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…and local

Tailor-made technology 

incl. a heat recovery system
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WtE plants require innovative solutions

▪ Experience: common designs and standardized equipment are often ill-suited

▪ Proper selection of HEs for the heat recovery system is paramount

→ In many cases, novel/tailor-made designs 

→ are the only way to reduce operating problems
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WtE plants require innovative solutions

Key factors:

▪ Heat integration

▪ Selection of heat exchangers

▪ Fouling

▪ Heat and fluid flow distributions

How to proceed? Combine know-how, 

experience, and modelling!

Integrated processes

Integrated equipment

“ Integration2 ”
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Heat transfer & fluid flow distribution, mechanical load

Motivation:

Improved energy efficiency, lower risk of operating problems

Commonly available design tools:

Only for standardized designs, assume uniform HT/flow distributions

Typical Computational Fluid Dynamics-based tools:

Not suitable for large equipment

Possible solutions (if speed is preferred over accuracy):

▪ CFD-FEM

▪ CFD-FVM with a coarse mesh & other simplifications
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Option I: CFD-FEM

Intended use case:

Modelling of large, but structurally simple equipment

Main advantages and disadvantages:

▪ Lower computational demand

▪ Easier to implement

▪ Difficult to properly include the effect of turbulence



Option I: CFD-FEM

Simplified quasi-1D model*:

▪ ሶ𝑚 = 𝑘Δ𝑝

▪ Two overlaid meshes consisting

of linear, 2-node elements

*Based on Dudar O.I., Dudar E.S. (2017) IOP Conference Series: Materials Science and Engineering 262, 012085.

Flow mixing and splitting



Option I: CFD-FEM

Procedure:

1) Fluid flow predictor*

*Létal T., Turek V., Fialová D. (2019) Chemical Engineering Transactions 76, 157–162.
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Option I: CFD-FEM

Procedure:

1) Fluid flow predictor*

2) Fluid flow corrector*

*Létal T., Turek V., Fialová D. (2019) Chemical Engineering Transactions 76, 157–162.

For each mesh edge:

𝑘 𝐼−1 ∆𝑝 𝐼 = ෩ሶ𝑚 𝐼 ⟼ ෩ሶ𝑚 𝐼

iter ∆𝑝 𝐼 , … ⟼ ሶ𝑚 𝐼
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Option I: CFD-FEM

Procedure:

1) Fluid flow predictor*

2) Fluid flow corrector*

3) Heat transfer†

4) Mechanical load – current research focus

*Létal T., Turek V., Fialová D. (2019) Chemical Engineering Transactions 76, 157–162.

†Létal T., Turek V., Babička Fialová D., Jegla Z. (2020) Energies 13, 1664.
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Case study: heat recovery hot water boiler

Computational efficiency:

▪ Mesh creation

▪ Computation

▪ Solution data export Modelled portion

Partly finned

Finned

ca. 240 s

(typical PC)



Case study: heat recovery hot water boiler

FEM-based model

Operator Value Error

Tube side

Outlet temp., °C 139.3 136.1 –3.2 (–2.3%)

Pressure drop, kPa 32.15 30.33 –1.82 (–5.7%)

Shell side

Outlet temp., °C ca. 70* 62.9 ca. –7.1 (–10%)

Pressure drop, kPa 1.61 1.14 –0.47 (–29%)

Heat duty, MW 53.3 52.6 –0.7 (–1.3%)

*Estimated by the operator of the boiler



Case study: heat recovery hot water boiler

FEM-based model HTRI Xchanger Suite†

Operator Value Error Value Error

Tube side

Outlet temp., °C 139.3 136.1 –3.2 (–2.3%) 136.9 –2.4 (–1.7%)

Pressure drop, kPa 32.15 30.33 –1.82 (–5.7%) 32.33 +0.18 (+0.6%)

Shell side

Outlet temp., °C ca. 70* 62.9 ca. –7.1 (–10%) 59.3 ca. –10.7 (–15%)

Pressure drop, kPa 1.61 1.14 –0.47 (–29%) 0.93 –0.68 (–42%)

Heat duty, MW 53.3 52.6 –0.7 (–1.3%) 53.1 –0.2 (–0.4%)

*Estimated by the operator of the boiler

†De facto industry standard



Case study: heat recovery hot water boiler

Tube and shell side temperatures:

*Létal T., Turek V., Babička Fialová D., Jegla Z. (2020) Energies 13, 1664.

Shell side temperature profile:
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Option II: CFD-FVM

Intended use case:

Modelling of small to medium size equipment

Main simplifications:

▪ Less complex mesh

▪ More stable CFD solver, less demanding discretization method, suitable

numerical solvers and preconditioning methods, etc.:

→ Segregated solver (e.g., SIMPLEC), first-order schemes, CG/BiCGstab + ILU, …



Case study: small cross-flow tube bundle

Fluid:

Water

Average tube Reynolds number:

Ca. 20,000

*All dimensions are in millimetres.
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→ Using the developed SW makes sense in spite of the mentioned limitations

Category Developed SW Commercial SW

Model preparation < 1 min. Units of hrs.

Computation (steady) 97 s
(mesh: ca. 28k cells)

Ca. 2 hrs.
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Future work

▪ CFD-FEM model:

▪ Shell side: 1D mesh → rectangular grid

▪ Tube side: additional mesh elements with better support for wider (“2D”) tube sheets

▪ Implementation of more accurate heat transfer correlations

▪ CFD-FVM model:

▪ Cell face splitting

▪ Allowing prism (non-cuboid) cells at the boundary of the domain

▪ Would it be better to write a preprocessor for, e.g., OpenFOAM?

▪ Validation
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Conclusions

▪ Accuracy: generally acceptable, but should be improved

▪ Properly including the effect of turbulence is problematic if speed is preferred

▪ As of yet limited applicability (mechanical load submodels are still missing)
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