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Abstract: The study of the resistance of plain concrete to high temperatures is a current topic across
the field of civil engineering diagnostics. It is a type of damage that affects all components in a
complex way, and there are many ways to describe and diagnose this degradation process and the
resulting condition of the concrete. With regard to resistance to high temperatures, phenomena
such as explosive spalling or partial creep of the material may occur. The resulting condition of
thermally degraded concrete can be assessed by a number of destructive and nondestructive methods
based on either physical or chemical principles. The aim of this paper is to present a comparison of
nondestructive testing of selected concrete mixtures and the subsequent classification of the condition
after thermal degradation. In this sense, a classification model based on supervised machine learning
principles is proposed, in which the thermal degradation of the selected test specimens are known
classes. The whole test set was divided into five mixtures, each with seven temperature classes in
200 °C steps from 200 °C up to 1200 °C. The output of the paper is a comparison of the different
settings of the classification model and validation algorithm in relation to the observed parameters
and the resulting model accuracy. The classification is done by using parameters obtained by the
acoustic NDT Impact-Echo method and image-processing tools.

Keywords: concrete; high temperatures; nondestructive testing; machine learning; image analysis;
Impact-Echo; resonance method

1. Introduction

Concrete is the most widely used construction material worldwide [1–3]. This posi-
tion is due to its rich variability of performance properties, which can be designed for a
wide range of construction applications due to the appropriate choice of input materials
used. With current concrete 3D printing technologies and the utilization of secondary raw
materials on an organic and inorganic basis, the number of possible applications grows
each year [4]. Concrete is a solid, noncombustible material with a relatively high ther-
mal capacity (the specific heat capacity c of standard plain concrete is 1020 J·kg−1·K−1).
If it is not filled with combustible impurities or fibers, it does not produce smoke at ele-
vated temperatures, but it undergoes physical–mechanical and physical–chemical changes.
These changes then affect the material properties of the concrete to varying degrees as the
temperature rises and reduce its load-bearing capacity in various ways. The resistance
of concrete to this degradation is determined by the composition of the concrete under
load, the density and homogeneity of the concrete, and the intensity of the thermal load
during exposure to elevated temperature.These basic parameters define the response of the
concrete structure to exposure to high temperatures. The first significant changes start to
occur at temperatures of 100 °C, when the physically bound water evaporates. At the same
time, various types of hydrates may break down, with water beginning to be released from
the structure at this temperature. An example is ettringite, which decays in the temperature
range 120–200 °C [5]. At the same time, the first part of the decomposition of calcium silica
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hydrate gels and gypsum gels is beginning to take effect. Despite these initial changes in
terms of mechanical properties, there is not such a significant decrease in, for example,
compressive strength, tensile strength, or static modulus. A more pronounced decrease in
physical–mechanical properties occurs mainly at temperatures of 400 °C [6]. This change is
related to the more intensive decomposition of the individual components and also to the
increase in water vapor pressure within the concrete structure.

The main course of degradation can be seen in how the individual aggregates and
binders react to the elevated temperature. At temperatures above 1000 °C, partial sin-
tering of the mineral components of the aggregate and cement matrix may occur in the
concrete. Up to this point, the strength between the aggregate and the cement matrix
has been determined by hydraulic bonds, which are replaced at this temperature by the
formation of a ceramic bond, accompanied by the formation of new phases, such as Wollas-
tonite. However, when comparing the reaction of different cement composites, this trend
does not hold true everywhere. In the published results focused on thermal degradation
of cement mortars [7–9], a local minimum of physicomechanical properties is reached
at 800–900 °C and subsequent sintering continues up to temperatures of 1000–1100 °C.
Above this temperature, this type of composite usually enters the melt state and undergoes
plastic deformation from its own weight [10]. On the other hand, publications describ-
ing thermal degradation of concrete [11] mostly refer to 1000 °C as the local minimum,
with partial sintering occurring only above 1100 °C. It is therefore a synergistic effect of
many factors, the combined action of which leads to the weakening of the concrete structure
and its disintegration. In this area, the thermal degradation process of silicate composites
has been described in the works of I. Hager and colleagues [12–14], and it is an issue that is
widely discussed in the literature.

The current question of how to diagnose the thermal degradation in concrete elements
and structures arises with regard to diagnostic approaches. There is no clear answer,
and over the past decades many different approaches have been presented. The most
accurate approach is to take core bore samples and conduct destructive tests to obtain
residual mechanical properties. To be more precise, an X-ray diffraction analysis can
discover changes in microstructure, or a visual analysis by both optical and scanning
electron microscope can examine the pore structure and cracks in the interfacial transition
zone between the aggregate and cement matrix [15]. However, these methods produce
a number of parameters that can be related to different processes within the structure of
concrete. A regression model can be found that can describe the dependency between
results and degradation temperature, and document the changes. For this, a destructive
tests needs to be carried out, namely a mechanical residual compressive and tensile strength
analysis; in addition, for horizontal elements, such as beams or the ceiling, a static modulus
of elasticity needs to be carried out. To supplement these results, an RTG diffraction analysis
can discover which phases are present and which are already missing. Mercury porosimetry
can describe the size of pores and microcracks within the specimen. All of these methods
are expensive, time consuming, and need to be carried out in a laboratory. NDT methods
can be done in situ, are fast, and, compared to laboratory methods, relatively cheap.

One of these examples is the Wisconsin bridge diagnosis [16], in which acoustic
methods were mentioned as one of the appropriate tools [17]. In the 1990s, the acoustic
nondestructive Impact-Echo (IE) method (also known as the resonance method, done by
applying mechanical excitations with a hammer (also known as the hammer method))
began to be used to test the thickness of concrete elements. This method is based on the
controlled generation of an exciting mechanical wave by means of a mechanical shock
and the subsequent sensing of the low-frequency response of the element under test (the
method operates in the range of 3 Hz to 20 KHz). In the Czech Republic, this method is
hidden under the name of resonance method within the standard CSN 73 1372 [18]. This
method has found wide application in the construction industry due to its simplicity, low
cost of implementation, and relatively wide range of application possibilities. However,
the IE method is dependent on the correct interpretation of the measured data. In practice,



Materials 2023, 16, 1010 3 of 25

it has found application in the measurement of pile lengths, localization of cracks in
massive monolithic structures, delamination of bridge bodies, diagnostics of the condition
of concrete elements, etc. Due to the simple principle of testing, there are many variations
of this method in the form of, for example, the low-frequency pulse echo method or
modal analysis.

However, in the past five years a strong trend toward the usage of machine learning
(ML) algorithms has arisen [19–21]. In 2022, Hatem et al. [21] presented a study of
comparison of ultrasound pulse velocity measurement, Schmidt rebound hammer, and
compressive strength. In this study, an artificial neural network was used as a predictive
tool in which, based on input NDT parameters, a residual compressive strength was
predicted. This study focused on a temperature range up to 800 °C, in which the final
R2 of prediction was in the range of 0.86 to 0.98. This shows the trend of reducing the
human factor in the analysis of the unknown specimen. The fact that ML can predict the
class of material means that an expert in standard evaluation procedure can check multiple
parameters and their range, and make a decision, and that ML can replace this procedure
with more parameters, less time, and higher accuracy.

When comparing acoustic methods suitable for in situ testing apart to an IE method,
the tested element can be excited also by exciting ultrasonic signal. This methods can be
referred as frequency vibroacoustic modulation (VAM) [22] or in some cases nonlinear
ultrasonic spectroscopy (NUS) [23]. VAM methods use biharmonic exciting signals, which
interact with cracks, delaminations, and other defects within the structure of tested elements.
These methods are quite successful in testing close elements and their limitation is mainly
the attenuation of exciting signal and the heterogeneity of the tested element. This limitation
defines the effective depth, accuracy, and reliability for which these methods can be used,
in which higher frequencies are more attenuated than lower frequencies. Without the ML
methods, the measured response signals, are quite hard to interpret even for a trained
expert, but the ML-based model can find dependencies and increase the overall reliability
and accuracy in defect localization or quantitative evaluation of material degradation state.
The big advantage of VAM or NUS over IE is the stability of the exciting signal, which
has high repeatability; however, both methods are more demanding in terms of hardware
than the IE method.

These methods result in response signals, in which a selected feature, such as a
dominant frequency or the energy of the signal, is assessed. The usual approach is to
use a regression analysis and connect the change in observed features with the change of
material properties, such as the level of degradation (represented by the compressive or
tensile strength), presence of defects, or different factors. The resulting regression model
can then be used to predict the state or presence of the defect. Each observed feature
is another dimension, wherein a correlation can lead to different thresholds and criteria,
whereas a human observer has low effectiveness and takes a great deal of time. Machine
learning algorithms solve this problem, and are able to find the dependencies and criteria
much faster and more effectively than a human can. In the presented paper, the acoustic
signal and images are reduced to a set of numerical features. For the classification of such
a dataset, either machine learning or deep learning algorithms may be used. The main
differences are presented on Figure 1 [24].

Deep learning can solve both problems of classification. It can select the features
and build a classification model on its own, but it is hard to describe or document why a
particular neural network makes such decisions. Moreover, because the DL selects its own
features, it is much more demanding on computing power and time needed for feature
extraction and training. Machine learning is, on the other hand, dependent on handcrafted
feature extraction, for which a function or a program is needed to obtain the training
dataset. The model building and training of the ML algorithm is much less demanding
in terms of computational power and time, and can be done on standard PCs, handheld
devices, or microcontrollers, which enables ML models to be broadly used. This is the main
reason why the authors of this paper decided to use ML over the DL approach.
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Figure 1. Differences between ML and DL approach [24].

2. Materials and Methods

The produced test specimens from each mixtures were divided into several temper-
ature sets, a reference set, and then individual degraded sets. From each set, a set of test
bodies was selected to be tested by destructive testing after performing nondestructive
testing by using the IE method. For the purpose of this work, in cooperation with Professor
Hela, various mixtures were designed, the parameters of which guarantee sufficient diver-
sity of test specimens and therefore establish limit states that will allow future interpolation
of measured data. The nondesigned recipes can be divided into two groups. The scheme
presented in Table 1 shows which parameters were varied in each recipe.

Table 1. Design of manufactured mixtures.

Change of Binder Change of Coarse Aggregate
0/4,8/16 0/4,8/16,11/22 0/4,4/8

CEM II/A-S 42.5 N E
CEM I 52.5 R D
CEM I 42.5 R A B C

The first group, which includes mixtures A, B, and C, focuses on the effect of the coarse
aggregate used on the results from IE measurements after thermal degradation. The second
group includes mixtures D and E and focuses on the effect of different cement types on the
IE results after thermal loading. For the composition of each recipe, see Table 2.

Table 2. Composition of designed mixtures.

Compound Weight per 1 m3 [kg]
A B C D E

CEM I 42.5 R 345 345 345 - -
CEM II/A-S 42.5 N - - - 345 -
CEM I 52.5 R - - - - 345
Fine aggregate Žabčice 0/4 mm 848 813 813 934 934
Coarse aggregate Olbramovice 4/8 mm - - 1010 - -
Coarse aggregate Olbramovice 8/16 mm 980 521 - 355 391
Coarse aggregate Olbramovice 11/22 mm - 391 - 355 391
Admixture SikaViscocrete 2030 2.8 2.5 3.1 3.1 3.1
Water 160 176 176 155 162

These mixtures were designed within the framework of project GAČR No.1602261S.
The intention was to design recipes that differ in quality and resulting material properties.
Although the influence of the aggregate composition modifies the resulting physical–
mechanical properties such as strengths and bulk density, the type of binder used pre-
dominantly influences the high temperature response of the composite. All test bodies
were stored in a water bath for 28 days after demolding. They were then removed, dried,
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and left to dry for a week. Before firing, the test bodies were predried at 105 °C for 72
hours in a laboratory oven to prevent explosive spalling and unintended destruction of
test specimens.

The temperature loading was carried out in the Rhode KE130 furnace, in which the
temperature rise was set at 300 °C· s−1. The temperature hold was for 1 h, and the test
bodies were then allowed to cool spontaneously to the laboratory temperature of 22 °C.
An illustration of the temperature curves is shown in Figure 2.
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Figure 2. Illustration of temperature curves for all degraded groups.

2.1. Resonance Method

The resonance method, also known as the Impact-Echo method, is an acoustic non-
destructive method based on the principle of introducing a mechanical shock to the test
body and recording the response of the test body to this excitation pulse. It is a common
nondestructive method used in defectoscopy in various technical fields. Its particular
variant, IE, is adapted for testing building materials, elements, and structures. Mechanical
waves can propagate in three forms:

• longitudinal waves (P-wave),
• item transverse (shear) waves (S-wave), and
• surface waves Raigley waves (R-wave).

These waves move through the material at a speed depending on the acoustic impedance
Z of the material being measured. If the wave hits the interface of materials with different
acoustic impedance, the mechanical energy of the wave is reflected, refracted, or absorbed.
For an example, air has an acoustic impedance of 1.275 kg·m−2·s−1, whereas concrete has
an acoustic impedance equal to 10.35 × 106 kg·m−2·s−1. This phenomenon is described by
Snell’s law [25]. Due to this phenomenon, mechanical waves are reflected at the interface
between the cement composite and the air cavity or surrounding environment. At the same
time, mechanical waves interfacing with cracks, steel, and other materials that may be
embedded in the concrete mass are affected. As a result, the incidental mechanical wave
on the piezoceramic sensor has complex characteristics. The procedure of testing by IE
method is illustrated in Figure 3.
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Figure 3. Illustration of measurement process by IE method.

The standard process for evaluating this waveform consists of applying a fast Fourier
transform (FFT) and converting the measured signal from the time domain to the frequency
domain. Then the dominant frequencies that can be assigned to the expected shape
frequency are evaluated. In addition to these parameters, however, many other parameters
can be assessed on the frequency spectrum that are no longer covered by the standard NDT
approach within the IE method. Therefore, the aim of this paper is to verify whether the
use of even nonstandard parameters obtained from measured acoustic signals can improve
the accuracy in the classification of thermally degraded plain concrete test bodies.

2.2. Image Analysis

In addition to the classical NDT method IE, the method of image analysis of the
macrotexture of the test bodies was also used [26]. Within the last decade, it has been
shown that with advanced image-analysis algorithms and the ever-increasing computing
power of even ordinary computers or mobile devices, it is possible to achieve impressive
results in defect localization and measurement. Examples include the assessment of cracks
in concrete sleepers [27], or the assessment of the degree of thermal degradation based on
color change [14]. Image analysis is nowadays quite a broad topic, applying many different
approaches. In the context of the presented paper, its simpler form of thresholding and
grayscale image binarization was used. For the image acquisition, the designed apparatus
produced within project GA22-02098S was used, primarily for the evaluation of cracks in
structural composites. Under this project, a Matlab application was designed that operates
the camera settings, light controlling via Arduino board, and image acquisition Matlab
script. This can be set either to take individual photos or videos. It is also possible to take a
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time-sequenced photo set of the evolving state of the test specimen. A schematic drawing
and photograph of the equipment used is shown in Figure 4.

Light dome

LED ring

Specimen

Field of view

Two axis joint

Camera with lens and 

heat sink

Ethernet cable

USB cable

Power cord
12 V

Arduino with mosfet

PC

Light dome

Camera

Box with power supply 
and arduino

Camera tripod

PC

Specimen

Figure 4. Scheme of camera setting used for image acquisition.

For the acquisition of photographs, an industrial VCXG-201C.R camera with a resolu-
tion of 20 MPx, with a CMOS chip was used. The resolution of the photos is 5472 × 3648 px.
The images were taken with a shutter speed of 6000 µs. The nonilluminated LED strip was
powered by a switched 12V DC power supply, which was controlled by an Arduino-type
microcontroller by using a mosfet connected to a PC. The camera itself was connected to
the PC by using an Ethernet cable. A standard photographic tripod was used to mount the
camera with a nonilluminating dome. Between the camera and tripod, a 3D-printed holder
was designed.

The light source was a white LED strip glued around the inner perimeter of the
shade cover. The shade cover is made of stainless steel, and its inner surface has been
anodized to white. This has achieved a satisfactory diffusion of reflected light and uniform
illumination of the surface. The body was illuminated for the selected shutter time with a
100-ms advance.

The images were then saved in .png format with a description of the recipe, the tem-
perature at which they were degraded, and from which side of the test body the photo was
taken. In most cases, the longitudinal side of the beam perpendicular to the compaction
direction was chosen.

The image-binarization method was chosen for image processing. In this method,
the color image was converted to grayscale, and a threshold value for binarization was
selected. In the case of the presented results, this value was experimentally set to 70 bits.
Then, by this condition, all pixels were divided into white pixels that had a value less than
70 bits and black pixels that had a bit value of 71 to 255. A representation of this process is
shown in Figure 5.
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Figure 5. Process of binarization of an RGB image.
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In this way, the image area was divided into white areas that correspond to cracks,
pores, and similar defects and black areas that represent the healthy part of the beam,
i.e., the cement matrix, visible aggregate, and other elements of the concrete specimen. It is
therefore possible to express what area in a given image is occupied by the observed defects
of the surface structure, the surrounding healthy area. The ratio between the number of
pixels of the two groups is taken as one of the descriptive variables IR.

The summary of extracted parameters includes

• average of grayscale image,
• average blue channel of image,
• average green channel of image,
• average red channel of image,
• contrast value of image,
• correlation of image,
• energy of image,
• entropy of image,
• kurtosis of image,
• skewness of image, and
• ratio of white and black pixels.

The feature extraction Matlab script was also designed under project GA22-02098S,
and is still under the development. The used method of binarization is dependent on the
even distribution of illumination on the examined surface. If some areas are oversaturated,
the binarization will falsely highlight these areas instead of defect parts. The ideal lighting
would be in the form of the light plane with even intensity at each point, which cannot be
achieved in real-world situations. The use of a flash can, on the other hand, oversaturate
some light areas and deface the image. In the image processing, LED rings or dark field
rings are used, which can solve this problem [28]. An LED light source is much more
stable than flashes, with low fluctuations of illumination. Another approach is found in
the form of postprocessing by using an adaptive threshold [29], which is able to solve
uneven illumination of an examined surface. This solution is good if a localization of
the morphological elements where the illumination was not optimal is needed. This
postprocessing technique was also tested in the presented paper, but the overall results
were not satisfying, because in the case of thermally degraded concrete a change in color is
not caused by uneven lighting, but by metamorphological changes in crystalline phases.
Apart from simple texture evaluation, it is possible to evaluate individual elements of the
macrotexture itself. For example, one paper [30] presents a morphological study of an
aggregate and matrix structure of a cross-section of selected concrete specimens. Extracted
morphological data were used to simulate the internal volumetric structure of concrete
specimens by using the VQ-VAE2 network. This shows that a similar technique could be
used to assess the typical morphological defects of thermally degraded concrete. This might
be a step for the proposed approach in the presented paper by which to further increase the
prediction accuracy of classification of thermally degraded concrete by image-processing
tools.

2.3. Mechanical and Chemical Analysis

To supplement the NDT measurements, conventional analytic methods were used to
describe the degradation from a general point of view. For testing of mechanical properties,
a four-point bending test was used. The test procedure was set according to Czech standard
CSN EN 12 390-5 [31]. The bending strength and compressive strength together with the
static modulus of elasticity are the most commonly used parameters for the evaluation
of residual mechanical properties after the thermal loading. In practice, these parameters
are evaluated by testing core bore samples removed from thermally degraded structure.
These type of tests are usually accompanied by chemical analysis. Because the portlandite
mineral decomposes above 600 °C, an X-ray diffraction (RDT) analysis is used to describe
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the degradation process of individual mineral phases. In the presented paper, RDT was
used to document mineral changes in mixture D. For this testing, a device called SAXS
Panalytical Empyrean of the AdMas center was used. The RTG analysis was done on
a ground cement matrix retrieved from the cross-section of test specimens. Apart from
mineral changes in aggregate and cement, pore distribution and size are also affected by
elevated temperatures. The pore size rapidly changes in the temperature range of 400–
1200 °C [32]. To describe such a change, a mercury porosimetry test is used to describe the
distribution of a specific pore volume within the temperature concrete samples. For this
type of analysis, a distribution of a specific pore volume based on pore size was evaluated.
This means that the result from each test is an array of values, which cannot be directly
compared to another array of different samples. One of the ways is to integrate the area
below the curve of specific pore volume and compare these areas. The same approach can
be found in the paper published by E. Niwa [33]. These tests are presented to describe
the behavior of mixture sets from a general point of view. These result are not used in the
classification algorithm.

2.4. Machine Learning

Machine learning is a subset of artificial intelligence that focuses on developmental
systems that learn—or improve their performance—based on the data they work with.
Artificial intelligence is a broad term that refers to systems or machines that mimic human
intelligence. Machine learning and artificial intelligence are often discussed together,
and the terms are sometimes used interchangeably, but they do not mean the same thing.
An important distinction is that although all machine learning is artificial intelligence, not
all artificial intelligence is machine learning [34]. Basically, machine learning can be divided
into three groups:

• unsupervised learning (clustering);
• supervised learning (classification); and
• learning with feedback (reinforcement learning).

In the presented paper, a supervised classification aproach was used, whereby each
test specimen has its class, which describes the temperature at which the specimen was
degraded. These classes are 20 °C, 200 °C, 400 °C, 600 °C, 800 °C, 100 °C, and 1200 °C.
Each observation is then a set of extracted features from an acoustic signal and a photo
of a macrostructure of the test specimen surface. In the presented paper, a set of 197
observations with 41 features is evaluated.

The selected set is then divided into a training set and a test set by the cross-validation
method with the k-folds [35]. The input dataset is partitioned into subsets. One subset
serves as the test set, and the remaining subsets serve as training sets. The classifier trains a
model on the training set and uses the test set to test the accuracy and performance of the
model. This process is repeated several times, each time with a different subset forming
the training and test sets. In this paper, cross-validation with a fold equal to five was used.
An example of such an approach can be illustrated using the flowchart in Figure 6. Apart
from cross-validation, another commonly used method is the hold-out validation, in which
a dataset is divided into a training and a test group. Usually, the test group comprises 25%
and the training group comprises 75%, and each group is picked by random permutation
from the whole dataset. This type of validation is suitable for bigger datasets. In training
with datasets with less observation and a higher number of observed classes, it can suffer
from the fact that some classes are poorly represented, which can generate false-positive
results with either abnormally high accuracy or low accuracy. It is important to note that
the ratio 75:25 is not a dogma, and some papers utilize different ratios [36].

In the context of research focused on thermally degraded concrete, a consensus can be
found across authors on the suitability of nondestructive methods for assessing the degree
of thermal degradation of concrete elements and structures. This approach is illustrated in
one publication [14] that focused on the use of regression models as a mathematical tool for
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assessing the degradation rate of plain concrete elements. Nondestructive parameters such
as the dominant resonance frequency fL, the ultrasonic propagation velocity vUZ, or the
dynamic modulus of elasticity Edyn are significantly correlated with mechanical properties
such as compressive strength fc, flexural tensile strength fb, and modulus of elasticity ECU .

All Data
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Fold 2

Fold 3

Fold 4

Fold 5

Fold 1 Fold 2 Fold 3 Fold 4 Fold 5

Fold 2 Fold 3 Fold 4 Fold 5

Fold 3 Fold 4 Fold 5

Fold 5
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Fold 1 Fold 2 Fold 3

Fold 1 Fold 2

Fold 1

Split 1

Split 2

Split 3

Split 4

Split 5

Training data Test data

Finding parameters
Final

evaluation

Accuracy:

Figure 6. Five fold cross-validation.

It should be noted, however, that most of these results were obtained from measure-
ments of test bodies and elements. The frequency response of a closed body depends on
the shape of the body, the type of anchorage, and the material [37]. Therefore, if these
regression models are applied to measurements of a real structure already damaged by fire,
the effect of the shape of the structure on the frequency response causes different results,
and the regression model obtained from measurement of test specimens cannot be used
for measurement of whole structure parts. In contrast, parameters such as the ultrasonic
velocity vUZ, the acoustic impedance ZUZ, or the dynamic modulus of elasticity Edyn can be
well used to estimate the residual physical–mechanical properties, which are not influenced
by the general shape of the structure [38].

The presented paper also focuses on the evaluation of thermally degraded concrete
by using parameters obtained from the IE resonance method and extraction of symptoms
from photos of the test body surface. When extracting features from resonant signals, it is
possible to focus on several features from both the time domain and the frequency domain.
As an example of these flags, Figure 7 shows all the acoustic signal flags measured in the
longitudinal testing direction (a) and the main frequency characteristics (b).

The acoustic parameters correlate well for concrete in the range of 20 to 1000 °C when
a local minimum is reached for virtually all observed characteristics, both nondestructive
and mechanical. However, if the sets degraded at 1200 °C are included, the whole datasets
exhibit a nonlinear behavior, in which, due to partial sintering, the observed characteristics
increase backward. This leads to possible confusion between sets degraded at 800, 1000
and 1200 °C. Looking at the surface structure, however, it is clear that there is a significant
difference between the 1200 °C set and all other temperature groups. This difference can be
illustrated by Figure 8.

A similar conclusion can be found in the work of I. Hager [17], wherein the change of
color, texture, and morphological elements is associated with the state of thermal degra-
dation of concrete, mortars, and binder pastes. Thus, if the image characteristics from the
photo of the surface of the test body and its resonance characteristic are used together, they
can separate the groups in the region of 800–1200 °C. Thus, this pair of groups of observed
parameters is used to create a test dataset to which various machine learning algorithms
can be applied. In this case, multiple classification models can be assessed and compared
across the groups. In this case, all observations are divided into seven classes according to
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the temperature at which the specimens were degraded. A complete list of used extracted
features from acoustic signals and images is shown in Table 3.
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Figure 7. Visualizaton of feature extraction done on impulse signal.
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Figure 8. Comparision of different color and texture of concrete specimens from 20 to 1200 °C.

The presented features were extracted from both IE signals and images of test speci-
mens. To process this data, we used a desktop PC with an Intel i5-10600 3.3 GHz processor,
NVIDIA Quadro RTX 4000, 64 GB 2666 MHz DD4 RAM. The average time of feature
extraction of signal parameters was 0.05 s, and the average time of image features was
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0.69 s. For the model training, we used the Machine Learning Toolbox from Mathworks.
This toolbox allows us to pick either cross-validation or a hold-out validation method.
Because the amount of observation is under 500, the used dataset of 197 observations is
viewed rather as a smaller dataset compared to other examples, such as a Plamer penguin
dataset [39]. Hold-out validation is better for bigger datasets, wherein a computational
time could be a issue, because cross-validation takes k-times more time for validation.
The machine learning toolbox allows a user to test all of the commonly used model presets
on the same dataset and is useful for finding the one which has the highest accuracy or is
best performing for specific classes within the dataset. With the usage of a parallel comput-
ing toolbox, this takes less then two minutes to finish testing all the models. Without the
GPU-driven parallel toolbox, the time needed for training all of the models is almost five
times longer, but still manageable for a standard office PC. Total consumption of RAM by
Matlab during the extraction, training, and testing is 3 GB. The classification of a single
specimen then takes less then a second.

Table 3. List of all used features from signals and images.

ID Name Description ID Name Description

1 SA,d Rise slope 23 IE Energy of image
2 SA,RA RA asymptote 24 IS Entropy of image
3 SAtt,R2 R2 of signal attenuation 25 IK Kurtosis of image
4 SAtt,SSE SSE of attenuation curve 26 ISkew Skewness of image
5 IRGB Average of grayscale image 27 SIF Impulse factor of signal
6 IB Average blue channel of image 28 SK Kurtosis of signal
7 IG Average green channel of image 29 SA,max Maximum amplitude of signal
8 IR Average red channel of image 30 Sc Signal peaks count
9 fL Mean of dominant frequencies 31 fAsym α of frequency trend peaks
10 Icontrast Contrast value of image 32 fβ β of frequency asymptote
11 Icor Correlation of image 33 SRMS Root mean square of signal
12 SCF Crest factor of signal 34 IR Ratio of white and black pixels
13 fϑ Decadic attenatuion coefficient 35 SRA Rise angle of signal
14 Sdur Duration of signal above threshold value 36 SRE Energy of signal in RA region
15 SE Energy of signal above the threshold 37 SRT Duration of rise angle range
16 fL Frequency with maximum amplitude 38 SSNR Signal-to-noise ratio
17 fA,max Amplitude of dominant frequency peak 39 SAtt Signal attenuation
18 fAF Average frequency of signal 40 SSkew Skewness of signal
19 fL,c Count of dominant frequency peaks 41 SSV Absolute voltage range of signal
20 Σ fL Sum of dominant peaks 42 STHD Total harmonic distortion of signal
21 fL,w Peak width 43 STrsh Threshold 150% of noise of signal
22 IH Homogenity of image

Selected features can be influenced by noise as the distortion in input data used
for feature extraction and the features itself. The reduction of noise is thus completed
by a more reliable feature extraction function, by acoustic filters which reduce the effect
of environment on tested body of specimen, or more even illumination or the brushed
surface of the test specimen. Another form of noise can be the wrong placement of class
labels, in which a sample specimen which degraded at 800 °C was by human error labeled
as 400 °C. Generally speaking, the noise influence has a bigger impact in deep neural
networks, which are usually used on vast datasets where it is not possible to maintain
the stability of the data input. For example, speech-recognition algorithms are usually
trained on thousands of records that contain a natural form of language, and the presence
of noise is much higher [40]. In the presented dataset, the specimens were prepared under
laboratory conditions, and the controlled degradation was carried out precisely for each
test specimen. However, the reliability of the trained model can be tested by implementing
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artificial noise to the data, which can show under what level of noise the model is still
stable and reliable [41]. This type of testing was not done in the paper, but will be carried
out as a next step, because it has a great value for transferring this diagnostic approach to
the industry. Under the real condition in situ, the enviroment has a much bigger impact on
the acoustic noise, lightning, and presence of water or other substances.

3. Results

In the context of the nondestructive diagnoses of the thermal damage rate, the pre-
sented paper is based on the NDT resonance method and its high correlation with conven-
tional destructive methods. This dependence is shown in Figure 9. The dominant resonance
frequency in the longitudinal direction fL in Hz is shown on the y axis and the flexural
tensile strength fB in MPa is shown on the x axis. All measured mixtures A–E are shown,
and the temperature sets 200–1200 °C are marked. The correlation value is greater than
0.95, so that the resonance frequency value can be used to express the change in tensile
strength in the case of the test bodies. However, there are several problems:

• resonant frequency is a shape-dependent quantity that is influenced by the excitation
and mounting of the test fixture,

• the temperature sets overlap to some extent, especially in the region of 800–1200 ◦C,
and it is almost impossible to safely distinguish the temperature group by using NDT
analyses alone, and

• the set degraded at 1200 °C corresponds to a different trend, which is due to partial
sintering of the concrete, where the material starts to behave like ceramic.

For these reasons, it can be stated that the use of the resonance method as a diagnostic
tool to distinguish the degree of thermal degradation can only be reliably used up to 800 °C,
on test fixtures of known size, mounting, and excitation.
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Figure 9. Correlation comparision of longitudinal frequency FL and bending tensile strength fB.

The significant change between 1000 and 1200 °C can be described by X-ray diffraction
analysis, the results of which are shown in Figure 10. The reflection intensity is shown on
the y axis, and the reflection angle of 2θ is shown on the x axis. The colours are used to
distinguish between the different temperature sets of the mixture D. From these results,
the representation of the individual crystalline components and their change during loading
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can be discerned. The results show a gradual decrease of portlandite, which is no longer
present in the samples after 600 °C; on the other hand, at 1200 °C, the ceramic phase
Wolastonite is formed, which is the main cause of the increase in strength and resonance
frequencies. It is also the reason for the significant change in the surface texture of the
sample in terms of morphology and color change.
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Figure 10. RTG diffraction analysis of tested mixture D.

The change in macrotexture is one of the NDT indicators that can be obtained relatively
easily when evaluating both concrete test bodies and whole structures, which has already
been published e.g., in [17]. One of the objectives of this paper is to improve the general
reliability of thermal damage classification of concrete test bodies for the whole temperature
range 200–1200 °C by using additional parameters obtained by NDT methods. Thus, it is
necessary to use not a bivariate regression model but a multivariate evaluation. Machine
learning algorithms can be used very successfully for these tasks. The parameters of the
measured signals in the longitudinal direction of the test bodies fL were used to create this
model. For all signals, the change in characteristics clearly shows a nonlinear dependence
on the degree of thermal degradation with a local minimum at 1000 °C. The temperature
set of 1000 and 1200 °C overlaps with the temperature set of 800 and partially for the set
of 600 °C. An example of this overlap is the rise time SRT parameter shown in Figure 11.
This is a representation of the dependence of the dominant resonance frequency fL in Hz
on the value of the rise time SRT in s. The individual temperature sets are shown in color.
The overlap of the temperature sets can be seen here, starting from the reference sets.
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Figure 11. Dependency of parameter longitudinal resonance frequency fL on a rise time RT of signals of
all mixtures across the temperature sets 20–1200 °C.

Because these are laboratory-measured specimens, measured under optimum con-
ditions, it is to be expected that in the case of real structure measurements this overlap
will occur to a much greater extent and the analytic value of acoustic NDT measurements
alone may not be sufficiently accurate. It is therefore desirable to supplement these NDT
measurements with additional parameters that allow us to distinguish between the dif-
ferent sets. In this sense, the tests carried out so far and the scientific results are rather
focused on the hypothetical use of the IE method in the diagnosis of thermally damaged
structures. Examples include a diagnostic survey of a bridge [16], or laboratory testing
of the concrete bodies of precast bridge elements [42]. These examples either focus on a
hypothetical application of acoustic methods or online monitoring of an ongoing fire test.

From the point of view of in situ measurements, it is therefore a good idea to supple-
ment the IE measurements with an additional variable that will have a linear change as a
function of the rate of thermal degradation. An example of such a dependence could be the
integrated pore size area from a mercury porosimetry test. An example of this integration
is shown in Figure 12, where the x-axis shows the increasing temperature and the y-axis
shows just the integrated pore size area.
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Figure 12. Integrated pore size of mixtures B and D from mercury porosimetry test.

This value is almost identical in the range 0–600 °C, but from a stress temperature of
800 °C there is a sharp increase in the integrated pore size value VP. At 1000 and 1200 °C,
the relative differences are then greatest, and it can be said that this analytic method can
be used reasonably well to distinguish temperature groups that are otherwise difficult
to distinguish for the NDT IE method or by destructive tests. The mercury porosimetry
method is, however, demanding in the preparation of the test sample. A regular sample of
dimensions 10 × 10 × 10 mm is to be obtained if possible after the test is contaminated with
mercury. This method cannot be used in situ either. On the other hand, the macrotexture of
the observed material is clearly visible, and based on the publication [17] it is known that
there is a dependence between the color, hue and brightness of the concrete structure on the
degradation temperature. Taking a photograph of the concrete surface affected by elevated
temperature at the test site by using the resonance method is a relatively easy task that does
not require expensive equipment and can be performed very well under in situ conditions.
If a surface photograph of the test bodies is used, it can subjected to image analysis and
evaluation of the parameters such as color, hue, and other parameters. An example of
this basic comparison and the individual steps is shown in Figure 13 and 14. The analysis
consists of taking a photograph with a stable light source at sufficient resolution. Each RGB
photograph is a three-dimensional vector, in which the individual layers contain intensities
in the range 0–255 in individual shades of red, blue, and green. By composing all the chan-
nels, a color image is produced. For color photographs, it is worth mentioning that they
work in the visible spectrum, and it does not precisely represent the color of the material
depending on the reflected wavelength, which can be analysed, for example, with spec-
trophotometers. This analytical test is used to analyse the color of different materials and
substances in relation to the reflectance of specific wavelengths of radiation [43]. From this
point of view, image analysis is simpler and therefore cannot capture spectral information
in, for example, the near-infrared or ultraviolet spectrum or the intensity representation
of reflected or transmitted light at a particular wavelength. However, image analysis is
able to provide additional valuable information that cannot be obtained in any other way.
Specifically, in this paper, an image was created from each photograph taken and analyzed
by using the binarization method. Then, all the integral white areas corresponding to
the darkest areas in the image were separated, which in the case of thermally degraded
concrete corresponds to cracks, pores, and significantly degraded parts of the aggregate
that have substantially changed their hue.
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Figure 13. The process of image feature BW ratio IR for specimen degraded at 20 °C.

The effect of using the parameters from the image analysis of the surface photographs
of the thermally degraded concrete bodies can be seen in the distinction between the set
degraded to 20 and 1200 °C, as documented by the correlation diagram in Figure 15. Here,
the selected main parameters extracted from the photos, namely the average value of the
blue channel, the skewness of the image bits in grayscale, the photo energy, and the ratio
between the number of white and black pixels from the binary image, are compared in
the correlation. This comparison shows the separation of the test set degraded at 1200,
1000 and 800 °C. This separation is most evident when comparing the blue channel with
virtually all other parameters. This separation is most evident in the comparison of the
image energy and the ratio of white to dark pixels. The remaining 20–600 °C test sets are
already mixed in most cases in one cloud of measured points.
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Figure 14. The process of image feature BW ratio IR for specimen degraded at 1200 °C.

However, this comparison is sufficient to differentiate the individual test sets, as can be
seen in Figure 16, where the x-axis shows the dominant frequency FL, the y-axis the signal
attenuation, and the z-axis the average value of the green channel of the macrotexture
photo. Here, one can clearly distinguish all the test sets that occupy a specific place in
the NDT measured parameters. The machine learning algorithm can be used to verify
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the success of the proposed evaluation system. To apply this method, the measured data
needs to be transformed into a dataset structure, in which each row represents just one
observation consisting of columns containing parameters (features) from the IE method
and image analysis. The last column contains information about the class of observation,
in our case the temperature to which the beam was degraded. The evaluation algorithm is
based on the principle of cross-validation, whereby the whole dataset is split into a 75:25%
ratio, where 75% serves as the learning set and 25% serves for validation without knowing
the actual class of the observation. Both parts are chosen by using random permutation so
that all unique class types are equally represented.
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Figure 15. Correlation diagram of selected variables: RBW , EI , KI , ∑ Gchannel .
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Figure 16. Comparison of dependency between green channel average value, dominant frequency
fL, and signal attenuation.

A classification model for distinguishing the degree of thermal degradation by using
NDT parameters obtained by the IE method and image analysis was designed by using the
Machine Learning Toolbox of Matlab. This toolbox offers a range of different classification
algorithms presets and all of them can be applied on the same dataset and their efficiency,
success rate, and model accuracy can be compared with each other. Thus, from this analysis,
the ensemble bag tree (BT) type was used as the final classification model with the highest
accuracy. EBT combines a set of trained weak-learner models, and the data on which these
learners were trained. It can predict the ensemble response to new data by aggregating
predictions from weak learners [44]. The bagging technique consists of three steps.

1. The original data is separated into subset data. The columns and rows of original data
are divided into subsets of data.

2. Classifiers are built on each subset of data. The same or different classifiers are created
for subset data.

3. The majority vote is used for choosing the best classifier from all classifiers [45].

It stores the data used for training, can compute replacement predictions, and can
continue training if necessary. The resulting classification model provides a prediction
based on the input parameters from the IE method and image analysis of what class of
temperature degradation is involved. The success rate can be represented by using the
confusion matrix shown in Figure 17. Here, the matrix compares the success rate of the
classification of classes where the correctly predicted classes lie on the diagonal. If an
observation was not correctly classified, it can be expressed with the other class with which
the proposed model confuses this observation.
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Figure 17. Confusion matrix of proposed machine learning model by using support vector machine algo-
rithm.

The total time needed for the training of the ensemble bagged tree model is 2.6 s, and
the accuracy is 85%. With optimization, the training time is 51 s with a resulting accuracy
87%. The hyperaparametrs for the optimized model were altered by using the optimization
tool and are presented at Table 4. During the optimization procedure, the program changes
the hyperparameters in a given range and we can observe the estimated and observed
minimal classification error. A similar approach can be seen in different, related machine
learning tool applications [46].

Table 4. Hyperparameters of the trained ensemble bag tree model.

Hyperparameters Ranges Optimized Values

Ensemble method Bag, AdaBoost Bag
Learner type Decision tree Decision tree
Number of learners 10–500 31
Maximum number of splits 1–196 187
Number of predictors to sample 1–43 34

The resulting accuracy of this model is 87.31%, where there is only confusion between
adjacent temperature sets. The test set degraded at 1200 °C is so unique that there was
no confusion with any other test set during classification. The greatest confusion occurs
between 400 and 800 °C, where the successful classification rate for 600 °C is 76.3%.

The resulting decision tree generated by the optimized bagged tree classifier is pre-
sented at Figure 18. It can be seen that the first parameter is a BW ratio IR of an image
and subsequent conditions are mainly by dominant frequency. From all of the parameters
that were given as an input dataset for model training, these parameters have the highest
impact on successful classification. It is important to note that the training is possible with
the usage of principal component analysis [47], which can reduce the dimensionality to
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a couple of principal components. This approach was also tested in the training of the
presented dataset, but the result was not satisfactory, mainly because the PCA combines
all of the variables into principal components, and the image feature information is sup-
pressed. Other approaches are seen in deciding what parameters are most important for
classification as can be seen in [48] where the mean squared error (MSE) is observed at the
different regularization parameter λ. In the presented paper, the selected approach picked
the most significant features by the model itself.

If the obtained features from the image analysis in the classification would not been
used, the success rate of the classification model of 73% would be 14% lower, with the
classification accuracy of the temperature sets of 600, 800, 1000, and 1200 °C being only
60%. From this difference, the positive effect of using image analysis in the classification of
thermal damage can be clearly documented. Better results could have been achieved by
treating the surface of the thermally degraded beams, for example by removing the surface
layer with a wire brush or by using a grinder; however, the aim of the experiment was to
validate the NDT approach, which can be performed repeatedly on many test pieces or
structural elements without any surface treatment.

Freq 
≥1084

1000 Freq 
≥1817

IR 
≥0.0157

800 600

Freq 
≥4392

Freq 
≥3308

NHits 
≥202

800 RAVa
≥2649

600 400

IR 
≥1.016·10-3

600 400

FM 
≥4821

AF 
≥8710

FreqWidth 
≥24

400 200

IEntro 
≥6.043

IACR 
≥198

400 20

200

IKURT 
≥144

Kurt 
≥9.565

20 200

Freq 
≥4935

400 200

1200

IR 
≥0.0438

Figure 18. Decision tree of optimized bagged tree model.

The influence of the mixture used on this classification success rate does not have
a significant effect, as can be seen by comparing the success rates between the different
recipes in Table 5. This table compares the success rates of the proposed classification
model for each tested recipe. The lowest value is achieved by recipe C with a success rate
of 80.48% and the highest value is achieved by recipe B with a success rate of 88.88%. Thus,
this is a variance of 8%, which can be attributed mainly to the atypical composition of recipe
C, wherein the coarse fraction was completely absent. This recipe generally has a much
larger variance in terms of measured parameters, and therefore its results can be expected
to extend into parameter regions typical of neighboring temperature sets. Statistical
parameters such as mean, minimum, and maximum of each feature is presented at Table 6.
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Table 5. Classification accuracy among all tested mixtures.

Accuracy [%]
Mixture

A B C D E
85.29 88.88 80.48 85.71 88.57

All of the presented extracted features are stored on Web Page figshare, in Supplemen-
tary Materials. The dataset has 41 columns for either signal or image features, one column
for temperature class and one column for mixture.

Table 6. Comparision of all extracted features.

ID Parameter Mean Min Max ID Parameter Mean Min Max

1 SA,d 0.070 −1.522 4.905 23 IE 0.366 0.204 0.549
2 SA,RA 2.354 0.075 14.750 24 IS 6.353 5.681 7.016
3 SAtt,R2 0.669 0.041 0.987 25 IK 567.091 5.755 8531.601
4 SAtt,SSE 0.296 0.002 3.736 26 ISkew 13.921 1.732 92.037
5 IRGB 194.305 101.357 255.089 27 SIF 49.929 10.637 160.686
6 IB 196.874 77.965 268.100 28 SK 10.294 2.899 32.426
7 IG 197.156 106.299 257.182 29 SA,max 0.200 0.029 0.858
8 IR 188.885 119.179 241.034 30 Sc 550 103 1334
9 fL 2982.401 619.879 5412.019 31 fAsym 0.584 −3.65 × 10−8 1
10 Icontrast 0.078 0.044 0.145 32 fβ 6.66 × 10−3 −8.7 × 10−3 1.84 × 10−3

11 Icor 0.921 0.838 0.957 33 SRMS 0.040 0.009 0.177
12 SCF 6.062 2.957 10.450 34 IR 3.83 × 10−3 3.78 × 10−3 4.76 × 10−3

13 fϑ 1.03 × 109 1.39 × 109 1.79 × 109 35 SRA 839.132 19.643 6706.851
14 Sdur 0.054 0.002 0.158 36 SRE 0.242 0.035 0.991
15 SE 2.96 × 10−3 4.72 × 10−3 7.68 × 10−3 37 SRT 5.87 × 10−3 4.61 × 10−3 6.60 × 10−3

16 fL 2938.715 607.958 5412.019 38 SSNR 23.959 8.687 39.032
17 fA,max 0.000 0.000 0.000 39 SAtt −1.830 −3.780 2.228
18 fAF 1.19 × 105 5.98 × 105 5.70 × 105 40 SSkew −0.470 −3.099 0.594
19 fL,c 1.474 1.000 4.000 41 SSV 0.449 0.070 1.858
20 Σ fL 0.000 0.000 0.000 42 STHD −13.211 −56.395 2.272
21 fL,w 26.045 17.216 64.537 43 STrsh 0.007 0.001 0.023
22 IH 0.961 0.927 0.978

4. Conclusions

In the presented paper, a procedure for the evaluation of thermally degraded concrete
by using the NDT Impact-Echo method and image analysis of the surface of degraded con-
crete beams was proposed. Five different mixtures were measured in their entirety, and the
effect of varying the proportion of coarse aggregate and the binder used was investigated.
The proposed evaluation procedure is based on the extraction of characteristic features
from the measured acoustic signals obtained by the IE method and features obtained from
the photographs of the test mixtures by the image-analysis method. The classification
procedure was evaluated by using a machine learning method applying cross-validation
with a 75:25 split with five folds of the entire dataset. The proposed classification model
achieves a classification success rate of 87%, where confusion between temperature sets
20–1200 °C occurs only between adjacent temperature sets. If the same model was used only
on data obtained from the IE method, the accuracy would have at most a 73% success rate
with a high degree of confusion across the temperature range of 600–1200 °C. Classification
accuracy by using only the parameters from the image analysis would achieve 69% with
a high confusion rate across the entire temperature range. Thus, it can be stated that it
is the combination of the parameters from the IE method and image analysis that allows
for higher reliability in the classification of thermal damage in plain concrete test bodies

https://figshare.com
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by using only nondestructively obtained parameters. At the same time, the proposed
procedure for validating the accuracy of the classification model by using cross-validation
appears to be a suitable tool for validating the accuracy of similar classification tasks due to
its simplicity and versatility. It is important to note that the presented data were prepared
under laboratory conditions, and the influence of noise is very limited. The next step
would be implementing artificial noise factors to both signal and image characteristics,
and validating the accuracy and repeatability of noise in the data at different levels. For the
increasing classification accuracy only for image features, a deep learning algorithm with
morphological segmentation of characteristic defects of the aggregate and cement matrix
would be beneficial.
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