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Abstract: This paper presents inductance simulators using the voltage differencing differential input
buffered amplifier (VD-DIBA) as an active building block. Three types of inductance simulators,
including floating lossless inductance, series inductance-resistance, and parallel inductance-resistance
simulators, are proposed, in addition to their application to the 4th order elliptic lowpass ladder
filter. The simple design procedures of these inductance simulators using a circuit block diagram are
also given. The proposed inductance simulators employ two VD-DIBAs and two passive elements.
The complementary metal oxide semiconductor (CMOS) VD-DIBA used in this design utilizes
the multiple-input metal oxide semiconductor (MOS) transistor technique in order to achieve a
compact and simple structure with a minimum count of transistors. Thanks to this technique,
the VD-DIBA offers high performances compared to the other CMOS structures presented in the
literature. The CMOS VD-DIBAs and their applications are designed and simulated in the Cadence
environment using a 0.18 µm CMOS process from Taiwan semiconductor manufacturing company
(TSMC). Using a supply voltage of ±0.9 V, the linear operation of VD-DIBA is obtained over a
differential input range of −0.5 V to 0.5 V. The lowpass (LP) ladder filter realized with the proposed
inductance simulators shows a dynamic range (DR) of 80 dB for a total harmonic distortion (THD) of
2% at 1 kHz and a 1.8 V peak-to-peak output. In addition, the experimental results of the floating
inductance simulators and their applications are obtained by using VD-DIBA constructed from the
available commercial components LM13700 and AD830. The simulation results are in agreement with
the experimental ones, confirming the advantages of the inductance simulators and their application.

Keywords: inductance simulator; multiple-input technique; operational transconductance amplifier;
voltage differencing differential input buffered amplifier

1. Introduction

The realization of inductance simulators to be used instead of the passive inductor in
the analog signal processing system is an interesting research topic which has been con-
stantly gaining attention. The use of inductance simulators in circuit design also presents
several advantages compared to the passive inductor, such as inductance controllabil-
ity, a small chip area, a high quality factor, low noise, and low power consumption [1].
Moreover, the procedure employed to synthesize the analog circuits by replacing the
passive inductors with inductance simulators is easy to understand and implement with-
out using advanced or complicated mathematics [2–4]. For example, the design of the
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4th ladder bandpass filter consisting of the passive inductors L1 and L2, passive resistors
R1 and R2, and passive capacitors C1 and C2 in Figure 1 is easily achieved by replacing
the grounded inductance simulator and the floating inductance simulator instead of these
passive inductors [2].
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In analog circuit synthesis and design, active building blocks (ABBs) are very useful
devices [5]. They provide flexibility and convenience when synthesizing high performance
circuits connecting a small number of passive elements, such as resistors or capacitors
(the use of passive inductors is not popular for circuit design). Most typical designs rely
on the connection of sub-circuits, so voltage-mode ABBs with a high input impedance
and low output impedance or current-mode ABBs with a low input impedance and high
output impedance can provide a cascading ability, without the use of buffer devices at
input and output stages. Additionally, ascertaining the circuit properties from ABB-based
circuit analysis is easier than ascertaining those of transistor-based circuits. Moreover,
some electronically controllable ABBs, which are required for modern circuits, are easily
and automatically controlled by a microprocessor or microcomputer [5].

Many examples of different active building blocks have been proposed in [5], where the
operational transconductance amplifier (OTA) is combined with other active sub-blocks,
such as a current follower (CF), a current differencing unit (CDU), a voltage buffer (BF), or a
voltage differencing unit (VDU). One of the ABBs which can be developed using the above-
mentioned sub-blocks is the voltage differencing buffered amplifier (VDBA). This active
device is composed of OTA at the input stage, and a voltage buffer at the output. With this
structure, the VDBA has a low output impedance and high input impedance, which is use-
ful in circuit design, since active blocks can be cascaded in voltage-mode circuits, without
the requirement of additional voltage buffers [5,6]. VDBA-based circuits can be found in the
open literature [7–17]. However, in some applications, the unity gain voltage differencing
circuit is required, which cannot be directly realized with VDBAs. Therefore, the voltage
differencing differential input buffered amplifier (VD-DIBA) was proposed to extend the
universality of the VDBA, by combining OTA and a voltage differencing unit with a low
output impedance. There are many applications of VD-DIBA presented in the literature,
such as filters [18–24], sinusoidal oscillators [25–30], and inductance simulators [31–33].

Although the VD-DIBA is an interesting active block, its CMOS structures presented in
the literature thus far are rather complex and show many limitations. Usually, the transcon-
ductance stage of the VD-DIBA is realized as a simple differential amplifier, which limits its
linearity. The voltage differencing stage is realized with two differential pairs that increase
the number of MOS transistors and current branches, and consequently, the current con-
sumption of the circuits [23,29,30]. In order to avoid the above limitations, a new CMOS
structure of VD-DIBA is presented in this paper. The multiple-input gate-driven technique
(MI-GD) is employed to reduce the number of differential pairs required to build this active
block. The transconductance stage is realized by an MI-GD two-stage OTA with unity gain
feedback. Thanks to the MI-GD technique and the unity gain feedback, the linearity of the



Electronics 2021, 10, 684 3 of 30

transconductor is significantly improved. The voltage differencing stage is realized with
only one MI-GD differential pair, which decreases the total power dissipation of the circuit.

Recently, Khateb et al. presented the principle and experimental results of the multiple-
input MOS transistor technique [34–36]. The multiple-input MOS transistor is obtained
with a simple analog summing circuit composed of parallel connections of capacitors and
large resistances, connecting each input of this composite device with the input terminal
of the MOS transistor. The input terminal can be the bulk [34,37], the bulk along with the
quasi-floating-gate [35], the bulk along with the gate (DTMOS) [38], or the gate [39,40].
The main advantages of this technique are the simplification of the CMOS structure of
some active blocks, reduction of the current consumption, and increase of the dynamic
range of the circuit due to the input capacitive divider [34–36]. This technique can also
simplify the realization of some applications, which results in lower power dissipation and
a reduced silicon area.

This paper presents the realization of inductance simulators using VD-DIBA based on
the multiple-input technique and shows their application in the 4th order elliptic lowpass
ladder filter. The paper is organized as follows: Sections 2 and 3 present the CMOS structure
of the VD-DIBA and its simulated performances; the floating inductance simulators and
filter application are presented in Section 4; Sections 5 and 6 present the simulation and
experimental results of floating inductance simulators and an exemplary filter; Section 7
presents a comparison of the proposed inductance simulators with previous works; and
finally, Section 8 concludes the paper.

2. The Compact CMOS Structure of the VD-DIBA
2.1. Basic Concept of VD-DIBA

The VD-DIBA is a connection of OTA and a voltage differencing unit. The circuit
symbol is shown in Figure 2a. The high-impedance input voltage terminals are v+, v−, z,
and v. The low-impedance output voltage terminal is w. Note that the z terminal is also
the output current terminal. Figure 2b shows the equivalent schematic of VD-DIBA in an
ideal case. The circuit performance is described by the matrix Equation (1) [18].

Iv+
Iv−
Iz
Iv

Vw

 =


0 0 0 0 0
0 0 0 0 0

gm −gm 0 0 0
0 0 0 0 0
0 0 1 −1 0




Vv+
Vv−
Vz
Vv
Iw

 (1)

Electronics 2021, 10, x FOR PEER REVIEW 3 of 31 
 

 

new CMOS structure of VD-DIBA is presented in this paper. The multiple-input gate-
driven technique (MI-GD) is employed to reduce the number of differential pairs required 
to build this active block. The transconductance stage is realized by an MI-GD two-stage 
OTA with unity gain feedback. Thanks to the MI-GD technique and the unity gain feed-
back, the linearity of the transconductor is significantly improved. The voltage differenc-
ing stage is realized with only one MI-GD differential pair, which decreases the total 
power dissipation of the circuit. 

Recently, Khateb et al. presented the principle and experimental results of the multi-
ple-input MOS transistor technique [34–36]. The multiple-input MOS transistor is ob-
tained with a simple analog summing circuit composed of parallel connections of capaci-
tors and large resistances, connecting each input of this composite device with the input 
terminal of the MOS transistor. The input terminal can be the bulk [34,37], the bulk along 
with the quasi-floating-gate [35], the bulk along with the gate (DTMOS) [38], or the gate 
[39,40]. The main advantages of this technique are the simplification of the CMOS struc-
ture of some active blocks, reduction of the current consumption, and increase of the dy-
namic range of the circuit due to the input capacitive divider [34–36]. This technique can 
also simplify the realization of some applications, which results in lower power dissipa-
tion and a reduced silicon area. 

This paper presents the realization of inductance simulators using VD-DIBA based 
on the multiple-input technique and shows their application in the 4th order elliptic low-
pass ladder filter. The paper is organized as follows: Sections 2 and 3 present the CMOS 
structure of the VD-DIBA and its simulated performances; the floating inductance simu-
lators and filter application are presented in Section 4; sections 5 and 6 present the simu-
lation and experimental results of floating inductance simulators and an exemplary filter; 
Section 7 presents a comparison of the proposed inductance simulators with previous 
works; and finally, Section 8 concludes the paper. 

2. The Compact CMOS Structure of the VD-DIBA 
2.1. Basic Concept of VD-DIBA 

The VD-DIBA is a connection of OTA and a voltage differencing unit. The circuit 
symbol is shown in Figure 2a. The high-impedance input voltage terminals are v+, v-, z, 
and v. The low-impedance output voltage terminal is w. Note that the z terminal is also 
the output current terminal. Figure 2b shows the equivalent schematic of VD-DIBA in an 
ideal case. The circuit performance is described by the matrix Equation (1) [18]. 

0 0 0 0 0
0 0 0 0 0

0 0 0
0 0 0 0 0
0 0 1 1 0

v v

v v

z zm m

v v

w w

I V
I V
I Vg g
I V
V I

+ +

− −

    
    
    
    = −
    
    

    −    

 (1) 

 

v+

v−

z v
wVD-DIBA

V−

wV

vI
vV

zI
zV

vI −

vI +
V+

 

V+

wV

vVzV
V−

( )mg V V+ −−

z vV V−

 

(a) (b) 

Figure 2. (a) The symbolic representation of the voltage differencing differential input buffered 
amplifier (VD-DIBA) and (b) VD-DIBA equivalent circuit [18]. 

Figure 2. (a) The symbolic representation of the voltage differencing differential input buffered
amplifier (VD-DIBA) and (b) VD-DIBA equivalent circuit [18].

2.2. Internal Construction of Compact CMOS VD-DIBA

Figure 3 shows the realization of VD-DIBA with two multiple-input OTAs. The OTA1
with a negative feedback connection and the resistor Rset create a transconductance stage
(gm). The transconductance is adjustable with Rset and its value is approximately given
by gm ≈ 1/Rset [41]. If the transconductance value needs to be electronically controlled,
then Rset can be replaced, for instance, by a voltage-controlled resistance based on a
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simple CMOS circuitry. It is worth noting that the negative feedback connection of OTA1
significantly enhances the linearity of the transconductor compared with conventional OTA,
which uses the bias current to set its transconductance value [41]. The second multiple-
input OTA2 with unity gain feedback is used to transfer the voltage difference between z
and v terminals to the output terminal w.
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Figure 3. The VD-DIBA based on a multiple-input operational transconductance amplifier (OTA).

The CMOS structure of the proposed VD-DIBA is shown in Figure 4. The OTA1
consists of a differential stage (M1, M2, M5, M10, and M11), followed by two class AB
output stages (M6 and M12 and M7 and M13). The Cc1 is the frequency compensation
capacitor that ensures the stability of the OTA. The large resistance RMOS1 is used to set
the DC bias voltage Vb at the gates of M12 and M13, whereas the capacitor C1 creates
an AC signal path, so class AB output stages are obtained. The differential pair (M1 and
M2) is based on multiple-input transistors, realized by an MOS transistor with its gate
connected to a parallel connection of a couple of large value resistances RMOSi along with
capacitor CGi (i = 1, 2, . . . , n), where n is the number of required inputs, as depicted in
Figure 5. The resistor RMOS is realized by two MOS transistors operating in a cut-off region,
so the chip area occupied by this resistor is minimal. Note that unlike the conventional
multiple-input OTA that requires multiple differential pairs, which increase the circuit
complexity and power consumption, the proposed only OTA requires one differential
pair. Consequently, the CMOS circuitries that use the multiple-input MOS transistors are
compact, with a reduced power consumption [34–37,40,42,43]. The bias current Ib and the
transistor M17 set the bias currents and voltages for the OTA. The OTA2 is a copy of OTA1
with one output stage that serves as a voltage differencing unit. It is worth mentioning that
the principle of the multiple-input MOS transistor was first presented and experimentally
verified in [34–36].
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3. Simulation Result of VD-DIBA’s Performances

To validate the performances of the voltage differencing differential input buffered
amplifier (VD-DIBA) in Figure 4, extensive simulations in the Cadence/Spectre environ-
ment were performed, assuming the 0.18 µm TSMC CMOS technology. The transistor
aspect ratios, capacitors, voltage supply, and bias current values are included in Table 1.
The total power consumption was 0.99 mW. Figure 6 shows the DC transfer characteristic
of the transconductance stage for different resistances Rset = 15, 20, 25, and 30 kΩ. It is
worth noting the tunability and the good linearity obtained over a differential input range
of −0.5 to 0.5 V. Figure 7 shows the output voltage Vw against the input voltage Vv for
different values of Vz. The correct operation of the voltage differential unit is clearly visible.
The frequency responses of Vw/Vv and Vw/Vz are shown in Figure 8. The histogram of
the low frequency gain at 1 kHz and the −3 dB bandwidth of these responses with Monte
Carlo (MC) analysis are shown in Figures 9–12. For Figures 9 and 10, the mean value of
the gain is −7.07 and 5.79 mdB, while the standard deviation is 0.19 and 0.39 mdB for the
Vw/Vv and Vw/Vz gain, respectively. For Figures 11 and 12, the mean value of the −3 dB
bandwidth is 6.37 and 6.11 MHz, while the standard deviation is 121.5 and 89 kHz for the
Vw/Vv and Vw/Vz gain, respectively. The MC analysis confirms the low sensitivity of the
VD-DIBA to transistor mismatch.

Table 1. Transistor aspect ratios and component values.

Component W/L [µm/µm]

M1–M4 90/3
M5–M9 2 × 90/3

M10, M11, M14, M15, M17 30/3
M12, M13, M16 2 × 30/3

MR 4/5

Cc1, Cc2, C1, C2 = 2.6 pF
CGi = 0.5 pF

+VDD = −VSS = 0.9 V
Ib = 50 µA
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The process, voltage, temperature (PVT) corner analysis was also performed for the
proposed VD-DIBA. The MOS transistor corners were [ss, sf, fs, ff], the capacitor corners
were [slow, fast], the temperature corners were [−10 ◦C, 80 ◦C], and the voltage supply
corners +VDD = −VSS were [895 mV, 905 mV]. The results of this analysis, including the
minimum, typical, and maximum values, are summarized in Table 2 and confirm the
acceptable performance of the circuit under PVT variations.

Table 2. Process, voltage, temperature (PVT) corner analysis.

Min tt Max

Gain Vw/Vv [mdB] −12.68 −7.72 −5.42
Gain Vw/Vz [mdB] −25.45 5.79 77.6
−3 dB Vw/Vv [MHz] 5.33 6.36 7.48
−3 dB Vw/Vz [MHz] 5.11 6.11 7.73

Gm [µS] for Rset = 15 kΩ 71 71.2 71.4

4. The Proposed Floating Inductance Simulators Using VD-DIBAs
4.1. The Proposed Floating Lossless Inductance Simulator

There are many methods for synthesizing analog circuits in a signal processing system.
Synthesizing based on a circuit block diagram attracts the most attention. This method is
easy to understand and implement without using advanced or complicated mathematics.
Therefore, the procedure for synthesizing the floating lossless inductance simulator in
this paper is based on the block diagram in Figure 13. The circuit uses three kinds of
sub-circuits, namely, two voltage to current converters (V to I converters), a voltage-
mode lossy integrator, and two voltage differencing circuits. This block diagram can be
considered a modified version of the one in [44], where the active building block has
three input voltage terminals, which are not available for VD-DIBA. The time constant
of the integrator is denoted as τ, while the transconductance gain of the V to I converter
is denoted as k. The voltages at the first and second ports are denoted as v1 and v2,
respectively. Moreover, the currents at the first and second port are denoted as i1 and i2,
respectively. The magnitudes of currents i1 and i2 are the output current of the first and
second voltage to current converters, respectively. Ideally, the currents i1 and i2 must be
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equal. Therefore, the transconductance gains of both voltage to current converters are set
to be equal to each other (k1 = k2 = k). The input impedance between the first and second
ports in Figure 13 is given by

zin =
v1 − v2

i1
=

v2 − v1

i2
= s

τ

k
. (2)
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Note that the voltage differencing unit at the output stage of VD-DIBA is very useful
for realizing the voltage difference v1 − v2. Equation (2) obviously shows that the input
impedance of the block diagram presented in Figure 13 can be considered the impedance
of a floating lossless inductance simulator, where its equivalent inductance is given by

zin =
v1 − v2

i1
=

v2 − v1

i2
= s

τ

k
. (3)

Equation (3) shows that the inductance value can be tuned with the time constant of
an integrator and the transconductance gain of a V to I converter.

The VD-DIBA will be used as an active element to synthesize the floating lossless
inductance simulator. Referring to the block diagram in Figure 13, the first V to I converter
and voltage differencing part are realized with VD-DIBA1, while the second V to I converter
and voltage differencing part are implemented by the VD-DIBA2. The voltage mode lossy
integrator is realized from a simple RC voltage divider circuit, where the capacitor is
connected to the ground. By connecting sub-circuits based on the block diagram presented
in Figure 13, the proposed floating lossless inductance simulator is achieved as shown in
Figure 14. For gm1 = gm2 = gm, the input impedance between the first and second ports of
Figure 14 is given by

zin =
v1 − v2

i1
=

v2 − v1

i2
= s

RC
gm

(4)
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Equation (4) shows that the circuit exhibited in Figure 14 simulates the impedance of
the floating lossless inductance simulator, where its equivalent inductance value is given by

Leq =
RC
gm

(5)

Note that the inductance value can be tuned by R, C, and gm.
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Comparing the proposed structure in Figure 14 with the floating lossless inductance
simulator using VD-DIBA as an active element in [32] and [33], it is found that the active
inductor in [32] requires a matching condition of the passive resistor and transconductance
of VD-DIBA, while the floating inductance simulator proposed in [33] employs three
VD-DIBAs. In addition, these inductance simulators are based on a lossless integrator.

4.2. The Proposed Floating Series Inductance-Resistance Simulator

For the proposed floating series inductance-resistance (L-R) simulator, the synthesis
procedure is based on the block diagram presented in Figure 15. Like the proposed lossless
inductance simulator, there are three sub-circuits for synthesizing the series inductance
resistance simulator. However, it requires only one voltage differencing circuit. For gm1 =
gm2 = gm, the input impedance between the first and second port of Figure 15 is given by

zin =
v1 − v2

i1
=

v2 − v1

i2
= s

τ

k
+

1
k

(6)
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As can be concluded from (6), the input impedance of the block diagram in Figure 15
can be considered the impedance of the floating series connection of an inductor and a
resistor, where its equivalent inductance value is the same as that given by (2) and the
equivalent resistance value is given by

Req =
1
k

(7)

Equation (7) shows that the equivalent resistance can be controlled by the transcon-
ductance gain of a V to I converter.

Referring to Figure 15, the first V to I converter and the voltage differencing part are
realized with VD-DIBA1, while the second V to I converter is implemented by VD-DIBA2.
The voltage mode lossy integrator is realized with a simple RC voltage divider circuit,
where the capacitor is connected to the ground. By connecting sub-circuits based on the
block diagram in Figure 15, the proposed floating series inductance-resistance simulator is
achieved, as shown in Figure 16. For gm1 = gm2 = gm, the input impedance between the first
and second port of Figure 16 is given by

zin =
v1 − v2

i1
=

v2 − v1

i2
= s

RC
gm

+
1

gm
(8)
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Figure 16. The floating series inductance-resistance simulator based on VD-DIBAs.

Equation (8) shows that the circuit presented in Figure 16 simulates the impedance of
the floating series connection inductor-resistor, where its equivalent inductance value is
the same as that given by (4) and the series resistance is given by

Req =
1

gm
(9)

Equation (9) shows that the resistance value can be controlled by gm.
Note that the proposed floating series L-R simulator in Figure 16 is synthesized from

the same lossy integrator as proposed in [31]. However, the series L-R simulator in [31]
only gives the grounded impedance. Additionally, the w terminal is connected to the v
terminal to achieve two types of inductance value. With this connection, it is difficult to
be modified as a floating type. Another advantage of the proposed floating series L-R
simulator in Figure 16 is that, if the second port (v2) is assigned as an output voltage node,
then a low output impedance is achieved.

4.3. The Proposed Floating Parallel Inductance-Resistance Simulator

A block diagram presenting the synthesis of the floating parallel inductance-resistance
simulator is shown in Figure 17. It consists of two voltage to current converters (V to I),
a voltage mode lossy integrator, and two voltage differencing circuits. For k1 = k2 = k,
the input impedance between the first and second port in Figure 17 is given by

zin =
v1 − v2

i1
=

v2 − v1

i2
= s

τ

k
‖ 1

k
(10)
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Figure 17. Block diagram demonstrating the synthesis of the floating parallel inductance-resistance simulator.

Equation (10) shows that the input impedance of the block diagram presented in
Figure 17 can be considered the impedance of the floating parallel inductor-resistor, where its
equivalent inductance and resistance values are given by (3) and (7), respectively.

Based on the block diagram in Figure 17, the first V to I converter and the voltage
differencing part are realized with VD-DIBA1, while the second V to I converter and the
voltage differencing part are implemented by VD-DIBA2. The voltage mode lossy integra-
tor is realized with a simple RC voltage divider circuit, where the capacitor is connected to
the ground. By connecting sub-circuits based on the block diagram in Figure 17, the pro-
posed floating parallel inductance-resistance simulator is achieved as shown in Figure 18.
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For gm1 = gm2 = gm, the input impedance between the first and second port of Figure 18 is
given by

zin =
v1 − v2

i1
=

v2 − v1

i2
= s

RC
gm
‖ 1

gm
(11)
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Figure 18. The floating parallel inductance-resistance simulator based on VD-DIBAs.

Equation (11) obviously demonstrates that the circuit shown in Figure 18 simulates
the impedance of the floating parallel inductor-resistor, where its equivalent inductance
and resistance values are the same as those in (5) and (9), respectively.

5. Simulation Results of Inductance Simulators

The proposed floating inductance simulators using VD-DIBAs were designed and sim-
ulated in the Cadence environment using a 0.18 µm CMOS process from TSMC. The voltage
supply was +VDD =−VSS = 0.9 V, and the bias current was Ib = 50 µA. The transistor aspect
ratios of the VD-DIBA shown in Figure 4 are listed in Table 1. For the inductance simulators,
the values of the passive components were selected as C = 1 nF and R = 10 kΩ, and the
value of the resistor of the transconductors was Rset1 = Rset2 = 10 kΩ. Figure 19 shows the
simulated impedance (both the magnitude and phase) of the floating lossless inductance
simulator at the first port (v1) and second port (v2). The simulated inductance value was
about 11.30 mH. The useful frequency range was around 3 decades. It was found that
the parasitic resistances in VD-DIBA affect the workability of the active inductor and the
performance of the proposed inductance simulator at a high frequency is affected by the
parasitic capacitances. As described in (5), the inductance value of the lossless active induc-
tor is adjusted by gm. This theoretical expectation was confirmed by the simulation result
in Figure 20, where there are four values of Rset (10, 20, 30, and 40 kΩ). The inductance
values simulated from these Rset values were 11.30, 21.51, 30.87, and 39.47 mH, respectively.
As shown in the result, the inductance is proportional to the Rset value. The simulated
results in Figure 20 are consistent with the expectation in (5).
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Figure 19. The frequency and phase responses of the lossless L connection with Rset = 10 kΩ.
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Figure 20. The frequency responses of the lossless L connection with different Rset.

The simulated impedance (both the magnitude and phase) of the floating inductance-
resistance simulator with Rset = 10 kΩ is shown in Figure 21. The simulated inductance
and resistance values are about 12.39 mH and 9.22 kΩ, respectively. The impedance of the
floating series L-R for different values of Rset is shown in Figure 22, where Rset had four
values (10, 20, 30, and 40 kΩ). The inductance values simulated from these Rset values were
12.39, 23.38, 30.92 and 35.29 mH, respectively. Additionally, the resistance values simulated
from these Rset values were 9.22, 16.88, 23.41, and 29.04 kΩ, respectively. The simulation
performed on the floating parallel inductance-resistance simulator is shown in Figure 23.
The simulated inductance and resistance values were about 11.28 mH and 9.43 kΩ, respec-
tively. The impedance of the floating parallel L-R for different values of Rset is shown in
Figure 24, where Rset was changed to four values (10, 20, 30, and 40 kΩ). The inductance
values simulated from these Rset values were 11.28, 21.48, 30.81, and 39.41 mH, respectively.
Furthermore, the resistance values simulated from these Rset values were 9.22, 17.36, 24.08,
and 29.79 kΩ, respectively.
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Figure 23. The frequency and phase responses of the parallel L-R connection with Rset = 10 kΩ.
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To show the usefulness of the floating inductance simulators, they were applied in the
implementation of the 4th order elliptic lowpass ladder filter presented in Figure 25 [45].
The floating lossless inductance simulator in Figure 14 is used as Leq2, while the series
Req1 and Leq1 circuit is implemented by the series inductance-resistance simulator shown
in Figure 15. It should be noted that in the case of the input voltage signal applied at
the first port (v1), only one VD-DIBA is required for the realization of the series L-R
simulator. As mentioned in the Introduction section, the procedure used to synthesize the
high order ladder filter is easy to understand and implement without using advanced or
complicated mathematics by replacing the passive inductors with the proposed inductance
simulators. The completed 4th order elliptic LP ladder filter using VD-DIBAs-based
inductance simulators is shown in Figure 26. It can be seen that the input voltage node is a
high impedance one.
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Figure 26. The completed 4th order elliptic LP ladder filter based on VD-DIBAs.

The 4th order elliptic LP ladder filter was simulated by selecting C1 = C2 = C3 = 1.04 nF
and RL = 10 kΩ. The resistors and capacitors in the inductance simulators were C = 1.04 pF
and R = 10 kΩ, respectively, while the value of Rset was R1set = R2set = R3set = 9.07 kΩ.
Figure 27 shows the frequency and responses of the 4th order elliptic LP ladder filter
based on VD-DIBA and resistor-inductor-capacitor (RLC) circuit. The gain is −6.027 dB
and the bandwidth (BW) is 13.31 kHz, while for the RLC, the gain is −6.02 dB and BW
is 13.33 kHz. It is evident that the values are close to each other. Figure 28 shows the
frequency responses of the LP ladder filter with different Rset1 and R = Rset1 = R2set = R3set =
7.07, 9.07, and 11.07 kΩ. The BW was 15.39, 13.31, and 11.8 kHz, respectively. The transient
response of the 4th order LP ladder filter realized from the proposed inductance simulators
is shown in Figure 29, where a sine wave signal with a peak-to-peak of 1 V at 1 kHz was
applied to the input of the filter. The output signal has a total harmonic distortion (THD)
of 1%. The THD versus the peak-to-peak value of the input signal is shown in Figure 30.
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The root mean square (RMS) value of the output noise of the filter is 60 µV, so the dynamic
range is 80 dB for 2% THD.
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6. Experimental Results of Inductance Simulators

The experiment was also conducted to verify the performances of the floating in-
ductance simulators and the 4th order elliptic LP filter by implementing VD-DIBA from
LM13700 and AD830 commercially available integrated circuits (IC), as shown in Figure 31.
The transconductance of LM13700 is electronically controlled by gm = IB/2 VT, where the IB
is the bias current and VT is the thermal voltage. To evaluate the impedance of the floating
inductance simulators, the input current signal applied at the first (v1) and second (v2)
ports was implemented by the voltage to current converter using AD844 and Rx, as shown
in Figure 32 (the small value resistor, Rs, was connected to avoid oscillation in the tested cir-
cuits). The power supply voltage used was ±5 V, which was implemented by employing a
GW Instek GPS-3303 power supply. C = 1 nF, R= 1 kΩ, and IB1 = IB2 = 180 µA, as measured
by the Fluke 289 digital multimeter. From (5), the calculated inductance was 0.289 mH.
The sinusoidal input signal and the measured output waveforms were registered with the
Keysight DSOX1102G oscilloscope. Figure 33 shows the experimental impedance (both
the magnitude and phase) of the floating lossless inductance simulator at the first port (v1)
and second port (v2). The experimental inductance value was about 0.271 mH. The useful
frequency range was more than two decades. It was found that the parasitic resistances
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in VD-DIBA affect the workability of the active inductor, as well as the performance of
the proposed inductance simulator at a high frequency, which is affected by the parasitic
capacitances. The transient responses of the input current (i1) and voltage v1 are shown
in Figure 34, where a sine wave signal with a peak-to-peak of 20 mVpp at 200 kHz was
applied to the input (vs) of the V to I converter in Figure 32. This yielded the input current
i1 of 20 µApp. The theoretical voltage drop at port v1 should be 6.81 mVpp (v1 = i1 *
2πfLeq, where f = 200 kHz and Leq = 0.271 mH). The measured voltage drop at port v1 was
7.11 mVpp. It can be seen in Figure 34 that the phase of current was delayed compared
to the phase of voltage by around 90 degrees, which proves that the proposed circuit
works well as a passive inductor. The impedance at port v1 of the inductance simulator
for different values of IB is shown in Figure 35, where the values of IB were set at 78, 180,
and 358 µA. The experimental inductance values obtained from these IB values were 0.644,
0.271, and 0.138 mH, respectively. As shown in the result, the inductance is electronically
controlled by IB.
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The experimental impedance of the floating series inductance-resistance simulator is
shown in Figure 36, where the inductance and resistance values are about 0.346 mH and
0.264 kΩ, respectively. The impedance of the floating series L-R connection for different
values of IB is shown in Figure 37, where IB values were changed to obtain the three
values of 78, 180, and 358 µA. The experimental inductance values obtained from these
IB values were 1.38, 0.346, and 0.15 mH, respectively, while the experimental resistance
values obtained from these IB values were 0.623, 0.264, and 0.135 kΩ, respectively. The ex-
perimental result for the floating parallel inductance-resistance simulator connection is
shown in Figure 38, where the inductance and resistance values were about 0.269 mH and
0.25 kΩ, respectively. The impedance of the floating parallel inductance-resistance connec-
tion for different values of IB values is shown in Figure 39, where IB values were set as 78,
180, and 358 µA. The corresponding inductance values were 0.639, 0.269, and 0.132 mH,
respectively, while the resistance values were 0.603, 0.25, and 0.121 kΩ, respectively.



Electronics 2021, 10, 684 21 of 30

Electronics 2021, 10, x FOR PEER REVIEW 21 of 31 
 

 

Frequency (kHz)

1 10 100 1000 10000

Im
pe

da
nc

e 
(O

hm
)

100

1000

10000

Ph
as

e 
(D

eg
re

e)

-100

-50

0

50

100

Theory 
Magnitude V1 (V2=0)
Magnitude V2 (V1=0)
Phase V1 (V2=0)
Phase V2 (V1=0)

 
Figure 36. The experimental frequency responses of lossless L with different IB. 

Frequency (kHz)

1 10 100 1000 10000

Im
pe

da
nc

e 
(O

hm
)

10

100

1000

10000 Theory
IB=78uA 
IB=180u 
IB=358u 

 
Figure 37. The experimental frequency responses of the series L-R connection with different IB. 

Figure 36. The experimental frequency responses of lossless L with different IB.

Electronics 2021, 10, x FOR PEER REVIEW 21 of 31 
 

 

Frequency (kHz)

1 10 100 1000 10000

Im
pe

da
nc

e 
(O

hm
)

100

1000

10000

Ph
as

e 
(D

eg
re

e)

-100

-50

0

50

100

Theory 
Magnitude V1 (V2=0)
Magnitude V2 (V1=0)
Phase V1 (V2=0)
Phase V2 (V1=0)

 
Figure 36. The experimental frequency responses of lossless L with different IB. 

Frequency (kHz)

1 10 100 1000 10000

Im
pe

da
nc

e 
(O

hm
)

10

100

1000

10000 Theory
IB=78uA 
IB=180u 
IB=358u 

 
Figure 37. The experimental frequency responses of the series L-R connection with different IB. Figure 37. The experimental frequency responses of the series L-R connection with different IB.

Electronics 2021, 10, x FOR PEER REVIEW 22 of 31 
 

 

Frequency (kHz)

1 10 100 1000 10000

Im
pe

da
nc

e 
(O

hm
)

1

10

100

1000

10000

Ph
as

e 
(D

eg
re

e)

-100

-50

0

50

100

Theory 
Magnitude V1 (V2=0)
Magnitude V2 (V1=0)
Phase V1 (V2=0)
Phase V2 (V1=0)

 
Figure 38. The experimental frequency and phase responses of the parallel L-R connection. 

Frequency (kHz)

1 10 100 1000 10000

Im
pe

da
nc

e 
(O

hm
)

0.1

1

10

100

1000

10000

Theory
IB=78uA 
IB=180u 
IB=358u 

 
Figure 39. The experimental frequency and phase responses of the parallel L-R connection. 

The 4th order elliptic LP ladder filter realized from the proposed inductance simula-
tors in Figure 26 was experimentally tested by selecting C1 = C2 = C3 = 10 nF and RL = 0.25 
kΩ. The resistors and capacitors in the inductance simulators were C = 1 nF and R = 1 kΩ, 
respectively, while the value of the bias current was IB1 = IB2 = IB3 = 208 µA. This yielded 
Leq1 = Leq2 = 0.25 mH and Req1 = 0.25 kΩ. Figure 40 shows the experimental frequency re-
sponses of the 4th order elliptic LP ladder filter based on VD-DIBA compared with the 
theoretical response of the RLC prototype filter. The gain is −5.9 dB and bandwidth (BW) 
is 83.17 kHz, while for the RLC prototype, the gain is −6.02 dB and BW is 85.41 kHz. The 

Figure 38. The experimental frequency and phase responses of the parallel L-R connection.



Electronics 2021, 10, 684 22 of 30

Electronics 2021, 10, x FOR PEER REVIEW 22 of 31 
 

 

Frequency (kHz)

1 10 100 1000 10000

Im
pe

da
nc

e 
(O

hm
)

1

10

100

1000

10000

Ph
as

e 
(D

eg
re

e)

-100

-50

0

50

100

Theory 
Magnitude V1 (V2=0)
Magnitude V2 (V1=0)
Phase V1 (V2=0)
Phase V2 (V1=0)

 
Figure 38. The experimental frequency and phase responses of the parallel L-R connection. 

Frequency (kHz)

1 10 100 1000 10000

Im
pe

da
nc

e 
(O

hm
)

0.1

1

10

100

1000

10000

Theory
IB=78uA 
IB=180u 
IB=358u 

 
Figure 39. The experimental frequency and phase responses of the parallel L-R connection. 

The 4th order elliptic LP ladder filter realized from the proposed inductance simula-
tors in Figure 26 was experimentally tested by selecting C1 = C2 = C3 = 10 nF and RL = 0.25 
kΩ. The resistors and capacitors in the inductance simulators were C = 1 nF and R = 1 kΩ, 
respectively, while the value of the bias current was IB1 = IB2 = IB3 = 208 µA. This yielded 
Leq1 = Leq2 = 0.25 mH and Req1 = 0.25 kΩ. Figure 40 shows the experimental frequency re-
sponses of the 4th order elliptic LP ladder filter based on VD-DIBA compared with the 
theoretical response of the RLC prototype filter. The gain is −5.9 dB and bandwidth (BW) 
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Figure 39. The experimental frequency and phase responses of the parallel L-R connection.

The 4th order elliptic LP ladder filter realized from the proposed inductance simulators
in Figure 26 was experimentally tested by selecting C1 = C2 = C3 = 10 nF and RL = 0.25 kΩ.
The resistors and capacitors in the inductance simulators were C = 1 nF and R = 1 kΩ,
respectively, while the value of the bias current was IB1 = IB2 = IB3 = 208 µA. This yielded
Leq1 = Leq2 = 0.25 mH and Req1 = 0.25 kΩ. Figure 40 shows the experimental frequency
responses of the 4th order elliptic LP ladder filter based on VD-DIBA compared with the
theoretical response of the RLC prototype filter. The gain is −5.9 dB and bandwidth (BW)
is 83.17 kHz, while for the RLC prototype, the gain is −6.02 dB and BW is 85.41 kHz.
The transient responses of the LP ladder filter are shown in Figure 41, where sine wave
signals with peak-to-peak of 20 mVpp at 10, 70, and 100 kHz were applied to the input
of the filter. Figure 42 shows the experimental frequency and responses of the LP ladder
filter with a different bias current and IB1 = IB2 = IB3 = 52, 104, and 208 µA, respectively.
The BW was 19.95, 57.54, and 83.17 kHz, respectively. It was found that the BW or the
cut-off frequency is electronically controlled by the bias currents.
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7. Comparison

A comparison of the proposed inductance simulators with other inductance sim-
ulators [31–33,44,46–60], is shown in Table 3. It can be seen that most of the simple
inductance simulators using one active building block only perform grounded-type simu-
lations [31,48,57–60]. The grounded inductance simulators in [33,52,53,56] use more than
one active building block. The floating inductance simulators in [33,51,56] require three
active elements. The prosed inductance simulators in [49,52,54,58] use a floating capacitor,
but the proposed inductance simulators consist of a grounded capacitor, which is a benefit
from an integration point of view. With two active and passive elements, the proposed
floating inductance simulators can perform three functions, as a lossless inductor, series
inductor-resistor, and parallel inductor-resistor. However, the inductance simulators re-
alized in [31–33,46–60] cannot perform three functions with the same number of active
and passive elements. The inductance simulators in [50,55] were realized from the active
building block with a multiple output terminal. The inductance simulators in [46,53,57,59]
require a strict matching condition of the passive element. Most of the published pa-
pers [31–33,44,46–60] on inductance simulator design do not show the procedure employed
to design the topology. Therefore, new researchers or designers will not understand how
to obtain the completed circuits. Therefore, the simple design procedures of the proposed
inductance simulators using a circuit block diagram are also given in this work. Moreover,
the performances of inductance simulators proposed in [31–33,48,50,52,55,56,60] were only
verified through simulation, but the proposed inductance simulators were simulated in
the Cadence environment using a 0.18 µm CMOS process from TSMC and experimen-
tally tested by using VD-DIBA implemented by the available commercial IC. Additionally,
thanks to the multiple-input MOS transistor technique, the CMOS structure of the VD-DIBA
is compact and offers a high dynamic range.
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Table 3. Comparison of the proposed inductance simulators and other inductance simulators using an active building block.

Ref Type No.
of ABB

No.
of R + C

Grounded
Capacitor

Electronic
Tune Function Design

Procedure

No Need for
ABB with
Multiple
Output

Terminal

Free from
Passive
Element

Matching
Condition

Technology Results
Supply

Voltages and
Power

Application in
Filter Design

and
Performances

[31] Grounded 1 VD-DIBA 1 + 1 Yes Yes Series LR
Parallel LR No Yes Yes

0.18 µm TSMC
CMOS and
Commercial

ICs

Simulation ±0.9 V and
N/A

2nd order LPF
and HPF

[32]

Grounded 1 VD-DIBA 1 + 1 Yes Yes Lossless L No Yes Yes
0.35 µm
MIETEC
CMOS

Simulation ±2 V and
N/A 2nd order BPF

Floating 2 VD-DIBA 1 + 1 Yes Yes Lossless L No Yes Yes
0.35 µm
MIETEC
CMOS

Simulation ±2 V and
N/A 2nd order BPF

[33]

Grounded 2 VD-DIBA 0 + 1 Yes Yes Lossless L No Yes Yes
CMOS and
Commercial

ICs
Simulation ±1 V and

N/A 2nd order BPF

Floating 3 VD-DIBA 0 + 1 Yes Yes Lossless L No Yes Yes
CMOS and
Commercial

ICs
Simulation ±1 V and

N/A 2nd order BRF

[44] Floating 2 VDDDA 1 + 1 Yes Yes *
Lossless L
Series LR

Parallel LR
No Yes Yes Commercial

ICs

Simulation
and Ex-

periment

±5 V at 0.66
W

3th order LPF
and 4th order

BPF

[46] Floating 2 FTFNA 1 + 2 Yes Yes Lossless L No Yes No 0.18 µm TSMC
CMOS Simulation ±1.65 V at

8.59 mW
2nd order BPF

and LPF

[47]

Grounded 1 FTFNA 1 + 1 Yes Yes Lossless L No Yes Yes

0.18 µm TSMC
CMOS and
Commercial

ICs

Simulation
and Ex-

periment

±1.65 V at
1.28 mW

5th HPF and
2nd universal

filter

Floating 1 FTFNA 1 + 1 Yes Yes Lossless L No Yes Yes

0.18 µm TSMC
CMOS and
Commercial

ICs

Simulation
and Ex-

periment

±1.65 V at
1.28 mW 2nd BRF
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Table 3. Cont.

Ref Type No.
of ABB

No.
of R + C

Grounded
Capacitor

Electronic
Tune Function Design

Procedure

No Need for
ABB with
Multiple
Output

Terminal

Free from
Passive
Element

Matching
Condition

Technology Results
Supply

Voltages and
Power

Application in
Filter Design

and
Performances

[48] Grounded 1 VCII 2 + 1 Yes No Lossless L No Yes Yes

0.18 µm TSMC
CMOS and
Commercial

ICs

Simulation
and Ex-

periment

±0.9 V at
0.65 mW 2nd HPF

[49] Floating 1 DDCC 2 + 1 No No

Negaitive
lossless L

Parallel LR
Series LR

No Yes Yes

0.13 µm CMOS
and

Commercial
ICs

Simulation
and Ex-

periment

±0.75 V at
2.06 mW and

1.96 mW

2nd LPF, HPF,
and 4th LPF

[50] Floating 1 M-CDTA 0 + 1 Yes Yes Lossless L No No Yes 0.5 µm CMOS Simulation N/A 2nd BPF and
4th LPF

[51] Floating 3 VDBA 0 + 1 Yes Yes Lossless L No Yes Yes

0.25 µm TSMC
CMOS and
Commercial

ICs

Simulation
and Ex-

periment

±0.75 V at
1.13 mW

2nd BPF and
LPF

[52] Grounded 1 CCII & 2
IVB 2 + 1 No No Lossles L No Yes Yes 0.18 µm TSMC

CMOS Simulation ±1.25 V and
N/A

2nd BPF with
−40 dB of IM3
and 15.34 dBm

of IIP3

[53] Grounded 2 CFOA 3 + 1 Yes No Lossless L No Yes No

0.13 µm IBM
CMOS &

Commercial
ICs

Simulation
and Ex-

periment

±0.75 V at
3.53 mW 2nd BPF

[54] Floating 2 VDBA 1 + 1 No Yes Series LR
Parallel LR No Yes Yes

0.25 µm TSMC
CMOS and
Commercial

ICs

Simulation
and Ex-

periment

±0.75 V at
1.28 mW and

1.15 mW
2nd LPF

[55]

Grounded 1
ZC-CFCCC 0 + 1 Yes Yes Lossless L No No Yes 0.18 µm TSMC

CMOS Simulation ±2.5 V at
2.47 mW

2nd BPF with
0.3–2.4% of

THD at 10–150
mV of Vin

Floating 2
ZC-CFCCC 0 + 1 Yes Yes Lossless L No No Yes 0.18 µm TSMC

CMOS Simulation ±2.5 V at
4.94 mW

4th LPF with
0.2–7% of THD
at 10–150 mV

of Vin
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Table 3. Cont.

Ref Type No.
of ABB

No.
of R + C

Grounded
Capacitor

Electronic
Tune Function Design

Procedure

No Need for
ABB with
Multiple
Output

Terminal

Free from
Passive
Element

Matching
Condition

Technology Results
Supply

Voltages and
Power

Application in
Filter Design

and
Performances

[56]
Grounded 2 CC-CFA 0 + 1 Yes Yes Lossless L No Yes Yes BiCMOS Simulation ±1.5 V and

N/A
2nd universal

filter

Floating 3 CC-CFA 0 + 1 Yes Yes Lossless L No Yes Yes BiCMOS Simulation ±1.5 V and
N/A 2nd BPF

[57] Grounded 1 CFOA 3 + 1 Yes No Lossless L No Yes No

0.13 µm IBM
CMOS and
Commercial

ICs

Simulation
and Ex-

periment

±0.75 V at
3.05 mW

2nd universal
filter

[58] Grounded 1 LT1228 1 + 1 No Yes
Lossless L
Parallel LR
Series LR

No Yes Yes Commercial
ICs

Simulation
and Ex-

periment

±5 V at 56.5
mW, 56.4

mW, and 56.8
mW

2nd BPF

[59] Grouned 1 MDVCC 2 + 1 Yes No Lossless L No Yes No

0.13 µm IBM
CMOS and
Commercial

ICs

Simulation
and Ex-

periment

±0.75 V at
1.62 mW 2nd BPF

[60] Grounded 1 CDBA 2 + 1 Yes No Parallel LR No Yes Yes Commercial
ICs Simulation ±12 V and

N/A N/A

This
work Floating 2 VD-DIBA 1 + 1 Yes Yes *

Lossless L
Parallel LR
Series LR

Yes Yes Yes

0.18 µm TSMC
CMOS and
Commercial

ICs

Simulation
and Ex-

periment

±0.9 V at
1.98 mW

4th order LPF
with 80 dB for
2% THD of DR
and 46 µVrms
of output noise

* The proposed circuits are electronically controllable for the VD-DIBA implemented by the commercially available ICS. The power consumption, dynamic range, and noise are
taken from the simulation. N/A: information not available/shown; FTFNTA: four terminal floating nullor transconductance amplifier; VCII: second-generation voltage conveyor;
CCII: second-generation current conveyor; IVB: inverting voltage buffer; ZC-CFCCC: Z-copy current follower current controlled conveyor; MDVCC: modified differential voltage
current conveyor.
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8. Conclusions

The realization of floating inductance simulators (lossless inductor, series inductor-
resistor connection, and parallel inductor-resistor connection) using compact CMOS VD-
DIBA is proposed in this paper. In addition, these active inductors are applied to realize a
4th order elliptic LP ladder filter. All proposed inductance simulators use the same number
of elements (two VD-DIBAs, one resistor, and grounded capacitor). A compact CMOS
VD-DIBA based on the multiple-input MOS transistor technique is proposed in this paper.
The compact CMOS VD-DIBA was supplied with±0.9 V. The linear operation was obtained
over a differential input range of −0.5 to 0.5 V. The total power consumption was 0.99 mW.
The proposed floating inductance simulators and their filter application were designed
using a 0.18 µm TSMC technology and commercially available ICs. Both simulation and
experimental results are included in this paper to confirm the performance of the proposed
circuits. The simulation result obtained from the 4th order elliptic LP ladder filter realized
by the proposed inductance simulators shows a dynamic range (DR) of 80 dB for a total
harmonic distortion (THD) of 2% at 1 kHz and a 1.8 V peak-to-peak output.
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