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Abstract: The differential transformation, an approach based on Taylor’s theorem, is proposed as
convenient for finding an exact or approximate solution to the initial value problem with multiple Caputo
fractional derivatives of generally non-commensurate orders. The multi-term differential equation is first
transformed into a multi-order system and then into a system of recurrence relations for coefficients of
formal fractional power series. The order of the fractional power series is discussed in relation to orders
of derivatives appearing in the original equation. Application of the algorithm to an initial value problem
gives a reliable and expected outcome including the phenomenon of symmetry in choice of orders of the
differential transformation of the multi-order system.

Keywords: fractional differential equation; non-commensurate orders; initial value problem; differential
transform; fractional power series

1. Introduction

The main aim of this paper is to answer the open question mentioned in the quotation below: To find
precise results about values of the constants in the formal asymptotic expansion of the solutions to initial
value problems (IVPs) for multi-term fractional differential equations with generally non-commensurate
orders. To explain the purpose of this paper—i.e., to give an answer to an open question—we need to
place it in the context of analysis of multi-term fractional differential equations.

In Chapter 8 of the book [1] by Kai Diethelm, the author gave a thorough analysis to IVPs
for multi-term fractional differential equations with Caputo derivatives, which in general may be
non-commensurate.

The following quotation comes from Subchapter 6.5 of the above-mentioned book [1]:

“The theorems above have given us a large amount of information about the smoothness
properties of the solutions of fractional differential equations, and in particular about the exact
behaviour of the solution as x → 0, most notably the formal asymptotic expansion. [. . . ] An
aspect of special significance, for example in view of the development of numerical methods, is
the question for the precise values of the constants in this expansion, and most importantly the
question whether certain coefficients vanish. A suitable generalisation of the Taylor expansion
technique for ordinary differential equations described in [88, Chapter I.8] could be useful in this
context. Precise results in this connection seem to be unknown at the moment though.”
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An outline of the algorithm for IVP with two non-commensurate orders has been introduced in
[2]. In addition, implementation of the algorithm to a concrete example suggested that there is certain
symmetry in the possible choices of orders of the differential transformation used to turn the multi-order
system into a system of recurrence relations. We observe the same phenomenon in the current paper.

The paper is organized as follows. Section 2 contains the problem statement and the main results
including applications. In Section 3, we summarize the steps of the algorithm, discuss the results and
outline possibilities of future work. The methods and tools necessary to obtain the results are recalled in
Section 4.

2. Results

2.1. Problem Statement

As we want to use integer-order initial conditions which have clear practical meaning, we consider
differential equations with Caputo fractional derivatives only. This way, we avoid issues with limit
expressions present in fractional initial conditions that occur when the Riemann–Liouville definition is
used. For the sake of clarity, we recall definition of the Caputo derivative.

Definition 1. The Caputo fractional derivative of order λ (see, e.g., [3–5]) is defined by

C
t0

Dλ
t f (t) =

1
Γ(n− λ)

∫ t

t0

f (n)(s)
(t− s)1+λ−n ds. (1)

where n− 1 ≤ λ < n, n ∈ N, t > t0.

In this paper, we consider a class of multi-term fractional differential equations with
non-commensurate orders in the form

C
0Dλk

t y(t) = f
(
t, y(t),C0 Dλ1

t y(t),C0 Dλ2
t y(t), . . . ,C0 Dλk−1

t y(t)
)

(2)

with initial conditions
y(i)(0) = y(i)0 , i = 0, 1, . . . , dλke − 1, (3)

where λk > λk−1 > . . . > λ1 > 0, λj − λj−1 ≤ 1 for all j = 2, 3, . . . , k, 0 < λ1 ≤ 1, d·e is the ceiling

function, f is an analytic function in some neighborhood of (0, y(0)0 , y(1)0 , . . . , y(dλke−1)
0 ) and C

0Dβ
t denotes

the fractional derivative of order β ∈ R in Caputo sense. We assume that the orders of Equation (2) may in

general be non-commensurate in the sense that
λi
λj

/∈ Q for i 6= j, i, j ∈ {1, . . . , k}.

2.2. Algorithm Description

Convenient approach to deal with equations of the type of Equation (2) is well described in the
monograph by Diethelm [1]. Two ways to rewrite the multi-term fractional differential Equation (2) into a
multi-order fractional differential system are presented in Chapter 8 and equivalence theorems are proved,
where multi-order system means a system of single-order equations. Single-order equations of both
rational and irrational order are analyzed in Chapter 6 of the same book. First, we combine information in
both chapters to find a formal solution in the form of power series convergent in a neighborhood of the
origin. Then, we apply the fractional differential transform (FDT) to find recurrence formula for coefficients
of the power series.
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2.2.1. Multi-Order System

Theorem 1. Let λk > λk−1 > . . . > λ1 > 0, λj − λj−1 ≤ 1 for all j = 2, 3, . . . , k, 0 < λ1 ≤ 1, λi and λj
generally be non-commensurate for i 6= j. Consider the IVP consisting of Equations (2) and (3), and assume that f
can be written in the form

f
(
t, y(t),C0 Dλ1

t y(t), . . . ,C0 Dλk−1
t y(t)

)
= g

(
t, tλ1 , . . . , tλk , y(t),C0 Dλ1

t y(t), . . . ,C0 Dλk−1
t y(t)

)
, (4)

where g is analytic in a neighborhood of (0, 0, . . . , 0, y(0)0 , y(1)0 , . . . , y(dλke−1)
0 ). Then, the solution y can be written

in the form

y(t) =
∞

∑
j0,j1,...,jk=0

ȳ(j0,j1,...,jk)t
j0+j1β1+...+jk βk , (5)

where each coefficient ȳ(j0,j1,...,jk) is determined uniquely in terms of the coefficients corresponding to smaller
exponents and the exponents β j, j = 1, . . . , k are defined as β1 := λ1, β j := λj − λj−1, j = 2, 3. . . . , k.

Proof of Theorem 1. First, we need to rewrite Equation (2) in the form of multi-order system, i.e., a system
of single-order equations of different orders, generally non-commensurate. We follow the approach
described in [1] (p. 176).

We start by constructing a finite sequence of orders of the single-order equations, denote it {λj}k
j=1.

Without loss of generality, we can assume that all integers between 0 and λk are members of the sequence
too. Let us write β1 := λ1, β j := λj − λj−1, j = 2, 3. . . . , k and observe that for all j, 0 < β j ≤ 1. Then, we

may write y1 := y and yj :=C
0 D

β j−1
t yj−1, j = 2, 3, . . . , k. Applying Theorem 3 now, we conclude that the

solution to the IVP defined by Equations (2) and (3) can be obtained from the solution to the system

C
0Dβ1

t y1(t) = y2(t),
C
0Dβ2

t y2(t) = y3(t),
... =

... (6)
C
0Dβk−1

t yk−1(t) = yk(t),
C
0Dβk

t yk(t) = f
(
t, y1(t), y2(t), . . . , yk(t)

)
with the initial conditions

yj(0) =


y(0)0 if j = 1,

y(i)0 if λj−1 = i ∈ N,

0 else

(7)

by setting y := y1.
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The next step is to rewrite the system of Equations (6) into an equivalent system of Volterra-type
integral equations using Theorem 4

y1(t) = y(0)0 +
1

Γ(β1)

t∫
0

(t− s)β1−1y2(s)ds,

y2(t) = y(λ1)
0 +

1
Γ(β2)

t∫
0

(t− s)β2−1y3(s)ds,

... =
... (8)

yk−1(t) = y(λk−2)
0 +

1
Γ(βk−1)

t∫
0

(t− s)βk−1−1yk(s)ds,

yk(t) = y(λk−1)
0 +

1
Γ(βk)

t∫
0

(t− s)βk−1 f
(
s, y1(s), y2(s), . . . , yk(s)

)
ds.

Now, since we assume that the function f can be written in the special form in Equation (4), we can
apply Theorem 5 and Corollary 1 to each of the single-order equations in the system of Equations (6) with
corresponding initial condition in Equation (7), one by one, to obtain

y(t) =
∞

∑
j0,j1,...,jk=0

ȳ(j0,j1,...,jk)t
j0+j1β1+...+jk βk , (9)

where each coefficient ȳ(j0,j1,...,jk) is determined uniquely in terms of the coefficients corresponding to
smaller exponents. The problem of how to determine the coefficients is the subject to our study in
Section 2.2.2.

2.2.2. Implementation of the Differential Transform

Now, we turn our attention back to the IVP given by Equations (2) and (3). Recall that we have turned
the problem into the equivalent IVP for a system of single-order fractional differential equations defined
by Equations (6) and (7).

Applying the FDT tools developed in the Section 4.2, i.e., Theorem 6, the system of Equations (6) and
(7) is transformed to the following system of recurrence relations

Γ(α1 j1 + β1 + 1)
Γ(α1 j1 + 1)

Y1,α1

(
j1 +

β1

α1

)
= Y2,α1(j1),

... =
... (10)

Γ(αk jk + βk + 1)
Γ(αk jk + 1)

Yk,αk

(
jk +

βk
αk

)
= Fαk

(
jk, Y1,αk (jk), . . . , Yk,αk

(jk)
)
,

with transformed initial conditions

Yj(0) =


y(0)0 if j = 1,

y(i)0 /i! if λj−1 = i ∈ N,

0 else,

(11)



Symmetry 2019, 11, 1390 5 of 10

where Fαk

(
jk, Y1,αk (jk), . . . , Yk,αk

(jk)
)

is the FDT of f
(
t, y1(t), y2(t), . . . , yk(t)

)
of order αk and 0 <

α1, . . . , αk ≤ 1 are suitable real constants representing the order of the fractional power series in
Equation (27). If we had commensurate orders only, we could take all α1, . . . , αk equal to the least common
multiple of denominators of all orders of derivatives which appear in the equation, as described in the
paper [6]. However, in the case of non-commensurate orders, we have to use different approach for the
choice of α1, . . . , αk. Specifically, the choice α1 := β1, . . . , αk := βk is one of the choices which lead to the
solution of the given IVP in the form of Equation (5). The system of Equations (10) is then simplified to

Γ(β1 j1 + β1 + 1)
Γ(β1 j1 + 1)

Y1,β1 (j1 + 1) = Y2,β1(j1),

... =
... (12)

Γ(βk jk + βk + 1)
Γ(βk jk + 1)

Yk,βk
(jk + 1) = Fβk

(
jk, Y1,βk (jk), . . . , Yk,βk

(jk)
)
.

As there are (generally non-commensurate) different orders of the FDT in the system of Equation (12),
we need to find relation between coefficients with different orders.

Theorem 2. Let a function f have the form f (t) = C
t0

Dβ
t g(t), where we allow β = 0, and let Fα1(k) and Fα2(k)

denote the FDT of f at t0 of orders α1 and α2, respectively. Then,

Fα2(k) = Fα1

(
α2

α1
k
)

. (13)

Proof of Theorem 2. Application of Theorem 6 gives Fα1(k) =
Γ(α1k + β + 1)

Γ(α1k + 1)
Gα1

(
k + β

α1

)
and Fα2(k) =

Γ(α2k + β + 1)
Γ(α2k + 1)

Gα2

(
k + β

α2

)
. Calculating Gα1 and Gα2 from the Definition 2 we get

Gα1

(
k +

β

α1

)
=

1

Γ(α1(k +
β
α1
) + 1)

[
C
t0

D
α1(k+

β
α1

)

t g(t)

]
t=t0

=
1

Γ(α1k + β + 1)

[
C
t0

Dα1k+β
t g(t)

]
t=t0

,

Gα2

(
k +

β

α2

)
=

1

Γ(α2(k +
β
α2
) + 1)

[
C
t0

D
α2(k+

β
α2

)

t g(t)

]
t=t0

=
1

Γ(α2k + β + 1)

[
C
t0

Dα2k+β
t g(t)

]
t=t0

.

Substituting
α2

α1
k into Fα1 and combining all formulas brings us to the relation

Fα1

(
α2

α1
k
)
=

Γ(α1(
α2
α1

k) + β + 1)

Γ(α1(
α2
α1

k) + 1)
Gα1

((α2

α1
k
)
+

β

α1

)
=

Γ(α2k + β + 1)
Γ(α2k + 1)

1
Γ(α1(

α2
α1

k) + β + 1)

[
C
t0

D
α1(

α2
α1

k)+β

t g(t)
]

t=t0

=
Γ(α2k + β + 1)

Γ(α2k + 1)
1

Γ(α2k + β + 1)

[
C
t0

Dα2k+β
t g(t)

]
t=t0

=
Γ(α2k + β + 1)

Γ(α2k + 1)
Gα2

(
k +

β

α2

)
= Fα2(k).
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Theorem 2 allows us to solve the recurrence relations in the system of Equations (12) with respect
to j1, . . . , jk to find the sequences of coefficients {Y1,β1(j1)}, . . . , {Yk,βk

(jk)}. Applying IFDT (Definition 3)
yields

y(t) = y1(t) = CD−1
β1

{
{Y1,β1(j1)}∞

j1=0

}
[0] =

∞

∑
j1=0

Y1,β1(j1)tβ1 j1 =
∞

∑
j1=0

Y1,β1(j1)tλ1 j1 . (14)

Although it seems that there are only powers of order λ1 in the solution, it is not the case. Recall
that, according to Definition 2 of FDT, indexes j1 belong to a countable subset of [0, ∞), not necessarily
being integers. In fact, there will be integer multiples of all powers λ1, . . . , λk and some integer powers of t
arising from the initial conditions in the solution, which is demonstrated in Section 2.2.3.

2.2.3. Applications

Example 1. Consider two-term fractional differential equation

Γ
(

4
3

)
C
0D

1√
2

t y(t) + Γ
(

1√
2
+ 1
)

C
0D

1
3
t y(t) = Γ

(
4
3
+

1√
2

)
(t

1
3 + t

1√
2 ) (15)

with initial condition y(0) = 0. If we rewrite Equation (15) into a two-order system, we get

C
0D

1
3
t y1(t) = y2, (16)

C
0D

1√
2
− 1

3
t y2(t) =

1

Γ
(

4
3

)(Γ
(

4
3
+

1√
2

)
(t

1
3 + t

1√
2 )− Γ

(
1√
2
+ 1
)

y2(t)

)
, (17)

with initial conditions y1(0) = 0, y2(0) = 0. Following the algorithm, we choose α1 = 1
3 and α2 = 1√

2
− 1

3 .
Fractional differential transform of the system defined by Equations (16) and (17) is

Γ( 1
3 k + 1

3 + 1)

Γ( 1
3 k + 1)

Y1,α1 (k + 1) = Y2,α1(k), (18)

Γ(α2k + α2 + 1)
Γ(α2k + 1)

Y2,α2 (k + 1) =
1

Γ
(

4
3

)(Γ
(

4
3
+

1√
2

)(
δ

(
k− 1

3α2

)
+ δ(k− 1√

2α2
)
)

− Γ
(

1√
2
+ 1
)

Y2,α2(k)

)
, (19)

with transformed initial conditions Y1,α1(0) = 0, Y2,α2(0) = 0. As Equation (19) does not depend on Y1, we can
solve it first completely and then get back to Equation (18). We observe that the first nonzero coefficient we get for

k = 1
3α2

: Y2,α2

(
1√
2α2

)
=

Γ
(

4
3 + 1√

2

)
Γ
(

1√
2
+ 1
) . The next possibility of nonzero coefficient we observe for k = 1√

2α2
:

Γ
(

2√
2
− 1

3
+ 1
)

Y2,α2

(
2−

√
2

3

1−
√

2
3

)
=

Γ
(

1√
2
+ 1
)

Γ
(

4
3

) (
Γ
(

4
3
+

1√
2

)
− Γ

(
1√
2
+ 1
)

Y2,α2

(
1√
2α2

))
=0,
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which means that all coefficients Y2,α2(k) are zero except Y2,α2

(
1√
2α2

)
. Finally we feed Y2,α2

(
1√
2α2

)
back into

Equation (18) ( with k = 3√
2

) and obtain Y1, 1
3

(
3√
2
+ 1
)
=

Γ
(

1√
2
+ 1
)

Γ
(

4
3 + 1√

2

)Y2, 1
3

(
3√
2

)
= 1.

Hence, the IVP given by Equation (15) and the initial condition y(0) = 0 has the unique solution

y(t) = y1(t) = t
1
3

(
3√
2
+1
)
= t

1
3+

1√
2 . (20)

3. Discussion

In the paper, we propose an algorithm to obtain values of the constants in the formal
asymptotic expansion of solution to IVP for multi-term fractional differential equation with generally
non-commensurate orders. In particular, we proceed in the following sequence of steps:

1. Transform the multi-term equation into a multi-order differential system.
2. Describe an equivalent system of Volterra integral equations.
3. Find the general form of the asymptotic expansion of the solution.
4. Transform the multi-order differential system to a system of recurrence relations (formal application

of FDT).
5. Choose convenient orders of FDT.
6. Describe the relation between different orders of FDT.

The algorithm provides an answer to the open question raised in the monograph by Diethelm [1].
An obvious subject to discuss is the choice of convenient orders of FDT (Step 5). Taking into account the
symmetry observed in the choice of the orders in provided Example 1, we expect that there might be a
different combination of orders used, with possibility to optimize the computational effort.

Further, convergence properties should be studied to ensure that a computer implementation of the
algorithm is reliable and efficient. Once the convergence of the formal generalized power series is proved
and an expression defining the radius of convergence is obtained, then we move in terminology from an
asymptotic solution to an analytical approximate solution. This task can be a continuation of this article,
with the proof of Theorem 6.32, p. 121–124, in [1] as a starting point.

Finally, as the orders are generally non-commensurate, i.e. irrational, software using symbolic
computations might have an advantage against purely numerical software.

4. Methods

4.1. Equivalence and Smoothness Theorems

We recall a few results necessary for justification of correctness of the algorithm.

Theorem 3 (See [1], Theorem 8.9, p. 176). Subject to the conditions specified in Section 2.1, the multi-term
Equation (2) with initial conditions in Equation (3) is equivalent to the system of Equations (6) with the initial
conditions in Equation (7) in the following sense:

1. Whenever the function y ∈ Cdλke[0, T] is a solution of the IVP given by Equations (2) and (3), the vector-valued
function Y := (y1, . . . , yk)

T with

yj(t) :=

y(t) if j = 1,
C
0D

λj−1
t y(t) if j = 2, . . . , k,

(21)

is a solution of the IVP defined by Equations (6) and (7).
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2. Whenever the vector-valued function Y := (y1, . . . , yk)
T is a solution of the IVP defined by Equations (6) and

(7), the function y := y1 is a solution of the IVP given by Equations (2) and (3).

Theorem 4 (See [1], Lemma 6.2, p. 86). Let 0 < n and m = dne. Moreover, let y(0)0 , . . . , y(m−1)
0 ∈ R, K > 0

and h∗ > 0. Define G := {(x, y) : x ∈ [0, h∗], |y−
m−1
∑

k=0
xky(k)0 /k!| ≤ K}, and let the function f : G → R be

continuous. The function y ∈ C[0, h] for some 0 < h < h∗ is a solution of the initial value problem

C
0Dn

x y(x) = f (x, y(x)), (22)

Dky(0) = y(k)0 , k = 0, 1, . . . , m− 1 (23)

if and only if it is a solution of the nonlinear Volterra integral equation of the second kind

y(x) =
m−1

∑
k=0

y(k)0
xk

k!
+

1
Γ(n)

x∫
0

(x− t)n−1 f (t, y(t))dt. (24)

Theorem 5 (See [1], Theorem 6.35, p. 124). Let n be a positive irrational number. Consider the initial value
problem defined by Equations (22) and (23) and assume that f can be written in the form f (x, y) = f̄ (x, xn, y)
where f̄ is analytic in a neighborhood of (0, 0, y(0)0 ). Then, there exists a uniquely determined analytic function
ȳ : (−r, r)× (−rn, rn)→ R with some r > 0 such that y(x) = ȳ(x, xn) for x ∈ [0, r).

Corollary 1 (See [1], Corollary 6.37, p. 125). Under the assumptions of Theorem 5, y is of the form

y(x) =
∞

∑
µ,ν=0

ȳµνxµ+νn. (25)

4.2. Fractional Differential Transformation

An introduction of a generalization of the differential transformation (DT) called the fractional
differential transformation (FDT) is given in this subsection. For more details on DT and FDT,
we recommend solid papers [7–12].

Definition 2. Fractional differential transformation of order α ∈ R+ of a real function u(t) at a point t0 ∈ R in
Caputo sense is CDα{u(t)}[t0] = {Uα(k)}∞

k=0, k ∈ I ⊂ R+
0 where I is a countable subset of [0, ∞), and Uα(k), the

fractional differential transformation of order α of the (αk)th derivative of function u(t) at t0, is defined as

Uα(k) =
1

Γ(αk + 1)

[
C
t0

Dαk
t u(t)

]
t=t0

, (26)

provided that the original function u(t) is analytic in some right neighborhood of t0.

Definition 3. Inverse fractional differential transformation (IFDT) of {Uα(k)}∞
k=0 is defined using a fractional

power series as follows:

u(t) = CD−1
α

{
{Uα(k)}∞

k=0

}
[t0] =

∞

∑
k=0

Uα(k)(t− t0)
αk. (27)

In applications, we use some basic FDT formulas listed in [6]:
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Theorem 6. Assume that {Fα(k)}∞
k=0, {Gα(k)}∞

k=0 and {Hα(k)}∞
k=0 are differential transformations of order α at

t0 of functions f (t), g(t) and h(t), respectively. Further assume that r > 0, β > 0.

If f (t) = (t− t0)
r, then Fα(k) = δ

(
k− r

α

)
, where δ(x− y) = δxy is the Kronecker delta. (28)

If f (t) = g(t)h(t), then Fα(k) =
k

∑
l=0

Gα(l)Hα(k− l). (29)

If f (t) =
g(t)

(t− t0)r , then Fα(k) = Gα

(
k +

r
α

)
, provided Gα(l) = 0 for l <

r
α

. (30)

If f (t) = C
t0

Dβ
t g(t), then Fα(k) =

Γ(αk + β + 1)
Γ(αk + 1)

Gα

(
k +

β

α

)
. (31)
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