FAKULTA ELEKTROTECHNIKY

 A KOMUNIKAČNÍCH ústav

 TECHNOLOGIÍ elektroenergetiky

Nástroj pro výpočet nastavení přetokových ochran v mřížové síti

software pro kontrolu a optimalizaci nastavení přetokových ochran v silně zauzlených sítích

Tento software byl vytvořen se státní podporou Technologické agentury ČR

Popis programu

Software je navržen pro optimalizaci nastavení přetokových ochran v silně zauzlených sítích. Při vzniku poruchy v zauzlené síti je porucha vždy napájena z více stran a pro její odstranění je nutné ji v krátkém čase odpojit od zdroje, tedy přerušit všechny cesty možného napájení. U poruch vzniklých v sítích 22kV napájejících mřížovou síť NN se cesta poruchového proudu uzavírá i přes propojenou mřížovou síť a dochází tak ke zpětnému toku energie ze sítě NN do poruchy v síti VN. Cestou tohoto zpětného proudu je pak část mřížové sítě a distribuční transformátory 22/0,4 kV spojující napájecí síť 22 kV a mřížovou síť NN. Účelem přetokových ochran je zpětnému toku energie do poruchy zabránit a při působení nadproudové ochrany ve vývodu z napájecí rozvodny 22 kV umožnit odpojení poruchy od zdroje. Uvedenou situaci lze popsat zjednodušeným schématem na Obr. 1.

Obr. 1 Ilustrativní schéma mřížové sítě

Pomocí programu jsou počítány ustálené chody mřížové sítě při poruše. Porucha je aplikována postupně do všech uzlů VN soustavy. V rámci výpočtu je uvažováno, že se v síti nachází pouze jedna porucha. Typ poruchy je uvažován jako ideální trojfázový kovový zkrat. Software provádí vždy dvě sady výpočtů pro každou poruchu. V první sadě jsou uvažovány vypínače všech vývodů z rozvodny 22 kV jako sepnuté a v druhé sadě jsou vypínače těch vývodů, u kterých ochrana (IED v Obr. 1) v předchozím kroku naměřila proud překračující hodnotu pro vypnutí ve vysokém stupni uvažovány jako vypnuté a zbývající zůstávají zapnuté. Pro oba tyto stavy jsou vždy vypočteny a zaznamenány hodnoty napětí na sekundárních stranách všech distribučních transformátorů a také přetoky proudu z NN do VN sítě v místě jejich připojení.

Výsledky všech výpočtů jsou následně rozděleny do dvou skupin

- hodnoty přetoků I_{Fi} a napětí U_{Fi} v místech i = 1, 2, ..., n připojení přetokových ochran ve vývodech s poruchou

- hodnoty přetoků $I_{\text{H}j}$ a napětí $U_{\text{H}j}$ v místech j = 1, 2, ..., k připojení přetokových ochran ve vývodech bez poruchy

Poté jsou vyhodnoceny porovnáním s jednotnou úrovní minimálních nastavených hodnot I_{Pnast} , U_{Pnast} v přetokových ochranách a pokud jsou splněny podmínky

 $\min\{I_{F_i}\} > I_{Pnast} \ge \max\{I_{H_j}\} \text{ pro } i = 1....n \text{ a } j = 1....k,$ $\max\{U_{F_i}\} < U_{Pnast} \le \min\{U_{H_i}\} \text{ pro } i = 1....n \text{ a } j = 1....k,$

pak lze zvolené nastavení (I_{Pnast} , U_{Pnast}) považovat za korektní a funkce přetokových ochran umožňuje selektivně odpojit napájení poruchy v síti 22 kV přes mřížovou síť NN.

Pokud některá z podmínek splněna není, upraví se nastavení přetokových ochran I_{Pnast} , U_{Pnast} na nové hodnoty a kontrola podmínek se zopakuje.

Uživatelský manuál

Program se ovládá pomocí tzv. zaváděcího souboru, který je vytvořen v programu Microsoft Excel (případně LibreOffice Calc). Zaváděcí soubor je přiložen ve stejné složce, jako software a jeho výchozí název je "PO_VstupyaVystupy_V01.xlsx". Název zaváděcího souboru lze měnit. Zaváděcí soubor slouží jak pro vkládání požadovaných vstupů, tak se do něj po provedení výpočtů ukládají výsledky. Vyvinutý SW pracuje na platformě Matlab pro programování a numerické výpočty. SW je možné spustit po dvojitém kliknutí na ikonu aplikace ve formátu Matlab (.m). K spuštění je potřeba mít nainstalovaný program Matlab ve verzi r2021a a vyšší s platnou licencí, nebo Matlab runtime, který obsahuje knihovny potřebné ke spouštění aplikací Matlab na cílovém systému bez licencované kopie Matlabu. Po spuštění programu se objeví výzva k výběru zaváděcího souboru. Po vybrání tohoto souboru uživatelem se provedou požadované výpočty a výsledky se uloží zpět do stejného zaváděcího souboru.

Zadávání vstupů:

Vstupy, které nastavuje uživatel, jsou definovány záložkami:

- Konf_Vedeni_VN
- Konf_Vedeni_NN
- Konf Trafa
- Konf_SpojkyPD
- Vysledne_Nastaveni

Pomocí změny příznaku ve výše uvedených záložkách zaváděcího souboru lze libovolný prvek sítě uživatelky zapínat, nebo vypínat. V záložce "*Konf_Vedeni_VN*" lze pomocí sloupce G "*rozepnuto_v*" rozpínat vedení VN buďto nikde (0), ve stanici 1 (1), ve stanici 2 (2), nebo v obou stanicích (12).

Ostatní prvky, jako jsou NN vedení ("*Konf_Vedeni_NN*"), distribuční transformátory ("*Konf_Trafa*") a spojky podélného dělení ("*Konf_SpojkyPD*") lze definovat jako sepnuté (*stav* = 1), nebo rozepnuté (*stav* = 0). Ukázka konfigurace spínacích prvků je na Obr. 2. Další nastavení je v záložce "*Vysledne_Nastaveni*" (Obr. 3). Zde se nastavuje popudová hodnota vysokého stupně nadproudové vývodové ochrany (označeno červenou šipkou a č. 1) a dále se zde nastavuje minimální popudová hodnota přetokových ochran (označeno červenou šipkou a č. 2).

								A	В	С	D
						*	1	idx	DTS	id	stav
	1000			100			2	1	(1967)		1
		1001200					3	2			1
		1001208					4	3	1000		1
							5	4	1000		1
							6	5	1000		1
		10 100.000					7	6	1000		1
							8	7	1000		1
		as management	1000				9	8	1000		1
							10	9	1000		1
				100			11	10	1000		1
	A	В	С	D	E	F	G				
1	idx	id	Vyvod	stanice1	stanice2	stav	rozepnuto_v				
2	1	11921	VN1205	1	1921	1	0				
3	2	11941	VN1209	1	1941	1	0				
4	3	11987	VN1208	1	1987	1	0				
5	4	19011965	VN1205	1901	1965	1	0				
6	5	19031923	VN1205	1903	1923	0	2				
7	6	19041913	VN1206	1904	1913	1	0				
8	7	19051911	VN1210	1905	1911	1	0				
9	8	19061920	VN1208	1906	1920	1	0				

Obr. 2 Ukázka konfigurace spínacích prvků a) VN vedení (záložka: Konf_Vedeni_VN), b) DTS (záložka: Konf_Trafa)

1

1

0

0

1979

1905

Čtení výstupů:

9

10

Výstupy jsou dostupné v záložkách:

19071979

19081905

VN1210

VN1210

1907

1908

- Vysledne Nastaveni
- PretokyPriPoruchachVN
- MezniHodnotyProDT
- TabUIP

10

11

Záložka "*Vysledne_Nastaveni*" (Obr. 3) obsahuje výsledné doporučené nastavení přetokových ochran. Na této záložce je globální nastavení přetokových ochran. Jde o nejméně příznivé hodnoty ze všech výpočtů, které zajišťuje korektní chování přetokových ochran ve všech trafostanicích. Hodnota U/U_n (červeně označeno číslem 3) je hodnota napětí z trafostanice, ve které bylo zjištěno při poruše nejvyšší napětí. Pokud je skutečné napětí při poruše menší, než je tato hodnota, přetoková ochrana působí v rychlém čase a tím je zajištěna časová selektivita s nízkým stupněm nadproudové ochrany vývodu.

Obr. 3 výsledné globální nastavení přetokových ochran

Výsledná maximální hodnota popudového proudu rychlého (podpětím odblokovaného) stupně přetokové nadproudové ochrany je na (Obr. 3) označena červenou šipkou a číslem 4. Jde o hodnotu proudu ve směru z NN do VN soustavy z trafostanice, kde byl tento proud nejmenší. Nastavení přetokové ochrany pod tuto mez zajištuje, že budou spolehlivě vypnuty všechny distribuční transformátory, které se nachází na postiženém vývodu a které napájí poruchu ve VN síti opačným tokem proudu z NN sítě. Při poruše ve VN síti může nastat případ, kdy přetoková ochrana nastavená v mezích mezi hodnotami označenými červeně 2 a 4, odstaví transformátor na nepostiženém vývodu. Takto postižené transformátory se nazývají neselektivní DT a jejich výčet je označen červenou šipkou s číslem 5. Tento nepříznivý jev lze částečně eliminovat individuálním nastavením, které bude popsáno dále.

Záložka "*MezniHodnotyProDT*" (Obr. 4) obsahuje seznam všech distribučních transformátorů s individuálním nastavením přetokových ochran. Hodnota U_Un je hodnota nastavení podpěťového odblokování rychlého působení přetokové ochrany v poměrných jednotkách (nastavená hodnota ochrany musí být stejná, nebo vyšší), hodnota I_mez je minimální efektivní hodnota proudu v A směrem z NN do VN při poruše (hodnota nastavení přetokové ochrany musí být stejná, nebo nižší) a hodnota I_mez je činná složka proudu I_mez v A (hodnota slouží jen pro informaci).

A		В	С	D	Е	F	G
1							
2 Vyvod		DTS	Т	U_Un	l_mez	lc_mez	RizikoNeselektivity
	10.0)01	T_1	0,57	643,56	413,10	1
-		01	T_65	0,50	561,15	407,16	0
100		903	T_2	0,45	513,51	427,68	0
-		03	T_3	0,53	582,06	419,58	0
-)10	T_12	0,44	508,21	425,31	0
-		921	T_23	0,54	382,39	161,16	0
-		38	T_38	0,48	517,06	414,72	0
-		943	T_67	0,36	380,89	237,23	0
-		943	T_68	0,42	470,62	292,15	0
-		944	T_74	0,62	757,68	331,05	0
-		945	T_44	0,55	685,19	422,78	0

Obr. 4 Mezní hodnoty nastavení přetokových ochran pro jednotlivé transformátory

Další kartou je "*PretokyPriPoruchachVN*". Zde jsou uvedeny nejnepříznivější hodnoty při poruše pro jednotlivé transformátory. Sloupec "*VO_stav*" značí, jestli je postižený vývod zapnutý, či nikoliv. Dále jsou hodnoty rozděleny na poruchu ve vlastním vývodu (pro tento případ by měly vypnout přetokové ochrany všech transformátorů) a poruchy na cizím vývodu (pro tento stav by přetoková ochrana vypínat neměla – pokud se tak stane, je zde riziko neselektivity). První hodnotou je maximální hodnota fázového napětí na sekundární straně transformátoru *PVIV_Umax*. Další hodnotou je minimální efektivní hodnota proudu při záporném toku činného výkonu *PVIV_Imin a* poslední hodnotou je minimální hodnota činné složky proudu *PVIV_Icmax*. Pro poruchy na cizím vývodu jsou hodnoty obdobné, jen s tím rozdílem, že je zde vypsána minimální hodnota napětí a maximální hodnota proudu. Důvodem je to, že zde není hledáno nastavení ochrany (jejíž působení při poruše na cizím vývodu není žádoucí), ale je hledáno riziko neselektivity. Ve stavech, kde riziko neselektivity není, jsou buňky prázdné.

	A	В	С	D	E	F	G	н	I.	J				
1					Porucha	a na vlastním	vývodu	Porucha na cizím vývodu						
2	Vyvod	DTS	Т	VO_stav	PVIV_Umax	PVIV_Imin	PVIV_Icmax	PCiV_Umin	PCiV_Imax	PCiV_Icmin				
1996	1,205	1901	T_1	1	59,15	715,07	-459,00							
100	1.005	1.001	T_1	0	118,25	6 931,07	-1 347,59	108,62	4 857,43	-119,71				
100	1,265	1.0011	T_65	1	53,30	623,50	-452,40							
100	1.005	1903	T_65	0	104,07	6 043,50	-1 215,47							
100	1,000	1903	T_2	1	42,94	570,57	-475,20							
100	1,005	1903	T_2	0	93,36	5 530,57	-1 137,74							
100	1,265	1903	T_3	1	51,05	646,74	-466,20							
100	1,205	1903	T_3	0	110,07	6 268,88	-1 181,10							
100	1,005	1810	T_12	1	44,91	564,68	-472,56							
100	1,205	19410	T_12	0	92,14	5 473,40	-1 418,37							
100	1,005	10011	T_23	1	74,38	424,88	-179,07							

Obr. 5 Hodnoty přetoků při nejnepříznivějším stavu pro jednotlivé distribuční transformátory

Poslední kartou je "*TabUIP*", která obsahuje veškeré vypočítané hodnoty. Jednotlivé řádky jsou pro zkraty v jednotlivých uzlech celé VN sítě. Sloupec C udává počet vypnutých vývodových ochran. Ve sloupcích E až J jsou proudy, které protékají jednotlivými vývody z rozvodny 22 kV a které jsou měřeny vývodovými ochranami. Při překročení nastavené hodnoty popudového proudu (Obr. 3, hodnota popsaná červenou šipkou a číslem 1) se příslušný vývod vypne. Hodnoty proudů jednotlivých vývodů po vypnutí postiženého vývodu jsou ve sloupcích K až P. Dále následují sloupce pro jednotlivé distribuční transformátory. Každý

distribuční transformátor má celkem 8 sloupců. První čtyři sloupce jsou pro stav, kdy jsou všechny vývody z rozvodny 22 kV zapnuty, druhé dva sloupce jsou pro stav, kdy vývodová ochrana vypne postižený vývod. Hodnoty zaznamenané v tabulce jsou na úrovni NN. První hodnotou je fázové napětí *Uf*, dále následuje efektivní hodnota proudu I_zT při záporném směru toku činného výkonu, dále je činný výkon P_zT (pro určení směru toku proudu) a posledním sloupcem je činná složka proudu *Ič zT*.

4	А	B C	D	E	F	G	н	1	J	К	L	м	N	0	Р	Q	R	s	т	U	v	w	x
1																		1901	VN1205				
2				I_vyvod_	/O_Zap					I_vyvod_\	O_Vyp					VO_Zap	>			VO_Vyp			
3	ZkratUzel_idx	 ZkratUzel - PocVyplychV 												N1205 -	VN1206 -	Uf	- I_z' -	P_zT ·	lč_zT 👻	Uf 🔹	1_z' ~	P_zT 👻	lč_z -
		1941	VN1209	6848	28	27	31	39	21	0	363	353	399	503	272	23	77	1602	70	166	996	108455	654
		1962	VN1210	71	69	4943	45	80	40	359	340	0	258	444	183	81	73	3795	47	181	455	47250	260
		1986	VN1210	69	67	4795	43	77	39	355	337	0	256	440	182	86	71	3882	45	182	451	47120	259
		1987	VN1208	22	6980	20	16	19	15	378	0	348	268	319	256	21	6	32	2	190	100	13311	70
		1913	VN1207	92	70	56	5144	110	77	411	268	263	0	509	281	60	727	8339	139	112	4689	-2693	-24
		1983	VN1209	4590	100	91	93	124	82	0	364	352	394	500	276	84	186	11245	133	166	968	106265	639
1		1985	VN1210	31	29	6804	22	39	16	367	347	0	266	456	186	25	40	834	34	180	470	47836	266
1		1982	VN1206	75	76	46	72	98	5114	295	268	193	290	445	0	71	152	6483	91	171	1364	95028	557
1)	1905	VN1210	43	42	6552	32	54	22	369	349	0	268	459	187	31	59	1416	46	180	474	47911	267
1		1906	VN1208	87	5850	77	58	73	60	391	0	359	277	331	265	50	24	681	14	188	104	13798	73
1	1	1911	VN1210	37	35	6687	27	47	19	368	348	0	267	457	187	27	48	1082	40	180	472	47877	266
1	1	1912	VN1209	6382	51	50	55	72	40	0	367	357	404	510	276	33	150	4101	125	165	1012	109059	662
1	k.	1915	VN1207	44	28	28	6646	55	30	411	265	263	0	509	276	21	516	5156	246	110	4786	-8248	-75
1	i i	1916	VN1210	76	75	5509	48	87	44	370	350	0	266	458	189	61	81	3353	55	179	470	47679	266
1	;	1917	VN1207	92	68	56	5279	110	75	413	269	264	0	511	282	55	747	8295	150	111	4720	-4600	-41

Obr. 6 Karta s výsledky všech výpočtů

Kromě výsledů se při spuštění výpočtu vykreslí graf s topologickou přípravou (ukázka na Obr. 7). Z grafu jsou patrné jednotlivé trafostanice a jejich příslušnost k jednotlivým vývodům z rozvodny 22 kV.

Obr. 7 Topologická příprava

Licenční podmínky:

Program je dostupný pouze na základě poskytnuté licence koncovému uživateli.

Pro více informací kontaktujte pověřenou osobu:

doc. Ing. David Topolánek, Ph.D.

e-mail: topolanek@vut.cz

tel.: +420 54114 6230