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ABSTRACT

Audio synchronization aims at aligning multiple record-
ings of the same piece of music. Traditional synchroniza-
tion approaches are often based on dynamic time warping
using chroma features as an input representation. Previ-
ous work has shown how one can integrate onset cues into
this pipeline for improving the alignment’s temporal ac-
curacy. Furthermore, recent work based on deep neural
networks has led to significant improvements for learning
onset, beat, and downbeat activation functions. However,
for music with soft onsets and abrupt tempo changes, these
functions may be unreliable, leading to unstable results.
As the main contribution of this paper, we introduce a
combined approach that integrates activation functions into
the synchronization pipeline. We show that this approach
improves the temporal accuracy thanks to the activation
cues while inheriting the robustness of the traditional syn-
chronization approach. Conducting experiments based on
string quartet recordings, we evaluate our combined ap-
proach where we transfer measure annotations from a ref-
erence recording to a target recording.

1. INTRODUCTION

In music information retrieval (MIR), synchronization
techniques are essential for several applications including
score following [1], content-based retrieval [2], automatic
accompaniment [3], or performance analysis [4, 5]. Be-
side these applications, music synchronization has a great
potential to simplify data augmentation, data annotation,
and model evaluation. For example, one can use music
synchronization to obtain additional training data for deep
learning methods semi-automatically by transferring anno-
tations from one recording to another. Furthermore, using
music synchronization, one can transfer measure positions
between audio recordings for navigation purposes, struc-
tural segmentation, and cross-version analysis [6, 7].
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While traditional synchronization approaches typically
rely on alignment algorithms such as dynamic time warp-
ing (DTW) and conventional chroma features used as the
input representation [8, 9], the integration of additional
onset-related information has proven to enhance the syn-
chronization accuracy [10–12]. Inspired by the com-
bined approach from [12], where decaying locally adap-
tive chroma onset (DLNCO) features are integrated into
the synchronization pipeline, we incorporate in this paper
onset, beat, and downbeat activation functions to obtain a
better temporal accuracy while retaining the robustness of
the original chroma-based synchronization approach (see
Figure 1 for an illustration of the overall approach). The
addition of activation functions results in a grid-like struc-
ture in the cost matrix, which guides the alignment through
activation cues that point to note onsets or other musical
events.

While the integration of DLNCO and spectral flux (SF)
have led to substantial improvement of synchronization re-
sults [12,13], the detection of soft onsets constitutes a chal-
lenging problem due to their long attack phase with a slow
rise in energy. To adapt the onset detection task to mu-
sic recordings which comprise soft onsets and temporal–
spectral modulations such as vibrato (e.g., string music),
Böck and Widmer [14] introduced the superflux (SF?)
feature. Furthermore, deep learning (DL) methods such
as bidirectional long short-term memory (BLSTM) net-
works [15] and convolutional neural networks (CNN) [16]
have led to significant improvements compared to conven-
tional onset detectors.

As the main contribution of this paper, we show how
one can integrate conventional and DL-based activation
functions into the synchronization pipeline. Different from
the approach in [12], we do not apply any hard peak pick-
ing but directly use onset-related activation cues. Further-
more, we go beyond onsets by integrating activation func-
tions that indicate onset, beat, and downbeat positions. In
particular for music with noisy and unreliable onset cues,
we show that beat and downbeat cues are more reliable and
better suited for improving the synchronization accuracy.
For extracting beat and downbeat activation functions, we
build on recent work by Böck et al. [17, 18], using recur-
rent neural network (RNN) models for extracting beat and
downbeat activation functions.
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Figure 1: Overview of the combined approach integrating activation functions into a conventional chroma-based synchro-
nization pipeline. The cost matrix computed with activation cues (blue) yields a grid-like structure to guide the alignment
of musical events, whereas the chroma-based cost matrix (black) accounts for the robustness of the overall synchronization.
The resulting warping path (red) is used for transferring measure positions.

To better understand our improved synchronization
pipeline, we compare several synchronization approaches
where we transfer measure annotations from a reference
recording to a target recording, similar to [19]. In particu-
lar, we conduct systematic experiments based on three ver-
sions of the String Quartet No. 12 in F major, Op. 96, com-
posed by Antonín Dvořák. As string music generally com-
prises vibrato, tremolo, rubato, and abrupt tempo changes,
which increase the musical complexity, the synchroniza-
tion of string quartets is a challenging scenario. We show
that integrating DL-based activation functions significantly
improves the temporal accuracy while retaining the robust-
ness of chroma features.

The remainder of the paper is organized as follows.
In Section 2, we introduce our combined synchronization
approach, explore conventional and DL-based activation
cues, and show how to integrate activation functions into
the synchronization pipeline. In Section 3, we present our
dataset, the measure transfer between string quartet record-
ings as our application scenario, and report on our system-
atic experiments and empirical results. Finally, we con-
clude in Section 4 with prospects on future work.

2. COMBINED SYNCHRONIZATION APPROACH

In this section, we show how activation functions can be
integrated into the synchronization pipeline to enhance the
temporal accuracy of traditional chroma-based synchro-
nization approaches. Here, we regard the activation func-
tion as a function that yields a value between 0 and 1. Each
entry in the function indicates the likelihood of a certain
musical event, e.g., onsets, beats, or downbeats, for each
frame (time position). In the ideal case, the value of the
activation function is one when an event occurs and zero
otherwise. Note that we do not apply any peak picking in
our approach, but only use the activation functions as tem-
poral cues. This is opposed to onset detection or beat track-
ing where one needs to apply a temporal decoding method

to obtain an explicit representation of onset and beat posi-
tions from the activation functions.

In the following, we first explore conventional onset-
based activation functions in Section 2.1. Then, in Sec-
tion 2.2, we investigate DL-based onset, beat and down-
beat detectors. Finally, in Section 2.3, we explain how
we integrate activation functions into the synchronization
pipeline.

2.1 Conventional Onset-Based Activation Functions

2.1.1 DLNCO

DLNCO features are 12-dimensional pitch-based onset
features, which combine the robustness of the chroma fea-
tures with the accuracy of one-dimensional onset features.
To compute DLNCO features, we first apply a pitch-wise
audio decomposition. Then, we derive pitch-wise onset
cues by considering points of energy increase (see Fig-
ure 2c for an illustration). DLNCO features are particu-
larly suited for the music with clear note attacks such as
piano music. For further details about the computation of
DLNCO features, we refer to [12].

2.1.2 SF

Spectral flux (SF) captures the changes in the spectral con-
tent of an audio signal, and is widely used for onset de-
tection [9, 20]. For the computation of SF, we apply a
first-order differentiator on the log-compressed magnitude
spectrogram of a music recording. Half-wave rectification
follows the differentiation to keep only the positive differ-
ences between subsequent frames. As a final step, we sub-
tract a local average function to enhance the peak structure
(see Figure 2d).

2.1.3 SF?

Superflux (SF?) is a modified version of SF for detect-
ing soft onsets [14]. These features are suitable for music
recordings with vibrato, such as strings quartets. Similar to



the SF algorithm, SF? also relies on the detection of posi-
tive changes in the energy over time. However, it includes
a trajectory-tracking stage through maximum filtering, in-
stead of simply calculating the difference between spectral
bins over time. Trajectory tracking helps to suppress spu-
rious spectral peaks, especially arising from vibrato. For
further information, we refer to [14] (see also Figure 2e).

2.2 DL-Based Activation Functions

2.2.1 CNN Onset Detector

Schlüter and Böck [16] approach the onset detection task
as a computer vision problem, where magnitude spectro-
grams of the audio recordings are used as the input to
a CNN. Onsets are often characterized by rapid transient
changes in the spectrum, resulting in sharp edges that are
clearly visible in a spectrogram. Using convolutional ker-
nels, one can easily detect these sharp edges of onsets.
Similar to SF-based methods, the proposed CNN model
computes spectro–temporal differences and captures per-
cussive and pitched onsets. The resulting activation func-
tion is referred to as DL-O (see Figure 2f for an example).

2.2.2 RNN Beat Detector

In the case of unreliable and noisy onset cues, using beat
activation functions constitutes a more feasible solution to
improve the temporal alignment. To compute such acti-
vation functions, we use the BLSTM model by Böck and
Schedl [17] for framewise beat detection. BLSTMs can
effectively model the temporal context of the data and is
therefore suitable for beat tracking. In the proposed ap-
proach, magnitude spectrograms computed with three dif-
ferent window lengths, and their first order differences are
used as the input to the network. The network outputs en-
code the likelihoods of beat positions, as illustrated by Fig-
ure 2g. In our experiments, the resulting beat activation
functions are denoted as DL-B.

2.2.3 RNN Downbeat Detector

Böck et. al [18] present an RNN model to jointly detect
beat and downbeats. Like the previously mentioned onset
and beat detectors, this model also operates on magnitude
spectrograms. The downbeat detector uses an RNN similar
to the proposed network in [17] to model beats and down-
beats. In our experiments, we only use the probability of
downbeats as the activation cues, which we denote as DL-D
(see Figure 2h for an illustration).

2.3 Combined Synchronization with Activation
Functions

To find the optimal alignment between two feature se-
quences X := (x1, . . . , xN ) and Y := (y1, . . . , yM ),
where n ∈ {1, . . . , N} and m ∈ {1, . . . ,M}, we rely on
DTW. By comparing each pair of elements in the feature
sequences, we obtain a cost matrix C(n,m) := c(xn, ym)
of sizeN×M , where c defines a local cost measure. Then,
an optimal warping path is determined via dynamic pro-
gramming. We refer to [9] for a detailed account on DTW
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Figure 2: Chroma features and activation functions com-
puted for an excerpt of the String Quartet No. 12 in F ma-
jor, Op. 96 (first movement) composed by Antonín Dvořák,
performed by the Borromeo Ensemble. Activation func-
tions are shown in blue and ground-truth measure positions
in red. (a) Sheet music representation of the measures
11–13. (b) Chroma (c) DLNCO (d) SF (e) SF? (f) On-
sets (DL-O) (g) Beats (DL-B) (h) Downbeats (DL-D)
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Figure 3: Excerpts from cost matrices and corresponding
warping paths computed with DTW (a) / (b): CCHROMA,
(c) / (d): CACT, (e) / (f): αCCHROMA + (1 − α)CACT,
with α = 0.5.

for music synchronization. For efficient implementations,
we refer to [21, 22].

We now adapt the combined synchronization idea by
Ewert et al. [12], integrating conventional onset-based
and DL-based activation functions into the synchroniza-
tion pipeline. Building upon this approach, we introduce
three cost matrices. The first one CCHROMA is a cost matrix
based on the normalized chroma features and the cosine
distance, see Figure 3a for an example. The second cost
matrix CACT is computed using the Euclidean distance and
conventional onset-based or DL-based activation functions
as introduced in Section 2.1 and Section 2.2, respectively.
Note that CACT exhibits grid-like structures. The visible
horizontal and vertical grid lines of high cost (shown in
black) correspond to high values in the first and second
function, respectively. Only when a horizontal grid line
intersects with a vertical grid line, the cost matrix has a
small cost value at this intersection point (and also in a
small neighborhood). This is where a high activation value
of the first sequence meets another high activation value
of the second sequence. In other words, these intersec-
tion cells encode a pair of time positions where two musi-
cal events (onsets, beats, downbeats) meet (see Figure 3c).
Furthermore, the sections in the activation functions which
have low values lead to homogeneous, zero-cost regions in
the cost matrix CACT. The third matrix is the sum of two
cost matrices

C = αCCHROMA + (1− α)CACT, (1)

where α ∈ [0, 1] is a weighting parameter. The sum C
accounts for both harmonic or melodic information of the
representations via CCHROMA and additional activation cues
via CACT. Figure 3e illustrates an example using α = 0.5.

Comparing the resulting optimal warping paths using
CCHROMA in Figure 3b, CACT in Figure 3d, and C in Fig-
ure 3f, we can observe an enhancement of the temporal
alignment. The inclusion of DL-based onset, beat, and
downbeat cues leads to an improvement of the warping
path guided by grid structure’s intersection points. Note
that CACT remains zero in the regions without any novel
events, and the overall alignment of C is mainly guided by
CCHROMA.

3. EXPERIMENTS

3.1 Dataset

The genre of string quartet is composed for a small
conductor-less ensemble, which consists of two violins, a
viola and a violoncello. In our experiments, we use three
versions (performances) of the String Quartet No. 12 in
F major, Op. 96, by Antonín Dvořák, which comprises
four movements. To give an insight of the musical prop-
erties of the string quartet, Table 1 provides the number of
measures, time signature, and global tempo for each move-
ment based on the recordings in our dataset. Note that the
global tempo does not reflect any local tempo deviations.
Its purpose is to indicate at what pace (average of three
performances) a given movement is performed. In each
recording, the repetitions are played as notated in the sheet
music, thus ensuring structural consistency.

Movement #Measures Time signature Global Tempo
M1 239 4/4 100
M2 97 6/8 84
M3 244 3/4 185
M4 382 2/4 140

Table 1: Overview of four movements, including number
of measures, time signature, and global tempo in BPM for
each movement.

For each recording (in the following referred to as ver-
sion), we manually annotated the measure positions. In
Table 2, the name of the version, the identifier, the record-
ing year for each version, and the duration of each move-
ment are listed. Note that each of the three performances
last around 26 minutes in total, whereas durations of the
movements may vary across different versions.

Duration (seconds)
Version ID Year M1 M2 M3 M4 Σ

Alban Berg A 1991 599 410 238 323 1570
Borromeo B 2012 540 465 228 338 1571
Prague P 1973 584 424 250 322 1580

Σ 1723 1299 716 983 4721

Table 2: Version, identifier, recording year, and duration
of each movement.



DL-B & DBN DL-D & DBN

P R F P R F

M1 0.194 0.806 0.312 0.648 0.586 0.612
M2 0.138 0.820 0.236 0.657 0.643 0.650
M3 0.327 0.539 0.407 0.524 0.224 0.314
M4 0.517 0.908 0.655 0.876 0.647 0.742
φ 0.294 0.768 0.403 0.676 0.525 0.580

Table 3: Precision (P), Recall (R), and F-measure (F) based
on methods DL-B for beat, and DL-D for downbeat tracking
with DBN post-processing, evaluated on reference mea-
sure annotations and tolerance τ = 70 ms. φ denotes the
average accuracy over four movements M1, M2, M3, and M4.

3.2 Beat and Downbeat Tracking

As a baseline, we first introduce how DL-based beat [17]
and downbeat trackers [18] perform in the detection of
measure positions, where a dynamic Bayesian network
(DBN) was used for post-processing (peak picking). Ta-
ble 3 provides precision, recall, and F-measure values us-
ing a tolerance of τ = 70 ms. Here, each entry indicates
the mean value over different performances. Due to the
higher density of beats, the beat tracker reveals a higher
recall than the downbeat tracker for each movement, lead-
ing to a low precision and F-measure. Furthermore, each
movement has a different time signature, which results in
a different number of beats per measure and needs to be
taken into consideration as prior information for the DBN.

3.3 Synchronization Results

In this section, we describe our experimental setting and
evaluate audio alignments obtained using chroma features
and different activation functions. In our experiments,
we use the resulting warping path to transfer the mea-
sure positions annotated for the reference recording to the
target recording. Given two versions of the same music
piece with the time-continuous axes [0, T1] and [0, T2], the
monotonous alignment can be modeled as a function

A : [0, T1]→ [0, T2].

The pairwise alignment error εP for a given alignment of
two recording is specified as the mean over the values

εP (g1) := |A(g1)− g2|,

where (g1, g2) ∈ [0, T1]× [0, T2] denotes the ground-truth
pairs of measure annotations. As an evaluation metric, we
use accuracy, which is defined as the proportion of cor-
rectly transferred measure positions with a pairwise align-
ment error below a given tolerance τ [23].

In the following, we use eight different synchronization
approaches based on conventional chroma features and the
combination of chroma features with DLNCO features,
SF, SF?, DL-based onsets (DL-O), DL-based beats (DL-B),
DL-based downbeats (DL-D), and finally a 3-dimensional
stacked activation function combining DL-based onsets,
beats, and downbeats (DL-OBD) (see Section 2 for a detailed
overview of activation functions). We use a feature rate of

τ = 30 ms τ = 70 ms τ = 100 ms
CHROMA DL-OBD CHROMA DL-OBD CHROMA DL-OBD

M1 0.408 0.576 0.723 0.813 0.817 0.877
M2 0.396 0.600 0.694 0.842 0.789 0.917
M3 0.528 0.655 0.827 0.912 0.910 0.956
M4 0.485 0.662 0.773 0.884 0.861 0.930
φ 0.454 0.624 0.754 0.863 0.844 0.920

Table 4: Accuracy values based on chroma and DL-OBD for
different tolerances τ = 30, 70, 100 ms. φ denotes the
average accuracy over four movements M1, M2, M3, and M4.

50 Hz for the computation of chroma, and conventional
onset features. To generate DL-based features, we use the
madmom [24] library, for which we utilize the default set-
ting 100 Hz as the feature rate, and downsample generated
features to 50 Hz (after low-pass filtering).

3.3.1 Overall Result

To get a first impression of the alignment behavior of dif-
ferent approaches, Figure 4 illustrates an overview of av-
erage accuracy values (averaged over all movements and
all pairs of different performances) and for different toler-
ances τ . Obviously, one can observe that the synchroniza-
tion accuracy improves with increasing threshold. For ex-
ample, using τ = 30 ms, the average synchronization ac-
curacy is 0.454 when using only chroma features, and the
accuracy increases to 0.624 when integrating the DL-OBD
activation cues. This is a substantial improvement.

Next, we focus on the comparison of different ap-
proaches for τ = 70 ms, which is a common toler-
ance value for the evaluation of music synchronization
and beat tracking procedures. The inclusion of DLNCO
slightly worsens the alignment since DLNCO features are
not suited for soft onsets as occuring in string music. How-
ever, the integration of SF and SF? into the synchronization
pipeline results in a better accuracy. Among conventional
onset features, SF? shows a better performance than SF
and DLNCO, owing to the fact that SF? features account
for the detection of soft onsets and are therefore more suit-
able for string music. Furthermore, using DL-based meth-
ods leads to a better synchronization result compared to the
conventional methods. Note that the integration of DL-OBD,
which combines DL-O, DL-B, DL-D, reveals the best accu-
racy among all the synchronization approaches. It is also
interesting to observe that DL-B, which is based on beats, is
the second-best among DL-based approaches and leads to
better accuracy values than downbeat-based DL-D, whereas
DL-O reveals the lowest accuracy among the DL-based ap-
proaches.

In general, similar trends can be observed when using
other thresholds. Using τ = 500 ms, all synchronization
approaches yield nearly perfect results.

3.3.2 Dependency on Movement

In our next experiment, we analyze the synchronization
accuracy across different movements. Table 4 provides
a comparison of alignment results based on the conven-
tional chroma-based approach and our proposed combined



Figure 4: Comparison of the average accuracy values for different synchronization approaches and different threshold
parameters τ . The accuracy denotes the proportion of correctly transferred measure positions having an error below a given
tolerance τ .

τ = 30 ms τ = 70 ms τ = 100 ms
CHROMA DL-OBD CHROMA DL-OBD CHROMA DL-OBD

AP 0.494 0.636 0.774 0.864 0.839 0.928
PA 0.500 0.632 0.778 0.864 0.847 0.928
AB 0.434 0.576 0.722 0.849 0.830 0.907
BA 0.451 0.580 0.743 0.863 0.857 0.920
BP 0.429 0.662 0.762 0.870 0.850 0.919
PB 0.417 0.657 0.746 0.866 0.843 0.915
φ 0.454 0.624 0.754 0.863 0.844 0.920

Table 5: Accuracy based on chroma and DL-OBD across
different synchronization pairs, for different tolerances τ .
The first column indicates the pair of versions (see Sec-
tion 3.1).

method DL-OBD per movement for different tolerances τ .
For example, considering the first movement and τ =
70 ms, the accuracy of 0.723 for the chroma-based ap-
proach increases to 0.813 when using our combine ap-
proach DL-OBD. One can observe a similar trend across
different movements for different tolerance parameters τ .
The second movement tends to yield the lowest accuracy
values when using only chroma features, while the integra-
tion of DL-OBD significantly improves the synchronization
accuracy from 0.694 to 0.842 for the second movement.
One reason may be that the beat and downbeat informa-
tion leads to a significant improvement in synchronization
accuracy of slower sections.

3.3.3 Dependency on Performance

As a final experiment, we provide a comparison of the ac-
curacy values across different performances for different
tolerance parameters τ in Table 5. In general, using a com-
bination of chroma and activation functions significantly
improves the accuracy for all the synchronization pairs and
tolerances. For τ = 70 ms, chroma reveals an average ac-
curacy of 0.774 for AP and DL-OBD improves the accuracy
to 0.864. Remarkably, across other synchronization pairs
the synchronization accuracy values are similar. Nonethe-

less, deviations may occur due to soft onsets, slight incon-
sistencies in ground-truth annotations, and linear interpo-
lation while measure transfer. Note that the synchroniza-
tion accuracy rather depends on the musical complexity
and structure, e.g., across different movements, but not on
the performances.

4. CONCLUSION

In this article, we investigated the incorporation of con-
ventional onset features, and activation cues obtained by
recent DL-based onset, beat, and downbeat detectors to a
conventional chroma-based synchronization pipeline. We
showed that the integration of a combined version of on-
set, beat, and downbeat activation functions significantly
improves the synchronization accuracy while maintaining
the robustness of the original chroma-based synchroniza-
tion approach. For the future, we will incorporate other
features, which capture smoother note transitions for string
quartets. We also aim at extending our string quartet
dataset and evaluating the synchronization on beat-level
annotations. Moreover, we will further investigate the role
of the hyperparameter α (see Equation 1), which can be
optimized as a time-dependent parameter.
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