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Abstract: This paper presents a human-carried mapping backpack based on a pair of Velodyne
LiDAR scanners. Our system is a universal solution for both large scale outdoor and smaller
indoor environments. It benefits from a combination of two LiDAR scanners, which makes the
odometry estimation more precise. The scanners are mounted under different angles, thus a larger
space around the backpack is scanned. By fusion with GNSS/INS sub-system, the mapping of
featureless environments and the georeferencing of resulting point cloud is possible. By deploying
SoA methods for registration and the loop closure optimization, it provides sufficient precision for
many applications in BIM (Building Information Modeling), inventory check, construction planning,
etc. In our indoor experiments, we evaluated our proposed backpack against ZEB-1 solution, using
FARO terrestrial scanner as the reference, yielding similar results in terms of precision, while our
system provides higher data density, laser intensity readings, and scalability for large environments.

Keywords: backpack laser mapping; BIM; Velodyne LiDAR; point cloud; GNSS; IMU; sensor
calibration; surveying

1. Introduction

In recent years, the LiDAR (Light Detection And Ranging) technology has become very popular
in the field of geodesy and related fields, where the availability of 3D models of outdoor or indoor
environments can be beneficial: e.g., forestry, architecture, preserving cultural heritage, construction
monitoring, etc. The examples of reconstructions from similar practical applications can be found in
Figure 1. Using 3D mapping can also be beneficial for time and cost reduction. The same model can
be shared among different professionals in different fields of expertise without the need for personal
inspection and measuring at a given place individually.

This demand causes a huge interest in developing solutions that would be able to capture
the reality and provide reliable 3D reconstructions out of the box. However, there are also other
requirements for such a system.

The data acquisition process has to be quick and the planning of fieldwork should be minimized.
This requirement discriminates solutions based on static terrestrial lasers (e.g., Leica and Riegl of FARO
companies), requiring detailed planning of the data acquisition and manual system set up on a tripod
within multiple convenient viewpoints across the scene.

The solution has to be mobile and easy to handle. This naturally leads to the preference of human
carried (backpack or handheld) solutions instead of terrestrial or vehicle based solutions, such as
NavVis [1], which, for example, does not support traversing tilted surfaces such as ramps.
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(a) (b) (c)

Figure 1. The motivation and the results of our work. The reconstruction of indoor environments (a) is
beneficial for inspection, inventory checking and automatic floor plans generation. 3D maps of forest
environments (b) is useful for quick and precise estimation of the biomass (timber) amount. The other
example of 3D LiDAR mapping deployment is preserving cultural heritages or providing models of
historical building, e.g., the roof in (c).

However, the necessity for reliability in terms of resulting model precision is in contradiction
with these two requirements. Stationary terrestrial LiDAR solutions require time demanding scanning
process while providing a great accuracy (in order of millimeters) because of fewer degrees of freedom.
Although, for many applications listed above, there is no need for such precision, our goal is the
difference between the reality and the resulting 3D model below 5 cm. This value was requested by
the experts in the field of geodesy with whom we consulted.

In the practical applications, completeness of the final map should also be guaranteed because it
might be difficult to repeat the scanning. The operator has to be aware of the fact that all necessary data
of the whole environment were acquired. We fulfilled this requirement by providing a live preview of
the collected data.

The resulting model has to be dense enough, so that all important objects such as furniture and
other inventory can be recognized and distinguished. This is the typical issue of existing solutions
such as ZEB-1, where no LiDAR intensity readings are available. Therefore, our solution relies on
Velodyne LiDARs, which provide a huge amount of data and the resulting models are dense (see
examples in Figure 2). It also provides the laser intensity readings, which do not depend on the lighting
conditions, contrary to camera-aided solutions. Moreover, we propose laser intensity normalization,
which increases the recognizability of the objects since the laser intensity readings cannot be considered
as the “color” of the object as it depends on the range of measurement, the angle of incidence, and the
emitted energy.

Some of the existing solutions are not comfortable enough to use. According to practical
experience of the operators, handheld solutions such as ZEB are physically difficult to operate for
a longer period of time since the mapping head weighs approximately 0.4–1 kg, and it has to be carried
or swept by hand.

The final requirement is an affordable price. We use Velodyne VLP-16 scanners, which
are relatively cheap in comparison to the other LiDAR solutions, and a universal IMU (Inertial
Measurement Unit) solution, which can be upgraded by a dual antenna and therefore reused in the
outdoor environment where GNSS (Global Navigation Satellite System) is available.

The contributions of this paper can be summarized as the proposal of a LiDAR mapping solution
with the following characteristics:

• It is capable of both small indoor and large open outdoor environments mapping, georeferencing
and sufficient precision in the order of centimeters. These abilities are evaluated using multiple
datasets.
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• It benefits from a synchronized and calibrated dual LiDAR scanner, which significantly increases
field of view. Both scanners are used for both odometry estimation and 3D model reconstruction,
which enables scanning of small environments, narrow corridors, staircases, etc.

• It provides the ability to recognize objects in the map due to sufficient point density and our novel
intensity normalization for the measurements from an arbitrary range.

We also performed a precise evaluation and comparison of our previously proposed point
cloud registration method CLS (Collar Line Segments) with state-of-the-art approach LOAM (LiDAR
Odometry and Mapping), which has not yet been published. Moreover, we upgraded our CLS method
with automatic overlap estimation for better registration flexibility.

(a) (b)

Figure 2. The example of resulting models of indoor mapping. The office environment (a) and the
staircase (b) were captured by a human carrying our 4RECON backpack. The data acquisition process
took 3 and 2 min, respectively.

2. Related Work

LiDAR based systems for indoor and outdoor mapping are not a brand new tool in the geospatial
community. Demand for such solutions drives—among other applications, such as autonomous
driving—the development of basic algorithms for LiDAR data processing, point cloud registration,
etc., as the essential parts of more complex SLAM (Simultaneous Localization and Mapping) methods
(a summary can be found in [2]).

Table 1 contains an overview of the existing LiDAR mapping solutions that are related to our work.
All such solutions have to solve several typical issues. Besides the construction of hardware mount
itself (e.g., a backpack or a drone), the data from multiple sensors have to be synchronized properly,
etc. However, the key issue is the software component for odometry estimation—i.e., estimation of
the trajectory and the movement of the sensory platform. This is essential for correct alignment of
laser measurements into a consistent and precise 3D model. Although there are already numerous
methods providing solutions within a certain level of precision for certain types of LiDAR sensors,
precise odometry estimation is still an open question.
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Table 1. Overview of related LiDAR mobile mapping solutions.

Solution (Released in) Sensor
(Precision) Range System Precision Price e Open

Method Properties and Limitations Intensities

ZEB-1
(2013)

[3] Hokuyo
UTM-30LX
(3 cm up to
10 m range)

15–20 m (max
30 m under
optimal
conditions)

up to 3.8 cm
indoors [4] N/A

Proprietary,
based
on [5,6]

• missing (laser) intensity
readings

• no GNSS reference
• requires visible featuring

objects at close distances

No

ZEB-REVO
(2015) [7]

[3] Hokuyo
UTM-30LX-F
(3 cm up to
10 m range)

15–20 m (max
30 m under
optimal
conditions) [7]

up to 3.6 cm
indoors [8] 34, 000

Proprietary,
based
on [5,6]

• missing (laser) intensity
readings

• no GNSS reference
• requires visible featuring

objects at close distances

No

LiBackpack
(2019) [9]

[10] 2× Velodyne
VLP-16 (3 cm)

100 m (Velodyne
scanner
limitation)

5 cm 60, 000 Proprietary

• intensity readings available
• GNSS support
• dual LiDAR (one for

odometry only, second for
reconstruction)

Yes

Pegasus
(2015) [11]

[11] 2× Velodyne
VLP-16 (3 cm)

50 m usable
range

5 cm with GNSS
(5–50 cm without).
4.2 cm in underground
bastion [12]

150, 000 Proprietary

• intensity readings available
• GNSS support
• dual LiDAR (cooperation

unknown)

Yes
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Table 1. Cont.

Solution (Released in) Sensor
(Precision) Range System Precision Price e Open

Method Properties and Limitations Intensities

Viametris
bMS3D [13,
14]

[14] 2× Velodyne
VLP-16 (3 cm)

100 m (Velodyne
scanner
limitation)

5 cm under
appropriate satellite
reception conditions

N/A Proprietary

• intensity readings and RGB
coloring available

• GNSS support
• dual LiDAR (cooperation

unknown)

Yes

Robin
(2016) [15] [16]

RIEGL
VUX-1HA
(3 mm)

120/420 m in
slow/high
frequency mode
(for sensor)

up to 3.6 cm at 30 m
range (FOG IMU
update)

220, 000 Proprietary

• intensity readings
• dual GNSS
• (at least weak) GNSS signal

required

Yes

Akhka
(2015) [17,
18]

[17] FARO
Focus3D 120S
(1 mm)

120 m (sensor
range)

8.7 cm in forest
environments N/A Open [17]

• intensity readings
• outdoor only (GNSS

required)
Yes
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One of the state-of-the-art methods, performing quite well for both the 3D LiDARs (as Velodyne)
and also the 2D rangefinders (as continuously spinning or sweeping Hokuyo LiDAR), is LOAM
(LiDAR Odometry And Mapping) [19]. There are also visually [20] or depth enhanced [21] versions
where the odometry estimation is supplemented by a RGB camera or a depth sensor (such as Kinect
or Asus Xtion), respectively. This whole group can be considered as feature-based methods, since,
from the original point cloud, only the edge and the plane key points are preserved. These are used
for geometrical registration of the current frame within the map and also for building the map itself
continuously. Based on the impressive results presented, LOAM method was our first candidate for
odometry estimation in our backpack solution. However, our experiments on KITTI Odometry [22]
dataset presented later on in Section 4.1 will show that our previously published method CLS (Collar
Line Segments) [23] outperforms LOAM in terms of accuracy—the error is lowered from 2.9 cm to
1.7 cm per 1 m of elapsed trajectory.

Another solution for odometry estimation, developed and published by Bosse and Zlot [6] in
2009, is designed for continuously spinning 2D LiDAR rangefinder. After three years, this approach
was modified and integrated into the prototype of Zebedee [5] mobile mapping application which
eventually evolved into ZEB products (in Table 1) of GeoSLAM company [3]. These products are
probably the most related to our solution in terms of pricing (ZEB-REVO including 1 year basic support
costs 34,000 e) and therefore also in terms of accessibility to small companies.

Bosse and Zlot [6] proposed a surfel-based algorithm Voxel Sweep Match which works over the
space discretized into a 3D voxel grid. The model of the environment consists of a set of surfels—3D
ellipsoids representing the local surface information within the voxel. The internal model is updated
and new surfels are added after each “sweep” (the half revolution of the spinning LiDAR) is captured.
The algorithm works similarly to the well known ICP (Iterative closest point) [24], but instead of
point-to-point matching, the surfels matching in 9D space (including the position, and the orientation
of the surfels) is used. Beside these matching constraints of neighboring surfels, another constraints
ensuring the smoothness and the continuity of the trajectory are added in the form of linear equations
to be solved. After the new continuous trajectory estimation, surfel positions are updated, and the
process is repeated until convergence.

This first proposal [6] did not reach good precision and the main contribution is the basis for
further development and improvements—especially missing global loop closure is the problem, which
has been solved in downstream projects: Zebedee [5] solution and probably also in ZEB-1 system. It is
likely that ZEB-1 is the evolution of Zebedee, since it shares the same ideas and design, but we cannot
say this for sure, since it is a closed proprietary solution. Both Zebedee and ZEB-1 use Hokuyo 2D
LiDAR, and instead of a continuously spinning mount, a flexible spring construction is used to extend
the rangefinder into the 3D LiDAR. The spring amplifies low frequency smooth sweeping motions,
while it cancels high frequency motions (vibrations and shaking), which are undesirable and difficult
to estimate in SLAM solutions. Moreover, an IMU unit was added in order to estimate quick swinging
motion and provide additional constraints for optimization.

Regarding the precision of Zebedee prototype, the accumulated drift for open loop precision
causes approximately 10 cm translation and 2◦ rotation error per minute. This error is significantly
reduced by loop closing in a global optimization. The error of the global solution is not published,
since the ground truth for experimental dataset was not available. However, the visualization in
Figure 3 still shows so-called “dual wall” errors: two instances of the same wall in the same model
but at different positions. This ambiguity causes significant problems when the model should be used
for further processing (by construction engineers, architects, etc.), and it is our goal to avoid this type
of error.
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(a) (b)

Figure 3. “Double walls” error in the reconstruction of Zebedee [5]. The wall and the ceiling appears
twice in the reconstruction, causing an ambiguity. In the solution without loop closure (a), the error
is quite visible. Double walls are reduced after global loop closure (b), but they are still present
(highlighted by yellow dashed lines).

In 2015, the GeoSLAM company released their new alternative version of a handheld LiDAR
scanner—ZEB-REVO [7]—where the spring mount was revoked in favor of original continuously
spinning design. This update brings better performance in both processing time and accuracy.
In addition, the human operator does not have to “whisk” the sensory head in order to correctly
capture the whole environment around, as it was required in ZEB-1. However, the weight of the
handheld part of the scanner was increased from 0.4 kg (for ZEB-1) to 1 kg, probably due to servo
motors and additional electronics. These factors (the necessity to whisk for ZEB-1 and the significant
weight for ZEB-REVO) considerably decrease the usage comfort when a larger environment is mapped.

Since the ZEB products are closed and they are using proprietary software, it is not clear how the
3D map is actually built. Fortunately, there are at least several works published, where the quality
of the resulting model was evaluated. The evaluation of ZEB-REVO in an underground quarry [8]
reported point precision (in terms of the distance to the best fitting plane for given surface) around
3 cm. In an experiment within a small office environment [25], 22 test planes were selected from the
3D model built by ZEB-REVO. Using the same evaluation, the standard deviation of the point to
best fitting-plane distance reached 11 mm. However, these evaluations do not say much about the
precision of the whole model and reflect only the local precision. Another work evaluated ZEB-1 [4] by
comparison with measurements obtained by a precise terrestrial laser (Leica C10) as the ground truth.
For a small indoor environment in Figure 4, the difference in corner-to-corner distances were up to
3.8 cm, and the difference between real and estimated area floor reached 0.4 m2. These numbers are
consistent with specified positional accuracy between 3–30 cm after 10 min scanning process in user
guides [7]. The density of 1000–18, 000 points/m2 was observed in the point cloud model generated
by ZEB-1 which represents an average distance of 0.8–3 cm between the points.
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Figure 4. Dataset of indoor office environment for evaluation of ZEB-1 scanner [4]. In the experiment,
3.8 cm error of corner-to-corner average distances within the rooms was achieved.

When using Zebedee, ZEB-1 or ZEB-REVO, the user has to follow certain guidelines and also be
aware of the limitations of these products [5,7]. When using Zebedee or ZEB-1 with head mounted on
the flexible spring, the user has to keep the sensor in the movement by constant “whisking” or somehow
changing the accelerations all the time what could be uncomfortable or inconvenient in many cases.
The absence of the swinging motion would degrade the sensor back into an 2D rangefinder and could
cause a serious error. In addition, the sensors are sensitive to motions in the scene (people, animals, etc.)
and the operator has to preserve the overlap between the current and previous measurements—e.g.,
by walking backwards when leaving a room or traversing doors, keeping a slow pace, etc., since the
sensors observe only the environment in front of the operator.

Moreover, there are certain so called “ill” environments or situations when ZEB solutions are
failing—especially featureless and empty spaces, where SLAM solutions are failing in general, and the
only solution is the augmentation of the scene by additional obstacles, boxes, etc. Optimal results
can be obtained when the obstacles or featuring objects are within 15–20 m range for outdoor. This is
a significant limitation for vast open environments.

Other mobile backpack solutions for the LiDAR mapping can be divided into two groups:
fully commercial, such as Leica Pegasus [11], Viametris bMS3D [13,14], Robin backpack [15],
or GreenValley LiBackpack [9], and research projects, such as Akhka Backpack [17]. Basic properties
of these solutions are summarized in Table 1. The most significant drawback of these solutions is
their high price: 150, 000e for Pegasus, 220, 000e for Robin, and 60, 000e for GreenValley backpack
(without GNSS upgrade), which makes them too expensive and inaccessible for small businesses.
In comparison, the total cost of HW components in our solution is around 17, 500e. For the whole
product (including SW development, support, etc.) we expect the price to increase approximately
twofold, which brings us much closer to ZEB scanners. Another disadvantage of these backpack
solutions (at least for Leica Pegasus and Robin backpacks) is their high dependency on GNSS, so the
quality of mapping drops when the signal of satellites is poor or not available.

Leica, Viametris, 3D Laser Mapping, and GreenValley companies naturally did not publish how
their solutions estimate the odometry and the alignment of LiDAR data into 3D model. We know
that these systems use GNSS/INS aiding in order to improve the precision. According to the
documentation [11], Leica Pegasus is able to achieve up to 5 cm precision after 10 min walk, when
GNSS is available and 5–50 cm without GNSS aiding. It uses 2 Velodyne LiDAR scanners as a source
of 3D data and an additional set of five high-resolution cameras. Potential problems for small rooms,
staircases and featureless environments are reported in the documentation. Independent evaluation
has been performed in small (20 m length) underground medieval stronghold [12], where average
error of 4.2 cm is reported when the model is compared with terrestrial LiDAR reference. There is not
much information published regarding price or precision of Viametris backpack. However, up to 5 cm
accuracy is reported when reasonable satellite reception is available [13]. The Robin backpack [15]
for outdoor mapping depends on precise GNSS/INS (Inertial Navigation System) with dual antenna,
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claiming 2 cm positional and 0.03◦ error. However, the precision of generated models is not specified,
and no evaluation papers have been published yet (to our best knowledge). The specification of
GreenValley LiBackpack [9] claims ≈5 cm relative accuracy of the system.

LiBackpack can be considered as the backpack solution most similar to ours—in terms of price,
sensors, and accuracy. However, according to the information given to us by GreenValley company,
their solution uses Velodyne scanners separately—one scanner is used for the odometry estimation
using SLAM, and the second one for the 3D reconstruction. We find it unfortunate, because the full
potential of data is not utilized. In the solution proposed in this paper, both scanners are synchronized
and extrinsically calibrated—mutual 6 DoF (Degrees of Freedom) pose is estimated. This makes it
possible to use both sensors in both tasks—SLAM and building the 3D model.

Akhka mapping backpack [17,18,26,27] was developed by Finnish Geospatial Research Institute
and Aalto University. It deploys Faro Focus LiDAR and depends on the precise Novatel Flexpak6
GNSS-IMU solution. When mapping the environments with wrong GNSS reception, the scans
are roughly aligned by IMU within small time windows—segments. Afterwards, ICP is used for
registration of these segments. During the experiment in a river channel, RMSE (root mean square
error) of 3.6 cm was measured at reference positions. During the mapping of a forest environment,
the average misalignment increased to 8.7 cm.

Google released their SLAM software Cartographer [28] for online building 2D floor plans using
LiDAR rangefinders. It uses efficient probability 2D occupancy grid (5 cm resolution) as a map
representation enabling fast registration and robust loop closure. Google also claims the ability to
produce full 3D maps, however, the results reported are not that appealing [29]. As far as we know, no
seriously evaluated deployment has been published so far.

The idea behind the well-known KinectFusion [30] project for processing RGB-D data drove the
development of a new solution for LiDAR odometry estimation called IMLS-SLAM [31]. Instead of
typical scan-to-scan matching and registration, the target LiDAR scan is transformed into implicit
surface representation denoted as IMLS surface (Implicit Moving Least Square) originally proposed
by [32]. The source frames are registered against these implicit surfaces following the scan-to-model
strategy. This work also provides mathematical background for solving such a task as a least-square
optimization problem. On average, their method achieved 0.69 cm drift after 1 m of elapsed trajectory.

Droeschel et al. [33] proposed a hierarchical pose graph structure for online mapping and
odometry estimation. They split each frame into scan lines (slices of the Velodyne LiDAR frame
with 1.33 ms duration), while they also group neighboring frames into local optimization windows.
Therefore, there are 3 types of nodes within the graph: map nodes representing local windows on the
highest level, scan nodes representing Velodyne LiDAR frames (360◦ revolution), and the scan line
nodes on the lowest level. The surfel based registration is performed only among the frames within
the local window (forming edges between map and scan nodes) and among whole local windows
(producing edges among map nodes). The global optimization produces a continuous time trajectory,
where the transformation is assigned to each scan line by cubic B-spline interpolation. Therefore, the
scans, the pose graph, and the trajectory are iteratively refined. Unfortunately, the paper does not
provide the precise evaluation of this method. The visualizations show that the method reduces
the thickness of the walls and so-called “double wall” effect in comparison with previous approach
without hierarchical structure [34].

We also experimented with a similar hierarchical approach in our SLAM system. The main
motivation was to make the process more time-efficient. Eventually, we rejected this idea, since the
errors of frame-to-frame registrations, which were introduced into the local map, made the registrations
among local maps quite inaccurate.
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Mendes et al. [35] decided to run a simple ICP frame-to-frame registration for the stream of LiDAR
scans. Instead of registering the consecutive frames together, the current frame is aligned within the
local map consisting of last few keyframes. When the overlap (given by the point matching in ICP
algorithm) drops under a certain level, the current scan is labeled as a new keyframe and it is added to
the local map. The old keyframes (dropped from the local map) are preserved for the loop detection
and closure.

Besides the geometrical accuracy of the model, there are also other quality aspects to consider
when creating a LiDAR mapping solution, e.g., the point cloud density and especially the ability of
so-called “recognizability” of various objects in the map. The consumer of the point cloud model
(engineer, architect, geodesist, etc.) has to be able to recognize furniture, surface borders, and in
some cases also writings, symbols or the texture of the surface. For this task, the color or at least
the intensities have to be correctly introduced into the model. In the previously described solutions
of LiDAR mapping, this information is missing (e.g., ZEB-1, basic ZEB-REVO) or introduced by
additional RGB camera (e.g., ZEB-REVO [36]). In solutions based on the terrestrial laser scanner or
Velodyne LiDARs, the intensity of laser return is used directly to color the points in the model.

Since we want to keep our solution simple and cheap and preserve the invariance to lightning
conditions, we decided to “color” our models with LiDAR intensities. However, keeping these raw
intensities would cause unwanted artifacts. As was described in previous works [37–39], the reflectivity
of the surface, which we want to capture, is not the only factor affecting these intensity values.
The measured intensity depends also on the incidence angle of the laser ray, distance from the sensor
(see Figure 5), power of laser transmitter, and, in some cases, also on the atmospheric influences
(e.g., fog, dust, and smog). These works addressed the problem providing models and closed form
solutions. However, these methods are valid only for large-distance measurements (at least tens
of meters) and therefore they are not suitable for typical indoor or smaller outdoor environments,
which we need to address. Hence, we propose a novel probabilistic method for LiDAR intensities
normalization which is scalable and capable of processing near-distance measurements.

(a) (b)

Figure 5. The dependency of laser intensity readings (weak readings in red, strong in green) on the
measurement range (a) and the angle of incidence (b) [37].

3. Design of the Laser Mapping Backpack

This section consists of two main parts: First, the hardware design concepts are introduced.
Then, the software solutions dealing with calibration, precise odometry estimation, alignment and
intensity normalization are presented.
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The design of our solution follows the requirements elaborated in Section 1. They have been
carefully formulated and discussed with experts in the field of geodesy and geospatial data processing.
Besides the essential goal of reliable 3D reconstruction performed automatically, which is demonstrated
in the following section, the proposed solution does the following:

• It fulfils the requirements for precision of the model up to 5 cm. Thanks to the robust loop closure,
ambiguities (e.g., “double wall” effects) are avoided.

• The system is comfortable to use and it is as mobile as possible. The backpack weighs 9 kg
(plus 1.4 kg for the optional dual antenna extension), and it is easy to carry around various
environments including stairs, narrow corridors, rugged terrain, etc.

• The pair of synchronized and calibrated Velodyne LiDARS increases the field of view (FOV) and
enables mapping of small rooms, narrow corridors, staircases, etc. (see Figure 6) without the need
for special guidelines for scanning process.

• The data acquisition process is fast with verification of data completeness. There are no special
guidelines for the scanning process (comparing to the requirements of ZEB) and the operator is
required only to visit all places to be captured in a normal pace. Moreover, captured data are
visualized online at the mobile device (smartphone, tablet) for operator to see whether everything
is captured correctly.

• Since we are using long range Velodyne LiDAR (compared to simple 2D rangefinders such as
Hokuyko or Sick) and optional GNSS support, we provide a universal economically convenient
solution for both indoor and outdoor use. For such scenarios, where GNSS is available, final
reconstruction is georeferenced—the 3D position in the global geographical frame is assigned to
every 3D point in the model.

• The final 3D model is dense and colored by the laser intensity, which is further normalized.
This helps distinguishing important objects, inventory, larger texts, signs, and some surface
texture properties.

(a) (b) (c) (d)

Figure 6. Cont.
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(e) (f)

Figure 6. Various configurations of LiDAR scanners in worst case scenarios we have encountered in
our experiments: narrow corridor (a,c) and staircase (b). The field of view (30◦ for Velodyne Puck) is
displayed in color. When only single LiDAR (a) was used, the scans did not contain 3D information
of the floor or the ceiling (red cross). The situation was not improved when the scanner is tilted
because of failing in, e.g., staircases (b). When we added a second LiDAR, our tiled asymmetrical
configuration (d) provides better top–bottom and left–right observation than the symmetrical one (c).
Moreover, when the LiDARs are aligned in direction of movement (e), there is no overlap between
current (violet) and future (yellow) frame, leading to lower accuracy. In our solution (f), the LiDARs
are aligned perpendicularly to the walking direction solving all mentioned issues.

3.1. Hardware Description

The core of our backpack, in Figure 7, is the pair of Velodyne LiDAR [40] scanners VLP-16 (Pucks).
Each of them contains 16 laser transmitter–receiver pairs, which are reflected into the environment
by a rotating mirror with 10 Hz frequency. This frequency can be decreased or increased up to 20 Hz.
However, frequency higher than 10 Hz causes serious undesirable vibration of the sensor, which makes
precise odometry estimation impossible. The rotation gives the sensor 360◦ horizontal FOV with 0.2◦

horizontal resolution. Vertically, the laser beams are evenly distributed with 2◦ resolution covering 30◦

vertical FOV. Each of the scanners weighs 830 g and is considered to be a hybrid solid state LiDAR,
since there are no outer moving parts. This type of scanner is able to reach 100 m range with precision
around 2 cm. As mentioned above, Velodyne scanners provide also values of intensity readings, which
corresponds to the surface reflectivity.

As the aiding sensor, the GNSS/INS (Inertial Navigation System) Advanced Navigation
SpatialDual (https://www.advancednavigation.com/product/spatial-dual) is deployed. It integrates
multiple sensors such as accelerometers, gyroscopes, magnetometer, pressure sensor, and most
importantly—the dual-antenna GNSS subsystem providing reliable heading information. With RTK
(Real Time Kinematics) or PPK (Post-Processed Kinematics) corrections, the system should provide
8 mm horizontal and 15 mm vertical positional accuracy, and 0.03◦ and 0.06◦ orientation precision in
terms of roll/pitch and heading angle, respectively. Precise heading information is provided by a dual
antenna solution and therefore it is only available outdoors. This limitation also holds for positional
data. For indoor scenarios, only roll and pitch angles are reliable and they are relevant for horizontal
alignment. The unit weighs 285 g and besides the 6 DoF (six Degrees of Freedom including 3D position
and rotation) pose estimation it also provides 1PPS (Pulse Per Second) and NMEA messages for precise
synchronization of both Velodyne LiDAR scanners. The details regarding wiring the components can
be found in Figure 8.

https://www.advancednavigation.com/product/spatial-dual
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(a) (b) (c)

Figure 7. The initial (a) and improved (b,c) prototype of our backpack mapping solution for both indoor
(b) and outdoor (c) use. The removable dual GNSS antenna provides precise heading information,
aiding for outdoor odometry estimation and also georeferencing of the resulting 3D point cloud model.
It should be noted that the position of LiDAR scanners is different in the initial and the later solution.
This is elaborated on in the next section.

PC NUC

Velodyne pair Dual GNSS antennas

Fuse

Battery

SwitchVelodyne
Box

SpatialDual
GNSS/INS

Vcc

USB 1PPS + Serial (NMEA)

Fast
Eth.Velodyne

Box

Figure 8. Components of the system and the connections. Each Velodyne scanner is connected via
a custom wiring “box” requiring power supply (red wires), 1PPS and NMEA synchronization (green)
and Fast Ethernet (blue) connection with computer (PC NUC in our case).

The rest of the hardware is responsible for controlling the data acquisition and storing the data
(Intel NUC Mini PC), and powering all the components with small Li-Ion battery with capacity
10,400 mAh lasting approximately 2 h.

3.2. Dual LiDAR System

During the experiments, we discovered that the limited (30◦) horizontal field of view is not
an issue for large open spaces. However, when the space is getting smaller and the environment
shrinks (e.g., corridors narrower than 2 m), such a field of view causes serious problems, leading
to poor accuracy or even total failures of the SLAM system. The worst cases and our solutions are
displayed in Figure 6. We experimentally discovered that we need at least two synchronized Velodyne
Puck scanners to provide a robust solution that covers both the floor/ceiling and the walls, even in
small or narrow rooms.

To achieve good accuracy and to cover the environment, the scanners are mounted perpendicular
to the direction of the operator movement—one in horizontal and second in vertical orientation,
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as displayed in Figures 6f and 7b,c. All other configurations (e.g., Configuration e.) in our initial
prototype in Figure 7a were not able to capture both horizontal and vertical properties of the
environment, or did not provide a large coverage necessary for precise pose estimation.

3.3. Calibration of the Sensors

To leverage the full potential of using two Velodyne LiDARs, these scanners have to be
properly synchronized and calibrated. As mentioned above, the sensors are synchronized via
NMEA messages (GPS communication protocol) and 1PPS (Pulse Per Second) signal provided by
SpatialDual inertial navigation system. Sufficient intrinsic calibration parameters of LiDAR scanners
themselves (corrections) are provided by Velodyne company and processed by the driver (in ROS
Velodyne package).

Therefore, the task to solve is the estimation of extrinsic calibration parameters in terms of relative
6DoF pose estimation for both laser scanners CV1, CV2 and INS sensor C I in Figure 9. First, the
transformation between the scanners is computed. To do so, two 3D maps of a large indoor space
(a large lecture hall in our case) were built by the scanners separately using our previously published
method [23]. These two 3D maps are ICP aligned. The resulting 3D geometrical transformation
represents mutual position of the sensors C−1

V1 ∗ CV2 and also the alignment of laser data they provide
as presented in Figure 10. Since we are interested only in relative transformations between the sensors,
the origin can be arbitrarily defined, e.g., as the position of the first Velodyne and CV1 = I. A single
frame point cloud consists of multiple (two in our case) synchronized LiDAR frames and therefore it
will be denoted as the multiframe.

To be able to use data provided by the INS system, an extrinsic calibration C I between the
laser scanners and the INS sensor needs to be estimated. All sensors are fixed on the custom made
aluminum mount and therefore the translation parameters can be found in the blueprints of the mount
or can be measured with millimeter precision. However, mutual rotation has to be estimated more
precisely, because just a fraction of degree misalignment would cause serious errors for long range
laser measurements.

We found that the rotation parameters as the transformation between the floor normal vector
~ni in the point cloud data and the gravity vector ~gi provided by the INS sensor, since these vectors
should be aligned. Points of the floor are selected manually and the normal of the best fitting plane
is computed. This can be performed in arbitrary software for visualization and processing of the
point clouds—CloudCompare (https://www.danielgm.net/cc/) in our case. We performed multiple
measurements for different inclines of the backpack in the indoor corridor with a perfectly straight
floor. The final rotation RCI between the Velodynes and INS sensor was estimated by SVD (Singular
value Decomposition) [41] (Equation (2)) of covariance matrix A of these 3D vector pairs (Equation (1))
(floor normal and the gravity). Multiplication with matrix E (Equation (5)) solves the ambiguity
between right/left hand rotation—we always compute right-hand representation. Equations (1)–(5)
are based on the work [41].

A = ∑
i
~ni

T · ~gi (1)

UΣV∗ = A (2)

e =

{
1, if |VUT | ≥ 0

−1, otherwise
(3)

E =

1 0 0
0 1 0
0 0 e

 (4)

RCI = V EU (5)

https://www.danielgm.net/cc/
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Velodyne pair

GNSS antennaGNSS antenna

SpatialDual
GNSS/INS

oA1 oA2
CI

CV1 CV2

Figure 9. Extrinsic calibration required in our system. The mutual positions between the Velodyne
scanners and the GNSS/INS unit are computed. The offsets~oA1,~oA2 of the antennas are tape measured.

Figure 10. Two Velodyne LiDAR frames aligned into the single multiframe. This data association
requires time synchronization and precise extrinsic calibration of laser scanners.

3.4. Point Cloud Registration

The core element of the software part is the alignment of the point cloud data into a 3D map of the
environment. There are multiple state-of-the-art approaches for point cloud registration and odometry
estimation, including our previously published approach Collar Line Segments [23]. We compared
our approach with LOAM [19] algorithm, using the implementation available. The results of this
experiment are presented in Table 2, which shows the superior accuracy of our method, thus CLS was
a natural choice for our mapping backpack solution.

The basic idea of the CLS method is to overcome the data sparsity of 3D LiDAR scanner
(e.g., Velodyne) by sampling the data by line segments. The points captured by individual laser
beams form so called “ring” structures displayed in Figure 11a. There is a large empty space between
these rings and while moving, same places of the scene are not repeatedly scanned, valid matches
are missing and the closest point approaches (e.g., ICP) are not applicable. By using CLS, the space
between the rings is also covered and correct matching of structures in the LiDAR frames is enabled.

The environment in the field of view is represented by the set of CLS line segments. They are
randomly generated between the neighboring ring points within the azimuthal bin as described in
Figure 11a. Since we are using two LiDAR scanners, collar line segments are generated for the scans of
each sensor individually. Using the transformation established by extrinsic calibration described in
Section 3.3, line segments are transformed and joined into the single set for each multiframe.

After the sampling is done, matching of the closest line segments is performed. The line segments
are extended into the infinite lines, and the closest points between matching lines are used for direct
estimation of translation. SVD [41] is used again for estimation of rotation parameters in the same
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manner, as described in Section 3.3. This description is only a brief introduction to the CLS method
and more information can be found in our previous publication [23].

φ

x

z

(a)

(b) (c)

(d) (e)

Figure 11. The sampling of Velodyne point cloud by the Collar Line Segments (CLS) (a). The segments
(purple) are randomly generated within the polar bin (blue polygon) of azimuthal resolution φ.
The registration process (b–e) transforms the line segments of the target point cloud (red lines) to fit
the lines of the source cloud (blue). First, the lines are matched by Euclidean distance of midpoints (c);
then, the segments are extended into infinite lines and the vectors between closest points are found
(d); and, finally, they are used to estimate the transformation that fits the matching lines into common
planes (green in (e)).

3.5. Overlap Estimation

This work provides a novel solution for automatic estimation of the core parameter of the CLS
approach. Before the transformation is estimated, invalid matches must be discarded. In our previous
work, this was done by a simple distance thresholding, or by keeping a certain portion of matches
(e.g., 50%). However, using a constant threshold or portion value is not flexible enough. It can cause
significant registration misalignments, when invalid matches are used, or insufficient convergence
when the valid matches are ignored.

Assuming that an initial coarse alignment is known, we are able to estimate the overlap between
these frames and use this value as the portion of matches to keep (e.g., for 30% overlap, 30% of best
matches are kept). This solution adapts to the specific situation of each pair of LiDAR frames to be
registered and leads to a significantly better precision.

The overlap value (Figure 12a) is effectively estimated by spherical z-buffer structure [42] in
Figure 12b. First, the target cloud is transformed into the source cloud coordinate frame and the [x, y, z]
coordinates of all the points are transformed to spherical coordinates φ, θ, r (polar angle, elevation
angle, and range). Each spherical bin of the z-buffer is assigned with minimal range value from the
source point cloud. The minimal value is chosen since unwanted reflections sometimes cause invalid
long range measurements and therefore there is the best chance that the minimum range measurement
is valid. Then, all the points of target point cloud (also transformed to spherical coordinates) with
range below the value in z-buffer (including certain tolerance) are considered to be overlapping points
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and the ratio to all the points is considered to be the overlap value. More formally, if the point p with
range pr within the spherical bin i fulfills the requirement

pr < ri
min · tr + ta, (6)

it is considered to be a part of the overlap. Value rmini denotes the minimal range value stored within
the spherical bin. Absolute ta and relative tr tolerance values represent the acceptable translation
and rotation error. Especially the error of rotation causes larger displacements for larger ranges.
Equation (6) follows our error model, where the error e is the distance between precise point coordinates
p (which are unknown) and known erroneous coordinates pe which can be approximately estimated as:

e = |p− pe| = pe
r · tg(er) + et, (7)

where er represents rotation, et is the translation error, and pe
r is the range of the erroneous point (see

also Figure 13). In our experiments, we used the tolerance values tr = 0.1 and ta = 0.3 for the overlap
estimation. This allows rotation error er approximately 5◦ and translation error 30 cm for the initial
coarse transformation between the scans.

ov
er
la
p

30
%

(a)

{

rmin

Θ

ᵠ

(b)

Figure 12. The overlap (a) between the source (blue) and the target (purple) LiDAR frame. In this case,
approximately 30% of source points are within the view volume of target frame. The view volume can
be effectively represented by spherical z-buffer (b) where range information (minimum in this case) or
the information regarding empty space within the spherical grid is stored.

er et

~tg(er)

pe

p

Figure 13. The error of measurement (Euclidean distance between points p and pe) can be split into
rotation er and translation et part. The impact of rotation error 2 · tg(er/2) can be simplified to tg(er)

due to near linear properties of tangent function for small angles.

3.6. Rolling Shutter Corrections

As mentioned in the description of Velodyne sensor, spinning frequency is approximately 10 Hz
which leads to 100 ms duration of a single LiDAR scan acquisition. This is a relatively long time when
significant movement is assumed. Large translation in the case of fast vehicles or possible fast rotations
in case of human carrier can cause distortions in LiDAR frame displayed in Figure 14. We denote this
effect as rolling shutter because it resembles rolling shutter distortion of optical sensors.

This means that the LiDAR data cannot only be rigidly transformed, but a continuous
transformation needs to be applied or at least approximated. The single Velodyne Puck frame consists
of approximately 75 packets, each carrying a slice of the frame. Slices are evenly distributed in both
time and space. Thus, for each ith frame, we compute the relative transformation T i→j that occurred
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during the acquisition of the current frame using the global position Pi of the current frame and the
pose Pi+1 of the next one as:

T i→j = P−1
i · Pi+1. (8)

The correction for each slice is estimated by interpolation of this transformation. The translation
parts are interpolated linearly and, for the rotations, Spherical Linear Interpolation (SLERP) [43] over
quaternion representation is used. For the first slice, zero transformation is estimated and the last one
is transformed by T i→j.

Figure 14. Example of a LiDAR frame distorted by the rolling shutter effect when the operator with
mapping backpack was turning around (green) and the corrected frame (purple). This is the top view
and the distortion is mostly visible on the “bent” green wall at the bottom of this picture.

3.7. Pose Graph Construction and Optimization

The proposed CLS method for point cloud alignment can only provide consecutive frame-to-frame
registration. However, since each registration is burdened by a small error, after some time,
the accumulated error (drift) is no longer acceptable. To reduce this drift and also to close loops of
revisited places, we propose an iterative process of progressive pose graph construction and optimization.
The key idea of this algorithm is progressive refinement of odometry estimation from local precision
within small time window to global precision across the whole model. This iterative method is
described in Figure 15 and more formally in Algorithm 1.

p0
p1

p2 p3 p4
p5

p6

p7
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p9p10
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p14

p15

(a)
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p3 p4
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p7

p8
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p13

p14

p15

p10

p2

O

(b)

Figure 15. Pose graph as the output of point cloud registration and the input of SLAM optimization.
The goal is to estimate 6DoF poses P1, P2, . . . , PN of graph nodes (vertices) p1, p2, . . . , p15 in the
trajectory. The edges represent the transformations between LiDAR frames for given nodes estimated
by point cloud registration. Black edges represent transformations between consequent frames, blue
edges are for transformations within a certain neighborhood (maximum distance of three frames
in this example) and the green edges (in (a)) represent visual loops of revisited places detected by
a significant overlap between the given frames. When GNSS subsystem is available (b), additional
visual loops are introduced as transformations from the origin O of some local geodetic (orthogonal
NED) coordinate frame.
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First, only consecutive frames (within neighborhood of size 1) are registered, and then the
neighborhood is gradually enlarged (size d in Algorithm 1, step 1) until it covers all N frames.
CLS registration is performed for each pair (ith and jth frame) within the current neighborhood
where a significant overlap is found and then efficient pose graph optimization using SLAM++
framework [44] is performed. Modulo operator in Step 3 reflects the fact that we assume a circular
trajectory. This assumption of beginning and ending the data acquisition process at the same place is
common also for other similar solutions (ZEB-1, ZEB-REVO, etc.) [7]. It helps the system to identify at
least one visual loop that guarantees reasonable results from the global SLAM-based optimization.

Algorithm 1 Progressive refinement of 6DoF poses {Pi}N
i=1 for sequence of frames { f i}N

i=1 by
optimizing pose graph G.

1: for d = 2 to N
2 do

2: for i = 1 to N do
3: j := (i + d) mod N
4: T i→j := P−1

j · Pi
5: oij := OVERLAP( f i, f j, T i→j)
6: if oij > to then
7: T i→j, e := CLSREGISTRATION( f i, f j, T i→j, oij)
8: if e ≤ MEDIANRANGE( f i) · tr + ta then
9: G := G ∪ {EDGE(i, j, T i→j)}

10: end if
11: end if
12: end for
13: P1, P2, . . . , PN = OPTIMIZE(G)
14: end for
15: return P1, P2, . . . , PN

Before a pair of frames is registered, the presence of overlap larger than to is verified (Line 5
in Algorithm 1) in order to preserve the registration stability. We used minimal 0.5 overlap in our
experiments. This also plays the role of visual loop detection every time a place is revisited.

Moreover, after the CLS registration is performed, we verify the result of registration (Line 8)
using the error model described in Equation (7). As the reference range value, we take the median
range of the source point cloud. In our experiments, we used tolerance values tr = 0.01 and ta = 0.05
representing tolerance of approximately 0.5◦ in rotation and 5 cm in positional error.

For outdoor mapping, the absolute position and orientation are provided by the GNSS/INS
subsystem with PPK (Post Processed Kinematics) corrections. While the global error of these poses
is small, relative frame-to-frame error is much larger when compared to the accuracy of pure SLAM
solution. Therefore, we combine our SLAM (in the same way as described above) with additional edges
in the pose graph representing the global position in some geodetic frame, as shown in Figure 15b.

3.8. Pose Graph Verification

After the registration is performed, a new edge is added into the pose graph only if the registration
error is below a certain threshold modeled by Equation (7) (Line 8 of Algorithm 1). However, this
simple rejection is not robust enough—some registrations are falsely rejected or accepted. After all
overlapping frames are registered, additional verification is performed for all edges.

Expected transformation Te
ij is computed (Equation (9)) using alternative path T1, T2, . . . TK−1, TK,

as described in Figure 16. The L2 norm of positional difference between expected transformation Te
ij

and the transformation T ij found by registration (Equations (10)–(12)) is considered as the error value
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related to this edge. Note that the positional difference is also affected by the difference in rotation and
therefore it is included in this error.

Te
ij = T1 · T2 · . . . · TK−1 · TK (9)

∆ij = T−1
ij · T

e
ij (10)

∆ij =
[
Rij|tij

]
(11)

eij =
∥∥tij
∥∥

2 (12)

For each edge, all alternative paths up to a certain length are found and their errors are estimated.
We use paths of length up to 3 as a tradeoff between the time complexity and robustness. An edge is
rejected when the median of these error values is below accepted threshold (10 cm in our experiments).
This cannot be considered as target error of our reconstruction since the pose graph optimization
process further decreases the cumulative error. The whole process is repeated until there is no edge
to reject.

pi pj

TijT1

T2 TK-1

TK

Figure 16. Verification of edge (pi, pj) representing transformation T ij is performed by comparison
with transformation T1 · T2 . . . TK of alternative path (blue) between ith and jth node.

3.9. Horizontal Alignment of the Indoor Map

While, for outdoor environment, the model is georeferenced and aligned with NED geodetic
coordinate frame (north, east, and down), there is no such possibility when mapping indoors since
the GNSS signal is not available. However, practical indoor applications of our 3D mapping solution
require at least horizontal alignment—the alignment of gravity vector with Z-axis and the alignment
of straight floors/ceilings with XY-plane in resulting 3D model as Figure 17 shows.

(a) (b)

Figure 17. The reconstruction built by our SLAM solution before (a) and after (b) the alignment of
horizontal planes (floor, ceiling, etc.) with XY plane (blue circle).
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This alignment is possible, since roll and pitch angles are provided by IMU (using measurements
by accelerometers and gyroscopes) and extrinsic calibration of Velodyne sensors to the IMU frame C I
estimated as described in Section 3.3. The simplest solution would be to use these roll and pitch angles
directly to align the LiDAR scans individually and deploy the SLAM only to estimate the remaining
parameters (heading and translation). Unfortunately, this is not possible because the accuracy of roll
and pitch angles is not sufficient—error in order of degrees happens during the motion. Since our goal
is to reduce the cost of our solution, we did not want to use additional expensive hardware. We rather
propose an alternative approach to estimate horizontal alignment from these noisy measurements.

We can leverage the fact that there are multiple (thousands) of roll/pitch measurements and only
a single transformation for horizontal alignment needs to be computed. First, we are able to split each
transformation (for each LiDAR frame) estimated by SLAM into the rotation and the translation

PSLAM = [RSLAM|tSLAM] . (13)

Our partial goal is to estimate horizontal alignment Ah fulfilling Equation (14). The transformation
of point cloud data X by SLAM rotations RSLAM and horizontal alignment Ah is the same, as the
transformations of these data by IMU measured rotation RIMU (including the calibration C I).
In addition, each rotation (SLAM or IMU provided) can be split into roll RR, pitch RP and heading RH

(Equation (15)). Since the IMU sensor is not able to provide accurate heading information indoors, we
supplement the heading RH

SLAM estimated by SLAM.

RIMU · C I · X = Ah · RSLAM · X (14)

RH
SLAM · RP

IMU · RR
IMU · C I = Ah · RSLAM (15)

Ah = RH
SLAM · RP

IMU · RR
IMU · C I · R−1

SLAM (16)

Using Equation (16), we are able to estimate the (noisy and inaccurate) horizontal alignment Ah
for each pair of SLAM and IMU provided rotations of the same timestamp. During the mapping,
there are usually thousands of these pairs (10 pairs per second) which are synchronized. The precise
horizontal alignment is then computed by averaging the quaternions [45] representing noisy partial
alignments Ah.

3.10. Intensities Normalization

Another quality we would like to introduce into the 3D model is the approximate surface “color”
information to improve the ability of visual recognition of various objects (inventory, signs, etc.).
To avoid additional HW, and preserve invariance to illumination conditions, we use the laser return
intensity. However, these intensity values cannot be directly considered as surface reflectivity, since
they are affected by various additional factors such as angle of incidence, range of the measurement
or gain of the particular laser beam. These factors were reported by previous works [37–39] and also
confirmed by our experiments in Figure 18.

Previously published works propose various closed-form solutions of intensity normalization
for long range measurements (over 10 m) [37–39]. However, this is not applicable for smaller indoor
environments and therefore we propose an alternative solution. If the normalized intensity represents
only the surface reflectivity, there should be no dependency on other factors and probability distribution
of the intensities should be the same for different laser beams, angles of incidence, or ranges.

Therefore, we discretize the space of ranges and angles with some small resolution (e.g., 20 cm
and 1◦, respectively) and we distribute all the points of the point cloud model into a 3D grid based
on the source beam ID (already discrete), the angle of incidence and the range. Our goal is to achieve
that the intensity probability distribution will be the same for each bin of points. Assuming normal
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distribution of surface reflectivities (“colors”), the same target distribution N (µ, σ2) will be achieved
within each bin by a simple transformation:

N (µ, σ2) = N (µi, σ2
i ) ·

σ

σi
+ (µ− µi), (17)

where N (µi, σ2
i ) is the original distribution of laser intensities within ith bin.

There are no ground truth data to perform any objective evaluation of our proposed method for
intensity normalization. We are only able to compare the results of 3D reconstruction with and without
the normalization. Examples of results can be found in Figure 19.

0 1 2 3 4 5 6 7 8 9 101112131415161718192021 22232425 2627282930 31
0

10

20

30

40

Laser beam #

In
te

n
si

ty

(a)

0 62 3 4 5 8 9 10 11 12 14 15 16 17 18 20 21 22 23 24 26
0

20

40

60

80

Range [m]

In
te

n
si

ty

(b)

0 5 9 14 18 23 28 32 37 41 46 50 55 60 64 69 73 78 83 87
0

10

20

30

40

Incidence angle [deg]

In
te

n
si

ty

(c)

Figure 18. The dependency of laser return intensity on: the source beam (a); range of the measurement
(b); and the angle of incidence (c). We are using 2 LiDAR scanners with 16 laser beams per each scanner,
32 beams in total.
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(a) (b)

(c)

(d)

(e) (f) (g) (h)

(i) (j)

Figure 19. Results of 3D reconstruction without (a,c,e,g,i) and with (b,d,f,h,j) the normalization of laser
intensities. One can observe more consistent intensities for solid color ceiling (b) reducing the artifacts
of trajectory, while preserving the contrast with ceiling lights. Besides the consistency, normalization of
intensities reduces the noise (d). The most significant improvement is the visibility of important objects
e.g., markers at the electrical towers (f,h) or emergency exit doors (j) at the highway wall. All these
objects can not be found in the original point clouds(e,g,i).



Sensors 2019, 19, 3944 24 of 35

4. Experiments

This section presents mapping results of our system in various scenes and scenarios—outdoor
environments where GNSS is available, indoor scenes with GNSS denied, small rooms, staircases,
and a narrow corridor. A usable and precise solution must avoid so called “double walls” described in
Figure 3, which are a typical issue in 3D reconstructions causing ambiguity. Unfortunately, evaluation
of such duplicities cannot be performed automatically, thus the operator (a certified geodesist) verified
the reconstructions for us by inspecting multiple slices across the model. Moreover, the data density
and point coloring by the intensity readings are required for better visual recognition of various
objects in the environment. All the raw data collected by our backpack solution, and also the 3D
reconstructions used in this evaluation, are publicly available (http://www.fit.vutbr.cz/~ivelas/files/
4RECON-dataset.zip).

Regarding the precision, our goal is to achieve 5 cm relative precision (e.g., distance of the point
from ground truth) denoted as er. For outdoor environments, there are also constraints for absolute
error ea in global geodetic frame. The average of this absolute error is required to be below 14 cm for
position in horizontal plane and 12 cm for height estimation. However, the constraints for maximal
error are set to double of these values—up to 28 cm for horizontal and 24 cm vertical error. These values
were obtained through consultation with experts in the field of geodesy and follow the requirements
for creating the building models, outdoor vector maps, inventory check, etc. Global error constraints
are applicable only outdoors, where some global positioning system is available. To sum up, in this
section, we show that our solution provides:

• sufficient relative precision er under 5 cm;
• global absolute error ea within the limits described above;
• data density and coloring by normalized intensities for visual inspection; and
• data consistency without ambiguity (no dual walls effects).

4.1. Comparison of Point Cloud Registration Methods

We compared our previously published CLS method [23] with different modes (online and offline)
of state-of-the-art method LOAM [19] using the data of KITTI Odometry Suite [22] providing both the
Velodyne LiDAR data and ground truth poses. The error metrics used in this evaluation are defined
by the KITTI dataset itself. The data sequences are split into subsequences of 100, 200, . . . , 800 frames
(of 10, 20, . . . , 80 s duration). The error es of each subsequence is computed as:

es =
‖Es − Cs‖2

ls
, (18)

(provided by [22]) where Es is the expected position (from the ground truth) and Cs is the estimated
position of the LiDAR where the last frame of subsequence was taken with respect to the initial
position (within given subsequence). The difference is divided by the length ls of the followed
trajectory. The final error value is the average of errors es across all the subsequences of all the lengths.

The experiment is summarized in Table 2 and it leads to the conclusion that our CLS approach
outperforms LOAM with approximately 1 cm lower drift per 1 m of trajectory elapsed. For clarification,
LOAM can run in two different modes. In the online mode (10 fps), mapping is skipped for a certain
number of frames, which are only roughly aligned. In the offline mode, which is approximately 3×
slower, every frame undergoes the full mapping procedure.

The precision of our method was estimated for frame-to-frame approach, where only consequent
frames were registered, and also for the scenario, where each frame is registered with all other frames
within a small neighborhood (10 neighboring frames used in this experiment). In this experimental
multi-frame approach, the final pose is estimated by simple averaging.

http://www.fit.vutbr.cz/~ivelas/files/4RECON-dataset.zip
http://www.fit.vutbr.cz/~ivelas/files/4RECON-dataset.zip
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Table 2. Comparison of visual odometry error for SoA method LOAM and our CLS method.
The experiments were performed on KITTI Odometry dataset [22]. For CLS, frame to frame (single) or
frame to multiple (10) neighboring frames (multi-frame) registrations without any loop closures were
performed. In LOAM experiments, both the original online version (providing real time performance)
and offline version (with full procedure for each frame omitting approximations) was used. In all data
sequences, except the short sequence No. 4 where the car drives only forward without any turns, our
multi frame approach outperformed the LOAM solution.

Error es (18)

Sequence Length LOAM Online LOAM Offline CLS Single CLS Multi-Frame

0 4540 0.052 0.022 0.022 0.018
1 1100 0.038 0.040 0.042 0.029
2 4660 0.055 0.046 0.024 0.022
3 800 0.029 0.019 0.018 0.015
4 270 0.015 0.015 0.017 0.017
5 2760 0.025 0.018 0.017 0.012
6 1100 0.033 0.016 0.009 0.008
7 1100 0.038 0.019 0.011 0.007
8 4070 0.035 0.024 0.020 0.015
9 1590 0.043 0.032 0.020 0.018

Weighted average 2108 0.043 0.029 0.022 0.017

In our previous publication [23], the superior performance of CLS over GICP method (Generalized
ICP) [46] was presented, too. All these evaluations led to the choice of CLS for the LiDAR frames
registration in our 4RECON backpack solution.

4.2. Indoor Experiments

For indoor evaluation of our system, we chose two different environments—the office and
staircase in Figure 20—where our partner company has already performed 3D mapping using different
laser scanners and generously provided the accurate output models to us. The reconstructions from
static FARO scanner achieving very high accuracy (in order of millimeters) were used as the ground
truth. The same strategy has been already used for evaluation of other mapping systems [4,12,25].
For the office environment only, also the 3D reconstruction created by ZEB-1 solution was provided
to us. This allowed us to compare our solution in terms of accuracy, data density, model usability
and completeness.

(a) (b)

Figure 20. Experimental environments Office (a) and Staircase (b), and the highlighted slices that were
used for precision evaluation.
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To evaluate the relative error, all the models of the same environment provided by different
scanners (FARO, ZEB-1, and our solution 4RECON) were aligned using ICP. As displayed in Figure 20,
several reference slices (8 slices per model, 16 slices in total) were created for the evaluation of precision.
Within each slice, the average error (in Table 3) was estimated as the average distance of the 3D points
to the ground truth model created by the FARO scanner. Our solution achieved approximately 1.5 cm
relative error on average, which is only slightly worse result than 1.1 cm error for ZEB-1 that is
burdened by the multiple limitations listed below in this section. Moreover, we provide information
about the distribution of displacement relative error in Figure 21. The error was estimated for ZEB-1
and different modes of our system:

• in 4RECON-10, the registrations were performed only within small neighborhood of 10 nearest
frames (1 s time window) and reflects the impact of accumulation error;

• for 4RECON-overlap, the registrations were performed for all overlapping frames as described in
Section 3.7 reducing the accumulation error by loop closures at every possible location; and

• pose graph verification (see Section 3.8) was deployed in 4RECON-verification, yielding the best
results with good precision and no ambiguities.

Both ZEB-1 and our solution including pose graph verification achieved sufficient accuracy below
5 cm. Moreover, the precision of 2 cm was fulfilled for more than 70% of data. Slightly better precision
of ZEB-1 solution was achieved thanks to the Hokuyo sensor with 4× higher scanning frequency while
preserving much lower vibrations compared with Velodyne LiDAR.

Table 3. Relative error er of our method and ZEB-1 product within selected slices visualized in Figure 20.
Presented values are average displacements (cm) of the points comparing with the ground truth point
cloud obtained by FARO static scanner. The results are missing for ZEB-1 and Staircase dataset since
there was no reconstruction using this scanner available.

Dataset Slice # 4RECON-10 4RECON-Overlap 4RECON-Verification ZEB-1

Office 1 2.50 1.71 1.49 1.44
2 1.97 1.47 1.31 1.06
3 1.70 1.75 1.55 1.22
4 1.82 1.54 1.31 1.22
5 1.93 1.63 1.53 1.44
6 2.13 1.49 1.47 1.29
7 2.09 1.68 1.37 0.97
8 2.07 1.36 1.37 1.31

Average er (cm) 2.01 1.62 1.41 1.14

Staircase 1 3.23 2.11 1.81 -
2 3.99 1.87 1.60 -
3 2.63 1.65 1.61 -
4 2.74 1.71 1.53 -
5 2.42 1.68 1.50 -
6 2.98 2.67 1.67 -
7 1.76 1.75 1.29 -
8 1.82 1.67 1.56 -

Average er (cm) 2.74 1.82 1.57 -
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Figure 21. Error er distribution (the amount of the points within certain error) for our system 4RECON
and ZEB-1 product. The experiments were performed for all test slices in Figure 20 on Office (a) and
Staircase (b) dataset. Note that the model built by ZEB-1 was not available and therefore the evaluation
is missing.

Figure 22 also shows the precision within representative slices—horizontal slice for Office dataset
and vertical slice across model of Staircase. These slices demonstrate the noise within data coming from
different sensors—Hokuyo LiDAR for ZEB-1 solution and Velodyne for our 4RECON system—and
also the precision for different modes of operation. For Staircase dataset, the necessity of pose graph
optimization is also demonstrated.

Our evaluations show that the precision of our 4RECON backpack is comparable to the solution
ZEB-1 while fulfilling basic requirement for relative error below 5 cm. Note that the error values
are also comparable (and in some cases better) to the precisions of other solutions in Table 1. In our
solution, higher noise can be observed comparing with ZEB-1. This corresponds with higher error
values and it is the main reason for little lower accuracies.

However, it is important to point out two most significant advantages of our solution comparing
with ZEB solutions. First, our solution is usable in vast open spaces with fewer and more distant featuring
objects, as is demonstrated in the next sections. In indoor environments featuring objects at distances
significantly larger than 15–20 m [7], ZEB solutions based on the Hokuyo sensor fail.

Second, our Velodyne-based solution is able to provide much higher data density, map completeness
and visibility of objects in the scene. We chose two large surfaces (the ceiling and the side wall in Figure 23)
with 230 m2 in total area. Models of these surfaces created by ZEB-1 solution achieved average data
density 0.9 points per cm2 (2.2 million points in total). Models created by our 4RECON backpack
consist of more than 23 million points, achieving much higher data density—10.1 points per cm2.
Better visibility of objects in Figure 23 is achieved thanks to the laser intensity readings provided by
Velodyne sensor and employing our normalization process as described in the Section 3.10. This might
appear to be only a “cosmetic” property, but the visibility of the construction elements, equipment,
furniture, etc. in the scene is important for usability in real applications—e.g., an operator needs to
distinguish between the window and the blackboard.



Sensors 2019, 19, 3944 28 of 35

(a) (b)

(c) (d)

(e) (f) (g)

Figure 22. Color coded errors within the horizontal reference slice of the Office dataset (a)–(d) and
vertical slice in Staircase dataset (e)–(g). Blue color represents zero error, red color stands for 10 cm
error and higher. The ground truth FARO data are displayed in green. The results are provided for
4RECON-10 (a,e), 4RECON-overlap (b,f), 4RECON-verification (c,g), and ZEB-1 (d). For Office dataset,
there are no ambiguities (double walls) even without visual loop detection while both loop closure
and pose graph verification is necessary for more challenging Staircase dataset to discard such errors.
Moreover, one can observe that ZEB-1 solution yields lower noise reconstruction thanks to the less
noisy Hokuyo LiDAR.
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(a) (b)

(c) (d)

Figure 23. The comparison of data density provided by ZEB-1 (a,c) and our (b,d) solution. Since the
ZEB-1 solution is based on the Hokuyo scanner, the laser intensity readings are missing and data
density is much lower compared with our solution. Multiple objects which can be distinguished in our
reconstruction (lamps on the ceiling in the top, furniture and other equipment in the bottom image) are
not visible in the ZEB-1 model.

4.3. Outdoor Experiments

Our system is a universal solution—both for indoor scenes, where the usability was proven by
the previous section, and for outdoor scenes, including vast open ones. We tested and evaluated
our system during a real task—high voltage lines mapping and measurement. The area of interest,
including the details of some important objects, is visualized in Figure 24. The main goal of this
mission was position estimation of electric pylons (including footprint of the base, total height and the
positions of the wire grips) and the heights and the hangings of the wires. Figure 24 shows that these
details can be recognized in the 3D model. The usability of our 3D reconstructions was also confirmed
by the geodetic company we asked for manual data inspection and evaluation.

In the same way as during the indoor mapping, the ambiguities in multiple instances of
objects disqualifies the reconstructions to be used in practical geodetic measurements. Such error in
comparison with the desired result of the reconstruction is shown in Figure 25. Multiple instances of the
same object, blurred and noisy results were successfully avoided by our solution (see Figures 24 and 25).

Since our solution integrates precise GNSS/INS module for outdoor scenarios, the model is
georeferenced—the coordinates of all the points are bound in some global geodetic frame.

To verify the absolute positional accuracy of our model, we performed precise measurements on
so-called survey markers. This is commonly used technique to verify the precision of resulting maps
(including 3D maps). Precise positions of the survey markers are estimated using specialized geodetic
GNSS system, which is placed statically on the survey point for several seconds, until the position
converged. The precision up to 2 cm is achieved using RTK (Real Time Kinematics) which are received
online via internet connection.

Survey markers (Figure 26a) are highlighted using high-reflective sprays. Thanks to the coloring
of point cloud by laser intensities, these markers are also visible in the reconstructions as can be seen
in Figure 26b.



Sensors 2019, 19, 3944 30 of 35

(a)

(b) (c) (d) (e)

Figure 24. The example of 3D reconstruction of open field with high voltage electrical lines (a).
The model is height-colored for better visibility. The estimation of positions and height of the lines (b),
towers (e), etc. was the main goal of this mapping task. The other elements (c,d) in the scene are shown
for demonstration of the reconstruction quality.

(a) (b)

Figure 25. Example of ambiguities caused by reconstruction errors (a), which disqualifies the model to
be used for practical measurements. We obtained such results when we used only poses provided by
GNSS/INS subsystem without any refinements by SLAM or point cloud registration. Our solution
(including SLAM) provides valid reconstructions (b), where both towers and wires (in this case) can
be distinguished.

The evaluation in Table 4 shows that our 3D mapping for 0.5 km test track fulfills the requirements
for absolute error, as described at the beginning of this section—average error below 14 cm for position
in horizontal plane and 12 cm for height estimation and maximal error up to 28 cm and 24 cm,
respectively (double values of expected average error).

Thanks to the ability of point cloud coloring by laser intensities, it is possible to also run such
evaluation for the validation of each 3D model, which should be used in real application. This is also
an important quality, since there are requirements for double measurements in geodesy to ensure that
the accuracy is sufficient.
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(a) (b)

Figure 26. Geodetic survey markers painted on the road (a) is also visible in the point cloud (b) thanks
to the coloring by laser intensities.

Table 4. Errors measured (cm) on geodetic survey marker points at the beginning and at the end of
survey track. The distance between the control points is 523 m.

Ref. Point dX dY Horizontal Error dZ (Vertical) Total Error ea

1 −5.9 −1.2 6.0 −15.2 16.3
2 −5.6 0.5 5.6 −4.7 7.3

4.4. Comparison of Single and Dual Velodyne Solution

Finally, we compared the robustness of our dual LiDAR solution over the system with single
LiDAR only. We computed reconstructions of the Office environment using our solution with two
synchronized and calibrated LiDARs (one aligned vertically and second horizontally) in Figure 27a,b
and also using only single LiDAR—horizontally ( Figure 27c,d) or vertically aligned ( Figure 27e,f).

Our evaluation shows that the dual LiDAR solution provides a valid reconstruction. However, the
solution with horizontal LiDAR only is not able to provide vertically correct alignment (Figure 27d),
and vice versa, the solution with vertical LiDAR is horizontally misaligned (Figure 27e).

(a) (b)

Figure 27. Cont.
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(c) (d)

(e) (f)

Figure 27. Comparison of reconstructions provided by dual LiDAR system—floor plan top view (a) and
side view of the corridor (b)—with the reconstruction built using only single horizontally (c,d) or
vertically (e,f) positioned Velodyne LiDAR. The reconstructions are red colored with ground truth
displayed in blue.

5. Discussion

When we look on our 4RECON mapping backpack in the context of the other available solutions
(see overview in Table 1), we can summarize its advantages and disadvantages.

Comparing to the ZEB products, our backpack achieves much higher data density, better visibility
of the objects in the resulting model, higher comfort of data acquisition, and, most importantly, usability
also in the outdoor featureless open spaces, including the option of georeferencing the reconstructed
point map. However, we must admit that ZEB scanners achieve better accuracy and lower noise in the
models of indoor environments.

In terms of universality of the usage, our solution also outperforms Robin and Akhka backpacks,
which require GNSS readings and therefore indoor scanning is not possible. For outdoor tasks, Robin
achieves better precision than our 4RECON backpack, but it is also important to point out the very
high price of the Robin solution.

Laser mapping backpacks Pegasus, Viametris bMS3D and LiBackpack can be considered as the
most similar solutions to our work. All these systems claim precision up to 5 cm, which is also the
accuracy of 4RECON (according to the evaluation in Figure 20). The advantages of these solutions
are more professional design and the presence of additional RGB cameras (for Pegasus and Viametris
backpacks). The integration of panoramic RGB camera into our backpack is the plan for future work.
Our solution on the other side provides open SLAM method in comparison with the proprietary
solutions deployed in these backpacks, and also potentially much lower price.

6. Conclusions

This paper presents a dual LiDAR system for mobile mapping. Our solution can be easily carried
as a backpack together with a reliable dual antenna GNSS/INS system. This leads to the universality
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of its usage. In small or narrow indoor environments with many obstacles, two LiDAR sensors increase
the field of view. On the other side, in open outdoor spaces with lack of features, the reliable positional
subsystem keeps the result accurate.

Thanks to the type of LiDARs used, our solution also brings multiple other beneficial properties:
data density, map completeness and coloring by laser intensities normalized by our novel algorithm.
The intensities enables better visual recognition of the elements in the scene as well as the visibility of
geodetic survey markers for checking the model validation.

The proposed solution was evaluated in both indoor and outdoor scenarios. During the mapping
of the office or staircase environment, our solution fulfilled the requirement of error below 5 cm and
achieved a similar precision as solution ZEB-1. The average error in terms of the points displacements is
approximately 1.5 cm. For outdoor experiments, our reconstruction met the requirements for absolute
precision with 11.8 cm average error in the global geodetic frame. This proves higher universality
of our mapping backpack compared to the previous ZEB-1 solution. In all our experiments, data
consistency was preserved and unambiguous models were built.
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