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ABSTRACT This paper presents new applications of low-voltage and low-power multiple-input multiple-
output differential difference transconductance amplifier (DDTA). The multiple-input bulk-driven MOS
transistor (MIBD MOST) technique provides multiple-input of the active device that simplifies the appli-
cation’s topology and reduces its power consumption. The proposed DDTA has been used to realize
multiple-input single-output shadow filter. Both voltage- and transimpedance-mode filtering functions can
be obtained. The natural frequency and the quality factor of the shadow filter can be independently and
electronically controlled using DDTA-based amplifiers. The proposed shadow filter has been modified to
work as a shadow oscillator. The condition and frequency of oscillation can be controlled independently
and electronically. The DDTA is capable to work with 0.5V supply voltage and consumes 218.2 nW. The
applications have been designed and simulated in Cadence using 0.18µm TSMC CMOS technology.

INDEX TERMS Differential difference transconductance amplifier (DDTA), shadow filter, shadow oscilla-
tor, analog filter, low-voltage, low-power CMOS.

I. INTRODUCTION
Universal filters are the analog signal processing circuits
that usually provide several filtering responses into single
topology such as low-pass (LP), high-pass (HP), band-pass,
band-stop (BS), and all-pass (AP) filters. They can be real-
ized based on voltage-mode or current-mode techniques. The
active devices that provide multiple-input voltage terminals
bring realization benefits to voltage-mode filters while the
active devices that provide multiple-output current terminals
bring realization benefits to current-mode filters. This work
is focused on the voltage-mode filter, realized using multiple-
input multiple-output active device.

The associate editor coordinating the review of this manuscript and

approving it for publication was Ludovico Minati .

Considering the input and output terminals of the universal
filters, the universal filters can be classified into three groups.
If the single signal is applied to input and variant filtering
responses are obtained from its variant output terminals,
it can be classified as single-input multiple-output (SIMO)
universal filter [1], [2], [3], [4]. If the filtering responses
are obtained from single output terminal and the signals are
selected to apply to variant input terminals, it can be classified
as multiple-input single-output (MISO) universal filter [5],
[6], [7], [8], [9]. If input signals are selected to apply to
variant input terminals and the variant filtering responses
are obtained from variant output terminals, it can be classi-
fied as a multiple-input multiple-output (MIMO) universal
filter [10], [11], [12]. Compared with MISO and MIMO
filters, SIMO filter usually requires maximum number of
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active devices. The active devices that provide multiple-input
voltage terminals like differential difference current con-
veyor (DDCC) [13] and fully differential second-generation
current conveyor (FDCCII) [14] are most suitable for real-
izing voltage-mode MISO and MIMO filters, while the
active devices that provide multiple-output current terminals
such as multiple-output second-generation current conveyor
(CCII) [15] and multiple-output operational transconduc-
tance amplifier (OTA) [16] are most suitable for realizing
current-mode MISO and MIMO filters.

For realization of analog filters, the natural frequency
and the quality factor are important parameters that usually
depend on internal elements of the filters such as resistances,
transconductances or capacitances. For integrated circuits,
the tuning ability is required to set the demanded natural
frequency and the quality factor of the filter application and
to readjust any possible parameters’ deviation, caused by
the process voltage and temperature variations. Moreover,
tunable filters are required in the bio-signal processing area
and communication systems [17], [18], [19]. Usually, many
universal filters have the possibility to tune the natural fre-
quency and the quality factor via the circuit components such
as resistance, transconductance, and capacitance [1], [2], [3],
[4], [5], [6], [7], [8], [9], [10], [11], [12]. Unfortunately,
tuning the natural frequency and the quality factor via the
circuit components will affect the filters performance.

New techniques to tune the natural frequency and the
quality factor, the so-called shadow filter or agile filter, have
recently been proposed [20], [21], [22]. The concept of this
technique is to use external amplifiers to tune the natural
frequency and the quality factor of filters. Thus, the circuit
components of the core filter are not changed. The systems
in [20], [21], and [22] are suitable for realizing SIMO shadow
filters. The system that is suitable for realizing MISO shadow
filters has been proposed in [23]. Based on the systems in
[20], [21], [22], [23], several shadow filters of agile filters
have been proposed based on current-mode approaches [24],
[25], [26], [27], [28], [29], [30], [31] and voltage-mode
approaches [32], [33], [34], [35], [36], [37], [38], [39], [40],
[41], [42], [43], [44].

Considering the voltage-mode filters in [32], [33], [34],
[35], [36], [37], [38], [39], [40], [41], [42], [43], and [44],
on which this work focuses, the shadow filters, in [33]
uses 5-CFOAs (current-feedback operational amplifier), 9-
R (resistor), 2-C (capacitor), and in [34] uses 4-CFOAs, 7-
R, 2-C. However, the filters in [33] and [34] provide only
band-pass (BP) filtering response. The shadow filters that
offer low-pass (LP) and BP filtering responses have been
proposed employing variant active and passive elements such
as 3-OTRAs (operational trans-resistance amplifier), 11-R,
4-C in [32], 1-VDTA (voltage differencing transconductance
amplifier), 2-C in [36], 2-VDTAs, 2-C in [37], 3-VDTAs,
2-C in [38], 4-VDTAs, 2-C in [39], 6-OTAs (operational
transconductance amplifier), 2-C in [43], 3-VCIIs (second
generation voltage conveyor), 6-R, 4-C in [44]. While the
shadow filter in [40] employs 3-VDGAs (voltage differ-

encing gain amplifier), 2-C, and offers LP, and high-pass
(HP) filtering functions. The shadow filter in [35] employ-
ing 3-DDCCs (differential difference current conveyor), 4-R,
2-C offers LP, BP, HP filtering responses. However, this
shadow filter lacks electronic tuning ability and the DDCC
use 1 V of supply voltage. The shadow filter in [42] offers
electronic tuning ability and offers LP, BP, HP, BS (band-
stop), AP (all-pass) filtering responses. However, the active
device, VDDDA (voltage differencing differential difference
amplifier), that was used in [42] use±0.9 V of supply voltage
which is not suitable for low-voltage and low-power appli-
cations. It should be noted that the shadow filters in [24],
[25], [26], [27], [28], [29], [30], [31], [32], [33], [34], [35],
[36], [37], [38], [39], [40], [41], [42], [43], and [44] are
based on SIMO shadow filters. There is aMISO shadow filter
reported in [23], but the circuit employs several CFOAs and
resistors and lacks electronic tuning capability. Moreover, LP,
HP, BP, BS filtering responses are not obtained from a single
topology.

From the concept of DDCC in [13], this device has
been developed next to obtain electronic tuning ability
as differential difference current conveyor transconduc-
tance amplifier (DDCCTA) [45], and differential difference
transconductance amplifier (DDTA) [46], [47]. Thus, these
devices offer voltage addition and subtraction ability as
first stage and electronic tuning capability as second stage.
Recently, the DDTAs have been developed to operate with
low supply voltage and low power consumption for applica-
tions in universal filters and oscillators [48], [49], [50]. These
devices use unconventional techniques such as multiple-input
MOS transistor (MOST) technique to realize multiple-input
active devices such as multiple-input OTA [51]. To con-
firm the unconventional multiple input MOST technique
is possible in the practice, it was experimentally verified
in [52] and [53].

This paper presents multiple-input single-output shadow
filters and oscillator using multiple-input multiple-output
DDTAs. Themultiple-input bulk-drivenMOST technique has
been used to realize multiple-input DDTA. The proposed
shadow filters provide high-input and low-output impedance.
The filtering functions can be easily obtained by appropri-
ately applying the input signals. The natural frequency and
the quality factor can be controlled electronically by external
amplifiers. The proposed shadow filter has been also modi-
fied to work as shadow oscillator.

II. PROPOSED CIRCUIT
A. PROPOSED MULTIPLE-INPUT MULTIPLE-OUTPUT DDTA
The symbol of the MIMO-DDTA is shown in Fig. 1. In ideal
case its voltage and current relationship can be expressed by:

Vw = Vy+1 + . . . + Vy+n − Vy−1 − . . . −V y−n
Io1 = . . . = Ion = gmVw

}
(1)

The CMOS structure of the DDTA with two inputs and two
current outputs is shown in Fig. 2. The circuit consists of two
main parts, a differential-difference amplifier (DDA), that
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FIGURE 1. Symbol of MIMO-DDTA.

was first presented in [48] and the transconductance amplifier
(TA), presented in [51] in a single input form, i.e. without
multiple inputs. The DDA circuit can be seen as two-stage
amplifier.

The first stage (M1-M16) is a current mirror OTA with
differential-difference amplifier at the input. The input dif-
ferential amplifier is based on a non-tailed bulk-driven dif-
ferential pair (M1-M2), which is able to operate at extremely
low supply voltages, while offering truly differential behav-
ior, with good common-mode and power supply rejection
ratios (CMRR and PSRR respectively). The differential-
difference action is realized using multiple-input MOS tran-
sistors M1A and M1B. Their structure is shown in Fig. 2b.
The number of inputs is increased by connecting a capacitive
divider/voltage summing circuit, composed of the capacitors
CB to the bulk terminal of an MOS transistor. In order to
ensure proper biasing for DC, each capacitor is shunted with
a large resistance RL, which was realized by anti-parallel
connection of two MOS transistors with minimum size and
VGS =0. TheMI-MOS transistor was experimentally verified
in [52] and [53].

For frequencies much larger than 1/RLCL,assuming that all
the capacitances CB are equal to each other and much larger
than parasitic capacitances of MOS transistor, the AC signal
at the bulk terminals of the multiple input transistors can be
expressed as:

Vb =

∑n

i=1

Vi
n

(2)

where n is the number of inputs of the MI-MOS transistor.
In the proposed design n= 2, thus, the AC differential voltage
at the bulk terminals of the input differential pair M1A and
M1B, Vid can be expressed as:

Vid =
1
2

{(
Vy+1 + Vy+2

)
−

(
Vy−1 + Vy−2

)}
(3)

Thus the function of a differential-difference amplifier is
realized, using only one active differential pair. This allows
decreasing the consumed power and simplify the overall
structure of the DDA. Note, that DDA in this application
operates with negative feedback, thus creating a differential-
difference current conveyor. The coefficient 1/2 in (3) only
affects the internal voltage gain of DDA, but the resulting
DDCC realize its main function given by the first equation
of (1).

Since the bulk-driven technique and the input capacitive
divider lowers the voltage gain of the internal DDA, a partial
positive feedback (PPF) was applied in the input stage to
increase the voltage gain. The positive feedback is introduced
by the cross-coupled pairs of transistors M7-M8 andM9-M10,
which generate negative conductances, thus decreasing the
total conductances seen at the drains ofM2A-M2B andM5-M6
respectively, and consequently increasing the overall voltage
gain of the internal DDA. Note, that two PPF circuits were
applied in the proposed structure. This allows decreasing
the circuit sensitivity to transistor mismatch, as compared
to the structure with one PPF, while offering the same gain
improvement [48]. The second stage of the internal DDA
operates in class A in common source configuration. The
capacitor CC is used for frequency compensation.
The open-loop low-frequency voltage gain of the DDA,

from one differential input, with the second input grounded
for AC signals, can be expressed as [48]:

Avo = β ·
2gmb1 (rds15||rds12) gm16 (rds16||rds13)

(1 − m1) (1 − m2)
(4)

where β = 1/2 is the voltage gain of the input capacitive
divider for AC signals and the coefficients m1 and m2 can
be expressed as:

m1 =
gm9,10

gm5,6 + gds2 + gds3,4 + gds7,8
∼=
gm9,10
gm5,6

(5)

m2 =
gm7,8

gm2 + gds1 + gds5,6 + gds9,10
∼=
gm7,8
gm2

(6)

The coefficients m1 and m2 can be considered as the ratios of
negative to positive conductances in ‘‘bottom’’ and ‘‘upper’’
PPF. The coefficients can range from zero (lack of positive
feedback) to unity (100% positive feedback). Note, that the
voltage gain tends to infinity as m1 and/or m2 tend to unity,
however, at the cost of increased circuit sensitivity to tran-
sistor mismatch. In the proposed design m1 = m2 = 0.5, that
provides improvement of the voltage gain by ca. 12 dB, while
maintaining the circuit sensitivity at a moderate level.

The gain-bandwidth product of the internal DDA, which
is approximately equal to the 3-dB frequency of the voltage
gain of the resulting DDCC (from y−2 to w terminal), can be
approximated as:

GBW = β ·
2gmb1

(1 − m1) (1 − m2)CC
(7)

The TA block is realized using a source-degenerative BD
differential pair [51]. The source degenerative transistorsM15
and M16 operate in a triode region, thus increasing the linear
range of the input pair by around 3 times, as compared with
a classical BD pair. The bulk terminals of M15 and M16 are
tied together with the bulk terminals of M1 and M2 respec-
tively, which provides better immunity to common-mode
signals. In the weak inversion region the optimum linearity
is achieved if the following condition is satisfied [51]:

k =
(W/L)15.16

(W/L)1,2
= 0.5 (8)
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FIGURE 2. CMOS implementation of proposed MIMO-DDTA, (a) schematic, (b) MIBD MOST technique.

where W and L are the transistor channel width and length
respectively.

The current mirrors used in this structure employ the so
called self-cascode transistors, that allows increasing the out-
put resistance of the OTA, and consequently its DC voltage
gain, while not limiting the output voltage swing in a notice-
able manner. In order to further increase the voltage gain,
a PPF circuit with transistors M5S,D, M6S,D has been used.
Note, that the resulting conductances at the drains of M5D
and M6D should not be too small, to prevent large voltage
swing at these nodes, which could cause entering M1 and
M2 in triode region for larger input voltages, thus limiting
the circuit linearity. For optimum case (k=0.5), the circuit
transconductance gm can be approximated as:

gm ∼=
η

(1 − m3)
·

4k
4k + 1

·
Iset
npUT

(9)

where η = gmb1,2/gm1,2 is the bulk to gate transconductance
ratio at the operating point for the input transistors M1 and
M2, m3 ∼= gm5,6SC/gm3,4SC is the ratio of transconductances
of the self cascode transistors in PPF circuit, np is the sub-
threshold slope factor for p-channel MOS transistors and UT
is the thermal potential. Note, that the circuit transconduc-
tance can be regulated with Iset.

In order to limit both, the transconductance sensitivity to
transistor mismatch, as well as the amplitude of the voltage
swing at the drains of M1 and M2, the coefficient m3 was
chosen to be equal to 0.3 only. Thus, according to (9), the

circuit transconductance, was increased around 1.43 times,
as compared to a version without PPF. Since the branch
currents of M7, M8 and M9 are decreased by the ratio of
W/L7−9/(W/L3,4+W/L5,6), that entails decreasing the output
conductance at the same proportion, the resulting voltage gain
of the TA is increased by around 5.3dB, while maintaining
sufficiently low sensitivity to transistor mismatch and limited
voltage swing at the drains of M1 and M2.
The DC voltage gain of the TA can be expressed as:

AvTA ∼= gm (gm8Drds8Drds8S) || (gm11Drds11Drds11S) (10)

As mentioned previously, AvTA is increased thanks to the SC
connections of transistors. The proposed TA has two outputs,
as required by the particular application discussed in this
work. The second output (O2) provides a copy of the current
observed at the first output O1.

B. PROPOSED SHADOW FILTER
Fig. 3 shows the block diagram of the shadow filter in [23].
It consists of one biquad filter and three amplifiers. Unlike
shadow filters in [20], [21], and [22], the shadow filter in [23]
realizes multiple-input single-output (MISO) biquad filter,
thus the filtering responses such as LP, BP, HP, and BS can
be obtained by appropriately applying the input signals. Fig. 4
shows the biquad filter employing three MIMO-DDTAs and
two grounded capacitors. Thanks to multiple input of DDTA,
the non-inverting and inverting versions of LP, BP, HP, and
BS filtering responses can be easily obtained.
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FIGURE 3. Block diagram of a shadow filter.

FIGURE 4. Multiple-input single-output biquad filter using MIMO-DDTAs.

FIGURE 5. The multiple-output amplifier using MIMO-DDTA.

It should be noted that the input terminals of the filters
show high-impedance level, thus they can be connected to
sources without any buffer circuit. Using (1) and nodal anal-
ysis, the output voltage Vo can be expressed by, as in (11),
shown at the bottom of the next page.

The non-inverting LP, BP, andHPfilters can be obtained by
applying the input signal to the input terminals V11, V21, and
V31, respectively, and the inverting LP, BP, and HP filters can
be obtained by applying the input signal to the input terminals
V12, V22, and V32, respectively. It should be noted that node
Vo shows low-impedance level.

Fig. 5 shows the multiple-output amplifier using multiple
output DDTA. The circuit consists of one DDTA and three
resistors. Referring to Fig. 3, the input terminal of the ampli-
fier is Vo and the output terminals of the amplifier are VA1,
VA2, and VA3, respectively. Using (1) and nodal analysis, the
voltage gains of the amplifier can be expressed by

A1 =
VA1
Vo

= gm3R1 (12)

A2 =
VA2
Vo

= gm3R2 (13)

A3 =
VA3
Vo

= gm3R3 (14)

Thus, the voltage gains A1, A2, and A3 can be controlled by
resistances R1, R2, and R3, respectively.

The proposed shadow filter withMISO-type filter is shown
in Fig. 6. The circuit consists of the biquad filter in Fig. 4
and the amplifier in Fig. 5. It should be noted that DDTA3in
Fig. 4 can be used as amplifier, thus minimum active devices
of the shadow filter can be obtained as in Fig. 6 (a). Using
(11)-(14), the variant filtering responses of the shadow filter
can be obtained as follows:

Case I
The input signal Vin is applied to V11, input V12 is con-

nected to VA1 (A1), input V32 is connected to VA3 (A3), and
inputs V21, V22, V31 are connected to grounded (A2 is not used
in this case). With these assumptions, the output becomes:

Vout =
s2C1C2 (−V32) + gm1gm2 (Vin − V12)

s2C1C2 + sC1gm2 + gm1gm2
(15)

Combining (12), (14), (15), the transfer function can be
expressed as:

Vout−LP−I

=
gm1gm2Vin

s2C1C2 (1 + gm3R3) + sC1gm2 + gm1gm2 (1 + gm3R1)
(16)

The input signal Vin is applied to V31, input V12 is connected
to VA1 (A1), input V32 is connected to VA3 (A3), and inputs
V11, V21, V22 are connected to grounded (A2 is not used in
this case). With these progresses, the output becomes:

Vout =
s2C1C2 (Vin − V32) + gm1gm2 (−V12)

s2C1C2 + sC1gm2 + gm1gm2
(17)

Combining (12), (14), (17), the transfer function can be
expressed as:

Vout−HP−I

=
s2C1C2Vin

s2C1C2 (1 + gm3R3) + sC1gm2 + gm1gm2 (1 + gm3R1)
(18)

The input signal Vin is applied to V21, input V12 is connected
to VA1 (A1), input V32 is connected to VA3 (A3), and inputs
V11, V22, V31 are connected to grounded (A2 is not used in
this case). With these progresses, the output becomes:

Vout =
s2C1C2 (−V 32) + sC1gm2Vin + gm1gm2 (−V12)

s2C1C2 + sC1gm2 + gm1gm2
(19)

Combining (12), (14), (19), the transfer function can be
expressed as:

Vout−BP−I

=
sC1gm2Vin

s2C1C2 (1 + gm3R3) + sC1gm2 + gm1gm2 (1 + gm3R1)
(20)
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FIGURE 6. Proposed shadow filter using MIMO-DDTAs, (a) using
minimum active device, (b) obtaining independent control.

Letting R1 = R3 = R(A1 = A3 = A), the parameters ωo and
Q of the low-pass, high-pass, and band-pass filters in case I
can be expressed by:

ωo =

√
gm1gm2
C1C2

(21)

Q = (1 + gm3R)

√
C2gm1
C1gm2

(22)

The parameter Q can be controlled using amplifier A by R or
gm3 without affecting parameter ωo.
In case I, when the amplifier A2 is used and if R2 is

removed, the circuit can work in transimpedance mode
(TIM). The Iout1 will be used as the output current. From
(16), (18), (20), the TIM of the low-pass (Iout−LP−I ), high-
pass (Iout−HP−I ), and band-pass (Iout−BP−I ) filters is given
respectively by:

Iout−LP−I = gm3Vout−LP
Iout−HP−I = gm3Vout−HP
Iout−BP−I = gm3Vout−BP

 (23)

In this case, the resistor R is more suitable for adjusting the
parameter Q.
Case II
The input signal Vin is applied to V12, the input V11 is

connected to VA1 (A1), the input V21 is connected to VA2 (A2),
and the inputs V22, V31, V33 are connected to ground (A3 is
not used in this case). With these assumptions, the output

becomes:

Vo =
sC1gm2V21 + gm1gm2 (V11 − Vin)
s2C1C2 + sC1gm2 + gm1gm2

(24)

Combining (12), (13), (24), the transfer function can be
expressed as

Vout−LP−II

=
−gm1gm2Vin

s2C1C2 + sC1gm2 (1 − gm3R2) + gm1gm2 (1 − gm3R1)
(25)

If A3 is used and node VA3 becomes the output, the passband
gain of the low-pass filter can be controlled by gm3R3.
The input signal Vin is applied to V31, the input V11 is

connected to VA1 (A1), the input V21 is connected to VA2 (A2),
and the inputs V12, V22, V32 are connected to ground (A3 is
not used in this case). With these assumptions, the output
becomes:

Vo =
s2C1C2Vin + sC1gm2V21 + gm1gm2V11

s2C1C2 + sC1gm2 + gm1gm2
(26)

Combining (12), (13), (26), the transfer function can be
expressed as:

Vout−HP−II

=
s2C1C2Vin

s2C1C2 + sC1gm2 (1 − gm3R2) + gm1gm2 (1 − gm3R1)
(27)

If A3 is used and node VA3 becomes the output, the passband
gain of high-pass filter can be controlled by gm3R3.
The input signal Vin is applied to V22, the input V11 is

connected to VA1 (A1), the input V21 is connected to VA2 (A2),
and the inputs V12, V31, V32 are connected to ground (A3 is
not used in this case). With these assumptions, the output
becomes:

Vo =
sC1gm2 (V21 − Vin) + gm1gm2V11
s2C1C2 + sC1gm2 + gm1gm2

(28)

Combining (12), (13), (28), the transfer function can be
expressed as:

Vout−BP−II

=
−sC1gm2Vin

s2C1C2 + sC1gm2 (1 − gm3R2) + gm1gm2 (1 − gm3R1)
(29)

If A3 is used and node VA3 becomes the output, the passband
gain of band-pass filter can be controlled by gm3R3.
The input signal Vin is applied to V12 and V32 together, the

input V11 is connected to VA1 (A1), the input V21 is connected
to VA2 (A2), and the inputs V22, V31 are connected to ground

Vo =
s2C1C2 (V31 − V32) + sC1gm2 (V21 − V22) + gm1gm2 (V11 − V12)

s2C1C2 + sC1gm2 + gm1gm2
(11)
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(A3 is not used in this case). With these assumptions, the
output becomes:

Vo =
s2C1C2 (−V in) + sC1gm2 (V21) + gm1gm2 (V11 − Vin)

s2C1C2 + sC1gm2 + gm1gm2
(30)

Combining (12), (13), (30), the transfer function can be
expressed as:

Vout−BS−II

=
−

(
s2C1C2 + gm1gm2

)
Vin

s2C1C2 + sC1gm2 (1 − gm3R2) + gm1gm2 (1 − gm3R1)
(31)

If A3 is used and node VA3 becomes the output, the passband
gain of the band-stop filter can be controlled by gm3R3.
The parameters ωo and Q can be expressed by:

ωo =

√
gm1gm2 (1 − gm3R1)

C1C2
(32)

Q =

√
1 − gm3R1
1 − gm3R2

√
gm1C2

gm2C1
(33)

The parameter ωo can be controlled by A1 using gm3R1 and
the parameterQ can be controlled by A2 using gm3R2 without
affecting the parameter ωo. Controlling the frequency ωo by
A1 will affect the quality factor Q. Therefore, in such case,
the amplifier A2 should be used to control Q.
In case II, when the amplifier A3 is used and if R3

is removed, the circuit can work in transimpedance mode
(TIM). The Iout2 will be treated as output current of TIM.
From (25), (27), (29), (30), the TIM of low-pass (Iout−LP−II ),
high-pass (Iout−HP−II ), band-pass (Iout−BP−II ), and band-
stop (Iout−BS−II ) filters can be expressed respectively by:

Iout−LP−II = gm3Vout−LP
Iout−HP−II = gm3Vout−HP
Iout−BP−II = gm3Vout−BP
Iout−BS−II = gm3Vout−BS

 (34)

In this case, the resistor R is more suitable for adjusting the
parameter Q.
It should be noted for Case II that the parameters ωo and

Q are controlled by R1 and R2. Fig. 6 (b) shows the modified
shadow filter to obtain electronic and independent control of
the parameters ωo and Q by adding additional DDTA4.The
parameters ωo and Q of Fig. 6 (b) can be expressed by:

ωo =

√
gm1gm2 (1 − gm4R1)

C1C2
(35)

Q =

√
1 − gm4R1
1 − gm3R2

√
gm1C2

gm2C1
(36)

The parameter ωo can be controlled by A1 using gm4 and
parameter Q can be controlled by A2 using gm3 without
affecting the parameter ωo. Therefore, the parameter ωo and
Q of the shadow filter in Fig. 6 (b) can be electronically and
independently controlled.

FIGURE 7. Modified shadow oscillator, (a) with minimum DDTAs, (b) with
independent and electronic tuning ability.

C. PROPOSED SHADOW OSCILLATOR
The proposed shadow filter was modified to a shadow oscil-
lator as shown in Fig. 7. This oscillator uses the amplifiers
to control the condition of oscillation and the frequency of
oscillation. From Fig. 7 (a), the outputs VA1 and VA2 of the
amplifiers A1 and A2, are connected respectively to the inputs
V12 and V21 of the shadow filter while the amplifier A3 is
not used. The input terminals V11, V22, V31, and V32 that are
not used should be connected to ground. From Fig. 7 (a),
the characteristic equation of the shadow oscillator can be
expressed by:

s2C1C2 + sC1gm2 (1 − gm3R2) + gm1gm2 (1 + gm3R1) = 0
(37)

The condition of oscillation is:

1 − gm3R2 = 0 (38)

The frequency of oscillation is:

ωo =

√
gm1gm2
C1C2

(1 + gm3R1) (39)

The condition of oscillation can be controlled by the amplifier
A2 using gm3R2 and the frequency of oscillation can be con-
trolled by the amplifier A1 using gm3R1. Thus, the condition
of oscillation can be controlled by adjusting R2 while the
frequency of oscillation can be controlled by adjusting R1,
therefore, the proposed shadow oscillator provides indepen-
dent control of the condition and frequency of oscillation.

Consider nodes Vo1 and Vo2 in Fig. 7 (a), the transfer
function can be expressed by:

Vo1
Vo2

= −
gm2
sC2

(40)
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FIGURE 8. The MI-OTA output current (a) and the transconductance (b) versus the input voltage with various Iset.

FIGURE 9. The output impedances of the DDA (a) and TA (b).

FIGURE 10. The frequency characteristic of the output voltages and currents of the shadow filter case I.

The phase difference between nodes Vo1 and Vo2 is 90◦,
i.e. these signals are in quadrature, while the magnitude is∣∣gm2/C2

∣∣.
The shadow oscillator in Fig. 7 (a) can be modified

to obtain electronic and independent control, by adding
additional DDTA as shown Fig. 7 (b). The characteristic

equation is:

s2C1C2 + sC1gm2 (1 − gm3R2) + gm1gm2 (1 + gm4R1) = 0
(41)

The condition of oscillation is:

1 − gm3R2 = 0 (42)
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FIGURE 11. The frequency characteristic of the output voltages and currents of the shadow filter case II.

The frequency of oscillation can be given by:

ωo =

√
gm1gm2
C1C2

(1 + gm4R1) (43)

It is evident from (42) and (43) that the condition of oscil-
lation can be controlled electronically by gm3 while the
frequency of oscillation can be controlled electronically by
gm4. Hence the shadow oscillator in Fig. 7 (b) provides
independent and electronic control of the condition of oscil-
lation and the frequency of oscillation. The output nodes
are Vo1 and Vo2.

D. NON-IDEALITIES ANALYSIS
Considering the non-idealities of DDTA, (1) can be rewritten
as:

Vw = β+kjV y+kj + β+kjVy+kj − β−kiVy−ki − β−kjVy−kj
Io1 = Io2 = gmnkVw

}
(44)

where β+kj = 1−ε+kj and ε+kj
(∣∣ε+kj

∣∣ ≪ 1
)
denotes the

voltage tracking error from Vy+j-terminal to Vw-terminal,
β−kj = 1−ε−kj and ε−kj

(∣∣ε−kj
∣∣ ≪ 1

)
denotes the voltage

tracking error from Vy−j-terminal to Vw-terminal of the k− th
DDTA and the j−th input terminal. The gmni is the non-
ideal transconductance gain of the DDTA. In the frequency
range near the cut-off frequency, gmnk can be approximated
as:

gmnk (s) ∼= gmk (1 − µks) (45)

where µk = 1
/
ωgmk , ωgk denotes the first-order pole.

Using (45), the denominator of (11) becomes, as in (46),
shown at the bottom of the next page.

Using (44), (16), (18), (20) in case-I can be rewritten as:

Vout−LP−I

=
gm1gm2β+11β−31Vin{

s2C1C2 (1 + gm3R3β−32) + sC1gmn2β+21β−31
+gmn1gmn2β−11β−31 (1 + gm3R1β−12β−31)

}
(47)

TABLE 1. Transistor aspect ratio of the DDTA.

Vout−HP−I

=
s2C1C2β+31V31{

s2C1C2 (1 + gm3R3β−32) + sC1gmn2β+21β−31
+gmn1gmn2β−11β−31 (1 + gm3R1β−12β−31)

}
(48)

Vout−BP−I

=
sC1gm2β−21β−31Vin{

s2C1C2 (1 + gm3R3β−32) + sC1gmn2β+21β−31
+gmn1gmn2β−11β−31 (1 + gm3R1β−12β−31)

}
(49)

The parameters ωo and Q in (21), (22) can be rewritten as:

ωo =

√
gmn1gmn2β−11β−31 (1 + gm3R1β−12β−31)

C1C2 (1 + gm3R3β−32)
(50)

Q =
√

(1 + gm3R1β−12β−31) (1 + gm3R3β−32)

×

√
gmn1C2β−11β−31

gmn2C1β+21β−31
(51)
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FIGURE 12. The frequency characteristic of the output voltages with MC analysis for LP (a), HP (b), BP (c) and BS (d).

Using (44), (25), (27), (29), (31) in case-II can be rewritten
as

Vout−LP−II

=
−gm1gm2β−12β−31Vin{

s2C1C2 + sC1gmn2β+21β−31 (1 − gm3R2β−21β−31)

+gmn1gmn2β−11β−31 (1 − gm3R1β+11β−31)

}
(52)

Vout−HP−II

=
s2C1C2β+31Vin{

s2C1C2 + sC1gmn2β+21β−31 (1 − gm3R2β−21β−31)

+gmn1gmn2β−11β−31 (1 − gm3R1β+11β−31)

}
(53)

Vout−BP−II

=
−sC1gm2β+11β−31Vin{

s2C1C2 + sC1gmn2β+21β−31 (1 − gm3R2β−21β−31)

+gmn1gmn2β−11β−31 (1 − gm3R1β+11β−31)

}
(54)

Vout−BS−II

=
−

(
s2C1C2β−32 + gmn1gmn2β−12β−31

)
Vin{

s2C1C2 + sC1gmn2β+21β−31 (1 − gm3R2β−21β−31)

+gmn1gmn2β−11β−31 (1 − gm3R1β+11β−31)

}
(55)

The parameters ωo and Q in (21), (22) can be rewritten as:

ωo =

√
gmn1gmn2β−11β−31 (1 − gm3R1β+11β−31)

C1C2
(56)

Q =

√
(1 − gm3R1β+11β−31)

(1 − gm3R2β−21β−31) β+21β−31

√
gmn1C2β−11β−31

gmn2C1

(57)

Considering the non-ideal shadow oscillator in Fig. 7(a), the
characteristic equation can be expressed by:

s2C1C2 + sC1gmn2β+21β−31 (1 − gm3R2β−21β−31)

+ gmn1gmn2β−11β−31 (1 + gm3R1β−12β−31) = 0 (58)

The condition of oscillation is rewritten as:

1 − gm3R2β−21β−31 = 0 (59)

and the frequency of oscillation is rewritten as:

ωo =

√
gmn1gmn2β−11β−31 (1 + gm3R1β+11β−31)

C1C2
(60)

III. SIMULATION RESULTS
The DDTA circuit, the shadow filter and the oscillator
were designed in Cadence program using CMOS technology
0.18 µm from TSMC. The DDTA voltage supply was 0.5 V.

Vo =

{
s2C1C2 (V31β+31 − V32β−32) + sC1gm2 (V21β−21β−31 − V22β+11β−31)

+gm1gm2 (V11β+11β−31 − V12β−12β−31)

}
s2C1C2 + sC1gmn2β+21β−31 + gmn1gmn2β−11β−31

(46)
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FIGURE 13. The frequency characteristic of the output voltages with PVT analysis for LP (a), HP (b), BP (c) and BS (d).

FIGURE 14. The transient response of the LP filter case II, voltage output (a) and current output (b).

FIGURE 15. The output equivalent noise the LP filter case II, voltage output (a) and current output (b).

The DDA bias current was 40 nA and the nominal setting
current was 10 nA for the TA. The power consumption of

the DDTA was 218.2 nW (DDA = 203nW, two outputs
TA = 15.25 nW). The transistor’s aspect ratio of the DDTA
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FIGURE 16. Tuning of Q parameter for LP (a), HP (b), BP (c) and BS (d).

FIGURE 17. Tuning of ωo parameter for LP (a), HP (b), BP (c) and BS (d).

is shown in Table 1. The output current and the transconduc-
tance versus input voltage of the TA is shown in Fig. 8. As it

is evident, the TA enjoys high linearity in range of ±100mV.
The output impedance of the DDA (connected as DDCC) and
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FIGURE 18. The running oscillation (a) and the steady state (b) of the shadow oscillator.

TABLE 2. Properties comparison of this work with those of shadow filters.

TA is shown in Fig. 9 the low frequency resistance of theDDA
and OTA is 621 � and 1.36 G�, respectively.
For Fig. 6 (a), Fig. 10 and 11 show the AC characteris-

tics of the output voltages and currents from case I and II,
respectively, the values were: C1 = C2 = 40pF, R1,2,3 =

R1 = R2 = R3 = 1 M�, Iset1,2,3 = Iset1 = Iset2 = Iset3 =

10 nA (gm = 55.4 nS). The simulated nature frequency was
214.3 Hz that is close to the calculated value 220 Hz. The
calculated Q = 1.03.

The Monte Carlo, process and mismatch, analysis with
200 runs for the filter case II is shown in Fig. 12.
Fig. 13 shows the process, voltage and temperature (PVT)
corner analysis for process (fast-fast, fast-slow, slow-fast,

slow-slow), voltage supply (VDD±10%VDD) and tempera-
ture (−20◦C and 70◦C). Both Figs. 12 and 13 confirm the
stability of the proposed application.

The transient analysis for the current and voltage outputs
of the LPF case II with input sine wave of 60mV peak-
to-peak @ 40 Hz is shown on Fig. 14. The total harmonic
distortion (THD) was around 2 %. The output equivalent
noise for the LPfilter for output voltage and current are shown
in Fig. 15. The output integrated noise was 114.2µV and
7.54pA, respectively.

For Fig. 6 (b) is used to show the electronic tuning capa-
bility of the filter. Fig. 16 shows the tuning of the parame-
ter Q without disturbing ωo by controlling the A2 via gm3
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(Iset3 = 10 nA, 20 nA, 30 nA), with R1 = 1 M� and
R2 =5 M�, and Iset1,2 = 10 nA. The calculated Q was 1.34,
2.05, 4.9.

The tuning capability of ωo parameter is shown in Fig. 17
with R1 = R2 = 5 M�. The natural frequency was tuned in
range 212 Hz – 253 Hz without affecting the parameter Q.

The shadow oscillator in Fig 7 was simulated for Iset =

10nA and R1 = 1M� and R2 = 19M�, the running oscilla-
tion and the steady state are shown in Fig. 18. The simulated
frequency was 224Hz and the THD was around 2 %.

Finally, Table 2 provides the properties comparison of this
work with other shadow filters. The voltage-mode MISO-
type shadow filters in [23], current-mode SIMO-type shadow
filters in [28] and [30], and voltage-mode SIMO-type shadow
filters in [40], [42], and [43] have been used to compare.
Compared with [23], the proposed filter has less amount of
passive and active components, compared with [28], the pro-
posed filter provides electronic tuning ability, and compared
with [40] and [43], the proposed filter offers larger number
of transfer functions. Compared with all shadow filters [23],
[28], [30], [40], [42], [43], the proposed filter provides both
VM and TIM filtering functions, uses lower supply voltage,
and consumes less power.

IV. CONCLUSION
This paper presents new applications of multiple-input
multiple-output DDTA using multiple-input bulk-driven
MOS transistor technique. The multiple inputs of DDTA can
be obtained using MIBD MOST technique without using
additional MOS differential pair and results in minimum
power dispassion. The multiple-output currents of the pro-
posed DDTA are also available. To show the advantage of
MIMO DDTA, it has been used to realize a multiple-input
single-output (MISO) shadow filter. The proposed shadow
filter with minimum number of active devices and inde-
pendent electronic control of natural frequency and quality
factor was achieved. Both voltage- and transimpedance-mode
shadow filters can be obtained into single topology. It can be
also shown that MISO shadow filter can be easily modified
to work as a shadow oscillator with independent control of
the frequency and the condition of oscillation. The simulation
results confirm the performance of the proposed MIMO-
DDTA and its applications.
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