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Abstract: 

Integrated refineries and industrial processing plant in the real-world 
always face management and design difficulties to keep the processing 
operation lean and green. These challenges highlight the essentiality to 
improving product quality and yield without compromising environmental 
aspects. For various process system engineering application, traditional 
optimisation methodologies (i.e., pure mix-integer non-linear 
programming) can yield very precise global optimum solutions. However, 
for plant-wide optimisation, the generated solutions by such methods 
highly rely on the accuracy of the constructed model and often require an 
enumerate amount of process changes to be implemented in the real 
world. This paper solves this issue by using a special formulation of 
correlation-based principal component analysis (PCA) and Design of 
Experiment (DoE) methodologies to serve as statistical process 
optimisation for industrial refineries. The contribution of this work is that 
it provides an efficient framework for plant-wide optimisation based on 
plant operational data while not compromising on environmental impacts. 
Fundamentally, PCA is used to prioritise statistically significant process 
variables based on their respective contribution scores. The variables with 
high contribution score are then optimised by the experiment-based 
optimisation methodology. By doing so, the number of experiments run 
for process optimisation and process changes can be reduced by efficient 
prioritisation. Process cycle assessment ensures that no negative 
environmental impact is caused by the optimisation result. As a proof of 
concept, this framework is implemented in a real oil re-refining plant. The 
overall product yield was improved by 55.25% while overall product 
quality improved by 20.6%. Global Warming Potential (GWP) and 
Acidification Potential (AP) improved by 90.89% and 3.42% respectively. 
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1.0 Introduction 

 

Development of manufacturing plants is closely correlated with global 
warming, resource depletion, rising threats in food, water and energy 
securities and other widespread environmental risks (Wang et al., 2017). 
Global manufacturing environmental consequences have urged the 
development of cleaner and sustainable manufacturing processes (Klemes 
et al., 2012). The concept of sustainable development has been targeted 
to achieve present needs without compromising future development in 
the Brundtland report (WCED, 1987). Various researchers have reported 
that adopting the concept of green and sustainable manufacturing can 
lead to a significant improvement in overall performances (Lam et al., 
2016). The current research paradigm has shifted to cope with the rising 
demand and awareness in attaining sustainable goals (Wan Alwi et al., 
2014). Porter and Linde (1995) provided excellent resource conservation 
cases for which the “Lean and Green” strategy was adopted. The main 
objective of lean is to eliminate non-value-added product (Leong et al., 
2018). Green, on the other hand, represents ecological sustainability 
which encompasses various environmental concerns, including waste 
generation and recycling, air, water and land pollution, energy usage and 
efficiency (Bhattacharya et al., 2011).  
 
The oil and gas industry (Atanas et al., 2016), palm industry (Huda et al., 
2018), and other industries have started to convert into a lean and green 
business model. Alsayigh (2015) performed a study on the 
implementation of lean and green management in oil and gas operation. 
Green and lean tools such as Value Stream Mapping and SWOT analysis 
were utilised to improve the Gulf state’s oil and gas operation energy and 
emission (Alsayigh, 2015). Furthermore, lean tools such as Deming’s 
Cycle can be used to optimise drill rig movement operation (Atanas et al., 
2016). The implementation has successfully reduced process defects, 
improved team communication and developed efficient and robust process 
maps for operation. Amminudin et al. (2011), on the other hand, has 
successfully improved the propane recovery in Khurais central processing 
gas plant by conducting root cause analysis. 
 
Common challenges occurring in the oil refinery industry are illiterate 
behaviour towards fading process performance and indiscriminate nature 
from the management level. As a problem statement, the abundance of 
operating parameters has been a formidable hurdle to process engineers 
in the determination of optimal operating conditions. For example, in the 
work of Joly et al. (2002), a case study of oil refinery optimisation 
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requires 912 discrete variables and 5599 equations. In addition, many 
industry players tend to increase production capacity due to surges in 
market demand without careful and in-depth analysis of the equipment’s 
capability and efficiency (Halvorsen et al., 2012). Inevitably, operating 
conditions deviates from optimal, process efficiency declines, and 
environmental performances are subpar coupling with deteriorating 
product quality. 
 
The statistical approach is one of the simple yet effective ways to address 
all the mentioned issues. Notably, Design of Experiments (DoE) was first 
invented by Fisher (1935). The underlying principle is simply such that a 
sequence of test whereby intentional adjustment is made towards process 
variables and responses from the process are measured (Fisher, 1935). It 
can measure all correlations between process variables and responses by 
varying them simultaneously instead of individually. The process variables 
and responses are fitted in a mathematical model that used to effectively 
accelerate the optimisation (Toyota et al., 2017). DoE can also generate a 
predictive model for a great number of variables with a minimum 
experimental run (Gunst and Mason, 2009). Nevertheless, it is not 
practical for a complex problem which contains an extensive number of 
variables. In such problems, the required resources demand and 
computational time will increase exponentially with the increasing number 
of variables within the problem boundary (Telford, 2007). This weakness 
has become apparent when DoE is being applied in problems related to 
Big Data (Drovandi et al., 2017). With growing needs for Big Data 
analytics in industries including chemicals, energy, semiconductors, 
pharmaceuticals and food (Chiang et al., 2017), DoE becomes 
impracticable. 
 
Fortunately, it is possible to prioritise the number of variables within a 
problem boundary through a multivariate statistical approach, called 
Principal Component Analysis (PCA). In brief, Hostelling (1933) formalised 
the novel instantiation of PCA. PCA is a well-known multivariate analysis 
method conducted to identify the principal components between variables 
that are interrelated and thereby reducing complicated data sets to 
smaller dimensions (Shlens, 2014). To-date, PCA has been broadly 
implemented in various research fields. Particularly for 3D imaging 
technology and machine learning algorithms which needs to deal with an 
enormous amount of data. For instance, Aida et al. (2017) have 
successfully improved the quality of images obtained from micro X-ray 
fluorescence analysis by performing PCA to improve the standard 
deviation of intensities peak. Ning and You (2018) reported that 
integrating PCA with kernel smoothing methods in the application of 
machine learning and data analysis for decision making has effectively 
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reduced computational load and efficiency. Some other reported PCA 
applications are tabulated in Table 1. Despite the natures of these works 
being different, the motives for using PCA are certainly identical (i.e., to 
reduce the dimensionality of the research problem without losing too 
much information). 
 

Table 1: A list of related PCA applications 

PCA Application Authors 

Total energy efficiency assessment and 
optimization in manufacturing sectors 

Azadeh et al. (2007) 

Effective assessment of water quality network Ou et al. (2012) 

Multi-mode plant-wide process monitoring 
scheme for complex chemical industries 

Jiang and Yan (2014) 

Chiller sensor fault detection Hu et al. (2016) 

Dynamic response of commodity markets Nobi et al. (2017) 

Plant-wide process monitoring with minimal 
redundancy maximal relevance 

Xu et al. (2017) 

Fault detectability analysis in nuclear power 
plant 

Li et al. (2018) 

Biomass supply chain optimisation How and Lam (2018a) 

Biomass supply chain debottlenecking How and Lam (2018b) 

 
Plant-wide optimisation is often carried out using mathematical 
programming. Notable works related were reviewed by Klemes and 
Kravanja (2013), where pinch analysis and mathematical programming 
were used for process integration and optimisation. Furthermore, Klemes 
et al. (1997) also proposed a Total Site targeting and design methodology 
to optimise fuel, power and carbon dioxide in processing plants. For these 
applications, Cucek et al. (2012) have highlighted the importance of 
footprint analysis tools for monitoring impacts on sustainability. The idea 
of integrating PCA and DoE which was initially proposed by Bratchell 
(1989) has been carried out in a few research works. For instance, Zhang 
et al. (2008) focused on the utility of PCA and DoE on dynamic systems. 
The work aimed to optimise the control performance of a yeast 
fermentation reactor model by using this hybrid framework. The 
combination of PCA and DoE has also been used to optimise chemical 
reactions. Murray and Forfar (2017) have used this hybrid method for 
solvent and ligand selection of three different chemical reactions. In their 
work, the DoE factors required for optimisation was reduced from 35 to 
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19 factors, which also reduced the number of experiments from 51.2 
million to 6400. Furthermore, PCA and DoE have been utilised for the 
optimisation of a turning unit in the works of Madhavi et al. (2017). In 
which, the operating conditions of a single turning unit are optimised to 
give optimal product hardness and surface roughness.  
 
All the reviewed works are admirable, however, none of them has tested 
the capability and applicability of the proposed method with the validation 
in a real chemical plant for plant-wide optimisation. This paper 
implements a novel usage of PCA and DOE that is formulated specifically 
for plant-wide optimization, called the Principal Component Analysis-aided 
Statistical Process Optimisation (PASPO). The novel PASPO framework 
reduces the dimensionality of the plant-wide optimization by screening 
computed correlation-based principal components while decoupling and 
recombining the principal components into process variables for critical 
variable selection. This paper also demonstrates the effectiveness of the 
PASPO framework by using an actual industrial processing plant as a case 
study. The PASPO framework is aimed to reduce analysis time and cost, 
minimise process changes required for a relatively good benefit while 
making plant-wide optimisation more data-oriented (instead of model-
oriented). Furthermore, environmental impact analysis is carried out to 
study the environmental performance of the process. To achieve this, a 
performance indicator known as Process Cycle Assessment (a 
simplification of Life Cycle Analysis (LCA) to target process systems) is 
developed to allow instant and effortless assessment of environmental 
performance.  
 
 
2.0 Methodology 
 

The proposed PASPO framework started off with performing correlational 
PCA on collected data to obtain the principal components which would add 
up and capture more than 90% of the variance. These principal 
components are then decoupled into individual process variables and 
recombined as contribution scores. Using different coverage of 
contribution scores, DoE is executed on the statistically significant 
variables to generate a regression model in Design Expert software. Due 
to the complexity of the data, the regression model is very high in 
mathematical dimensions. Hence the best method to visualise such 
models is by plotting multiple three-dimensional response surface 
diagram of significant relations. The regression model is then numerically 
optimised by maximizing product yields and quality responses. It is 
utilised to establish a combination of optimal operating conditions whilst 
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ensuring that product quality meets the requirement and environmental 
performance is improved (see Figure 1). The optimal operating conditions 
can then be plotted in a solution diagram to show its desirability and its 
relativeness with the high and low limits. The newly established optimum 
operating conditions are tested out by Process Cycle Assessment to 
further analyse the environmental performances. 
 

 
Figure 1: Overall proposed methodology for PCA-aided statistical process 

optimisation (PASPO) 

 
 
The overall strategies are as below: 
 
1. Analyse the process and plan data collection strategy 

 
2. Data is collected for all unit operations such as operating conditions, 

equipment capacity and safety limits 
 
3. The process is modelled using appropriate process simulation tool 

(Aspen HYSYS) 
 
4. PCA is performed to reduce the dimensions of data 
 
5. DoE is performed to generate a regression model 
 
6. The regression model is used to plot a surface response curve 

 
7. Surface response plots are utilised to visualise the regression model 

and study the relations between process variables. 
 
8. Numerical optimisation is used to find an optimal operating condition 

that would maximise yields and quality. 
 
9. Plot solution graph to show desirability of solution and relativeness to 

process limits. 
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10. Optimised operating conditions is inputted into the simulated process 
model in step 3 

 
11. Product quality before and after statistical optimisation are compared 
 
12. Process Cycle Assessment is performed to evaluate the environmental 

performance of the process (before and after statistical process 
optimisation) 

 
The detailed methodology for each strategy is demonstrated based on the 
Pentas Flora case study (introduced in Section 2.0) in the subsections 
below. 
 
3.0 Case Study 

 
The paper focuses on addressing the optimisation problem in a waste oil 
re-refinery plant. In general, a waste oil re-refinery plant is a refinery 
plant which aims to recover the quality of the used oil. In this work, a 
real industrial case study from Pentas Flora Sdn. Bhd. is applied to show 
the effectiveness of the proposed method. Firstly, the waste oil is 
collected from Peninsular, Malaysia and sent into a series of pre-
treatment facilities, i.e., flash tank dehydration unit remove moisture and 
light hydrocarbons from waste oil. The remaining oil is then fed into a 
vacuum wiped film evaporator (WFE) which has high efficiency and 
minimal production degradation for further processing. From there, oil is 
separated into light lube oil (WFE product) and heavy oil. Following is 
vacuum short path evaporator (SPE) that further separates the heavy oil 
into asphalts and medium lube oil (SPE product) which is the main 
product of this waste oil refinery process. Figure 2 demonstrates the 
overall process flow in Pentas Flora Sdn. Bhd. To achieve higher lean and 
green attainments, a lean and green optimisation framework is therefore 
presented. 
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Figure 2: Simplified block flow diagram of oil re-refining case study 

 
 
3.1 Data Collection 

 

Data of the process is collected systematically to ensure all the potential 
correlations between the operating conditions and the responses are 
captured by the model. Therefore, this section presents the data 
collection step of this work. There are two sections of data collection, i.e., 
operating conditions and product specifications.  
 
The steady-state operating conditions of all equipment in the process 
(e.g. temperature, pressure and flowrate) were recorded for 120 minutes 
with 5 minutes’ interval. Step-changes are introduced towards the 
process to determine the significances of all operating parameters by 
calculating their covariance within the PCA study (see Table 2). Likewise, 
the operating conditions of all equipment are extracted after the 
introduction of step-changes for a time span of 2 hours with 5 minutes’ 
interval. 

 

Table 2: Step-changes introduced into the process for data collection 

Step 

Change 

Variable 

Location Deviation Study 

Duration 

(minutes) 

Data 

Interval 

(minutes) 

No change Full process in 
steady-state 

- 120  5  

Temperature Bottom 
temperature 
(TIC500B) of 
Flash tank 

Increase by 
5 °C 

120  5  

Flowrate Waste oil feed 
flowrate 

(FIC450B) 

Increase by 
5 m3/h 

120  5  

 

 

Oil samples were collected at waste oil feed, post flash tank product, WFE 
product, SPE product and asphalt during steady-state operation and two 
hours after step-changes were introduced. Followed by a series of lab 
tests in Pentas Flora Sdn. Bhd. which are Malaysian Standard Accredited 
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to determine the properties of oil with appropriate standards and 
equipment as shown in Table 3.  
 

Table 3: Lab test, codes and equipment 

Properties ASTM 

Code 

Lab Equipment 

Sulphur Content ASTM 
D4294 

X-ray fluorescence spectroscopy 

Specific Gravity ASTM 
D1298 

Hydrometer 

Moisture Content ASTM 
D6304 

Coulometric Karl Fisher 

Flash point ASTM D93 Pernsky Marten Close Cup Flash Point 

Viscosity ASTM 
D4684 

Mini-rotary Viscometer (MRV) 

Boiling Point 
Range 

ASTM 
D2887 

Gas Chromatography-Mass Spectroscopy 
(GCMS) 

Molecular Weight ASTM 
D1481 

Pycnometer 

 
3.2 Process Simulation 

 
Process simulation is carried out using HYSYS V8.8. The fluid package 
chosen is Sour Peng-Robinson (Sour PR) as it provides a good estimation 
for hydrocarbons and process consisting of hydrogen sulphide (H2S) 
contaminant (Aspen Process Engineering Webinar, 2006). The waste oil 
feed is then modelled using an oil blend function, while its accuracy is 
further enhanced by incorporating bulk properties of waste oil and boiling 
point range (BPR) identified from lab testing as shown in Table 4. 

 

Table 4: Bulk Properties and boiling point range of waste feed oil 

Oil Sample Feed oil 

Density (kg/m3) 877.10 
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Moisture content (% w/w) 14.27 

Sulphur content (ppm) 4719.70 

Boiling point range 

Initial Boiling Point (IBP) 133°C 

10%Vol. 141°C 

20%Vol. 182°C 

30%Vol. 236°C 

40%Vol. 286°C 

50%Vol. 326°C 

60%Vol. 353°C 

70%Vol. 373°C 

80%Vol. 399°C 

90%Vol. 450°C 

Final Boiling Point (FBP) 546°C 

 

Subsequently, a simulation process flow sheet is generated as shown in 
Figure 3. The robustness of the model is tested by comparing the 
simulated and actual quality of WFE and SPE product (see Table 5). Note 
that the viscosity of asphalt is not considered in the robustness test due 
to technical constraint (i.e., its viscosity exceeds the measuring limit of 
the viscometer in the lab). Evidently, the results show the deviations 
between simulated and actual data are less than 10%. In other words, 
this indicates that the developed model is capable to provide accurate 
results as compared to the real scenario. 
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Figure 3: Simulation process flow diagram (main processing units in bold) 

 
 

 

Table 5: Comparison between simulated and actual product specification 

Oil 

Product 

Kinematic Viscosity (cSt) Density (kg/m3) 

Simulated Actual Deviation 

(%) 

Simulated Actual Deviation 

(%) 

WFE 
Product 

16.82 15.37 9.43 891.5 848.7 5.04 

SPE 
Product 

33.49 31.81 5.28 892.1 854.8 4.36 

Asphalt  - -  938.7 935.6 0.33 

 
By doing a paired t-test on the simulated and actual data, the two-tailed 
p-value is 0.1384 (t=1.8473). This shows that by conventional criteria, 
the difference between the simulated and actual data is not statistically 
significant (Detailed paired t-test analysis in Appendix Table 16). 
 

3.3 Statistical Process Optimisation 
 

The aim of the statistical process optimisation is to find the optimum 
operating conditions for the entire process. However, most of the 
variables are insignificant towards product quality. Thus, it is unnecessary 
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to include these parameters in the optimisation model. To address this 
issue, the PASPO framework which integrates PCA and DoE methodologies 
is proposed. The conceptual idea of this hybrid framework is illustrated in 
Figure 4. Initially, PCA is conducted to prioritise the variables based on 
their respective contribution scores. Only those (variables) with high 
contribution score are considered in DoE methodology. With the aid of the 
PCA methodology, the required number of experimental runs is expected 
to be reduced. This further lead to lower use of experimental resources 
(e.g., raw material) and time spent (e.g., working hours). Hence, the 
overall cost (material cost, energy cost, operator wages, etc.) is gradually 
reduced. 
 

 
Figure 4: Conceptual idea of the PASPO framework 

 
3.3.1 Principal Component Analysis (PCA) 

 

PCA is a multivariate statistical technique capable of shrinking the 
dimensions of a data set consisting of innumerate correlated variables 
while ensuring most variations in the data set are captured (Pearson, 
1901). Dimension reduction is achieved by converting the correlated 
variables from the original data sets into linearly uncorrelated variables, 
called principal components (PC). Traditionally, PCs’ are determined by 
solving the inverse eigenvector of the covariance matrix. However, Jolliffe 
and Cadima (2016) discussed that traditional covariance-based PCA will 
give a poor representation of data when applied to combinations of 
variables with different units of measurement. Thus, the correlation 
method which involves normalisation of original data sets is performed 
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instead of the covariance method (How and Lam, 2018b). The equation to 
evaluate the correlation between variables (Al-Sayed, 2015) is shown in 
Eq.(1) below. 
 ����(��, ��) = ��
�∑ ���
�̅���� � ���
�̅���� ���       ( 1 ) 

 
In Eq.(1), �� and �� are the comparative variables; �̅� and �̅� are the 
average values of the corresponding variables; while ��� and ��� are the 

standard deviations of the corresponding variables, and n is the number 
of variable sets. The PC is evaluated from the correlational matrix, A, by 
solving an eigenvector-eigenvalue problem, as shown in Eq.(2). The first 
PC (or PC1) is responsible for the majority of variance in the data, 
followed by second PC (PC2) and so forth.  
 �	� = ��          ( 2 ) 
 
Where A refers to the correlation matrix, v refers to the eigenvector 
representing the regression coefficient of the principal components, while 
λ refers to the eigenvalue which represents process variance (Shlens, 
2014). Since the variables are multivariate and direct compiling the 
variables into the matrix will result in a less accurate model due to weight 
disproportion. A normalisation of process variables is required as shown 
in Eq.(3) below. 
 ���� !"#$%& = �
�̅��          ( 3 ) 

 
To determine the numbers of PC included, the scree plot method with a 
heuristic minimum cumulative variance of 90% is used (Jackson, 1993). 
This is to ensure that the captured information is significant and data loss 
is acceptable (Rea and Rea, 2016). 
 '(). +,�- ≥ 90	%         ( 4 ) 
 
Next, the dimensions the multi-variable process inputs can be expressed 
as PC and be assessed using a scoring method (How and Lam, 2018b). 
The equation is shown in Eq. (5), where X refers to the normalised 
process variable matrix. 
 2'	3���4 = 5�         ( 5 ) 
 
In this work, the contribution of each variable is evaluated using an 
absolute method. 
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 '�67�89(78�6	3���4:,$ = ;%<,=;∑ ;%<,=;< 											∀9 ∈ @,			∀A ∈ B    ( 6 ) 

 
To select critical variables as a representation of the full information, the 
contribution scores for each variable are sorted from large contribution to 
low contribution to plot a second scree plot. The cumulative contribution 
score is used as an indication for consideration of process variables for 
optimisation. 
 
3.3.2 Design of Experiment (DoE) 

 
The statistical significant process variables obtained from PCA in Section 
3.3.1 are the input variables for the experiments, also known as factors, 
whereas the results from the experiments are recognised as responses. 
Subsequently, the predictive model is generated based on the changes in 
factors and responses from the experiments by regression analysis 
(Fisher, 1935). Response surface methodology (RSM) is used to generate 
multiple surface response plots which are used for the latter optimisation. 
A full factorial methodology is adopted for this framework, as the model 
includes complete information on the process data (Collins et al., 2009) 
for optimisation. Due to the inherent nature of process systems being 
highly complex (McKay et al., 1997), this work considers up to 4th order 
of interaction factor. Subsequently, an automatic selection algorithm with 
p-value as the criterion is used to remove terms that are detrimental 
(Anderson, 2018).  
 
The multi-objective optimisation technique used is a two-step 
optimisation coupled with the desirability function. The desirability 
function approach is to convert each surface response into a desirability 
score di with a range of 0 to 1 (Derringer and Suich, 1980). The overall 
desirability can be expressed as the following, where m is the total 
number of responses. 
 C = (D�DE⋯D )�/          ( 7 ) 
 
The individual desirability function for a response, y with a maximum 
requirement is shown in Eq. (8) below.  

D = H 0																						I < K	LM	
	NO	
	NP� 									K ≤ I ≤ R1																					I > R        ( 8 ) 

For a response targeting minimum value, the equation will be as the 
following. 
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D = H 1																						I < K	LU	
	MU	
	OP� 									K ≤ I ≤ R0																					I > R        ( 9 ) 

For the above equations, L and U are the lower and upper limits 
respectively; r is the weight of the response. Setting r>1 prioritises the 
corresponding response while choosing 0<r<1 makes the response less 
important. Commonly, r is set to be one of the five standard levels as 
shown in Table 6 below (Kraber, 2009). 
 
Table 6: Importance level and r value of desirability function 

Importance 

Level 

1 2 3 4 5 

Pulses + ++ +++ ++++ +++++ 
r value 10-1 10-0.5 100 100.5 101 

 
In this work, the importance level of each objective is prescribed by 
managerial decisions after evaluating market economics and product 
requirements. The pulses for importance level are presented in Table 7. 
 
Table 7: Pulses for the importance of objectives 

Properties SPE Product WFE Product 

Yield +++++ +++ 
Quality +++ +++ 

 
Based on processing requirements, product yield is drastically more 
important than quality. Hence, a two-step optimisation method is applied 
to the desirability function for yield and quality sequentially as shown 
below. 
 374V	1:						X,�	CM#%"&									Y. 7.			K- 	≤ 	 IZ[!"#\M,			- 	≤ 	R-												∀] ∈ ^  ( 10 ) 374V	2:						X,�	CZ[!"#\M						Y. 7.			K̀ 	≤ 	 IM#%"&,			` 	≤ 	 R̀ 																	∀a ∈ b  ( 11 ) 
 
In addition, factors should be manipulated within minima and maxima 
boundary conditions based on equipment capacities and safety limits for 
the desired responses. Lastly, product quality is compared before and 
after DoE is performed.  
 
3.4 Process Cycle Assessment 
 

Utilities, energy and equipment performance are recorded prior to and 
after statistical process optimisation. Impact category is chosen based on 
the presence of indicators in the process and similarly for the 
characterisation model. Lastly, the scores for the selected impact 
category before and after statistical process optimisation are compared. 
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Process Cycle Assessment evaluates the process based on impact 
categories which are considered in LCA (WBCSD Chemicals, 2013). They 
include global warming potential (GWP) and acidification potential (AP), 
which are evaluated by the following equation: 
 cd2 = ∑ X% #ee#��,`f\�%! `g� ∑ �̀ ,-	hijk,-l� m��%�\-g�     (12) �2 = ∑ X% #ee#��,`f\�%! `g� ∑ �̀ ,-	hnk,-l� m��%�\-g�      (13) 
 
The assessment mainly considers mass flowrate of emission stream which 
is denoted by X% #ee#��,` for stream j. Mass fraction of contaminant 
component k in stream j is expressed as �̀ ,-	, while the specific potential 
environmental impact is expressed as h. Moreover, statistical process 
optimisation only considers the operating conditions of the process thus, 
Process Cycle Assessment only assesses the performance of the 
equipment and the final product.  
 
4.0 Results 

 

Large sets of processing data are collected from the Supervisory Control 
and Data Acquisition (SCADA) system of the oil re-refinery plant which 
enabled the effective use of principal component analysis and design of 
experiments. The validated process simulation model is also used to assist 
the design of experiments and for the case of 99% coverage score 
benchmark in Section 4.3. The following sections cover the detailed result 
of the principal component analysis, design and analysis of experiments, 
optimisation results of different coverage score and process cycle 
assessment.  
 

4.1 Principal Component Analysis 

 
Using the computed principal component (PC) as discussed in section 
3.3.1, the scree plot can be generated. The PCs are sorted from the 
highest eigenvalue to the lowest, while the cumulative eigenvalue (also 
cumulative variance) is plotted. 
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Figure 5: Scree plot of principal component 

 
 

From Figure 5, there is an obvious eigenvalue drop in between the fourth 
PC and the fifth PC, this is commonly referred to as the “knee point”. This 
shows that considering the first four PC is representative of the full 
information, while further including extra PC gives less significant results. 
Additionally, having four PC also satisfies the criteria of 90% minimum 
cumulative variance. Therefore, it is determined that four PCs will be 
satisfactory for this work. Subsequently, the most significant four PCs are 
decoupled back into process variables that contribute to them and are 
plotted in Figure 6. 
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Figure 6: Contribution of Process Variables on Principal Components 

 
Having the critical PC decoupled into process variables, some highly 
significant peaks are observed to highly contribute to the processing 
system. Variables such as flash tank temperature, WFE temperature and 
level, SPE temperature and level were immediately identified to be 
significant in the process. These parameters that are identified decoupling 
the PC are highly logical, as temperature and levels within separators are 
variables that affect the separation efficiency and thermodynamics of the 
system. However, lesser significant variables are difficult to be studied in 
Figure 6, as the contribution of each variable has not been combined for 
direct comparison.  
 
Contribution scores of each process variables are reconstructed into a 
total contribution score. To ease the analysis, the process variables are 
sorted from the highest contribution score to the lowest with the 
cumulative contribution score (coverage score) plotted in Figure 7.  
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Figure 7: Prioritisation of process variables using contribution score 

 

The factors that will be focused in DoE are operating temperature of the 
flash tank, WFE, SPE, operating pressure in WFE and SPE, operating level 
in WFE tank and SPE. These variables are selected based on a 95% 
coverage score and can be directly manipulated in the processing system. 
Furthermore, a study of 80% and 99% coverage score was carried out as 
a comparison. The 80% cumulative score case considers the temperature 
of WFE, SPE and flash tank, while 99% coverage score case considers all 
variables in 95% case with the addition of decanter level, decanter 
pressure and flash tank pressure. 
 
4.2 Design and Analysis of Experiments 

 
According to PCA result, factors considered for DoE includes operating 
temperature of flash tank (A), temperature of WFE (B), temperature of 
SPE (C), operating pressure of SPE (D), level of WFE (E) and level of SPE 
(F), while WFE (y1) and SPE (y2) product flow, WFE (y3) viscosity and SPE 
(y4) viscosity are the corresponding response in this study. The factorial 
design is used to generate desired responses. In addition, the design 
matrix is shown in Table 8, the “+” and “–” signs represent treatment 
combinations for the factors. As illustrated, there are seven degrees of 
freedom (DOF) for eight treatment combinations in which three DOF were 
associated with main effects of factor A, B, C, D and E.  
 

Table 8: The design matrix for factorial design considering six factors 

Run A B C D E F Labels 

1 - - - - - - 1 
2 + - - - - - A 
3 - + - - - - B 
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4 - - + - - - C 
5 - - - + - - D 
6 - - - - + - E 
7 - - - - - + F 
8 + + - - - - AB 
9 + - + - - - AC 
10 + - - + - - AD 
11 + - - - + - AE 
⁞ ⁞ ⁞ ⁞ ⁞ ⁞ ⁞ ⁞ 

53 - + + + + - BCDE 
54 - + + + - + BCDF 
55 - + + - + + BCEF 
56 - + - + + + BDEF 
57 - - + + + + CDEF 
58 + + + + + - ABCDE 
59 + + + + - + ABCDF 
60 + + + - + + ABCEF 
61 + + - + + + ABDEF 
62 + - + + + + ACDEF 
63 - + + + + + BCDEF 
64 + + + + + + ABCDEF 

 
Subsequently, factors and the responses were fitted with the regression 
model as shown in Eq.(14). Responses are denoted by yj, the regression 
coefficient is indicated by βj whereby j can be any of the desired 
responses projected by factors considered. Thus, each response will have 
a dedicated regression model. 
 
The regression model for each response is used to generate a surface 
response plot as illustrated and explained below. The considered factors 
are up to 4th order interaction factors, then detrimental factors are 
removed using hierarchical automatic model selection algorithm with p-
values as the criterion. All the considered possibilities of interaction 
factors considered to give an optimal surface response for yj is shown in 
the equation below. 
 Ì  = op,` + onr� + osr@ + otr' + ourC + ovrw + oxry + onsr�@ + onlr�' 
  +onur�C + oslr@' + osur@C+	olur'C +	olvr'w +	olxr'y +	ouvrCw 
  +	ouxrCy +	ovxrwy +	onslr�@' +	onsur�@C +	onlur�'C+	oslur@'C 
  +	oluvr'Cw +	oluxr'Cy+	olvxr'wy +	ouvxrCwy +	onslur�@'C 
  ( 14 )

 
Analysis of WFE product flow (LPM) in the assessment of experimental 
design ranged from 13.97 to 30.65 LPM. The response was fitted in a 
regression model as shown in eq. (15). 
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The most significant effect on the WFE product flow is the WFE 
temperature (B), which has the largest coefficient of 7.34. An inversely 
proportional relation can be observed between flash tank temperature (A) 
and WFE product flow. This is highly possible from the perspectives of 
separation sciences, as a higher temperature at the flash tank will cause 
the oil fraction to evaporate into the vapour fraction, reducing the amount 
of WFE oil products. SPE temperature (C) and pressure (D) have minimal 
effects on the WFE product flow. This is not surprising since the operating 
conditions of a downstream separation unit should give minimal effects to 
the units beforehand. However, level in WFE (E) and SPE (F) contribute to 
giving a higher WFE product flow, demonstrating positive coefficients of 
0.339 and 0.348 respectively. Significant interaction factors are the 
interaction factors between flash tank temperature, WFE temperature 
(AB) and WFE level and SPE level (EF). Technically, the contributing 
interaction factors represent temperatures and levels of consecutive 
processing units. 
 
In addition, Figure 8 shows that the regression model for WFE product 
flow as a function of flash, WFE, SPE operating conditions was suitable to 
investigate the tendency of this response (detailed ANOVA table can be 
found in Appendix Table 17). Thus, a response surface is generated by 
plotting two of the main effects with the highest coefficient magnitude 
(flash and WFE temperature) with respect to the response. Evidently, WFE 
product flow is dependent on both flash and WFE temperature as 
illustrated in Figure 9 where the colour of the response surface is warmer 
when WFE temperature increased and cooler when flash temperature 
increased. In all, postulation made earlier from the regression model is 
validated. 
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Figure 8: Experimental values for WFE flowrate (LPM) as a function of the 

values predicted by the fitted model 

 
Figure 9: Response surface for WFE flowrate (LPM) as a function of WFE 

temperature (°C) and Flash tank temperature (°C) 
 
 
Next, analysis of WFE product viscosity (cSt) in the assessment of 
experimental design ranged from 6.96 to 10.63 cSt is used and the 
response is fitted in the regression model as shown in eq. (16). (The 
detailed ANOVA analysis can be found in Appendix Table 18) 
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It shows that the relationship of WFE temperatures (B) is proportional to 
WFE product viscosity with a positive regression coefficient of 1.633. The 
viscosity of WFE (y2) is found to be inversely proportional to flash 
temperature (A) and WFE level (E) with a negative coefficient of -0.206 
and -0.0214 respectively. A higher temperature in the flash tank causes 
viscous oil additives within the oil is broken down, giving slightly lower 
WFE oil viscosity. Besides, at a significantly high level of WFE, the 
separation efficiency of the evaporator is affected and hence, WFE 
viscosity decreases. The significant interaction factor is the factor of the 
flash tank and WFE temperature (AB), which is the temperature 
interaction of consecutive processing units.  Similarly, the WFE flow 
response, the regression coefficients of the viscosity of the WFE product 
are not significantly affected by the later process unit (SPE). 
 
In addition, Figure 10 shows that the regression model for WFE product 
viscosity is appropriate to explore the trend of this response. For 
validation and visualisation, a response surface is generated using the 
regression model and shown in Figure 11. From the plot, WFE product 
viscosity is validated to be dependent on both flash and WFE temperature 
with stronger dependency for the latter. As illustrated in Figure 11, the 
colour of the response surface is warmer at the axis of WFE temperature 
but less warm at the axis of the flash tank temperature. 
 

 
Figure 10: Experimental values for WFE product viscosity (cSt) against of 

the values predicted 
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Figure 11: Response surface for WFE product viscosity (cSt) as a function 

of WFE temperature (°C) and Flash tank temperature (°C) 
 
Analysis of SPE product flow (LPM) in the assessment of experimental 
design ranged from 0 to 30.54 LPM is used and the response was fitted in 
the regression model with regression coefficients as shown in Eq. (17) 
below. (The detailed ANOVA analysis can be found in Appendix Table 19) 
 IE = 10.148 + 0.446� − 5.485@ + 11.329' − 8.541C − 0.456w + 0.666y − 4.535@' +2.095@' + 2.095@C + 4.905'C + 1.383'y − 2.095Cw + 3.931Cy − 4.113@'C +5.189'Cy         ( 17 ) 
 
From Eq. (17), the regression coefficients show that SPE product flow is 
affected by all main effects of Flash tank, WFE and SPE operating 
conditions. This is logical, as SPE is the final unit in the process and the 
product flow will depend on upstream units. In addition, Figure 12 shows 
that the regression model for SPE product flow as a function of flash, 
WFE, SPE operating condition is fitting to inspect the trend of this 
response. Thus, a response surface is generated using the regression 
model as shown in Figure 13. From Figure 13(a), the model predicted that 
a higher SPE temperature (C) and higher WFE temperature (B) will 
improve the SPE product flow. Figure 13(b) and (c) also shows that 
having lower pressure in SFE improves the product flow, while the WFE 
level gives a slight proportional relationship with product flow. Moreover, 
increasing the WFE level (E) and SPE temperature (C) simultaneously give 
high SPE product flowrate. 
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Figure 12: Experimental values for SPE product flow (LPM) against the 

values predicted 

 
Figure 13 (a) 
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Figure 13 (b) 

 
Figure 13 (c) 

Figure 13: Response surface for SPE product flow (LPM) as a function of: 
(a) WFE temperature (°C) and SPE temperature (°C) 

(b) SPE pressure (bar) and WFE temperature (°C) 
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(c)       SPE temperature (°C) and WFE level (%) 
 
Analysis of SPE product viscosity (cSt) in the assessment of experimental 
design ranged from 8.5 to 43.8 cSt is used and the response is fitted in 
the regression model with regression coefficients listed in Eq. (18).(The 
detailed ANOVA analysis can be found in Appendix Table 20) 

 I� = 19.527 + 1.357@ + 10.134' − 8.257C + 4.714@' − 4.842@C + 1.961'C +7.806'y + 9.512'Cy        ( 18 )  
 
From Eq. (18), the SPE product viscosity mainly depends on SPE pressure 
(D) and temperature (C), as well as the WFE temperature (B). Thus, a 
response surface is generated using the regression model as shown in 
Figure 14. Subsequently, SPE product viscosity is found to improve with 
the simultaneous increase of SPE temperature and of WFE temperature 
from Figure 14(a). A similar relation to the SPE flow is found with the SPE 
pressure and level from Figure 14(b), in which a lower SPE pressure and 
higher WFE temperature give better product viscosity. This shows that 
lowering pressure while maintaining a high temperature in both SPE and 
WFE can improve SPE separation quality and yield. 
 

 
Figure 14(a) 
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Figure 14(b) 

Figure 14: Response surface for SPE product viscosity (cSt) as a function 
of: 

(a) WFE temperature (°C) and SPE temperature (°C) 
(b) WFE temperature (°C) and SPE pressure (bar) 

 
From the surface responses, the optimal operating temperatures of the 
flash tank, WFE and SPE are successfully established. To aid the 
understanding of the optimal combination of operating conditions for 
flash, WFE and SPE, an operating condition solution graph is plotted as 
illustrated in Figure 15. In details, Figure15(a), (b), (c), (d), (e) and (f) 
represent factors, while Figure 15 (g), (h), (i) and (j) represent the 
responses. Moreover, the factors in Figure 15(a), (b) and (c) are varied 
between their respective minimum and maximum operating temperatures 
denoted by the vertical boundary based on the actual capabilities of 
processing equipment. Furthermore, the vertical boundaries in Figure 
15(g) and (h) are the process limit for WFE and SPE product viscosity. 
Note that higher viscosity is preferred for products of WFE and SPE. 
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Figure 15: Optimisation solution diagram 

(a) Operating temperature of flash 

tank 
(f) Operating level of WFE 

(b) Operating temperature of WFE (g) WFE product flow (LPM) 
(c) Operating temperature of SPE (h) WFE product viscosity (cSt) 
(d) Operating pressure of SPE (i)  SPE product flow (LPM) 
(e) Operating level of SPE (j) SPE product viscosity (cSt) 
 
 
 
Finally, comparisons between the factors and responses before and after 
statistical optimisation are shown in Table 9. Tremendous improvements 
are clearly seen in SPE product for its throughput (flow) at 84.4% and 
quality (viscosity) at 46.5%. This is achieved by lowering operating 
temperatures of the flash tank as much as 28.2% and 5.8% for WFE but 
an increase of 45.2% for SPE. The pressure in SPE remains unchanged 
while the level in the WFE and SPE increased by 9.1% and 20% 
respectively (two-tailed t-test can be found in Appendix Table 22).  
 

Table 9: Comparisons between the factors and responses prior to and 
after optimisation 

Process parameters Units Before After Change (%) 

Flash Tank Temperature (°C) 222.6 159.86 28.2 
WFE Temperature (°C) 228 214.73 5.8 
SPE Temperature (°C) 231 335.5 45.2 

SPE Pressure (bar) 0.0013 0.0013 0.0 
WFE Level (%) 55 50.0 9.1 
SPE Level (%) 50 60 20.0 

WFE Product Flow (LPM) 20.75 26.16 26.1 
WFE Product Viscosity (cSt) 10.56 10.0 5.3 

SPE Product Flow (LPM) 15.34 28.28 84.4 
SPE Product Viscosity (cSt) 29.86 43.75 46.5 
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4.3 Optimisation Results of Different Coverage Scores 

 
Different coverage scores from the PCA model is used for DoE 
optimisation. Coverage scores of 80%, 95% and 99% (100% coverage 
score requires 49 DoE factors and resulting in 5.6x1014 number of runs) 
are used to benchmark the optimisation results. Each design will require 
an increase in DoE factors which, in return increases the number of runs. 
The optimised results are benchmarked in Table 10. 
 
Table 10: Comparisons between the 80%, 95% and 99% coverage score 

(C.S.) optimisation 

Variables Unit 
80% 

C.S. 
(A) 

Change 

(%) 

95% 

C.S. 
(B) 

Change 

(%) 

99% 

C.S. 
(C) 

DoE 

Factors 
- 3 - 6 - 17 

Minimum 

Number 

of Runs 
- 8 - 64 - 262144 

Coverage 

Variance 
% 80 - 95 - 99 

WFE 

Product 

Flow 
LPM 20.74 26.13 26.16 10.28 28.85 

WFE 

Product 

Viscosity 
cSt 10.00 0.00 10.00 0.00 10.00 

SPE 

Product 

Flow 
LPM 23.66 19.53 28.28 2.58 29.01 

SPE 

Product 

Viscosity 
cSt 38.08 14.89 43.75 6.17 46.45 

 
From the table above, Case C is taken as the comparison basis since the 
coverage score is nearest to including the full process system. Improving 
the optimisation model from a coverage score of 80% to 95% (Case A to 
B) gives an averaged deviation of 15.1%. However, this work 
recommends a higher quality of optimisation coverage, which is 95%. 
This is shown when the optimisation model is improved from 95% to 99% 
coverage, in which the averaged deviation is 4.75%. The small 
improvements in optimisation results are not justified for the incurring 
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capital cost for 262080 extra experimental runs (4095 folds compared to 
Case B). Therefore, the 95% coverage score (Case B) used for this work 
is effective and efficient. 
 
4.4 Process Cycle Assessment 

The impact categories chosen to access environmental impacts for this 
case study are global warming potential (GWP) and acidification potential 
(AP). Standard indicators for GWP and AP which are carbon dioxide (CO2) 
and sulphur dioxide (SO2) equivalent are used respectively since it is 
common for oil products contaminated with hydrogen sulphide (H2S). 
Thus, characterisation models for conversion of natural and electricity to 
CO2 equivalent are shown in Table 11. Similarly, characterisation model 
for conversion of H2S to SO2 equivalent is shown in Table 12. 
 
 
Table 11: Characterisation model for GWP (The Carbon Trust, 2011) 

Energy 

Natural gas 

combustion Grid Electricity 

Units kWh kWh 
GWP (kgCO2

-1) 5.3808 0.5246 
 

Table 12: Characterisation model for AP (The Carbon Trust, 2011) 
Acid Producer Hydrogen Sulphide (H2S) 

Units kg 
AP (kgSO2

-1) 1.88 
 
With the appropriate characterisation models, data for utilities, energy 
consumption and fractions of H2S in oil products are extracted from the 
simulation model and compared for both cases of before and after 
statistical process optimisation. Calculated results are shown in Table 13, 
Table 14and compared in Table 15. 
 
Table 13: GWP for combustion of natural gas in furnace and electricity 
consumption for pump 

Units 

Furnace Pump 

Before After 
% 

Change 
Before After 

% 

Change 

Energy 
(kWh) 

93389.1 90139.6 
3.54 

763.9 757.3 
86.6 

GWP  
(kgCO2

-1) 17146.2 16549.6 400.7 397.3 

 

Table 14: AP for by-products and main products in the process 
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Product 

WFE SPE 

Before After 
% 

Change 
Before After 

% 

Change 

H2S (kg) 0.0057 0.0007 
156.2 

0.00 0.00 
- 

AP (kgSO2
-1) 0.01 0.00 0.00 0.00 

Product 

Lights Oil water 

Before After 
% 

Change 
Before After 

% 

Change 

H2S (kg) 62.11 4.80  
171.3 

1.02 0.95 
7.1 

AP (kgSO2-1) 116.76 9.03 1.92 1.78 

Product 

Asphalt 

Before After 
% 

Change 
   

H2S (kg) 0.00 0.00  
- 

  
 

AP (kgSO2-1) 0.00 0.00   

 

 
Table 15: Comparison of environmental performance for before 

and after statistical process optimisation 

Impact 
category 

GWP AP 

Before After 
% 

Change 
Before After 

% 
Change 

Value 17546.9 16946.9 3.42 118.7 10.8 90.89 
 
Ultimately, statistical process optimisation has helped to achieve a leaner 
process by reducing the consumption of energy while improving product 
throughput and quality (Table 9). In addition, benefits extended to the 
environmental performances as GWP and AP assessed have witnessed 
immense improvement as shown in Table 15. Although it may be argued 
that GWP improvement is merely 3.42% but it is remarkable considering 
that no additional investment cost is required. Moreover, operating cost 
decreased due to reductions in energy and utility consumption. 
Furthermore, AP improved 90.89% which means that product or by-
product sold to consumers will pose a significantly lesser environmental 
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threat. To conclude, the process achieved lean and green after statistical 
process optimisation. 
 

5.0 Conclusion 

In this work, a novel framework (PASPO) which integrates the use of 
process simulation, PCA, DoE and process cycle assessment is developed.  
The PASPO framework aims to provide a cost-effective and systematic 
way for process optimisation in the real chemical plant with the 
consideration of environmental impacts. Data from plant data historian 
are normally very big data sets that are difficult to be analysed. The 
significance of the PASPO framework is that it transforms plant 
operational data as the driving force for a practical and sensible plant-
wide optimisation study. To elucidate the applicability and effectiveness of 
the PASPO framework, a real industrial case study of a waste oil re-
refining plant (Pentas Flora Sdn. Bhd.) is carried out. This framework 
utilizes a novel correlational-based PCA implementation, in which 
processing variables are dimensionally reduced by both principal 
component’s cumulative variance and variable contribution score. After 
applying the PASPO framework, optimised operating conditions gave an 
increase in SPE product (main product) yield of 84.4% and WFE product 
improved by 26.1%. The quality of SPE also increased by 46.5%. In 
addition, results from DoE were assessed from the ecological point of view 
with process cycle assessment. The optimised processing conditions had 
improved Global Warming Potential (GWP) by 3.42% and Acidification 
Potential (AP) by 90.89%. With the aid of this framework, the waste oil 
re-refining plant can transform towards a leaner and greener operation. 
Evidently, emissions are reduced simultaneously with the enhancement of 
product throughput and quality. In all, the novel PASPO framework 
proposed has high potential in guiding engineers to design a sustainable 
process that considers the allowance for future expansions. 
 
The main limitation in implementing the PASPO framework within a 
process plant is it requires a considerable amount of historical data on the 
whole process system to be used as input to the framework. This can be a 
major challenge for the antiquated processing systems or plants, as 
sampling instruments may be not as readily available. Furthermore, this 
work only covers the improvement of process systems from an 
operational perspective. The approach only targets improvements by 
altering the operating conditions of processing systems. The PASPO 
framework can be extended to include the debottlenecking studies of 
process systems by modifying equipment capacities. Future work will 
cover the extension of PASPO framework to include equipment capacities 
and alternative novel multi-objective techniques. 
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Nomenclature 

Abbreviation 

WFE  Wiped Film Evaporator 

SPE  Short Path Evaporator 

DoE  Design of Experiment 

GWP  Global Warming Potential 

PCA  Principal Component Analysis 

H2S  Hydrogen Sulphite 

CO2  Carbon Dioxide 

SO2  Sulphur Dioxide 

LCA  Life Cycle Analysis 

LPM  Liters Per Minute 

GCMS Gas Chromatography–mass Spectrometry 

AP  Acidification Potential 

GHG  Greenhouse Gases 

ISO  International Standard Organisation  
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Appendix 

The following is the paired t-test results for simulated and actual data. 
The results gave a p-value of 0.1384 (the difference is not statistically 
significant). The 95% confidence interval is from -8.6837 to 43.2157 
with a mean of 17.2660.  
 

Table 16: Paired t-test parameters (t=1.8473, dt=4, standard error of 
difference=9.346) 

 
Group Simulated Data Actual Data 

Mean 554.522 537.256 
SD 483.6589 470.1995 

SEM 216.2988 210.2796 
N 5 5 

 
 

The following are the regression coefficient and the statistical analysis of 
the design of experiment (DoE). 
 

Table 17: Regression coefficients and ANOVA for the response of WFE 
product flow (LPM) 

Source 
 

Coefficient Sum of 

Squares 

F-value p-value 

(Prob>F) 

Model - 16415.1560 116358.8793 <0.0001 

Intercept 22.6013 - - - 

A-Flash 
Temp 

-1.0031 275.1277 11701.4628 <0.0001 

B-WFE 

Temp 

7.3449 11906.2998 506387.0382 <0.0001 

E-SPE 

Level 

0.3393 1.2691 53.9769 <0.0001 

F-WFE 
Level 

0.3483 0.6430 27.3466 <0.0001 

AB 0.2099 5.7274 243.5931 <0.0001 

EF 0.3393 0.5066 21.5483 <0.0001 

Residual - 12.5085 - - 

Cor Total - 16765.5081 - - 

A-Flash temperature; B-WFE Temperature; C-SPE Temperature; D-SPE 
Pressure; E-SPE Level; F- WFE Level 
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Table 18: Regression coefficients and ANOVA for response of WFE product 

viscosity (cSt) 

Source Coefficient Sum of 
Squares 

F-value p-value 
(Prob>F) 

Model - 786.9929 165126.4812 <0.0001 
Intercept 8.7278 - - - 
  A-Flash 

Temp 
0.2055 12.4209 10424.5553 <0.0001 

  B-WFE 
Temp 

1.6331 638.0008 535460.1176 <0.0001 

  E-SPE 

Level 

-0.0214 0.0108 9.0462 0.0028 

  AB 0.0493 0.3514 294.9067 <0.0001 
Residual - 0.6363 - - 
Cor Total - 812.9685 - - 
A-Flash temperature; B-WFE Temperature; C-SPE Temperature; D-SPE 
Pressure; E-SPE Level; F- WFE Level 
 

Table 19: Regression coefficients and ANOVA for the response of SPE 

product flow (LPM) 
Source Coefficient Sum of 

Squares 
F-value p-value 

(Prob>F) 
Model - 52398.7500 236.2309 <0.0001 

Intercept 10.1482 - - - 
A-Flash 
Temp 

0.4463 60.5451 3.8214 0.0300 

B-WFE 

Temp 

-5.4853 6667.8276 420.8508 <0.0001 

C-SPE 

Temp 

11.3287 23774.3998 1500.5601 <0.0001 

D-SPE 

Pressure 

-8.5408 11734.2456 740.6261 <0.0001 

E-SPE 
Level 

-0.4555 12.4843 5.1568 0.0492 

F-WFE 
Level 

0.6656 13.2176 7.2031 0.0452 

BC -4.5353 1975.1285 124.6635 <0.0001 
BD 2.0954 367.1878 23.1757 <0.0001 
CD 4.9047 1647.7490 104.0004 <0.0001 
CF 1.3832 17.2610 10.4583 0.0499 
DE -2.0946 26.1982 6.6535 0.0199 
DF 3.9307 53.9186 3.4032 0.0456 

BCD -4.1132 604.7040 38.1669 <0.0001 
CDF 5.1890 53.5888 3.3823 0.0365 

Residual - 8302.0906 - - 
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Cor Total - 60782.8346 - - 
A-Flash temperature; B-WFE Temperature; C-SPE Temperature; D-SPE 
Pressure; E-SPE Level; F- WFE Level 
 

 

Table 20: Regression coefficients for the response of SPE product 

viscosity (cSt) as a function of flash, WFE and SPE temperature (°C) 
 

Factor Coefficient Sum of 

Squares 

F-value p-value 

(Prob>F) 

Model - 39819.2607 208.1621 <0.0001 
Intercept 19.5272 - - - 

B-WFE 

Temp 

1.3569 472.7502 19.7711 <0.0001 

C-SPE 

Temp 

10.1338 19782.9625 827.3510 <0.0001 

D-SPE 
Pressure 

-8.2566 11825.1727 494.5452 <0.0001 

BC 4.7141 2531.0360 105.8514 <0.0001 
BD -4.8424 2220.4271 92.8614 <0.0001 
CD 1.9611 270.6337 11.3183 0.0008 
CF 7.8064 308.4422 12.8995 0.0004 

CDF 9.5120 272.2222 11.3847 0.0008 
Residual - 12672.9401 - - 
Cor Total - 52630.4007 - - 

A-Flash temperature; B-WFE Temperature; C-SPE Temperature; D-SPE 
Pressure; E-SPE Level; F- WFE Level 
 

Table 21: Model regression parameters 

Model 
Properties 

WFE Viscosity 
Model 

SPE 
Viscosity 

Model 

SPE Flow 
Model 

WFE Flow 
Model 

R2 0.9992 0.9586 0.9632 0.9992 
Adj R2 0.9992 0.9549 0.9596 0.9992 

Pred R2 0.9992 0.9446 0.9478 0.9992 
 

Table 22: Confidence interval of optimised solution (Two-tailed t-test with 
n=1) 

 
Response 

WFE 

Viscosity 
(cSt) 

SPE 

Viscosity 
(cSt) 

SPE 

Flowrate 
(LPM) 

WFE 

Flowrate 
(LPM) 

Predicted 

Mean 

10.0000 43.7527 28.2843 26.1653 

Predicted 10.0000 43.7527 28.2843 26.1653 
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Median 

Std Dev 0.0345 4.8899 3.9804 0.1533 
n 1 1 1 1 

SE Pred 0.0361 5.9735 5.9261 0.1899 
95% PI low 9.9290 32.0180 16.6424 25.7923 
95% PI high 10.0710 55.4874 39.9262 26.5384 

 

Table 23: Confirmation of optimisation results by sampling and error 

analysis 

Properties WFE 
Viscosity 

(cSt) 

SPE 
Viscosity 

(cSt) 

SPE 
Flowrate 

(LPM) 

WFE 
Flowrate 

(LPM) 

Optimised 
Value 

10.00 43.75 28.28 26.16 

Sample 1 10.19 44.71 28.25 26.31 
Sample 2 10.29 43.92 28.39 26.33 
Sample 3 10.04 44.39 28.34 26.67 

Signal 0.173333 0.59 0.046667 0.28 
Pooled S.D. 0.088976 0.28098 0.050166 0.14089 

Noise 0.072648 0.22942 0.040961 0.115036 
T-value 2.385924 2.571708 1.139304 2.434016 

P value (Type 

I Error) 

0.075501 0.061867 0.318172 0.07167 

P value (Type 
II Error) 

<0.0001 <0.0001 0.0004 <0.0001 
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Highlights 

1. PCA is used to select statistical significant variables in plant-wide optimization. 

2. Compared to conventional method, the framework can reduce risks and capital cost. 

3. The framework is applied in a real case study in a waste oil re-refining plant. 

4. The overall product improved 55.25% by yield and 20.6% by quality.  

5. Global Warming and Acidification Potential reduced by 3.42% and 90.89% respectively. 


