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Abstract—Model predictive control is a popular research topic
in the field of motor control. Its direct way of implementing
constraints and nonlinearities makes MPC a potential alternative
to standard motor control approaches. On the other hand, the
control algorithm’s dependency on the motor model’s precision
can make it tricky. Especially when the parameters of the
controlled machine change over time. This paper presents a
possible solution to a stated problem based on the model
adaptivity. Firstly, the connection between experimental data and
the parameters change is analyzed. Then, adaptivity schemes are
presented. After that, the simulation experiment evaluates the
performance of the proposed schemes.

Index Terms—Predictive control, Nonlinear control, Adap-
tivity, Motor control, Permanent Magnet Synchronous Motor,
Parameter mismatch

I. INTRODUCTION

The industrial application of Permanent Magnet Syn-
chronous Motors (PMSM) is becoming more prevalent thanks
to the motor’s high efficiency, precision, and overall per-
formance. On the other hand, their nonlinear behavior can
be challenging to handle by the control based on linear
theory, such as PI control. Therefore, various modern complex
methods of control are being applied to the problem, one of
which is Model Predictive Control (MPC).
MPC offers a straightforward approach to problem definition
and simple implementation of constraints and nonlinearities
[1], [2]. On the other hand, it still poses an implementation
challenge due to its computational demands, so the researchers
focus on developing the methods that reduce them [3], [4]. The
other challenge of MPC is its dependency on the model of the
controlled plant.
The predictive controller uses measured data and a model of
the controlled plant to compute the future values of states. The
first thing that can affect the control algorithm’s performance
is the measurement disturbances. Standard methods, such as
observers [5], [6], can solve the problem of measurement
errors.
Even though the model of motor is usually considered time-
invariant, all parameters do not remain the same, and these

differences lead to the prediction errors [7]. Due to this param-
eter mismatch affecting the controller’s output, the methods to
increase the robustness are being developed [8]–[10].
Apart from robustness, the other common approach to mitigate
the effect of parameter mismatch is adaptivity. [11], [12] The
principle of adaptive control is to link the change of plant
parameters to the change of designed control law. In this paper,
we draw on this principle. Chosen approach only affects the
model of the controlled plant and not the cost function, which
is another essential part of MPC.
This paper analyzes the changes in motor parameters, which
are linked to motor states. We present the adaptivity functions
based on experimental data. The paper introduces two adap-
tivity schemes that update the model used in the prediction
stage in every control step to solve the parameter mismatches.
Experiments compare presented schemes with the controller
without any update.
The paper’s organization is as follows: In Section II, we
present our control problem. First, we present the general
mathematical model of PMSM in the dq-reference frame.
The description of the predictive controller follows, including
the common principle of predictive control. The final part
of Section I describes the change of parameters based on
experimental data. Section III proposes and describes two
adaptivity schemes, each focusing on different drawbacks
of adaptivity in our designed control. In Section IV, the
experiment in Matlab Simulink is performed, and the results
are presented. The experiment focused on the ability of each
other controller to track the requested value of angular speed.
Secondly, the experiment tested the ability of the controller to
keep the requested states within their limits.
Section V summarizes the paper and explains the achieved
results. Furthermore, it describes the outcomes of the presented
adaptivity schemes.



II. PRELIMINARIES

A. Plant

For the description of plant, we use the generic model of
PMSM in dq-reference frame
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where

id, iq are stator current components in dq-frame,
ud, uq are stator voltage components in dq-frame,
ωm is rotor mechanical angular speed,
Tl is load torque,
Pp is number of pole pairs,
Rs is stator winding resistance,
Ld, Lq are rotor inductance components,
ΨPM is permanent magnet flux,
J is the moment of inertia.

B. Controller

We designed the predictive controller to control the speed
of PMSM. The idea of Model Predictive Control is to use the
model of controlled plant and measured states to predict and
optimize future system behavior. The trajectory of states is
computed across a pre-defined prediction horizon. Next, the
algorithm computes the optimal control for this prediction
horizon. Finally, the control for the first prediction step is
applied to the plant. [13], [14]
For the presented adaptivity schemes we presume the typical
structure of the control algorithm consisitng of Prediction step
in which we use the model of the controlled plant to compute
the future values of the plant’s states. The second necessary
step Cost Function Evaluation assigns the value of the cost
function to a generated solution. The other steps specific to
the used optimization algorithm follow.
We apply the presented schemes to the predictive controller
working on the continuous control set. We consider the incre-
mental form of controller
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thus the control set is the set of voltage increment vectors.
In the experiments, the parameters of the model used in the
Prediction step will change according to chosen adaptivity
scheme and obtained adaptivity functions. Both are described
later in the paper.

C. Analysis of parameter change

To suppress the effect of the temperature, the measurements
were performed while the constant temperature was held.
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Fig. 1. Change of the stator resistance based on the speed of rotor.
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Fig. 2. Change of the direct part of inductance based on the current.

1) Resistance change: Measurements have shown the con-
nection between the rotor speed and the increase of stator
resistance. Figure 1 shows the dependency of the change of
stator resistance on the speed of the rotor. Based on this
information, we can state the equation used to evaluate the
stator resistance.

Rs = Rs0 + ∆Rs(ωm). (3)

2) Inductance change: We found the connection between
the change of inductances and stator current. As the current
consists of two parts, the function of change is more complex
than the function of the stator resistance. Figures 2 and 3
show the 3d plot of the dependency of the change of direct
and quadrature part of inductance on the compounds of stator
current.
Similarly to the equation (3), the change of inductances can
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Fig. 3. Change of the quadarture part of inductance based on the current.

be described by the functions

Ld = Ld0 + ∆Ld(id, iq) (4)
Lq = Lq0 + ∆Ld(id, iq). (5)

Inverse values of inductances are present in the model 1.
Therefore, it is convenient to compute them beforehand for
better performance of the control algorithm.

III. PROPOSED ADAPTIVITY SCHEMES

In this paper, we propose two adaptivity schemes, each
representing some trade-off between precision and execution
speed. The second mentioned is essential in the case of motor
control due to the short sampling times necessary for the
correct performance. Figures showing the presenting schemes
consist of blocks that represent pre-defined functions:
Measurement represents obtaining the values of states x, their
filtration, and manipulation, e.g., Clarke and Park transforma-
tion.
Adaptivity Algorithm is responsible for calculating the param-
eters P of the model. This block can contain any parameter
estimation method, e.g., [15]–[17]. For the demonstration pur-
pose, this block evaluates the functions of parameter change
obtained and described before.
Predictive Controller block computes the optimal control
value. The algorithm uses measured states x and calculated
parameters P for the prediction.
Control Value Application block ensures the correct transfer
of control value to plant, e.g., inverse transformations.

A. In-line scheme

The first scheme is the In-line scheme. Figure 4 shows the
structure of the scheme. The measured data are used imme-
diately for the adaptivity algorithm, therefore the parameters
P used for the prediction are given by the adaptivity function
fa() and measured states xk

Pk = fa(xk). (6)
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Fig. 4. In-line scheme
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Fig. 5. Parallel scheme

As the Adaptivity Algorithm block is executed before the pre-
dictive control, the time requested by the Adaptivity Algorithm
Ta prolongs the time necessary to compute the control value
Tc.

B. Parallel scheme

Figure 5 shows the structure of the second presented
scheme. As the scheme suggests, the algorithm is executed
parallelly to the control algorithm. The parameters P used for
the prediction are given by the adaptivity function fa() and
states measured in the previous control step

Pk = fa(xk−1). (7)

This delay can affect the precision of the prediction. On the
other hand, assuming Ta < Tc, the adaptivity algorithm does
not affect the execution time.



TABLE I
PARAMETERS OF PMSM

Parameter Value
Rs0 22.84 mΩ
Ld0 0.48 mH
Lq0 0.78 mH
ΨPM 163.8 mWb
Pp 4
J 11.25 × 10−3 kg m2

UDC 500 V
IR 310 A

TABLE II
PARAMETERS OF THE CONTROLLER

Parameter Value
wST 1
wid 0.001
wid 0.005
wI 100
wU 100
N 4
Ts 100 µs

IV. SIMULATION RESULTS

We tested the presented schemes in PIL co-simulation con-
sisting of a control algorithm implemented on Jetson Xavier
and the model of PMSM in Simscape. Table 1 shows the
parameters of PMSM.
For the control, we used the algorithm presented in [18]. The
Table II shows the parameters of the control algorithm and the
table III shows the Differential Evolution algorithm parameters
used to solve the optimization problem.
We measured the time necessary to execute control and
adaptivity algorithms properly. The average execution time
of control algorithm Tc was 50 µs. The time required by
the adaptivity algorithm Ta was on average 15 µs. Thus, as
mentioned before, the adaptivity algorithm did not affect the
time necessary to calculate the control value properly.
The reference signal consisted of the initial ramp raising to the
value of 900 rad s−1. Then, the constant value followed until
the angular speed of the rotor settled. Next, the decreasing
ramp followed, which tested, whether the ability of the con-
troller to ensure the tracking of such type of request changed
or not. Finally, a constant value of zero was requested. We
performed the experiment without any load torque.

A. Angular speed

Figure 6 shows the results achieved by different approaches.
The controller without any adaptivity algorithm could not
reach the requested value of angular speed. The difference
between the requested value and the result was 1 % of
the requested value. The controller ensured the tracking of
the ramp and the zero signals, similar to the other tested
approaches.

Both controllers with presented adaptivity schemes were
able to reach the requested value of 900 rad s−1, track

TABLE III
PARAMETERS OF DIFFERENTIAL EVOLUTION

Parameter Value
Number of Agents 512
Number of Generations 20
tr 0.5
s 0.6
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Fig. 6. Results of the experiment; black - reference, red - no adaptivity
scheme, blue - parallel adaptivity scheme, green - in-line adaptivity scheme.

the ramp signal and zero signal. As the figure shows, the
controller with an in-line scheme performed slightly faster.

B. Torque

An essential factor of the speed control is torque generated
by the motor. Figure 7 shows the torque generated by the motor
for each approach. Here, the slight change of motor dynamics
caused by the change of parameters led to lower maximal
torque generated by the motor controlled by the controller
without adaptivity. Lower generated torque led to a slower
rise of angular speed and caused the difference between the
requested value and the result. Similarly, when was the motor
slowing down, there was an apparent difference in generated
torque for the distinctive approach, but the consequences of
this difference were not so significant.

C. Current

The current has a direct link to the generated torque. The
crucial part about current in the motor control is to keep it
within pre-defined limits. Even though some overshoot of rated
current IR is usually allowed for a short time, we try not to
overstep this value in our implementation. Figure 8 shows the
currents in dq-frame and the limit IR. The observed current
did not overshoot the defined limit for any tested approach.
The maximal current for all approaches reached 98 % of IR.
The figure also shows similar behavior for both adaptivity
schemes. The difference occurred again in the case without
any adaptivity. As the figure shows, the controller tended to
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Fig. 7. Torque during experiment; red - no adaptivity scheme, blue - parallel
adaptivity scheme, green - in-line adaptivity scheme.
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Fig. 8. Currents in dq reference frame; red - no adaptivity scheme, blue -
parallel adaptivity scheme, green - in-line adaptivity scheme.

favor the quadrature part of the current. Missing information
about the change of inductances, which affects the reluctance
component of torque, caused this. Different values of current
led to differences in the generated torque described before.

D. Voltage

Finally, the voltage acts as an input in the model (1). As
such, it underlies constraints given by the voltage of a supply
VDC . Figure 9 shows the voltages in dq-frame and mentioned
constraint. All calculated voltages satisfied the constraint. The
controllers performed similarly with the difference, which
appeared again in the case of control without adaptivity. This
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Fig. 9. Voltages in dq-reference frame; red - no adaptivity scheme, blue -
parallel adaptivity scheme, green - in-line adaptivity scheme.

difference led to the behavior described before. Because we
consider the voltage as the controller’s output, its value is
directly connected to the precision of the model and thus is
affected by the differences.

V. CONCLUSION

Experimental data has shown that parameters of PMSM,
such as resistance and inductances, are not time-invariant. This
paper analyzed the changes and presented a possible approach
to mitigating such changes. Two adaptivity schemes were
presented. First of them, focusing on the model’s precision but
prolonging the control algorithm’s execution time. The second
one does not affect the execution time. On the other hand, the
adaptivity function does not work with actual data.
Presented schemes were compared in PIL co-simulation with
the control algorithm implemented in GPU and Simscape
model of the motor. The experiment also contained the control
without any adaptivity scheme for comparison.
The results have shown that the change in plant parameters
affects the control algorithm’s overall performance, e.g., the
controller without any adaptivity scheme could not reach the
requested value of angular speed. On the other hand, there was
no significant difference between the controller’s performance
with the In-line adaptivity scheme or the Parallel one. These
results favor the second-mentioned because its execution does
not affect the computation time, which is crucial in motor
control.
The results open new possibilities for experiments, e.g., testing
presented schemes on a real physical system affected by
outer agents will lead to a need to use more sophisticated
identification methods.
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