Experimental verification of anaerobic fermentation of potato processing agro-industrial waste products

V. Brummer*, V. Zejda

Brno university of technology, Institute of Process Engineering, Technická 2896/2, 616 69 Brno, Czech Republic

* E-mail: brummer@fme.vutbr.cz (Corresponding author - V. Brummer)

Introduction & Methods

- Agricultural-based industries produce a vastly amount of waste each year.
- This study Experimental verification of anaerobic fermentation of waste products from potato processing
- Substrates* native settled starch (1), starch fraction removed a) [after coagulation with aluminium sulphate (2) and potato peels - analysis: TS, ash content, VS, pH and CHNS elemental analysis

Biogas composition (GC), thoretical (Buswell equation) vs experimental yield in LAB and PILOT scale

→ A - starch 1 → B - starch 1

C - starch 2 → D - starch 2

E - peels

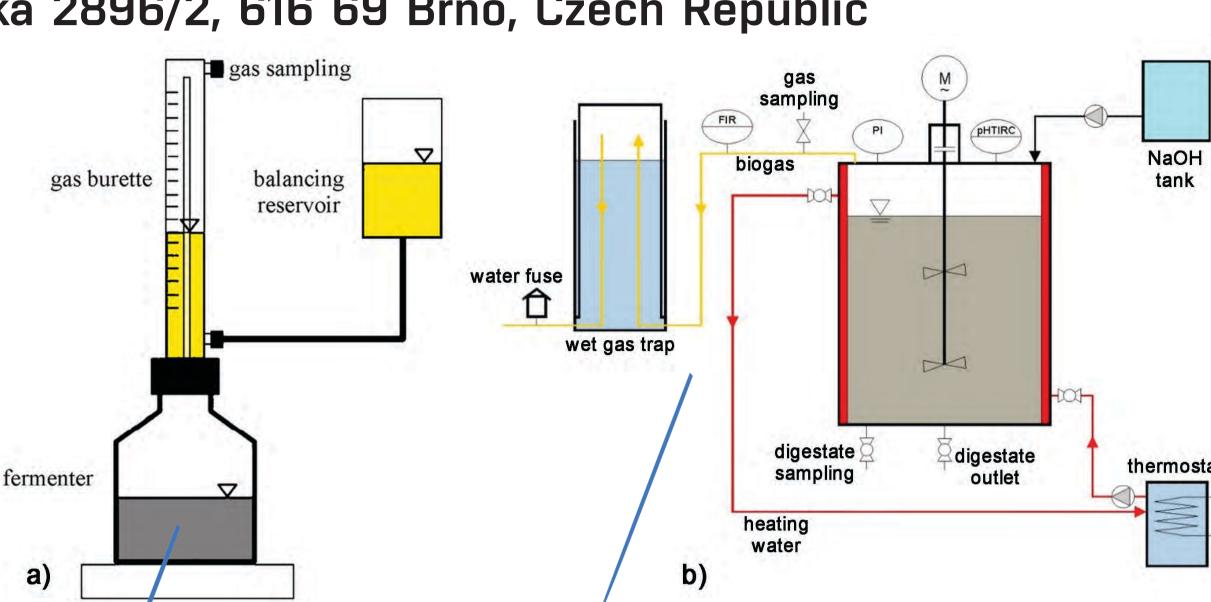


Fig. 1 Experimental setup for (a) LAB and (b) PILOT scale

starch 2 starch

Time (h) Fig. 3 LAB scale – Specific yields of biogas

200

Results & Discussion

0.0

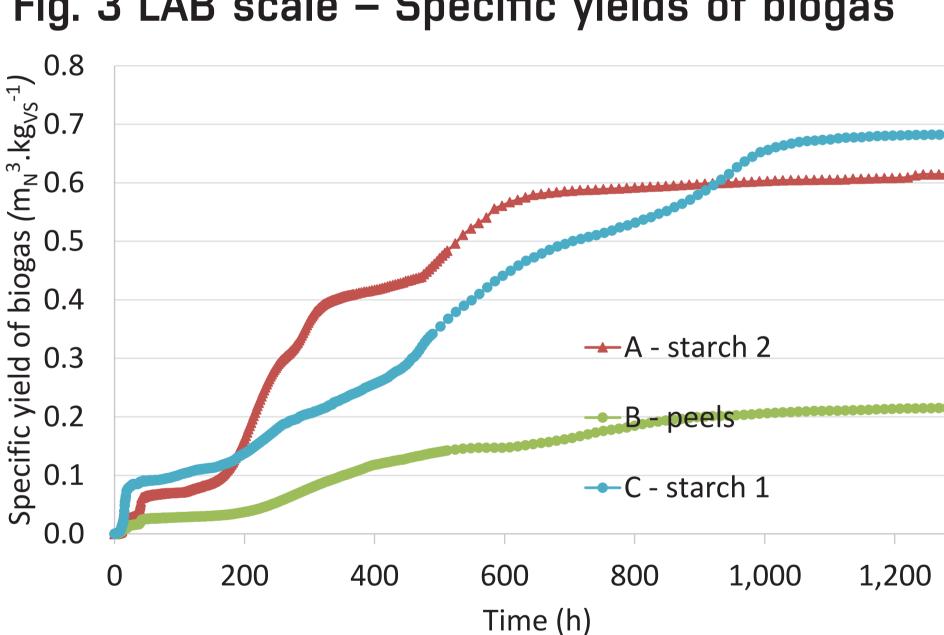


Fig. 4 PILOT scale – Specific yields of biogas Tab. 1 LAB scale – biogas and CH₄ yields

Tab. 2 and 3 LAB scale – composition of biogas

exp	eriment	LAB scale (average values)						
fer	menter	A+B $C+D$		E+F	G+H			
sul	ostrate	starch 1	starch 2	peels	sludge			
CO_2	(% vol.)	28.91	24.13	27.01	12.24			
O_2	(% vol.)	0.19	0.20	0.20	0.47			
N_2	(% vol.)	10.04	13.26	13.20	55.67			
CH ₄	(% vol.)	58.38	57.84	53.14	32.50			
SUM	(% vol.)	97.52	95.44	93.55	100.87			
expe	eriment	LAB scale (without inert gas)						
ferr	nenter	A+B	C+D	E+F	G+H			
sub	strate	starch 1	starch 2	peels	sludge			
CO_2	(% vol.)	33.12	29.44	33.70	27.36			
CH ₄	(% vol.)	66.88	70.56	66.30	72.64			
SUM	(% vol.)	100.00	100.00	100.00	100.00			

Fig. 2 Tested substrates*

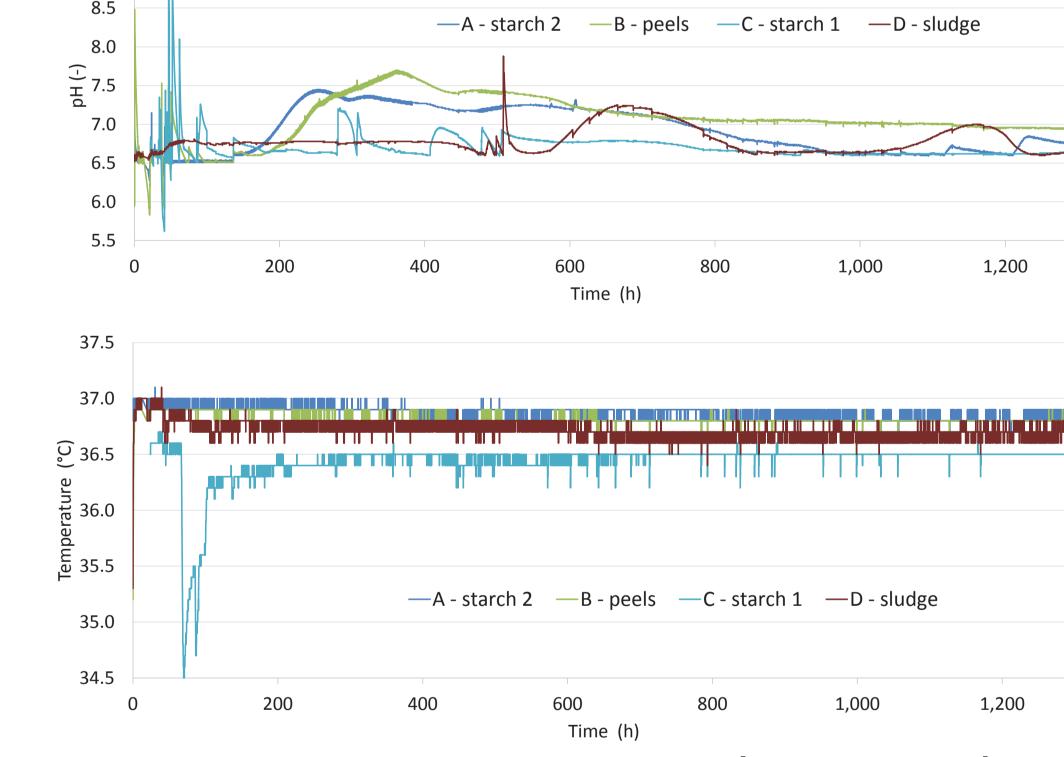


Fig. 5 PILOT scale - ph/time and T/time

substrate	biogas yield			CH ₄ concentration		CH ₄ yield		
	theoret.	experim.	yield	theoret.	experim.*	theoret.	experim.	yield
(-)	$(m_N^3.$	$kgvs^{-1}$	(%)	(%	vol.)	$(m_N^3.$	$kgvs^{-1}$)	(%)
starch 1	1.057	0.697	66.0	65.1	58.4	0.461	0.407	88.3
starch 2	0.536	0.516	96.4	75.7	57.8	0.457	0.299	65.3
peels	1.144	0.572	50.0	73.2	53.1	0.614	0.304	49.5

LAB scale

	yield	experim.	theoret.	experim.	theoret.	yield	xperim.
su	(%)	kgvs ⁻¹)	$(m_N^3.$	vol.)	(%)	vs ⁻¹)	
	88.3	0.407	0.461	58.4	65.1	66.0	0.697
	65.3	0.299	0.457	57.8	75.7	96.4	0.516
st	49.5	0.304	0.614	53.1	73.2	50.0	0.572

<u>d</u>			P	ILOT so	cale		Tab. 5 Bi	ogas and CH, yie	elds - average
)	substrate	bi	ogas yield		CH ₄ cor	ncentration		om LAB and PILC	
<u>3</u> 		theoret.	experim.	yield	theoret.	experim.**	1 4 4 .	biogas production	CH ₄ production
<u>3</u> -	(-)	$(m_N^3.$	kg_{VS}^{-1}	(%)	(%	vol.)	substrate	$(m_N^3.kg_{VS}^{-1})$	$(m_N^3.kg_{VS}^{-1})$
) — 	starch 1	1.057	0.682	64.5	65.1	78.9	starch 1	0.690	0.407
_	starch 2	0.536	0.579	108.0	75.7	77.6	starch 2	0.547	0.299

0.191

Tab. 4 PILOT scale – biogas and CH₄ yields

16.7

73.2

77.1

_ values from LAB and PILUT cultivation			
*_ substratebiogas production CH ₄ product	CH ₄ production		
	$(m_N^3.kg_{VS}^{-1})$		
_ starch 1 0.690 0.407			
_ starch 2 0.547 0.299			

0.572

0.304

Conclusions

- At the lab and pilot scale, the production of biogas and methane from 3 potato processing waste substrates was verified.
- It was assumed that all tested substrates provide enough biogas and methane to be of interest to the biogas plants.
- The level of organic dry matter removal is also high and ranges from 75 to 90 %.
- The potential of substrates for biogas and CH4 production decreases in the following order: native starch, flocculated starch, peels.

peels

- Starches are well decomposable for microorganisms and can cause slowdown or even fermentation collapse in case of too high dosing.
- As a suitable dosing of tested substrates 0.35 kgVS/m³/ day was estimated to be optimal (calculated with 30-days fermentation).

Acknowledgements

The research leading to these results has received funding from the Ministry of Education, Youth and Sports of the Czech Republic under OP RDE grant number CZ.02.1.01/0.0/0.0/16_026/0008413 "Strategic Partnership for environmental Technologies and Energy Production".