

DFT study of Cobalt-based single-molecule magnet deposition on graphene

Jorge Navarro-Giraldo¹*, Jakub Hrubý¹, Šárka Vavrečková^{1,2}, Lukáš Masaryk³, Antonín Sojka¹, Miroslav Bartoš¹, Radovan Herchel³, Ján Moncol⁴. Ivan Nemec^{1,3}, and Petr Neugebauer¹

Central European Institute of Technology BRNO | CZECH REPUBLIC

¹ Central European Institute of Technology, CEITEC BUT, Brno, Czech Republic, ² Institute of Physical Engineering, Brno University of Technology, Brno, Czech Republic, ³ Palacký University, Olomouc, Czech Republic, ⁴ Slovak University of Technology in Bratislava, Bratislava, Slovakia

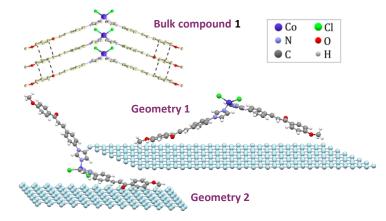
* Presenting author

1. Abstract and motivation

- Single-molecule magnets (SMMs) are versatile systems that can be integrated into electronic devices by depositing them onto a solidstate material.
- We studied the adsorption of Co(II)-based SMMs onto graphene at density functional theory (DFT) level, analyzing the adsorption energies, charge transfer, and geometric changes of the systems before and after deposition.
- We calculated the **magnetic properties** (*g*-tensor and spin Hamiltonian terms E and D) by complete-active space selfconsistent field (CASSCF)/N-electron valence second-order perturbation theory (NEVPT2).
- Experimental determination of magnetic properties by high-field electron spin resonance (HF-ESR) spectroscopy.

2. Methodology

For molecule adsorption:


- DFT calculations using the Vienna Ab-Initio Simulation Package (VASP 5.4.4)
- Exchange–correlation functional: generalized-gradient approximation (GGA) in Perdew–Burke–Ernzerhof (PBE) parametrization
- Van der Waals corrections: D2 method of Grimme. •
- . Plane-wave energy cut-off: 420 eV.
- k-space sampling: F-centered 2×2×1 Monkhorst–Pack mesh.
- Geometry relaxation criterion: Forces below 0.1 eV/Å

For magnetic properties:

- CASSCF-NEVPT2 using ORCA 4.2.
- Basis: triple-ζ def2-TZVP (for Co, N, Cl, O), def2-SVP (for C, H).
- Auxiliary basis: def2/J and def2-TZVP/C together with RIJCOSX approximation.
- Active space: five d-orbitals of Co(II) (CAS(7.5)).
- D- and q-tensors: guasi-degenerate perturbation theory (QDPT).

3. System

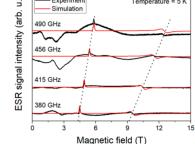
Tetracoordinated Co(II) complex with chalcone ligands on graphene

4. Experimental results

Optical microscope image

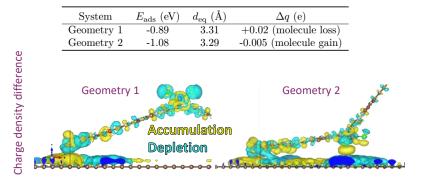
Graphene

20 µm


Sublimation at 265 °C

SiO₂

Deposition of the compound showed the formation of nanodroplets for a drop-cast sample and microcrystalites localized at grain boundaries and defects after thermal sublimation.



5. Theoretical calculations

Adsorption energy per molecule, equilibrium distance, and charge transfer from Bader analysis.

The spin-Hamiltonian parameters showed fair agreement with HF-ESR experiments on the bulk compound

	D/cm^{-1}	E/D	g_x	g_y	g_z	g av
1	+14.5	0.150	2.325	2.378	2.163	2.289
Geometry 1	+16.4	0.090	2.346	2.364	2.150	2.287
Geometry 2	+17.5	0.132	2.345	2.381	2.143	2.290
HF-ESR	+14.6	0.235	2.320	2.380	2.160	2.287

6. Conclusions and perspectives

- Prediction and characterization of molecular adsorption of a tetracoordinated Co(II) molecule on graphene by DFT, CASSCF-NEVPT2, HF-ESR, XPS, Raman, AFM.
- Ongoing project for theoretical and experimental study of SMMs on surfaces.

Reference

Brno PhD Talent 2019

CEITEC MOTES research group

Hrubý, J. et al. Molecules 25, 5021 (2020) Acknowledgements **CEITEC BUT Internal Grant**

