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Abstract
An original method is proposed for the calculation of current density in a

finite number of long parallel solid conductors of arbitrary cross section. Some
pairs of the conductors under examination can be connected to a voltage source;
they are active. The other conductors are passive. The currents, voltages and
magnetic fields are assumed to be quasi-stationary and the displacement current
is neglected. The permeability of the conductor material is constant and equals
the vacuum permeability. No method has so far been published that would
allow an exact calculation of current density in all the cases that satisfy the
above assumptions. The application of the method is demonstrated by solving
an example with two active conductors, one of which is of circular and the other
of rectangular cross section, while a third passive conductor is of rectangular
cross section.

Keywords: applied classical electromagnetism; magnetic induction; induced
currents; numerical simulation

1 Introduction

Maxwell [1], Art. 689 and 690, proposed a method for the calculation of current
density in a solitary long cylindrical conductor supplied with variable current. The
author of the present paper proposed [2–4] a method for the calculation of current
density in a pair of conductors connected to a voltage source on the assumption that
the conductors have similar cross sections. In the present paper, an original method
is proposed for the calculation of current density in a finite number of long parallel
solid conductors of arbitrary cross section.

The method proposed is a generalization of the method for calculating current
density in a conductor that is not connected to a source and lies in an external time-
varying magnetic field. This method was published in [5]. The currents, voltages and
magnetic fields are assumed to be quasi-stationary and the displacement current is
neglected. A quasi-stationary, or slowly varying quantity means that at any instant
its magnitude is the same on a straight line parallel to the conductors considered. It
actually means that an infinitely high propagation velocity of electromagnetic field
is assumed.

The Cartesian coordinate system xyz is chosen such that the axis z is parallel to
the conductors examined. The conductor cross section does not depend on z. The
permeability of the conductor material is constant and equals the vacuum perme-
ability µ0. The resistivity of the conductors does not depend on z, it is a function of
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Figure 1: Cross section of conductors A1,A2,A3 and net of rectangles.

x and y. In view of each of the conductors being determined by its cross section in
the plane xy, the conductors will be designated by the same symbols as their cross
sections. Generally, the conductors considered are A`, where ` = 1, 2, . . . , c, c > 0.
Each cross section A` is in fact a closed connected set with continuous boundary [6]
and thus it can be approximated with arbitrary precision by the cross section a(A`),
which is a sum of disjoint rectangles [5]. These rectangles can form part of the net
R of identical rectangles formed with the aid of the parallels

x = kx ∆x, y = ky ∆y,

where kx, ky are integers and ∆x and ∆y the chosen lengths of the rectangle sides.
The cross section a(A`) is the aggregate of rectangles in the net R

a(A`) =

N⋃̀
j=1

A`j , ` = 1, 2, . . . , c. (1)

Fig. 1 illustrates the rectangular cross sections A1,A2 and circular cross section
A3 together with a net of rectangles. There are several possibilities of forming the
aggregate a(A`) in a given net R. If A`j ∈ R, then A`j ⊂ a(A`) if either A`j ⊂ A`

or A`j ∩ A` 6= ∅ or (X`j , Y`j) ∈ A`, where (X`j , Y`j) is the centre of the rectangle
A`j . The possibilities given do not exhaust all the possibilities. What is important
is that it holds

a(A`)→ A` for d→ 0,

where d is the length of the diagonal of rectangle A`j . The net R need not be the
same for all the conductors A`. Each conductor A` can have its own net R` and its
own coordinate system. For example, in the case of rectangular cross section A` the
coordinate system and the sides ∆x,∆y can be chosen such that the sides of the net
rectangles are parallel to the axes of coordinates and that it holds

a(A`) = A`,

as shown in Fig. 2. The sets Ai are assumed to be rectangles but they can also have
a different shape; in [4], for example, they are sectors of circular ring.
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Figure 2: Example of rectangular cross sections and their approximations by aggre-
gates in different nets of rectangles.

The resistivity of conductors % is given, it depends on x and y, % = %(x, y).
If the point (x, y) does not lie in any of the aggregates a(A`), ` = 1, 2, . . . , c, then
%(x, y) = 0.

2 Active, passive and partial conductors

Some of the conductors considered can be connected to the voltage source. They are
called active conductors. Conductors connected to one source form a loop, with one
conductor connected to each terminal. This assumption is without loss of generality.
If a group of conductors are connected to one terminal of the source, this group will
in the following be taken for a single conductor. The cross section of such a conductor
is not a connected set [6] but several connected sets.

In addition to active conductors there can also be passive conductors among the
conductors considered, i.e. conductors that are not connected to a source. Theo-
retically, one conductor could be connected to the ideal current source [7]. There
is in fact no ideal current source. A replacement of a real current source via a
parallel connection of ideal current source and parallel conductance means adding
a further conductor to the conductors considered. The added conductor and the
original conductor would form a loop of active conductors, in which the current
source can be replaced by an equivalent voltage source. Thus it is not necessary to
separately examine such a case. Nevertheless, the proposed method for calculating
current density also covers the case when the conductor is connected to the ideal
current source. Admittedly, the case is unrealizable but it is the generalization of
a historically significant method for calculating current density in a conductor of
circular cross section [1, 8, 9], Art. 689, 690. An erroneous interpretation of the
result obtained by this method has unfavourable consequences even today [3,10–12].
Conductors connected to the ideal current source will in the following be included
among the passive conductors.

A pair of passive conductors can form a loop. This pair is regarded as a pair of
active conductors connected to a source of zero voltage.
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Using the index `, the conductors are numbered such that conductors with the
index ` = 1, 2, . . . , c2, where c2 is even, are active conductors while the remaining
conductors, with the index ` = c2 + 1, c2 + 2, . . . , c, are passive conductors. Each
pair of active conductors A`,A`+1, where ` < c2 is an odd number, is connected to
the voltage source such that all the odd-index conductors are connected to a source
terminal of the same polarity.

Induced in an arbitrary closed curve C according to Faradays law of electromag-
netic induction is the voltage

UC =
dΦ

dt
, (2)

where Φ is a linked flux to the curve C, It is the flux of the vector

B = Bex + Bco

through a continuous surface SC bounded by the curve C. Φ does not depend on
the shape of the surface SC . If the whole curve C lies in an electrically conductive
medium, then UC will produce a conductive electric current, i.e. induced current.
Bco is the magnetic field produced by the conductors examined, Bex is the external
field, which is not affected by the currents induced in the conductors considered and
is perpendicular to them. The non-zero component of the density of the induced
current is only the z-component,

J = 〈0, 0, J(x, y, t)〉,

because the conductors are parallel to the axis z and the field B is perpendicular to
the conductor, as assumed.

The net of rectangles R`, ` = 1, 2 . . . , c is assumed to be assigned to the conductor
A`. All the rectangles in R` are of the same dimensions and equally large area ∆`.
For each A` there exists in the net R` its approximation a(A`). The rectangle A`j

can be regarded as the cross section of a partial conductor, which is designated by
the same symbol A`j . Partial conductors can be distinguished by one index i instead
of two indices ` and j. The partial conductors Ai, i = N`−1 + 1, N`−1 + 2, . . . , N`,
where N0 = 0, Nc = N , form one conductor a(A`) and, by (1), they approximate
the conductor A`.

Arbitrary two partial conductors Ai, Aj , i 6= j can form a partial loop if

[Ai ⊂ a(A`)] ∧ [Aj ⊂ a(A`)], 1 ≤ ` ≤ c,

or
[Ai ⊂ a(A`)] ∧ [Aj ⊂ a(A`+1)], ` is odd, ` < c2,

or
[Ai ⊂ a(A`)] ∧ [Aj ⊂ a(A`−1)], ` is even, ` ≤ c2.

Voltage is induced in partial conductors and current flows through them.

3 Calculation of current density in conductors

The conductors under consideration are infinitely long. The voltage of voltage
sources, which produces a drop in the potential along the conductors, would have
to be infinitely large for the potential drop to be non-zero in the final segment of
active conductors. The magnetic field along the conductors does not change and its
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Figure 3: Example of two path graphs in the loop of two cylindrical conductors.
Dotted line segments represent the net of rectangles, the centres of partial conductor
cross sections, i.e. graph vertices are designated by •, the line segments connecting
the graph vertices are its edges.

flux through the loops is infinitely large too. For these reasons, only a part of the
space and conductors between the planes z = z1 and z = z2, z2 > z1 is examined in
the following. This approach does not indicate a change in the original objective,
i.e. determination of current density in conductors, as proved in [5].

In the calculation of current density it is assumed that current density in the
cross section Ai, i = 1, 2, . . . , N , of a partial conductor is constant and has the value
Ji. The value of resistivity in a partial conductor, too, is assumed to be constant
and have the value %i = %(Xi, Yi), where (Xi, Yi) is the centre of the rectangle Ai.

The partial conductors Ai, i = N`−1 + 1, N`−1 + 2, . . . , N`, which form a passive
aggregate a(A`), must be numbered such that the graph with N` − N`−1 vertices
(Xi, Yi) and N`−N`−1−1 edges is a path graph [5,13]. Similarly, as a generalization
of the results in [5], the conductors are numbered in each pair of aggregates a(A`),
a(A`+1), ` = 1, 3, . . . , c2− 1, connected to the same source. The graph with N`+1 −
N`−1 vertices (Xi, Yi) and N`+1 −N`−1 − 1 edges must be a path graph [13]. Fig. 3
gives an example of the path graph in the cross section of a loop of two cylindrical
conductors. For the given graph vertices (Xi, Yi) there usually exist several path
graphs; it is important that there always exists at least on path graph [13]. Creating
a path graph is usually connected with renumbering the vertices (Xi, Yi). The indices
of vertices and thus also partial conductors must follow one after another, the same
as vertices in the path graph.

The cross section of each conductor in the plane z = const is an equipotential
surface. Between the cross sections of the active conductors a(A`) and a(A`+1), ` =
1, 3, . . . , c2−1, (forming a loop) there is potential difference V`(z, t), provided the two
cross sections lie in the same plane z = const. The active conductors are numbered
such that the conductors a(A`), ` = 1, 3, . . . , c2− 1, are connected to the + terminal
of the respective voltage source. In the loop of active conductors a(A`), a(A`+1) are
p` partial conductors, designated by an increasing sequence of indices

i1, i2, . . . ip` , where Ai1 ⊂ a(A`), p` > 0, ip` < N`+1, (3)

such that either
(Aik ⊂ a(A`)) ∧ (Aik+1 ⊂ a(A`+1)), (4)
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or
(Aik ⊂ a(A`+1)) ∧ (Aik+1 ⊂ a(A`)). (5)

The segment of each partial loop between the planes z = z1 and z = z2 can
be replaced by a lumped-elements circuit. Applying the loop currents method to
independent partial loops will yield equations for determining current density in
conductors. According to [5] the path graph determines the independent partial
loops. The ith partial loop is formed by the partial conductors Ai and Ai+1. It is
necessary to distinguish partial loops formed from partial conductors which lie

1. inside the same passive conductor a(A`), ` = c2 + 1, c2 + 2, . . . , c,

2. in the same loop of active conductors a(A`), a(A`+1), ` = 1, 3, . . . , c2− 1.

As for 1: The equivalent circuit of the ith partial loop with the respective loop
currents is given in [5] in Fig. 3. N −Nc2 partial conductors are divided into
c−c2 passive aggregates a(A`), ` = c2+1, c2+2, . . . , c. In the aggregate a(A`)
are N`−N`−1−1 independent partial loops. In all the passive aggregates there
are N − Nc2 + c2 − c independent partial loops, with the following equation
holding for them

(z2 − z1) [%iJi(t)− %i+1Ji+1(t)] +
d

dt
Φi(t) = 0, (6)

where dΦi(t)/dt is the voltage induced in the segment of the ith partial loop.

As for 2: Equation (6) holds for each ith partial loop

i = N`−1 + 1, N`−1 + 2, . . . , i1 − 1,

i1 + 1, i1 + 2, . . . , i2 − 1,

i2 + 1, i1 + 2, . . . , ip` − 1,

ip` + 1, ip` + 2, . . . , N`+1 − 1,

which makes a total of N`+1−N`−1−1−p` equations. The pair of partial con-
ductors Aik , Aik+1 for k = 1, 2, . . . , p` forms independent loops. The equivalent
circuit of these loops can be seen in Fig. 4 for the case of (4). The equivalent
circuit for the case of (5) differs from the circuit in Fig. 4 only in that the
arrows for the voltages V`(z1, t) and V`(z2, t) are of opposite directions. The
equation holding for the circuit in Fig. 4 is

(z2 − z1) [%iJi(t)− %i+1Ji+1(t)] +
d

dt
Φi(t) = δ̄ [V`(z1, t)− V`(z2, t)] , i = ik,

(7)
where δ̄ = 1. In the case of (5) it holds δ̄ = −1. For one pair of active
conductors it is possible to write p` equations (7), which is the number of the
terms of sequence (3). The total number of independent equations (6) and (7)
which belongs to all the pairs of active conductors considered is Nc2 − c2/2.

The systems of equations (6) and (7) can be written as a system of N − c+ c2/2
equations

(z2 − z1) [%iJi(t)− %i+1Ji+1(t)] +
d

dt
Φi(t) = δi [V`(z1, t)− V`(z2, t)] , (8)
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Figure 4: The equivalent circuit of the ikth partial loop segment between the planes
z = z1 and z = z2 in the case of (4).

where
i 6= N2, N4, . . . , Nc2;Nc2+1, Nc2+2, . . . , Nc (= N), (9)

δi =


1 if i is a term of (3) and relation (4) holds
−1 if i is a term of (3) and relation (5) holds

0 otherwise.
(10)

Equation (8) thus does not hold for each index i from the set {1, 2, . . . , N} but only
for the index i ∈ I , where I ⊂ {1, 2, . . . , N}. The flux Φi(t) is a flux linked to Ci

of the vector B. The closed curve Ci is composed of four line segments ls1, ls2, ls3
and ls4, which are sets of points (x, y, z) and are determined by the endpoints

ls1: (Xi, Yi, z1) and (Xi, Yi, z2),

ls2: (Xi, Yi, z2) and (Xi+1, Yi+1, z2),

ls3: (Xi+1, Yi+1, z2) and (Xi+1, Yi+1, z1),

ls4: (Xi+1, Yi+1, z1) and (Xi, Yi, z1).

The flux Φi = Φi(t) is the sum of fluxes Φco
i (t) and Φex

i (t). The flux Φco
i is the sum

of the fluxes produced by the partial conductors

Φco
i (t) =

µ0
4π

N∑
k=1

Jk(t)(z2 − z1)φik, (11)

where Jk(t)(z2−z1)µ0 φik/(4π) is the contribution of the kth partial conductor. For
the flux Φex

i of the vector Bex(x, y, t) linked to Ci it holds

Φex
i (t) = (z2 − z1)φexi T (t). (12)

The quantity φexi does not depend on t. T (t) is the given function of t. The notation
∀k will be used instead of writing k = 1, 2, . . . , N . The coefficients φik, i ∈ I ,∀k,
do not depend on t and their calculation is given in the Appendix of [5], where are
also the formulae for the calculation of the coefficients φexi in (12) if the field Bex
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is homogeneous or is produced by a current filament parallel to the axis z. After
specifying the flux Φi and after rearranging, equation (8) has the form

%i Ji(t)− %i+1 Ji+1(t) +
µ0
4π

N∑
k=1

φik
d

dt
Jk(t) = δi U`(t)− φexi

d

dt
T (t), i ∈ I , (13)

where U`(t) = [V`(z1, t) − V`(z2, t)]/(z2 − z1). Equation (13), complemented with
relations (9) and (10), is a system of N − c + c2/2 ordinary differential first-order
equations with unknown N current densities J1(t), J2(t), . . . , JN (t). To determine
all the current densities, it is necessary to add c− c2/2 equations. These equations
are the conditions that the total current through each pair of active conductors is
zero

N∑̀
k=N`−1+1

∆`Jk +

N`+1∑
k=N`+1

∆`+1Jk = 0, ` = 1, 3, . . . , c2− 1, (14)

and the total current is also zero in each passive conductor

N∑̀
k=N`−1+1

Jk = 0, ` = c2 + 1, c2 + 2, . . . , c. (15)

Equation (15) expresses that the total current is equal to zero after division by the
area ∆` of the net rectangle. If a `th conductor is connected to the ideal current
source, equation (15) is replaced by the equation

N∑̀
k=N`−1+1

∆`Jk = I0`,

where I0` is the inner current of the current source.
In the calculation of the magnetic field and its fluxes it is necessary to take into

consideration the potentially different coordinate systems in which the cross sections
are specified (Fig.2). The calculation of the magnetic field and its flux produced by
a conductor of rectangular cross section is the simplest in a coordinate system whose
axes x and y are parallel to the cross section sides (see the Appendix of [5]). When
calculating the flux through an area it is therefore necessary to transform the area
into the coordinates in which the conductor cross section is defined.

Consistent with the path graph (see Fig. 3) is a system of independent loops
and independent equations (13) but the calculated current density does not depend
on the choice of the path graph.

4 Steady sinusoidal state

The proposed method for calculating the current density in a long parallel conductors
is described by the system of equations (13), (14) and (15). This method allows
solving many cases in both steady and transient states. Demonstrating all potential
cases in one paper is not possible so that only the simplest case is chosen, namely
the steady sinusoidal state for Φex

i = 0.
If each voltage U`(t), i ∈ I in equation (13) is either equal to zero or sinusoidal

U`(t) = Û` sin(ωt+ α`),
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then after a sufficiently long time after the connection of all voltages the current
density can be regarded as steady sinusoidal with angular frequency ω

Ji(t) = Ĵi sin(ωt+ εi), ∀i.

In steady state, the fluxes

Φco
i (t) = Φ̂co

i sin(ωt+ ϕi), i ∈ I

will also be steady. It follows from the above that the system of equations (13), (14)
and (15) can be solved in the complex domain if the complex voltage and current
density

δi U ` exp(jωt), i ∈ I ; J i exp(jωt), ∀i,

are taken into consideration, where the underlined symbols denote the phasors

U ` = Û` exp(jα`), ` = 1, 3, . . . , c2− 1; J i = Ĵi exp(jεi), ∀i.

Substituting the complex quantities into equation (13), (14) and (15) and rewriting
will yield a system of N linear algebraic equations in the complex domain

%iJ i − %i+1J i+1 +
jµ0 ω

4π

N∑
k=1

φik Jk = δiU `, i ∈ I , (16)

N∑̀
k=N`−1+1

∆` Jk +

N`+1∑
k=N`+1

∆`+1 Jk = 0, ` = 1, 3, . . . , c2− 1, (17)

N∑̀
k=N`−1+1

Jk = 0, ` = c2 + 1, c2 + 2, . . . , c. (18)

Solving the system of equations (16), (17) and (18) gives the current density phasors
J i, ∀i.

5 Example

Prior to calculating current density by the proposed method (equations (8) and
(13)) it is necessary to know the values of the resistivity of the conductors under
consideration in dependence on x and y. Assumed in the subsequent example is
constant resistivity over the cross section of conductors; a more complex resistivity
pattern was assumed in [5]. The resistivity values have been taken over from [14],
the resistivity of Cu conforms to annealed Cu. The resistivity of Cu depends sub-
stantially on the production method of conductors and on their deformation [15–17].
The present paper deals with infinitely long conductors and this means that relevant
quantities cannot depend on the coordinate z. To apply the effect of the structure,
defects, dislocations, etc. to resistivity, it would be necessary to know their effect
over the cross section of the conductors (in dependence on x and y) and, on top of
that, this effect could in no way depend on z.

Three conductors A1, A2 and A3 are examined at a temperature of 25◦C, the
dimensions of their cross sections are evident from Fig. 5. The conductors A1 and
A2 form an active loop, the conductor A3 is passive. The A1 and A2 conductors
are of copper, %1 = 1.712 × 10−8 Ω·m [14], the A3 conductor is of aluminium,
%2 = 2.709× 10−8 Ω·m [14].
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Figure 5: Cross sections of the conductors A1,A2,A3 in the Example.

Four variants are considered. In all the variants the position of the conductor
A1 remains unchanged. In variant 1 the position of the conductors is the same as in
Fig.5. Variants 2, 3, and 4 differ from variant 1 by the position of the conductors A2

and A3. Two cases are examined in each variant. Considered in the first case are
only the conductors A1 and A2, i.e. c = 2, in the second all the three conductors,
i.e. c = 3.

The cross sections of the partial conductors form in the cross section of the `th,
` = 1, 2, 3, conductor n` layers parallel with the axis x, with each layer containing
m` cross sections of the partial conductors. The calculated current density Ji, ∀i,
is constant in the cross section of the ith partial conductor and is thus piecewise
constant, which is an approximation of the real state. The calculation result is the
more precise, the larger the value of N . In the Figures given below, the discontin-
uous values of the amplitude Ĵi and the initial phase εi of the current density are
approximated by the continuous curves Ĵ(x, y) and ε(x, y), respectively. For a con-
stant y the curves begin at the point x = X1 and terminate at the point x = Xm`

.
With increasing N these points get closer to the conductor surface.

The voltage on the active loop (see equation (16)) was chosen to be U1 =
1 V·m−1 6 0◦. The values of the current density in the Figures are divided by the
value Jdc = 3.253 × 107 A·m−2, which is the magnitude of current density in the
conductor A2 when the frequency f of the voltage source is zero, f = ω/(2π). Be-
sides current density, the parameter values were also determined. The parameters
are understood to be: the amplitude Î of the current and its initial phase β in the
conductor A1, the real and the imaginary component <(Z) and =(Z), respectively,
the impedance Z of a segment of the active conductors A1 and A2. The current
through the conductor A2 is of the same amplitude as the current through the con-
ductor A1, its initial phase is equal to 180◦ + β. The parameter values are given in
Table 1.

The square net R,∆x = ∆y, was chosen in all the variants, with ∆x = 0.2 mm
and ∆x = 0.1 mm in variants 1, 2 and 3, 4, respectively.

Variant 1
The voltage frequency f = 50 Hz. Fig. 6 gives the dependence of the normed
amplitude of current density on x for a constant y in variant 1. The dependence
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Figure 6: Variant 1: Dependence of normed amplitude of current density on x in
the cross sections A1, A2 for y = 0.1, 1.5, 3.9, 7.9 mm and in the cross section A3 for
y = 19.1, 20.7, 22.3, 23.9 mm.

Table 1: Dependence of active-loop parameters on the variant and on the presence
of passive conductor (c = 3).

varianta c f (kHz) Î (A) β (◦) <(Z) =(Z)

1 2 0.05 4210 −33.93 1.971× 10−4 1.326× 10−4

2 2 0.05 4485 −26.81 1.990× 10−4 1.006× 10−4

3 2 1 387.3 −79.00 4.926× 10−4 2.534× 10−3

4 2 100 12.61 −84.29 7.883× 10−3 7.888× 10−2

1 3 0.05 4180 −33.48 1.995× 10−4 1.320× 10−4

2 3 0.05 4432 −26.15 2.026× 10−4 9.946× 10−5

3 3 1 395.6 −71.70 7.936× 10−4 2.400× 10−3

4 3 100 12.76 −84.30 7.784× 10−3 7.799× 10−2

of Ĵ and ε on y, 0 < y < 16 mm for a constant x is decreasing in the conductor
A2 and A3 for x = 20 mm and x = 0, respectively. The cross sections A1 and A2

are symmetrical with the straight line y = 8 mm and therefore symmetrical with
respect to this straight line is also the current density for the case of c = 2. The
presence of the conductor A3 disturbs the symmetry. The symmetry disturbance is
low with respect to the extent of the values on the vertical axis in Figs 6 and 7. Fig.
8 shows the dependence of Ĵ/Jdc on x for two pairs of symmetrical values y, y′ in
the conductor A2.

Variant 2
The mutual distances between the conductors are zero and zero thickness insulation
is assumed between the conductors. The cross sections of the conductor A2 and the
conductor A3 are [16, 26]× [0, 16] mm2 and [0, 25]× [16, 21] mm2, respectively. The
voltage source frequency is the same as in variant 1, f = 50 Hz. The parameters
are given in Table 1. It can be seen from a comparison of variants 1 and 2 that the
distance between the conductors affects the parameters.

Varianta 3
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Figure 7: Variant 1: Dependence of the initial phase of current density on x for a
constant y in the cross sections A1, A2 and A3; the values y are the same as in Fig.
6.
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respect to the straight line y = 8 mm in the cross section A2.
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Figure 9: Variant 3: Dependence of the normed amplitude of current density on x
for a constant y (expressed in mm) 1: 0.05, 2: 0.45, 3: 0.85, 4: 1.45, 5: 2.15, 6: 3.25,
7: 7.95, 8: 19.25, 9: 24.95.

The cross sections of the conductors A2 and A3 are [23, 33] × [0, 16] mm2 and
[17, 22] × [0, 25] mm2, respectively. The voltage source frequency is f = 1 kHz.
The parameters are given in Table 1 for c = 2 and c = 3. Figs 9 and 10 illustrate
the dependence of the normed phasor of current density on x for a constant y. With
a view to the symmetry of the cross sections A1 and A2, the values y < 8 mm are
chosen in these cross sections in Figs 9 and 10. Fig. 11 gives the dependence of the
instantaneous value of normed current density at time t, when in the conductor A1

is the maximum current I(t) = Î sin(ωt+ β). The current I(t) is at its maximum if
ωt+ β = (k + 0.5)π, where k is a non-negative integer.

Varianta 4
The cross sections of the conductors A2 and A3 are [17, 27] × [0, 16] mm2 and
[−6,−1] × [0, 25] mm2, respectively. The voltage source frequency is f = 100 kHz.
The parameters are given in Table 1 for c = 2 and c = 3. Fig. 12 gives the depen-
dence of the normed amplitude Ĵ/Jdc on x for several values of y in the lower half
of the cross section of the conductors A1 and A2. The values in the upper half of
the cross sections are not given because with the large extent of the values Ĵ/Jdc in
Fig. 12 they would merge with the values in the lower half of the cross sections. The
large extent of the current density values is also the cause of the values Ĵ/Jdc lower
than ca 10−11 being affected by rounding errors in the calculation, as evident in Fig.
12. The effect of rounding errors can be reduced by calculating with greater than
double precision, which is common in PCs and was also used in the calculation of
the results presented in the present paper. The simplest, of course, is to regard the
values of Ĵ/Jdc that are less than 10−11 as zero because such low values of current
density cannot affect the conductor parameters. From a comparison of the param-
eters in Table 1 for c = 2 and c = 3 it results that the presence of the conductor
A3 affects the parameters of the conductors A1 and A2 only a little. The normed
amplitude of current density in the conductor A3 is illustrated in Fig. 13.
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6 Comparison of newly obtained results with published
results

The proposed calculation method is a generalization of the method for calculating
current density in one passive conductor occurring in the field Bex(x, y, t) [5]. This
method forms part of the proposed method. In [5], the solution is given to eight
examples of the calculation of current density in one passive conductor in both the
steady and the transient sinusoidal state.

Maxwell [1, 8, 9], Art. 689 and 690, proposed a method for the calculation of
current density in a solitary long cylindrical conductor supplied with variable cur-
rent. In this case the density is the solution of Bessels differential equation. Since
the days of J. C. Maxwell, many papers have been written on the current density in
conductors connected to a source of AC voltage as this problem is closely related to
the calculation of inductance of various arrangements of solid conductors. Unfortu-
nately, nobody has addressed the possibility of implementing a solitary conductor,
except for [7, 10]. Maxwells method can only be applied to the solitary conductor
connected to the ideal current source, which cannot be implemented. But even this
case is included in the method proposed in the present paper for a conductor of
arbitrary cross section, thus not only for a cylindrical conductor.

The methods for the calculation of current density which are, to a certain extent,
similar to the method proposed in this paper and form its part were published and
applied in [2–4, 11, 12, 18]. They are methods for calculating current density in a
pair of long parallel conductors A1 and A2, which are active, their cross sections are
similar and resistivities symmetrical. Similarity in a plane is the mapping P , which
results from combining homothety and identical mapping. A consequence of the
similarity of cross sections and the symmetry of resistivity is the symmetry of current
density. This means that the current density in one conductor is unambiguously
determined by the current density in the other conductor. This allows reducing the
number of equations the solution of which is current density.

What is common to the published method and the method proposed in this
paper is the replacement of the examined conductors by partial conductors and the
application of Kirchhoffs voltage law to independent partial loops. What is different
is the choice of independent loops, where the similarity of conductors is made use of in
the published methods. The published methods can be applied if for each line of the
vector J in the conductor A1 there is an a priori known line that is its continuation
in the conductor A2. Resistivity symmetry means that for the resistivities %1 and
%2 in the conductors A1 and A2, respectively, it holds %2(x

′, y′) = κ %1(x, y), where
(x′, y′) = P (x, y) and κ has a constant value ∀(x, y) ∈ A1.

The conductors examined in [2,11] are two coaxial tubular conductors (one con-
ductor can be cylindrical). Their common axis goes through the point (0, 0) of the
coordinate system xy. The current density and resistivity are assumed to solely
depend on r, r =

√
x2 + y2. The cross section of the inner conductor is the annular

ring ri ∈ [ri0, rin], where 0 ≤ ri0 < rin. The cross section of the outer conductor is
the annular ring ro ∈ [ron, ro0], where rin ≤ ron < ro0].

In [3, 4, 12,18] two parallel conductors are examined which are of identical cross
sections, symmetrical with respect to the straight line and with symmetrical resistiv-
ity. The calculation method in [3,4,12,18] is formulated for cross sections of arbitrary
shape, with specific results given for rectangular and circular cross sections.

The method for the calculation of current density as proposed in the present
paper is a completely general method and was tested on examples given in [2–
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4, 11, 12, 18]. The test results show full agreement with the results published in
[2–4,11,12,18]. The calculation using the published methods is quicker because the
number of equations for the calculation of current density is reduced due to the
symmetry of current density. In the formulation of equations (13), (14) and (15) it
is, of course, also possible to take advantage of potential current density symmetry,
reduce the number of equations and thus accelerate the calculation.

In [19–21], two methods were proposed and compared for the calculation of the
real component < of impedance and inductance L of multiconductor transmission
lines of long copper strip conductors whose conductivity in the conductor cross sec-
tion is constant. Forming part of [19,20] is the method proposed for the calculation
of current density in an array of c, c > 1, infinitely long cylindrical conductors of
arbitrary cross sections. The method was proposed on the same assumptions as
given in the Introduction. According to [20], the current density component Jz(x, y)
is the solution of an integral equation that is replaced by a system of equations for
constant current densities Ji in partial conductors, i = 1, 2, . . . , n,

−jω
µ0
2π

n∑
i=1

Ji

∫
Si

log(r) dx′ dy′ +
1

σj
Jj = Eizj , j = 1, 2, . . . , n, (19)

where r =
√

(x− x′)2 + (y − y′)2, Si is the cross section of the ith conductor, σj is
the conductivity of the jth partial conductor, and Eizj is the zth component of an
impressed (known) axial electric field in the jth partial conductor. In addition to
the system (19) the following equation must hold

n∑
i=1

JiSi = 0. (20)

Replacing the last equation in (19) by equation (20) will yield a system of n equations
for the current densities Ji, i = 1, 2, . . . , n. What the just described method [20]
and my method proposed in this paper have in common is the replacement of the
examined conductors by partial conductors. The methods differ in the potential
number c of examined conductors; in [20] it holds c > 1, in this paper c > 0. The
majority of the coefficients in equations for the calculation of current density are
magnetic fluxes while in [20] they are the integral of logarithmic potential. The
method in [20] only solves the steady state. The validity of conditions (14) and
(15) gives validity to condition (20) but it does not hold vice versa. In [20] it is
thus assumed (and it is not given) that part of the conductors under examination
are connected to one terminal of one source while the remaining conductors are
connected to the other terminal of this source. Unfortunately, no specific values of
current density are given in [19–21]. Therefore it is not possible to compare my
specific results with the results obtained by the method from [20]. It is strange that
in [19–21] the current density calculated by the method from [20] is not used in the
calculation of the quantities < and L.

The source of electromagnetic field is the electric charge. In the paper, this field is
a quasi-stationary magnetic field produced by a moving electric charge, which is de-
termined by the current density. The result of calculating by the proposed method is
the current density. The current density directly determines the magnetic field [11].
The proposed method is thus a direct method in contrast to the published methods,
in which the artificially introduced quantity vector potential is usually used. The
vector potential is the solution of a second-order differential equation [4, 22]. To
solve it numerically, the finite elements method or other methods are used [23, 24].
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The current density or the magnetic field is the result of numerical differentiation of
the vector potential and thus it is loaded with a non-negligible error [25]. The vec-
tor potential is not all-redeeming [22], p. 208, its application leads to the numerical
solution of partial differential equations of the second order. However, to establish
the current density it is sufficient to solve differential equations of the first order
(13). Partial differential equations of the second order cannot be solved without the
knowledge of boundary conditions, which constitutes quite a problem. Unnecessary
differentiation results in a loss of information, as proved in [26]. The application
of classical electromagnetism using partial differential equations for potentials need
not always be the optimum method, it is a view of electromagnetism theory from
the end.

7 Conclusion

An original method for the calculation of current density in long parallel solid con-
ductors of arbitrary cross section is proposed. Four types of conductor are distin-
guished

• conductor not connected to the source,

• conductor connected to the ideal current source,

• two or more conductors that form a loop in which there is neither the voltage
source nor the current source,

• two or more conductors that form a loop with the voltage source.

The conductors can lie in the external magnetic field. Current in the conductors
is assumed to be quasi-stationary, the permeability of the conductor material is
constant and equal to the vacuum permeability µ0, and the displacement current is
neglected. The proposed method is a generalization of the method proposed in [5].

The essence of the proposed method consists in the conductors being replaced
by partial conductors of rectangular cross section and constant current density. The
derivation of the method is in the first place based on Faradays law of electromagnetic
induction and is an application of the Biot and Savart law, loop current method,
Kirchhoffs voltage law, Ohms law, the Jordan measure theory, and graph theory.
These starting points cannot be called in question, the same as the result that follows
from them. Current density is generally the solution of a system of equations formed
by algebraic equations and ordinary differential equations of the first order. In the
steady sinusoidal state the differential equations are replaced by linear algebraic
equations for phasors.

The application of the proposed method is demonstrated via solving one example
with three conductors of different cross sections, two of which are connected to
the source of sinusoidal voltage. The proposed method is compared with methods
published up to now.
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