

CEITEC Nano user process #2

Levitating antenna on glass for spin wave exitation and detection

Jakub Holobrádek and Marek Vaňatka

Introduction

This document describes the fabrication of reusable and positionable microwave antenna on glass suitable for spin-wave excitation and detection. Nowadays spectroscopic techniques for the investigation of magnetization dynamics in micro and nanostructures typically use microwave antennas directly fabricated on top of the sample by electron-beam lithography (EBL). However, this approach requires often multistep EBL processes and special antenna for each structure. In contrary our approach is reusable, and antenna can be landed on multiple structures on multiple samples. Since we use flexible transparent glass as the antenna substrate, optical spectroscopy techniques like microfocused Brillouin-light-scattering microscopy (µBLS), time-resolved magneto-optical Kerr-effect measurements, or optically detected magnetic resonance measurements can be carried out at visible laser wavelengths.

Levitating antenna device with excitation part fabricated on a glass cantilever landed on a sample with magnetic nanostructures. Example of Brillouin light scattering experiment.

Antenna design and description

The process was tested for fabrication of 7 antennas on glass coverslips with dimensions of $(24 \times 60) \text{ mm}^2$ and thickness #0, corresponding to $(80 - 130) \mu \text{m}$. The fabrication process is multi-step. In the first step, the EBL exposure of the design is executed. In the second step, the deposition of Ti/Cu/Au stack is done followed by lift-off process. In the third step, the glass is sliced with respect to the individual antennas and glued to the printed circuit board. In the fourth step, the antenna is electrically connected to the circuit board by wirebonding. Finally, the antenna is completed by soldering the SMA connector.

Panel (a) side view and panel (b) top view of the completed antenna with designation of its components. Reprinted from [Hache20]. (c) GDS design of the antenna for EBL.

Process outline

STEP	PROCESS	Detail	Image from fabrication
1–10	Preparation and electron beam lithography	Typical layout of (650 × 200) µm² working areas for electron lithography	
11- 13	Deposition and lift-off process	(24 × 60) mm² glass coverslip with 7 antennas	
14	SEM inspection	SEM images – overview of whole glass and detail of the excitation stripline	BEM HV: 20 kV WD: 70 /r mm BEM HAG: 5 x Date(mody): Contart BEM HAG: 5 x Date(mody): Contart
15-	Slicing	Single atenna after slicing	

Fabrication process

Substrate selection

As a substrate we recommended to use glass coverslips for optical microscopes with dimensions of (24×60) mm² and thickness #0. This solution is cheap and provides enough flexibility of glass cantilever during landing to the sample.

Lithography

STEP	PROCESS			
1	Substrate cleaning5 minutes ultrasound in acetone (green glass) 5 minutes ultrasound in IPA (green glass) Drying by compressed nitrogen			
2	Substrate pretreatment	HMDS (HexaMethylDiSilazane) athmosphere for better resist adhesion (<mark>SUSS-WETBENCH</mark>) 110°C, 2 cycles		
3	Spin coating of resist	PMMA resist AR–P 672.08 (<mark>SUSS–WETBENCH</mark>) 3000 rpm ~ 1 μm thickness		
4	Softbake	150°C for 90s hot plate		
5	Spin coating of conductive layer	n coating of PMMA Electra 92 AR-PC 5090.02 (SUSS-WETBENCH) Auctive layer 4000 rpm		
6	Softbake	100°C for 90s hot plate		
7	20 kV; 10.5 nA; write field (650 × 200) μm² (RAITH)Electron exposureArea dose 200 μC, step size 50 nmFor thinner stripe lines (~100 nm) we use 10 nm step size and area dose 135 μC			

		For auxiliary cutting lines we use Fix beam moving stage approach (FBMS)	
8	Water rinsing and drying	20 s water rinsing to remove electra Drying by compressed nitrogen	
9	Development	120 s in MIBK AR 600–56 (green glass) 30 s in IPA (stopper) (green glass)	
10	Optical inspection	Using optical microscope <mark>ZEISS-A2</mark> To check the exposure and development process	
11	RIE etching	15 s the recipe for PMMA etching (<mark>RIE-FLUORINE</mark>) 50 W, 20 sccm O ₂ to remove resist residues in exposed areas	
12	Deposition by e- beam evaporation	Ti(5 nm)/Cu(500 nm)/Au(20 nm) (<mark>EVAPORATOR</mark>) For thinner stripe lines we use 180 nm of Cu for better aspect ratio	
13	Lift-off process	2 hours or more in acetone bath (red glass) 5 s of ultrasound 30 s in IPA (stopper) (red glass)	
14	Optical/SEM inspection	For optical inspection we use optical microscope <mark>ZEISS–A2</mark> For SEM inspection we use SEM Tescan <mark>LYRA3</mark> Low electron current and voltage are needed to prevent sample charging	
-	RIE etching of glass	Optional step for etching of the surrounding glass to be able to have better excitation efficiency due to closer proximity to the sample CHF ₃ 50 sccm, Ar 30 sccm, O ₂ 3 sccm, 200 W, DC Bias 250 V, etching rate ca. 7.27 Å/s	

Packaging & testing

15		Arbitrary PMMA resist (SUSS-WETBENCH) as protective layer on	
	Preparation for	top of antennas	
	slicing	150°C for 90 s hot plate	
		Placement of the protective foil to the bottom side of the glass	
16	Slicing of the glass	Diamond saw dicer (DICING-SAW)	
		To have antennas on individual glass pieces	
17	Removing of the foil and protecting resist	Removing the foil by hot air gun from soldering station Acetone bath to remove PMMA resist (red glass)	
18	Sticking to the PCB	Using standard cyanocrylate glue	
19	Wire bonding	Wirebonding antenna pads to the PCB using 25 μm thick and	
		250 μm wide ribbon wires (WIRE-BONDER)	

		Stage temperature 120 °C
		Program 68 Marek_Ribbon (1 st bond US 1900 time 200 ms force
		650 mN, 2 nd bond US 2000 time 300 ms, force 1400 mN)
20	Soldering the SMA connector	Using $Sn_{63}Pb_{37}$ solder paste QY-309A and hot air gun from soldering station
21	Measuring of the resistance	Final check by measuring the resistance of completed antenna device, typical resistance for 100-nm-wide antenna is in the range of 5-50 ohm, depending on its exact shape.

References

Related publications

[Hache20] HACHE, T., et al. Freestanding positionable microwave-antenna device for magneto-optical spectroscopy experiments. *Physical Review Applied*, 2020, 13.5: 054009.

Used chemicals

- PMMA resist AR-P 672.08 <u>https://www.allresist.com/portfolio-item/e-beam-</u> resist-ar-p-672-series/
- PMMA Electra 92 AR-PC 5090.02 <u>https://www.allresist.com/portfolio-</u> item/protective-coating-ar-pc-5090-02-electra-92/
- MIBK AR 600-56 https://www.allresist.com/portfolio-item/developer-ar-600-56/

Equipment (CEITEC Nano links)

- SUSS-WETBENCH <u>https://nano.ceitec.cz/lithographic-wetbench-for-coating-suss-</u> wetbench/
- RAITH <u>https://nano.ceitec.cz/e-beam-writer-raith150-two-raith/</u>
- EVAPORATOR <u>https://nano.ceitec.cz/electron-beam-evaporator-bestec-</u> evaporator/
- ZEISS-A2 microscope <u>https://nano.ceitec.cz/optical-microscope-zeiss-axio-</u> imager-a2-zeiss-a2/
- **RIE-FLUORINE** <u>https://nano.ceitec.cz/rie-by-f-chemistry-and-pecvd-of-hard-c-based-films-oxford-instruments-plasma-technology-plasmapro-80-rie-fluorine/</u>
- LYRA <u>https://nano.ceitec.cz/focused-ion-beam-scanning-electron-microscope-</u> tescan-lyra3-lyra/
- DICING SAW <u>https://nano.ceitec.cz/semiautomatic-dicing-saw-esec-8003-dicing-</u>
 <u>saw/</u>
- WIREBONDER <u>https://nano.ceitec.cz/wire-bonder-tpt-hb-16-wire-bonder/</u>

Gallery of images

