1021s3 + 8.25 × 1022s2 + 4.15 × 1024s + 3.86 × 1023

s4 + 1.26 × 1016s3 + 1.02 × 1022s2 + 7.02 × 1023s + 1.78 × 1021
,

(1.7)
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Fig. 2 Magnitude and phase plots of the invfreqs-based fourth and fifth-order approximations for the
theoretical CFOPID controller given in (1.4)

FC (s) ≈

1.84 × 1018s5 + 4.59 × 1021s4 + 5.91 × 1023s3

+ 3.06 × 1025s2 + 7.47 × 1026s + 7.91 × 1025

s5 + 4.27 × 1017s4 + 1.87 × 1022s3 + 2.47 × 1024s2

+ 1.28 × 1026s + 3.23 × 1023

. (1.8)

Note that the approximants generated by invfreqs without the iter parameter are
both unstable and non-minimum-phase. The poles of the fourth and fifth-order ratio-
nal functions are located at {−1.26 × 1016, −8.09 × 105, −68.8268, −0.0025} and
{−4.27×1017,−4.36×104,−66.1630±49.8776 j ,−0.0025}, respectively; the zeros
reside at {−16.4200±37.5811 j , −0.0931, −2981.59} and {−2361.5033, −67.4670,
−32.7442±38.2736 j , −0.1063}, respectively. Although stable and minimum-phase
approximations are obtained, this method gives an ill-conditioned function (coeffi-
cients with extremely large or small values), such that its implementation will lead
to impractical values of passive components. The magnitude and phase responses of
the invfreqs-based fourth and fifth-order approximants are presented in Fig. 2. These
plots highlight a significant deviation from the theoretical responses for a wide range
of the considered bandwidth.
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1.2.3 Applicability of the Oustaloup’s recursive algorithm

An alternative technique to approximate the theoretical CFOD characteristics was
reported by Oustaloup et al. [48]. According to the Oustaloup’s method, the ratio-
nal approximant of a CFOD comprises of complex poles and zeros. The CFOD
approximant for sv , where v = a + jb, based on this technique is given by

Dv
M (s) = μ−v/2

M∏
k=−M

1 + s
ω

′
k

1 + s
ωk

, (1.9)

where M is a positive integer, μ = ωh

ωb
, and the bandwidth of approximation is in the

interval [ωb, ωh] rad/s. The values of ωk and ω
′
k are respectively given by

ωk = ρke
jθ , (1.10)

ω
′
k = ρ

′
ke

− jθ , (1.11)

where ρk = ωb

(
ωh
ωb

) k+M+1/2+a/2
2M+1

, ρ
′
k = ωb

(
ωh
ωb

) k+M+1/2−a/2
2M+1

, and θ = b
2(2M+1) log(μ).

The Oustaloup’s CFOD approximant may be re-written as a ratio of complex
functions as given by

DM (s) = P
′
(s) + j Q

′
(s)

P(s) + j Q(s)
, (1.12)

where P
′
(s), P(s), Q

′
(s), and Q(s) are real coefficients based polynomials.

Alternatively, (1.12) may be written as

DM (s) = PM (s)

QM (s)
+ j

P
′
M (s)

QM (s)
, (1.13)

where PM (s) = P(s)P
′
(s) + Q(s)Q

′
(s), P

′
M (s) = P(s)Q

′
(s) − Q(s)P

′
(s), and

QM (s) = P2(s) + Q2(s).
A French patent [49] employing operational amplifiers for the circuit implementa-

tion of (1.13)was reported three decades ago.However, itmay bemore straightforward
to practically implement a real-valued function as compared to (1.13), which is a com-
plex function.Moreover, as shown in Sect. 3, the Oustaloup’s approximation evenwith
M = 1 may lead to a CFOPID controller of high order, with coefficients having large
values.

Therefore, it is worth investigating the following question: Within the bandwidth
approximation limits where six (or less) decades may be sufficient (in general) for
process control applications, is it possible to achieve reasonable accuracy using a real-
valued rational transfer function with smaller orders (even and odd) to approximate
the characteristics of the CFOPID controller?
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1.3 Contributions of this work

In this paper, the approximation of the CFOPID controller is presented wherein the
approximant is strictly a real function. The real-valued coefficients of the rational
approximant are determined optimally, while enforcing the poles and zeros to lie on
the left-half s-plane. Thus, the proposed work helps in alleviating the issues associated
with the existing approaches. The primary contributions of this work are the following:

1. A constrained optimization approach based on a state-of-the-art evolutionary
method is presented that satisfies the conditions of stability, minimum-phase, and
achieves real-valued coefficients real rational approximants of both even and odd
orders for the CFOPID controller.

2. The feasibility and effectiveness of the proposed approach is validated on three
different variants of the CFOPID controller, namely the Podlubny’s form [55], the
internal model control (IMC) form [65], and the El-Khazali’s form [20]. Effects
of the approximation order on the approximation performance are evaluated using
various frequency response error metrics.

3. The accuracy of the proposed technique is compared with the Oustaloup’s
method. Results demonstrate that the proposed approach provides a competitive
performance when compared against the much higher order of the competing
designs. While the Oustaloup’s CFOD approximants are substituted in the theo-
retical CFOPID transfer function to obtain the corresponding approximation, the
proposed method directly determines the CFOPID controller coefficients.

In the rest of the paper, Sect. 2 presents the proposed optimization problem formulation
and the solution methodology. In Sect. 3, design performance studies are carried out,
and the simulation results are discussed. The paper concludes in Sect. 4.

2 Proposed technique

2.1 Problem formulation

The generalized transfer function of a real FOTF is defined as

FR(s) = Bmsλm + Bm−1sλm−1 + . . . + B0sλ0

Ansμn + An−1sμn−1 + . . . + A0sμ0
, (2.1)

where Bi (i = 0, 1, . . .,m), Ak (k = 0, 1, . . ., n), λi (i = 0, 1, . . .,m), and
μk (k = 0, 1, . . ., n) are real numbers; λm > λm−1 > · · · > λ0 ≥ 0; and
μn > μn−1 > · · · > μ0 ≥ 0. Replacing the real-valued exponents of s in (2.1) with
complex numbers, such as λi = ri + j yi (i = 0, 1, . . .,m) and μk = wk + j zk (k =
0, 1, . . ., n), leads to the complex FOTF, as defined below, which provides further
generalization and more degrees-of-freedom than (2.1):

FC (s) = Bmsrm+ j ym + Bm−1srm−1+ j ym−1 + . . . + B0sr0+ j y0

Answn+ j zn + An−1swn−1+ j zn−1 + . . . + A0sw0+ j z0
. (2.2)
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Any classical continuous-time system can be represented as a ratio of polynomials
in s, as defined by

HN
P (s) = PN (s)

QN (s)
= aN sN + aN−1sN−1 + . . . + a0

sN + bN−1sN−1 + bN−2sN−2 + . . . + b0
, (2.3)

where ak (k = 0, 1, . . ., N ) and bk (k = 0, 1, . . ., N − 1) are the real-valued coeffi-
cients of the numerator and denominator polynomials, respectively, of HN

P (s); and N
is the order of the system. HN

P (s) is bounded-input bounded-output (BIBO) stable if
all the poles reside in the left-half s-plane; if all the zeros lie on the left-half s-plane,
then the system attains minimum-phase behavior. In the case of complex conjugate
poles or zeros, their real part must be negative. A necessary condition for BIBO sta-
bility and minimum-phase response is that all the coefficients of QN (s) and PN (s),
respectively, must possess the same sign with no missing terms.

The frequency-domain transfer functions of (2.2) and (2.3) can be obtained by
substituting s with jω, as respectively defined below

FC ( jω) = Bm ( jω)rm+ j ym + Bm−1( jω)rm−1+ j ym−1 + . . . + B0( jω)r0+ j y0

An( jω)wn+ j zn + An−1( jω)wn−1+ j zn−1 + . . . + A0( jω)w0+ j z0
, (2.4)

HN
P ( jω) = aN ( jω)N + aN−1( jω)N−1 + . . . + a0

( jω)N + bN−1( jω)N−1 + bN−2( jω)N−2 + . . . + b0
. (2.5)

Table 1 shows the transfer function and frequency domain expressions for the dif-
ferent CFOPID controllers considered for approximation in this work. The design
problem can be solved in the optimal sense, where the purpose of the search rou-
tine is to minimize the frequency response error between the theoretical (targeted)
model FC (s) and the rational approximant HN

P (s), subject to satisfying the stability
and minimum-phase criteria. The objective function f of the proposed constrained
optimization (minimization) problem can be formulated as

f = 1

L

L∑
i=1

[∣∣∣|FC ( jωi )| −
∣∣∣HN

P ( jωi , X)

∣∣∣
∣∣∣ +

∣∣∣∠FC ( jωi ) − ∠HN
P ( jωi , X)

∣∣∣
]
,

(2.6)
Subject to : σz < 0 and σp < 0 (p, z = 1, . . .,N),

where L is the total number of log-spaced data points in the bandwidth of approxi-
mation [ωmin, ωmax] rad/s; X represents the decision variables vector, i.e., X = [aN
aN−1 … a0 bN−1 bN−2 … b0]; σz and σp denote the real part of the roots of PN (s)
and QN (s), respectively. The total number of decision variables for this optimization
problem is 2N + 1, which represents the dimension (D).

2.2 Solutionmethodology

A metaheuristic algorithm facilitates the integration of various constraint handling
strategies to generate a feasible solution [34]. Although (2.6) may be minimized using
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any constrained optimization tool, this work employs the constrained composite dif-
ferential evolution (C2oDE) algorithm [69] due to its effectiveness in solving similar
problems for real FO systems [41]. Moreover, C2oDE is a real-parameter optimizer,
implying that the decision variables will always be real numbers. Hence, the drawback
of [12] concerning the generation of complex coefficients for the rational approximants
can be eliminated. A brief discussion of the metaheuristic search process of C2oDE
to solve the devised problem is presented below.

C2oDE is a constrained evolutionary optimization technique that strives to main-
tain the trade-off between the diversity of solution versus convergence and satisfy the
constraints without compromising the quality [69]. Under the evolutionary frame-
work of the composite differential evolution (CoDE) algorithm [70], two popular and
efficient constraint handling schemes, along with a restart mechanism, are integrated
in C2oDE. The major phases of the algorithm are outlined as follows.

Initialization Phase
Similar to all population-based metaheuristic algorithms, C2oDE comprises NP

search agents (also known as target vectors), xi (i ∈ 1, . . . , NP). For the proposed
optimization problem, the initial population of C2oDE can be formulated as

X =

⎡
⎢⎢⎢⎢⎢⎢⎣

x1
x2
.
.
.

xNP−1
xNP

⎤
⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎣

aN ,1 aN−1,1 . . . a0,1 bN−1,1 bN−2,1 . . . b0,1
aN ,2 aN−1,2 . . . a0,2 bN−1,2 bN−2,2 . . . b0,2

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

aN ,NP−1 aN−1,NP−1 . . . a0,NP−1 bN−1,NP−1 bN−2,NP−1 . . . b0,NP−1
aN ,NP aN−1,NP . . . a0,NP bN−1,NP bN−2,NP . . . b0,NP

⎤
⎥⎥⎥⎥⎥⎥⎦

.

(2.7)

All the agents are initialized with randomly chosen real numbers from a uniform
distribution within the search limits in the D-dimensional hyperspace. The lower
bound of the design variables is selected as 10−5 (i.e., a positive number) to satisfy the
same-sign condition for the coefficients of PN (s) and QN (s). A small upper bound
value may not provide sufficient diversity in the population. In order to limit the large
spreading of coefficients, initially, the upper bound for the design variables is selected
as 1000. In case the obtained coefficient(s) value gets stuck at the upper bound, then
the limit is increased by a factor of 10 and the search process is repeated.

Search Algorithm
Three mutation techniques are incorporated in the strategy pool of C2oDE to

create a mutant vector (vti ), where i = 1, 2, …, NP, and t denotes the genera-
tion number. The reason for incorporating several mutation schemes instead of a
single one is to provide more diversity and also enhance the algorithm’s conver-
gence speed. These selected strategies exhibit complementary characteristics since
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DE/current-to-rand/1 promotes diversity, whereasmodifiedDE/rand-to-best/1/bin and
DE/current-to-best/1/bin improve the convergence characteristics. The expressions for
the three mutation schemes are given by

vti = xti + rand · (xtr1 − xti ) + F · (xtr2 − xtr3), [DE/current-to-rand/1] (2.8)

where xtr1, x
t
r2, and x

t
r3 (r1 �= r2 �= r3 �= i) are three randomly chosen target vectors;

F denotes the scale factor; and rand ∈ U (0, 1), with U uniform distribution;

vti = xtr1+F ·(xtGbest−xtr2)+F ·(xtr3−xtr4), [modified DE/rand-to-best/1/bin] (2.9)

where the agent with the smallest degree of constraint violation is indicated by xtGbest
and xtr4 (r1 �= r2 �= r3 �= r4 �= i) denotes a randomly chosen target vector; and

vti = xti + F · (xtf best − xti ) + F · (xtr1 − xtr2), [DE/current-to-best/1/bin] (2.10)

where xtf best is the individualwith the best (minimum) values of the objective function.
The expression for the degree of constraint violation for xi is given by

G(xi ) =
N∑
j=1

max(0, g j (x)), (2.11)

where g j (x) < 0 represents the inequality constraints to satisfy the stability criteria.
After undergoing mutation, the algorithm executes the binomial crossover on xti

and vti (obtained in (2.9) and (2.10)) to create the trial or offspring (uti )

uti, j =
{

vti, j , if rand j < CR or j = jrand ,
xti, j , otherwise,

(2.12)

where i ∈ (1, 2, . . . , NP); j ∈ (1, 2, . . . , D); rand j ∈ U (0, 1);
jrand ∈ randint(1, D); and CR is the probability of crossover. Note that DE/current-
to-rand/1 operation incorporates arithmetic crossover within the formula itself. So, for
this mutation technique, a binomial crossover is not used.

C2oDE incorporates two pools, F pool = {0.6, 0.8, 1.0} and CRpool = {0.1,
0.2, 1.0}, where the values of F and CR are available. Every time the algorithm needs
the F and CR values for performing the mutation and crossover operations; it picks
up a value from the corresponding pools (i.e., F pool and CRpool ) randomly. This idea
in C2oDE is different from that of the CoDE algorithm, where three specific pairs
of {F,CR} combinations were employed. Thus, uti1, u

t
i2, and uti3, are the three trial

vectors generated subsequent to the three mutation rules and crossover.

Handling of Constraints
At first, Deb’s constraint handling strategy [18] is employed to determine the best

solution (uti,best ) among the trial vectors {uti1, uti2, uti3}. Then, the ε-constrained tech-
nique [63] is invoked to select between xti and uti,best . Given any two agents xi and
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x j , the ε-constrained method performs a pair-wise comparison and favors selecting xi
over x j according to the rules framed as

⎧⎨
⎩

f (xi ) < f (x j ), if G(xi ),G(x j ) ≤ ε,

f (xi ) < f (x j ), if G(xi ) = G(x j ),
G(xi ) < G(x j ), otherwise,

(2.13)

where

ε =
{

ε0(1 − t/tmax)
cp, if (t/tmax) ≤ p,

0, otherwise,
(2.14)

cp = −
(
log(ε0) + λ̃

log(1 − p)

)
. (2.15)

Here, the initial threshold ε0 = max
(
G(x11), G(x12), . . . , G(x1NP )

)
; tmax denotes

the maximum number of generations; p controls the degree of exploitation of the
objective function information and λ̃ helps avoiding an infinite value for cp if the
condition ε0 = 0 occurs (i.e., no constraint violation occurs in the initial population).

Restart Mechanism
For highly complicated constraints, a restartmechanism is also integrated inC2oDE.

This activation is triggered if no feasible solution exists or the standard deviation values
for the degree of constraint violation/objective function are smaller than a specific
threshold (μ̃). The random initialization phase is repeated if any of the aforementioned
conditions exist. The steps of the C2oDE algorithm are presented in Table 2.

The flowchart of the proposed design technique is shown in Fig. 3. The
inputs to the optimization routine are the parameters of the complex FOTF
(α, β, γ, λ, θ, μ, φ, Kp, Ki , Kd , KC , Ti ) as applicable, the desired approximation
order (N), L, and bandwidth of approximation ([ωmin, ωmax] rad/s). Due to the stochas-
tic nature of the search process of C2oDE, multiple runs of the algorithm are required
to determine the best solution quality. The proposed work performsmaxrun number of
independent trial runs of C2oDE for each of the considered design examples. Each run
of the algorithm terminates after completing the FEmax number of objective function
evaluations. For each trial run of the algorithm, the best feasible solution vector in that
run and its fitness value are stored. Finally, at the end of all the runs, the best among
all the stored best solutions obtained in each run, i.e., the one achieving the least value
of the objective function, is selected as the near-global optimal and feasible decision
variables vector X∗.

3 Simulation results and discussion

In this work, the internal control parameters of C2oDE are chosen as per the recom-
mendations provided in [69], whereas the basic parameter NP is selected as 10D as
specified by a rule of thumb [62]. For demonstration purposes, the values of L, ωmin,

andωmax are chosen as 1000, 10−3 rad/s, and 103 rad/s, respectively. The optimization
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Table 2 Steps of C2oDE algorithm

Step 1. Set NP = 10D, μ̃ = 10−8, λ̃ = 6, p = 0.5, t = 1, FEmax = 10000D.

Step 2. Set FE = 0 (FE: function evaluation counter).

Step 3. Randomly initialize the search agents in the chromosome population,

Pt = {xt1, . . . , xtNP }, within the lower and upper bounds.

Step 4. Evaluate { f (xt1), f (xt2), . . . , f (xtNP )} and {G(xt1),G(xt2), . . . ,G(xtNP )}.
Set FE = NP .

Step 5. Revise ε according to (2.14).

Step 6. For the ith (i = 1, 2, . . ., NP) agent,

Select xtr1, x
t
r2, x

t
r3, and F ∈ Fpool .

Acquire vti1 as per (2.8).

Set uti1 = vti1.

Select xtGbest , x
t
r1, x

t
r2, x

t
r3, x

t
r4, F ∈ Fpool , and CR ∈ CRpool .

Acquire vti2 as per (2.9).

Perform binomial crossover on vti2 and xti to generate u
t
i2.

Select xtf best , x
t
r1, x

t
r2, F ∈ Fpool , and CR ∈ CRpool .

Acquire vti3 as per (2.10).

Perform binomial crossover on vti3and xti to generate u
t
i3.

Evaluate { f (uti,1), f (uti,2), f (uti,3)} and {G(uti,1),G(uti,2),G(uti,3)}.
Select uti,best from {uti1, uti2, uti3} using Deb’s constraint handling rules.

Select between uti,best and xti using the ε-constrained technique.

FE = FE + 3.

Step 7. Initiate the restart mechanism (if applicable).

Step 8. Set t = t + 1.

Step 9. Stop if FE ≥FEmax; else, repeat from Step 5.

routine is implemented in MATLAB (software version: 2014a). To measure the accu-
racy of the approximants, the absolute magnitude error (AME) and absolute phase
error (APE) metrics, as defined below, are used:

AME =
∣∣∣∣∣FC ( jω)

∣∣ − ∣∣HN
P ( jω)

∣∣∣∣∣ , (3.1)

APE =
∣∣∣∠FC ( jω) − ∠HN

P ( jω)

∣∣∣ . (3.2)

3.1 Performance analysis of the proposed controllers

Three different CFOPID controllers, such as those of the Podlubny’s form (cases I and
II) [55], IMC-based (case III) [65], and El-Khazali’s form (case IV) [20], are shown in
Table 3. The optimal coefficients of the proposed controllers for two different values
of N for each case, are also presented in Table 3. The upper bound of the design vari-
ables for cases I, II, III, and IV with N = {5, 6}, {4, 5}, {5, 6}, and {4, 5} is selected
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Fig. 3 Flowchart of the proposed design method

as {105, 105}, {104, 104}, {104, 104}, and {105, 106}, respectively, based on the
trial-and-error method mentioned previously. Note that increasing N should improve
the approximation by reducing the errors in the Bode gain and phase plots. A higher
order N is needed to represent the long memory of the system very accurately, but the
computational burden increases. On the contrary, a lower N produces more ripples
in gain and phase plots, but is advantageous, because the changes in coefficients due
to tolerances of components (in an analog implementation) or due to the limitations
of microprocessor words and the quantization effects (for a digital implementation)
can be contained [45]. Hence a low sensitivity to parameter variations is obtained.
Moreover, an accurate implementation over a wide frequency range is difficult for a
conventional hardware realization due to computational complexity [27] and hardware
costs can be limited if the accuracy is required in a restricted frequency range. Finally,
from the practical point of view, approximations are not required over a very large
frequency range. Namely, in systems and control engineering applications, approx-
imations should work within a bounded frequency range, where a few decades are
usually satisfactory.
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Fig. 4 The magnitude and phase-frequency comparison plots of the proposed optimal approximants of the
CFOPID controllers with the theoretical models for (a) case I, (b) case II, (c) case III, (d) case IV

The stability and minimum-phase of the designs can be confirmed from
Table 4, which shows that all the poles and zeros reside on the left-half s-plane.
This is an important property since the occurrence of non-minimum-phase zeros in
a controller may lead to stability issues in a closed-loop control system, including
approximants of such controller.

The frequency responses of the designed controllers are compared with the theo-
retical models for the four cases, as shown in Figs. 4(a)–(d). It may be observed that:
(i) for the case I, the sixth-order design achieves lower magnitude error than the fifth-
order model in the frequency range [0.001, 0.028] rad/s. The fifth-order approximant
outperforms the sixth-order one in terms of phase response accuracy in the interval
[0.001, 0.145] rad/s. Frequency responses of both the approximants are similar at high
frequency regions. Increasing the order of the proposed approximant further slightly
reduces the error in phase approximation but does not significantly affect the error in
magnitude approximation; (ii) for case II with both the approximation orders, a similar
accuracy inmagnitude is obtained in the frequency range [0.181, 6.884] rad/s, whereas
the same accuracy for phase characteristic is obtained between 0.774 and 3.4 rad/s.
Overall, an improved accuracy in magnitude and phase is respectively attained using
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Table 5 Comparison of error metrics for the proposed optimal approximants of the CFOPID controllers
(best performance is highlighted in boldface)

Case N Max Absolute Error Mean Absolute Error
Magnitude (dB) Phase (◦) Magnitude (dB) Phase (◦)

I 5 49.841 22.469 29.939 6.029

6 49.153 28.412 25.023 12.405

II 4 34.570 43.250 14.499 4.668

5 −0.795 51.978 −21.040 20.903

III 5 46.443 5.696 23.371 0.913

6 45.982 3.265 22.728 1.580

IV 4 42.075 36.109 17.247 15.584

5 45.052 21.782 21.639 11.798

the designs with N = 5 and N = 4; (iii) for case III, the frequency characteristic plots
of both the approximants exhibit similarity. While the phase response exhibits prox-
imity with the theory throughout the bandwidth, the magnitude plot starts deviating at
the lower frequency end below 0.04 rad/s; (iv) for case IV, the magnitude-frequency
profiles for the proposed fourth and fifth-order aproximants are similar, whereas the
fifth-order design markedly outperforms the fourth-order model in the range [0.001,
0.026] rad/s regarding the phase response accuracy.

Table 5 presents the performance metrics for all the designed CFOPIDs, which
show that: (i) for case I, maximum APE for N = 5 (49.841 dB) and N = 6 (49.153
dB) is similar. The fifth-order design outperforms the sixth-order controller about
the maximum and mean APE, whereas the sixth-order design achieves smaller mean
AME; (ii) for case II, the fifth-order design is inferior to its lower-order counterpart
regarding the maximum and mean APE metrics, but significantly outperforms the
fourth-order approximant about both the magnitude response indices; (iii) for case III,
the performances of both the designed controllers are similar; (iv) substantial improve-
ment in maximum APE is achieved by the fifth-order approximant as compared to the
fourth-order one for case IV. However, it is remarked that the high values of maximum
absolute errors are typically obtained at the extremum low and high frequencies of the
considered intervals,where the approximations are obviouslyworst.As a consequence,
mean absolute errors are affected by such values. On the contrary, the approximations
give suitable results inside the frequency interval [ωmin, ωmax].

3.2 Comparison with the literature

The CFOPID controller can be approximated using Oustaloup’s CFOD approximant
by a simple substitution method. For instance, the normalized CFOD approximant
for s0.8+0.1 j based on the Oustaloup’s method with M = 1, ωb = 0.001 rad/s, and
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ωh = 1000 rad/s, is given by

s0.8+0.1 j ≈ D0.8+0.1 j
1 = 1

1000(0.8+0.1 j)

⎛
⎜⎜⎝
1 + s

ω
′
−1

1 + s

ω−1

⎞
⎟⎟⎠

⎛
⎜⎜⎝
1 + s

ω
′
0

1 + s

ω0

⎞
⎟⎟⎠

⎛
⎜⎜⎝
1 + s

ω
′
1

1 + s

ω1

⎞
⎟⎟⎠ ,

(3.3)
where ω−1 = 0.0614+0.0144 j , ω

′
−1 = 0.0015−0.0004 j , ω0 = 6.1430+1.4400 j ,

ω
′
0 = 0.1543 − 0.0362 j , ω1 = 614.3 + 144 j , and ω

′
1 = 15.4306 − 3.6172 j .

Thus, the theoretical CFOPID controller given by (1.4) can be approximated using
the Oustaloup’s technique as

FC (s) = 1 + s0.8+0.1 j + 1

s0.8+0.1 j ≈ 1 + D0.8+0.1 j
1 (s) + 1

D0.8+0.1 j
1 (s)

. (3.4)

Then, (3.4) can be represented in the form of (1.13), where the expressions for
PM (s), P

′
M (s), and QM (s) are obtained as

PM (s) = 194.5053s12 + 1.4910 × 105s11 + 8.2897 × 106s10 + 1.7707 × 108s9

+1.7046 × 109s8 + 6.7896 × 109s7 + 8.8736 × 109s6 + 6.6288 × 109s5

+1.6625 × 109s4 + 1.7320 × 108s3 + 8.1395 × 106s2 + 1.4701 × 105s

+187.2878, (3.5)

P
′
M (s) = 159.9975s12 + 8.0683 × 104s11 + 3.3008 × 106s10 + 4.7865 × 107s9

+2.4461 × 108s8 + 8.9531 × 107s7 − 3.9970 × 108s6 − 1.6790 × 108s5

+1.5350 × 108s4 + 3.6652 × 107s3 + 2.7079 × 106s2 + 6.8829 × 104s

+144.7765, (3.6)

QM (s) = s12 + 1.2548 × 103s11 + 4.3522 × 105s10 + 1.7476 × 107s9

+2.6860 × 108s8 + 1.7739 × 109s7 + 4.5571 × 109s6 + 1.7733 × 109s5

+2.6834 × 108s4 + 1.7441 × 107s3 + 4.3339 × 105s2 + 1.2199 × 103s

+0.9594. (3.7)

Eqns. (3.5), (3.6), and (3.7) reveal that even with M = 1, the substitution of
Oustaloup’s CFOD model yields a CFOPID controller of twelfth order (N = 12) for
both the real and imaginary parts of the approximant. The coefficients also attain large
values as observed from the above three expressions. Note that theOustaloup’smethod
yields only an even order of rational approximant for the CFOPID controller.

For comparison purpose, the CFOPID controllers for all the four cases are obtained
by substituting the Oustaloup’s CFOD approximant (with M = 1 in (1.9)) in the
theoretical controller functions.
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Fig. 5 The magnitude and phase-frequency comparison plots of the proposed CFOPID controllers with the
published literature for (a) case I, (b) case II, (c) case III, (d) case IV

Themagnitude and phase responses comparison plots of the controllers obtained by
using the Oustaloup’s CFOD-based substitution and the proposed optimization with
larger N are illustrated in Figs. 5(a)-(d) for cases I-IV, respectively. It is observed that:

1. for case I, the proposed and Oustaloup’s controller achieve superior accuracy in
the magnitude and phase responses, respectively, at the lower frequency values,
whereas their performance is similar in themid-band region. At the higher frequen-
cies, the proposed controller attains better phase accuracy,whereas theOustaloup’s
approximant yields superior accuracy in magnitude;

2. for case II, the proposed controller’s phase behavior is inferior to Oustaloup’s.
However, the proposed approximant attains better proximity to the theoretical
magnitude plot over the entire bandwidth;

3. for case III, the magnitude response accuracy of the Oustaloup’s CFOPID approx-
imant is superior to that of the designed one for frequencies in [0.001, 0.019] rad/s.
The phase response of the proposed approximation suffers lower deviation in the
interval [0.001, 0.64] rad/s, while the Oustaloup’s model achieves better confor-
mitywith the theoreticalmagnitude-frequency behavior. At the higher frequencies,
the behavior is similar;
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Table 6 Comparison of error metrics for the proposed CFOPID controllers with the reported literature (best
performance is highlighted in boldface)

Case Model Max Absolute Error Mean Absolute Error
Magnitude (dB) Phase (◦) Magnitude (dB) Phase (◦)

I Oustaloup 34.665 44.338 12.262 8.517

Proposed 49.153 28.412 25.023 12.405

II Oustaloup 20.814 39.216 −0.419 8.143

Proposed −0.795 51.978 −21.040 20.903

III Oustaloup 34.665 36.745 5.992 3.817

Proposed 45.982 3.265 22.728 1.580

IV Oustaloup 34.641 44.357 12.309 7.990

Proposed 45.052 21.782 21.639 11.798

4. for case IV, in the low frequency region, the proposed model yields an inferior
phase response. However, the proposed approximant achieves a smaller value for
the maximum deviation in phase response beyond 335 rad/s.

In Table 6, comparisons about the AME andAPEmetrics between the proposed and
Oustaloup’s CFOPID approximants are presented. Results reveal that: (i) for case I, the
Oustaloup’s model yields better performance for maximum and mean AME and mean
APE,whereas the proposed design achieves significantly lowermaximumAPE; (ii) for
case II, themagnitude errors are significantly smaller for the proposed design, although
the Oustaloup’s model outperforms the proposed one about the phase response errors;
(iii) for case III, significant reduction inmaximumAPE (3.265◦) is obtained by the pro-
posed approximant as compared to the Oustaloup’s approximant (36.745◦), although
the Oustaloup’s design yields a better magnitude response accuracy; (iv) for case IV,
the proposed model provides markedly improved accuracy over Oustaloup’s for the
maximum APE (21.782◦ versus 44.357◦) but is outperformed for the other three error
indices.

Overall, it may be inferred that the proposed approach does not outperform the
Oustaloup’smethod for both themagnitude and phase responses simultaneously.How-
ever, the proposed technique results in real coefficients based real rational transfer
functions, which is in contrast to the real coefficients based complex transfer function
yielded using the Oustaloup’s method. Therefore, hardware implementation of the
proposed controllers can be realized using standard circuit design techniques readily
available in the literature. Furthermore, unlike the Oustaloup’s method, there is no
restriction on the approximation order (N : even or odd) of the proposed controllers.

Among the various techniques available for continuous-time rational approxima-
tion of FOTFs, it is not possible to establish which one is the best [46]. While
some methods provide better accuracy regarding the frequency response, others may
achieve improved time response performance. The approximation performances can
also depend on the non-integer order. The real and imaginary part of the complex-
valued impulse response of the proposed sixth-order approximant and the Oustaloup’s
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Fig. 6 Impulse response (real part) comparison plots between the proposed (N = 6) and Oustaloup’s (N =
12) approximants for the CFOPID controller of case I

approximant of twelfth order for the CFOPID controller pertaining to case I are com-
pared in Figs. 6 and 7, respectively. It is evident that the Oustaloup’s approximant
attains superior impulse responses matching with the theoretical ones as compared
to the proposed one. However, the deviation of the impulse response for the pro-
posed approximant diminishes with respect to the theoretical after a short time (about
0.005s).

4 Conclusions

An optimal technique that guarantees stable poles, minimum-phase zeros, and real-
valued coefficients of rational approximants for the complex fractional-order PID
controllers is presented in this paper. The drawbacks of the reported curve-fitting
techniques are eliminated through (i) incorporation of constraints, (ii) appropriate
selection of the lower bound of decision variables pertaining to the coefficients of
the numerator and denominator polynomials of the proposed model, and (iii) uti-
lizing a real-parameter constrained optimization algorithm. The effectiveness of the
suggested technique is verified on the Podlubny’s, IMC, and El-Khazali’s forms of
CFOPID controllers. Performance comparisons for different orders (odd and even)
of approximation are demonstrated for the design examples. Comparisons with the
Oustaloup’s CFOPID approximant shows that the proposed approachmay achieve bet-
termagnitude or phase response fitting, though simultaneous improvements in both are
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Fig. 7 Impulse response (imaginary part) comparison plots between the proposed (N = 6) and Oustaloup’s
(N = 12) approximants for the CFOPID controller of case I

not possible. The proposed approach may be considered as an effective alternative to
the Oustaloup’s method that results in complex rational approximants with real coef-
ficients; especially, when the bandwidth considerations are limited to 3∼4 decades.
For the considered non-linear optimization problem, two limitations of the proposed
approach are (i) an inability to guarantee the generation of a global optimal solution,
which is in general true when employing a metaheuristic method, and (ii) large disper-
sion of coefficients (especially for the denominator polynomial) when N is increased.
While this work solely concentrated on the approximation of CFOPID controllers, it
will be interesting to consider functions such as the unstable, non-minimum phase,
and conjugated-order CFO systems [4, 68] in the future. Solving such problems may
necessitate incorporation of additional design constraints that may involve employing
the multi- or many-objective constrained evolutionary methods.
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