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Abstract. Thanks to their diversity, non-model bacteria represent an inexhausti-

ble resource for microbial biotechnology. Their utilization is only limited by our 

lack of knowledge regarding the regulation of processes they are capable to per-

form. The problem lies in non-coding regulators, for example small RNAs, that 

are not so widely studied as coding genes. One possibility to overcome this hurdle 

is to use standard RNA-Seq data, gathered primarily to study gene expression, 

for the prediction of non-coding elements. Although computational tools to per-

form this task already exist, they require the utilization of stranded RNA-Seq data 

that must not be available for non-model organisms. Here, we showed that trans-

encoded small RNAs can be predicted from non-stranded data with comparable 

sensitivity to stranded data. We used two RNA-Seq datasets of non-type strain 

Clostridium beijerinckii NRRL B-598, which is a promising hydrogen and buta-

nol producer, and obtained comparable results for stranded and non-stranded da-

tasets. Nevertheless, the non-stranded approach suffered from lower precision. 

Thus, the results must be interpreted with caution. In general, more benchmark-

ing for tools performing direct prediction of small RNAs from standard RNA-

Seq data is needed so these techniques could be adopted for automatic detection. 
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1 Introduction 

It has been almost half a century since small non-coding RNAs (sRNAs) were discov-

ered in bacteria [1]. During years, sRNAs were shown to play important regulatory 

roles in diverse cellular processes by participating in post-transcriptional regulation of 

gene expression [2]. This is the reason why sRNAs are drawing more attention than 

ever before. While the first experiments were done with a model bacterium, Escherichia 

coli, primarily its non-pathogenic strain K-12, later studies showed the role of sRNA in 

the virulence of pathogenic bacteria [3–5]. Besides their role in medicine, sRNAs can 



 

 

be used in general biotechnologies for their involvement in other processes, for exam-

ple, degradation of toxic compounds [6]. Finally, the latest research shows that the en-

gineering of a novel sRNA can improve bacterial phenotype, for example, tolerance to 

acids [7], which could be utilized in various fermentation processes for the production 

of bio-based chemicals. 

As the former widely used title small non-coding RNA suggests, it is a small mole-

cule that is not translated into a protein. Although this is true in a majority of cases, it 

has been proved that some sRNAs can encode small proteins [8]. Therefore, it is com-

mon that these short regulatory RNAs are simply referred to as small RNA. Its length 

can vary but it typically spans within the interval 40–500 nucleotides [9]. Most com-

monly, sRNAs can be divided according to the locations of sRNA genes and their tar-

gets into two groups, cis-encoded and trans-encoded sRNAs [8]. A cis-encoded sRNA 

overlaps with a regulated gene but is coded by the antisense strand and during its regu-

lation binds to the target mRNA by perfect base pairing. Binding can occur at any lo-

cation depending on the location of sRNA expression [10]. There are three mechanisms 

that cis-encoded sRNAs use for regulation. They can act as transcription terminators, 

potential inhibitors of translation initiation, or modulators of mRNA degradation. A 

trans-encoded sRNA interacts with its target mRNA by imperfect base pairing because 

such sRNA is coded by an intergenic region (ITR) and its coding sequence does not 

overlap with a sequence of the target gene [11]. This also means that trans-encoded 

sRNAs can be coded by the same strand as target genes and they have a wider range of 

regulatory mechanisms. They can act as repressors of expression but also as activators. 

They can increase as well as block mRNA degradation. 

Some of the early experiments showed that sRNA genes identified in E. coli were 

found in Salmonella enterica and vice versa [2]. This suggested their conservation 

across the bacterial domain and made them ideal targets for computational prediction. 

A wide range of tools has been proposed. In general, they can be divided into two 

groups: comparative genomics-based and machine learning-based techniques [8]. 

While the former techniques rely on sequence alignment and cluster analysis with phy-

logenetic profiling, the latter are taking advantage of widely used machine learning 

methods such as neural networks, support vector machines, and genetic algorithms. 

Nevertheless, these techniques can only predict a location of sRNA but cannot predict 

its target site, which can be cumbersome, primarily for trans-encoded sRNAs that pair 

imperfectly to target sites. Besides computational solution lying in in silico prediction 

of sRNA-target mRNA interaction, e.g., sRNATarget [12], IntaRNA [13], or 

RNApredator [14], there is a plethora of techniques based on RNA-Seq to reveal these 

interactions experimentally [15]. The main disadvantage of these specialized tech-

niques such as GRIL-Seq [16], RIP-Seq [17], RIL-Seq [18], and many others, is their 

difficult implementation in non-model bacteria that limits their utilization to model or-

ganisms, mainly E. coli [15]. On the other hand, even standard RNA-Seq that became 

a commonly used technique in bacterial research, can be used to discover sRNA genes. 

Despite existing algorithms as well as experimental techniques, identification of 

sRNA genes is still not a common procedure during annotation of non-model bacterial 

genomes. While there is currently more than a million bacterial genome assemblies in 



 

 

the GenBank database (27th January 2022), the number of annotated sRNAs for partic-

ular genomes is very limited, usually in units of genes. The most commonly used tool 

for genome annotation, the PGAP pipeline [19], uses homology-based annotation by 

scanning the Rfam database [20] with infernal’s cmsearch [21]. This suggests that com-

putational prediction of sRNAs in non-model bacteria might be limited by low sequence 

similarity to model organisms whose sRNAs were discovered experimentally. This 

opens a door to the utilization of standard RNA-Seq data which is available for many 

non-model bacteria. Nevertheless, a systematic pipeline for such predictions is missing 

and various authors use different techniques. Zhu et al. [22] predicted approximately 

ten sRNAs in Bifidobacterium animalis by combining prediction using Tar-

getRNA2 [23] with RNA-Seq data used to calculate RPKM (Reads per kilobase per 

million) values summarizing expression of identified sRNAs. Liu et al. [24] found 263 

sRNAs candidates in Mycobacterium neoaurum by combining RPKM and IntaRNA 

predictions. On the contrary, Wang et al. [25] used RNA-Seq data itself for searching 

sRNAs in Mycobacterium tuberculosis by examining coverage of unannotated regions. 

Thanks to the utilization of strand-specific RNA-Seq, 192 sRNAs candidates were 

found in intergenic regions and additional 664 candidates coded by antisense strand in 

regions overlapping to target genes. Although their study is presented as an automated 

approach, it brings no computational tool that could be used for another organism. 

It is the unavailability of computational tools that prevents the wider utilization of 

RNA-Seq data in the prediction of sRNA genes in non-model bacteria. There are only 

a few tools that suffer from various drawbacks. For example, APERO [26] needs 

paired-end reads which are usually not available for bacterial RNA-Seq data, Rockhop-

per [27] is very hard to be implemented to other pipelines due to its graphical user 

interface nature and utilization of obsolete formats such as protein table for genome 

annotation, and baerhunter [28] is no longer working with the current version of R/Bi-

oconductor. Moreover, benchmarking for different tools is missing and a comparison 

of prediction possibilities regarding input data was never performed before. In this pa-

per, we got inspired by current tools and performed sRNAs prediction in the non-model 

bacterium Clostridium beijerinckii NRRL B-598 [29] using two different RNA-Seq da-

tasets taken under the same conditions. We showed that the current approach in sRNAs 

prediction can be, with some limitations, applied to both, stranded as well as non-

stranded RNA-Seq data and that more benchmarking is needed to establish functional 

pipelines for sRNAs prediction using standard RNA-Seq data. 

2 Materials and methods 

2.1 Genome and annotation 

To examine sRNAs prediction in a non-model bacterium, we selected C. beijerinckii 

NRRL B-598, a non-type strain, which is a promising butanol and hydrogen producer. 

Most importantly, it is a non-type strain with the highest number of RNA-Seq-based 

transcriptomic studies among solventogenic clostridia [30]. In this study, we used its 

third complete genome assembly, available at DDBJ/EMBL/GenBank under accession 

No. CP011966.3, which was constructed using a combination of Roche 454 GS Junior, 



 

 

PacBio RSII, and Illumina NextSeq500 reads [31]. The genome annotation was per-

formed with PGAP v4.6 [19] and genome features are summarized in Table 1. 

Table 1. Genome features of Clostridium beijerinckii NRRL B-598. 

Feature Chromosome 

Length (bp) 6,186,993 

GC content (%) 29.8 

Protein coding genes 5,128 

Pseudogenes 166 

rRNAs (5S,16S, 23S) 17, 16, 16 

tRNAs 94 

Non-coding RNAs 5 

Riboswitches 31 

2.2 Transcriptomic data 

RNA-Seq data used in this study comes from a publicly available study performing 

transcriptional profiling of the butanol fermentation using glucose as a substrate [32]. 

Two particular samples, A and B, from the exponential growth phase, after 3.5h from 

the start of fermentation, were selected. These samples are available from the NCBI 

Sequence Read Archive (SRA) under the project accession number PRJNA229510. 

Cell samples for isolation of total RNA were collected from 3 ml of culture broth 

(OD600 0.9–1.0) by centrifugation at 10000 rpm for two minutes, washed with RNase 

free water and cell pellets were immediately stored at − 70 °C. RNA from the cell pellet 

was isolated using High Pure RNA Isolation Kit (Roche). Isolated total RNA was stored 

frozen at − 70 °C. The total RNA concentration was determined on DS-11 FX+ Spec-

trophotometer (DeNovix). Quality and integrity of the samples were assessed using the 

Agilent RNA 6000 Nano Kit (Agilent) with the Agilent 2100 Bioanalyzer (Agilent). 

RNA integrity number was measured using 2100 Bioanalyzer Expert software. Frozen 

total RNA samples were thawed on ice and an aliquot of each sample containing 10 μg 

of RNA was taken for 16S and 23S ribosomal RNAs removal using The MICROBEx-

press™ Bacterial mRNA Enrichment Kit (Ambion). Efficiency of ribosomal RNA de-

pletion and concentration of RNA samples were checked on the Agilent 2100 Bioana-

lyzer (Agilent) with the Agilent RNA 6000 Nano Kit (Agilent). 

For sample A, library construction and sequencing was performed by BGI Europe 

A/S (Copenhagen, Denmark). During the library preparation, cDNA was synthesized 

by using a random hexamer-primer and the sample was sequenced on Illumina HiSeq 

4000, single-end, 50 bp. This means that resulting reads are non-stranded, i.e., it is not 

possible to determine a strand of DNA that codes genes producing sequence transcript 

as reads mapping to analyzed loci have both orientations. 

For sample B, library construction and sequencing was performed by CEITEC Ge-

nomics core facility (Brno, Czechia). NEBNext Ultra II stranded kit was used for li-

brary preparation and the sample was sequenced on Illumina NextSeq500, single-end, 



 

 

75 bp. This resulted in reads that are reversely stranded, i.e., the reads have the opposite 

orientation to the locus producing sequenced transcripts. 

2.3 Data preprocessing 

Adapter and quality trimming was performed using Trimmomatic v0.36 [33]. Two dif-

ferent settings were used for comparison. In the first settings, parameters LEADING 

and TRAILING specifying minimum qualities (PHRED score) to keep a base, were 

both set to three. The length of the SLIDINGWINDOW parameter was set to four and 

required average quality of 15. Finally, only reads reaching the length of 36 bases were 

kept by setting up a parameter MINLEN. In the second settings, the parameters were 

stricter. Minimum qualities were both set to 10 and a sliding window of the length four 

required at least a quality of 25. On the other hand, reads of length 20 nucleotides and 

more were preserved. 

Although laboratory ribodepletion was performed prior to sequencing, the step of 

computational rRNA filtering was done for comparison. This step was done with 

SortMeRNA v2.1 [34] using the SILVA database [35] of known bacterial 16S and 23S 

rRNA genes. Finally, the mapping to the reference genome was performed with STAR 

v2.5.4b [36]. Reads mapping to more than three loci were filtered out by setting up a 

parameter outFilterMultimapNmax. 

Quality assessment after particular steps was performed using FastQC in combina-

tion with MultiQC [37] to summarize the reports. The resulting SAM (Sequence Read 

Alignment/Map) files were indexed and transformed into more compact BAM (Binary 

Read Alignment/Map) format using SAMtools v1.7 [38]. 

2.4 sRNAs prediction 

The prediction of sRNA loci was performed in R v4.1.2 and Bioconductor v3.14. The 

whole pipeline was inspired by baerhunter [28] that uses thresholding of coverage. 

Baerhunter itself cannot be used due to erroneous functions for counting sRNAs and 

untranslated regions (UTRs). Nevertheless, the pipeline was reproduced by rewriting 

these functions to be compatible with the current Biocondutor. Although baerhunter 

requires stranded RNA-Seq data, the whole pipeline can be reproduced by similar cus-

tom-made code that works also with non-stranded data. The main steps of the pipeline 

are summarized in Fig. 1. 

The main idea of thresholding coverage requires coverage to be counted across the 

whole reference sequence in the first step. This can be achieved using samtools depth 

or by loading BAM files into R/Bioconductor and calculating coverage with suitable 

functions, for example “coverage” from the GenomicAlignments [39] package. In the 

case of non-stranded data, the coverage is calculated for the chromosome at once. How-

ever, for stranded data, coverages of particular strands of DNA have to be calculated 

separately. Before thresholding is performed, only ITRs are selected. This again re-

quires selecting these regions separately for particular strands in the case of stranded 

RNA-Seq. 



 

 

Selecting putative sRNAs inspired by baerhunter requires three input parameters. 

The first parameter “low coverage cutoff” is used to select potential sRNA loci. Once 

the coverage exceeds the threshold, the start of a potential sRNA is marked. The region 

is being continually expanded until coverage falls under the threshold again. Other pa-

rameters are used for additional filtering. The parameter “high coverage cutoff” sets 

another threshold for coverage. Only previously selected regions in which at least one 

base is covered by more reads than the thresholds are preserved. The last parameter 

“min sRNA length” simply filters out regions that are shorter than the selected length. 

 

Fig. 1. A schema of coverage-based identification of sRNAs. Coverage of ITRs in examined. 

Here, only a sRNA_3 candidate is returned as a putative sRNA as it meets high coverage and 

min sRNA length cutoff value criteria. 

The thresholds used in this study were, 10 for the low coverage cutoff, 50 for the high 

coverage cutoff, and 40 for the min sRNA length. The values were set empirically based 

on benchmarking study of baerhunter [28]. 



 

 

3 Results and discussion 

3.1 Data preprocessing 

Sample A contained 21 million and sample B had 53 million raw sequences. The initial 

quality assessment showed high GC content suggesting remaining rRNA contamina-

tion. The resulting numbers of reads after filtering and mapping steps are summarized 

in Table 2. Particular parameters settings for quality trimming can be found in materials 

and methods. 

Table 2. Results of data preprocessing 

Sample 
Trimming 

settings 

rRNA 

removal 

No. of reads in a 

sample (million) 

No. of mapped reads 

(million) 

A1 1 No 21.0 11.9 

A2 2 No 20.6 11.7 

A1r 1 Yes 12.3 11.8 

A2r 2 Yes 12.2 11.6 

B1 1 No 52.5 15.3 

B2 2 No 48.9 14.3 

B1r 1 Yes 15.2 14.6 

B2r 2 Yes 15.7 13.7 

 

The results showed very high, up to 73%, contamination by rRNA. Although rRNA 

is filtered during mapping as multi-mapped reads, numbers of mapped reads for sam-

ples with and without computational ribodepletion are different, therefore, this step may 

affect the final identification of sRNA genes. 

3.2 sRNAs prediction in stranded data 

Before comparison of stranded and non-stranded data, we performed prediction of 

sRNAs by the same procedure that is used in baerhunter to identify putative sRNA 

genes as they have never been reported in C. beijerinckii NRRL B-598 genome before. 

The sensitivity of baerhunter was tested against more complex tools, particularly Rock-

hopper, APERO, and ANNOgesic, using simulated as well as real datasets [28]. Thus, 

we used its predictions, summarized in Table 3, to estimate sRNAs counts. 

Table 3. Numbers of sRNAs predicted by baerhunter 

Sample 
No. of sRNA genes 

trans-encoded cis-encoded total number 

B1 121 115 236 

B2 115 99 214 

B1r 121 101 222 

B2r 115 87 202 



 

 

Although baerhunter was benchmarked in comparison to other tools, our result 

showed that its prediction is influenced by data preprocessing as the total number of 

predicted sRNAs ranged from 202 to 236. While the detection of cis-encoded sRNAs 

was influenced by quality trimming and rRNA removal, only quality trimming affected 

the identification of trans-encoded elements. The predicted trans-encoded sRNAs for 

B1 and B1r and for B2 and B2r were the same. More benchmarking would be needed 

to reveal the origin of these differences. Nevertheless, it is evident that direct prediction 

of sRNAs from RNA-Seq data is affected by computational data preprocessing and 

should be investigated in detail to ensure reliable prediction of non-coding genomic 

elements in bacteria. 

3.3 Comparison of stranded and non-stranded data 

Because non-stranded RNA-Seq does not preserve information about the orientation of 

genomic elements producing sequenced transcripts, it cannot be used for the identifica-

tion of elements that overlap. Thus, only trans-encoded sRNAs can be predicted using 

non-stranded data. Since the pipeline for non-stranded data is a little bit different (see 

Fig. 1), we recalculated the results for sample B using the pipeline for non-stranded 

data. The results are summarized in Table 4. 

Table 4. Numbers of sRNAs predicted by approach for non-stranded RNA-Seq 

Sample A B A∩B 

X1 76 109 32 

X2 75 108 30 

X1r 76 109 32 

X2r 75 108 30 

 

Computational ribodepletion again did not affect the results. The sensitivity of detec-

tion by non-stranded approach was a little bit lower as the numbers of predicted sRNAs 

in B samples was slightly lower. The detection was not completely the same but very 

similar when only three sRNAs identified in the non-stranded approach were different 

from those detected by the stranded approach in samples B1/B1r and six in samples 

B2/B2r. If baerhunter predictions of trans-encoded sRNA were considered as a refer-

ence, the sensitivity (or recall) and precision of the non-stranded approach could have 

been calculated, see Table 5. 

Table 5. Precision and recall of approach for non-stranded RNA-Seq 

Sample 
A B 

Precision Recall Precision Recall 

X1/X1r 44.7% 28.1% 97.2% 87.6% 

X2/X2r 42.7% 27.8% 94.4% 88.7% 

 



 

 

Unfortunately, the prediction using non-stranded data from sample A was consider-

ably worse. Not only was the total number of detected sRNAs lower, more than half of 

predicted loci did not match those predicted using data from sample B. Such a differ-

ence between both samples is surprising. Direct detection of sRNAs from RNA-Seq 

data can only capture those loci that are currently being transcribed [28]. Nevertheless, 

both samples, A and B, come from the biological replicates taken under the same con-

ditions, and the data were preprocessed in the same manner. Thus, the prediction should 

be very similar. On the other hand, there is plenty of other parameters that could be 

responsible for the difference: sequencing depth, preparation of library, or platform 

used for sequencing, etc. 

The only parameter whose influence can be examined computationally is the se-

quencing depth. Considering the number of mapped reads and their length, sample A 

contains only half of the sequenced bases in comparison to B. Therefore, we set the 

high coverage cutoff parameter to 25 for the following detection. This resulted in 180 

identified sRNAs for both quality trimming settings. The number of sRNAs that were 

previously detected by baerhunter was considerably higher, 113 for A1/A1r and 114 

for A2/A2r. This means that the resulting recall, 93.4% for A1/A1r and 99.1% for 

A2/A2r, was even higher than recall for B samples processed by the non-stranded ap-

proach. The improvement of precision was lower, resulting in 62.8% for A1/A1r and 

63.3% for A2/A2r. 

The results showed that non-stranded RNA-Seq can be used for the prediction of 

trans-encoded sRNAs with very high sensitivity, however, the results must be inter-

preted carefully due to lower precision. Detection by direct processing of RNA-Seq is 

also heavily influenced by the sequencing depth and detection thresholds must be ad-

justed according to it. Moreover, the results suggested that thresholds for achieving the 

same sensitivity in stranded and non-stranded data might be different even if the se-

quencing depth correction is performed. 

4 Conclusions 

Prediction of small RNAs in bacterial genomes can be performed by several computa-

tional as well as laboratory techniques. Direct prediction from standard RNA-Seq data 

seems to be advantageous. Unlike fully computational approaches, it brings experi-

mental evidence while recalculating data that are easily obtainable even for non-model 

bacterial genomes for the simplicity of technique that is widely used to measure expres-

sion on a genome-wide scale. Unfortunately, computational tools to perform such pre-

dictions are not widely adopted. Although current tools require the utilization of 

stranded RNA-Seq, we demonstrated that sRNAs can also be identified using non-

stranded RNA-Seq with comparable sensitivity to the stranded approach. Nevertheless, 

only trans-encoded sRNAs can be identified. Moreover, we demonstrated that the pre-

diction from non-stranded as well as stranded RNA-Seq is highly influenced by se-

quencing depth. Since the results depend on a threshold that has to be set up manually 

in current tools, more benchmarking is needed to ensure reliable and fully automatic 

prediction of small RNAs in bacterial genomes. 
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