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Abstract: 

New type of methods allows minimising the geometrical misalignments and they are called self-

calibrating algorithms. This algorithm provides theoretically exact reconstruction when linked with the 

helical geometry, implying images without geometric distortion. CT systems applying such algorithms 

do not potentially need any additional calibration or even reference measurement. We propose a 

methodology of testing such a system with a self-calibrating algorithm and helical trajectory. 

Moreover, the length measurement error is evaluated on both spheres distance error and probing 

errors. Sphere distance errors are reaching 2/3 of the voxel size. Besides, we show the results for the 

length measurement error following the VDI/VDE 2630 guideline. The results show that the sphere 

distance errors has still a systematic error. This stems from the calibration being highly dependent on 

knowing the average voxel size with sufficient precision. The magnification is given by the self-

calibration algorithm and it is associated with the detector pixel size. Therefore, the detector pixel size 

needs to be specified with precision down to 10 nm. This is below the manufacturing tolerance of the 

detector, and therefore it needs to be measured for each detector separately. In this paper, we provide 

a statistical method for obtaining this calibration. With this calibration, we achieve an SD error of ± 

(18.63 + 2.5L/100), when imaging with a voxel size of about 15µm. In addition to that, we introduce 

the procedure to evaluate the maximal permissible error calculation on pure statistics based on the 

length measurement error. Reconstruction Discussion is focused on the stability of reconstruction and 

the results of individual errors. 

Theory: 

The proposed work employs the algorithm called auto-focus presented in Kingston et al. [1] and Varslot 

et al. [2]. They proposed a method for compensation of geometrical misalignments, which uses 

acquired data itself for calibration without the usage of any other calibration artefacts or instruments. 

Using the standard and several types of guidelines are one way of the CT measurement precision 

evaluation. Although, the researchers and CT developers are focusing on the error sources and its 

evaluation, currently, a German guideline VDI/VDE 2630 [3] part 1.3 is the only standard focusing on 

performance verification and acceptance testing of CT devices. The guideline uses reference objects 

and the evaluation of the reconstructed data. It uses two complementary types of tests which are 

similar for evaluation of CMM performance. Local P-test (probing error test) tests the performance of 

measurement significantly smaller than reconstructed volumes. Respective characteristics for P-test 

are probing error of form and probing error of size. Another important characteristic is the global E-

test. It evaluates measurements in the entire measured volume; the corresponding characteristics are 

sphere distance errors. The global error is called length measurement error (E) and it is the result of 

both sphere distance error and probing error.  Carmignato et al. [4] show that scientists design 

reference objects following the requirements of the individual CT system to set its metrological 

performance with the requirements set by [3]. 

Standard evaluation of measurement errors following VDI/VDE 2630 guideline: 



Method A suggested by VDI/VDE guideline take sphere distance errors together with probing errors 

into account and determine the global error, as a length measurement errors (𝐸) [3]. The Length 

measurement error is obtained as sphere distance error plus signed probing error of size and probing 

error of form. The calculation can be then described by the formula [3]: 

 𝐸 =  𝐿𝑘𝑎 − 𝐿𝑘𝑟 + 𝑃𝑆 + (sgn(𝐿𝑘𝑎 − 𝐿𝑘𝑟 + 𝑃𝑆))𝑃𝐹 . (1) 

where Lka is measured sphere distance, Lkr is calibrated sphere distance, Ps is probing error of size and 

Pf is probing error of form.  

In this work, we selected unidirectional method A. The sphere distance error SD and probing 

errors PS and PF are described in [4]. SD defines the difference between the displayed value of test 

length (distance between centres of two balls) Lka and calibrated length Lkr: 

 𝑆𝐷 = 𝐿𝑘𝑎 − 𝐿𝑘𝑟 . (2) 
Measurement distances between the centres of two spheres are the unidirectional 

measurement. It means that it is much less affected by some of the different error sources such as 

threshold determination and therefore, can give information about geometry influence factors 

(misalignments of system components, scale determination).  

Probing error of form is determined using a single sphere with calibrated diameter. Probing 

error of form (𝑃𝐹) is defined as the difference between the maximum (𝑅𝑚𝑎𝑥) and minimum (𝑅𝑚𝑖𝑛) 

distances from the probing points to the centre of the regression sphere: 

 𝑃Form = 𝑅𝑚𝑎𝑥 − 𝑅𝑚𝑖𝑛 . (3) 
Probing error of size is defined as the difference between the measured diameter 𝐷𝑎 and the 

calibrated diameter 𝐷𝑐  of the sphere: 

 𝑃Size = 𝐷𝑎 − 𝐷𝑐 .  (4) 
 

Proposed Maximum Permissible error characterization: 

To our best knowledge, there is no setup standard presenting an approach of MPE calculation that 

would be widely accepted and used by the manufacturers. Our presented approach uses the 

standard way of calculating SEM (Standard Error of the Mean) and extends it in a way, so it could be 

used to calculate the MPE 

In the first step, Sd is calculated according to (2). From all measured deviations at every 

distance, the maxima of absolute values are calculated. In the next step, an ordinary linear regression 

of the measured points is done. A general formulation is 𝑦 = 𝑎 ∙ 𝑥 + 𝑏. In this model, a non-zero 

slope 𝑎 indicate a magnification error, while the intercept  𝑏 represents the errors coming from all 

other processes.  

Secondly, our approach is based on the maximal values that will ensure the MPE will have 

sufficient range. The SEM of maximal values is calculated as: 
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(5) 

where 𝑛 is the number of measurements and 𝑥̅ is the arithmetic mean calculated from the maxima 

of absolute values of deviations. From this an expanded uncertainty 𝜎̅ is calculated as: 𝜎̅ = 𝑡 ∙ σ, 

where 𝑡 is the coefficient related to the Student's 𝑡-distribution corresponding to an ensemble with 



𝑛 − 2 degrees of freedom and the significance level 𝛼 = 0.01. Then the true value of mean should lie 

within the 99.9% confidence band prescribed by MPU = 𝑥̅ ± 𝜎̅.   

We get, that when accounting for the uncertainty of the complete measurement system, 

MPU should be less than 1/3 of the MPE for the actual conformity assessment. So, the MPE is 

calculated by equation (6). 

𝑀𝑃𝐸 = 3 ∙ 𝑡 ∙ 𝑆𝐸𝑀 = 3 ∙ 𝑡 ∙  √
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where t is the student's coefficient which corresponds to the degree of freedom.  

As the last step, we did an ordinary linear regression of the points received from MPE 

calculation, while taking into account the result of the previous linear regression of calculated errors. 

The regression line is then prescribed by 𝑦 = 𝑎 ∙ 𝑥 + 𝑏 + MPE , with a and b being the regression 

coefficients from the previous calculation. The whole line is then mirrored across the x-axis to reflect 

the negative values of measurement errors. The calibration standard is then prescribed by the 

regression coefficients: namely by slope ''a'' and new interception ''b'' + MPE.  

Reference objects: 

The purpose of our developed multi-ball phantom is to allow multiple length measurements in one 

CT scan. Our design allows us to measure several lengths in more than 4 spatial directions in one CT 

scan. To further reduce the influence of CT artefacts and measurement time, no more than two 

spheres overlap in the horizontal direction while acquiring the projection and so the exposure time is 

reduced. The multi-ball phantom consists of 13 ruby spheres of nominal diameter 4 mm. Ruby balls 

are glued on a polycarbonate plate 40 × 55 mm (Fig. 1). Advantage of the polycarbonate is its 

transparency for visible light which allow performing calibration using a coordinate measuring 

machine with an optical sensor. Also, we choose the polycarbonate plate due to its thermal stability 

(linear thermal expansion coefficient 65-70 10-6 /K).   

The multi-ball phantom was scanned in three different positions two times in each (Fig. 1). 

The three positions were chosen concerning the [3] and perform the sphere error calculation in all 

directions needed to evaluate the maximal error of the system. The sample object and sample 

detector distances were chosen as standard positions of the sample and detector in HeliScan analysis 

of material science samples.  

   

Figure 1: Plate with balls of nominal diameter 4 mm positioned according to the VDI/VDE guideline. 

The ball's positions allow 5 directions measurement in one scan. Multi-ball phantom positions chosen 



according to [3]. L1, L2, and L3 are three different positions, always 45° rotated. The SOD is the 

source to object distance. The SDD is the source to detector distance. The scheme corresponds to the 

top view. 

Ceramic ball of nominal diameter 10 mm and sample holder with 50 mm long carbon bar for 

off-centred scan for probing error (Fig. 2). The difference between the centre to the off-centre 

position is 13 mm. The position of the ceramic ball needs to be placed in the six different positions to 

examine the error approximately in the same volume as in the length error measurements. The 

sample holder allows off-centre scanning.  

The reference [3] refers to the measurement of the probing error of form and size. The 

ceramic ball was used to perform and calculate probing errors. The plan for the ceramic ball positions 

was that all measurement can fulfil the reconstructed volume of the multi-ball phantom (Fig. 2). 

   

Figure 2: The sample holder allows the measurement of the ceramic ball in all of the six positions 

needed according to [3]. The box allows an in- and off-axis scan. Ceramic ball phantom positions 

according to were designed to fulfil the reconstructed volume of the multi-ball phantom. P1 to P6 is 

the labelling of the ceramic ball positions. The scheme corresponds to the front view of the 

reconstructed data. 

Evaluation: 

The scans were performed with an X-ray micrococcus tube with a tungsten target and wide cone angle 

~ 160°. The high contrast detector 3072 × 3072 px with 139 µm pixel size. The exposure time was 0.7 

s with five averaging in each of the 5954 positions with 2880 projections per evolution. In all 

measurements, the utilized acceleration voltage and X-ray currents were 100 kV and 160 μA, 

respectively. The beam was filtered with 0.22 mm of stainless steel. The detector position together 

with the sample stage was placed in the current position newly each scan.  

Last but not least, we used proposed statistical method for the calculation of MPE. The MPE 

of the not calibrated system was stated as ± (10.07+ 15.6L/100). This was achieved using scans with 

voxel size of about 15µm. This accuracy will clearly depend on the largest distance in the scan between 

which there are features with the self-calibration algorithm can use to determine image quality. The 

algorithm is therefore best suited for imaging samples with lots of structure, such as foams, rock 

samples, and intricate structures. 



 

Figure 7: Sphere distances measurement errors were divided into groups according to their direction 

in reconstructed volumes.  

To enhance the statistical importance of our results, there is a need for a bigger number of 

measurements to be evaluated. Still, the slope 0.025 is describing the error in the magnitude and so 

the voxel size determination to be less than 0.04 %. This is equivalent to 1 voxel distance error across 

the horizontal field of view 
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