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Abstract
In this paper, we present the winning BUT submission for the
text-dependent task of the SdSV challenge 2020. Given the
large amount of training data available in this challenge, we ex-
plore successful techniques from text-independent systems in
the text-dependent scenario. In particular, we trained x-vector
extractors on both in-domain and out-of-domain datasets and
combine them with i-vectors trained on concatenated MFCCs
and bottleneck features, which have proven effective for the
text-dependent scenario. Moreover, we proposed the use of
phrase-dependent PLDA backend for scoring and its combina-
tion with a simple phrase recognizer, which brings up to 63%
relative improvement on our development set with respect to us-
ing standard PLDA. Finally, we combine our different i-vector
and x-vector based systems using a simple linear logistic re-
gression score level fusion, which provides 28% relative im-
provement on the evaluation set with respect to our best single
system.
Index Terms: text-dependent speaker verification, phrase-
dependent PLDA, phrase recognizer

1. Introduction
In this paper, we present and analyze the text-dependent speaker
verification system developed at Brno University of Technology
(BUT) as the winning system in The Short-duration Speaker
Verification (SdSV) challenge 2020 [1]. The SdSV challenge
2020 provides a framework for both text-dependent and text-
independent scenarios. It is based on the recently released
DeepMine database [2, 3], which comprises a large amount
of speech recordings to train and evaluate systems using very
short utterances under both scenarios. In this paper, we con-
sider only the text-dependent speaker verification (Task 1 of the
challenge), where the task is not only to verify that a test ut-
terance contains the enrolled target-speaker voice, but also to
verify the correctness of the uttered phrase, which has to match
the one used for the speaker enrollment.

Recently, neural network based utterance embeddings such
as x-vectors [4, 5] became popular and effective for text-
independent speaker verification. For text-dependent scenar-
ios similar to the one in the SdSV challenge, where only a
small number of possible enrollment phrases are available, it
was observed that it is preferable to train the embedding ex-
tractors only on the data of the matched phrases. However, be-
fore the release of the DeepMind database, the training datasets
were not sufficiently large for training the data hungry x-vector
extractors. An alternative approach where i-vector extrac-
tor is trained on concatenated MFCC and Bottleneck features
(BN) [6], was originally proposed for text-independent speaker
verification [7, 8, 9] but later found specially effective for the
text-dependent task. In [10, 11], such i-vector extractor sys-
tem was trained on the in-domain data with limited number
of phrases and i-vectors were compared using cosine similar-

ity as the scarce training data did not allow deployment of more
conventional PLDA scoring. The SdSV challenge is the first
challenge where large amounts of training data are available for
the text-dependent task, which allowed us to experiment with
both the x-vector based and i-vector based approaches men-
tioned above. For the i-vector based system we experiment
with different architectures of BN features and different con-
figurations of i-vector extractors. We also replace cosine scor-
ing with more data hungry PLDA model. Inspired by [10, 11],
where the i-vectors were normalized using phrase-dependent
within-class covariance normalization, we also propose to use
phrase-dependent PLDA scoring and score normalization. For
x-vector based systems, we explore whether it is beneficial to
train the embedding extractor on the smaller amount of avail-
able in-domain SdSV training data or the large amount of out-
of-domain VoxCeleb data. To effectively reject wrong phrase
utterances, we propose to use a phrase recognizer based on a
Gaussian Linear Classifier (GLC) using i-vectors as input. Fi-
nally we show that linear logistic regression based score level
fusion can be effectively used to combine the different systems
that we developed for this challenge. Such fusion of 8 different
i-vector and x-vector based systems was used to produce our
SdSV challenge winning primary submission.

2. Data and Experimental Setup
The participants of the challenge were restricted to three
databases to train their systems: VoxCeleb [12, 13], Lib-
riSpeech [14], and the in-domain data taken from the DeepMine
database [2, 3], which we refer to as SdSV data. We used all the
databases for development of our various models. The bottle-
neck feature extractors were trained on LibriSpeech and the x-
vector extractors were trained on the development part of Vox-
Celeb2. The in-domain SdSV data includes 101064 recordings
of 10 different phrases (5 in English and 5 in Persian) from 963
speakers. We split this dataset into training and development
sets. Our SdSV training set contains 880 speakers and 96533
utterances. Depending on the particular system, it was used to
train either the bottleneck feature extractors or the embedding
extractors. PLDA backends and the phrase recognizer for all
the systems were trained on this SdSV training set. The cohort
for score normalization (as-norm) was also created as a subset
of it. We used 3 enrollment segments for each “speaker model”
in this cohort to be consistent with the evaluation protocol.

We set aside the other 83 speakers as our development set,
which we use to create trial lists for monitoring the performance
of our speaker verification systems and to train the system fu-
sion. Our trials are created using 3 enrollment segments and do
not include cross-gender trials. Out of the total 168420 trials,
4080 are target trials (i.e. target-speaker/correct-phrase (TC)),
127820 correspond to impostor/correct-phrase (IC), and the
remaining 36520 are target-speaker/wrong-phrase (TW) non-
target trials. We respected the proportion of wrong vs. correct
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phrase non-target trials declared by the challenge organizers and
since they announced that majority of the wrong phrase trials
would be TW, we did not include any impostor/wrong-phrase
(IW) in our development set. Finally, we also report results
on the official evaluation set obtained by submitting our system
outputs to the leaderboard.

3. Utterance Embedding Extractors
Our individual systems described in section 5.1 and listed in
Table 1 use two different x-vectors and four different i-vectors:

3.1. x-vector extractors
xVoxCeleb is an x-vector extractor which is a variant of the
standard Kaldi [15] TDNN model as described in [16]. This
extractor is trained on VoxCeleb 16kHz audio data. The input
are 40-dimensional log Mel-filter bank outputs (with frequency
limits 20-7600Hz) extracted using 25 ms windows and 15 ms
overlap and further normalized using short-term mean normal-
ization with a sliding window of 3 s. The network stacks 9
TDNN layers (seeing a context of 11 frames on each side) be-
fore the pooling layer and the 512 dimensional x-vectors are
extracted from the layer right after the pooling.

xSdSV is an x-vector extractor trained on the in-domain
SdSV training set. In this case, we used a factorized TDNN (F-
TDNN) architecture [17] trained using Kaldi but the network
is trained to classify not just the speaker identities but also the
phrase contained in the utterance. The features used have the
same configuration as for the previous model.

3.2. i-vector extractors
For all our i-vector extractors, the input features are con-
catenated MFCCs and bottleneck features (BN). 19 MFCCs
plus energy are extracted from 16kHz audio recordings using
25 ms Hamming windows with 15 ms overlap and 30 filter-bank
bands. We add first and second order derivatives and discard si-
lence frames according to an energy-based VAD (mostly skip-
ping initial and final silence segments). Then, we apply cepstral
short-term mean and variance normalization with a sliding win-
dow of 3 s. Our BN features [6] are extracted from a bottleneck
layer of a neural network (NN) trained to discriminate between
given phoneme units. The BN features are a frame-wise rep-
resentation of the audio learned by this NN. For training the
NNs, we used GMM-HMM ASR models to generate the forced-
alignment of the training data and this was further used either
directly as the training targets or as the initial alignment for the
Lattice-free MMI training [18]. We used three variants of BN
features for the different i-vector extractors as detailed below.

We use four different i-vector extractors [19], all trained on
the in-domain SdSV training set with a UBM-GMM of 1024
Gaussian components. Our i-vector extractors only differ in the
BN features used and the dimensionality of the i-vectors:

iLibri800 extractor extracts 800-dimensional i-vectors. It
uses the so-called stacked BN NN architecture [20] trained on
LibriSpeech data. This architecture is composed of a cascade
of two bottleneck NNs, where neighbouring bottleneck-outputs
from the first stage NN are stacked to define context-dependent
input features for the second stage NN [6]. The NN input fea-
tures are 40 log Mel-scale filter bank outputs extended with 3
kaldi-pitch features [21]. The bottleneck-outputs of the second
stage NN are used as the BN features.

iLibri600 is exactly the same i-vector extractor as iLibri800
except that it produces 600-dimensional i-vectors.

iSdSV400 extracts 400-dimensional i-vectors. For BN fea-
tures, it uses only the first stage NN from the stacked BN ar-

chitecture described above. This BN feature extractor is trained
only on the in-domain SdSV training data (i.e. only on the ut-
terances of the 10 phrases).

iLibriSdSV400 extracts 400-dimensional i-vectors. The
BN features for this system are extracted from a different ar-
chitecture corresponding to the Kaldi [15] chain model, which
has been, however, modified to include the bottleneck layer1.
This NN is trained on LibriSpeech and the in-domain SdSV
challenge data together. Phonemes from LibriSpeech and SdSV
data are considered as different phonemes (i.e. different classes
for the NN training) although some of the SdSV sentences are
in English just like LibriSpeech data.

It should be noted that, unlike x-vector extractors names
(xVoxCeleb and xSdSV), which include the data used for their
training, i-vector systems names refer to the data used to train
the BN feature extractor. The i-vector extractors themselves are
always trained using the in-domain SdSV training data.

4. Backends
4.1. Phrase-dependent PLDA (PD-PLDA)
From the evaluation plan it was known that both the develop-
ment and evaluation data consist of only 10 phrases. To take
advantage of this fact, all our PLDA backends were trained in
a phrase-dependent fashion i.e. we train 10 different PLDA
models corresponding to different phrases. Each PLDA is a
two-covariance model (i.e. both within- and across-class co-
variance matrices are full rank). During testing, each trial is
scored with the model corresponding to its enrollment phrase.
Given the multi-session enrollment scenario, we use the by-the-
book PLDA scoring to calculate the log likelihood verification
scores. Before training or evaluating the PLDA models, the in-
put embeddings are subject to the following pre-processing:

For our two x-vector based systems with PD-PLDA back-
ends (systems 2 and 4 in Table 1), we center both training and
evaluation x-vectors with the mean computed on the pooled data
from all of the phrases from the training set. Also, a global LDA
transformation reducing the dimensionality from 512 to 300 is
performed, followed by a length-normalization step.

In the case of the i-vector systems, we perform phrase-
dependent centering and LDA dimensionality reduction. Di-
mensionality after LDA is set to either 400 or 600 for different
systems as indicated in Table 1 by the number appended to the
backend names. Note that LDA transformation is applied even
for the systems with no dimensionality reduction as it has the
side effect of within-class covariance whitening, which is bene-
ficial for the following length-normalization.

4.2. Heavy-tailed PLDA (HTPLDA)
For some of our x-vector systems, we used a heavy-tailed PLDA
(HTPLDA) [23] backend. The pre-processing of the data for
HTPLDA includes centering and length-normalization. The
size of the speaker subspace was set to 300 and the degrees
of freedom parameter was fixed to 2. We also experimented
with phrase-dependent HTPLDA backend similar to what we
did with the standard PLDA. However, this approach did not
outperform the results obtained with a single HTPLDA back-
end and was therefore not used.

1egs/librispeech/s5/local/chain/tuning/run tdnn 1d.sh.
We removed i-vector feature adaptation and added online-cmn. The
architecture is a Semi-Orthogonal TDNN [22]. The bottleneck is
‘prefinal-l’, the last common hidden layer preceding the split for the
two objective functions in the chain model. The bottleneck has 80
dimensions, the NN has 2×2576 outputs and 18M model parameters
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4.3. Score normalization
To normalize the scores, we used adaptive symmetric score nor-
malization (as-norm) which computes an average of normalized
scores from z-norm and t-norm [24, 25, 26, 27]. As-norm is per-
formed for PD-PLDA backends and it is also phrase-dependent.
This means that the cohort for each phrase includes only the
scores from the trials with matching enrollment phrase. For
each phrase-dependent cohort we had between 618 and 779
models (enrolled from 3 utterances each). The 7011 cohort test
utterances used were shared for all the phrases. Only a part of
the cohort is selected to compute mean and variance for normal-
ization and we select the 70 highest scores.

4.4. GLC phrase recognizer
Given that the scenario of the text-dependent task in this chal-
lenge involves a fixed set of 10 known phrases, we trained a
phrase recognizer to be combined with the PLDA model out-
puts. This phrase recognizer is a simple Gaussian Linear Clas-
sifier (GLC) [28] trained using the i-vectors (in particular, the
ones from the best single system denoted as iLibri800) on our
training set. The GLC estimates the mean of each phrase and a
single average within-class covariance matrix shared across the
phrases. We could use the phrase classifier to make a hard deci-
sion for each test segment and reject trials recognized as having
wrong-phrase just by setting verification scores to high negative
value (e.g. -inf). However, for convenience (and also to produce
soft scores), we use the following procedure, which produces an
outcome very similar to making hard decisions: For each trial,
we calculate the log-posterior probability that the test phrase
contains the known enrollment phrase. Such scores have val-
ues close to zero for correct-phrase and very high negative for
wrong-phrase trials. These scores are then linearly combined
with the PLDA log-likelihood ratio verification scores using the
logistic regression based score fusion described in Section 4.5.

We would like to point out that such use of GLC phrase
recognizer would not be practical in more realistic scenarios
with open set of phrases (even only for the wrong-phrase tri-
als). However, this is a good and legal approach to deal with the
specific scenario of the SdSV challenge.

4.5. Score fusion
In order to combine the subsystems shown in Table 1 for our pri-
mary submission, we trained a linear logistic regression model
to perform score level fusion. This model is trained on our de-
velopment set. Thus, the results reported on that set are over-
optimistic and we analyze the fusion results on the official eval-
uation set (i.e. by submitting scores to the leaderboard).

5. Results
5.1. Individual systems
Table 1 summarizes the performance of the systems we built
for the challenge. We show results on both the official evalu-
ation set (obtained by submitting scores to the leaderboard for
the post-evaluation phase) and our development set (comprising
TC, IC and TW trials). In order to effectively deal with TW tri-
als, all these results (even for the “individual systems”) used a
score fusion with the phrase recognizer scores. The upper part
of the table shows results for our “individual systems”, while
the bottom part shows score fusions of multiple systems.

Comparing no norm and as-norm columns in Table 1, we
can see that as-norm proves to be effective as it helps in most
of the cases. Moreover, we found that as-norm provides slightly
better performance than the standard (non-adaptive) s-norm (not

shown in the table). The columns denoted as no+as-norm cor-
respond to a score level fusion of both original unnormalized
and as-normalized scores, which interestingly often provides
further significant improvements. Our preliminary experiments
indicate that this fusion helps to calibrate scores for different
target phrases. The fusion of the unnormalized and normalized
scores can be seen only as a special score normalization variant
and, since it uses only a single trained model (i.e. single i-vector
or x-vector extractor with single PD-PLDA based backend), we
consider the resulting system to be a “single system” (rather
than fusion of multiple subsystems).

Besides the primary system challenge participants were re-
quired to submit also a contrastive single system. Our submitted
single system is the best individual system, which is the combi-
nation of no norm and as-norm scores in the first line of Table 1.
This system is one of our i-vector based systems. As it can be
seen from the table, our i-vector based systems provide consis-
tently better results than x-vector based systems even with the
sufficient amount of training data available for the challenge.
Interestingly, the xSdSV x-vector extractor trained on the in-
domain SdSV training data (like our i-vector extractors) per-
formed somewhat worse than the xVoxCeleb extractor. The or-
ganizers provided two single baseline systems, one based on x-
vectors and a second one based on i-vector/HMMs as described
in [1]. These systems obtained 0.5287 and 0.1464 minDCF re-
spectively, and 9.05% and 3.49% EER, which are far from our
best single system with 0.0587 minDCF and 1.89% EER.

5.2. System fusion

Our submitted primary system was the fusion of all 8 individ-
ual systems shown in the penultimate line of the table. These 8
systems were selected from a larger pool of systems that we de-
veloped during the work on the challenge, which comprises also
other variants of the systems described in this paper (different
BN feature configurations, UBM-GMM sizes, embedding di-
mensionalities, x-vector extractor architectures, score normal-
izations, etc.). To select the subsystems, we used a greedy ap-
proach where we started from the best single system (as eval-
uated on our development set) and we always added one sys-
tem (both as-norm and no norm scores) to the fusion that led to
the biggest improvement on the development set. Table 1 also
shows the results for the individual steps of this greedy fusion
process. As we can see, just the fusion of two systems, one i-
vector and one x-vector based, yields 22% improvement on the
evaluation set compared to the single best system. This fusion
already matches the performance of the second best team in the
challenge as reported in the leaderboard. Adding more systems
to the fusion keeps improving performance. However, the rela-
tive improvement gradually decreases from the initial 22% rela-
tive improvement, to approximately 5% when including a third
system (which would already win the challenge by a significant
margin), to less than 2% when a fourth system is added. Thus,
even though for our primary submission we used the combina-
tion of 8 systems, comparable results can be obtained by using
just half of them. It is also interesting to observe that the sys-
tems that fuse the best are quite diverse: 1) i-vector with BN
trained only on LibriSpeech, 2) x-vector trained on VoxCeleb,
3) i-vectors with BN trained also on the in-domain SdSV set, 4)
x-vector trained on SdSV, and so on.

The last row of the table shows results for our best per-
forming system submitted to the challenge leaderboard prior to
the deadline. This is a fusion of 11 subsystems taken from the
systems pool mentioned above. However, because of its com-
plexity, we did not select this system as our primary system.
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Table 1: MinDCF × 100 of systems used for fusions and in final primary submission. All of them include phrase recognizer. Results
on EER are not shown but followed the same trend.

System Leaderboard Development set (all trials)

Embedding Backend no norm as-norm no+as-norm no norm as-norm no+as-norm

1 iLibri800 PD-PLDA400 8.61 6.31 5.87 3.4 2.35 1.82
2 xVoxCeleb PD-PLDA300 8.15 7.65 7.35 4.59 4.12 4.01
3 iLibriSdSV400 PD-PLDA400 7.65 7.10 6.65 2.51 2.61 2.08
4 xSdSV PD-PLDA300 11.98 9.25 9.25 6.37 4.99 4.99
5 iLibri600 PD-PLDA600 7.36 6.34 5.84 2.55 2.61 2.09
6 iSdSV400 PD-PLDA400 7.43 7.65 6.65 3.20 4.39 2.76
7 xSdSV HTPLDA300 11.97 - - 6.89 - -
8 xVoxCeleb HTPLDA300 9.20 - - 5.00 - -

Fusion 1+2 - - 4.56 - - 1.18
Fusion 1+2+3 - - 4.35 - - 1.08
Fusion 1+2+3+4 - - 4.28 - - 1.02
Fusion 1+2+3+4+ ... +8 (primary submission) - - 4.22 - - 0.85
Other fusion* (leaderboard eval period) - - 4.09 - - 0.79

Table 2: Comparison of PLDA, phrase-dependent PLDA (PD-PLDA), and PD-PLDA combined with the phrase recognizer (Phr-rec),
over the i-vectors from our best single system (iLibri800). Results show minDCF × 100 (EER followed the same trend).

System All non-target trials Only IC non-target Only TW non-target

no norm as-norm no norm as-norm no norm as-norm

iLibri800 PLDA400 5.94 6.38 4.67 4.05 9.35 12.45
iLibri800 PD-PLDA400 8.27 10.26 3.64 2.59 20.4 15.48
iLibri800 PD-PLDA400 + Phr-rec 3.4 2.35 3.63 2.59 0.12 0.1

5.3. PLDA backend and phrase recognizer analysis
In this section, we analyze the PLDA backend variants when
fixing the embedding extractor to the one from our best sin-
gle system (iLibri800). Table 2 shows results on the develop-
ment set comparing the standard PLDA backend and the phrase-
dependent PLDA (PD-PLDA) backend. We report results for all
trials, but also for subsets of trials where we always keep all tar-
get (TC) trials and only a specific type of non-target trials (either
IC or TW). Comparing rows 1 and 2, we see that the PD-PLDA
model provides significant improvements for IC non-target tri-
als, but the performance degrades notably for TW trials. For the
text-dependent task, the standard PLDA is trained with classes
given by joint speaker-phrase labels. In other words, it is trained
to discriminate between speaker voices and between phrases. In
contrary, with PD-PLDA each phrase specific PLDA model is
trained to only discriminate between speaker voices of a given
phrase assuming that enrollment and test utterances contain the
correct phrase. Thus, it is expected to work well for the correct-
phrase trials and not for wrong-phrase trials.

To benefit from the PD-PLDA in the case of correct-phrase
trials and at the same time to obtain good performance for the
wrong-phrase trials, we make use of the phrase recognizer as
described in Section 4.4. The results for this case are shown
in the 3rd row of Table 2. We can see that the addition of the
phrase recognizer does not affect the results for IC non-target
trials, while the error for TW trials is reduced to almost zero.
This also results in a substantial overall improvement on all the
trials of the development set.

6. Conclusions
In this paper, we described the BUT winning system submitted
for the text-dependent task of the SdSV challenge 2020. The

amount of training data available in this challenge allowed us to
investigate the commonly used text-independent speaker verifi-
cation techniques for the text-dependent scenario. In particular,
we studied the effectiveness x-vector extractors and compare
them with i-vectors for the text-dependent scenario. While pre-
vious works on this scenario showed the importance of train-
ing embedding extractors only on data of the target phrases,
we found that x-vectors trained on the out-of-domain VoxCeleb
data outperform those trained on the in-domain SdSV data.
However, even with the relatively large amount of in-domain
training data, x-vector systems did not perform as well as the
i-vector ones. Moreover, we successfully used PLDA backends
in a phrase-dependent fashion, as opposed to previous works
that used cosine similarity to compare embeddings. We show
relative improvements of up to 63% with respect to a standard
PLDA backend on our development set when we combine this
phrase-dependent PLDA with a simple phrase recognizer. Fi-
nally, a simple logistic regression based score level fusion of
several systems gives a 28% relative improvement over the sin-
gle best system on the official challenge evaluation set.
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[25] P. Matějka, O. Novotný, O. Plchot, L. Burget, M. S. Diez, and
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