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Integration within regions

Both region-wide...
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Integration within regions

...and local

Both region-wide... \
.—i NERUDA"
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Tailor-made technology
incl. a heat recovery system

*Pluskal J., Somplak R., Nevrly V., Smejkalova V., Pavlas M. (2021) Journal of Cleaner Production 278, 123359.
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Example: local integration of WtE & CHP plants
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WLE plants require innovative solutions

= Experience: common designs and standardized equipment are often ill-suited
= Proper selection of HEs for the heat recovery system is paramount

— In many cases, novel/tailor-made designs
are the only way to reduce operating problems
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WLE plants require innovative solutions

“Integration?” Key factors:
= Heat integration

Integrated processes

= Selection of heat exchangers
Integrated equipment :

= Fouling

= Heat and fluid flow distributions

How to proceed? Combine know-how,
experience, and modelling!



Large industrial WGLE units

Common arrangement
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Large industrial WGLE units

Improved integrated arrangement
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Large industrial WGLE units

Opportunities presented by modern integrated equipment
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Large industrial WGLE units

Opportunities presented by modern integrated equipment

WASTE GAS (inlet)
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Large industrial WGtE units

Main challenges in the design of modern integrated equipment
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Heat transfer & fluid flow distribution, mechanical load

Motivation:

Improved energy efficiency, lower risk of operating problems

Commonly available design tools:

Only for standardized designs, assume uniform HT/flow distributions

Typical Computational Fluid Dynamics-based tools:
Not suitable for large equipment

Possible solutions (if speed is preferred over accuracy):
= CFD-FEM

= CFD-FVM with a coarse mesh & other simplifications
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Option I: CFD-FEM

Intended use case:
Modelling of large, but structurally simple equipment

Main advantages and disadvantages:

= | ower computational demand

= Easier to implement

= Difficult to properly include the effect of turbulence



Option I: CFD-FEM

Simplified quasi-1D model*:

"M = kAp Flow mixing and splitting
= Two overlaid meshes consisting Fluid flow mesh Temperature mesh
of linear, 2-node elements (®pressure) (® temperature)

*Based on Dudar O.l., Dudar E.S. (2017) IOP Conference Series: Materials Science and Engineering 262, 012085.



Option I: CFD-FEM

Procedure: For the entire mesh:
1) Fluid flow predictor® KI-DpD = 1I-D  y p®

*Létal T., Turek V., Fialova D. (2019) Chemical Engineering Transactions 76, 157-162.



Option I: CFD-FEM

Procedure: For each mesh edge:
1) Fluid flow predictor® kI-DpapD= 7D s 7O
2) Fluid flow corrector® iter(ApU), ) —  md

kD = k(l—l)\/m(l)/ﬁl(l) — kO

*Létal T., Turek V., Fialova D. (2019) Chemical Engineering Transactions 76, 157-162.



Option I: CFD-FEM

Procedure:

1) Fluid flow predictor*
2) Fluid flow corrector®
3) Heat transfert

Shell-side
control volume

My Cou Tt " 1

Tube-side """""
control volume T

msr Cp,s-' Ts,1

*Létal T., Turek V., Fialova D. (2019) Chemical Engineering Transactions 76, 157-162.
fLétal T., Turek V., Babicka Fialova D., Jegla Z. (2020) Energies 13, 1664.



Option I: CFD-FEM

Procedure:

1) Fluid flow predictor*

2) Fluid flow corrector®

3) Heat transfert
)

4) Mechanical load — current research focus

*Létal T., Turek V., Fialova D. (2019) Chemical Engineering Transactions 76, 157-162.
fLétal T., Turek V., Babicka Fialova D., Jegla Z. (2020) Energies 13, 1664.
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Case study: heat recovery hot water boiler

Top bundle
distributor

Water inlet

Flue gas
outlet

Side enclosure

Finned
Top bundle =
_collector M| T
Bottom bundle Partly finned
collector
Water outlet
Flue gas > |- Duct width (z-dimension): 3.96 m
inlet
T
x=0m _

......... Sh& Bottom bundle

Side enclosure

distributor

X =2338m



Flue gas

. outlet
Case study: heat recovery hot water boiler ?
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Case study: heat recovery hot water boiler ?

Computational efficiency:
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Case study: heat recovery hot water boiler

FEM-based model

Operator Value Error

Tube side
Outlet temp., °C 139.3 136.1  -3.2 (-2.3%)

Pressure drop, kPa 32.15 30.33 -1.82 (-5.7%)
Shell side

Outlet temp., °C ca. 70* 62.9 ca. 7.1 10%)
Pressure drop, kPa 1.61 114 -0.47 (29%)
Heat duty, MW 53.3 526 0.7 (-1.3%)

*Estimated by the operator of the boiler



Case study: heat recovery hot water boiler

FEM-based model HTRI Xchanger Suitet

Operator Value Error Value Error

Tube side
Outlet temp., °C 139.3 136.1 3.2 (-2.3%) 136.9 —2.4 (-1.7%)

Pressure drop, kPa 32.15 30.33 -1.82 (s7%)  32.33 +0.18 (+0.6%)
Shell side

Outlet temp., °C ca. 70* 62.9 ca.-7.1@10% 59.3 ca. -10.7 (-15%)
Pressure drop, kPa 1.61 1.14  -0.47 29%)  0.93 —0.68 (-42%)
Heat duty, MW 53.3 52.6 —0.7 (-1.3%) 93.1 ~0.2 (-0.4%)

*Estimated by the operator of the boiler
TDe facto industry standard



Case study: heat recovery hot water boiler

Tube and shell side temperatures: Shell side temperature profile:
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*Létal T., Turek V., Babicka Fialova D., Jegla Z. (2020) Energies 13, 1664.
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Intended use case:
Modelling of small to medium size equipment
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Main simplifications:
= | ess complex mesh



: CFD-FVM
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Option ll: CFD-FVM

Intended use case:
Modelling of small to medium size equipment

Main simplifications:
= | ess complex mesh

= More stable CFD solver, less demanding discretization method, suitable
numerical solvers and preconditioning methods, etc.



Option ll: CFD-FVM

Intended use case:
Modelling of small to medium size equipment

Main simplifications:
= | ess complex mesh

= More stable CFD solver, less demanding discretization method, suitable
numerical solvers and preconditioning methods, etc.:

— Segregated solver (e.g., SIMPLEC), first-order schemes, CG/BiCGstab + ILU, ...
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Case study: small cross-flow tube bundle

Fluid:

Water

Average tube Reynolds number:

Ca. 20,000

*All dimensions are in millimetres.



Case study: small cross-flow tube bundle

Category Developed SW Commercial SW

Model preparation <1 min. Units of hrs.



Case study: small cross-flow tube bundle

Category Developed SW Commercial SW
Model preparation <1 min. Units of hrs.
Computation (steady) 97 s Ca. 2 hrs.

(mesh: ca. 28k cells) (8 CPU, mesh: ca. 1.3M cells)



Case study: small cross-flow tube bundle

Category Developed SW Commercial SW
Model preparation <1 min. Units of hrs.
Computation (steady) 97 s Ca. 2 hrs.

(mesh: ca. 28k cells) (8 CPU, mesh: ca. 1.3M cells)
Flow distribution analysis Automatic Manual using data

from monitor faces



Case study: small cross-flow tube bundle

Category Developed SW Commercial SW
Model preparation <1 min. Units of hrs.
Computation (steady) 97 s Ca. 2 hrs.

(mesh: ca. 28k cells) (8 CPU, mesh: ca. 1.3M cells)
Flow distribution analysis Automatic Manual using data

Advantages

Intuitive, fast, availability of the
optimiser for distributor/collector
geometry

from monitor faces

Flexibility, better control over
the computation, many solvers
and algorithms available



Case study: small cross-flow tube bundle

Category Developed SW Commercial SW
Model preparation <1 min. Units of hrs.
Computation (steady) 97 s Ca. 2 hrs.

(mesh: ca. 28k cells)

Flow distribution analysis Automatic

Advantages Intuitive, fast, availability of the
optimiser for distributor/collector
geometry

Disadvantages Lower accuracy®, cannot be

applied to just any geometry

(8 CPU, mesh: ca. 1.3M cells)

Manual using data
from monitor faces

Flexibility, better control over
the computation, many solvers
and algorithms available

Much larger comput. demand,
qualified personnel necessary

*In this case, the relative error compared to the data obtained from the commercial SW was ca. 1.7%.



Case study: small cross-flow tube bundle

Category Developed SW Commercial SW
Model preparation <1 min. Units of hrs.
Computation (steady) 97 s Ca. 2 hrs.

(mesh: ca. 28k cells)

Flow distribution analysis Automatic

Advantages Intuitive, fast, availability of the
optimiser for distributor/collector
geometry

Disadvantages Lower accuracy®, cannot be

applied to just any geometry

(8 CPU, mesh: ca. 1.3M cells)

Manual using data
from monitor faces

Flexibility, better control over
the computation, many solvers
and algorithms available

Much larger comput. demand,
qualified personnel necessary

— Using the developed SW makes sense in spite of the mentioned limitations

*In this case, the relative error compared to the data obtained from the commercial SW was ca. 1.7%.



Future work

= CFD-FEM model:

= Shell side: 1D mesh — rectangular grid
= Tube side: additional mesh elements with better support for wider (“2D”) tube sheets
* Implementation of more accurate heat transfer correlations



Future work

= CFD-FEM model:

= Shell side: 1D mesh — rectangular grid
= Tube side: additional mesh elements with better support for wider (“2D”) tube sheets
* Implementation of more accurate heat transfer correlations

= CFD-FVM model:

= Cell face splitting
= Allowing prism (non-cuboid) cells at the boundary of the domain
= Would it be better to write a preprocessor for, e.g., OpenFOAM?



Future work

= CFD-FEM model:
= Shell side: 1D mesh — rectangular grid
= Tube side: additional mesh elements with better support for wider (“2D”) tube sheets
* Implementation of more accurate heat transfer correlations

= CFD-FVM model:

= Cell face splitting
= Allowing prism (non-cuboid) cells at the boundary of the domain
= Would it be better to write a preprocessor for, e.g., OpenFOAM?

= \alidation
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Conclusions

= Accuracy: generally acceptable, but should be improved
= Properly including the effect of turbulence is problematic if speed is preferred
= As of yet limited applicability (mechanical load submodels are still missing)
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