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Preface

To live, work, and prosper on the Earth, people need to communicate, and they do
so by means of a broad variety of languages developed from the dawn of civilization
up to today. First and foremost, human beings use natural languages, such as
English. In essence, these natural languages represent systems of communication
by written and spoken words, used by the people of a particular country or its
parts. Furthermore, researchers often express their ideas, concepts, tests, and results
in various artificially made languages introduced for specific purposes in their
scientific disciplines. For instance, computer scientists have developed hundreds
of programming languages in which they write their algorithms so they can be
executed on computers. In addition, today’s world is overflown with modern
communication machines, such as mobile phones, which gave rise to developing
brand new languages for man-machine and machine-machine communication. It
thus comes as no surprise that the scientific development and study of languages
and their processors fulfill a more important role than ever before.

Of course, we expect that the study of languages produces concepts and results
that are solid and reliable. Therefore, we base this study upon mathematics as
a systematized body of unshakable knowledge obtained by exact and infallible
reasoning. Indeed, mathematics has developed a highly sophisticated theory that
specifies languages quite rigorously and formally, hence the name of this theory—
formal language theory or, briefly, language theory. From a mathematical viewpoint,
this theory defines languages as sets of sequences consisting of symbols. This
definition encompasses almost all languages as they are commonly understood.
Indeed, natural languages are included in this definition. Of course, all artificial
languages introduced by various scientific disciplines represent formal languages
as well.

The strict formalization of languages necessitates an introduction of mathe-
matical models that define them. Traditionally, these language models are based
upon finitely many rules by which they sequentially rewrite sequences of symbols,
called words, and that is why they are referred to as rewriting systems. They are
classified into two basic categories—generating and accepting rewriting systems.
Generating systems, better known as grammars, define strings of their language so
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their rewriting process generates them from a special start symbol. On the other
hand, accepting systems, better known as automata, define strings of their language
by rewriting process that starts from these strings and ends in a special set of strings,
usually called final configurations.

However, apart from these traditional language models, language theory has
also developed several modern language models based upon rewriting systems
that work with words in a nontraditional way, and many of them have their
great advantages over their traditional out-of-date counterparts. To give an insight
into these advantages, we first need to understand the fundamental problems and
difficulties the classical language models cope with. To start with, the traditional
language-defining rewriting systems are defined quite generally. Unfortunately,
from a practical viewpoint, this generality actually means that the rewriting systems
work in a completely unpredictable way. As such, they are hardly implementable
and, therefore, applicable in practice. Being fully aware of this pragmatic difficulty,
formal language theory has introduced fully deterministic versions of these rewrit-
ing systems; sadly, their application-oriented perspectives are also doubtful. First
of all, in an ever-changing environment in which real language processors work,
it is naive, if not absurd, that these deterministic versions might adequately reflect
and simulate real communication technologies applied in such real-world areas as
various engineering techniques for language analysis. Furthermore, in many cases,
this determinism decreases the power of their general counterparts, which represents
another highly undesirable feature of this strict determinism.

Considering these difficulties and drawbacks, formal language theory has
recently introduced new versions of rewriting systems, which avoid the
disadvantages mentioned above. From a practical viewpoint, an important advantage
of these newly introduced rewriting systems consists in controlling their language-
defining process and, therefore, operating in a more deterministic way than classical
systems, which perform their rewriting process in a quite traditional way. Perhaps
even more significantly, the modern versions are stronger than their traditional
counterparts. Considering these advantages, it comes as no surprise that formal
language theory has paid an incredibly high attention to these modern versions of
grammars and automata. Indeed, over the past quarter century, literally hundreds
of studies were written about them, and their investigation represents a vivid
trend within formal language theory. This investigation has introduced a number
of alternative concepts of grammars and automata, and it has achieved many
remarkable results. Nevertheless, all these concepts and results are only scattered in
various conference and journal papers.

Modern versions of grammars and automata represent the principal subject of
this book, whose main focus is on their concepts, properties, and applications in
computer science. The book selects crucially important models and summarizes
key results about them in a compact and uniform way. It always relates each of the
selected models to a particular way of modern computation, such as computation
in parallel or largely cooperating computation. The text explains how the model in
question properly reflects and formalizes the corresponding way of computation,
so it allows us to obtain a systematized body of mathematically precise knowledge
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concerning the computation under investigation. Apart from this obvious theoretical
significance, from a more practical viewpoint, the book demonstrates and illustrates
how the developers of new computational technologies can make use of this
knowledge to build up and implement their modern methods and techniques in the
most efficient way.

The text always starts the discussion concerning the language models under
consideration by conceptualizing them and linking them to a corresponding form of
computation. Then, it gives their mathematical definition, which is also explained
intuitively and illustrated by many examples. After that, the text presents most
computation-related topics about the models so it proceeds from their (i) theoretical
properties through (ii) transformations up to (iii) applications as described next in a
greater detail.

(i) The power of the models represents perhaps the most essential property
concerning them. Therefore, the book always determines the language family
that the models define. The text also includes many algorithms that modify the
models so they satisfy some prescribed properties, which frequently simplify
proofs demonstrating results about the models. Apart from this theoretical
advantage, the satisfaction of these properties is often strictly required by
language processors based on the models.

(ii) Various transformations of grammars and automata also represent an important
investigation area of this book. Specifically, the transformations that reduce
the specification of these language models are important to this investigation
because the resulting reduced versions of the models define languages in
a very succinct and elegant way. As obvious, this reduction simplifies the
development of computational technologies, which then work economically
and effectively. Of course, the same languages can be defined by different
models, and as obvious, every computation-related investigation or application
selects the most appropriate models for them under given circumstances.
Therefore, whenever discussing different types of equally powerful language
models, the book gives transformations that convert them to each other. More
specifically, given a language model of one type, the text carefully explains
how to transform it to another model so both the original system and the model
produced by this transformation define the same language.

(iii) Finally, the book discusses the use of the models in practice. It describes
applications and their perspectives from a general viewpoint. However, the
text also covers several real-world applications with a focus on linguistics and
biology.

As far as the writing style is concerned, we introduce all formalisms with
enough rigor to make all results quite clear and valid because we consider this
book primarily as a theoretically oriented treatment. Before every complicated
mathematical passage, we explain its basic idea intuitively so that even the most
complex parts of the book are relatively easy to grasp. We prove most of the
results concerning the topics mentioned above effectively—that is, within proofs
demonstrating them, we give algorithms that describe how to achieve these results.
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For instance, we often present conversions between equally powerful systems as
algorithms, whose correctness is then rigorously verified. In this way, apart from
their theoretical value, we actually explain how to implement and use them in
practice. Several worked-out examples and case studies illustrate this use.

Concerning the use of the book, from a general standpoint, this book is helpful
to everybody who takes advantage of modern computational technologies based
upon grammars or automata. Perhaps most significantly, all scientists who actually
make these technologies, ranging from pure mathematicians through computational
linguists up to computer engineers, might find this book useful for their work.
Furthermore, the entire book can be used as a text for a two-term course in grammars
and automata at a graduate level. The text allows the flexibility needed to select
some of the discussed topics and, thereby, use it for a one-term course on this
subject. Finally, serious undergraduate students may find this book helpful as an
accompanying text for a course that deals with formal languages and their models.

Organization and Coverage

The text is divided into six parts, each of which consists of several chapters;
altogether, the book contains 19 chapters. Each part starts with an abstract that
summarizes its chapters.

Part I, consisting of Chaps. 1 and 2, gives an introduction to this monograph
in order that the entire text of the book is completely self-contained. In addition,
it places all the coverage of the book into scientific context and reviews important
mathematical concepts with a focus on classical language theory.

Part II, which consists of Chaps. 3 through 6, presents an overview of modern
grammatical models for languages and corresponding computational modes. Chap-
ter 3 gives the fundamentals of grammars for regulated computation. In essence,
these grammars regulate their language generation by additional mechanisms, based
upon simple mathematical concepts, such as finite sets of symbols. Chapter 4 studies
grammars for computation performed in parallel. These grammars generate their
languages in parallel and, thereby, accelerate this generation significantly just like
computation in parallel is usually much faster than that made in a sequential way.
First, this chapter studies partially parallel generation of languages, after which,
it investigates the totally parallel generation of languages. Chapter 5 explores
grammars that work on their words in a discontinuous way, thus formalizing
a discontinuous way of computation in a very straightforward way. Chapter 6
approaches grammatical models for languages and computation in terms of algebra.
In particular, it examines grammatical generation of languages defined over free
groups.

Part III consists of Chaps. 7 through 10. To some extent, in terms of automata,
this part parallels what Part II covers in terms of grammars. Indeed, Chap. 7
gives the fundamentals of regulated computation formalized by automata. Similarly
to grammars discussed in Chap. 5, Chap. 8 formalizes a discontinuous way of
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computation. However, Chap. 8 bases this formalization upon automata, which
jump across the words they work on discontinuously. Chapter 9 discusses language
models for computation based upon new data structures. More specifically, it studies
deep pushdown automata, underlined by stacks that can be modified deeper than on
their top. Finally, Chap. 10 studies automata that work over free groups, and in this
way, it parallels Chap. 6, which studies this topic in grammatical terms.

Part IV, which consists of Chaps. 11 and 12, covers important language-defining
devices that combine other rewriting systems, thus formalizing a cooperating way
of computation. Chapter 11 untraditionally combines grammars and automata in
terms of the way they operate. Specifically, it studies how to generate languages
by automata although, traditionally, languages are always generated by grammars.
Chapter 12 studies the generation of languages by several grammars that work in a
simultaneously cooperative way.

Part V, consisting of Chaps. 13 through 15, discusses computer science applica-
tions of rewriting systems studied earlier in the book. First, Chap. 13 covers these
computational applications and their perspectives from a rather general viewpoint.
Then, more specifically, Chaps. 14 and 15 describe applications in computational
linguistics and computational biology, respectively. Both chapters contain several
case studies of real-world applications described in detail.

Part VI consists of a single chapter—Chap. 16, which closes the entire book
by adding several remarks concerning its coverage. It briefly summarizes all the
material covered in the text. Furthermore, it sketches many brand new investigation
trends and longtime open problems. Finally, it makes several bibliographical and
historical remarks. Further backup materials are available at http://www.fit.vutbr.
cz/~meduna/books/mlmc.

Brno, Czech Republic Alexander Meduna
Brno, Czech Republic Ondřej Soukup
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Part I
Introduction

This part, consisting of Chaps. 1 and 2, reviews important mathematical concepts
with a special focus on classical language theory. In this way, it places the entire
coverage of the book into its scientific context. In addition, it guarantees that the
whole text is completely selfcontained—that is, no other book is needed to follow
its complete coverage.

Chapter 1 reviews rudimentary mathematical notions in order to speak clearly
and accurately throughout the remaining chapters of this book. Then, Chap. 2
covers important concepts used in formal language theory. Apart from the classical
rudiments, it includes several lesser-known areas of this theory, such as parallel
grammars, because they are also needed to fully grasp some upcoming topics
covered in this book.



Chapter 1
Mathematical Background

This three-section chapter reviews rudimentary mathematical concepts, including
key notions concerning sets (Sect. 1.1), relations (Sect. 1.2), and graphs (Sect. 1.3).
For readers having background in these areas, this chapter can be skipped and treated
as a reference for terminology used later in this book.

1.1 Sets and Sequences

This section outlines rudimentary concepts concerning sets and sequences.

1.1.1 Sets

In what follows, we assume that there exist primitive objects, referred to as elements,
taken from some pre-specified universe, usually denoted by U. We also assume that
there are objects, referred to as sets, which represent collections of objects, each of
which is an element or another set. If A contains an object a, then we symbolically
write a 2 A and refer to a as a member of A. On the other hand, to express that a is
not a member of A, we write a … A.

If A has a finite number of members, then A is a finite set; otherwise, it is an
infinite set. The finite set that has no member is the empty set, denoted by ;. The
cardinality of a finite set A, card.A/, is the number of members that belong to A;
note that card.;/ D 0. A finite set A is customarily specified by listing its members;
that is, A D fa1; a2; : : : ; ang, where a1 through an are all members of A; as a special
case, we have fg D ;. An infinite set B is usually defined by a property � so that B
contains all elements satisfying �; in symbols, this specification has the following
general format: B D faj�.a/g. Sometimes, an infinite set is defined recursively by
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A. Meduna, O. Soukup, Modern Language Models and Computation,
DOI 10.1007/978-3-319-63100-4_1

3



4 1 Mathematical Background

explicitly naming the first few values (typically, just one first value) in the set and
then defining later values in the set in terms of earlier values.

In this book, we denote the set of all natural numbers by N. In other words, N
denotes the set of all positive integers, so

N D f1; 2; : : : g

Furthermore, 0N denotes the set of all non-negative integers, and Z denotes the
entire set of all integers throughout.

Example 1.1.1. Take U D N. Let X be the set of all even positive integers defined
as

X D fiji 2 N; i is eveng or, alternatively, X D fjjj D 2i; i; j 2 Ng

Let Y be the set of all even positive integers between 1 and 9. Define

Y D fiji 2 X; 1 � i � 9g or, simply, Y D f2; 4; 6; 8g

Observe that card.Y/ D 4. Consider the next recursive definition of the set W

(i) 2 is in W;
(ii) if i is in W, then so is 2i, for all i � 2.

By (i), W contains 2. Then, by (ii), it contains 4, too. By (ii) again, it includes 8 as
well. Continuing in this way, we see that W contains 2; 4; 8; 16; : : : . In words, W
consists of all positive integers that represent a power of two; mathematically,

W D fjjj D 2i; i; j 2 Ng or, briefly, f2iji 2 Ng ut

Let A and B be two sets. A is a subset of B, symbolically written as A � B, if each
member of A also belongs to B. A is a proper subset of B, written as A � B, if A � B
and B contains a member that is not in A. By A 6� B, we express that A is not a subset
of B. If A � B and B � A, then A equals B, denoted by A D B; simply put, A D B
means that both sets are identical. By A ¤ B, we express that A is not equal to B. To
express that A 6� B and B 6� A we call A and B to be incomparable. The power set
of A, denoted by 2A, is the set of all subsets of A; formally, 2A D fBjB � Ag.

For two sets, A and B, their union, intersection, and difference are denoted by
A [ B, A \ B, and A � B, respectively, and defined as A [ B D faja 2 A or a 2 Bg,
A \ B D faja 2 A and a 2 Bg, and A � B D faja 2 A and a … Bg. If A \ B D ;, A
and B are disjoint. More generally, n sets C1;C2; : : : ;Cn, where n � 2, are pairwise
disjoint if Ci \Cj D ; for all 1 � i; j � n such that i ¤ j. If A is a set over a universe

U, the complement of A is denoted by NNA and defined as NNA D U � A.
Sets whose members are other sets are usually called classes of sets rather than

sets of sets.



1.1 Sets and Sequences 5

Example 1.1.2. Consider the sets from Example 1.1.1. Observe that

2Y D f;;

f2g; f4g; f6g; f8g;

f2; 4g; f2; 6g; f2; 8g; f4; 6g; f4; 8g; f6; 8g;

f2; 4; 6g; f2; 4; 8g; f2; 6; 8g; f4; 6; 8g;

f2; 4; 6; 8gg

Furthermore, X � U and Y � X. Set W D U � X. In words, W is the set of all
odd positive integers. As obvious, X \ W D ;, so X and W are disjoint. Notice that
Y [ W D fiji 2 U; i � 8 or i is eveng and

NNY D f1; 3; 5; 7g [ fiji 2 U; i � 9g

X, Y and W are not pairwise disjoint because X\Y ¤ ;. On the other hand, f2g, f8g,
and f4; 6g are pairwise disjoint. Observe that fjjj 2 U; j ¤ jg and ; are identical,
symbolically written as

fjjj 2 U; j ¤ jg D ;

Sets U and .X [ W/ are identical, too.
To illustrate a class of sets, consider� defined as

� D fUjU � U; 1 2 Ug

In words, � consists of all subsets of U that contain 1; for instance, f1g and W are
in �, but f2g and Y are not. Notice that U 2 �, but U 6� �; indeed,� contains sets
of positive integers while U contains positive integers, not sets. ut

1.1.2 Sequences

A sequence is a list of elements from some universe. A sequence is finite if it consists
of finitely many elements; otherwise, it is infinite. The length of a finite sequence x,
denoted by jxj, is the number of elements in x. The empty sequence, denoted by ",
is the sequence consisting of no element; that is, j"j D 0.

Let s be a sequence. If s is finite, it is defined by listing its elements. If s is
infinite, it is specified by using ellipses provided that this specification is clear.
Alternatively, s is defined recursively by explicitly naming the first few values in
s and then deriving later values in s by a property applied to earlier values in s.
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1.2 Relations

The present section reviews several key concepts concerning relations (Sect. 1.2.1)
and functions (Sect. 1.2.2).

1.2.1 Relations

For two elements, a and b, .a; b/ denotes the ordered pair consisting of a and b
in this order. Let A and B be two sets. The Cartesian product of A and B, A � B,
is defined as A � B D f.a; b/ j a 2 A and b 2 Bg. A binary relation or, briefly, a
relation, �, from A to B is any subset of A � B; that is, � � A � B. If � represents a
finite set, then it is a finite relation; otherwise, it is an infinite relation. The domain
of �, denoted by domain.�/, and the range of �, denoted by range.�/, are defined
as domain.�/ D fa j .a; b/ 2 � for some b 2 Bg and range.�/ D fb j .a; b/ 2

� for some a 2 Ag. If A D B, then � is a relation on A. A relation � is a subrelation
of � if � � �. The inverse of �, denoted by ��1, is defined as ��1 D f.b; a/ j .a; b/ 2

�g. Let � � B � C be a relation, where C is a set; the composition of � with � is
denoted by � ı � and defined as � ı � D f.a; c/ j .a; b/ 2 �; .b; c/ 2 �g.

As relations are defined as sets, the set operations apply to them, too. For
instance, if � is a relation from A to B, its complement NN� is defined as .A � B/� �.

Example 1.2.1. Set

articles D fa; an; theg and two-words D fauthor; readerg

The Cartesian product of articles and two-words is defined as

articles � two-words D f.a; author/; .a; reader/; .an; author/;

.an; reader/; .the; author/; .the; reader/g

Define the relation proper-article as

proper-article D f.a; reader/; .an; author/; .the; author/; .the; reader/g

Observe that proper-article properly relates English articles to the members of
two-words. Notice that

proper-article�1 D f.reader; a/; .author; an/; .author; the/; .reader; the/g ut

Let � � A � B be a relation. To express that .a; b/ 2 �, we sometimes write a�b.
That is, we use .a; b/ 2 � and a�b interchangeably in what follows.
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Let A be a set, and � be a relation on A. Then,

1. if for all a 2 A, a�a, then � is reflexive;
2. if for all a; b 2 A, a�b implies b�a, then � is symmetric;
3. if for all a; b 2 A, .a�b and b�a/ implies a D b, then � is antisymmetric;
4. if for all a; b; c 2 A, .a�b and b�c/ implies a�c, then � is transitive.

Let A be a set, � be a relation on A, and a; b 2 A. For k � 1, the k-fold product
of �, �k, is recursively defined as

1. a�1b iff a�b, and
2. a�kb iff there exists c 2 A such that a�c and c�k�1b, for k � 2.

Furthermore, a�0b if and only if a D b. The transitive closure of �, �C, is defined as
a�Cb if and only if a�kb, for some k � 1; consequently, �C is the smallest transitive
relation that contains �. The reflexive and transitive closure of �, ��, is defined as
a��b if and only if a�kb, for some k � 0.

Example 1.2.2. Let A be the set of all people who have ever lived. Define the
relation parent so

.a; b/ 2 parent if and only ifais a parent ofb, for all a; b 2 A

Observe that parent2 represents the grandparenthood because .a; b/ 2 parent2 if
and only if a is a grandparent of b. Furthermore, .a; b/ 2 parent3 if and only if a is a
great-grandparent of b. Consequently, parentC corresponds to being an ancestor in
the sense that .a; b/ 2 parentC iff a is an ancestor of b. Of course, .a; a/ … parentC

for any a 2 A because a cannot be an ancestor of a. On the other hand, notice that
.a; a/ 2 parent� for all a 2 A, so .a; b/ 2 parent� iff a is an ancestor of b or
a D b. ut

Let A be a finite set, A D fa1; : : : ; ang, for some n � 1. Let � be a relation on A.
A useful way to represent � is by its adjacency matrix �M. That is, �M is an n � n
matrix whose entries are 0s and 1s. Its rows and columns are both denoted by a1
through an. For all 1 � i; j � n, the entry �Mij is 1 if and only if .ai; aj/ 2 �, so
�Mij D 0 if and only if .ai; aj/ … �.

From �M, we can easily construct �C M, which represents the transitive closure
of �, by using Floyd-Warshall algorithm (see Section 26.2 in [CLR90]). In essence,
this algorithm is based upon the idea that if �C Mik D 1 and �C Mkj D 1, then

�C Mij D 1. Starting from �M, it repeatedly performs this implication until no new
member can be added to the adjacency matrix.

Let ˙ be a set, and let � be a relation on ˙ . If � is reflexive, symmetric, and
transitive, then � is an equivalence relation. Let � be an equivalence relation on
˙ . Then, � partitions ˙ into disjoint subsets, called equivalence classes, so that
for each a 2 ˙ , the equivalence class of a is denoted by Œa� and defined as Œa� D

fbja�bg. As an exercise, explain why for all a and b in ˙ , either Œa� D Œb� or
Œa� \ Œb� D ;.
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Example 1.2.3. Let �n denote the relation of congruence modulo n on 0N,
defined as

�nD f.x; y/jx; y 2 0N; x � y D kn; for some integer kg

Specifically, take n D 3. In other words,

�3D f.x; y/jx; y 2 0N; x � y is a multiple of 3g

Notice that �3 is reflexive because i � i D 0, which is a multiple of 3. Furthermore,
�3 is symmetric because i � j is a multiple of 3 iff j � i is a multiple of 3. Finally,
it is transitive because whenever i � j is a multiple of 3 and j � k is a multiple of 3,
then i � k D .i � j/C .j � k/ is the sum of two multiples, so it is a multiple of 3, too.
Thus, �3 represents an equivalence relation.

Observe that

f0; 3; 6; : : : g

forms an equivalence class because 3n �3 3m for all integers n and m. More
generally, �3 partitions 0N into these three equivalence classes

Œ0� D f0; 3; 6; : : : g

Œ1� D f1; 4; 7; : : : g

Œ2� D f2; 5; 8; : : : g

Observe that Œ0�, Œ1�, Œ2� are pairwise disjoint and that 0N D Œ0� [ Œ1� [ Œ2�. ut

Let ˙ be a set, and let � be a relation on ˙ . If � is reflexive, antisymmetric,
and transitive, then � is a partial order. If � is a partial order satisfying either a�b
or b�a, for all a; b 2 ˙ such that a ¤ b, then � is a linear order. As an exercise,
illustrate these relations by specific examples.

1.2.2 Functions

A function ' from A to B is a relation ' from A to B such that if a'b and a'c, then
b D c; in other words, for every a 2 A, there is no more than one b 2 B such that
a'b. Let ' be a function from A to B. If domain.'/ D A, ' is total. If we want to
emphasize that ' may not satisfy domain.'/ D A, we say that ' is partial.

Example 1.2.4. Reconsider the relation parent from Example 1.2.2, defined as

.a; b/ 2 parent if and only if a is a parent of b, for all a; b 2 A
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where A is the set of all people who have ever lived. Of course, parent is not a
function because a parent may have two or more children. Neither is parent�1

a function because every child has two parents. Consider one-child-parent as the
subrelation of parent defined as

.a; b/ 2 one-child-parent if and only if a is a parent of a single child b;

for all a; b 2 A

Clearly, one-child-parent is a partial function, but one-child-parent�1 is not a
function.

Finally, take B as the set of all mothers who have a single child, so B � A.
Consider parent defined over B. Observe that parent redefined over B coincides
with the following definition of relation one-daughter-mother over B

.a; b/ 2 one-daughter-mother if and only if a is a mother

of a single daughter b, for all a; b 2 B

As obvious, one-daughter-mother and its inverse are both total functions. ut

Instead of a'b, where a 2 A and b 2 B, we often write '.a/ D b and say that
b is the value of ' for argument a. Let ' be a function from A to B. If for every
b 2 B, card.fa j a 2 A and '.a/ D bg/ � 1, ' is an injection. If for every b 2 B,
card.fa j a 2 A and '.a/ D bg/ � 1, ' is a surjection. If ' is a total function that is
both a surjection and an injection, ' represents a bijection.

Return to the set theory (see Sect. 1.1.1). Based upon bijections, we define the
notion of a countable set. That is, if there is a bijection from an infinite set � to
an infinite set 	 , then � and 	 have the same cardinality. An infinite set, ˝ , is
countable or, synonymously, enumerable, if ˝ and N have the same cardinality;
otherwise, it is uncountable (as stated in Sect. 1.1.1, N denotes the set of natural
numbers).

1.3 Graphs

This section reviews the principal ideas and notions underlying directed graphs
(Sect. 1.3.1) while paying a special attention to trees (Sect. 1.3.2).

1.3.1 Directed Graphs

Loosely speaking, a directed graph is a representation of a set with some pairs of
its elements, called nodes, connected by directed links, called edges. Customarily,
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a graph is depicted as a set of dots for the vertices, joined by lines for the edges. A
directed graph has its edges directed from one node to another.

More precisely, a directed graph or, briefly, a graph is a pair G D .A; �/, where
A is a set and � is a relation on A. Members of A are called nodes, and ordered
pairs in � are called edges. If .a; b/ 2 �, then edge .a; b/ leaves a and enters b. Let
a 2 A; then, the in-degree of a and the out-degree of a are card.fb j .b; a/ 2 �g/ and
card.fc j .a; c/ 2 �g/ and denoted by in-d.a/ and out-d.a/, respectively.

An n-tuple of nodes, .a0; a1; : : : ; an/, where n � 0, is a sequence of length n from
a0 to an if .ai�1; ai/ 2 � for all 1 � i � n; then .a0/ is a sequence of length 0. A
sequence .a0; a1; : : : ; an/ of length n, for some n � 0, is a path of length n if ai ¤ aj,
for 0 � i � n, 0 � j � n, i ¤ j; if, in addition, a0 D an, then .a0; a1; : : : ; an/ is a
cycle of length n. A graph G is acyclic if and only if it contains no cycle.

In this book, we frequently label the edges of G with some attached information.
Pictorially, we represent G D .A; �/ so we draw each edge .a; b/ 2 � as an arrow
from a to b possibly with its label as illustrated in the next example.

A

B

C

D

E

5

3

4

3
3

5

1.3.2 Trees

Let G D .A; �/ be a graph. If .a0; a1; : : : ; an/ is a path in G, then a0 is an ancestor of
an and an is a descendant of a0; if in addition, n D 1, then a0 is a direct ancestor of
an and an a direct descendant of a0. A tree is an acyclic graph T D .A; �/ such that
A contains a specified node, called the root of T and denoted by troot.T/, and every
a 2 A � ftroot.T/g is a descendant of troot.T/ and its in-degree is one; in-degree of
troot.T/ is zero. If a 2 A is a node whose out-degree is 0, a is a leaf ; otherwise, it
is an interior node. In this book, a tree T is always considered as an ordered tree in
which each interior node a 2 A has all its direct descendants, b1 through bn, where
n � 1, ordered from the left to the right so that b1 is the leftmost direct descendant
of a and bn is the rightmost direct descendant of a. At this point, a is the parent of its
children b1 through bn, and all these nodes together with the edges connecting them,
.a; b1/ through .a; bn/, are called a parent-children portion of T. Nodes b1 through
bn are called siblings, while bi is a left sibling of bj and bj is a right sibling of bi, for
1 � i < j � n; bi is the direct left sibling of biC1 and biC1 is the direct right sibling
of bi. The frontier of T, denoted by frontier.T/, is the sequence of T’s leaves ordered
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from the left to the right. The depth of T, depth.T/, is the length of the longest path
in T. A tree S D .B; 
/ is a subtree of T if ; � B � A, 
 � � \ .B � B/, and in T,
no node in A � B is a descendant of a node in B; S is an elementary subtree of T if
depth.S/ D 1.

Like any graph, a tree T can be described as a two-dimensional structure. To
simplify this description, however, we draw a tree T with its root on the top and
with all edges directed down. Each parent has its children drawn from the left to the
right according to its ordering. Drawing T in this way, we may omit all arrowheads.

Apart from this two-dimensional representation, however, it is frequently conve-
nient to specify T by a one-dimensional representation, denoted by odr.T/, in which
each subtree of T is represented by the expression appearing inside a balanced pair
of h and i with the node which is the root of that subtree appearing immediately to
the left of h . More precisely, odr.T/ is defined by the following recursive rules:

(i) If T consists of a single node a, then odr.T/ D a.
(ii) Let .a; b1/ through .a; bn/, where n � 1, be the parent-children portion of T,

troot.T/ D a, and Tk be the subtree rooted at bk, 1 � k � n, then

odr.T/ D ahodr.T1/ odr.T2/ : : : odr.Tn/i

The next example illustrates both the one-dimensional odr-representation and the
two-dimensional pictorial representation of a tree. For brevity, we prefer the former
throughout the rest of this book.

Example 1.3.1. Consider the tree T D .P; �/, where P D fa; b; c; d; eg and � D

f.a; b/; .a; c/; .c; d/; .c; e/g. Nodes a and c are interior nodes while b, d, and e are
leaves. The root of T is a. We define b and c as the first child of a and the second
child of a, respectively. A parent-children portion of T is, for instance, .a; b/ and
.a; c/. Notice that frontier.T/ D bde, and depth.T/ D 2. Following (i) and (ii)
above, we obtain the one-dimensional representation of T as

odr.T/ D ahbchdeii

Its subtrees are ahbchdeii, chdei, b, d, and e. In Fig. 1.1, we pictorially describe
ahbchdeii and chdei.

a

b c

d e

c

d e

Fig. 1.1 Tree and subtree
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root •

a

• •

b c

• •

d e

Fig. 1.2 Diagram of binary tree implementation

A binary tree is a tree in which every interior node has at most two children;
for instance, T represents a binary tree. Next, we describe the implementation of a
binary tree, in which every node is represented by a three-part structure. One part
represents its name—that is, the symbol corresponding to the node. The others are
blank if the node is a leaf; otherwise, they reference the two children of the node.
As a whole, the tree implementation starts by a reference to its root node. Figure 1.2
illustrates this principle. ut



Chapter 2
Formal Language Theory: Basics

This chapter covers the basics of formal language theory. It covers all the notions
that are necessary to follow the rest of this book. Apart from the classical
rudiments, however, the chapter covers several lesser-known areas of this theory,
such as parallel grammars, because these areas are also needed to fully grasp some
upcoming topics discussed in this book. The chapter consists of four sections.

Section 2.1 introduces the very basics concerning strings, languages, and oper-
ations over them. Section 2.2 defines rewriting systems as fundamental language-
defining devices. Section 2.3 overviews a variety of formal grammars, and Sect. 2.4
covers automata needed to follow the rest of this book.

Readers familiar with the classical concepts used in formal languages theory
should primarily concentrate their attention on non-classical concepts, such as
language-defining devices working in parallel.

2.1 Languages

An alphabet˙ is a finite, nonempty set of elements called symbols. If card.˙/ D 1,
then ˙ is a unary alphabet. A string or, synonymously, a word over ˙ is any finite
sequence of symbols from˙ . We omit all separating commas in strings; that is, for a
string a1; a2; : : : ; an, for some n � 1, we write a1a2 	 	 	 an instead. The empty string,
denoted by ", is the string that is formed by no symbols, i.e. the empty sequence.
By ˙�, we denote the set of all strings over˙ (including "). Set ˙C D ˙� � f"g.

Let x be a string over ˙ , i.e. x 2 ˙�, and express x as x D a1a2 	 	 	 an, where
ai 2 ˙ , for all i D 1 : : : , n, for some n � 0 (the case when n D 0 means that
x D "). The length of x, denoted by jxj, is defined as jxj D n. The reversal of x,
denoted by reversal.x/, is defined as reversal.x/ D anan�1 	 	 	 a1. The alphabet of x,
denoted by alph.x/, is defined as alph.x/ D fa1; a2; : : : ; ang; informally, it is the set
of symbols appearing in x. For U � ˙ , #U.x/ denotes the number of occurrences
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14 2 Formal Language Theory: Basics

of symbols from U in x. If U D fag, then instead of #fag.x/, we write just #a.x/.
The leftmost symbol of x, denoted by lms.x/, is defined as lms.x/ D a1 if n � 1

and lms.x/ D " otherwise. The rightmost symbol of x, denoted by rms.x/, is defined
analogously. If n � 1, then for every i D 1; : : : ; n, let sym.x; i/ denote the ith symbol
in x. Notice that j"j D 0, reversal."/ D ", and alph."/ D ;,

Let x and y be two strings over˙ . Then, xy is the concatenation of x and y. Note
that x" D "x D x. If x can be written in the form x D uv, for some u; v 2 ˙�, then
u is a prefix of x and v is a suffix of x. If 0 < juj < jxj, then u is a proper prefix of x;
similarly, if 0 < jvj < jxj, then v is a proper suffix of x. Define prefix.x/ D fu j u
is a prefix of xg and suffix.x/ D fv j v is a suffix of xg. For every i � 0, prefix.x; i/
is the prefix of x of length i if jxj � i, and prefix.x; i/ D x if jxj < i. If x D uvw,
for some u; v;w 2 ˙�, then v is a substring of x. The set of all substrings of x is
denoted by sub.x/. Moreover,

sub.y; k/ D
˚
x j x 2 sub.y/; jxj � k

�

Let n be a nonnegative integer. Then, the nth power of x, denoted by xn, is a string
over˙ recursively defined as

.1/ x0 D "

.2/ xn D xxn�1 for n � 1

Let x D a1a2 	 	 	 an be a string over ˙ , for some n � 0. The set of all permutations
of x, denoted by perm.x/, is defined as

perm.x/ D
˚
b1b2 	 	 	 bn j bi 2 alph.x/; for all i D 1; : : : ; n; and
.b1; b2; : : : ; bn/ is a permutation of .a1; a2; : : : ; an/

�

Note that perm."/ D ".
A language L over ˙ is any set of strings over ˙ , i.e. L � ˙�. The set ˙� is

called the universal language because it consists of all strings over˙ . If L is a finite
set, then it is a finite language; otherwise, it is an infinite language. The set of all
finite languages over ˙ is denoted by fin.˙/. For L 2 fin.˙/, max-len.L/ denotes
the length of the longest string in L. We set max-len.;/ D 0. If card.˙/ D 1, then
L is a unary language. The empty language is denoted by ;.

The alphabet of L, denoted by alph.L/, is defined as

alph.L/ D
[

x2L

alph.x/

The permutation of L, denoted by perm.L/, is defined as

perm.L/ D
˚

perm.x/ j x 2 L
�
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The reversal of L, denoted by reversal.L/, is defined as

reversal.L/ D
˚

reversal.x/ j x 2 L
�

For every L � ˙�, where f"g � L, and every x 2 ˙�, max-prefix.x;L/ denotes
the longest prefix of x that is in L; analogously, max-suffix.x;L/ denotes the longest
suffix of x that is in L.

Let L1 and L2 be two languages over ˙ . Throughout the book, we consider L1
and L2 to be equal, symbolically written as L1 D L2, if L1 [ f"g and L2 [ f"g are
identical. Similarly, L1 � L2 if L1 [ f"g is a subset of L2 [ f"g.

As all languages are sets, all common operations over sets can be applied to them.
Therefore,

L1 [ L2 D fx j x 2 L1 or x 2 L2g
L1 \ L2 D fx j x 2 L1 and x 2 L2g
L1 � L2 D fx j x 2 L1 and x … L2g

The complement of L, denoted by L, is defined as

L D
˚
x j x 2 ˙�; x … L

�

There are also some special operations which apply only to languages. The
concatenation of L1 and L2, denoted by L1L2, is the set

L1L2 D
˚
x1x2 j x1 2 L1 and x2 2 L2

�

Note that Lf"g D f"gL D L. For n � 0, the nth power of L, denoted by Ln, is
recursively defined as

.1/ L0 D f"g

.2/ Ln D Ln�1L

The closure (Kleene star) of a language L, denoted by L�, is the set

L� D
[

i�0

Li

The positive closure of a language L, denoted by LC, is the set

LC D
[

i�1

Li

The right quotient of L1 with respect to L2, denoted by L1=L2, is defined as

L1=L2 D
˚
y j yx 2 L1; for some x 2 L2

�
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Similarly, the left quotient of L1 with respect to L2, denoted by L2nL1, is defined as

L2nL1 D
˚
y j xy 2 L1; for some x 2 L2

�

We also use special types of the right and left quotients. The exhaustive right
quotient of L1 with respect to L2, denoted by L1 � L2, is defined as

L1 � L2 D
˚
y j yx 2 L1; for some x 2 L2; and no x0 2 L2
such that jx0j > jxj is a proper suffix of yx

�

Similarly, the exhaustive left quotient of L1 with respect to L2, denoted by L2 � L1,
is defined as

L2 � L1 D
˚
x j yx 2 L1; for some y 2 L2; and no y0 2 L2
such that jy0j > jyj is a proper prefix of yx

�

Let L2 D f$g�, where $ is a symbol. Then, L1 � L2 is the symbol-exhaustive right
quotient of L1 with respect to $, and L2 � L1 is the symbol-exhaustive left quotient
of L1 with respect to $.

Let ˙ be an alphabet. For x; y 2 ˙�, the shuffle of x and y, denoted
by shuffle.x; y/, is defined as

shuffle.x; y/ D
˚
x1y1x2y2 	 	 	 xnyn j x D x1x2 : : : xn; y D y1y2 	 	 	 yn;

xi; yi 2 ˙�; 1 � i � n; n � 1
�

We extend the shuffle operation on languages in the following way. For
K1;K2 � ˙�,

shuffle.K1;K2/ D
˚
z j z 2 shuffle.x; y/; x 2 K1; y 2 K2

�

Let ˙ and � be two alphabets. Let K and L be languages over alphabets ˙ and
� , respectively. A translation from K to L is a relation � from ˙� to � � with
domain.�/ D K and range.�/ D L. A total function � from ˙� to 2�

�

such that
�.uv/ D �.u/�.v/, for every u; v 2 ˙�, is a substitution. A substitution is "-free
if it is defined from ˙� to 2�

C

. If �.a/ for every a 2 ˙ is finite, then � is said to
be finite. By this definition, �."/ D f"g and �.a1a2 	 	 	 an/ D �.a1/�.a2/ 	 	 	�.an/,
where n � 1 and ai 2 ˙ , for all i D 1; 2; : : : ; n, so � is completely specified by
defining �.a/ for each a 2 ˙ . For L � ˙�, we extend the definition of � to

�.L/ D
[

w2L

�.w/

A total function ' from˙� to � � such that '.uv/ D '.u/'.v/, for every u; v 2 ˙�,
is a homomorphism or, synonymously, a morphism. As any homomorphism is a
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special case of finite substitution, we specify ' by analogy with the specification
of � . For L � ˙�, we extend the definition of ' to

'.L/ D
˚
'.w/ j w 2 L

�

By analogy with substitution, ' is "-free if '.a/ ¤ ", for every a 2 ˙ . By '�1, we
denote the inverse homomorphism, defined as

'�1.u/ D
˚
w j '.u/ D w

�

A homomorphism ! from ˙� represents an almost identity if there exists a
symbol # 2 ˙ such that !.a/ D a, for every a 2 ˙ � f#g, and !.#/ 2 f#; "g.
A homomorphism � from˙� to � � is a coding if �.a/ 2 � , for every a 2 ˙ .

Let L be a language over ˙ , and let k be a positive integer. A homomorphism 


over ˙� is a k-linear erasing with respect to L if and only if for each y 2 L, jyj �

kj
.y/j. Furthermore, if L � .˙f", c, c2, : : : , ckg/�, for some c … ˙ and k � 1,
and 
 is defined by 
.c/ D " and 
.a/ D a, for all a 2 ˙ , then we say that 
 is
k-restricted with respect to L. Clearly, each k-restricted homomorphism is a k-linear
erasing.

2.1.1 Language Families

By analogy with set theory, sets whose members are languages are called families
of languages. A family of languages L is "-free if for every L 2 L , " … L. The
family of finite languages is denoted by FIN.

Just like for languages, we consider two language families, L1 and L2, equal if
and only if

[

L2L1

L [ f"g D
[

K2L2

K [ f"g

If L1 and L2 are equal, we write L1 D L2. We also say that these two families
coincide. L1 is a subset of L2, written as L1 � L2, if and only if

[

L2L1

L [ f"g �
[

K2L2

K [ f"g

The closure of a language family under an operation is defined by analogy with the
definition of the closure of a set. Next, we define three closure properties, discussed
later in this book.
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Definition 2.1.1. A language family L is closed under linear erasing if and only
if for all L 2 L , 
.L/ is also in L , where 
 is a k-linear erasing with respect to L,
for some k � 1. ut

Definition 2.1.2. A language family L is closed under restricted homomorphism
if and only if for all L 2 L , 
.L/ is also in L , where 
 is a k-restricted
homomorphism with respect to L, for some k � 1. ut

Definition 2.1.3. Let L be a language family. We say that L is closed under
endmarking if and only if for every L 2 L , where L � ˙�, for some alphabet ˙ ,
# … ˙ implies that Lf#g 2 L . ut

2.2 Rewriting Systems as Basic Language Models

Just like finite sets, finite languages can be specified by listing all the strings they
contain. Of course, infinite languages, including almost all programming and natural
languages, cannot be specified by an exhaustive enumeration of the strings they
contain. Therefore, we customarily specify languages by suitable mathematical
models so the models are of finite size even if the languages being specified are
not. In the present section, based upon the mathematical notion of a relation, we
define rewriting systems for this purpose.

Definition 2.2.1. A rewriting system is a pair, M D .˙;R/, where˙ is an alphabet,
and R is a finite relation on ˙�. ˙ is called the total alphabet of M or, simply, the
alphabet of M. A member of R is called a rule of M, and accordingly, R is referred
to as the set of rules in M.

The rewriting relation over ˙� is denoted by `M and defined so that for every
u; v 2 ˙�, u `M v in M iff there exist .x; y/ 2 R and w; z 2 ˙� such that u D wxz
and v D wyz. As usual, `C

M and `�
M denote the transitive and transitive and reflexive

closure of `M , respectively. ut

Let M D .˙;R/ be a rewriting system. Each rule .x; y/ 2 R is written as x ! y
throughout this book. For x ! y 2 R, x and y represent the left-hand side of x ! y
and the right-hand side of x ! y, respectively. We drop M in `M and, thereby,
simplify `M to ` whenever M is automatically understood. By u ` v Œx ! y�,
where u; v 2 ˙� and x ! y 2 R, we express that M directly rewrites u as v
according to x ! y. Of course, whenever the information regarding the applied rule
is immaterial, we omit its specification; in other words, we simplify u ` v Œx ! y� to
u ` v. By underlining, we specify the substring rewritten during a rewriting step if
necessary. More formally, if u D wxz, v D wyz, x ! y 2 R, where u; v; x; y 2 ˙�,
then wxz ` wyz Œx ! y� means that the x occurring behind w is rewritten during this
step by using x ! y (we usually specify the rewritten occurrence of x in this way
when other occurrences of x appear in w and z).

To give a straightforward insight into the application of the defined notion, we
now give the following examples. As the principle subject of this section, we discuss
languages and their representations. It is thus only natural to illustrate our discussion
by linguistically oriented examples.
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Example 2.2.2. Let � denote the alphabet of English small letters (this alphabet
is used in all examples of this section). In the present example, we introduce a
rewriting system M that translates every digital string to the string in which every
digit is converted to its corresponding English name followed by #; for instance, 010
is translated to zero#one#zero#.

First, we define the finite function h from f0; 1; : : : ; 9g to �� as

h.0/ D zero;

h.1/ D one;

h.2/ D two;

h.3/ D three;

h.4/ D four;

h.5/ D five;

h.6/ D six;

h.7/ D seven;

h.8/ D eight;

h.9/ D nine

In words, h translates every member of f0; 1; : : : ; 9g to its corresponding English
name; for instance, h.9/ D nine. Based upon h, we define M D .˙;R/ with ˙ D

f0; 1; : : : ; 9g [ � [ f#g and R D fi ! h.i/# j i 2 f0; 1; : : : ; 9gg. Finally, we define
the function T.M/ from f0; 1; : : : ; 9g� to .� [ f#g/� as

T.M/ D f.s; t/ j s `� t; s 2 f0; 1; : : : ; 9g�; t 2 .� [ f#g/�g

For instance, T.M/ contains .911; nine#one#one#/. Indeed, M translates 911 to
nine#one#one# as follows

911 ` 9one#1 Œ1 ! one#�
9one#1 ` 9one#one# Œ1 ! one#�
9one#one# ` nine#one#one# Œ9 ! nine#�

Thus, 911 `� nine#one#one# Œ1 ! one#; 1 ! one#; 9 ! nine#�. Therefore,
.911; nine#one#one#/ 2 T.M/. Thus, M performs the desired translation. ut

Example 2.2.3. This example strongly resembles a very simple morphological
study—in linguistics, morphology studies the structure of words. Indeed, it dis-
cusses re-structuring strings consisting of English letters, including strings that does
not represent any English words, such as xxuy. More precisely, we introduce a
rewriting system M that

(1) starts from non-empty strings consisting of small English letters delimited by
angle brackets,
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(2) orders the letters lexicographically, and
(3) eliminates the angle brackets.

For instance, M changes hxxuyi to uxxy.
Let � have the same meaning as in Example 2.2.2—that is, � denotes the

alphabet of English lowercases. Let lex< denote the standardly defined lexical order
over�—that is,

a lex< b lex< c lex< : : : lex< y lex< z

We define M D .˙;R/ with ˙ D � [ fh; i; 1; 2; 3g and R containing the following
rules

(i) h ! 12, 12 ! 3

(ii) 2˛ ! ˛2 and ˛2 ! 2˛ for all ˛ 2 �

(iii) ˇ2˛ ! ˛2ˇ for all ˛; ˇ 2 � such that ˛ lex<ˇ

(iv) 3˛ˇ ! ˛3ˇ for all ˛; ˇ 2 � such that ˛ lex<ˇ or ˛ D ˇ

(v) 3˛i ! ˛ for all ˛ 2 �

Define the function T.M/ from .fh; ig [�/C to �C as

T.M/ D f.hsi; t/ j hsi `� t; where s; t 2 �Cg

Observe that .hsi; t/ 2 TM/ if and only if t is a permutation of s such that t has
its letters lexicographically ordered according to lex<. For instance, T.M/ contains
.horderi; deorr/. Indeed, M translates horderi to deorr as follows

horderi ` 12orderi Œh ! 12�

12orderi ` 1o2rderi Œ2o ! o2�
1o2rderi ` 1or2deri Œ2r ! r2�
1or2deri ` 1od2reri Œr2d ! d2r�
1od2reri ` 1odr2eri Œ2r ! r2�
1odr2eri ` 1ode2rri Œr2e ! e2r�
1ode2rri ` 1od2erri Œe2 ! 2e�
1od2erri ` 1o2derri Œd2 ! 2d�
1o2derri ` 1d2oerri Œo2d ! d2o�
1d2oerri ` 1do2erri Œ2o ! o2�
1do2erri ` 1de2orri Œo2e ! e2o�
1de2orri ` 1d2eorri Œe2 ! 2e�
1d2eorri ` 12deorri Œd2 ! 2d�
12deorri ` 3deorri Œ12 ! 3�

3deorri ` d3eorri Œ3de ! d3e�
d3eorri ` de3orri Œ3eo ! e3o�
de3orri ` deo3rri Œ3or ! o3r�
deo3rri ` deor3ri Œ3rr ! r3r�
deor3ri ` deorr Œ3ri ! r�
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Observe that M can translate horderi to deorr by a number of different sequences
of rewriting steps. In fact, it can translate infinitely many members of T.M/ in
various ways. In general, this phenomenon is referred to as non-determinism;
accordingly, rewriting systems working in this way are said to be non-deterministic.
In mathematics, we usually design the basic versions of rewriting systems so
they work non-deterministically. In terms of their implementation, however, we
obviously prefer using their deterministic versions. Therefore, we usually place a
restriction on the way the rules are applied so the rewriting systems restricted in this
way necessarily work deterministically; simultaneously, we obviously want that the
deterministic restricted versions perform the same job as their original unrestricted
counterparts. ut

In the rest of this section, we focus on its key subject, which consists in using
rewriting systems as language-defining models.

Whenever we use a rewriting system, M D .˙;R/, as a language-defining model,
then for brevity, we denote the language that M defines by L.M/. In principal, M
defines L.M/ so it either generates L.M/ or accepts L.M/. Next, we explain these
two fundamental language-defining methods in a greater detail. Let S 2 ˙� and
F 2 ˙� be a start language and a final language, respectively.

(1) The language generated by M is defined as the set of all strings y 2 F such that
x `� y in M for some x 2 S. M used in this way is generally referred to as a
language-generating model or, more briefly, a grammar.

(2) The language accepted by M is defined as the set of all strings x 2 S such that
x `� y in M for some y 2 F. M used in this way is referred to as a language-
accepting model or, more briefly, an automaton.

Example 2.2.4. Let� have the same meaning as in Examples 2.2.2 and 2.2.3—that
is, � denotes the alphabet of English lowercases. Let L be the language consisting
of all even-length palindromes over �—a palindrome is a string that is the same
whether written forwards or backward. For instance, aa and noon belong to L, but
ba and oops do not. The present example introduces a grammar and an automaton
that define L.

Let G D .˙;P/ be the rewriting system with ˙ D � [ f#g and

P D f# ! a#a j a 2 �g [ f# ! "g

Set S D f#g and F D ��. Define the language generated by G as

L.G/ D ft j s `� t; s 2 S; t 2 Fg

In other words,

L.G/ D ft j # `� t with t 2 ��g

Observe that G acts as a grammar that generates L. For instance,

# ` n#n ` no#on ` noon
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in G, so noon 2 L.G/.
To give an automaton that accepts L, introduce the rewriting system A D .˙;R/

with ˙ D � [ f#g and

R D fa#a ! # j a 2 �g

Set S D ��f#g�� and F D f#g. Define the language accepted by A as

L.A/ D fst j s#t `� u; where s; t 2 ��; u 2 Fg

That is,

L.A/ D fst j s#t `� #; where s; t 2 ��g

For instance, A accepts noon

no#on ` n#n ` #

(as stated in the comments following Definition 2.2.1, the underlined substrings
denote the substrings that are rewritten). On the other hand, consider this sequence
of rewriting steps

no#onn ` n#nn ` #n

It starts from no#onn, and after performing two steps, it ends up with #n, which
cannot be further rewritten. Since #n … F, which equals f#g, M does not accept
no#onn. As an exercise, based upon these observations, demonstrate that L D L.A/,
so A acts as an automaton that accepts L. ut

Before closing this section, we make use of Example 2.2.4 to explain and
illustrate the concept of equivalence and that of determinism in terms of rewriting
systems that define languages.

2.2.1 Equivalence

If some rewriting systems define the same language, they are said to be equivalent.
For instance, take G and A in Example 2.2.4. Both define the same language, so they
are equivalent.

2.2.2 Determinism

Recall that Example 2.2.3 has already touched the topic of determinism in terms
of rewriting systems. Notice that the language-defining rewriting system A from
Example 2.2.4 works deterministically in the sense that A rewrites any string from
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K by no more than one rule, where K D S, so K D ��f#g��. To express this
concept of determinism more generally, let M D .˙;R/ be a rewriting system and
K � ˙�. M is deterministic over K if for every w 2 K, there is no more than one
r 2 R such that w ` v Œr� with v 2 K. Mathematically, if M is deterministic over K,
then its rewriting relation ` represents a function over K—that is, for all u; v;w 2 K,
if u ` v and u ` w, then v D w. When K is understood, we usually just say that M
is deterministic; frequently, we take K D ˙�.

As already noted in Example 2.2.3, the basic versions of language-defining
rewriting systems are always introduced quite generally and, therefore, non-
deterministically. That is also why we first define the basic versions of these models
in a non-deterministic way throughout this book. In practice, however, we obviously
prefer their deterministic versions because they are easy to implement. Therefore,
we always study whether any non-deterministic version can be converted to an
equivalent deterministic version, and if so, we want to perform this conversion
algorithmically. More specifically, we reconsider this crucially important topic of
determinism in terms of finite automata in Sect. 2.4.

2.3 Grammars

In this section, based upon rewriting systems, we define grammars as formal devices
that generate languages. Grammars play an important role throughout this book.

2.3.1 Grammars in General

Since grammars represent special cases of rewriting systems (see Sect. 2.2), we
often use the mathematical terminology concerning these systems throughout the
present section. Specifically, we apply the relations `, `n, `C, and `� to these
grammars.

The notion of a grammar represents a rewriting system G D .˙;R/, where

• ˙ is divided into two disjoint subalphabets, denoted by N and T;
• R is a finite set of rules of the form A ! x, where A 2 N and x 2 ˙�.

N and T are referred to as the alphabet of nonterminal symbols and the alphabet
of terminal symbols, respectively. N contains a special start symbol, denoted by S.

If S `� w, where w 2 ˙�, G derives w, and w is a sentential form. F.G/
denotes the set of all sentential forms derived by G. The language generated by
G, symbolically denoted by L.G/, is defined as L.G/ D F.G/ \ T�. Members of
L.G/ are called sentences. If S `� w and w is a sentence, S `� w is a successful
derivation in G.

More customarily, however, the notion of a grammar or, more precisely that of a
phrase-structure grammar is defined as follows.
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Definition 2.3.1. A phrase-structure grammar is a quadruple

G D
�
V;T;P; S

�

where

• V is a total alphabet;
• T is an alphabet of terminals such that T � V;
• P is a finite relation from V� � T� to V�;
• S 2 V � T is the start symbol.

The set N D V � T is the set of nonterminals such that N \ T D ;.
Pairs .u; v/ 2 P are called rewriting rules (abbreviated rules) or productions, and

are written as u ! v. A rewriting rule u ! v 2 P satisfying v D " is called an
erasing rule. If there is no such rule in P, then we say that G is a propagating (or
"-free) grammar.

The G-based direct derivation relation over V� is denoted by )G and defined as

x )G y

if and only if x D x1ux2; y D y1vy2, and u ! v 2 P, where x1; x2; y1; y2 2 V�.
Since )G is a relation, )k

G is the kth power of )G, for k � 0, )C
G is the transitive

closure of )G, and )�
G is the reflexive-transitive closure of )G. Let DW S )�

G x
be a derivation, for some x 2 V�. Then, x is a sentential form. If x 2 T�, then x is a
sentence. If x is a sentence, then D is a successful (or terminal) derivation.

The language of G, denoted by L.G/, is the set of all sentences defined as

L.G/ D
˚
w 2 T� j S )�

G w
�

ut

Next, for every phrase-structure grammar G, we define two sets, F.G/ and�.G/.
F.G/ contains all sentential forms of G. �.G/ contains all sentential forms from
which there is a derivation of a string in L.G/.

Definition 2.3.2. Let G D .V , T, P, S/ be a phrase-structure grammar. Set

F.G/ D
˚
x 2 V� j S )C

G x
�

and

�.G/ D
˚
x 2 F.G/� j x )�

G y; y 2 T�
�

ut

For brevity, we often denote a rule u ! v with a unique label r as rW u ! v, and
instead of u ! v 2 P, we simply write r 2 P. The notion of rule labels is formalized
in the following definition.
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Definition 2.3.3. Let G D .V , T, P, S/ be a phrase-structure grammar. Let � be a
set of symbols called rule labels such that card.�/ D card.P/, and  be a bijection
from P to � . For simplicity and brevity, to express that  maps a rule, u ! v 2 P,
to r, where r 2 � , we write rW u ! v 2 P; in other words, rW u ! v means that
 .u ! v/ D r. For rW u ! v 2 P, u and v represent the left-hand side of r, denoted
by lhs.r/, and the right-hand side of r, denoted by rhs.r/, respectively. Let P� and
�� denote the set of all sequences of rules from P and the set of all sequences of
rule labels from � , respectively. Set PC D P� � f"g and �C D �� � f"g. As with
strings, we omit all separating commas in these sequences.

We extend  from P to P� in the following way

.1/  ."/ D "

.2/  .r1r2 	 	 	 rn/ D  .r1/ .r2/ 	 	 	 .rn/

for any sequence of rules r1r2 	 	 	 rn, where ri 2 P, for all i D 1; 2; : : : ; n, for some
n � 1.

Let w0;w1; : : : ;wn be a sequence of strings, where wi 2 V�, for all i D

0; 1; : : : ; n, for some n � 1. If wj�1 )G wj according to rj, where rj 2 P, for
all j D 1; 2; : : : ; n, then we write

w0 )n
G wn Œ .r1r2 	 	 	 rn/�

For any string w, we write

w )0
G w Œ"�

For any two strings w and y, if w )n
G y Œ�� for n � 0 and � 2 ��, then we write

w )�
G y Œ��

If n � 1, which means that j�j � 1, then we write

w )C
G y Œ��

If w D S, then � is called the sequence of rules (rule labels) used in the derivation
of y or, more briefly, the parse1 of y. ut

For any phrase-structure grammar G, we automatically assume that V , N, T, S,
P, and � denote its total alphabet, the alphabet of nonterminals, the alphabet of
terminals, the start symbol, the set of rules, and the set of rule labels, respectively.
Sometimes, we write G D .V , T, � , P, S/ instead of G D .V , T, P, S/ with �
having the above-defined meaning.

1Let us note that the notion of a parse represents a synonym of several other notions, including a
derivation word, a Szilard word, and a control word.
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In the literature, a phrase-structure grammar is also often defined with rules of
the form x ! y, where x 2 VC and y 2 V� (see, for instance, [Woo87]). Both
definitions are interchangeable in the sense that the grammars defined in these two
ways generate the same family of languages—the family of recursively enumerable
languages.

Definition 2.3.4. A recursively enumerable language is a language generated by
a phrase-structure grammar. The family of recursively enumerable languages is
denoted by RE. ut

Throughout this book, in the proofs, we frequently make use of Turing-Church
thesis (see [Chu36b, Chu36a, Tur36]), which we next state in terms of formal
language theory. Before this, however, we need to explain how we understand the
intuitive notion of an effective procedure or, briefly, a procedure, contained in this
thesis. We surely agree that each procedure describes how to perform a task in
an unambiguous and detailed way. We also agree that it consists of finitely many
instructions, each of which can be executed mechanically in a fixed amount of
time. When performed, a procedure reads input data, executes its instructions, and
produces output data; of course, both the input data and the output data may be
nil. We are now ready to state Turing-Church thesis in terms of RE—that is, the
family of recursively enumerable languages, defined by phrase-structure grammars
(see Definition 2.3.1).

Turing-Church Thesis. Let L be a language. Then, L 2 RE if and only if there is a
procedure that defines L by listing all its strings.

All the grammars and automata discussed in this book obviously constitutes
procedures in the above sense. Consequently, whenever grammars or automata
of a new type are considered in this book, Turing-Church thesis automatically
implies that the language family they define is necessarily contained in RE, and
we frequently make use of this implication in the sequel.

Observe that Turing-Church thesis is indeed a thesis, not a theorem because it
cannot be proved. Indeed, any proof of this kind would necessitate a formalization
of our intuitive notion of a language-defining procedure so it can be rigorously
compared with the notion of a phrase-structure grammar. At this point, however,
there would be a problem whether this newly formalized notion is equivalent to the
intuitive notion of a procedure, which would give rise to another thesis similar to
Turing-Church thesis. Therefore, any attempt to prove this thesis inescapably ends
up with an infinite regression. However, the evidence supporting Turing-Church
thesis is hardly disputable because throughout its history, computer science has
formalized the notion of a procedure in the intuitive sense by other language-
defining models, such as Post systems (see [Pos43]) and Markov algorithms
(see [Mar60]), and all of them have turned out to be equivalent with phrase-structure
grammars. Even more importantly, nobody has ever come with a procedure that
defines a language and demonstrated that the language cannot be generated by any
phrase-structure grammar.

Originally, Turing-Church thesis have been stated in terms of Turing machines
in [Tur36]. Indeed, Church and Turing hypothesized that any computational process
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which could be reasonably called as a procedure could be simulated by a Turing
machine (see [Rog87] for an in-depth discussion concerning to Turing-Church
thesis). In the present monograph, however, we do not need the notion of a Turing
machine while we frequently make use of the notion of a phrase-structure grammar.
Therefore, for the purposes of this book, we have reformulated Turing-Church thesis
in the above way. As phrase-structure grammars and Turing machines are equivalent
(see [Med00a]), this reformulation is obviously perfectly correct and legal from a
mathematical viewpoint.

Any language models that characterize RE are said to be computationally
complete because they are as strong as all possible procedures in terms of language-
defining power according to Turing-Church thesis. Apart from them, however, this
book also discusses many computationally incomplete language models, which
define proper subfamilies of RE. For instance, the following special versions of
phrase-structure grammars are all computationally incomplete.

Definition 2.3.5. A context-sensitive grammar is a phrase-structure grammar

G D
�
V;T;P; S

�

such that every u ! v in P is of the form

u D x1Ax2; v D x1yx2

where x1; x2 2 V�, A 2 N, and y 2 VC. A context-sensitive language is a language
generated by a context-sensitive grammar. The family of context-sensitive languages
is denoted by CS. ut

The family of context-sensitive languages is also characterized by monotone
phrase-structure grammars.

Definition 2.3.6. A monotone phrase-structure grammar is a phrase-structure
grammar

G D
�
V;T;P; S

�

such that u ! v 2 P satisfies juj � jvj. A monotone recursively enumerable
language is a language generated by a monotone phrase-structure grammar. The
family of monotone recursively enumerable languages is denoted by MON. ut

Definition 2.3.7. A context-free grammar is a phrase-structure grammar

G D
�
V;T;P; S

�

such that every rule in P is of the form

A ! x

where A 2 N and x 2 V�. A context-free language is a language generated by a
context-free grammar. The family of context-free languages is denoted by CF. ut
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Definition 2.3.8. A linear grammar is a phrase-structure grammar

G D
�
V;T;P; S

�

such that every rule in P is of the form

A ! xBy or A ! x

where A;B 2 N and x; y 2 T�. A linear language is a language generated by a linear
grammar. The family of linear languages is denoted by LIN. ut

Definition 2.3.9. A regular grammar is a phrase-structure grammar

G D
�
V;T;P; S

�

such that every rule in P is of the form

A ! aB or A ! a

where A;B 2 N and a 2 T. A regular language is a language generated by a regular
grammar. The family of regular languages is denoted by REG. ut

Alternatively, the family of regular languages is characterized by right-linear
grammars, defined next.

Definition 2.3.10. A right-linear grammar is a phrase-structure grammar

G D
�
V;T;P; S

�

such that every rule in P is of the form

A ! xB or A ! x

where A;B 2 N and x 2 T�. A right-linear language is a language generated by a
right-linear grammar. The family of right-linear languages is denoted by RLIN. ut

Definition 2.3.11. Define the following abbreviations. Let PSG, MONG, CSG,
CFG, LG, RLG, and RG, denote phrase-structure, monotone phrase-structure,
context-sensitive, context-free, linear, right-linear, and regular grammar, respec-
tively. Let X denotes a specific type of grammar. Then, X�" denotes its propagating
variant. Additionally, for a specific type of grammar Y, �Y denotes the set of all
grammars of type Y. ut

Definition 2.3.12. Let G D .V;T;P; S/ be a phrase-structure grammar. To explic-
itly specify that G use a derivation relation d) to generate L.G/, we write

L.G; d)/ D fx 2 T� j S d)� xg
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and say that L.G; d)/ is the language that G generates by using d). For any
X � �PSG, set

L .X; d)/ D fL.G; d)/ j G 2 Xg ut

Definition 2.3.13. Let G D .V;T;P; S/ be any grammar. Let w 2 T� and

˛W S D w0 ) w1 ) w2 ) 	 	 	 ) wn D w

be a derivation in G, for some n � 0. Then,

Ind.G;w; ˛/ D max.f#N.wi/ j 0 � i � ng/

Ind.G;w/ D min.fInd.G;w; ˛/ j ˛ is a derivation of w in Gg/

Ind.G/ D sup.fInd.G;w/ j w 2 L.G/g/

is index of derivation D of the string w in G, index of the string w in G, and index of
G, respectively. If there is a constant k � 1 such that Ind.G/ D k, G is said to be of
index k. ut

Set CFk D fL j L D L.G/;G is CFG; Ind.G/ D k; k � 1g and CFfin D fL j L 2

CFi, for some i � 1g. For further details concerning finite index of grammars, see
Chapter 3 in [DP89].

To illustrate the above-introduced notation, let G D .V;T;P; S/ be a RLG; then,
L.G; )/ D fx 2 T� j S )�xg, and L .�RLG; )/ D fL.G; )/ j G 2 �RLGg.
To give another example, L .�CFG; )/ denotes the family of all context-free
languages.

Notice that REG D RLIN D L .�RLG; )/ D L .�RG; )/, LIN D L .�LG;

)/, CF D L .�CFG; )/, CS D MON D L .�MONG; )/ D L .�CSG; )/, and
RE D L .�PSG; )/.

Concerning the families of finite, regular, right-linear, linear, context-free of
finite index, context-free, context-sensitive, monotone recursively enumerable, and
recursively enumerable languages, the next important theorem holds true.

Theorem 2.3.14 (Chomsky Hierarchy, see [Cho56, Cho59]).

FIN � REG D RLIN � LIN � CFfin � CF � CS D MON � RE

Next, we recall canonical derivations in context-free grammars.

Definition 2.3.15. Let G D .V , T, � , P, S/ be a context-free grammar. The relation
of a direct leftmost derivation, denoted by )lm G, is defined as follows: if u 2 T�,
v 2 V�, and rW A ! x 2 P, then

uAv )lm G uxv Œr�
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Let )n
lm G, )�

lm G, and )C
lm G denote the nth power of )lm G, for some n �

0, the reflexive-transitive closure of )lm G, and the transitive closure of )lm G,
respectively. The language that G generates by using leftmost derivations is denoted
by L.G; )lm / and defined as

L
�
G; )lm

�
D
˚
w 2 T� j S )�

lm G w
�

If S )�
lm G w Œ��, where w 2 T�, then � is the left parse of w. ut

By analogy with leftmost derivations and left parses, we define rightmost
derivations and right parses.

Definition 2.3.16. Let G D .V , T, � , P, S/ be a context-free grammar. The relation
of a direct rightmost derivation, denoted by )rm G, is defined as follows: if u 2 V�,
v 2 T�, and rW A ! x 2 P, then

uAv )rm G uxv Œr�

Let )n
rm G, )�

rm G, and )C
rm G denote the nth power of )rm G, for some n �

0, the reflexive-transitive closure of )rm G, and the transitive closure of )rm G,
respectively. The language that G generates by using rightmost derivations is
denoted by L.G; )rm G/ and defined as

L
�
G; )rm

�
D
˚
w 2 T� j S )�

rm G w
�

If S )�
rm G w Œ��, where w 2 T�, then � is the right parse of w. ut

Without any loss of generality, in context-free grammars, we may consider only
canonical derivations, which is formally stated in the following theorem.

Theorem 2.3.17 (See [Med00a]). Let G be a context-free grammar. Then,

L
�
G; )lm

�
D L

�
G; )rm

�
D L

�
G
�

The following theorem gives a characterization of the family of recursively
enumerable languages by context-free languages.

Theorem 2.3.18 (See [GGH67]). For every recursively enumerable language K,
there exist two context-free languages, L1 and L2, and a homomorphism h such that

K D h
�
L1 \ L2

�

The next theorem says that if a phrase-structure grammar generates each of its
sentences by a derivation satisfying a length-limited condition, then the generated
language is, in fact, context sensitive.
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Theorem 2.3.19 (Workspace Theorem, see [Sal73]). Let G D .V, T, P, S/ be
a phrase-structure grammar. If there is a positive integer k such that for every
nonempty y 2 L.G/, there exists a derivation

DW S )G x1 )G x2 )G 	 	 	 )G xn D y

where xi 2 V� and jxij � kjyj, for all i D 1; 2; : : : ; n, for some n � 1, then
L.G/ 2 CS.

2.3.2 How to Prove Context-Freeness

Formal language theory has always intensively struggled to establish conditions
under which phrase-structure grammars generate a proper subfamily of the family
of recursively enumerable languages because results like this often significantly
simplify proofs that some languages are members of the subfamily. To illustrate,
consider the well-known workspace theorem for phrase-structure grammars, which
fulfills a crucially important role in the grammatically oriented theory of formal
languages as a whole (see Theorem III.10.1 in [Sal73]). This theorem represents a
powerful tool to demonstrate that if a phrase-structure grammar H generates each
of its sentences by a derivation satisfying a prescribed condition (specifically, this
condition requires that there is a positive integer k such that H generates every
sentence y in the generated language L.H/ by a derivation in which every sentential
form x satisfies jxj � kjyj), then L.H/ is a member of the context-sensitive language
family. Regarding the membership in the context-free language family, however,
formal language theory lacks a result like this. To fill this gap, the present section
establishes a tree-based condition so every phrase-structure grammar satisfying this
condition generates a member of the context-free language family.

To give an insight into this result, we first sketch some terminology. Recall that a
phrase-structure grammar G is in Kuroda normal form (see Definition 3.1.1) if any
rule satisfies one of these forms

AB ! CD, A ! BC, A ! B, A ! a, or A ! "

where A, B, C, D are nonterminals, a is a terminal, and " is the empty string. We
define the notion of a derivation tree t graphically representing a derivation in G
by analogy with this notion in terms of an ordinary context-free grammar (see
Definition 6.8 on page 92 in [Med14]). In addition, however, we introduce context-
dependent pairs of nodes in t as follows. In t, two paths are neighboring if no other
path occurs between them. Let p and q be two neighboring paths in t. Let p contain
a node k with a single child l, where k and l are labelled with A and C, respectively,
and let q contain a node m with a single child n, where m and n are labelled with
B and D, respectively. Let this four-node portion of t; consisting of k, l, m, and n;
graphically represents an application of AB ! CD. Then, k and m are a context-
dependent pair of nodes (see Fig. 2.1).
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Fig. 2.1 Illustration of context dependency in t

As its main result, the present section proves that the language of G, L.G/, is
context-free if there is a constant k such that every w 2 L.G/ is the frontier of a
derivation tree d in which any pair of neighboring paths contains k or fewer context-
dependent pairs of nodes. Apart from its theoretical value, this result may be of some
interest in practice, too. Specifically, some language processors, such as compiler
parsers, frequently require that the languages processed by them are context-free.
As obvious, the result stated above may fulfill a useful role during the verification
of this requirement.

The section is organized as follows. First, we give all the necessary terminology.
Then, we establish the main result of this section. Finally, we close this section by
showing an application perspective of the main result.

Definitions and Examples

Definition 2.3.20. Let t D .V;E/ be a tree. Define a partial order relation < over
V as follows. For a path ˛ D .m0;m1; : : : ;mk/, where m0 D troot.t/, mi < mk,
0 � i � k � 1. An ordered tree is called labelled, if there exists a set of labels L
and a total mapping l W V ! L. In what follows we substitute a node of a tree by its
label if there is no risk of confusion.

Let t be an ordered tree with a node o. Let ˛ D .o;m1;m2; : : : ;mr/ and ˇ D

.o; n1; n2; : : : ; ns/ be two paths in t, for some r; s � 1, such that o is the parent of m1

and n1, where

(1) m1 is the direct left sibling of n1;
(2) mi is the rightmost child of mi�1, and nj is the leftmost child of nj�1, 2 � i � r,

2 � j � s.
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Fig. 2.2 Labelled ordered tree t

Then, ˛ and ˇ are two neighboring paths in t, ˛ is a left neighboring path to ˇ, and
ˇ is a right neighboring path to ˛. ut

Let us demonstrate the tree-related notions by the following example.

Example 2.3.21. The following graph (Fig. 2.2.) represents labelled ordered tree t.
The root node troot.t/ is labelled a. It has no parent and two children b and c.
Then, b is a sibling of c and c is a sibling of b. The leftmost child of b is d, while
the rightmost is f . The node d is a left sibling of f , however, it is not the direct
left sibling, which is e. The node f is the parent of k, but k has no child, so it
is a leaf node. horksmn D frontier.t/. Consider the node e. The nodes a and b
are predecessors of e, while i, j, o, p, and r are e’s descendants. The nodes c or
d are not in predecessor relation with e, since they are neither predecessors of e,
nor descendants of e. The sequence of nodes bejpr is a path in t. The path bfk is
neighboring to bejpr; unlike abfk, eio, or bdh. ut

Definition 2.3.22. Let G D .V , T, P, S/ be a phrase-structure grammar. G is in the
binary form if any p 2 P has one of these forms,

AB ! CD; A ! BC; A ! X

where A;B;C;D 2 N, X 2 V [ f"g. In what follows, unless explicitly stated
otherwise, we automatically assume that every PSG is in the binary form. ut

Theorem 2.3.23. A language L is context-sensitive iff L D L.G/, where G is a
monotone phrase-structure grammar in the binary form.

Proof. A language L is context-sensitive iff L is generated by monotone phrase-
structure grammar in Kuroda normal form (see Definition 3.1.1). Every monotone
PSG in Kuroda normal form is a special case of a monotone PSG in the binary
form. ut
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Theorem 2.3.24. A language L is recursively enumerable iff L D L.G/, where G is
a phrase-structure grammar in the binary form.

Proof. A language L is recursively enumerable iff L is generated by phrase-structure
grammar. Every PSG can be converted to the binary form (see Chapter 4 in
[RS97a]). ut

Definition 2.3.25. Let G D .V;T;P; S/ be a PSG in the binary form.

(1) For pW A ! x 2 P, Ahxi is the rule tree that represents p.
(2) The derivation trees representing derivations in G are defined recursively as

follows:

(a) One-node tree with a node labelled X is the derivation tree corresponding
to X )0 X in G, where X 2 V . If X D ", we refer to the node labeled X as
"-node ("-leaf ); otherwise, we call it non-"-node (non-"-leaf ).

(b) Let d be the derivation tree with frontier.d/ D uAv representing X )�

uAv Œ�� and let pW A ! x 2 P. The derivation tree that represents

X )� uAv Œ�� ) uxv Œp�

is obtained by replacing the ith non-"-leaf in d labelled A, with rule tree
corresponding to p, Ahxi, where i D juAj.

(c) Let d be the derivation tree representing X )� uABv Œ�� with
frontier.d/ D uABv, and let pW AB ! CD 2 P. The derivation tree
that represents

X )� uABv Œ�� ) uCDv Œp�

is obtained by replacing the ith and .iC1/th non-"-leaf in d labelled A and
B with AhCi and BhDi, respectively, where i D juAj.

(3) A derivation tree in G is any tree t for which there is a derivation represented
by t (see (2) in this definition).

Note, after replacement in (c), the nodes A and B are the parents of the new leaves
C and D, respectively, and we say that A and B are context-dependent, alternatively
speaking, we say that there is a context dependency between A and B. In a derivation
tree, two nodes are context-independent if they are not context-dependent.

Then, for any pW A ! x 2 P, G4.p/ denotes rule tree corresponding to p. For any
A )� x Œ�� in G, where A 2 N, x 2 V�, and � 2 P�, G4.A )� x Œ��/ denotes the
derivation tree corresponding to A )� x Œ��. Just like we often write A )� x instead
of A )� x Œ��, we sometimes simplify G4.A )� x Œ��/ to G4.A )� x/ in what
follows if there is no danger of confusion. Let GN denotes the set of all derivation
trees in G. Finally, by G4x 2 GN, we mean a derivation tree whose frontier is x,
where x 2 F.G/.

If a node is labelled with a terminal, it is called a terminal node. If a node is
labelled with a nonterminal, it is called a nonterminal node.



2.3 Grammars 35

Let ˛ D .o;m1;m2; : : : ;mr/ and ˇ D .o; n1; n2; : : : ; ns/ be two neighboring
paths, where r; s � 0, ˛ is the left neighboring path to ˇ, and mr and ns are terminal
nodes. Then, there is a t-tuple � D .g1; g2; : : : ; gt/ of nodes from ˛ and t-tuple ı D

.h1; h2; : : : ; ht/ of nodes from ˇ, where gp < gq, for 1 � p < q � t, t < min.r; s/,
and gi and hi are context-dependent, for 1 � i � t. Let � D p1p2 : : : pt be a string
of non-context-free rules corresponding to context dependencies between � and ı.
We call � the right context of ˛ and the left context of ˇ or the context of ˛ and
ˇ. Consider a node mi, where 1 � i � r, and two .t � k C 1/-tuples of nodes � D

.gk; gkC1; : : : ; gt/ and ' D .hk; hkC1; : : : ; ht/, where k is a minimal integer such that
mi < gk. Then, a string of non-context-free rules � D pkpkC1 : : : pt corresponding
to context dependencies between � and ' is called the right descendant context of
mi, for some 1 � k � t. Analogously, we define the notion of the left descendant
context of a node nj in ˇ, for some 1 � j � s. ut

Example 2.3.26. Let G D .V , T, P, S/ be a phrase-structure grammar, where V D

fS, Sa, Sb, X, Xa, Xb, Za, Zb, A, 1, 2, 3, Ax, a, a, B, Bx, b, bg, T D fa, bg, and P
contains the following rules:

(1) S ! SaBx

(2) S ! SbAx

(3) Sa ! ZaX
(4) Sb ! ZbX
(5) X ! XX
(6) X ! AB
(7) X ! BA
(8) X ! AXb

(9) X ! BXa

(10) Xa ! XA
(11) Xb ! XB
(12) ZaA ! AZa

(13) ZaB ! BZa

(14) ZbA ! AZb

(15) ZbB ! BZb

(16) Za ! A

(17) Zb ! B
(18) AB ! AxB
(19) BA ! BxA
(20) BAx ! BxAx

(21) AA ! a1
(22) 1A ! a2
(23) 2A ! a3
(24) 3Ax ! aa

(25) Ax ! a
(26) AAx ! aa
(27) 1Ax ! aa
(28) 2Ax ! aa
(29) BB ! bBx

(30) BxB ! bBx

(31) BxBx ! bb
(32) a ! a
(33) b ! b

At this point, let us make only an informal observation that L.G/ is the language
of all nonempty strings above T consisted of an equal number of as and bs, where
every sequence of as is of a length between 1 and 5 and every sequence of bs is
longer or equal 3. A rigorous proof comes later.

The string aabbba can be obtained by the following derivation:

S ) SbAx [(2)] ) ZbXAx [(4)]
) ZbAXbAx [(8)] ) ZbAXBAx [(11)]
) ZbAABBAx [(6)] ) AZbABBAx [(14)]
) AAZbBBAx [(14)] ) AABBBAx [(17)]
) AAxBBBAx [(18)] ) AAxBBBxAx [(20)]
) aaBBBxAx [(26)] ) aabBxBxAx [(29)]
) aabbbAx [(31)] ) aabbba [(25)]
) aabbba [(32)] ) aabbba [(32)]
) aabbba [(33)] ) aabbba [(33)]
) aabbba [(33)] ) aabbba [(32)]
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Fig. 2.3 G4aabbba

A graph representing G4.S )� aabbba/ is illustrated in Fig. 2.3.
Let us note that dashed lines, numbers, and double circle contour only denote

the context dependencies, applied non-context-free rules, and a specific node,
respectively, and are not the part of the derivation tree.

Pairs of context-dependent nodes are linked with dashed lines, all the other
nodes are context-independent. Since aabbba D frontier.G4aabbba/, all the leafs
are terminal nodes. Every other node is nonterminal node. For a pair of neighboring
paths ˛ D SbZbAaa and ˇ D SbXAZbAAxaa, a string � D 14 26 is their context, it
is the left context of ˇ and the right context of ˛. Consider the double circled node
A. Then, � D 26 is the left descendant context of A and ' D 14 18 is the right
descendant context of A. ut

Results

Theorem 2.3.27. A language L is context-free iff there is a constant k � 0 and a
phrase-structure grammar G such that L D L.G/ and for every x 2 L.G/, there is a
tree G4x 2 GN that satisfies:

(1) any two neighboring paths contain no more than k pairs of context-dependent
nodes;

(2) out of neighboring paths, every pair of nodes is context-independent.
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Proof. Construction. Consider any k � 0. Let G D .V;T;P; S/ be a PSG such that
L.G/ D L. Set N D V � T. Let Pcs � P denote the set of all non-context-free rules
of G. Set

N0 D fAljr j A 2 N; l; r 2 .Pcs [ f"g/kg

Construct a grammar G0 D .V 0;T;P0; S"j"/, where V 0 D N0 [ T. Set P0 D ;.
Construct P0 by performing (I) through (IV) given next.

(I) For all A ! B 2 P, A;B 2 N, and l; r 2 .Pcs [ f"g/k, add Aljr ! Bljr to P0;
(II) for all A ! a 2 P, A 2 N, a 2 .T [ f"g/, add A"j" ! a to P0;

(III) for all A ! BC 2 P, where A;B;C 2 N, and r; l; x 2 .Pcs [ f"g/k, add
Aljr ! BljxCxjr to P0;

(IV) for all pW AB ! CD 2 P, A;B;C;D 2 N, x; z 2 .Pcs [ f"g/k, and y 2 .Pcs [

f"g/k�1, add Axjpy ! Cxjy and Bpyjz ! Dyjz to P0.

Basic Idea. Notice nonterminal symbols. Since every pair of neighboring paths
of G contains a limited number of context-dependent nodes, all of its context-
dependencies are encoded in nonterminals. G0 nondeterministically decides about
all context-dependencies while introducing a new pair of neighboring paths by
rules (III). A new pair of neighboring paths is introduced with every application of

Aljr ! BljxCxjr

where x encodes a new descendant context. Context dependencies are realized later
by context-free rules (IV).

Since P0 contains no non-context-free rule, G0 is context-free. Next, we proof
L.G/ D L.G0/ by establishing Claims 2.3.28 through 2.3.30. Define the new
homomorphism � W V 0 ! V , �.Aljr/ D A, for Al;r 2 N0, and �.a/ D a otherwise.

Claim 2.3.28. If S )m w in G, where m � 0 and w 2 V�, then S"j" )� w0 in G0,
where w0 2 V 0� and �.w0/ D w.

Proof. We prove this by induction on m � 0.

Basis. Let m D 0. That is S )0 S in G. Clearly, S"j" )0 S"j" in G0, where �.S"j"/ D

S, so the basis holds.

Induction Hypothesis. Suppose that there exists n � 0 such that Claim 2.3.28 holds
for all 0 � m � n.

Induction Step. Let S )nC1 w in G. Then, S )n v ) w, where v 2 V�, and there
exists p 2 P such that v ) w Œp�. By the induction hypothesis, S"j" )� v0, where
�.v0/ D v, in G0. Next, we consider the following four forms of p.

(I) Let pW A ! B 2 P, for some A;B 2 N. Without any loss of generality, suppose
l and r are a left descendant context and a right descendant context of A. By the
construction of G0, there exists a rule p0W Aljr ! Bljr 2 P0. Then, there exists a
derivation v0 ) w0 Œp0� in G0, where �.w0/ D w.
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(II) Let pW A ! a 2 P, for some A 2 N and a 2 T [f"g. Since a is a terminal node,
it has empty descendant contexts. By the construction of G0, there exists a rule
p0W A"j" ! a 2 P0. Then, there exists a derivation v0 ) w0 Œp0� in G0, where
�.w0/ D w.

(III) Let pW A ! BC 2 P, for some A;B;C 2 N. Without any loss of generality,
suppose l and r are a left descendant context and a right descendant context
of A, and x 2 .Pcs [ f"g/k is a context of neighboring paths beginning at this
node. By the construction of G0, there exists a rule p0W Aljr ! BljxCxjr 2 P0.
Then, there exists a derivation v0 ) w0 Œp0� in G0, where �.w0/ D w.

(IV) Let pW AB ! CD 2 P, for some A;B;C;D 2 N. By the assumption stated in
Theorem 2.3.27, A and B occur in two neighboring paths denoted by ˛ and ˇ,
respectively. Without any loss of generality, suppose that a context of ˛ and ˇ
is a string c 2 .Pcs [ "/k, where c D pcf , and l is a left descendant context, r
is a right descendant context of A, B, respectively. By the construction of G0,
there exist two rules

p0
lW Aljpcf ! Cljcf ; p0

rW Bpcf jr ! Dcf jr 2 P0

Then, there exists a derivation v0 )2 w0 Œp0
lp

0
r� in G0, where �.w0/ D w.

Notice (IV). The preservation of the context is achieved by nonterminal symbols.
Since the stored context is reduced symbol by symbol from left to right direction in
both ˛ and ˇ, G0 simulates the applications of non-context-free rules of G.

We covered all possible forms of p, so the claim holds. ut

Claim 2.3.29. Every x 2 F.G0/ can be derived in G0 as follows.

S"j" D x0 )d1 x1 )d2 x2 )d3 	 	 	 )dh�1 xh�1 )dh xh D x

for some h � 0, where di 2 f1; 2g, 1 � i � h, so that

(1) if di D 1, then xi�1 D uAljrv, xi D uzv, xi�1 ) xi ŒAljr ! z�, where u; v 2 V 0�,
z 2 fBljr;CljxDxjr; ag, for some Aljr;Bljr;Cljx;Dxjr 2 N0, a 2 .T [ f"g/;

(2) if di D 2, then xi�1 D uAxjpyBpyjzv, xi D uCxjyDyjzv, and

uAxjpyBpyjzv ) uCxjyBpyjzv ŒAxjpy ! Cxjy� ) uCxjyDyjzv ŒBpyjz ! Dyjz�

for some u; v 2 V 0� and Axjpy;Bpyjz;Cxjy;Dyjz 2 N0.

Proof. Since G0 is context-free, without any loss of generality in every derivation of
G0 we can always reorder applied rules to satisfy Claim 2.3.29. ut

Claim 2.3.30. Let S"j" )d1 x1 )d2 	 	 	 )dm�1 xm�1 )dm xm in G0 be a derivation
that satisfies Claim 2.3.29, for some m � 0. Then, S )� w in G, where �.xm/ D w.

Proof. We prove this by induction on m � 0.

Basis. Let m D 0. That is S"j" )0 S"j" in G0. Clearly, S )0 S in G. Since �.S"j"/ D

S, the basis holds.
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Induction Hypothesis. Suppose that there exists n � 0 such that Claim 2.3.30 holds
for all 0 � m � n.

Induction Step. Let S"j" )d1 x1 )d2 	 	 	 )dn�1 xn�1 )dn xn )dnC1 xnC1 in G0

be a derivation that satisfies Claim 2.3.29. By the induction hypothesis, S )� v,
v 2 V�, where �.xn/ D v, in G. Divide the proof into two parts according to dnC1.

(A) Let dnC1 D 1. By the construction of G0, there exists a rule p0 2 P0 such that
xn )dnC1 xnC1 Œp0�. Next, we consider the following three forms of p0.

(A.I) Let p0W Aljr ! Bljr 2 P0, for some A;B 2 N and l; r 2 .Pcs [ f"g/k. By
the construction of G0, rule p0 was introduced by some rule pW A ! B 2

P. Then, there exists a derivation v ) w Œp�, where �.xnC1/ D w.
(A.II) Let p0W A"j" ! a 2 P0, for some A 2 N and a 2 T [ f"g. By the

construction of G0, rule p0 was introduced by some rule pW A ! a 2 P.
Then, there exists a derivation v ) w Œp�, where �.xnC1/ D w.

(A.III) Let p0W Aljr ! BljxCxjr 2 P0, for some A;B;C 2 N and l; r; x 2 .Pcs [

f"g/k. By the construction of G0, rule p0 was introduced by some rule
pW A ! BC 2 P. Then, there exists a derivation v ) w Œp�, where
�.xnC1/ D w.

(B) Let dnC1 D 2. Then, xn )dnC1 xnC1 is equivalent to

u1AxjpyBpyjzu2 ) u1CxjyBpyjzu2 Œp
0
1� ) u1CxjyDyjzu2 Œp

0
2�

where xn D u1AxjpyBpyjzu2, xnC1 D u1CxjyDyjzu2, and

p0
1W Axjpy ! Cxjy; p0

2W Bpyjz ! Dyjz 2 P0

for some u1; u2 2 V 0� and Axjpy, Bpyjz, Cxjy, Dyjz 2 N0. By the construction of
G0, rules p0

1 and p0
2 were introduced by some rule pW AB ! CD 2 P, Then, there

exists a derivation v ) w Œp�, where �.xnC1/ D w.

We covered all possibilities, so the claim holds. ut

By Claims 2.3.28 and 2.3.30, S )� w in G iff S"j" )� w0 in G0, where �.w0/ D

w. If S )� w in G and w 2 T�, then w 2 L.G/. Since �.w0/ D w0 D w, for w 2 T�,
w0 2 L.G0/. Therefore, L.G/ D L.G0/ and Theorem 2.3.27 holds. ut

Consider Theorem 2.3.27. Observe that the second condition is superfluous
whenever G is monotone. Since a grammar is in the binary form and no symbol
can be erased, all context dependencies are within pairs of neighboring paths.

Theorem 2.3.31. A language L is context-free iff there is a constant k � 0 and a
monotone phrase-structure grammar G such that L D L.G/ and for every x 2 L.G/,
there is a tree G4x 2 GN, where any two neighboring paths contain no more than k
pairs of context-dependent nodes.

Proof. Prove this by analogy with the proof of Theorem 2.3.27. ut
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Use

We close this section explaining how to apply the results achieved in the previous
section in order to demonstrate the contextfreeness of a language, L. As a rule, this
demonstration follows the next three-step proof scheme.

(1) Construct a phrase-structure grammar G in the binary form.
(2) Prove L.G/ D L.
(3) Prove that G satisfies conditions from Theorems 2.3.27 or 2.3.31, depending on

whether G is monotone.

Reconsider the grammar G from Example 2.3.26. Following the proof scheme
sketched above, we next prove that L.G/ 2 CF.

Consider G constructed in Example 2.3.26. Next, we show that for G,

L.G/ D fw 2 .A [ f"g/.BA/�.B [ f"g/ j #a.w/ D #b.w/;

A D fai j 1 � i � 5g;B D fbi j i � 3g; and jwj > 0g

Without any loss of generality, every terminal derivation of G can be divided into
the following 5 phases, where each rule may be used only in a specific phase:

(a) (1)–(4) (b) (5)–(11) (c) (12)–(17) (d) (18)–(31) (e) (32)–(33)

Next, we describe these phases in a greater detail.

(a) First, we generate one of the following two strings by rules (1) through (4).

ZaXBx;ZbXAx

Possibly applicable rule (25) may be postponed for phase (d) without affecting
the derivation, since rules in the previous phases cannot rewrite Ax.

(b) The rules (5) through (11) are the only with X, Xa, or Xb on their left-hand sides,
therefore we can group all their applications in a sequence to get a sentential
form from

fZa;ZbgfA;Bg�fAx;Bxg

(c) The rules (12) through (17) possibly shift Za or Zb to the right and rewrite it to
A or B, respectively. Since these rules are the only with Za, Zb on their left-hand
sides, they can be always prioritized before the rest of rules without any loss of
generality.

fA;Bg�fAx;Bxg

(d) All the remaining rules may be applied in this phase. However, we can exclude
rules (32) and (33), so we get a sentential form from

fa; bg�
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(e) Since rules (32) and (33) are context-free and produce terminal symbols, they
can be always postponed until the end of any successful derivation.

fa; bg� D T�

Let us add a few remarks concerning (a) through (e).
Phase (a) is very straightforward. Only notice that it is decided whether the

generated string finally ends with a or b and the paired symbol is stored in Za or
Zb for phase (c).

In phase (b) an arbitrary string of As and Bs is generated from the initial symbol
X. However, for every A, one B is generated and vice versa, so their numbers are
always kept equal.

In phase (a) the grammar decides about the last symbol and stores the paired one,
which, however, need not to be the first one. Therefore phase (c) determines its final
position, while possibly shifting it to the right and finally rewriting to A or B.

Phase (d) is the most tricky. It starts with a sentential form wc, where w 2

fA;Bg�, c 2 fAx;Bxg. Informally speaking, it consists of the sequences of As which
should be at most 5 symbols long, and Bs which should be at least 3 symbols
long. Rules (18) through (31) are designed to ensure these restrictions. To give an
example, suppose wc is as follows.

wc D AAAABBBBABBBAAx

First, by rules (18) through (20) the last symbol in every sequence is marked with
index x. Otherwise, rules (24) through (28) and rule (31) never become applicable
and all the unmarked sequences become permanent resulting into an unsuccessful
derivation. The last sequence is already marked.

AAAABBBBABBBAAx

) AAAAxBBBBABBBAAx [(18)]
) AAAAxBBBBAxBBBAAx [(18)]
) AAAAxBBBBxAxBBBAAx [(20)]
) AAAAxBBBBxAxBBBxAAx [(19)]

Notice, one symbol sequence of As is legal. Then, every sequence of As is processed
in left-to-right direction by rules (21) through (24), but can be successfully rewritten
earlier by rules (25) through (28), in the case it consists of less than 5 symbols. Thus,
a longer sequence leads to an unsuccessful derivation.

AAAAxBBBBxAxBBBxAAx

) a1AAxBBBBxAxBBBxAAx [(21)]
) aa2AxBBBBxAxBBBxAAx [(22)]
) aaaaBBBBxAxBBBxAAx [(27)]
) aaaaBBBBxaBBBxAAx [(25)]
) aaaaBBBBxaBBBxaa [(26)]
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If the processing does not start from the leftmost symbol in the current sequence,
it remains permanent. Every sequence of Bs is processed by applying rule (29), zero
or multiple times rule (30), and finally rule (31). It ensures the lengths of sequences
of Bs are at least 3 symbols.

aaaaBBBBxaBBBxaa
) aaaabBxBBxaBBBxaa [(29)]
) aaaabbBxBxaBBBxaa [(30)]
) aaaabbbbaBBBxaa [(31)]
) aaaabbbbabBxBxaa [(29)]
) aaaabbbbabbbaa [(31)]

Notice, it depends on the order of applied rules only within one sequence.
Multiple sequences may be processed at random without affecting the derivation.

In phase (e), a resulting terminal string is generated by rules (32) and (33).

aaaabbbbabbbaa )� aaaabbbbabbbaa

Therefore, if the derivation is terminating, we achieve a string with an equal
number of as and bs, where every sequence of as is at most 5 symbols long and
every sequence of bs is at least 3 symbols long.

Grammar G is obviously a monotone phrase-structure grammar in the binary
form. Let us now show that for any x 2 L.G/, there is G4x 2 GN, where any two
neighboring paths contain no more than 2 pairs of context-dependent nodes.

Every pair of context-dependent nodes in G4x corresponds to one non-context-
free rule in S )� x. Consider the six phases sketched above. Observe that
phases (a), (b), and (e) contain only context-free rules, so we have only to
investigate (c) and (d). On the other hand, (c) and (d) contain no rule of the form
A ! BC, thus the number of neighboring paths remains unchanged.

In (c) by rules (12) through (17) the derivation may proceed in left-to-right direc-
tion through the whole sentence form (except the rightmost symbol) introducing a
context dependency between every pair of neighboring paths.

In (d), first, the context dependency is introduced between all neighboring
paths representing the borders between the sequences of As and Bs by rules (18)
through (20). Second, every sequence of As or Bs is processed in the left-to-right
direction by non-context-free rules (21) through (31) introducing a context depen-
dency between all neighboring paths representing symbols inside the sequences of
As and Bs.

No other non-context-free rule is applied, therefore no other context-dependent
pair of nodes can occur. Then, every pair of neighboring paths may contain at most
one context-dependent pair of nodes introduced in phase (c) and one introduced in
phase (d).
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Since G is a monotone PSG in the binary form, where for every x 2 L.G/, there
is G4x 2 GN, where any two neighboring paths contain no more than 2 pairs of
context-dependent nodes, by Theorem 2.3.31, L.G/ 2 CF.

2.3.3 How to Disprove Context-Freeness

When examining complicated formal languages, we often need to demonstrate
that they are non-context-free and, therefore, beyond the power of context-free
grammars. The present section explains how to make a demonstration like this.

The Pumping Lemma for Context-Free Languages

The pumping lemma established in this section is frequently used to disprove that
a language K is context-free. The lemma says that for every L 2 CF, there is a
constant k � 1 such that every z 2 L with jzj � k can be expressed as z D uvwxy
with vx ¤ " so that L also contains uvmwxmy, for every m � 0. Consequently, to
demonstrate the non-context-freeness of a language, K, by contradiction, assume
that K 2 CF and k is its pumping-lemma constant. Select a string z 2 K with
jzj � k, consider all possible decompositions of z into uvwxy, and for each of
these decompositions, prove that uvmwxmy is out of K, for some m � 0, which
contradicts the pumping lemma. Thus, K … CF. Without any loss of generality,
we prove the pumping lemma based on CFGs satisfying Chomsky normal form
(see Definition 3.1.19). We also make use of some notions introduced earlier in
this chapter, such as the derivation tree �.A )� x/ corresponding to a derivation
A )� x in a CFG G, where A 2 N and x 2 T�. In addition, we use some related
graph-theory notions introduced in Sect. 1.3, such as depth.�.A )� x//, which
denotes the depth of �.A )� x/.

Lemma 2.3.32. Let G D .V;T;P; S/ be a CFG in Chomsky normal form. For every
derivation A )� x in G, where A 2 N and x 2 T�, its corresponding derivation
tree �.A )� x/ satisfies jxj � 2depth.�.A)�x//�1.

Proof. (by induction on depth.�.A )� x// � 1).

Basis. Let depth.�.A )� x// D 1, where A 2 N and x 2 T�. Because G is in
Chomsky normal form, A )� x ŒA ! x� in G, where x 2 T, so jxj D 1. For
depth.�.A )� x// D 1, 2depth.�.A)�x//�1 D 20. As 20 D 1, jxj � 2depth.�.A)�x//�1

in this case, so the basis holds true.

Induction Hypothesis. Suppose that this lemma holds for all derivation trees of depth
n or less, for some n � 0.

Induction Step. Let A )� x in G with depth.�.A )� x// D n C 1, where A 2 N
and x 2 T�. Let A )� x Œr�� in G, where r 2 P and � 2 P�. As G is in Chomsky
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normal form, r W A ! BC 2 P, where B;C 2 N. Let B )� u Œ'�, C )� v Œ��,
', � 2 P�, x D uv, � D '� so that A )� x can be expressed in greater detail
as A ) BC Œr� )� uC Œ'� )� uv Œ��. Observe that depth.�.B )� u Œ'�// �

depth.�.A )� x//� 1 D n, so juj � 2depth.�.B)�u//�1 by the induction hypothesis.
Analogously, as depth.�.C )� v Œ��// � depth.�.A )� x// � 1 D n, jvj �

2depth.�.C)�v//�1. Thus, jxj D juj C jvj � 2depth.�.B)�u//�1 C 2depth.�.C�v//�1 �

2n�1 C 2n�1 D 2n D 2depth.�.A)�x//�1. ut

Corollary 2.3.33. Let G D .V;T;P; S/ be a CFG in Chomsky normal form. For
every derivation A )� x in G, where A 2 N and x 2 T� with jxj � 2m for some
m � 0, its corresponding derivation tree�.A )� x/ satisfies depth.�.A )� x// �

m C 1.

Proof. This corollary follows from Lemma 2.3.32 and the contrapositive law. ut

Lemma 2.3.34. Pumping Lemma for CF. Let L be an infinite context-free lan-
guage. Then, there exists k � 1 such that every string z 2 L satisfying jzj � k
can be expressed as z D uvwxy, where 0 < jvxj < jvwxj � k, and uvmwxmy 2 L,
for all m � 0.

Proof. Let L 2 CF, and L D L.G/, where G D .V;T;P; S/ be a CFG in Chomsky
normal form. Let G have n nonterminals, for n � 1; in symbols, card.N/ D n.
Set k D 2n. Let z 2 L.G/ satisfying jzj � k. As z 2 L.G/, S )� z, and by
Corollary 2.3.33, depth.�.S )� z// � card.N/ C 1, so �.S )� z/ contains
some subtrees in which there is a path with two or more nodes labeled by the same
nonterminal. Express S )� z as S )� uAy )C uvAxy )C uvwxy with uvwxy D

z so that the derivation tree corresponding to A )C vAx )C vwx contains no
proper subtree with a path containing two or more different nodes labeled with the
same nonterminal. To prove that 0 < jvxj < jvwxj � k, recall that every rule in
P has on its right-hand side either a terminal or two nonterminals because G is in
Chomsky normal form. Thus, A )C vAx implies 0 < jvxj, and vAx )C vwx
implies jvxj < jvwxj. As the derivation tree corresponding to A )C vAx )C vwx
contains no subtree with a path containing two different nodes labeled with the same
nonterminal, depth.�.A )� vwx// � card.N/ C 1, so by Lemma 2.3.32, jvxj <

jvwxj � 2n D k. Finally, we demonstrate that for all m � 0, uvmwxmy 2 L. As
S )� uAy )C uvAxy )C uvwxy, S )� uAy )C uwy, so uv0wx0y D uwy 2 L.
Similarly, since S )� uAy )C uvAxy )C uvwxy, S )� uAy )C uvAxy )C

uvvAxxy )C 	 	 	 )C uvmAxmy )C uvmwxmy, so uvmwxmy 2 L, for all m � 1.
Thus, Lemma 2.3.34 holds true. ut

Applications of the Pumping Lemma

We usually use the pumping lemma in a proof by contradiction to demonstrate that
a given language L is not context-free. Typically, we make a proof of this kind in
the following way.
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(1) Assume that L is context-free.
(2) Select a string z 2 L whose length depends on the pumping-lemma constant k

so that jzj � k is necessarily true.
(3) For all possible decompositions of z into uvwxy satisfying the pumping-

lemma conditions, find m � 0 such that uvmwxmy … L, which contradicts
Lemma 2.3.34.

(4) The contradiction obtained in (3) means that the assumption in (1) is incorrect;
therefore, L is not context-free.

Example 2.3.35. Consider L D fanbncn j n � 1g. Next, under the guidance of the
recommended proof structure preceding this example, we demonstrate that L … CF.

(1) Assume that L 2 CF.
(2) In L, select z D akbkck with jzj D 3k � k, where k is the pumping-lemma

constant.
(3) By Lemma 2.3.34, z can be written as z D uvwxy so that this decomposition

satisfies the pumping-lemma conditions. As 0 < jvxj < jvwxj � k, either
vwx 2 fag�fbg� or vwx 2 fbg�fcg�. If vwx 2 fag�fbg�, uv0wx0y has k cs but
fewer than k as or bs, so uv0wx0y … L, but by the pumping-lemma, uv0wx0y 2

L. If vwx 2 fbg�fcg�, uv0wx0y has k as but fewer than k bs or cs, so uv0wx0y …

L, but by the pumping lemma, uv0wx0y 2 L. In either case, we obtain the
contradiction that uv0wx0y … L and, simultaneously, uv0wx0y 2 L.

(4) By the contradiction obtained in (3), L … CF. ut

Omitting some obvious details, we usually proceed in a briefer way than above
when proving the non-context-freeness of a language by using Lemma 2.3.34.

Example 2.3.36. Let L D fanbmanbm j n;m � 1g. Assume that L is context-free.
Set z D akbkakbk with jakbkakbkj D 4k � k. By Lemma 2.3.34, express z D uvwxy.
Observe that 0 < jvxj < jvwxj � k implies uwy … L in all possible occurrences
of vwx in akbkakbk; however, by Lemma 2.3.34, uwy 2 L—a contradiction. Thus,
L … CF. ut

Even some seemingly trivial unary languages are not context-free as shown next.

Example 2.3.37. Consider L D fan2 j for some n � 0g. To demonstrate L … CF,
assume that L 2 CF and select z D ak2 2 L where k is the pumping-lemma constant.
As a result, jzj D k2 � k, so z D uvwxy, which satisfies the pumping-lemma
conditions. As k2 < juv2wx2yj � k2 C k < k2 C 2k C 1 D .k C 1/2, we have
uv2wx2y … L, but by Lemma 2.3.34, uv2wx2y 2 L—a contradiction. Thus, L … CF.

ut

2.3.4 Parallel Grammars

Parallel grammars represent modified versions of context-free grammars that
rewrite their strings in parallel. Most often, this book represents a grammatical
parallelism like this by Extended tabled zero-sided Lindenmayer grammars or,
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more briefly, ET0L grammars and their special cases, such as E0L grammars
(see [PHHM96b, PL90a, RS80, RS86]). Originally, these grammars were introduced
in connection with a theory proposed for the development of filamentous organisms.
Developmental stages of cellular arrays are described by strings with each symbol
being a cell. Rules correspond to developmental instructions with which organisms
can be produced. They are applied simultaneously to all cell-representing symbols
because in a growing organism development proceeds simultaneously everywhere.
That is, all symbols, including terminals, are always rewritten to adequately reflect
the development of real organisms that contain no dead cells which would remain
permanently fixed in their place in the organism; disappearing cells are represented
by ". Instead of a single set of rules, ET0L grammars have a finite set of sets
containing rules. Each of them contains rules that describe developmental instruc-
tions corresponding to a specific biological circumstances, such as environmental
conditions concerning temperature or coexistence of other organisms. Naturally,
during a single derivation step, rules from only one of these sets can be applied
to the rewritten string.

Considering these biologically motivated features of ET0L grammars, we see
the following three main conceptual differences between them and the previously
discussed sequential grammars, such as context-free grammars (see Sect. 2.3).

(I) Instead of a single set of rules, they have finitely many sets of rules.
(II) The left-hand side of a rule may be formed by any grammatical symbol,

including a terminal.
(III) All symbols of a string are simultaneously rewritten during a single derivation

step.

Definition 2.3.38. An ET0L grammar is a .t C 3/-tuple

G D
�
V;T;P1; : : : ;Pt;w

�

where t � 1, and V , T, and w are the total alphabet, the terminal alphabet (T � V),
and the start string (w 2 VC), respectively. Each Pi is a finite set of rules of the
form

a ! x

where a 2 V and x 2 V�. If a ! x 2 Pi implies that x ¤ " for all i D 1; : : : ; t, then
G is said to be propagating (an EPT0L grammar for short).

Let u; v 2 V�, u D a1a2 	 	 	 aq, v D v1v2 	 	 	vq, q D juj, aj 2 V , vj 2 V�,
and p1; p2; : : : ; pq is a sequence of rules of the form pj D aj ! vj 2 Pi for all
j D 1; : : : ; q, for some i 2 f1; : : : ; tg. Then, u directly derives v according to the
rules p1 through pq, denoted by

u )G v Œp1; p2; : : : ; pq�
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If p1 through pq are immaterial, we write just u )G v. In the standard manner, we
define the relations )n

G (n � 0), )�
G, and )C

G .
The language of G, denoted by L.G/, is defined as

L.G/ D
˚
y 2 T� j w )�

G y
�

ut

The families of languages generated by ET0L and EPT0L grammars are denoted
by ET0L and EPT0L, respectively.

Definition 2.3.39. Let G D .V;T;P1; : : : ;Pt;w/ be an ET0L grammar, for some
t � 1. If t D 1, then G is called an E0L grammar. ut

The families of languages generated by E0L and propagating E0L grammars
(EP0L grammars for short) are denoted by E0L and EP0L, respectively.

Definition 2.3.40. An 0L grammar is defined by analogy with an E0L grammar
except that V D T. ut

For simplicity, we specify an 0L grammar as a triple G D .T, P, S/ rather than
a quadruple G D .T, T, P, S/. By 0L, we denote the family of languages generated
by 0L grammars.

Theorem 2.3.41 (See [RS80]).

CF � E0L D EP0L � ET0L D EPT0L � CS

ET0L grammars work in a totally parallel way because they simultaneously
rewrite all symbols of the current sentential form during every single derivation
step. Apart from them, however, there also exist semi-parallel grammars, which
simultaneously change only selected symbols in the rewritten strings while keeping
their rest unchanged. We close this section by defining one of them, namely, queue
grammars. However, let us point out that we study several other semi-parallel
grammatical mechanisms later in this book (see Sect. 4.1 and Chap. 12).

Queue Grammars

Queue grammars (see [KR83]) always rewrite the first and the last symbol in the
strings in parallel; all the other symbols in between them remain unchanged. That
is, as their name indicates, queue grammars rewrite strings in a way that resemble
the standard way of working with an abstract data type referred to as a queue.
Indeed, these grammars work on strings based upon the well-known first-in-first-
out principle—that is, the first symbol added to the string will be the first one to
be removed. More specifically, during every derivation step, these grammars attach
a string as a suffix to the current sentential form while eliminating the leftmost
symbol of this form; as a result, all symbols that were attached prior to this step
have to be removed before the newly attached suffix is removed. Next, we define
these grammars rigorously.
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Definition 2.3.42. A queue grammar is a sixtuple

Q D
�
V;T;W;F;R; g

�

where V and W are two alphabets satisfying V \ W D ;, T � V , F � W, g 2

.V � T/.W � F/, and

R � V � .W � F/ � V� � W

is a finite relation such that for each a 2 V , there exists an element .a; b; x; c/ 2 R.
If u D arb, v D rxc, and .a; b; x; c/ 2 R, r; x 2 V�, where a 2 V and b; c 2 W, then
Q makes a derivation step from u to v according to .a; b; x; c/, symbolically written
as

u )Q v Œ.a; b; x; c/�

or, simply, u )Q v. We define )n
Q (n � 0), )C

Q , and )�
Q in the standard way. The

language of Q, denoted by L.Q/, is defined as

L.Q/ D
˚
x 2 T� j g )�

Q xf ; f 2 F
�

ut

As an example, consider a queue grammar G D .V;T;W;F; s;P/, where V D

fS;A; a; bg, T D fa; bg, W D fQ; f g, F D ff g, s D SQ and P D fp1; p2g, p1 D

.S;Q;Aaa;Q/ and p2 D .A;Q; bb; f /. Then, there exists a derivation

s D SQ ) AaaQŒp1� ) aabbf Œp2�

in this queue grammar, which generates aabb.

Theorem 2.3.43 (See [KR83]). For every recursively enumerable language K,
there is a queue grammar Q such that L.Q/ D K.

Next, we slightly modify the definition of a queue grammar.

Definition 2.3.44 (See [Med04, KM00, Med03c]). A left-extended queue gram-
mar is a sixtuple

Q D
�
V;T;W;F;R; g

�

where V , T, W, F, R, g have the same meaning as in a queue grammar; in addition,
assume that # 62 V [ W. If u; v 2 V�f#gV�W so u D w#arb, v D wa#rzc, a 2 V ,
r; z;w 2 V�, b; c 2 W, and .a; b; z; c/ 2 R, then

u )Q v Œ.a; b; z; c/�
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or, simply, u )Q v. In the standard manner, extend )Q to )n
Q, where n � 0. Based

on )n
Q, define )C

Q and )�
Q. The language of Q, denoted by L.Q/, is defined as

L.Q/ D
˚
v 2 T� j #g )�

Q w#vf for some w 2 V� and f 2 F
�

ut

Less formally, during every step of a derivation, a left-extended queue grammar
shifts the rewritten symbol over #; in this way, it records the derivation history,
which represents a property fulfilling a crucial role in several proofs later in this
book.

For example, consider a left-extended queue grammar, which has the same
components as the previously mentioned queue grammar G. Then, there exists a
derivation

#s D #SQ ) S#AaaQŒp1� ) SA#aabbf Œp2�

in this left-extended queue grammar, which generates aabb. Moreover, this type of
queue grammar saves symbols from the first components of rules which were used
in the derivation.

Theorem 2.3.45. For every queue grammar Q, there is an equivalent left-extended
queue grammar Q0 such that L.Q0/ D L.Q/.

The proof is trivial and left to the reader.

Theorem 2.3.46. For every recursively enumerable language K, there is a left-
extended queue grammar Q such that L.Q/ D K.

Proof. Follows from Theorems 2.3.43 and 2.3.45.

2.4 Automata

In this section, based upon rewriting systems, we define automata as fundamental
formal devices that accept strings of a given language (see [Med00a]). Specifically,
we give the definitions of finite and pushdown automata, which accept the families
of regular and context-free languages, respectively. As they are special cases
of rewriting systems, introduced in Sect. 2.2, we straightforwardly apply the
mathematical terminology concerning rewriting systems to finite automata. Perhaps
most significantly, we apply relations `, `n, `C, and `� to them.

A finite automaton can be viewed as a rewriting system M D .�;R/, where

• the total alphabet� contains subsets Q, F, and˙ such that� D Q[˙ , F � Q,
and Q \˙ D ;;

• R is a finite set of rules of the form qa ! p, where q; p 2 Q and a 2 ˙ [ f"g.

More commonly, however, the notion of a finite automaton is specified as
follows.
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Definition 2.4.1. A general finite automaton is a quintuple

M D
�
Q; ˙;R; s;F

�

where

• Q is a finite set of states;
• ˙ is an input alphabet;
• R � Q �˙� � Q is a finite relation, called the set of rules (or transitions);
• s 2 Q is the start state;
• F � Q is the set of final states.

Instead of .p; y; q/ 2 R, we write py ! q 2 R. If py ! q 2 R implies that y ¤ ",
then M is said to be "-free.

A configuration of M is any string from Q˙�. The relation of a move,
symbolically denoted by `M , is defined over Q˙� as follows:

pyx `M qx

if and only if pyx, qx 2 Q˙� and py ! q 2 R.
Let `n

M , `�
M , and `C

M denote the nth power of `M , for some n � 0, the reflexive-
transitive closure of `M , and the transitive closure of `M , respectively. The language
of M is denoted by L.M/ and defined as

L.M/ D
˚
w 2 ˙� j sw `�

M f ; f 2 F
�

ut

Next, we define three special variants of general finite automata.

Definition 2.4.2. Let M D .Q, ˙ , R, s, F/ be a general finite automaton. M is a
finite automaton if and only if py ! q 2 R implies that jyj � 1. M is said to be
deterministic if and only if py ! q 2 R implies that jyj D 1 and py ! q1; py !

q2 2 R implies that q1 D q2, for all p; q; q1; q2 2 Q and y 2 ˙�. M is said to
be complete if and only if M is deterministic and for all p 2 Q and all a 2 ˙ ,
pa ! q 2 R for some q 2 Q. ut

To make several definitions and proofs concerning finite automata more concise,
we sometimes denote a rule pa ! q with a unique label r as rW pa ! q. This notion
of rule labels is formalized in the following definition.

Definition 2.4.3. Let M D .Q, ˙ , R, s, F/ be a finite automaton. Let � be an
alphabet of rule labels such that card.�/ D card.R/, and  be a bijection from R
to � . For simplicity, to express that  maps a rule, pa ! q 2 R, to r, where r 2 � ,
we write rW pa ! q 2 R; in other words, rW pa ! q means  .pa ! q/ D r.

For every y 2 ˙� and rW pa ! q 2 R, M makes a move from configuration pay
to configuration qy according to r, written as

pay `M qy Œr�



2.4 Automata 51

Let � be any configuration of M. M makes zero moves from � to � according to ",
symbolically written as

� `0M � Œ"�

Let there exist a sequence of configurations �0; �1; : : : ; �n for some n � 1 such that
�i�1 `M �i Œri�, where ri 2 � , for i D 1; : : : ; n, then M makes n moves from �0
to �n according to r1 	 	 	 rn, symbolically written as

�0 `n
M �n Œr1 	 	 	 rn�

Define `�
M and `C

M in the standard manner. ut

Sometimes, we specify a finite automaton as M D .Q, ˙ , � , R, s, F/, where Q,
˙ , � , R, s, and F are the set of states, the input alphabet, the alphabet of rule labels,
the set of rules, the start state, and the set of final states, respectively.

Theorem 2.4.4 (See [Woo87]). For every general finite automaton M, there is a
complete finite automaton M0 such that L.M0/ D L.M/.

Finite automata accept precisely the family of regular languages:

Theorem 2.4.5 (See [Woo87]). A language K is regular if and only if there is a
complete finite automaton M such that K D L.M/.

Pushdown automata represent finite automata extended by a potentially
unbounded pushdown store. We first define their general version, customarily
referred to as extended pushdown automata.

Definition 2.4.6. An extended pushdown automaton is a septuple

M D
�
Q; ˙; �;R; s; S;F

�

where

• Q, ˙ , s, and F are defined as in a finite automaton;
• � is a pushdown alphabet;
• R � � � � Q � .˙ [ f"g/ � � � � Q is a finite relation, called the set of rules

(or transitions);
• S is the initial pushdown symbol.

Q and .˙ [ � / are always assumed to be disjoint. By analogy with finite
automata, instead of .�; p; a;w; q/ 2 R, we write �pa ! wq.

A configuration of M is any string from � �Q˙�. The relation of a move,
symbolically denoted by `M , is defined over � �Q˙� as follows:

x�pay `M xwqy

if and only if x�pay, xwqy 2 � �Q˙� and �pa ! wq 2 R.
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Let `k
M , `�

M, and `C
M denote the kth power of `M, for some k � 0, the reflexive-

transitive closure of `M , and the transitive closure of `M , respectively. ut

For an extended pushdown automaton, there exist three ways of language
acceptance: (1) by entering a final state, (2) by emptying its pushdown, and (3) by
entering a final state and emptying its pushdown. All of them are defined next.

Definition 2.4.7. Let M D .Q, ˙ , � , R, s, S, F/ be an extended pushdown
automaton. The language accepted by M by final state is denoted by Lf .M/ and
defined as

Lf .M/ D
˚
w 2 ˙� j Ssw `�

M � f ; f 2 F; � 2 � �
�

The language accepted by M by empty pushdown is denoted by Le.M/ and defined
as

Le.M/ D
˚
w 2 ˙� j Ssw `�

M q; q 2 Q
�

The language accepted by M by empty pushdown and final state, denoted by Lef .M/,
is defined as

Lef .M/ D
˚
w 2 ˙� j Ssw `�

M f ; f 2 F
�

ut

Let EPDAf , EPDAe, and EPDAef denote the language families accepted by
extended pushdown automata accepting by final state, by empty pushdown, and by
final state and empty pushdown, respectively.

All of the three ways of acceptance are equivalent:

Theorem 2.4.8 (See [Med00a]). EPDAf D EPDAe D EPDAef

If an extended pushdown automaton rewrites a single symbol on its pushdown
top during every move, we obtain a pushdown automaton, defined next.

Definition 2.4.9. Let M D .Q, ˙ , � , R, s, S, F/ be an extended pushdown
automaton. Then, M is a pushdown automaton if and only if �pa ! wq 2 R implies
that j� j D 1. ut

To make definitions and proofs concerning pushdown automata more readable,
we sometimes denote a rule Apa ! wq with a unique label r as rW Apa ! wq, which
is formalized in the following definition.

Definition 2.4.10. Let M D .Q, ˙ , � , R, s, S, F/ be a pushdown automaton. Let
� be an alphabet of rule labels such that card.�/ D card.R/, and  be a bijection
from R to � . For simplicity, to express that  maps a rule, Apa ! wq 2 R, to r,
where r 2 � , we write rW Apa ! wq 2 R; in other words, rW Apa ! wq means
 .Apa ! wq/ D r.
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For every x 2 � �, y 2 ˙�, and rW Apa ! wq 2 R, M makes a move from
configuration xApay to configuration xwqy according to r, written as

xApay `M xwqy Œr�

Let � be any configuration of M. M makes zero moves from � to � according to ",
symbolically written as

� `0M � Œ"�

Let there exist a sequence of configurations �0; �1; : : : ; �n for some n � 1 such that
�i�1 `M �i Œri�, where ri 2 � , for i D 1; : : : ; n, then M makes n moves from �0
to �n according to r1 	 	 	 rn, symbolically written as

�0 `n
M �n Œr1 	 	 	 rn�

Define `�
M and `C

M in the standard manner. ut

Let PDAf , PDAe, and PDAef denote the language families accepted by pushdown
automata accepting by final state, by empty pushdown, and by final state and empty
pushdown, respectively.

Theorem 2.4.11 (See [Med00a]). PDAf D PDAe D PDAef

As the next theorem states, pushdown automata characterize the family of
context-free languages.

Theorem 2.4.12 (See [Med00a]).

CF D EPDAf D EPDAe D EPDAef D PDAf D PDAe D PDAef

Finally, we define deterministic versions of PDAs.

Definition 2.4.13. Let M D .Q, ˙ , � , R, s, S, F/ be a pushdown automaton. M is
a deterministic pushdown automaton if

(1) for any q 2 Q, a 2 ˙ [f"g, x 2 � , the set f.q; a; x/ j .q; a; x/ 2 Rg, has at most
one element and

(2) if f.q; "; x/ j .q; "; x/ 2 Rg ¤ ;, then f.q; a; x/ j .q; a; x/ 2 R; a 2 ˙g D ; for
every q and a. ut

Let DPDA denote the family of languages accepted by deterministic pushdown
automata. Unlike finite automata, determinism in the case of pushdown automata
decrease the acceptance power.

Theorem 2.4.14 (See [Med00a]).

REG � DPDA � CF



Part II
Modern Grammars

This part, consisting of Chaps. 3 through 6, presents an overview of major
modern types of grammars together with the corresponding computational modes
formalized by them. Chapter 3 covers the most important grammars for regulated
computation. In essence, these grammars regulate their language generation by
additional mechanisms, based upon simple mathematical concepts, such as finite
sets of symbols. Chapter 4 discusses grammatical models for computation in
parallel. Accordingly, these grammars generate their languages in parallel and,
thereby, accelerate the generation process enormously just like computation in
parallel is usually much faster than that made in an ordinary sequential way.
First, the chapter studies partially parallel generation of languages, after which
it investigates the totally parallel generation of languages. Chapter 5 explores
grammars that work on their words in a discontinuous way, thus reflecting and
formalizing a discontinuous way of computation. Chapter 6 approaches grammatical
models for languages and computation from an algebraic standpoint. In particular,
it examines grammatical generation of languages defined over free groups.



Chapter 3
Regulated Grammars and Computation

In practice, computation is almost always regulated by some additional conditions
and restrictions placed upon the way it is performed under given circumstances.
To investigate computation regulated in this way as precisely as possible, language
theory has formalized it by a variety of regulated grammars. In essence, all these
grammars are based upon some restrictions placed upon their derivations and,
thereby, properly express computational regulation. This chapter covers major types
of these grammars.

More precisely, the present chapter, consisting of four sections, classifies regu-
lated grammars into two categories—context-based regulated grammars (Sect. 3.1)
and rule-based regulated grammars (Sects. 3.2 through 3.5).

Section 3.1 gives an extensive and thorough coverage of regulated grammars
that generate languages under various context-related restrictions. First, it views
classical grammars as context-based regulated grammars. Then, it studies context-
conditional grammars and their variants, including random context grammars,
generalized forbidding grammars, semi-conditional grammars, and simple semi-
conditional grammars. They all have their rules enriched by permitting and forbid-
ding strings, referred to as permitting and forbidding conditions, respectively. These
grammars regulate the language generation process so they require the presence of
permitting conditions and, simultaneously, the absence of forbidding conditions in
the rewritten sentential forms.

Sections 3.2 through 3.5 study grammatical regulation underlain by restrictions
placed on the use of rules. Three types of grammars regulated in this way are
covered namely, state grammars (Sect. 3.2), grammars with control languages
(Sect. 3.3), matrix grammars (Sect. 3.4), and programmed grammars (Sect. 3.5).
State grammars regulate the use of rules by states in a way that strongly resembles
the finite-state control of finite automata. Grammars with control languages regulate
the use of rules by regular languages. Matrix grammars represent special cases of
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regular-controlled grammars whose control languages have the form of the iteration
of finite languages. Finally, the regulation of programmed grammars is based upon
binary relations over the sets of rules.

3.1 Context-Based Grammatical Regulation

The present section discusses context-regulated grammars, which regulate their
derivations by placing context-related restrictions upon their rewritten sentential
forms. It consists of six subsections. Section 3.1.1 demonstrates that classical
grammars can be viewed as grammars regulated in this way. It concentrates its
attention on their normal forms and uniform rewriting in them. Section 3.1.2
introduces general versions of context-conditional grammars and establishes fun-
damental results about them. Then, the rest of Sect. 3.1 discusses special cases of
these general versions; namely, Sects. 3.1.3, 3.1.4, 3.1.5, and 3.1.6 cover random
context grammars, forbidding grammars, semi-conditional grammars, and simple
semi-conditional grammars, respectively.

3.1.1 Classical Grammars Viewed as Context-Regulated
Grammars

Classical grammars, such as context-sensitive and phrase-structure grammars (see
Sect. 2.3), can be seen, in a quite natural way, as context-regulated grammars.
Indeed, on the left-hand sides of their rules, they have strings—that is, sequences
of symbols, not single symbols. In effect, they thus regulate their derivations
by prescribing sequences of neighboring symbols that can be rewritten during a
derivation step; this kind of regulation is generally referred to as tight-context
regulation to distinct it from scattered-context regulation, in which the symbol-
neighborhood requirement is dropped (see Sect. 4.1).

In general, tight-context regulated grammars, represented by context-sensitive
and phrase-structure grammars in this section, may have rules of various forms,
and they may generate a very broad variety of completely different sentential forms
during the generation of their languages. As obvious, this inconsistency concerning
the form of rules as well as rewritten strings represents an undesirable phenomenon
in theory as well as in practice. From a theoretical viewpoint, the demonstration
of properties concerning languages generated in this inconsistent way usually lead
to unbearably tedious proofs. From a practical viewpoint, this kind of language
generation is obviously difficult to apply and implement. Therefore, we pay a special
attention to arranging these grammars so they generate their languages in a more
uniform way.
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The present section consists of two subsections. First, it studies grammars with
modified grammatical rules so they all satisfy some simple prescribed forms,
generally referred to as normal forms. Second, it explains how to perform tight-
context rewriting over strings that have a uniform form.

Normal Forms

In this section, we convert context-sensitive and phrase-structure grammars into
several normal forms, including the Kuroda, Penttonen, and Geffert normal forms.
We also reduce the number of context-free rules in these grammars. In addition, we
describe the Greibach and Chomsky normal forms for context-free grammars.

Recall that for a grammar G D .V;T;P; S/, N denotes the set of all nonterminal
symbols, where N D V � T.

Definition 3.1.1. Let G D .V , T, P, S/ be a phrase-structure grammar. G is in the
Kuroda normal form (see [Kur64]) if every rule in P is of one of the following four
forms

(i) AB ! CD (ii) A ! BC (iii) A ! a (iv) A ! "

where A;B;C;D 2 N, and a 2 T. ut

Theorem 3.1.2 (See [Kur64]). For every phrase-structure grammar G, there is a
phrase-structure grammar G0 in the Kuroda normal form such that L.G0/ D L.G/.

Definition 3.1.3. Let G D .V , T, P, S/ be a phrase-structure grammar. G is in the
Penttonen normal form (see [Pen74]) if every rule in P is of one of the following
four forms

(i) AB ! AC (ii) A ! BC (iii) A ! a (iv) A ! "

where A;B;C 2 N, and a 2 T. ut

In other words, G is in the Penttonen normal form if G is in the Kuroda normal
form an every AB ! CD 2 P satisfies that A D C.

Theorem 3.1.4 (See [Pen74]). For every phrase-structure grammar G, there is a
phrase-structure grammar G0 in the Penttonen normal form such that L.G0/ D L.G/.

Theorem 3.1.5 (See [Pen74]). For every context-sensitive grammar G, there
is a context-sensitive grammar G0 in the Penttonen normal form such that
L.G0/ D L.G/.

Observe that if G is a context-sensitive grammar in the Pentonnen normal form,
then none of its rules is of the form (iv), which is not context-sensitive.

Theorems 3.1.4 and 3.1.5 can be further modified so that for every context-
sensitive rule of the form AB ! AC 2 P, where A;B;C 2 N, there exist no B ! x
or BD ! BE in P for any x 2 V�, D;E 2 N:
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Theorem 3.1.6. Every context-sensitive language can be generated by a context-
sensitive grammar G D .NCF [ NCS [ T, T, P, S/, where NCF, NCS, and T are
pairwise disjoint alphabets, and every rule in P is either of the form AB ! AC,
where B 2 NCS, A;C 2 NCF, or of the form A ! x, where A 2 NCF and x 2

NCS [ T [ N2
CF.

Proof. Let G0 D .V , T, P0, S/ be a context-sensitive grammar in the Penttonen
normal form (see Theorem 3.1.5). Then, let

G D
�
NCF [ NCS [ T;T;P; S

�

be the context-sensitive grammar defined as follows:

NCF D N
NCS D f QB j AB ! AC 2 P0; A;B;C 2 Ng

P D fA ! x j A ! x 2 P0; A 2 N; x 2 T [ N2g [

fB ! QB; A QB ! AC j AB ! AC 2 P0; A;B;C 2 Ng

Obviously, L.G0/ D L.G/ and G is of the required form, so the theorem holds. ut

Theorem 3.1.7. Every recursively enumerable language can be generated by a
phrase-structure grammar G D .NCF [ NCS [ T, T, P, S/, where NCF, NCS, and T
are pairwise disjoint alphabets, and every rule in P is either of the form AB ! AC,
where B 2 NCS, A;C 2 NCF, or of the form A ! x, where A 2 NCF and
x 2 NCS [ T [ N2

CF [ f"g.

Proof. The reader can prove this theorem by analogy with the proof of Theo-
rem 3.1.6. ut

The next two normal forms limit the number of nonterminals and context-
sensitive rules in phrase-structure grammars.

Definition 3.1.8. Let G be a phrase-structure grammar. G is in the first Geffert
normal form (see [Gef91]) if it is of the form

G D
�
fS;A;B;Cg [ T;T;P [ fABC ! "g; S

�

where P contains context-free rules of the following three forms

(i) S ! uSa (ii) S ! uSv (iii) S ! uv

where u 2 fA, ABg�, v 2 fBC, Cg�, and a 2 T. ut

Theorem 3.1.9 (See [Gef91]). For every recursively enumerable language K, there
exists a phrase-structure grammar G in the first Geffert normal form such that
L.G/ D K. In addition, every successful derivation in G is of the form S )�

G w1w2w
by rules from P, where w1 2 fA;ABg�, w2 2 fBC;Cg�, w 2 T�, and w1w2w )�

G w
is derived by ABC ! ".
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Definition 3.1.10. Let G be a phrase-structure grammar. G is in the second Geffert
normal form (see [Gef91]) if it is of the form

G D
�
fS;A;B;C;Dg [ T;T;P [ fAB ! ";CD ! "g; S

�

where P contains context-free rules of the following three forms

(i) S ! uSa (ii) S ! uSv (iii) S ! uv

where u 2 fA, Cg�, v 2 fB, Dg�, and a 2 T. ut

Theorem 3.1.11 (See [Gef91]). For every recursively enumerable language K,
there exists a phrase-structure grammar G in the Geffert normal form such that
L.G/ D K. In addition, every successful derivation in G is of the form S )�

G w1w2w
by rules from P, where w1 2 fA;Cg�, w2 2 fB;Dg�, w 2 T�, and w1w2w )�

G w is
derived by AB ! " and CD ! ".

Next, we establish two new normal forms for phrase-structure grammars with a
limited number of context-free rules in a prescribed form and, simultaneously, with
non-context-free rules in a prescribed form. Specifically, we establish the following
two normal forms of this kind.

(I) First, we explain how to turn any phrase-structure grammar to an equivalent
phrase-structure grammar that has 2 C n context-free rules, where n is the
number of terminals, and every context-free rule is of the form A ! x, where
x is a terminal, a two-nonterminal string, or the empty string. In addition,
every non-context-free rule is of the form AB ! CD, where A;B;C;D are
nonterminals.

(II) In the second normal form, phrase-structure grammars have always only
two context-free rules—that is, the number of context-free rules is reduced
independently of the number of terminals as opposed to the first normal
form. Specifically, we describe how to turn any phrase-structure grammar
to an equivalent phrase-structure grammar that has two context-free rules of
the forms A ! " and A ! BC, where A;B;C are nonterminals and "

denotes the empty string, and in addition, every non-context-free rule is of
the form AB ! CD, where A;B;D are nonterminals and C is nonterminal or
a terminal.

Theorem 3.1.12. Let G be a phrase-structure grammar. Then, there is an equiva-
lent phrase-structure grammar

H D
�
V;T;P1 [ P2 [ P3; S

�

with

P1 D fAB ! CD j A;B;C;D 2 Ng

P2 D fS ! S#; # ! "g

P3 D fA ! a j A 2 N; a 2 Tg

where # 2 N.
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Proof. Let G D .V , T, P, S/ be a phrase-structure grammar. By Theorem 3.1.2, we
assume that G is in the Kuroda normal form. Set NT D fNa j a 2 Tg. Without any loss
of generality, we assume that N, T, NT, and f#g are pairwise disjoint. Construct the
phrase-structure grammar

H D
�
V 0;T;P0

1 [ P0
2 [ P0

3; S
�

as follows. Initially, set V 0 D V [ NT [ f#g, P0
1 D ;, P0

2 D fS ! S#; # ! "g, and
P0
3 D fNa ! a j a 2 Tg. Perform (1) through (5), given next.

(1) For each AB ! CD 2 P, where A;B;C;D 2 N, add AB ! CD to P0
1.

(2) For each A ! BC 2 P, where A;B;C 2 N, add A# ! BC to P0
1.

(3) For each A ! a 2 P, where A 2 N and a 2 T, add A# ! Na# to P0
1.

(4) For each A ! " 2 P, where A 2 N, add A# ! ## to P0
1.

(5) For each A 2 N, add A# ! #A and #A ! A# to P0
1.

Before proving that L.H/ D L.G/, let us give an insight into the construction.
We simulate G by H using the following sequences of derivation steps.

First, by repeatedly using S ! S#, we generate a proper number of #s. Observe
that if the number of #s is too low, the derivation can be blocked since rules from (2)
consume # during their application. Furthermore, notice that only rules from (4) and
the initial rule S ! S# increase the number of #s in sentential forms of H.

Next, we simulate each application of a rule in G by several derivation steps
in H. By using rules from (5), we can move # in the current sentential form as
needed. If we have # or B in a proper position next to A, we can apply a rule
from (1) through (4). We can also apply # ! " to remove any occurrence of #
from a sentential form of H.

To conclude the simulation, we rewrite the current sentential form by rules of the
form Na ! a to generate a string of terminals. Observe that a premature application
of a rule of this kind may block the derivation in H. Indeed, #s then cannot move
freely through such a sentential form.

To establish L.H/ D L.G/, we prove four claims. Claim 3.1.13 demonstrates
that every w 2 L.H/ can be generated in two stages; first, only nonterminals are
generated, and then, all nonterminals are rewritten to terminals. Claim 3.1.14 shows
that we can arbitrarily generate and move #s within sentential forms of H during the
first stage. Claim 3.1.15 shows how derivations of G are simulated by H. Finally,
Claim 3.1.16 shows how derivations of every w 2 L.H/ in H are simulated by G.

Set N0 D V 0 � T. Define the homomorphism � from V 0� to V� as �.X/ D X for
all X 2 V , �.Na/ D a for all a 2 T, and �.#/ D ".

Claim 3.1.13. Let w 2 L.H/. Then, there exists a derivation S )�
H x )�

H w, where
x 2 N0C, and during x )�

H w, only rules of the form Na ! a, where a 2 T, are
applied.

Proof. Let w 2 L.H/. Since there are no rules in P0
1 [ P0

2 [ P0
3 with symbols from T

on their left-hand sides, we can always rearrange all the applications of the rules
occurring in S )�

H w so the claim holds. ut
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Claim 3.1.14. If S )�
H uv, where u; v 2 V 0�, then S )�

H u#v.

Proof. By an additional application of S ! S#, we get S )�
H S#nC1 instead

of S )�
H S#n for some n � 0, so we derive one more # in the sentential form.

From Claim 3.1.13, by applying rules from (5), # can freely migrate through the
sentential form as needed, until a rule of the form Na ! a is used. ut

Claim 3.1.15. If S )k
G x, where x 2 V�, for some k � 0, then S )�

H x0, where
�.x0/ D x.

Proof. This claim is established by induction on k � 0.

Basis. For S )0
G S, there is S )0

H S.

Induction Hypothesis. For some k � 0, S )k
G x implies that S )�

H x0 such that
x D �.x0/.

Induction Step. Let u; v 2 N0�, A;B;C;D 2 N, and m � 0. Assume that S )k
G

y )G x. By the induction hypothesis, S )�
H y0 with y D �.y0/. Let us show the

simulation of y )G x by an application of several derivation steps in H to get
y0 )C

H x0 with �.x0/ D x. This simulation is divided into the following four cases—
(i) through (iv).

(i) Simulation of AB ! CD: y0 D uA#mBv )m
H u#mABv )H u#mCDv D x0

using m derivation steps according to rules A# ! #A from (5), and concluding
the derivation by rule AB ! CD from (1).

By the induction hypothesis and Claim 3.1.14, y D �.u/A�.v/ allows y0 D

uA#v.

(ii) Simulation of A ! BC: y0 D uA#v )H uBCv D x0 using rule A# ! BC
from (2).

(iii) Simulation of A ! a: y0 D uA#v )H uNa#v D x0 using rule A# ! Na# from (3).
(iv) Simulation of A ! ": y0 D uA#v )H u##v D x0 using rule A# ! ##

from (4). ut

Claim 3.1.16. If S )k
H x0, where x0 2 N0�, for some k � 0, then S )�

G x with
x D �.x0/.

Proof. This claim is established by induction on k � 0.

Basis. For S )0
H S, there is S )0

G S.

Induction Hypothesis. For some k � 0, S )k
H x0 implies that S )�

G x such that
x D �.x0/.

Induction Step. Let u; v;w 2 N0� and A;B;C;D 2 N. Assume that S )k
H y0 )H x0.

By the induction hypothesis, S )�
G y such that y D �.y0/. Let us examine the

following seven possibilities of y0 )H x0.

(i) y0 D uSv )H uS#v D x0: Then,

�.y0/ D y D �.uSv/ )0
G �.uS#v/ D �.uSv/ D x D �.x0/
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(ii) y0 D uABv )H uCDv D x0: According to (1),

y D �.u/AB�.v/ )G �.u/CD�.v/ D x

(iii) y0 D uA#v )H uBCv D x0: According to the source rule in (2),

y D �.u/A�.#v/ )G �.u/BC�.#v/ D �.u/BC�.v/ D x

(iv) y0 D uA#v )H u##v D x0: By the corresponding rule A ! ",

y D �.u/A�.v/ )G �.u##v/ D �.uv/ D x

(v) y0 D uA#v )H u#Av D x0 or y0 D u#Av )H uA#v D x0: In G,

y D �.uA#v/ D �.u/A�.#v/ )0
G �.u#/A�.v/ D x

or

y D �.u#Av/ D �.u#/A�.v/ )0
G �.u/A�.#v/ D x

(vi) y0 D u#v )H uv D x0: In G,

y D �.u#v/ )0
G �.uv/ D x

(vii) y0 D uNav )H uav D x0: In G,

y D �.uNav/ D �.u/a�.v/ )0
G �.u/a�.v/ D x ut

Next, we establish L.H/ D L.G/. Consider Claim 3.1.15 with x 2 T�. Then,
S )�

G x implies that S )�
H x, so L.G/ � L.H/. Let w 2 L.H/. By Claim 3.1.13,

S )�
H x )�

H w, where x 2 N0C, and during x )�
H w, only rules of the form Na ! a,

where a 2 T, are applied. By Claim 3.1.16, S )�
G �.x/ D w, so L.H/ � L.G/.

Hence, L.H/ D L.G/.
Since H is of the required form, the theorem holds. ut

From the construction in the proof of Theorem 3.1.12, we obtain the following
corollary concerning the number of nonterminals and rules in the resulting grammar.

Corollary 3.1.17. Let G D .V, T, P, S/ be a phrase-structure grammar in the
Kuroda normal form. Then, there is an equivalent phrase-structure grammar in the
normal form from Theorem 3.1.12

H D
�
V 0;T;P0; S

�
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where

card
�
V 0
�

D card
�
V
�

C card
�
T
�

C 1

and

card
�
P0
�

D card
�
P
�

C card
�
T
�

C 2
�

card.N/C 1
�

ut

If we drop the requirement on each symbol in the non-context-free rules to be a
nonterminal, we can reduce the number of context-free rules even more.

Theorem 3.1.18. Let G be a phrase-structure grammar. Then, there is an equiva-
lent phrase-structure grammar

H D
�
V;T;P1 [ P2; S

�

with

P1 D fAB ! XC j A;B;C 2 N;X 2 N [ Tg

P2 D fS ! S#; # ! "g

where # 2 N.

Proof. Reconsider the proof of Theorem 3.1.12. Observe that we can obtain the
new normal form by omitting the construction of P0

3 and modifying step (3) in the
following way

(3) For each A ! a 2 P, where A 2 N and a 2 T, add A# ! a# to P0
1.

The rest of the proof is analogical to the proof of Theorem 3.1.12 and it is left to
the reader. ut

Next, we define two normal forms for context-free grammars—the Chomsky and
Greibach normal forms (see [Cho59] and [Gre65]).

Definition 3.1.19. Let G be a context-free grammar. G is in the Chomsky normal
form if every A ! x 2 P satisfies that x 2 NN [ T. ut

Theorem 3.1.20 (See [Cho59]). For every context-free grammar G, there is a
context-free grammar G0 in the Chomsky normal form such that L.G0/ D L.G/.

Definition 3.1.21. Let G be a context-free grammar. G is in the Greibach normal
form if every A ! x 2 P satisfies that x 2 TN�. ut

Theorem 3.1.22 (See [Gre65]). For every context-free grammar G, there is a
context-free grammar G0 in the Greibach normal form such that L.G0/ D L.G/.

Finally, we define the following two normal forms for queue grammars and left-
extended queue grammars.
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Definition 3.1.23. Let Q D .V;T;W;F;R; g/ be a queue grammar (see Defini-
tion 2.3.42). Q satisfies the normal form, if fŠ; f g � W, F D ff g, and each
.a; b; x; c/ 2 R satisfies a 2 V � T and either

b 2 W; x 2 .V � T/�; c 2 W [ fŠ; f g or b DŠ; x 2 T; c 2 fŠ; f g ut

Theorem 3.1.24. For every queue grammar Q0, there is a left-extended queue
grammar Q in the normal form of Definition 3.1.23 such that L.Q0/ D L.Q/. Then,
Q generates every y 2 L.Q/ � f"g in this way

a0q0 )Qx0q1 Œ.a0; q0; z0; q1/�
:::

)Qxk�1qk Œ.ak�1; qk�1; zk�1; qk/�

)QxkŠ Œ.ak; qk; zk; Š/�

)QxkC1b1Š Œ.akC1; Š; b1; Š/�
:::

)QxkCm�1b1 	 	 	 bm�1Š Œ.akCm�1; Š; bm�1; Š/�

)Qb1 	 	 	 bmf Œ.akCm; Š; bm; f /�

where k;m � 1, g D a0q0, a1; : : : ; akCm 2 V � T, b1; : : : ; bm 2 T, z0; : : : ; zk 2

.V�T/�, q0; : : : ; qk; Š 2 W�F, f 2 F, x0; : : : ; xkCm�1 2 .V�T/C, and y D b1 	 	 	 bm.

Proof. Let Q0 D .V 0, T, W 0, F0, R0, g0/ be any queue grammar. Set˚ D fNa j a 2 Tg.
Define the homomorphism ˛ from V 0� to ..V 0 � T/ [ ˚/� as ˛.a/ D Na, for each
a 2 T and ˛.A/ D A, for each A 2 V 0 � T. Set V D V 0 [ ˚ , W D W 0 [ fŠ; f g,
F D ff g, and g D ˛.a0/q0 for g0 D a0q0. Define the queue grammar Q D .V , T, W,
F, R, g/, with R constructed in the following way.

(1) For each .a; b; x; c/ 2 R0, where c 2 W 0 � F0, add .˛.a/; b; ˛.x/; c/ to R.
(2) For each .a; b; x; c/ 2 R0

(2.1) where x ¤ ", c 2 F0, add .˛.a/; b; ˛.x/; Š/ to R.
(2.2) where x D ", c 2 F0, add .˛.a/; b; "; f / to R.

(3) For each a 2 T,

(3.1) add .Na; Š; a; Š/ to R;
(3.2) add .Na; Š; a; f / to R.

Clearly, each .a; b; x; c/ 2 R satisfies a 2 V � T and either b 2 W 0, x 2 .V � T/�,
c 2 W 0 [ fŠ; f g or b DŠ, x 2 T, c 2 fŠ; f g.

To see that L.Q0/ � L.Q/, consider any v 2 L.Q0/. As v 2 L.Q0/, g0 )�
Q0 vt,

where v 2 T� and t 2 F0. Express g0 )�
Q0 vt as

g0 )�
Q0 axc )Q0 vt Œ.a; c; y; t/�
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where a 2 V 0, x; y 2 T�, xy D v, and c 2 W 0 � F0. This derivation is simulated
by Q as follows. First, Q uses rules from (1) to simulate g0 )�

Q0 axc. Then, it uses
a rule from (2) to simulate axc )Q0 vt. For x D ", a rule from (2.2) can be used
to generate " 2 L.Q/ in the case of " 2 L.Q0/; otherwise, a rule from (2.1) is used.
This part of simulation can be expressed as

g )�
Q ˛.ax/c )Q ˛.v/Š

At this point, ˛.v/ satisfies ˛.v/ D Na1 	 	 	 Nan, where ai 2 T for all i, 1 � i � n, for
some n � 1. The rules from (3) of the form .Na; Š; a; Š/, where a 2 T, replace every
Naj with aj, where 1 � j � n � 1, and, finally, .Na; Š; a; f /, where a 2 T, replaces ˛.an/

with an. As a result, we obtain the sentence vf , so L.Q0/ � L.Q/.
To establish L.Q/ � L.Q0/, observe that the use of a rule from (2.2) in Q before

the sentential form is of the form ˛.ax/c, where a 2 V 0, x 2 T�, c 2 W 0 � F0,
leads to an unsuccessful derivation. Similarly, the use of (2.2) if x ¤ " leads to
an unsuccessful derivation as well. The details are left to the reader. As a result,
L.Q/ � L.Q0/.

As L.Q0/ � L.Q/ and L.Q/ � L.Q0/, we obtain L.Q/ D L.Q0/. ut

Briefly, a queue grammar Q D .V , T, W, F, R, g/ in normal form of
Definition 3.1.23 generates every string in L.Q/� f"g so it passes through Š. Before
it enters Š, it generates only strings from .V � T/�; after entering Š, it generates only
strings from T�.

Definition 3.1.25. Let Q D .V , T, W, F, R, g/ be a left-extended queue grammar.
Q satisfies the normal form, if V D U [ Z [ T and W D X [ Y [ fŠg such that U, Z,
T, X, Y, fŠg are pairwise disjoint, F � Y, g 2 UW, and Q derives every w 2 L.Q/ in
this way

#g )m
Q a0a1 : : : am#b1b2 	 	 	 bnŠ Œt1t2 : : : tm�

)Q a0a1 : : : amb1#b2 	 	 	 bny1p1 Œr1�
)Q a0a1 : : : amb1b2#b3 	 	 	 bny1y2p2 Œr2�
:::

)Q a0a1 : : : amb1b2 	 	 	 bn�1#bny1y2 	 	 	 yn�1pn�1 Œrn�1�

)Q a0a1 : : : amb1b2 	 	 	 bn�1bn#y1y2 	 	 	 ynpn Œrn�

where m; n 2 N, aj 2 U, bi 2 Z, yi 2 T�, w D y1y2 	 	 	 yn, pi 2 Y, pn 2 F, tj; ri 2 R,
where tj D .aj; bj; xj; cj/ satisfies aj 2 U, bj 2 X, xj 2 .V � T/�, cj 2 X [ fŠg,
and ri D .ai; bi; xi; ci/ satisfies ai 2 Z, bi 2 .Y � F/ [ fŠg, xi 2 T�, ci 2 Y,
for j D 1; : : : ;m and i D 1; : : : ; n.

Theorem 3.1.26. For every left-extended queue grammar K, there is a left-extended
queue grammar Q in the normal form from Definition 3.1.25 such that L.K/ D L.Q/.

Proof. See Lemma 1 in [Med03c].
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Uniform Rewriting

Classical grammars can produce a very broad variety of quite different sentential
forms during the generation of their languages. This inconsistent generation repre-
sents a highly undesirable grammatical phenomenon. In theory, the demonstration
of properties concerning languages generated in this way lead to extremely tedious
proofs. In practice, the inconsistent generation of languages is not easy to apply and
implement. Therefore, in this section, we explain how to reduce or even overcome
this difficulty by making the language generation more uniform. Specifically,
phrase-structure grammars are transformed so that they generate only strings that
have a uniform permutation-based form.

More precisely, the present section demonstrates that for every phrase-structure
grammar G, there exists an equivalent phrase-structure grammar

G0 D
�
fS; 0; 1g [ T;T;P; S

�

so that every x 2 F.G0/ satisfies

x 2 T�˘.w/�

where w 2 f0; 1g� (recall that F.G0/ is defined in Definition 2.3.2). Then, it makes
this conversion so that for every x 2 F.G/,

x 2 ˘.w/�T�

Let G D .V , T, P, S/ be a phrase-structure grammar. Notice that alph.L.G// � T.
If a 2 T � alph.L.G//, then a actually acts as a pseudoterminal because it appears
in no string of L.G/. Every transformation described in this section assumes that its
input grammar contains no pseudoterminals of this kind, and does not contain any
useless nonterminals either.

Let j be a natural number. Set

PSŒ:j� D
˚
L j L D L.G/; where G D .V;T;P; S/ is a phrase-structure

grammar such that card.alph.F.G//� T/ D j and
F.G/ � T�˘.w/�; where w 2 .V � T/�

�

Analogously, set

PSŒj:� D
˚
L j L D L.G/; where G D .V;T;P; S/ is a phrase-structure

grammar such that card.alph.F.G//� T/ D j and
F.G/ � ˘.w/�T�; where w 2 .V � T/�

�
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Lemma 3.1.27. Let G be a phrase-structure grammar. Then, there exists a phrase-
structure grammar, G0 D .fS; 0; 1g [ T, T, P, S/, satisfying L.G0/ D L.G/ and
F.G0/ � T�˘.1n�200/�, for some natural number n.

Proof. Let G D .V , T, Q, $/ be a phrase-structure grammar, where V is the total
alphabet of G, T is the terminal alphabet of G, Q is the set of rules of G, and $ is the
start symbol of G. Without any loss of generality, assume that V \ f0; 1g D ;. The
following construction produces an equivalent phrase-structure grammar

G0 D
�
fS; 0; 1g [ T;T;P; S

�

such that F.G0/ � T�˘.1n�200/�, for some natural number n.
For some integers m; n such that m � 3 and 2m D n, introduce an injective

homomorphism ˇ from V to

�
f1gmf1g�f0gf1g�f0g \ f0; 1gn

�
�
˚
1n�200

�

Extend the domain of ˇ to V�. Define the phrase-structure grammar

G0 D
�
fS; 0; 1g [ T;T;P; S

�

with

P D fS ! 1n�200ˇ.$/1n�200g [

fˇ.x/ ! ˇ.y/ j x ! y 2 Qg [

f1n�200ˇ.a/ ! a1n�200 j a 2 Tg [

f1n�2001n�200 ! "g

Claim 3.1.28. Let S )h
G0 w, where w 2 V� and h � 1. Then,

w 2 T�.f"g [ f1n�200g.ˇ.V//�f1n�200g/

Proof. The claim is proved by induction on h � 1.

Basis. Let h D 1. That is,

S )G0 1
n�200ˇ.$/1n�200 ŒS ! 1n�200ˇ.$/1n�200�

As

1n�200ˇ.S/1n�200 2 T�.f1n�200g.ˇ.V//�f1n�200g [ f"g/

the basis holds.

Induction Hypothesis. Suppose that for some k � 0, if S )i
G0 w, where i D 1; : : : ; k

and w 2 V�, then w 2 T�.f1n�200g.ˇ.V//�f1n�200g [ f"g/.
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Induction Step. Consider any derivation of the form

S )kC1
G0 w

where w 2 V� � T�. Express S )kC1
G0 w as

S )k
G0 u lhs.p/v

)G0 u rhs.p/v Œp�

where p 2 P and w D u rhs.p/v. Less formally, after k steps, G0 derives u lhs.p/v.
Then, by using p, G0 replaces lhs.p/ with rhs.p/ in u lhs.p/v, so it obtains u rhs.p/v.
By the induction hypothesis,

u lhs.p/v 2 T�.f1n�200g.ˇ.V//�f1n�200g [ f"g/

As lhs.p/ 62 T�, u lhs.p/v 62 T�. Therefore,

u lhs.p/v 2 T�f1n�200g.ˇ.V//�f1n�200g

Let

u lhs.p/v 2 T�f1n�200g.ˇ.V//jf1n�200g

in G0, for some j � 1. By the definition of P, p satisfies one of the following three
properties.

(i) Let lhs.p/ D ˇ.x/ and rhs.p/ D ˇ.y/, where x ! y 2 Q, At this point,

u 2 T�f1n�200gfˇ.V/gr

for some r � 0, and

v 2 fˇ.V/g.j�j lhs.p/j�r/f1n�200g

Distinguish between these two cases: jxj � jyj and jxj > jyj.

(i.a) Let jxj � jyj. Set s D jyj � jxj. Observe that

u rhs.p/v 2 T�f1n�200g.ˇ.V//.jCs/f1n�200g

As w D u rhs.p/v,

w 2 T�.f1n�200g.ˇ.V//�f1n�200g [ f"g/

(i.b) Let jxj > jyj. By analogy with (i.a), prove that

w 2 T�.f1n�200g.ˇ.V//�f1n�200g [ f"g/
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(ii) Assume that lhs.p/ D 1n�200ˇ.a/ and rhs.p/ D a1n�200, for some a 2 T.
Notice that

u lhs.p/v 2 T�f1n�200g.ˇ.V//jf1n�200g

implies that u 2 T� and

v 2 .ˇ.V//.j�1/f1n�200g

Then,

u rhs.p/v 2 T�fagf1n�200g.ˇ.V//.j�1/f1n�200g

As w D u rhs.p/v,

w 2 T�.f1n�200g.ˇ.V//�f1n�200g [ f"g/

(iii) Assume that lhs.p/ D 1n�2001n�200 and rhs.p/ D ". Then, j D 0 in

T�f1n�200g.ˇ.V//jf1n�200g

so

u lhs.p/v 2 T�f1n�200gf1n�200g

and u rhs.p/v 2 T�: As w D u rhs.p/v,

w 2 T�.f1n�200g.ˇ.V//�f1n�200g [ f"g/ ut

Claim 3.1.29. Let S )C
G0 u)�

G0z, where z 2 T�. Then, u 2 T�˘.1n�200/�.

Proof. Let S )C
G0 u)�

G0z, where z 2 T�. By Claim 3.1.28,

u 2 T�.f1n�200g.ˇ.V//�f1n�200g [ f"g/

and by the definition of ˇ, u 2 T�˘.1n�200/�. ut

Claim 3.1.30. Let $ )m
G w, for some m � 0. Then, S )C

G0 1
n�200ˇ.w/1n�200.

Proof. The claim is proved by induction on m � 0.

Basis. Let m D 0. That is, $ )0
G $. As

S )G0 1
n�200ˇ.$/1n�200 ŒS ! 1n�200ˇ.$/1n�200�

the basis holds.



72 3 Regulated Grammars and Computation

Induction Hypothesis. Suppose that for some j � 1, if $ )i
G w, where i D 1; : : : ; j

and w 2 V�, then S)�
G0ˇ.w/.

Induction Step. Let $ )
jC1
G w: Express $ )

jC1
G w as

$ )
j
G uxv )G uyv Œx ! y�

where x ! y 2 Q and w D uyv. By the induction hypothesis,

S )C
G0 1

n�200ˇ.uxv/1n�200

Express ˇ.uxv/ as ˇ.uxv/ D ˇ.u/ˇ.x/ˇ.v/. As x ! y 2 P, ˇ.x/ ! ˇ.y/ 2 P.
Therefore,

S )C
G0 1

n�200ˇ.u/ˇ.x/ˇ.v/1n�200

)G0 1
n�200ˇ.u/ˇ.y/ˇ.v/1n�200 Œˇ.x/ ! ˇ.y/�

Because w D uyv, ˇ.w/ D ˇ.u/ˇ.y/ˇ.v/, so

S )C
G0 1

n�200ˇ.w/1n�200 ut

Claim 3.1.31. L.G/ � L.G0/

Proof. Let w 2 L.G/. Thus, $)�
Gw with w 2 T�. By Claim 3.1.30,

S )C
G0 1

n�200ˇ.w/1n�200

Distinguish between these two cases: w D " and w 6D ".

(i) If w D ", 1n�200ˇ.w/1n�200 D 1n�2001n�200. As 1n�2001n�200 ! " 2 P,

S )�
G0 1

n�2001n�200

)G0 " Œ1
n�2001n�200 ! "�

Thus, w 2 L.G0/.
(ii) Assume that w 6D ". Express w as w D a1a2 	 	 	 an�1an with ai 2 T for i D

1; : : : ; n, n � 0. Because

.f1n�200ˇ.a/ ! a1n�200 j a 2 Tg [ f1n�2001n�200 ! "g/ � P
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there exists

S )�
G0 1

n�200ˇ.a1/ˇ.a2/ 	 	 	ˇ.an�1/ˇ.an/1
n�200

)G0 a11n�200ˇ.a2/ 	 	 	ˇ.an�1/ˇ.an/1
n�200

Œ1n�200ˇ.a1/ ! a11n�200�

)G0 a1a21n�200ˇ.a3/ 	 	 	ˇ.an�1/ˇ.an/1
n�200

Œ1n�200ˇ.a2/ ! a21n�200�
:::

)G0 a1a2 	 	 	 an�21
n�200ˇ.an�1/ˇ.an/1

n�200

Œ1n�200ˇ.an�2/ ! an�21
n�200�

)G0 a1a2 	 	 	 an�2an�11
n�200ˇ.an/1

n�200

Œ1n�200ˇ.an�1/ ! an�11
n�200�

)G0 a1a2 	 	 	 an�2an�1an1
n�2001n�200

Œ1n�200ˇ.an/ ! an1
n�200�

)G0 a1a2 	 	 	 an�2an�1an

Œ1n�2001n�200 ! "�

Therefore, w 2 L.G0/. ut

Claim 3.1.32. Let S )m
G0 1

n�200w1n�200, where w 2 f0; 1g�, for some m � 1.
Then, $)�

Gˇ
�1.w/.

Proof. This claim is proved by induction on m � 1.

Basis. Let m D 1. That is,

S )G0 1
n�200w1n�200

where w 2 f0; 1g�. Then, w D ˇ.$/. As $ )0
G $, the basis holds.

Induction Hypothesis. Suppose that for some j � 1, if S )i
G0 1

n�200w1n�200,
where i D 1; : : : ; j and w 2 f0; 1g�, then $ )C

G ˇ�1.w/.

Induction Step. Let

S )
jC1
G0 1n�200w1n�200

where w 2 f0; 1g�. As w 2 f0; 1g�,

S )
jC1
G0 1n�200w1n�200

can be expressed as

S )
j
G0 1

n�200uˇ.x/v1n�200

)G0 1
n�200uˇ.y/v1n0200 Œˇ.x/ ! ˇ.y/�

where x; y 2 V�, x ! y 2 Q, and w D uˇ.y/v. By the induction hypothesis,

S )C
G0 1

n�200ˇ�1.uˇ.x/v/1n�200
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Express ˇ�1.uˇ.x/v/ as

ˇ�1.uˇ.x/v/ D ˇ�1.u/xˇ�1.v/

Since x ! y 2 Q,

$ )C
G ˇ�1.u/xˇ�1.v/

)G ˇ�1.u/yˇ�1.v/ Œx ! y�

Because w D uˇ.y/v, ˇ�1.w/ D ˇ�1.u/yˇ�1.v/, so

$ )C
G ˇ�1.w/ ut

Claim 3.1.33. L.G0/ � L.G/

Proof. Let w 2 L.G0/. Distinguish between w D " and w 6D ".

(i) Let w D ". Observe that G0 derives " as

S )�
G0 1

n�2001n�200

)G0 " Œ1
n�2001n�200 ! "�

Because

S)�
G01

n�2001n�200

Claim 3.1.32 implies that $)�
G". Therefore, w 2 L.G/.

(ii) Assume that w 6D ". Let w D a1a2 	 	 	 an�1an with ai 2 T for i D 1; : : : ; n,
where n � 1. Examine P to see that in G0, there exists this derivation

S )�
G0 1

n�200ˇ.a1/ˇ.a2/ 	 	 	ˇ.an�1/ˇ.an/1
n�200

)G0 a11n�200ˇ.a2/ 	 	 	ˇ.an�1/ˇ.an/1
n�200

Œ1n�200ˇ.a1/ ! a11n�200�

)G0 a1a21n�200ˇ.a3/ 	 	 	ˇ.an�1/ˇ.an/1
n�200

Œ1n�200ˇ.a2/ ! a21n�200�
:::

)G0 a1a2 	 	 	 an�21
n�200ˇ.an�1/ˇ.an/1

n�200

Œ1n�200ˇ.an�2/ ! an�21
n�200�

)G0 a1a2 	 	 	 an�2an�11
n�200ˇ.an/1

n�200

Œ1n�200ˇ.an�1/ ! an�11
n�200�

)G0 a1a2 	 	 	 an�2an�1an1
n�2001n�200

Œ1n�200ˇ.an/ ! an1
n�200�

)G0 a1a2 	 	 	 an�2an�1an

Œ1n�2001n�200 ! "�
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Because

S)�
G01

n�200ˇ.a1/ˇ.a2/ 	 	 	ˇ.an�1/ˇ.an/1
n�200

Claim 3.1.32 implies that

$)�
Ga1a2 	 	 	 an�1an

Hence, w 2 L.G/. ut

By Claims 3.1.31 and 3.1.33, L.G/ D L.G0/. By Claim 3.1.29, F.G0/ �

T�˘.1n�200/�. Thus, Lemma 3.1.27 holds. ut

Theorem 3.1.34. PSŒ:2� D RE

Proof. The inclusion PSŒ:2� � RE follows from Turing-Church thesis (see
page 26). By Lemma 3.1.27, RE � PSŒ:2�. Therefore, the theorem holds. ut

Lemma 3.1.35. Let G be a phrase-structure grammar. Then, there exists a phrase-
structure grammar G0 D .fS; 0; 1g [ T, T, P, S/ satisfying L.G/ D L.G0/ and
F.G0/ � ˘.1n�200/�T�, for some n � 1.

Proof. Let G D .V , T, Q, $/ be a phrase-structure grammar, where V is the total
alphabet of G, T is the terminal alphabet of G, Q is the set of rules of G, and $ is the
start symbol of G. Without any loss of generality, assume that V \ f0; 1g D ;. The
following construction produces an equivalent phrase-structure grammar

G0 D
�
fS; 0; 1g [ T;T;P; S

�

such that F.G0/ � ˘.1n�200/�T�, for some n � 1.
For some m � 3 and n such that 2m D n, introduce an injective homomorphismˇ

from V to

�
f1gmf1g�f0gf1g�f0g \ f0; 1gn

�
� f1n�200g

Extend the domain of ˇ to V�. Define the phrase-structure grammar

G0 D
�
T [ fS; 0; 1g;P; S;T

�

with

P D fS ! 1n�200ˇ.$/1n�200g [

fˇ.x/ ! ˇ.y/ j x ! y 2 Qg [

fˇ.a/1n�200 ! 1n�200a j a 2 Tg [

f1n�2001n�200 ! "g

Complete this proof by analogy with the proof of Lemma 3.1.27. ut
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Theorem 3.1.36. PSŒ2:� D RE

Proof. Clearly, PSŒ2:� � RE. By Lemma 3.1.35, RE � PSŒ2:�. Therefore, this
theorem holds. ut

Corollary 3.1.37. PSŒ:2� D PSŒ2:� D RE ut

There is an open problem area related to the results above.

Open Problem 3.1.38. Recall that in this section we converted any phrase-
structure grammar G to an equivalent phrase-structure grammar, G0 D .V , T,
P, S/, so that for every x 2 F.G0/, x 2 T�˘.w/�, where w is a string over V � T.
Then, we made this conversion so that for every x 2 F.G0/, x 2 ˘.w/�T�. Take
into account the length of w. More precisely, for j; k � 1 set

PSŒ:j; k� D
˚
L j L D L.G/; where G D .V;T;P; S/ is a phrase-structure

grammar such that card.alph.F.G//� T/ D j and
F.G/ � T�˘.w/�; where w 2 .V � T/� and jwj D k

�

Analogously, set

PSŒj; k:� D
˚
L j L D L.G/; where G D .V;T;P; S/ is a phrase-structure

grammar such that card.alph.F.G//� T/ D j and
F.G/ � ˘.w/�T�; where w 2 .V � T/� and jwj D k

�

Reconsider this section in terms of these families of languages. ut

3.1.2 Conditional Context Grammars

Context-conditional grammars are based on context-free rules, each of which may
be extended by finitely many permitting and forbidding strings. A rule like this can
rewrite a sentential form on the condition that all its permitting strings occur in the
current sentential form while all its forbidding strings do not occur there.

This section first defines context-conditional grammars and, after that, it estab-
lishes their generative power.

Definitions

Without further ado, we define the basic versions of context-regulated grammars.

Definition 3.1.39. A context-conditional grammar is a quadruple

G D
�
V;T;P; S

�
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where V , T, and S are the total alphabet, the terminal alphabet (T � V), and the
start symbol (S 2 V � T), respectively. P is a finite set of rules of the form

�
A ! x;Per;For

�

where A 2 V � T, x 2 V�, and Per;For � VC are two finite sets. If Per 6D ; or
For 6D ;, the rule is said to be conditional; otherwise, it is called context-free. G has
degree .r; s/, where r and s are natural numbers, if for every .A ! x;Per;For/ 2 P,
max-len.Per/ � r and max-len.For/ � s. If .A ! x;Per;For/ 2 P implies that
x 6D ", G is said to be propagating. Let u; v 2 V� and .A ! x;Per;For/ 2 P. Then,
u directly derives v according to .A ! x;Per;For/ in G, denoted by

u )G v Œ.A ! x;Per;For/�

provided that for some u1; u2 2 V�, the following conditions hold:

(a) u D u1Au2,
(b) v D u1xu2,
(c) Per � sub.u/,
(d) For \ sub.u/ D ;.

When no confusion exists, we simply write u )G v instead of u )G v Œ.A !

x;Per;For/�. By analogy with context-free grammars, we extend )G to )k
G (where

k � 0), )C
G , and )�

G. The language of G, denoted by L.G/, is defined as

L.G/ D
˚
w 2 T� j S)�

Gw
�

ut

The families of languages generated by context-conditional grammars and
propagating context-conditional grammars of degree .r; s/ are denoted by CG.r; s/
and CG�".r; s/, respectively. Furthermore, set

CG D

1[

rD0

1[

sD0

CG.r; s/

and

CG�" D

1[

rD0

1[

sD0

CG�".r; s/

Generative Power

Next, we prove several theorems concerning the generative power of the general ver-
sions of context-conditional grammars. Let us point out, however, that Sects. 3.1.3
through 3.1.6 establish many more results about special cases of these grammars.
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Theorem 3.1.40. CG�".0; 0/ D CG.0; 0/ D CF

Proof. This theorem follows immediately from the definition. Clearly, context-
conditional grammars of degree .0; 0/ are ordinary context-free grammars. ut

Lemma 3.1.41. CG�" � CS

Proof. Let r D s D 0. Then, CG�".0; 0/ D CF � CS. The rest of the proof
establishes the inclusion for degrees .r; s/ such that r C s > 0.

Consider a propagating context-conditional grammar

G D
�
V;T;P; S

�

of degree .r; s/, where r C s > 0, for some r; s � 0. Let k be the greater number of r
and s. Set

M D
˚
x 2 VC j jxj � k

�

Next, define

cf-rules.P/ D
˚
A ! x j .A ! x;Per;For/ 2 P; A 2 .V � T/; x 2 VC

�

Then, set

NF D fbX; xc j X � M; x 2 M [ f"gg

NT D fhXi j X � Mg

NB D fdpe j p 2 cf-rules.P/g [ fd;eg

V 0 D V [ NF [ NT [ NB [ fB;C; $; S0; #g

T 0 D T [ f#g

Construct the context-sensitive grammar

G0 D
�
V 0;T 0;P0; S0/

with the finite set of rules P0 defined as follows:

(1) add S0 ! Bb;; "cSC to P0;
(2) for all X � M, x 2 .Vk [ f"g/ and y 2 Vk, extend P0 by adding

bX; xcy ! ybX [ sub.xy; k/; yc

(3) for all X � M, x 2 .Vk [ f"g/ and y 2 VC, jyj � k, extend P0 by adding

bX; xcyC! yhX [ sub.xy; k/iC
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(4) for all X � M and every p D A ! x 2 cf-rules.P/ such that there exists
.A ! x;Per;For/ 2 P satisfying Per � X and For \ X D ;, extend P0 by
adding

hXiC! dpeC

(5) for every p 2 cf-rules.P/ and a 2 V , extend P0 by adding

adpe ! dpea

(6) for every p D A ! x 2 cf-rules.P/, A 2 .V � T/, x 2 VC, extend P0 by adding

Adpe ! d;ex

(7) for every a 2 V , extend P0 by adding

ad;e ! d;ea

(8) addBd;e ! Bb;; "c to P0;
(9) addBb;; "c ! #$, $C! ##, and $a ! a$, for all a 2 T, to P0.

Claim 3.1.42. Every successful derivation in G0 has the form

S0 )G0 Bb;; "cSC
)C

G0 Bb;; "cxC
)G0 #$xC
)

jxj
G0 #x$C

)G0 #x##

such that x 2 TC, and during

Bb;; "cSC)C
G0 Bb;; "cxC

every sentential form w satisfies w 2 fBgHCfCg, where H � V 0 � fB;C; #; $; S0g.

Proof. Observe that the only rule that rewrites S0 is S0 ! Bb;; "cSC; thus,

S0 )G0 Bb;; "cSC

After that, every sentential form that occurs in

Bb;; "cSC)C
G0 Bb;; "cxC
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can be rewritten by using any of the rules (2) through (8) from the construction of P0.
By the inspection of these rules, it is obvious that the delimiting symbolsB and C
remain unchanged and no other occurrences of them appear inside the sentential
form. Moreover, there is no rule generating a symbol from f#; $; S0g. Therefore, all
these sentential forms belong to fBgHCfCg.

Next, let us explain how G0 generates a string from L.G0/. Only Bb;; "c ! #$
can rewriteB to a symbol from T (see (9) in the definition of P0). According to the
left-hand side of this rule, we obtain

S0 )G0 Bb;; "cSC )�
G0 Bb;; "cxC )G0 #$xC

where x 2 HC. To rewrite C, G0 uses $C ! ##. Thus, G0 needs $ as the left
neighbor of C. Suppose that x D a1a2 	 	 	 aq, where q D jxj and ai 2 T, for all
i 2 f1; : : : ; qg. Since for every a 2 T there is $a ! a$ 2 P0 (see (9)), we can
construct

#$a1a2 	 	 	 anC)G0 #a1$a2 	 	 	 anC
)G0 #a1a2$ 	 	 	 anC
)

jxj�2
G0 #a1a2 	 	 	 an$C

Notice that this derivation can be constructed only for x that belong to TC. Then,
$C is rewritten to ##. As a result,

S0 )G0 Bb;; "cSC )C
G0 Bb;; "cxC )G0 #$xC )

jxj
G0 #x$C )G0 #x##

with the required properties. Thus, the claim holds. ut

The following claim demonstrates how G0 simulates a direct derivation from G—
the heart of the construction.

Let x )˚
G0 y denote the derivation x )C

G0 y such that x D Bb;; "cuC, y D

Bb;; "cvC, u; v 2 VC, and during x )C
G0 y, there is no other occurrence of a string

of the formBb;; "czC, z 2 V�.

Claim 3.1.43. For every u; v 2 V�, it holds that

Bb;; "cuC)˚
G0 Bb;; "cvC if and only if u )G v

Proof. The proof is divided into the only-if part and the if part.

Only If. Let us show how G0 rewrites Bb;; "cuC to Bb;; "cvC. The simulation
consists of two phases.

During the first, forward phase, G0 scans u to get all nonempty substrings of
length k or less. By repeatedly using rules bX; xcy ! ybX [ sub.xy; k/; yc, X � M,
x 2 .Vk [ f"g/, y 2 Vk (see (2) in the definition of P0), the occurrence of a symbol
of the form bX; xc is moved toward the end of the sentential form. Simultaneously,
the substrings of u are recorded in X. The forward phase is finished by applying
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bX; xcyC! yhX [ sub.xy; k/iC, x 2 .Vk [ f"g/, y 2 VC, jyj � k (see (3)); this rule
reaches the end of u and completes X D sub.u; k/. Formally,

Bb;; "cuC )C
G0 BuhXiC

with X D sub.u; k/.
The second, backward phase simulates the application of a conditional rule.

Assume that u D u1Au2, u1; u2 2 V�, A 2 .V � T/, and there exists a rule
A ! x 2 cf-rules.P/ such that .A ! x;Per;For/ 2 P for some Per;For � M,
where Per � X, For \ X D ;. Let u1xu2 D v. Then, G0 derives

BuhXiC)C
G0 Bb;; "cvC

by performing the following five steps

(i) hXi is changed to dpe, where p D A ! x satisfies the conditions above (see (4)
in the definition of P0);

(ii) Bu1Au2dpeC is rewritten to Bu1Adpeu2C by using the rules of the form
adpe ! dpea, a 2 V (see (5));

(iii) Bu1Adpeu2C is rewritten toBu1d;exu2C by using Adpe ! d;ex (see (6));
(iv) Bu1d;exu2C is rewritten to Bd;eu1xu2C by using the rules of the form

ad;e ! d;ea, a 2 V (see (7));
(v) finally,Bd;e is rewritten toBb;; "c byBd;e ! Bb;; "c.

As a result, we obtain

Bb;; "cuC)C
G0 BuhXiC )G0 BudpeC

)
juj
G0 Bd;evC)G0 Bb;; "cvC

Observe that this is the only way of deriving

Bb;; "cuC)˚
G0 Bb;; "cvC

Let us show that u )G v. Indeed, the application of Adpe ! d;ex implies that
there exists .A ! x;Per;For/ 2 P, where Per � sub.u; k/ and For \ sub.u; k/ D ;.
Hence, there exists a derivation of the form

u )G v Œp�

where u D u1Au2, v D u1xu2 and p D .A ! x;Per;For/ 2 P.

If. The converse implication is similar to the only-if part, so we leave it to the
reader. ut

Claim 3.1.44. S0 )C
G0 Bb;; "cxC if and only if S )�

G x, for all x 2 VC.
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Proof. The proof is divided into the only-if part and the if part.

Only If. The only-if part is proved by induction on the ith occurrence of the sentential
form w satisfying w D Bb;; "cuC, u 2 VC during the derivation in G0.

Basis. Let i D 1. Then, S0 )G0 Bb;; "cSC and S )0
G S.

Induction Hypothesis. Suppose that the claim holds for all i � h, for some h � 1.

Induction Step. Let i D h C 1. Since h C 1 � 2, we can express

S0 )C
G0 Bb;; "cxiC

as

S0 )C
G0 Bb;; "cxi�1C)˚

G0 Bb;; "cxiC

where xi�1; xi 2 VC. By the induction hypothesis,

S )�
G xi�1

Claim 3.1.43 says that

Bb;; "cxi�1C)˚
G0 Bb;; "cxiC if and only if xi�1 )G xi

Hence,

S )�
G xi�1 )G xi

and the only-if part holds.

If. By induction on m, we prove that

S )m
G x implies that S0 )C

G0 Bb;; "cxC

for all m � 0, x 2 VC.

Basis. For m D 0, S )0
G S and S0 )G0 Bb;; "cSC.

Induction Hypothesis. Assume that the claim holds for all m � n, for some n � 0.

Induction Step. Let

S )nC1
G x

with x 2 VC. Because n C 1 � 1, there exists y 2 VC such that

S )n
G y )G x
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By the induction hypothesis, there is also a derivation

S0 )C
G0 Bb;; "cyC

From Claim 3.1.43 it follows that

Bb;; "cyC)˚
G0 Bb;; "cxC

Therefore,

S0 )C
G0 Bb;; "cxC

and the converse implication holds as well. ut

From Claims 3.1.42 and 3.1.44, we see that any successful derivation in G0 is of
the form

S0 )C
G0 Bb;; "cxC)C

G0 #x##

such that

S )�
G x; x 2 TC

Therefore, for each x 2 TC,

S0 )C
G0 #x## if and only if S )�

G x

Define the homomorphism h over .T [ f#g/� as h.#/ D " and h.a/ D a for all
a 2 T. Observe that h is 4-linear erasing with respect to L.G0/. Furthermore, notice
that h.L.G0// D L.G/. Because CS is closed under linear erasing (see Theorem 10.4
on page 98 in [Sal73]), L 2 CS. Thus, Lemma 3.1.41 holds. ut

Theorem 3.1.45. CG�" D CS

Proof. By Lemma 3.1.41, we have CG�" � CS. CS � CG�" holds as well.
In fact, later in this book, we introduce several special cases of propagating
context-conditional grammars and prove that even these grammars generate CS (see
Theorems 3.1.83 and 3.1.89). As a result, CG�" D CS. ut

Lemma 3.1.46. CG � RE

Proof. This lemma follows from Turing-Church thesis (see page 26). To obtain
an algorithm converting any context-conditional grammar to an equivalent phrase-
structure grammar, use the technique presented in Lemma 3.1.41. ut

Theorem 3.1.47. CG D RE

Proof. By Lemma 3.1.46, CG � RE. Later on, we define some special cases
of context-conditional grammars and demonstrate that they characterize RE (see
Theorems 3.1.62, 3.1.86, and 3.1.94). Thus, RE � CG. ut
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3.1.3 Random-Context Grammars

This section discusses three special cases of context-conditional grammars whose
conditions are nonterminal symbols, so their degree is not greater than .1; 1/:

Specifically, permitting grammars are of degree .1; 0/. Forbidding grammars are
of degree .0; 1/. Finally, random context grammars are of degree .1; 1/.

The present section, first, provides definitions and illustrates all the grammars
under discussion and, then, it establishes their generative power.

Definitions and Examples

We open this section by defining random context grammars and their two important
special cases—permitting and forbidding grammars. Later in this section, we
illustrate them.

Definition 3.1.48. Let G D .V , T, P, S/ be a context-conditional grammar. G
is called a random context grammar provided that every .A ! x;Per;For/ 2 P
satisfies Per � N and For � N. ut

Definition 3.1.49. Let G D .V , T, P, S/ be a random context grammar. G is
called a permitting grammar provided that every .A ! x;Per;For/ 2 P satisfies
For D ;. ut

Definition 3.1.50. Let G D .V , T, P, S/ be a random context grammar. G is
called a forbidding grammar provided that every .A ! x;Per;For/ 2 P satisfies
Per D ;. ut

The following conventions simplify rules in permitting and forbidding grammars.
Let G D .V , T, P, S/ be a permitting grammar, and let p D .A ! x;Per;For/ 2

P. Since For D ;, we usually omit the empty set of forbidding conditions. That is,
we write .A ! x;Per/ when no confusion arises.

Let G D .V , T, P, S/ be a forbidding grammar, and let p D .A ! x;Per;For/ 2

P. We write .A ! x;For/ instead of .A ! x;Per;For/ because Per D ; for all
p 2 P.

The families of languages defined by permitting grammars, forbidding gram-
mars, and random context grammars are denoted by Per, For, and RC, respectively.
To indicate that only propagating grammars are considered, we use the upper
index �". That is, Per�", For�", and RC�" denote the families of languages
defined by propagating permitting grammars, propagating forbidding grammars,
and propagating random context grammars, respectively.

Example 3.1.51 (See [DP89]). Let

G D
�
fS;A;B;C;D;A0;B0;C0; a; b; cg; fa; b; cg;P; S

�

be a permitting grammar, where P is defined as follows:
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P D
˚
.S ! ABC;;/;
.A ! aA0; fBg/;

.B ! bB0; fCg/;

.C ! cC0; fA0g/;

.A0 ! A; fB0g/;

.B0 ! B; fC0g/;

.C0 ! C; fAg/;

.A ! a; fBg/;

.B ! b; fCg/;

.C ! c;;/
�

Consider the string aabbcc. G generates this string in the following way

S) ABC ) aA0BC ) aA0bB0C ) aA0bB0cC0 )

aAbB0cC0 ) aAbBcC0 ) aAbBcC )

aabBcC ) aabbcC ) aabbcc

Observe that G is propagating and

L.G/ D
˚
anbncn j n � 1

�

which is a non-context-free language. ut

Example 3.1.52 (See [DP89]). Let

G D
�
fS;A;B;D; ag; fag;P; S

�

be a random context grammar. The set of rules P is defined as follows:

P D
˚
.S ! AA;;; fB;Dg/;

.A ! B;;; fS;Dg/;

.B ! S;;; fA;Dg/;

.A ! D;;; fS;Bg/;

.D ! a;;; fS;A;Bg/
�

Notice that G is a propagating forbidding grammar. For aaaaaaaa, G makes the
following derivation

S) AA ) AB ) BB ) BS ) SS ) AAS ) AAAA ) BAAA )

BABA ) BBBA ) BBBB ) SBBB ) SSBB ) SSSB )

SSSS ) AASSS )3 AAAAAAAA )8 DDDDDDDD )8 aaaaaaaa
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Clearly, G generates this non-context-free language

L.G/ D
n
a2

n
j n � 1

o
ut

Generative Power

We next establish several theorems concerning the generative power of the gram-
mars defined in the previous section.

Theorem 3.1.53. CF � Per�" � RC�" � CS

Proof. CF � Per�" follows from Example 3.1.51. Per�" � RC�" follows
from Theorem 2.7 in Chapter 3 in [RS97b]. Finally, RC�" � CS follows from
Theorems 1.2.4 and 1.4.5 in [DP89]. ut

Theorem 3.1.54. Per�" D Per � RC D RE

Proof. Per�" D Per follows from Theorem 1 in [Zet10]. By Theorem 1.2.5
in [DP89], RC D RE. Furthermore, from Theorem 2.7 in Chapter 3 in [RS97b],
it follows that Per � RC; thus, the theorem holds. ut

Lemma 3.1.55. ET0L � For�"

Proof. (See [Pen75].) Let L 2 ET0L, L D L.G/ for some ET0L grammar,

G D
�
V;T;P1; : : : ;Pt; S

�

Without loss of generality, we assume that G is propagating (see Theorem 2.3.41).
We introduce the alphabets

V.i/ D fa.i/ j a 2 Vg; 1 � i � t
V 0 D fa0 j a 2 Vg

V 00 D fa00 j a 2 Vg
NV D fNa j a 2 Tg

For w 2 V�, by w.i/, w0, w00, and Nw, we denote the strings obtained from w by
replacing each occurrence of a symbol a 2 V by a.i/, a0, a00, and Na, respectively. Let
P0 be the set of all random context rules defined as follows:

(1) for every a 2 V , add .a0 ! a00;;; NV [ V.1/ [ V.2/ [ 	 	 	 [ V.t// to P0;
(2) for every a 2 V for all 1 � i � t, add

.a00 ! a.i/;;; NV [ V 0 [ V.1/ [ V.2/ [ 	 	 	 [ V.i�1/ [ V.iC1/ [ 	 	 	 [ V.t//

to P0;
(3) for all i 2 f1; : : : ; tg for every a ! u 2 Pi, add .a.i/ ! u0;;;V 00 [ NV/ to P0;
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(4) for all a 2 T, add .a0 ! Na;;;V 00 [ V.1/ [ V.2/ [ 	 	 	 [ V.t// to P0;
(5) for all a 2 T, add .Na ! a;;;V 0 [ V 00 [ V.1/ [ V.2/ [ 	 	 	 [ V.t// to P0.

Then, define the random context grammar

G0 D
�
V 0 [ V 00 [ NV [ V.1/ [ V.2/ [ 	 	 	 [ V.t/;T;P0; S

�

that has only forbidding context conditions.
Let x0 be a string over V 0. To x0, we can apply only rules whose left-hand side is

in V 0.

(a) We use a0 ! a00 for some a0 2 V 0. The obtained sentential form contains
symbols of V 0 and V 00. Hence, we can use only rules of type (1). Continuing
in this way, we get x0)�

G0x00. By analogous arguments, we now have to rewrite
all symbols of x00 by rules of (2) with the same index .i/. Thus, we obtain x.i/.
To each symbol a.i/ in x.i/, we apply a rule a.i/ ! u0, where a ! u 2 Pi.
Since again all symbols in x.i/ have to be replaced before starting with rules of
another type, we simulate a derivation step in G and get z0, where x )G z in G.
Therefore, starting with a rule of (1), we simulate a derivation step in G, and
conversely, each derivation step in G can be simulated in this way.

(b) We apply a rule a0 ! Na to x0. Next, each a0 of T 0 occurring in x0 has to be
substituted by Na and then by a by using the rules constructed in (5). Therefore,
we obtain a terminal string only if x0 2 T 0�.

By these considerations, any successful derivation in G0 is of the form

S0)G0 S00 )G0 S.i0/

)G0 z0
1)

�
G0 z00

1)�
G0z

.i1/
1

:::

)�
G0 z0

n)�
G0 z00

n )�
G0z

.in/
n

)�
G0 znC1)

�
G0 NznC1)

�
G0 znC1

and such a derivation exists if and only if

S )G z1 )G z2 )G 	 	 	 )G zn )G znC1

is a successful derivation in G. Thus, L.G/ D L.G0/.
In order to finish the proof, it is sufficient to find a language that is not in ET0L

and can be generated by a forbidding grammar. A language of this kind is

L D
˚
b.bam/n j m � n � 0

�

which can be generated by the grammar

G D
�
fS;A;A0;B;B0;B00;C;D;Eg; fa; bg;P; s

�
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with P consisting of the following rules

.S ! SA;;;;/

.S ! C;;;;/

.C ! D;;; fS;A0;B0;B00;D;Eg/

.B ! B0a;;; fS;C;Eg/

.A ! B00a;;; fS;C;E;B00g/

.A ! A0a;;; fS;C;Eg/

.D ! C;;; fA;Bg/

.B0 ! B;;; fDg/

.B00 ! B;;; fDg/

.A0 ! A;;; fDg/

.D ! E;;; fS;A;A0;B0;B00;C;Eg/

.B ! b;;; fS;A;A0;B0;B00;C;Dg/

.E ! b;;; fS;A;A0;B;B0;B00;C;Dg/

First, we have the derivation

S)�
GSAn)GCAn)GDAn

Then, we have to replace all occurrences of A. If we want to replace an occurrence
of A by a terminal string in some steps, it is necessary to use A ! B00a. However,
this can be done at most once in a phase that replaces all As. Therefore, m � n. ut

Theorem 3.1.56. CF � ET0L � For�" � For � CS

Proof. According to Example 3.1.52, we already have CF � For�". By [RS80] and
Lemma 3.1.55, CF � ET0L � For�". Moreover, in [Pen75], it has been proved
that For�" � For � CS. Therefore, the theorem holds. ut

The following corollary summarizes the relations of language families generated
by random context grammars.

Corollary 3.1.57.

CF � Per�" � RC�" � CS

Per�" D Per � RC D RE

CF � ET0L � For�" � For � CS

Proof. This corollary follows from Theorems 3.1.53, 3.1.54, and 3.1.56. ut
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Open Problem 3.1.58. Are For�" and For identical? ut

3.1.4 Forbidding Context Grammars

Generalized forbidding grammars represent a generalized variant of forbidding
grammars (see Sect. 3.1.3) in which forbidding context conditions are formed by
finite languages.

This section consists of two subsections; Definitions and Generative Power and
Reduction. The former defines generalized forbidding grammars, and the latter
establishes their power.

Definitions

Next, we define generalized forbidding grammars.

Definition 3.1.59. Let G D .V , T, P, S/ be a context-conditional grammar. If every
.A ! x;Per;For/ satisfies Per D ;, then G is said to be a generalized forbidding
grammar (a gf-grammar for short). ut

The following convention simplifies the notation of gf-grammars. Let G D .V , T,
P, S/ be a gf-grammar of degree .r; s/. Since every .A ! x;Per;For/ 2 P implies
that Per D ;, we omit the empty set of permitting conditions. That is, we write
.A ! x;For/ instead of .A ! x;Per;For/. For simplicity, we also say that the
degree of G is s instead of .r; s/.

The families generated by gf-grammars and propagating gf-grammars of degree s
are denoted by GF.s/ and GF�".s/, respectively. Furthermore, set

GF D

1[

sD0

GF.s/

and

GF�" D

1[

sD0

GF�".s/

Generative Power and Reduction

In the present section, we establish the generative power of generalized forbidding
grammars, defined in the previous section. In fact, apart from establishing this
power, we also give several related results concerning the reduction of these
grammars. Indeed, we reduce these grammars with respect to the number of
nonterminals, the number of forbidding rules, and the length of forbidding strings.
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By analogy with Theorem 3.1.40, it is easy to see that gf-grammars of degree 0
are ordinary context-free grammars.

Theorem 3.1.60. GF�".0/ D GF.0/ D CF ut

Furthermore, gf-grammars of degree 1 are as powerful as forbidding grammars.

Theorem 3.1.61. GF.1/ D For

Proof. This simple proof is left to the reader. ut

Theorem 3.1.62. GF.2/ D RE

Proof. It is straightforward to prove that GF.2/ � RE; hence it is sufficient to prove
the converse inclusion.

Let L be a recursively enumerable language. Without any loss of generality we
assume that L is generated by a phrase-structure grammar

G D
�
V;T;P; S

�

in the Penttonen normal form (see Theorem 3.1.4). Set N D V � T.
Let @, $, S0 be new symbols and m be the cardinality of V [f@g. Clearly, m � 1.

Furthermore, let f be an arbitrary bijection from V [ f@g onto f1; : : : ;mg and f �1

be the inverse of f .
The gf-grammar

G0 D
�
V 0 [ f@; $; S0g;T;P0; S0

�

of degree 2 is defined as follows:

V 0 D W [ V; where
W D fŒAB ! AC; j� j AB ! AC 2 P; A;B;C 2 N; 1 � j � m C 1g

We assume that W, f@; $; S0g, and V are pairwise disjoint alphabets. The set of rules
P0 is defined in the following way

(1) add .S0 ! @S;;/ to P0;
(2) if A ! x 2 P, A 2 N, x 2 f"g [ T [ N2, then add .A ! x; f$g/ to P0;
(3) if AB ! AC 2 P, A;B;C 2 N, then

(3.a) add .B ! $ŒAB ! AC; 1�; f$g/ to P0;
(3.b) for all j D 1; : : : ;m, f .A/ 6D j, extend P0 by adding

�
ŒAB ! AC; j� ! ŒAB ! AC; j C 1�; ff �1.j/$g

�

(3.c) add .ŒAB ! AC; f .A/� ! ŒAB ! AC; f .A/C 1�;;/ and .ŒAB ! AC;m C

1� ! C;;/ to P0;

(4) add.@ ! ";N [ W [ f$g/ and .$ ! ";W/ to P0.
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Basically, the application of AB ! AC in G is simulated in G0 in the following
way. An occurrence of B is rewritten with $ŒAB ! AC; 1�. Then, the left adjoining
symbol of $ is checked not to be any symbol from .V [f@g/ except A. After this, the
right adjoining symbol of $ is ŒAB ! AC;m C 1�. This symbol is rewritten with C.
A formal proof is given below.

Immediately from the definition of P0 it follows that

S0 )C
G0 x

where x 2 .V 0 [ f@; S0g/�, implies that

1. S0 62 alph.x/;
2. if alph.x/ \ W ¤ ;, then #W.x/ D 1 and #f$gW.x/ D 1;
3. if x 62 T�, then the leftmost symbol of x is @.

Next, we define a finite substitution g from V� into V 0� such that for all B 2 V ,

g.B/ D fBg [
˚
ŒAB ! AC; j� 2 W j AB ! AC 2 P; A;C 2 N; j D 1; : : : ;m C 1

�

Let g�1 be the inverse of g.
To show that L.G/ D L.G0/, we first prove that

S )n
G x if and only if S )n0

G0 x0

where x0 D @v0Xw0, X 2 f$; "g, v0w0 2 g.x/, x 2 V�, for some n � 0, n0 � 1.

Only If. This is established by induction on n � 0. That is, we have to demonstrate
that S )n

G x, x 2 V�, n � 0, implies that S )C
G0 x0 for some x0 such that x0 D

@v0Xw0, X 2 f$; "g, v0w0 2 g.x/.

Basis. Let n D 0. The only x is S because S )0
G S. Clearly, S0 )G0 @S and

S 2 g.S/.

Induction Hypothesis. Suppose that the claim holds for all derivations of length n or
less, for some n � 0.

Induction Step. Let us consider any derivation of the form

S )nC1
G x

with x 2 V�. Since n C 1 � 1, there is some y 2 VC and p 2 P such that

S )n
G y )G x Œp�

and by the induction hypothesis, there is also a derivation of the form

S )n0

G0 y0
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for some n0 � 1, such that y0 D @r0Ys0, Y 2 f$; "g, and r0s0 2 g.y/.

(i) Let us assume that p D D ! y2 2 P, D 2 N, y2 2 f"g [ T [ N2, y D y1Dy3,
y1; y3 2 V�, and x D y1y2y3. From (2) it is clear that .D ! y2; f$g/ 2 P0.

(a) Let $ 62 alph.y0/. Then, we have y0 D @r0s0 D @y1Dy3,

S0 )n0

G0 @y1Dy3 )G0 @y1y2y3 Œ.D ! y2; f$g/�

and y1y2y3 2 g.y1y2y3/ D g.x/.
(b) Let Y D $ 2 sub.y0/ and W \ sub.y0/ D ;. Then, there is the following

derivation in G0

S0 )n0

G0 @r0$s0 )G0 @r0s0 Œ.$ ! ";W/�

By analogy with (a) above, we have @r0s0 D @y1Dy2, so

S0 )n0C1
G0 @y1Dy3 )G0 @y1y2y3 Œ.D ! y2; f$g/�

where y1y2y3 2 g.x/.
(c) Let $ŒAB ! AC; i� 2 sub.y0/ for some i 2 f1; : : : ;m C 1g, AB ! AC 2

P, A;B;C 2 N. Thus, y0 D @r0$ŒAB ! AC; i�t0, where s0 D ŒAB !

AC; i�t0. By the inspection of the rules (see (3)) it can be seen (and the
reader should be able to produce a formal proof) that we can express the
derivation

S0)�
G0y0

in the following form

S0 )�
G0 @r0Bt0

)G0 @r0$ŒAB ! AC; 1�t0 Œ.B ! $ŒAB ! AC; 1�; f$g/�

)i�1
G0 @r0$ŒAB ! AC; i�t0

Clearly, r0Bt0 2 g.y/ and $ 62 alph.r0Bt0/. Thus, r0Bt0 D y1Dy3, and there
is a derivation

S0)�
G0 @y1Dy3)G0@y1y2y3 Œ.D ! y2; f$g/�

and y1y2y3 2 g.x/.

(ii) Let p D AB ! AC 2 P, A;B;C 2 N, y D y1ABy2, y1; y2 2 V�, and x D

y1ACy2.

(a) Let $ 62 alph.y0/. Thus, r0s0 D y1ABy2. By the inspection of the rules
introduced in (3) (technical details are left to the reader), there is the
following derivation in G0
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S0 )n0

G0 @y1ABy2
)G0 @y1A$ŒAB ! AC; 1�y2

Œ.B ! $ŒAB ! AC; 1�; f$g/�

)G0 @y1A$ŒAB ! AC; 2�y2
Œ.ŒAB ! AC; 1� ! ŒAB ! AC; 2�; ff �1.1/$g/�

:::

)G0 @y1A$ŒAB ! AC; f .A/�y2
Œ.ŒAB ! AC; f .A/� 1� ! ŒAB ! AC; f .A/�;

ff �1.f .A/ � 1/$g/�

)G0 @y1A$ŒAB ! AC; f .A/C 1�y2
Œ.ŒAB ! AC; f .A/� ! ŒAB ! AC; f .A/C 1�;;/�

:::

)G0 @y1A$ŒAB ! AC;m C 1�y2
Œ.ŒAB ! AC;m� ! ŒAB ! AC;m C 1�; ff �1.m/$g/�

)G0 @y1A$Cy2
Œ.ŒAB ! AC;m C 1� ! C;;/�

such that y1ACy2 2 g.y1ACy2/ D g.x/.
(b) Let $ 2 alph.y0/, alph.y0/\ W D ;. By analogy with (b), the derivation

S0)�
G0@r0s0

with @r0s0 D @y1ABy2, can be constructed in G0. Then, by analogy
with (a), one can construct the derivation

S0)�
G0@y1ABy2)

�
G0 @y1A$Cy2

such that y1ACy2 2 g.x/.
(c) Let #f$gW.y0/ D 1. By analogy with (c), one can construct the derivation

S0)�
G0@y1ABy2

Next, by using an analogue from (a), the derivation

S0)�
G0@y1ABy2)

�
G0 @y1A$Cy2

can be constructed in G0 so y1ACy2 2 g.x/.

In (i) and (ii) above we have considered all possible forms of p. In cases (a), (b), (c)
of (i) and (ii), we have considered all possible forms of y0. In any of these cases, we
have constructed the desired derivation of the form

S0 )C
G0 x0
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such that x0 D @r0Xs0, X 2 f$; "g, r0s0 2 g.x/. Hence, we have established the
only-if part of our claim by the principle of induction.

If. This is also demonstrated by induction on n0 � 1. We have to demonstrate that
if S0 )n0

G0 x0; x0 D @r0Xs0, X 2 f$; "g, r0s0 2 g.x/, x 2 V�, for some n0 � 1, then
S)�

Gx:

Basis. For n0 D 1 the only x0 is @S since S0 )G0 @S. Because S 2 g.S/, we have
x D S. Clearly, S )0

G S.

Induction Hypothesis. Assume that the claim holds for all derivations of length at
most n0 for some n0 � 1. Let us show that it also holds for n0 C 1.

Induction Step. Consider any derivation of the form

S0 )n0C1
G0 x0

with x0 D @r0Xs0, X 2 f$; "g, r0s0 2 g.x/, x 2 V�. Since n0 C 1 � 2, we have

S0 )n0

G0 y0 )G0 x0 Œp0�

for some p0 D .Z0 ! w0;For/ 2 P0, y0 D @q0Yt0, Y 2 f$; "g, q0t0 2 g.y/, y 2 V�,
and by the induction hypothesis,

S)�
Gy

Suppose:

(i) Z0 2 N, w0 2 f"g [ T [ N2. By inspecting P0 (see (2)), we have For D f$g and
Z0 ! w0 2 P. Thus, $ 62 alph.y0/ and so q0t0 D y. Hence, there is the following
derivation

S)�
Gy)Gx ŒZ0 ! w0�

(ii) g�1.Z0/ D g�1.w0/. But then y D x, and by the induction hypothesis, we have
the derivation

S)�
Gy

(iii) p0 D .B ! $ŒAB ! AC; 1�; f$g/; that is, Z0 D B, w0 D $ŒAB ! AC; 1�,
For D f$g and so w0 2 f$gg.Z0/, Y D ", X D $. By analogy with (ii), we have

S)�
Gy

and y D x.
(iv) Z0 D Y D $; that is, p0 D .$ ! ";W/. Then, X D ", r0s0 D q0t0 2 g.y/, and

S)�
Gy
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(v) p0 D .ŒAB ! AC;m C 1� ! C;;/; that is, Z0 D ŒAB ! AC;m C 1�, w0 D C,
For D ;. From (3), it follows that there is a rule of the form AB ! AC 2 P.
Moreover, by inspecting (3), it is not too difficult to see (the technical details
are left to the reader) that Y D $, r0 D q0, t0 D ŒAB ! AC;m C 1�o0, s0 D Co0,
and the derivation

S0 )n0

G0 y0 )G0 x0 Œp0�

can be expressed as

S0 )�
G0 @q0Bo0

)G0 @q0$ŒAB ! AC; 1�o0 Œ.B ! $ŒAB ! AC; 1�; f$g/�

)mC1
G0 @q0$ŒAB ! AC;m C 1�o0 Œh�

)G0 @q0$Co0 Œ.ŒAB ! AC;m C 1� ! C;;/�

where

h D h1.ŒAB ! AC; f .A/� ! ŒAB ! AC; f .A/C 1�;;/h2;
h1 D .ŒAB ! AC; 1� ! ŒAB ! AC; 2�; ff �1.1/$g/

.ŒAB ! AC; 2� ! ŒAB ! AC; 3�; ff �1.2/$g/
:::

.ŒAB ! AC; f .A/� 1� ! ŒAB ! AC; f .A/�; ff �1.f .A/� 1/$g/

in which f .A/ D 1 implies that h1 D ",

h2 D .ŒAB ! AC; f .A/C 1� ! ŒAB ! AC; f .A/C 2�; ff �1.f .A/C 1/$g/
:::

.ŒAB ! AC;m� ! ŒAB ! AC;m C 1�; ff �1.m/$g/

in which f .A/ D m implies that h2 D "; that is, the rightmost symbol of q0 D r0

must be A.
Since q0t0 2 g.y/, we have y D q0Bo0. Because the rightmost symbol of q0 is A
and AB ! AC 2 P, we have

S)�
Gq0Bo0)Gq0Co0 ŒAB ! AC�

where q0Co0 D x.

By inspecting P0, we see that (i) through (v) cover all possible derivations of the
form

S0 )n0

G0 y0 )G0 x0

and thus we have established that

S)�
Gx if and only if S0 )C

G0 x0
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where x0 D @r0Xs0, r0s0 2 g.x/, X 2 f$; "g, x 2 V�, by the principle of induction.
A proof of the equivalence of G and G0 can easily be derived from above. By the

definition of g, we have g.a/ D fag for all a 2 T. Thus, we have for any x 2 T�,

S)�
Gx if and only if S0)�

G0@rXs

where X 2 f$; "g, rs D x. If X D ", then

@x )G0 x Œ.@ ! ";N [ W [ f$g/�

If X D $, then

@r$s )G0 @x Œ.$ ! ";W/� )G0 x Œ.@ ! ";N [ W [ f$g/�

Hence,

S )C
G x if and only if S0 )C

G0 x

for all x 2 T�, and so L.G/ D L.G0/. Thus, RE D GF.2/. ut

Theorem 3.1.63. GF.2/ D GF D RE

Proof. This theorem follows immediately from the definitions and Theorem 3.1.62.
ut

Examine the rules in G0 in the proof of Theorem 3.1.62 to establish the following
normal form.

Corollary 3.1.64. Every recursively enumerable language L over some alphabet T
can be generated by a gf-grammar G D .V, T, P [ fp1; p2g, S/ of degree 2 such that

(i) .A ! x;For/ 2 P implies that jxj D 2 and the cardinality of For is at most 1;
(ii) pi D .Ai ! ";Fori/, i D 1; 2, where Fori � V; that is, max-len.Fori/ � 1. ut

In fact, the corollary above represents one of the reduced forms of gf-grammars
of degree 2. Perhaps most importantly, it reduces the cardinality of the sets of
forbidding conditions so that if a rule contains a condition of length two, this
condition is the only context condition attached to the rule. Next, we study another
reduced form of gf-grammars of degree 2. We show that we can simultaneously
reduce the number of conditional rules and the number of nonterminals in gf-
grammars of degree 2 without any decrease of their generative power.

Theorem 3.1.65. Every recursively enumerable language can be defined by a gf-
grammar of degree 2 with no more than 13 forbidding rules and 15 nonterminals.

Proof. Let L 2 RE. By Theorem 3.1.11, without any loss of generality, we assume
that L is generated by a phrase-structure grammar G of the form

G D
�
V;T;P [ fAB ! ";CD ! "g; S

�
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such that P contains only context-free rules and

V � T D
˚
S;A;B;C;D

�

We construct a gf-grammar of degree 2

G0 D
�
V 0;T;P0; S0

�

where

V 0 D V [ W
W D fS0;@; QA; QB; h"Ai; $; QC; QD; h"Ci; #g; V \ W D ;

in the following way. Let

N0 D .V 0 � T/ � fS0;@g

Informally, N0 denotes the set of all nonterminals in G0 except S0 and @. Then, the
set of rules P0 is constructed by performing (1) through (4), given next.

(1) If H ! y 2 P, H 2 V � T, y 2 V�, then add .H ! y;;/ to P0;
(2) add .S0 ! @S@;;/ and .@ ! ";N0/ to P0;
(3) extend P0 by adding

.A ! QA; f QAg/

.B ! QB; f QBg/

. QA ! h"Ai; f QAa j a 2 V 0 � f QBgg/

. QB ! $; fa QB j a 2 V 0 � fh"Aigg/

.h"Ai ! "; f QBg/

.$ ! "; fh"Aig/

(4) extend P0 by adding

.C ! QC; f QCg/

.D ! QD; f QDg/

. QC ! h"Ci; f QCa j a 2 V 0 � f QDgg/

. QD ! #; fa QD j a 2 V 0 � fh"Cigg/

.h"Ci ! "; f QDg/

.# ! "; fh"Cig/

Next, we prove that L.G0/ D L.G/.
Notice that G0 has degree 2 and contains only 13 forbidding rules and 15

nonterminals. The rules of (3) simulate the application of AB ! " in G0 and the
rules of (4) simulate the application of CD ! " in G0.
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Let us describe the simulation of AB ! ". First, one occurrence of A and one
occurrence of B are rewritten with QA and QB, respectively (no sentential form contains
more than one occurrence of QA or QB). The right neighbor of QA is checked to be QB
and QA is rewritten with h"Ai. Then, analogously, the left neighbor of QB is checked
to be h"Ai and QB is rewritten with $. Finally, h"Ai and $ are erased. The simulation
of CD ! " is analogical.

To establish L.G/ D L.G0/, we first prove several claims.

Claim 3.1.66. S0 )C
G0 w0 implies that w0 has one of the following two forms

(I) w0 D @x0@, x0 2 .N0 [ T/�, alph.x0/\ N0 6D ;;
(II) w0 D Xx0Y, x0 2 T�, X;Y 2 f@; "g.

Proof. The start symbol S0 is always rewritten with @S@. After this initial step,
@ can be erased in a sentential form provided that any nonterminal occurring in
the sentential form belongs to f@; S0g (see N0 and (2) in the definition of P0). In
addition, notice that only rules of (2) contain @ and S0. Thus, any sentential form
containing some nonterminals from N0 is of the form (I).

Case (II) covers sentential forms containing no nonterminal from N0. At this
point, @ can be erased, and we obtain a string from L.G0/. ut

Claim 3.1.67. S0 )�
G0 w0 implies that #QX.w

0/ � 1 for all QX 2 f QA; QB; QC; QDg and some
w0 2 V 0�.

Proof. By the inspection of rules in P0, the only rule that can generate QX is of the
form .X ! QX; f QXg/. This rule can be applied only when no QX occurs in the rewritten
sentential form. Thus, it is impossible to derive w0 from S0 such that #QX.w

0/ � 2. ut

Informally, next claim says that every occurrence of h"Ai in derivations from S0

is always followed either by QB or $, and every occurrence of h"Ci is always followed
either by QD or #.

Claim 3.1.68. The following two statements hold true.

(I) S0)�
G0y0

1h"Aiy0
2 implies that y0

2 2 V 0C and lms.y0
2/ 2 f QB; $g for any y0

1 2 V 0�.
(II) S0)�

G0y0
1h"Ciy0

2 implies that y0
2 2 V 0C and lms.y0

2/ 2 f QD; #g for any y0
1 2 V 0�.

Proof. We establish this claim by examination of all possible forms of derivations
that may occur when deriving a sentential form containing h"Ai or h"Ci.

(I) By the definition of P0, the only rule that can generate h"Ai is p D . QA !

h"Ai; f QAa j a 2 V 0 � f QBgg/. The rule can be applied provided that QA occurs in
a sentential form. It also holds that QA has always a right neighbor (as follows
from Claim 3.1.66), and according to the set of forbidding conditions in p, QB is
the only allowed right neighbor of QA. Furthermore, by Claim 3.1.67, no other
occurrence of QA or QB can appear in the given sentential form. Consequently, we
obtain a derivation

S0)�
G0u0

1
QA QBu0

2 )G0 u0
1h"Ai QBu0

2 Œp�
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for some u0
1; u

0
2 2 V 0�, QA; QB 62 alph.u0

1u
0
2/. Obviously, h"Ai is always followed

by QB in u0
1h"Ai QBu0

2.
Next, we discuss how G0 can rewrite the substring h"Ai QB in u0

1h"Ai QBu0
2. There

are only two rules having the nonterminals h"Ai or QB on their left-hand side,
p1 D . QB ! $; fa QB j a 2 V 0 � fh"Aigg/ and p2 D .h"Ai ! "; f QBg/. G0 cannot
use p2 to erase h"Ai in u0

1h"Ai QBu0
2 because p2 forbids an occurrence of QB in the

rewritten string. However, we can rewrite QB to $ by using p1 because its set
of forbidding conditions defines that the left neighbor of QB must be just h"Ai.
Hence, we obtain a derivation of the form

S0 )�
G0 u0

1
QA QBu0

2 )G0 u0
1h"Ai QBu0

2 Œp�
)�

G0 v
0
1h"Ai QBv0

2 )G0 v
0
1h"Ai$v0

2 Œp1�

Notice that during this derivation, G0 may rewrite u0
1 and u0

2 with some v0
1 and

v0
2, respectively (v0

1; v
0
2 2 V 0�); however, h"Ai QB remains unchanged after this

rewriting.
In this derivation we obtained the second symbol $, which can appear as the
right neighbor of h"Ai. It is sufficient to show that there is no other symbol that
can appear immediately after h"Ai. By the inspection of P0, only .$ ! "; fh"Aig/

can rewrite $. However, this rule cannot be applied when h"Ai occurs in the
given sentential form. In other words, the occurrence of $ in the substring h"Ai$
cannot be rewritten before h"Ai is erased by p2. Hence, h"Ai is always followed
either by QB or $, so the first part of Claim 3.1.68 holds.

(II) By the inspection of rules simulating AB ! " and CD ! " in G0 (see (3)
and (4) in the definition of P0), these two sets of rules work analogously. Thus,
part (II) of Claim 3.1.68 can be proved by analogy with part (I). ut

Let us return to the main part of the proof. Let g be a finite substitution from .N0[

T/� to V� defined as follows:

(a) for all X 2 V , g.X/ D fXg;
(b) g. QA/ D fAg, g. QB/ D fBg, g.h"Ai/ D fAg, g.$/ D fB;ABg;
(c) g. QC/ D fCg, g. QD/ D fDg, g.h"Ci/ D fCg, g.#/ D fC;CDg.

Having this substitution, we can now prove the following claim.

Claim 3.1.69. S)�
G x if and only if S0 )C

G0 @x0@ for some x 2 g.x0/, x 2 V�,
x0 2 .N0 [ T/�.

Proof. The claim is proved by induction on the length of derivations.

Only If. We show that

S )m
G x implies S0 )C

G0 @x@

where m � 0, x 2 V�; clearly x 2 g.x/. This is established by induction on m � 0.

Basis. Let m D 0. That is, S )0
G S. Clearly, S0 )G0 @S@:
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Induction Hypothesis. Suppose that the claim holds for all derivations of length m
or less, for some m � 0.

Induction Step. Let us consider any derivation of the form

S )mC1
G x; x 2 V�

Since m C 1 � 1, there is some y 2 VC and p 2 P [ fAB ! ";CD ! "g such that

S )m
G y )G x Œp�

By the induction hypothesis, there is a derivation

S0 )C
G0 @y@

There are the following three cases that cover all possible forms of p.

(i) Let p D H ! y2 2 P; H 2 V � T; y2 2 V�. Then, y D y1Hy3 and x D y1y2y3,
y1; y3 2 V�. Because we have .H ! y2;;/ 2 P0,

S0 )C
G0 @y1Hy3@ )G0 @y1y2y3@ Œ.H ! y2;;/�

and y1y2y3 D x.
(ii) Let p D AB ! ". Then, y D y1ABy3 and x D y1y3, y1; y3 2 V�. In this case,

there is the following derivation

S0 )C
G0 @y1ABy3@

)G0 @y1 QABy3@ Œ.A ! QA; f QAg/�

)G0 @y1 QA QBy3@ Œ.B ! QB; f QBg/�

)G0 @y1h"Ai QBy3@ Œ. QA ! h"Ai; f QAa j a 2 V 0 � f QBgg/�

)G0 @y1h"Ai$y3@ Œ. QB ! $; fa QB j a 2 V 0 � fh"Aigg/�

)G0 @y1$y3@ Œ.h"Ai ! "; f QBg/�

)G0 @y1y3@ Œ.$ ! "; fh"Aig/�

(iii) Let p D CD ! ". Then, y D y1CDy3 and x D y1y3, y1; y3 2 V�. In this case,
there exists the following derivation

S0 )C
G0 @y1CDy3@

)G0 @y1 QCDy3@ Œ.C ! QC; f QCg/�

)G0 @y1 QC QDy3@ Œ.D ! QD; f QDg/�

)G0 @y1h"Ci QDy3@ Œ. QC ! h"Ci; feCa j a 2 V 0 � feDgg/�

)G0 @y1h"Ci#y3@ Œ. QD ! #; fa QD j a 2 V 0 � fh"Cigg/�

)G0 @y1#y3@ Œ.h"Ci ! "; f QDg/�

)G0 @y1y3@ Œ.# ! "; fh"Cig/�
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If. By induction on the length n of derivations in G0, we prove that

S0 )n
G0 @x0@ implies S)�

Gx

for some x 2 g.x0/, x 2 V�, x0 2 .N0 [ T/�, n � 1.

Basis. Let n D 1. According to the definition of P0, the only rule rewriting S0 is
.S0 ! @S@;;/, so S0 )G0 @S@: It is obvious that S )0

G S and S 2 g.S/.

Induction Hypothesis. Assume that the claim holds for all derivations of length n or
less, for some n � 1.

Induction Step. Consider any derivation of the form

S0 )nC1
G0 @x0@; x0 2 .N0 [ T/�

Since n C 1 � 2, there is some y0 2 .N0 [ T/C and p0 2 P0 such that

S0 )n
G0 @y0@ )G0 @x0@ Œp0�

and by the induction hypothesis, there is also a derivation

S)�
Gy

such that y 2 g.y0/.
By the inspection of P0, the following cases (i) through (xiii) cover all possible

forms of p0.

(i) Let p0 D .H ! y2;;/ 2 P0, H 2 V � T, y2 2 V�. Then, y0 D y0
1Hy0

3,
x0 D y0

1y2y
0
3, y0

1; y
0
3 2 .N0[T/�, and y has the form y D y1Zy3, where y1 2 g.y0

1/,
y3 2 g.y0

3/, and Z 2 g.H/. Because for all X 2 V � T: g.X/ D fXg, the only
Z is H; thus, y D y1Hy3. By the definition of P0 (see (1)), there exists a rule
p D H ! y2 in P, and we can construct the derivation

S)�
Gy1Hy3)Gy1y2y3 Œp�

such that y1y2y3 D x, x 2 g.x0/.
(ii) Let p0 D .A ! QA; f QAg/. Then, y0 D y0

1Ay0
3, x0 D y0

1
QAy0
3, y0

1; y
0
3 2 .N0 [ T/� and

y D y1Zy3, where y1 2 g.y0
1/, y3 2 g.y0

3/ and Z 2 g.A/. Because g.A/ D fAg,
the only Z is A, so we can express y D y1Ay3. Having the derivation S)�

Gy
such that y 2 g.y0/, it is easy to see that also y 2 g.x0/ because A 2 g. QA/.

(iii) Let p0 D .B ! QB; f QBg/. By analogy with (ii), y0 D y0
1By0

3, x0 D y0
1
QBy0
3, y D

y1By3, where y0
1; y

0
3 2 .N0 [T/�, y1 2 g.y0

1/, y3 2 g.y0
3/; thus, y 2 g.x0/ because

B 2 g. QB/.
(iv) Let p0 D . QA ! h"Ai; f QAa j a 2 V 0 � f QBgg/. In this case, it holds that

(iv.i) application of p0 implies that QA 2 alph.y0/, and moreover, by
Claim 3.1.67, we have #QA.y

0/ � 1;
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(iv.ii) QA has always a right neighbor in @y0@;
(iv.iii) according to the set of forbidding conditions in p0, the only allowed

right neighbor of QA is QB.

Hence, y0 must be of the form y0 D y0
1
QA QBy0

3, where y0
1; y

0
3 2 .N0 [ T/� and

QA 62 alph.y0
1y

0
3/. Then, x0 D y0

1h"Ai QBy0
3 and y is of the form y D y1Zy3, where

y1 2 g.y0
1/; y3 2 g.y0

3/ and Z 2 g. QA QB/. Because g. QA QB/ D fABg, the only
Z is AB; thus, we obtain y D y1ABy3. By the induction hypothesis, we have a
derivation S)�

Gy such that y 2 g.y0/. According to the definition of g, y 2 g.x0/

as well because A 2 g.h"Ai/ and B 2 g. QB/.
(v) Let p0 D . QB ! $; fa QB j a 2 V 0 � fh"Aigg/. Then, it holds that

(v.i) QB 2 alph.y0/ and, by Claim 3.1.67, #QB.y
0/ � 1;

(v.ii) QB has always a left neighbor in @y0@;
(v.iii) by the set of forbidding conditions in p0, the only allowed left neighbor

of QB is h"Ai.

Therefore, we can express y0 D y0
1h"Ai QBy0

3, where y0
1; y

0
3 2 .N0 [ T/� and

QB 62 alph.y0
1y

0
3/. Then, x0 D y0

1h"Ai$y0
3 and y D y1Zy3, where y1 2 g.y0

1/,
y3 2 g.y0

3/, and Z 2 g.h"Ai QB/. By the definition of g, g.h"Ai QB/ D fABg, so
Z D AB and y D y1ABy3. By the induction hypothesis, we have a derivation
S)�

Gy such that y 2 g.y0/. Because A 2 g.h"Ai/ and B 2 g.$/, y 2 g.x0/ as
well.

(vi) Let p0 D .h"Ai ! "; f QBg/. An application of .h"Ai ! "; f QBg/ implies that h"Ai

occurs in y0. Claim 3.1.68 says that h"Ai has either QB or $ as its right neighbor.
Since the forbidding condition of p0 forbids an occurrence of QB in y0, the right
neighbor of h"Ai must be $. As a result, we obtain y0 D y0

1h"Ai$y0
3, where

y0
1; y

0
3 2 .N0 [ T/�. Then, x0 D y0

1$y0
3, and y is of the form y D y1Zy3, where

y1 2 g.y0
1/, y3 2 g.y0

3/, and Z 2 g.h"Ai$/. By the definition of g, g.h"Ai$/ D

fAB;AABg. If Z D AB, y D y1ABy3. Having the derivation S)�
Gy; it holds that

y 2 g.x0/ because AB 2 g.$/.
(vii) Let p0 D .$ ! "; fh"Aig/. Then, y0 D y0

1$y0
3 and x0 D y0

1y
0
3, where y0

1; y
0
3 2

.N0 [ T/�. Express y D y1Zy3 so that y1 2 g.y0
1/, y3 2 g.y0

3/, and Z 2 g.$/,
where g.$/ D fB;ABg. Let Z D AB. Then, y D y1ABy3, and there exists the
derivation

S)�
Gy1ABy3)Gy1y3 ŒAB ! "�

where y1y3 D x, x 2 g.x0/.

In cases (ii) through (vii), we discussed all six rules simulating the application
of AB ! " in G0 (see (3) in the definition of P0). Cases (viii) through (xiii) should
cover the rules simulating the application of CD ! " in G0 (see (4)). However, by
the inspection of these two sets of rules, it is easy to see that they work analogously.
Therefore, we leave this part of the proof to the reader.

We have completed the proof and established Claim 3.1.69 by the principle of
induction. ut
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Observe that L.G/ D L.G0/ can be easily derived from the above claim.
According to the definition of g, we have g.a/ D fag for all a 2 T. Thus, from
Claim 3.1.69, we have for any x 2 T�

S)�
Gx if and only if S0 )C

G0 @x@

Since

@x@ )2
G0 x Œ.@ ! ";N0/.@ ! ";N0/�

we obtain for any x 2 T�:

S)�
Gx if and only if S0 )C

G0 x

Consequently, L.G/ D L.G0/, and the theorem holds. ut

3.1.5 Semi-Conditional Context Grammars

The notion of a semi-conditional grammar, discussed in this section, is defined as a
context-conditional grammar in which the cardinality of any context-conditional set
is no more than one.

The present section consists of two subsections; Definitions and Examples and
Generative Power. Frist defines and illustrates semi-conditional grammars, while the
former studies their generative power.

Definitions and Examples

The definition of a semi-conditional grammar opens this section.

Definition 3.1.70. Let G D .V , T, P, S/ be a context-conditional grammar. G is
called a semi-conditional grammar (an sc-grammar for short) provided that every
.A ! x;Per;For/ 2 P satisfies card.Per/ � 1 and card.For/ � 1. ut

Let G D .V , T, P, S/ be an sc-grammar, and let .A ! x;Per;For/ 2 P. For
brevity, we omit braces in each .A ! x;Per;For/ 2 P, and instead of ;, we write 0.
For instance, we write .A ! x;BC; 0/ instead of .A ! x; fBCg;;/.

The families of languages generated by sc-grammars and propagating sc-
grammars of degree .r; s/ are denoted by SC.r; s/ and SC�".r; s/, respectively. The
families of languages generated by sc-grammars and propagating sc-grammars of
any degree are defined as

SC D

1[

rD0

1[

sD0

SC.r; s/



104 3 Regulated Grammars and Computation

and

SC�" D

1[

rD0

1[

sD0

SC�".r; s/

First, we give examples of sc-grammars with degrees .1; 0/, .0; 1/, and .1; 1/.

Example 3.1.71 (See [P8̆5]). Let us consider an sc-grammar

G D
�
fS;A;B;A0;B0; a; bg; fa; bg;P; S

�

where

P D
˚
.S ! AB; 0; 0/; .A ! A0A0;B; 0/;
.B ! bB0; 0; 0/; .A0 ! A;B0; 0/;

.B0 ! B; 0; 0/; .B ! b; 0; 0/;

.A0 ! a; 0; 0/; .A ! a; 0; 0/
�

Observe that A can be replaced by A0A0 only if B occurs in the rewritten string,
and A0 can be replaced by A only if B0 occurs in the rewritten string. If there is an
occurrence of B, the number of occurrences of A and A0 can be doubled. However,
the application of .B ! bB0; 0; 0/ implies an introduction of one occurrence of b.
As a result,

L.G/ D
˚
anbm j m � 1; 1 � n � 2m

�

which is a non-context-free language. ut

Example 3.1.72 (See [P8̆5]). Let

G D
�
fS;A;B;A0;A00;B0; a; b; cg; fa; b; cg;P; S

�

be an sc-grammar, where

P D
˚
.S ! AB; 0; 0/; .A ! A0; 0;B0/;

.A0 ! A00A00; 0; c/; .A00 ! A; 0;B/;

.B ! bB0; 0; 0/; .B0 ! B; 0; 0/;

.B ! c; 0; 0/; .A ! a; 0; 0/;

.A00 ! a; 0; 0/
�

In this case, we get the non-context-free language

L.G/ D
˚
anbmc j m � 0; 1 � n � 2mC1

�
ut



3.1 Context-Based Grammatical Regulation 105

Example 3.1.73. Let

G D
�
fS;P;Q;R;X;Y;Z; a; b; c; d; e; f g; fa; b; c; d; e; f g;P; S

�

be an sc-grammar, where

P D
˚
.S ! PQR; 0; 0/;
.P ! aXb;Q;Z/;
.Q ! cYd;X;Z/;
.R ! eZf ;X;Q/;
.X ! P;Z;Q/;
.Y ! Q;P;R/;
.Z ! R;P;Y/;
.P ! ";Q;Z/;
.Q ! ";R;P/;
.R ! "; 0;Y/

�

Note that this grammar is an sc-grammar of degree .1; 1/. Consider aabbccddeeff .
For this string, G makes the following derivation

S) PQR ) aXbQR ) aXbcYdR ) aXbcYdeZf )

aPbcYdeZf ) aPbcQdeZf ) aPbcQdeRf )

aaXbbcQdeRf ) aaXbbccYddeRf ) aaXbbccYddeeZff )

aaPbbccYddeeZff ) aaPbbccQddeeZff ) aaPbbccQddeeRff )

aabbccQddeeRff ) aabbccddeeRff ) aabbccddeeff

Clearly, G generates the following language

L.G/ D
˚
anbncndnenf n j n � 0

�

As is obvious, this language is non-context-free. ut

Generative Power

The present section establishes the generative power of sc-grammars.

Theorem 3.1.74. SC�".0; 0/ D SC.0; 0/ D CF

Proof. Follows directly from the definitions. ut

Theorem 3.1.75. CF � SC�".1; 0/, CF � SC�".0; 1/

Proof. In Examples 3.1.71 and 3.1.72, we show propagating sc-grammars of
degrees .1; 0/ and .0; 1/ that generate non-context-free languages. Therefore, the
theorem holds. ut
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Theorem 3.1.76. SC�".1; 1/ � CS

Proof. Consider a propagating sc-grammar of degree .1; 1/

G D
�
V;T;P; S

�

If .A ! x;A; ˇ/ 2 P, then the permitting condition A does not impose any
restriction. Hence, we can replace this rule by .A ! x; 0; ˇ/. If .A ! x; ˛;A/ 2 P,
then this rule cannot ever be applied; thus, we can remove it from P. Let T 0 D

fa0 j a 2 Tg and V 0 D V [ T 0 [ fS0;X;Yg. Define a homomorphism � from V�

to ..V � T/ [ .T 0//� as �.a/ D a0 for all a 2 T and �.A/ D A for every A 2 V � T.
Furthermore, introduce a function g from V [ f0g to 2..V�T/[T0/ as g.0/ D ;,
g.a/ D fa0g for all a 2 T, and g.A/ D fAg for all A 2 V � T. Next, construct
the propagating random context grammar

G0 D
�
V 0;T [ fcg;P0; S0

�

where

P0 D f.S0 ! SX;;;;/; .X ! Y;;;;/; .Y ! c;;;;/g [

f.A ! �.x/; g.˛/ [ fXg; g.ˇ// j .A ! x; ˛; ˇ/ 2 P
�

[

f.a0 ! a; fYg;;/ j a 2 Tg

It is obvious that L.G0/ D L.G/fcg. Therefore, L.G/fcg 2 RC�". Recall that
RC�" is closed under restricted homomorphisms (see page 48 in [DP89]), and by
Theorem 3.1.53, it holds that RC�" � CS. Thus, we obtain SC�".1; 1/ � CS. ut

The following corollary summarizes the generative power of propagating sc-
grammars of degrees .1; 0/, .0; 1/, and .1; 1/—that is, the propagating sc-grammars
containing only symbols as their context conditions.

Corollary 3.1.77.

CF � SC�".0; 1/ � SC�".1; 1/

CF � SC�".1; 0/ � SC�".1; 1/

SC�".1; 1/ � RC�" � CS

Proof. This corollary follows from Theorems 3.1.74, 3.1.75, and 3.1.76. ut

The next theorem says that propagating sc-grammars of degrees .1; 2/, .2; 1/
and propagating sc-grammars of any degree generate exactly the family of context-
sensitive languages. Furthermore, if we allow erasing rules, these grammars gener-
ate the family of recursively enumerable languages.
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Theorem 3.1.78.

CF
�

SC�".2; 1/ D SC�".1; 2/ D SC�" D CS
�

SC.2; 1/ D SC.1; 2/ D SC D RE

Proof. In the next section, we prove a stronger result in terms of a special
variant of sc-grammars—simple semi-conditional grammars (see Theorems 3.1.89
and 3.1.94). Therefore, we omit the proof here. ut

In [Oku09], the following theorem is proved. It shows that RE can be character-
ized even by sc-grammars of degree .2; 1/ with a reduced number of nonterminals
and conditional rules.

Theorem 3.1.79 (See Theorem 1 in [Oku09]). Every recursively enumerable
language can be generated by an sc-grammar of degree .2; 1/ having no more than
9 conditional rules and 10 nonterminals.

3.1.6 Simple Semi-Conditional Context Grammars

The notion of a simple semi-conditional grammar—that is, the subject of this
section—is defined as an sc-grammar in which every rule has no more than one
condition.

The present section consists of two subsections. First, it defines simple semi-
conditional grammars, later, it discusses their generative power and reduction.

Definitions and Examples

First, we define simple semi-conditional grammars. Then, we illustrate them.

Definition 3.1.80. Let G D .V , T, P, S/ be a semi-conditional grammar. G is
a simple semi-conditional grammar (an ssc-grammar for short) if .A ! x; ˛; ˇ/ 2 P
implies that 0 2 f˛; ˇg. ut

The families of languages generated by ssc-grammars and propagating ssc-
grammars of degree .r; s/ are denoted by SSC.r; s/ and SSC�".r; s/, respectively.
Furthermore, set

SSC D

1[

rD0

1[

sD0

SSC.r; s/

and

SSC�" D

1[

rD0

1[

sD0

SSC�".r; s/
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The following proposition provides an alternative definition based on context-
conditional grammars. Let G D .V , T, P, S/ be a context-conditional grammar. G
is an ssc-grammar if and only if every .A ! x;Per;For/ 2 P satisfies card.Per/C

card.For/ � 1.

Example 3.1.81. Let

G D
�
fS;A;X;C;Y; a; bg; fa; bg;P; S

�

be an ssc-grammar, where

P D
˚
.S ! AC; 0; 0/;
.A ! aXb;Y; 0/;
.C ! Y;A; 0/;
.Y ! Cc; 0;A/;
.A ! ab;Y; 0/;
.Y ! c; 0;A/;
.X ! A;C; 0/

�

Notice that G is propagating, and it has degree .1; 1/. Consider aabbcc. G derives
this string as follows:

S) AC ) AY ) aXbY ) aXbCc )

aAbCc ) aAbYc ) aabbYc ) aabbcc

Obviously,

L.G/ D
˚
anbncn j n � 1

�
ut

Example 3.1.82. Let

G D
�
fS;A;B;X;Y; ag; fag;P; S

�

be an ssc-grammar, where

P D
˚
.S ! a; 0; 0/;
.S ! X; 0; 0/;
.X ! YB; 0;A/;
.X ! aB; 0;A/;
.Y ! XA; 0;B/;
.Y ! aA; 0;B/;
.A ! BB;XA; 0/;
.B ! AA;YB; 0/;
.B ! a; a; 0/

�
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G is a propagating ssc-grammar of degree .2; 1/. Consider the string aaaaaaaa. G
derives this string as follows:

S) X ) YB ) YAA ) XAAA ) XBBAA ) XBBABB )

XBBBBBB ) aBBBBBBB ) aBBaBBBB )6 aaaaaaaa

Observe that G generates the following non-context-free language

L.G/ D
˚
a2

n
j n � 0

�
ut

Generative Power and Reduction

The power and reduction of ssc-grammars represent the central topic discussed in
this section.

Theorem 3.1.83. SSC�".2; 1/ D CS

Proof. Because SSC�".2; 1/ � CG�" and Lemma 3.1.41 implies that CG�" � CS,
it is sufficient to prove the converse inclusion.

Let G D .V , T, P, S/ be a context-sensitive grammar in the Penttonen normal
form (see Theorem 3.1.5). We construct an ssc-grammar

G0 D
�
V [ W;T;P0; S

�

that generates L.G/. Let

W D
˚

QB j AB ! AC 2 P; A;B;C 2 V � T
�

Define P0 in the following way

(1) if A ! x 2 P, A 2 V � T, x 2 T [ .V � T/2, then add .A ! x; 0; 0/ to P0;
(2) if AB ! AC 2 P, A;B;C 2 V � T, then add .B ! QB; 0; QB/, . QB ! C;A QB; 0/,

. QB ! B; 0; 0/ to P0.

Notice that G0 is a propagating ssc-grammar of degree .2; 1/. Moreover, from (2),
we have for any QB 2 W,

S)�
G0w implies #QB.w/ � 1

for all w 2 V 0� because the only rule that can generate QB is of the form .B !
QB; 0; QB/.

Let g be a finite substitution from V� into .V [ W/� defined as follows: for all
D 2 V ,

(1) if QD 2 W, then g.D/ D fD; QDg;
(2) if QD 62 W, then g.D/ D fDg.
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Claim 3.1.84. For any x 2 VC, m; n � 0, S )m
G x if and only if S )n

G0 x0 with
x0 2 g.x/.

Proof. The proof is divided into the only-if part and the if part.

Only If. This is proved by induction on m � 0.

Basis. Let m D 0. The only x is S as S )0
G S. Clearly, S )n

G0 S for n D 0 and
S 2 g.S/.

Induction Hypothesis. Assume that the claim holds for all derivations of length m or
less, for some m � 0.

Induction Step. Consider any derivation of the form

S )mC1
G x

where x 2 VC. Because m C 1 � 1, there is some y 2 V� and p 2 P such that

S )m
G y )G x Œp�

By the induction hypothesis,

S )n
G0 y0

for some y0 2 g.y/ and n � 0. Next, we distinguish between two cases: case (i)
considers p with one nonterminal on its left-hand side, and case considers p with
two nonterminals on its left-hand side.

(i) Let p D D ! y2 2 P, D 2 V � T, y2 2 T [ .V � T/2, y D y1Dy3, y1; y3 2 V�,
x D y1y2y3, y0 D y0

1Xy0
3, y0

1 2 g.y1/, y0
3 2 g.y3/, and X 2 g.D/. By (1) in the

definition of P0, .D ! y2; 0; 0/ 2 P. If X D D, then

S )n
G0 y0

1Dy0
3 )G0 y0

1y2y
0
3 Œ.D ! y2; 0; 0/�

Because y0
1 2 g.y1/, y0

3 2 g.y3/, and y2 2 g.y2/, we obtain y0
1y2y

0
3 2

g.y1y2y3/ D g.x/. If X D QD, we have .X ! D; 0; 0/ in P0, so

S )n
G0 y0

1Xy0
3 )G0 y0

1Dy0
3 )G0 y0

1y2y
0
3 Œ.X ! D; 0; 0/.D ! y2; 0; 0/�

and y0
1y2y

0
3 2 g.x/.

(ii) Let p D AB ! AC 2 P, A;B;C 2 V � T, y D y1ABy2, y1; y2 2 V�, x D

y1ACy2, y0 D y0
1XYy0

2, y0
1 2 g.y1/, y0

2 2 g.y2/, X 2 g.A/, and Y 2 g.B/. Recall
that for any QB, #QB.y

0/ � 1 and . QB ! B; 0; 0/ 2 P0. Then,

y0 )i
G0 y0

1ABy0
2
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for some i 2 f0; 1; 2g. At this point, we have

S )�
G0 y0

1ABy0
2

)G0 y0
1A QBy0

2 Œ.B ! QB; 0;eB/�
)G0 y0

1ACy0
2 Œ.

QB ! C;A QB; 0/�

where y0
1ACy0

2 2 g.x/.

If. This is established by induction on n � 0; in other words, we demonstrate that if
S )n

G0 x0 with x0 2 g.x/ for some x 2 VC, then S)�
Gx.

Basis. For n D 0, x0 surely equals S as S )0
G0 S. Because S 2 g.S/, we have x D S.

Clearly, S )0
G S.

Induction Hypothesis. Assume that the claim holds for all derivations of length n or
less, for some n � 0.

Induction Step. Consider any derivation of the form

S )nC1
G0 x0

with x0 2 g.x/, x 2 VC. As n C 1 � 1, there exists some y 2 VC such that

S )n
G0 y0 )G0 x0 Œp�

where y0 2 g.y/. By the induction hypothesis,

S)�
Gy

Let y0 D y0
1B

0y0
2, y D y1By2, y0

1 2 g.y1/, y0
2 2 g.y2/, y1; y2 2 V�, B0 2 g.B/,

B 2 V � T, x0 D y0
1z

0y0
2, and p D .B0 ! z0; ˛; ˇ/ 2 P0. The following three cases

cover all possible forms of the derivation step y0 )G0 x0 Œp�.

(i) Let z0 2 g.B/. Then,

S)�
Gy1By2

where y0
1z

0y0
2 2 g.y1By2/; that is, x0 2 g.y1By2/.

(ii) Let B0 D B 2 V � T, z0 2 T [ .V � T/2, ˛ D ˇ D 0. Then, there exists a rule,
B ! z0 2 P, so

S)�
Gy1By2)Gy1z

0y2 ŒB ! z0�

Since z0 2 g.z0/, we have x D y1z0y2 such that x0 2 g.x/.
(iii) Let B0 D QB, z0 D C, ˛ D A QB, ˇ D 0, A;B;C 2 V � T. Then, there exists a rule

of the form AB ! AC 2 P. Since #Z.y0/ � 1, Z D QB, and A QB 2 sub.y0/, we
have y0

1 D u0A, y1 D uA, u0 2 g.u/ for some u 2 V�. Thus,
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S)�
GuABy2)GuACy2 ŒAB ! AC�

where uACy2 D y1Cy2. Because C 2 g.C/, we get x D y1Cy2 such that x0 2

g.x/.

As cases (i) through (iii) cover all possible forms of a derivation step in G0, we
have completed the induction step and established Claim 3.1.84 by the principle of
induction. ut

The statement of Theorem 3.1.83 follows immediately from Claim 3.1.84.
Because for all a 2 T, g.a/ D fag, we have for every w 2 TC,

S)�
Gw if and only if S)�

G0w

Therefore, L.G/ D L.G0/, so the theorem holds. ut

Corollary 3.1.85. SSC�".2; 1/ D SSC�" D SC�".2; 1/ D SC�" D CS

Proof. This corollary follows from Theorem 3.1.83 and the definitions of propagat-
ing ssc-grammars. ut

Next, we turn our investigation to ssc-grammars of degree .2; 1/ with erasing
rules. We prove that these grammars generate precisely the family of recursively
enumerable languages.

Theorem 3.1.86. SSC.2; 1/ D RE

Proof. Clearly, SSC.2; 1/ � RE; hence, it is sufficient to show that RE �

SSC.2; 1/. Every recursively enumerable language L 2 RE can be generated by
a phrase-structure grammar G in the Penttonen normal form (see Theorem 3.1.4).
That is, the rules of G are of the form AB ! AC or A ! x, where A;B;C 2 V � T,
x 2 f"g [ T [ .V � T/2. Thus, the inclusion RE � SSC.2; 1/ can be proved by
analogy with the proof of Theorem 3.1.83. The details are left to the reader. ut

Corollary 3.1.87. SSC.2; 1/ D SSC D SC.2; 1/ D SC D RE ut

To demonstrate that propagating ssc-grammars of degree .1; 2/ characterize CS,
we first establish a normal form for context-sensitive grammars.

Lemma 3.1.88. Every L 2 CS can be generated by a context-sensitive grammar

G D
�
fSg [ NCF [ NCS [ T;T;P; S

�

where fSg, NCF, NCS, and T are pairwise disjoint alphabets, and every rule in P is
either of the form S ! aD or AB ! AC or A ! x, where a 2 T, D 2 NCF [ f"g,
B 2 NCS, A;C 2 NCF, x 2 NCS [ T [ .

S2
iD1 Ni

CF/.

Proof. Let L be a context-sensitive language over an alphabet, T. Without any loss
of generality, we can express L as L D L1 [ L2, where L1 � T and L2 � TTC. Thus,
by analogy with the proofs of Theorems 1 and 2 in [P8̆5], L2 can be represented as
L2 D

S
a2T aLa, where each La is a context-sensitive language. Let La be generated

by a context-sensitive grammar



3.1 Context-Based Grammatical Regulation 113

Ga D
�
NCFa [ NCSa [ T;T;Pa; Sa

�

of the form of Theorem 3.1.6. Clearly, we assume that for all as, the nonterminal
alphabets NCFa and NCSa are pairwise disjoint. Let S be a new start symbol. Consider
the context-sensitive grammar

G D
�
fSg [ NCF [ NCS [ T;T;P; S

�

where

NCF D
S

a2T NCFa

NCS D
S

a2T NCSa

P D
S

a2T Pa [ fS ! aSa j a 2 Tg [ fS ! a j a 2 L1g

Obviously, G satisfies the required form, and we have

L.G/ D L1 [
�S

a2T aL.Ga/
�

D L1 [
�S

a2T aLa
�

D L1 [ L2 D L

Consequently, the lemma holds. ut

We are now ready to characterize CS by propagating ssc-grammars of degree
.1; 2/.

Theorem 3.1.89. CS D SSC�".1; 2/

Proof. By Lemma 3.1.41, SSC�".1; 2/ � CG�" � CS; thus, it is sufficient to prove
the converse inclusion.

Let L be a context-sensitive language. Without any loss of generality, we assume
that L is generated by a context-sensitive grammar

G D
�
fSg [ NCF [ NCS [ T;T;P; S

�

of the form of Lemma 3.1.88. Set

V D
˚
S
�

[ NCF [ NCS [ T

Let q be the cardinality of V; q � 1. Furthermore, let f be an arbitrary bijection
from V onto f1; : : : ; qg, and let f �1 be the inverse of f . Let

QG D
�

QV;T; QP; S
�

be a propagating ssc-grammar of degree .1; 2/, in which

QV D

 
4[

iD1

Wi

!

[ V
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where

W1 D fha;AB ! AC; ji j a 2 T; AB ! AC 2 P; 1 � j � 5g;

W2 D fŒa;AB ! AC; j� j a 2 T; AB ! AC 2 P; 1 � j � q C 3g

W3 D fbB;B0;B00 j B 2 NCSg

W4 D fNa j a 2 Tg

QP is defined as follows:

(1) if S ! aA 2 P, a 2 T, A 2 .NCF [ f"g/, then add .S ! NaA; 0; 0/ to QP;
(2) if a 2 T, A ! x 2 P, A 2 NCF , x 2 .V � fSg/[ .NCF/

2, then add .A ! x; Na; 0/
to QP;

(3) if a 2 T, AB ! AC 2 P, A;C 2 NCF, B 2 NCS, then add the following rules
to P0 (an informal explanation of these rules can be found below):

(3.a) .Na ! ha;AB ! AC; 1i; 0; 0/
(3.b) .B ! B0; ha;AB ! AC; 1i; 0/
(3.c) .B !bB; ha;AB ! AC; 1i; 0/
(3.d) .ha;AB ! AC; 1i ! ha;AB ! AC; 2i; 0;B/
(3.e) .bB ! B00; 0;B00/

(3.f) .ha;AB ! AC; 2i ! ha;AB ! AC; 3i; 0;bB/
(3.g) .B00 ! Œa;AB ! AC; 1�; ha;AB ! AC; 3i; 0/
(3.h) .Œa;AB ! AC; j� ! Œa;AB ! AC; j C 1�; 0; f �1.j/Œa;AB ! AC; j�/, for

all j D 1; : : : ; q, f .A/ 6D j
(3.i) .Œa;AB ! AC; f .A/� ! Œa;AB ! AC; f .A/C 1�; 0; 0/

(3.j) .Œa;AB ! AC; q C 1� ! Œa;AB ! AC; q C 2�; 0;B0Œa;AB ! AC; q C 1�/

(3.k) .Œa;AB ! AC; q C 2� ! Œa;AB ! AC; q C 3�; 0; ha;AB !

AC; 3iŒa;AB ! AC; q C 2�/

(3.l) .ha;AB ! AC; 3i ! ha;AB ! AC; 4i; Œa;AB ! AC; q C 3�; 0/

(3.m) .B0 ! B; ha;AB ! AC; 4i; 0/
(3.n) .ha;AB ! AC; 4i ! ha;AB ! AC; 5i; 0;B0/

(3.o) .Œa;AB ! AC; q C 3� ! C; ha;AB ! AC; 5i; 0/
(3.p) .ha;AB ! AC; 5i ! Na; 0; Œa;AB ! AC; q C 3�/

(4) if a 2 T, then add .Na ! a; 0; 0/ to QP.

Let us informally explain the basic idea behind (3)—the heart of the construction.
The rules introduced in (3) simulate the application of rules of the form AB ! AC
in G as follows: an occurrence of B is chosen, and its left neighbor is checked not
to belong to QV � fAg. At this point, the left neighbor necessarily equals A, so B is
rewritten with C.

Formally, we define a finite substitution g from V� into QV� as follows:

(a) if D 2 V , then add D to g.D/;
(b) if ha;AB ! AC; ji 2 W1, a 2 T, AB ! AC 2 P, B 2 NCS, A;C 2 NCF ,

j 2 f1; : : : ; 5g, then add ha;AB ! AC; ji to g.a/;
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(c) if Œa;AB ! AC; j� 2 W2, a 2 T, AB ! AC 2 P, B 2 NCS, A;C 2 NCF ,
j 2 f1; : : : ; q C 3g, then add Œa;AB ! AC; j� to g.B/;

(d) if fbB;B0;B00g � W3, B 2 NCS, then include fbB;B0;B00g into g.B/;
(e) if Na 2 W4, a 2 T, then add Na to g.a/.

Let g�1 be the inverse of g. To show that L.G/ D L. QG/, we first prove three claims.

Claim 3.1.90. S )C
G x, x 2 V�, implies that x 2 T.V � fSg/�.

Proof. Observe that the start symbol S does not appear on the right side of any rule
and that S ! x 2 P implies that x 2 T [ T.V � fSg/. Hence, the claim holds. ut

Claim 3.1.91. If S )C
QG

x, x 2 QV�, then x has one of the following seven forms

(I) x D ay, where a 2 T, y 2 .V � fSg/�;
(II) x D Nay, where Na 2 W4, y 2 .V � fSg/�;

(III) x D ha;AB ! AC; 1iy, where ha;AB ! AC; 1i 2 W1, y 2 ..V � fSg/ [

fB0;bB;B00g/�, #B00.y/ � 1;
(IV) x D ha;AB ! AC; 2iy, where ha;AB ! AC; 2i 2 W1, y 2 ..V � fS;Bg/ [

fB0;bB;B00g/�, #B0.y/ � 1;
(V) x D ha;AB ! AC; 3iy, where ha;AB ! AC; 3i 2 W1, y 2 ..V � fS;Bg/ [

fB0g/�.fŒa;AB ! AC; j� j 1 � j � q C 3g [ f";B00g/..V � fS;Bg/[ fB0g/�;
(VI) x D ha;AB ! AC; 4iy, where ha;AB ! AC; 4i 2 W1, y 2 ..V �fSg/[fB0g/�

Œa;AB ! AC; q C 3�..V � fSg/[ fB0g/�;
(VII) x D ha;AB ! AC; 5iy, where ha;AB ! AC; 5i 2 W1,

y 2 .V � fSg/�fŒa;AB ! AC; q C 3�; "g.V � fSg/�.

Proof. The claim is proved by induction on the length of derivations.

Basis. Consider S )
QG

x, x 2 QV�. By the inspection of the rules, we have

S ) QG
NaA Œ.S ! NaA; 0; 0/�

for some Na 2 W4, A 2 .f"g [ NCF/. Therefore, x D Na or x D NaA; in either case, x is
a string of the required form.

Induction Hypothesis. Assume that the claim holds for all derivations of length n or
less, for some n � 1.

Induction Step. Consider any derivation of the form

S )nC1
QG

x

where x 2 QV�: Since n � 1, we have nC1 � 2. Thus, there is some z of the required
form, z 2 QV�, such that

S )n
QG

z ) QG
x Œp�

for some p 2 QP.
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Let us first prove by contradiction that the first symbol of z does not belong to T.
Assume that the first symbol of z belongs to T. As z is of the required form, we have
z D ay for some a 2 .V � fSg/�. By the inspection of QP, there is no p 2 QP such
that ay )

QG
x Œp�, where x 2 QV�. We have thus obtained a contradiction, so the first

symbol of z is not in T.
Because the first symbol of z does not belong to T, z cannot have form (I); as

a result, z has one of forms (II) through (VII). The following cases (i) through (vi)
demonstrate that if z has one of these six forms, then x has one of the required forms,
too.

(i) Assume that z is of form (II); that is, z D Nay, Na 2 W4, and y 2 .V � fSg/�.
By the inspection of the rules in QP, we see that p has one of the following
forms (i.a), (i.b), and (i.c)

(i.a) p D .A ! u; Na; 0/, where A 2 NCF and u 2 .V � fSg/[ N2
CF;

(i.b) p D .Na ! ha;AB ! AC; 1i; 0; 0/, where ha;AB ! AC; 1i 2 W1;
(i.c) p D .Na ! a; 0; 0/, where a 2 T.

Note that rules of forms (i.a), (i.b), and (i.c) are introduced in construction
steps (2), (3), and (4), respectively. If p has form (i.a), then x has form (II). If
p has form (i.b), then x has form (III). Finally, if p has form (i.c), then x has
form (I). In any of these three cases, we obtain x that has one of the required
forms.

(ii) Assume that z has form (III); that is, z D ha;AB ! AC; 1iy for some ha;AB !

AC; 1i 2 W1, y 2 ..V �fSg/[fB0;bB;B00g/�, and #B00.y/ � 1. By the inspection
of QP, we see that z can be rewritten by rules of these four forms

(ii.a) .B ! B0; ha;AB ! AC; 1i; 0/.
(ii.b) .B !bB; ha;AB ! AC; 1i; 0/.
(ii.c) .bB ! B00; 0;B00/ if B00 62 alph.y/; that is, #B00.y/ D 0.
(ii.d) .ha;AB ! AC; 1i ! ha;AB ! AC; 2i; 0;B/ if B 62 alph.y/; that is,

#B.y/ D 0;

Clearly, in cases (ii.a) and (ii.a), we obtain x of form (III). If z )
QG

x Œp�, where
p is of form (ii.c), then #B00.x/ D 1, so we get x of form (III). Finally, if we use
the rule of form (ii.d), then we obtain x of form (IV) because #B.z/ D 0.

(iii) Assume that z is of form (IV); that is, z D ha;AB ! AC; 2iy, where ha;AB !

AC; 2i 2 W1, y 2 ..V � fS;Bg/ [ fB0;bB;B00g/�, and #B00.y/ � 1. By the
inspection of QP, we see that the following two rules can be used to rewrite z

(iii.a) .bB ! B00; 0;B00/ if B00 62 alph.y/.
(iii.b) .ha;AB ! AC; 2i ! ha;AB ! AC; 3i; 0;bB/ ifbB 62 alph.y/.

In case (iii.a), we get x of form (IV). In case (iii.b), we have #bB.y/ D 0, so
#bB.x/ D 0. Moreover, notice that #B00.x/ � 1 in this case. Indeed, the symbol
B00 can be generated only if there is no occurrence of B00 in a given rewritten
string, so no more than one occurrence of B00 appears in any sentential form.
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As a result, we have #B00.ha;AB ! AC; 3iy/ � 1; that is, #B00.x/ � 1. In other
words, we get x of form (V).

(iv) Assume that z is of form (V); that is, z D ha;AB ! AC; 3iy for some ha;AB !

AC; 3i 2 W1, y 2 ..V � fS;Bg/ [ fB0g/�.fŒa;AB ! AC; j� j 1 � j � q C

3g [ fB00; "g/..V � fS;Bg/ [ fB0g/�. Assume that y D y1Yy2 with y1; y2 2

..V � fS;Bg/ [ fB0g/�. If Y D ", then we can use no rule from QP to rewrite
z. Because z )

QG
x, we have Y 6D ". The following cases (iv.a) through (iv.f)

cover all possible forms of Y.

(iv.a) Assume Y D B00. By the inspection of QP, we see that the only rule that
can rewrite z has the form

.B00 ! Œa;AB ! AC; 1�; ha;AB ! AC; 3i; 0/

In this case, we get x of form (V).
(iv.b) Assume Y D Œa;AB ! AC; j�, j 2 f1; : : : ; qg, and f .A/ 6D j. Then, z can

be rewritten only according to the rule

.Œa;AB ! AC; j� ! Œa;AB ! AC; j C 1�; 0; f �1.j/Œa;AB ! AC; j�/

which can be used if the rightmost symbol of ha;AB ! AC; 3iy1 differs
from f �1.j/. Clearly, in this case, we again get x of form (V).

(iv.c) Assume Y D Œa;AB ! AC; j�, j 2 f1; : : : ; qg, f .A/ D j. This case forms
an analogy to case (iv.b) except that the rule of the form

.Œa;AB ! AC; f .A/� ! Œa;AB ! AC; f .A/C 1�; 0; 0/

is now used.
(iv.d) Assume Y D Œa;AB ! AC; q C 1�. This case forms an analogy to

case (iv.b); the only change is the application of the rule

.Œa;AB ! AC; qC1� ! Œa;AB ! AC; qC2�; 0;B0Œa;AB ! AC; qC1�/

(iv.e) Assume Y D Œa;AB ! AC; q C 2�. This case forms an analogy to
case (iv.b) except that the rule

.Œa;AB ! AC; q C 2� ! Œa;AB ! AC; q C 3�; 0;

ha;AB ! AC; 3iŒa;AB ! AC; q C 2�/

is used.
(iv.f) Assume Y D Œa;AB ! AC; q C 3�. By the inspection of QP, we see that

the only rule that can rewrite z is

.ha;AB ! AC; 3i ! ha;AB ! AC; 4i; Œa;AB ! AC; q C 3�; 0/

If this rule is used, we get x of form (VI).
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(v) Assume that z is of form (VI); that is, z D ha;AB ! AC; 4iy, where ha;AB !

AC; 4i 2 W1 and y 2 ..V�fSg/[fB0g/�Œa;AB ! AC; qC3�..V�fSg/[fB0g/�.
By the inspection of QP, these two rules can rewrite z

(v.a) .B0 ! B; ha;AB ! AC; 4i; 0/;
(v.b) .ha;AB ! AC; 4i ! ha;AB ! AC; 5i; 0;B0/ if B0 62 alph.y/.

Clearly, in case (v.a), we get x of form (VI). In case (v.b), we get x of form (VII)
because #B0.y/ D 0, so y 2 .V � fSg/�fŒa;AB ! AC; q C 3�; "g.V � fSg/�.

(vi) Assume that z is of form (VII); that is, z D ha;AB ! AC; 5iy, where ha;AB !

AC; 5i 2 W1 and y 2 .V � fSg/�fŒa;AB ! AC; q C 3�; "g.V � fSg/�. By the
inspection of QP, one of the following two rules can be used to rewrite z

(vi.a) .Œa;AB ! AC; q C 3� ! C; ha;AB ! AC; 5i; 0/.
(vi.b) .ha;AB ! AC; 5i ! Na; 0; Œa;AB ! AC; q C 3�/ if Œa;AB ! AC; q C

3� 62 alph.z/.

In case (vi.a), we get x of form (VII). Case (vi.b) implies that #Œa;AB!AC;qC3�.y/
D 0; thus, x is of form (II).

This completes the induction step and establishes Claim 3.1.91. ut

Claim 3.1.92. It holds that

S )m
G w if and only if S )n

QG
v

where v 2 g.w/ and w 2 VC, for some m; n � 0.

Proof. The proof is divided into the only-if part and the if part.

Only If. The only-if part is established by induction on m; that is, we have to
demonstrate that

S )m
G w implies S)�

QG
v

for some v 2 g.w/ and w 2 VC.

Basis. Let m D 0. The only w is S because S )0
G S. Clearly, S )0

QG
S, and S 2 g.S/.

Induction Hypothesis. Suppose that the claim holds for all derivations of length m
or less, for some m � 0.

Induction Step. Let us consider any derivation of the form

S )mC1
G x

where x 2 VC. Because m C 1 � 1, there are y 2 VC and p 2 P such that

S )m
G y )G x Œp�
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and by the induction hypothesis, there is also a derivation

S )�
QG

Qy

for some Qy 2 g.y/. The following cases (i) through (iii) cover all possible forms of p.

(i) Let p D S ! aA 2 P for some a 2 T, A 2 NCF [ f"g. Then, by Claim 3.1.90,
m D 0, so y D S and x D aA. By (1) in the construction of QG, .S ! NaA; 0; 0/ 2
QP. Hence,

S ) QG
aA

where QaA 2 g.aA/.
(ii) Let us assume that p D D ! y2 2 P, D 2 NCF , y2 2 .V � fSg/ [ N2

CF ,
y D y1Dy3, y1; y3 2 V�, and x D y1y2y3. From the definition of g, it is clear
that g.Z/ D fZg for all Z 2 NCF; therefore, we can express Qy D z1Dz3, where
z1 2 g.y1/ and z3 2 g.y3/. Without any loss of generality, we can also assume
that y1 D au, a 2 T, u 2 .V � fSg/� (see Claim 3.1.90), so z1 D a00u00,
a00 2 g.a/, and u00 2 g.u/. Moreover, by (2) in the construction, we have
.D ! y2; Na; 0/ 2 QP. The following cases (a) through (e) cover all possible
forms of a00.

(a) Let a00 D Na (see (II) in Claim 3.1.91). Then, we have

S )n
QG

Nau00Dz3 ) QG
Nau00y2z3 Œ.D ! y2; Na; 0/�

and Nau00y2z3 D z1y2z3 2 g.y1y2y3/ D g.x/.
(b) Let a00 D a (see (I) in Claim 3.1.91). By (4) in the construction of QG, we

can express the derivation

S )n
QG

au00Dz3

as

S )n�1
QG

Nau00Dz3 ) QG
au00Dz3 Œ.Na ! a; 0; 0/�

Thus, there exists the derivation

S )n�1
QG

Nau00Dz3 ) QG
Nau00y2z3 Œ.D ! y2; Na; 0/�

with Nau00y2z3 2 g.x/.
(c) Let a00 D ha;AB ! AC; 5i for some AB ! AC 2 P (see (VII) in

Claim 3.1.91), and let u00Dz3 2 .V � fSg/�; that is, Œa;AB ! AC; q C 3� 62

alph.u00Dz3/. Then, there exists the derivation
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S )n
QG

ha;AB ! AC; 5iu00Dz3
)

QG
Nau00Dz3 Œ.ha;AB ! AC; 5i ! Na; 0; Œa;AB ! AC; q C 3�/�

)
QG

Nau00y2z3 Œ.D ! y2; Na; 0/�

and Nau00y2z3 2 g.x/.
(d) Let a00 D ha;AB ! AC; 5i (see (VII) in Claim 3.1.91). Let Œa;AB !

AC; q C 3� 2 alph.u00Dz3/. Without any loss of generality, we can assume
that Qy D ha;AB ! AC; 5iu00Do00Œa;AB ! AC; qC3�t00, where o00Œa;AB !

AC; qC3�t00 D z3, oBt D y3, o00 2 g.t/, o; t 2 .V �fSg/�. By the inspection
of QP (see (3) in the construction of QG), we can express the derivation

S )n
QG

Qy

as

S)�
QG

Nau00Do00Bt00

) QG
ha;AB ! AC; 1iu00Do00Bt00

Œ.Na ! ha;AB ! AC; 1i; 0; 0/�

)
1Cjm1m2j
QG

ha;AB ! AC; 1iu0Do0bBt0

Œm1.B !bB; ha;AB ! AC; 1i; 0/m2�

) QG
ha;AB ! AC; 2iu0Do0bBt0

Œ.ha;AB ! AC; 1i ! ha;AB ! AC; 2i; 0;B/�

) QG
ha;AB ! AC; 2iu0Do0B00t0

ŒbB ! B00; 0;B00�

) QG
ha;AB ! AC; 3iu0Do0B00t0

Œ.ha;AB ! AC; 2i ! ha;AB ! AC; 3i; 0;bB/�

) QG
ha;AB ! AC; 3iu0Do0Œa;AB ! AC; 1�t0

Œ.B00 ! Œa;AB ! AC; 1�; ha;AB ! AC; 3i; 0/�

)
qC2

QG
ha;AB ! AC; 3iu0Do0Œa;AB ! AC; q C 3�t0

Œ!�

) QG
ha;AB ! AC; 4iu0Do0Œa;AB ! AC; q C 3�t0

Œ.ha;AB ! AC; 3i ! ha;AB ! AC; 4i;

Œa;AB ! AC; q C 3�; 0/�
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)
jm3j
QG

ha;AB ! AC; 4iu00Do00Œa;AB ! AC; q C 3�t00

Œm3�

) QG
ha;AB ! AC; 5iu00Do00Œa;AB ! AC; q C 3�t00

Œ.ha;AB ! AC; 4i ! ha;AB ! AC; 5i; 0;B0/�

where m1;m2 2 f.B ! B0; ha;AB ! AC; 1i; 0/g�, m3 2 f.B0 ! B;
ha;AB ! AC; 4i; 0/g�, jm3j D jm1m2j,

! D .Œa;AB ! AC; 1� ! Œa;AB ! AC; 2�; 0;
f �1.1/Œa;AB ! AC; 1�/ 	 	 	

.Œa;AB ! AC; f .A/� 1� ! Œa;AB ! AC; f .A/�; 0;
f �1.f .A/� 1/Œa;AB ! AC; f .A/� 1�/

.Œa;AB ! AC; f .A/� ! Œa;AB ! AC; f .A/C 1�; 0; 0/

.Œa;AB ! AC; f .A/C 1� ! Œa;AB ! AC; f .A/C 2�; 0;

f �1.f .A/C 1/Œa;AB ! AC; f .A/C 1�/ 	 	 	

.Œa;AB ! AC; q� ! Œa;AB ! AC; q C 1�; 0;

f �1.q/Œa;AB ! AC; q�/
.Œa;AB ! AC; q C 1� ! Œa;AB ! AC; q C 2�; 0;

B0Œa;AB ! AC; q C 1�/

.Œa;AB ! AC; q C 2� ! Œa;AB ! AC; q C 3�/; 0;

ha;AB ! AC; 3iŒa;AB ! AC; q C 2�/

u0 2 ..alph.u00/ � fBg/ [ fB0g/�, g�1.u0/ D u, o0 2 ..alph.o00/ � fBg/ [

fB00g/�, g�1.o0/ D g�1.o00/ D o, t0 2 ..alph.t00/� fBg/[ fB0g/�, g�1.t0/ D

g�1.t00/ D t.
Clearly, Nau00Do00Bt00 2 g.auDoBt/ D g.auDy3/ D g.y/. Thus, there exists
the derivation

S)�
QG
Nau00Do00Bt00) QG

Nau00y2o
00Bt00 Œ.D ! y2; Na; 0/�

where z1y2z3 D Nau00y2o00Bt00 2 g.auy2oBt/ D g.y1y2y3/ D g.x/.
(e) Let a00 D ha;AB ! AC; ii for some AB ! AC 2 P and i 2 f1; : : : ; 4g

(see (III)–(VI) in Claim 3.1.91). By analogy with (ii), we can construct the
derivation

S)�
QG
Nau00Do00Bt00) QG

Nau00y2o
00Bt00 Œ.D ! y2; Na; 0/�

such that Nau00y2o00Bt00 2 g.y1y2y3/ D g.x/. The details are left to the reader.

(iii) Let p D AB ! AC 2 P, A;C 2 NCF , B 2 NCS, y D y1ABy3, y1; y3 2 V�,
x D y1ACy3, Qy D z1AYz3, Y 2 g.B/, zi 2 g.yi/ where i 2 f1; 3g. Moreover,
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let y1 D au (see Claim 3.1.90), z1 D a00u00, a00 2 g.a/, and u00 2 g.u/. The
following cases (a) through (e) cover all possible forms of a00.

(a) Let a00 D Na. Then, by Claim 3.1.91, Y D B. By (3) in the construction of QG,
there exists the following derivation

S )n
QG

Nau00ABz3

) QG
ha;AB ! AC; 1iu00ABz3

Œ.Na ! ha;AB ! AC; 1i; 0; 0/�

)
1Cjm1j
QG

ha;AB ! AC; 1iu0AbBu3

Œm1.B !bB; ha;AB ! AC; 1i; 0/�

) QG
ha;AB ! AC; 2iu0AbBu3

Œ.ha;AB ! AC; 1i ! ha;AB ! AC; 2i; 0;B/�

) QG
ha;AB ! AC; 2iu0AB00u3

Œ.bB ! B00; 0;B00/�

) QG
ha;AB ! AC; 3iu0AB00u3

Œ.ha;AB ! AC; 2i ! ha;AB ! AC; 3i; 0;bB/�

) QG
ha;AB ! AC; 3iu0AŒa;AB ! AC; 1�u3

Œ.B00 ! Œa;AB ! AC; 1�; ha;AB ! AC; 3i; 0/�

)
qC2

QG
ha;AB ! AC; 3iu0AŒa;AB ! AC; q C 3�u3

Œ!�

) QG
ha;AB ! AC; 4iu0AŒa;AB ! AC; q C 3�u3

Œ.ha;AB ! AC; 3i ! ha;AB ! AC; 4i;

Œa;AB ! AC; q C 3�; 0/�

)
jm2j
QG

ha;AB ! AC; 4iu00AŒa;AB ! AC; q C 3�z3

Œm2�

) QG
ha;AB ! AC; 5iu00AŒa;AB ! AC; q C 3�z3

Œ.ha;AB ! AC; 4i ! ha;AB ! AC; 5i; 0;B0/�

) QG
ha;AB ! AC; 5iu00ACz3

Œ.Œa;AB ! AC; q C 3� ! C; ha;AB ! AC; 5i; 0/�
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where m1 2 f.B ! B0; ha;AB ! AC; 1i; 0/g�, m2 2 f.B0 ! B, ha,
AB ! AC, 4i, 0/g�, jm1j D jm2j,

! D .Œa;AB ! AC; 1� ! Œa;AB ! AC; 2�; 0;
f �1.1/Œa;AB ! AC; 1�/ 	 	 	

.Œa;AB ! AC; f .A/� 1� ! Œa;AB ! AC; f .A/�; 0;
f �1.f .A/� 1/Œa;AB ! AC; f .A/� 1�/

.Œa;AB ! AC; f .A/� ! Œa;AB ! AC; f .A/C 1�; 0; 0/

.Œa;AB ! AC; f .A/C 1� ! Œa;AB ! AC; f .A/C 2�; 0;

f �1.f .A/C 1/Œa;AB ! AC; f .A/C 1�/ 	 	 	

.Œa;AB ! AC; q� ! Œa;AB ! AC; q C 1�; 0;

f �1.q/Œa;AB ! AC; q�/
.Œa;AB ! AC; q C 1� ! Œa;AB ! AC; q C 2�; 0;

B0Œa;AB ! AC; q C 1�/

.Œa;AB ! AC; q C 2� ! Œa;AB ! AC; q C 3�/; 0;

ha;AB ! AC; 3iŒa;AB ! AC; q C 2�/

u3 2 ..alph.z3/�fBg/[fB0g/�, g�1.u3/ D g�1.z3/ D y3, u0 2 ..alph.u00/�

fBg/[ fB0g/�, g�1.u0/ D g�1.u00/ D u. It is clear that ha;AB ! AC; 5i 2

g.a/; thus, ha;AB ! AC; 5iu00ACz3 2 g.auACy3/ D g.x/.
(b) Let a00 D a. Then, by Claim 3.1.91, Y D B. By analogy with (ii.b)

and (iii.a) in the proof of this claim (see above), we obtain

S )n�1
QG

Nau00ABz3)
�
QG
ha;AB ! AC; 5iu00ACz3

so ha;AB ! AC; 5iu00ACz3 2 g.x/.
(c) Let a00 D ha;AB ! AC; 5i for some AB ! AC 2 P (see (VII) in

Claim 3.1.91), and let u00AYz3 2 .V � fSg/�. At this point, Y D B. By
analogy with (ii.c) and (iii.a) in the proof of this claim (see above), we can
construct

S )nC1
QG

Nau00ABz3)
�
QG
ha;AB ! AC; 5iu00ACz3

so ha;AB ! AC; 5iu00ACz3 2 g.x/.
(d) Let a00 D ha;AB ! AC; 5i for some AB ! AC 2 P (see (VII) in

Claim 3.1.91), and let Œa;AB ! AC; q C 3� 2 alph.u00AYz3/. By analogy
with (ii.d) and (iii.a) in the proof of this claim (see above), we can construct

S)�
QG
Nau00ABz3

and then

S)�
QG
Nau00ABz3)

�
QG
ha;AB ! AC; 5iu00ACz3

so that ha;AB ! AC; 5iu00ACz3 2 g.auACy3/ D g.x/.
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(e) Let a00 D ha;AB ! AC; ii for some AB ! AC 2 P, i 2 f1; : : : ; 4g,
see (III)–(IV) in Claim 3.1.91. By analogy with (ii) and (iii) in the proof of
this claim, we can construct

S)�
QG
Nau00ACz3

where Nau00ACz3 2 g.x/.

If. By induction on n, we next prove that if S )n
QG
v with v 2 g.w/ and w 2 V�, for

some n � 0, then S)�
Gw:

Basis. For n D 0, the only v is S as S )0
QG

S. Because fSg D g.S/, we have w D S.

Clearly, S )0
G S.

Induction Hypothesis. Assume that the claim holds for all derivations of length n or
less, for some n � 0. Let us show that it also holds true for n C 1.

Induction Step. For n C 1 D 1, there only exists a direct derivation of the form

S ) QG
NaA Œ.S ! NaA; 0; 0/�

where A 2 NCF [ f"g, a 2 T, and NaA 2 g.aA/. By (1), we have in P a rule of the
form S ! aA and, thus, a direct derivation S )G aA.

Suppose that n C 1 � 2 (i.e. n � 1). Consider any derivation of the form

S )nC1
G x0

where x0 2 g.x/, x 2 V�. Because n C 1 � 2, there exist Na 2 W4, A 2 NCF , and
y 2 VC such that

S ) QG
NaA )n�1

QG
y0 ) QG

x0 Œp�

where p 2 QP, y0 2 g.y/, and by the induction hypothesis,

S)�
Gy

Let us assume that y0 D z1Zz2, y D y1Dy2, zj 2 g.yj/, yj 2 .V � fSg/�, j D 1; 2,
Z 2 g.D/, D 2 V � fSg, p D .Z ! u0; ˛; ˇ/ 2 P0, ˛ D 0 or ˇ D 0, x0 D z1u0z2, u0 2

g.u/ for some u 2 V�; that is, x0 2 g.y1uy2/. The following cases (i) through (iii)
cover all possible forms of

y0 ) QG
x0 Œp�

(i) Let Z 2 NCF . By the inspection of QP, we see that Z D D, p D .D ! u0; Na; 0/ 2
QP, D ! u 2 P and u D u0. Thus,

S)�
Gy1By2)Gy1uy2 ŒB ! u�
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(ii) Let u D D. Then, by the induction hypothesis, we have the derivation

S)�
Gy1Dy2

and y1Dy2 D y1uy2 in G.
(iii) Let p D .Œa;AB ! AC; q C 3� ! C; ha;AB ! AC; 5i; 0/, Z D Œa;AB !

AC; q C 3�. Thus, u0 D C and D D B 2 NCS. By case (VI) in Claim 3.1.91
and the form of p, we have z1 D ha;AB ! AC; 5it and y1 D ao, where
t 2 g.o/, ha;AB ! AC; 5i 2 g.a/, o 2 .V � fSg/�, and a 2 T. From (3) in the
construction of QG, it follows that there exists a rule of the form AB ! AC 2 P.
Moreover, (3) and Claim 3.1.91 imply that the derivation

S ) QG
NaA )n�1

QG
y0 ) QG

x0 Œp�

can be expressed in the form

S )
QG

NaA

)�
QG

NatBz2
)

QG
ha;AB ! AC; 1itBz2
Œ.Na ! ha;AB ! AC; 1i; 0; 0/�

)
j!0j

QG
ha;AB ! AC; 1ivbBw2
Œ!0�

)
QG

ha;AB ! AC; 1ivB00w2
Œ.bB ! B00; 0;B00/�

)
QG

ha;AB ! AC; 2ivB00w2
Œ.ha;AB ! AC; 1i ! ha;AB ! AC; 2i; 0;B/�

)
QG

ha;AB ! AC; 3ivB00w2
Œ.ha;AB ! AC; 2i ! ha;AB ! AC; 3i; 0;bB/�

)
QG

ha;AB ! AC; 3ivŒa;AB ! AC; 1�w2
Œ.B00 ! Œa;AB ! AC; 1�; ha;AB ! AC; 3i; 0/�

)
j!j

QG
ha;AB ! AC; 3ivŒa;AB ! AC; q C 3�w2
Œ!�

)
QG

ha;AB ! AC; 4ivŒa;AB ! AC; q C 3�w2
Œ.ha;AB ! AC; 3i ! ha;AB ! AC; 4i;
Œa;AB ! AC; q C 3�; 0/�

)
j!0j�1

QG
ha;AB ! AC; 4itŒa;AB ! AC; q C 3�z2
Œ!00�

)
QG

ha;AB ! AC; 5itŒa;AB ! AC; q C 3�z2
Œ.ha;AB ! AC; 4i ! ha;AB ! AC; 5i; 0;B0/�
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)
QG

ha;AB ! AC; 5itCz2
Œ.Œa;AB ! AC; q C 3� ! C; ha;AB ! AC; 5i; 0/�

where

!0 2 f.B ! B0; ha;AB ! AC; 1i; 0/g�

f.B !bB; ha;AB ! AC; 1i; 0/g
f.B ! B0; ha;AB ! AC; 1i; 0/g�

g.B/\ alph.vw2/ � fB0g, g�1.v/ D g�1.t/, g�1.w2/ D g�1.z2/,

! D !1
.Œa;AB ! AC; f .A/� ! Œa;AB ! AC; f .A/C 1�; 0; 0/!2

.Œa;AB ! AC; q C 1� ! Œa;AB ! AC; q C 2�; 0

B0Œa;AB ! AC; q C 1�/

.Œa;AB ! AC; q C 2� ! Œa;AB ! AC; q C 3�; 0;

ha;AB ! AC; 3iŒa;AB ! AC; q C 2�/

!1 D .Œa;AB ! AC; 1� ! Œa;AB ! AC; 2�; 0;
f �1.1/Œa;AB ! AC; 1�/ 	 	 	

.Œa;AB ! AC; f .A/� 1� ! Œa;AB ! AC; f .A/�; 0;
f �1.f .A/� 1/Œa;AB ! AC; f .A/� 1�/

where f .A/ implies that q1 D ",

!2 D .Œa;AB ! AC; f .A/C 1� ! Œa;AB ! AC; f .A/C 2�; 0;

f �1.f .A/C 1/Œa;AB ! AC; f .A/C 1�/ 	 	 	

.Œa;AB ! AC; q� ! Œa;AB ! AC; q C 1�; 0;

f �1.q/Œa;AB ! AC; q�/

where f .A/ D q implies that q2 D ", !00 2 f.B0 ! B; ha;AB ! AC; 4i; 0/g�.
The derivation above implies that the rightmost symbol of t must be A. As
t 2 g.o/, the rightmost symbol of o must be A as well. That is, t D s0A, o D sA
and s0 2 g.s/, for some s 2 .V � fSg/�. By the induction hypothesis, there
exists a derivation

S)�
GasABy2

Because AB ! AC 2 P, we get

S)�
GasABy2)GasACy2 ŒAB ! AC�

where asACy2 D y1uy2.
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By (i), (ii), and (iii) and the inspection of QP, we see that we have considered all
possible derivations of the form

S )nC1
QG

x0

so we have established Claim 3.1.92 by the principle of induction. ut

The equivalence of G and QG can be easily derived from Claim 3.1.92. By the
definition of g, we have g.a/ D fag for all a 2 T. Thus, by Claim 3.1.92, we have
for all x 2 T�,

S)�
Gx if and only if S)�

QG
x

Consequently, L.G/ D L. QG/, and the theorem holds. ut

Corollary 3.1.93. SSC�".1; 2/ D SSC�" D SC�".1; 2/ D SC�" D CS ut

We now turn to the investigation of ssc-grammars of degree .1; 2/ with erasing
rules.

Theorem 3.1.94. SSC.1; 2/ D RE

Proof. Clearly, we have SSC.1; 2/ � RE. Thus, we only need to show that RE �

SSC.1; 2/. Every language L 2 RE can be generated by a phrase-structure grammar
G D .V , T, P, S/ in which each rule is of the form AB ! AC or A ! x, where
A;B;C 2 V � T, x 2 f"g [ T [ .V � T/2 (see Theorem 3.1.7). Thus, the inclusion
can be established by analogy with the proof of Theorem 3.1.89. The details are left
to the reader. ut

Corollary 3.1.95. SSC.1; 2/ D SSC D SC.1; 2/ D SC D RE ut

The following corollary summarizes the relations of language families generated
by ssc-grammars.

Corollary 3.1.96.

CF
�

SSC�" D SSC�".2; 1/ D SSC�".1; 2/ D

D SC�" D SC�".2; 1/ D SC�".1; 2/ D CS
�

SSC D SSC.2; 1/ D SSC.1; 2/ D SC D SC.2; 1/ D SC.1; 2/ D RE

Proof. This corollary follows from Corollaries 3.1.85, 3.1.87, 3.1.93, and 3.1.95. ut

Next, we turn our attention to reduced versions of ssc-grammars. More specifi-
cally, we demonstrate that there exist several normal forms of ssc-grammars with a
limited number of conditional rules and nonterminals.
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Theorem 3.1.97. Every recursively enumerable language can be defined by an
ssc-grammar of degree .2; 1/ with no more than 12 conditional rules and 13
nonterminals.

Proof. Let L be a recursively enumerable language. By Theorem 3.1.11, we assume
that L is generated by a grammar G of the form

G D
�
V;T;P [ fAB ! ";CD ! "g; S

�

such that P contains only context-free rules and

V � T D
˚
S;A;B;C;D

�

Construct an ssc-grammar G0 of degree .2; 1/,

G0 D
�
V 0;T;P0; S

�

where

V 0 D V [ W
W D f QA; QB; h"Ai; $; QC; QD; h"Ci; #g; V \ W D ;

The set of rules P0 is defined in the following way

1. if H ! y 2 P, H 2 V � T, y 2 V�, then add .H ! y; 0; 0/ to P0;
2. add the following six rules to P0

.A ! QA; 0; QA/

.B ! QB; 0; QB/

. QA ! h"Ai; QA QB; 0/

. QB ! $; h"Ai QB; 0/

.h"Ai ! "; 0; QB/

.$ ! "; 0; h"Ai/

3. add the following six rules to P0

.C ! QC; 0; QC/

.D ! QD; 0; QD/

. QC ! h"Ci; QC QD; 0/

. QD ! #; h"Ci QD; 0/

.h"Ci ! "; 0; QD/

.# ! "; 0; h"Ci/
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Notice that G0 has degree .2; 1/ and contains only 12 conditional rules and 13
nonterminals. The rules of (2) simulate the application of AB ! " in G0 and the
rules of (3) simulate the application of CD ! " in G0.

Let us describe the simulation of AB ! ". First, one occurrence of A and one
occurrence of B are rewritten to QA and QB, respectively (no more than one QA and one
QB appear in any sentential form). The right neighbor of QA is checked to be QB and QA
is rewritten to h"Ai. Then, analogously, the left neighbor of QB is checked to be h"Ai

and QB is rewritten to $. Finally, h"Ai and $ are erased. The simulation of CD ! " is
analogous.

To establish L.G/ D L.G0/, we first prove two claims.

Claim 3.1.98. S)�
G0x0 implies that #QX.x

0/ � 1 for all QX 2 f QA; QB; QC; QDg and x0 2 V 0�.

Proof. By the inspection of rules in P0, the only rule that can generate QX is of the
form .X ! QX; 0; QX/. This rule can be applied only when no QX occurs in the rewritten
sentential form. Thus, it is not possible to derive x0 from S such that #QX.x

0/ � 2. ut

Informally, the next claim says that every occurrence of h"Ai in derivations from S
is always followed by either QB or $, and every occurrence of h"Ci is always followed
by either QD or #.

Claim 3.1.99. It holds that

(I) S)�
G0y0

1h"Aiy0
2 implies y0

2 2 V 0C and lms.y0
2/ 2 f QB; $g for any y0

1 2 V 0�;
(II) S)�

G0y0
1h"Ciy0

2 implies y0
2 2 V 0C and lms.y0

2/ 2 f QD; #g for any y0
1 2 V 0�.

Proof. We base this proof on the examination of all possible forms of derivations
that may occur during a derivation of a sentential form containing h"Ai or h"Ci.

(I) By the definition of P0, the only rule that can generate h"Ai is p D . QA !

h"Ai; QAeB; 0/. This rule has the permitting condition QA QB, so it can be used
provided that QA QB occurs in a sentential form. Furthermore, by Claim 3.1.98,
no other occurrence of QA or QB can appear in the given sentential form.
Consequently, we obtain a derivation

S)�
G0u0

1
QA QBu0

2)G0 u0
1h"Ai QBu0

2 Œp�

for some u0
1; u

0
2 2 V 0�, QA; QB 62 alph.u0

1u
0
2/, which represents the only way of

getting h"Ai. Obviously, h"Ai is always followed by QB in u0
1h"Ai QBu0

2.
Next, we discuss how G0 can rewrite the substring h"Ai QB in u0

1h"Ai QBu0
2. There

are only two rules having the nonterminals h"Ai or QB on their left-hand side,
p1 D . QB ! $; h"Ai QB; 0/ and p2 D .h"Ai ! "; 0; QB/. G0 cannot use p2 to erase
h"Ai in u0

1h"Ai QBu0
2 because p2 forbids an occurrence of QB in the rewritten string.

Rule p1 has also a context condition, but h"Ai QB 2 sub.u0
1h"Ai QBu0

2/, and thus p1
can be used to rewrite QB with $. Hence, we obtain a derivation of the form

S )�
G0 u0

1
QA QBu0

2 )G0 u0
1h"Ai QB QBu0

2 Œp�
)�

G0v
0
1h"Ai QBv0

2 )G0 v
0
1h"Ai$v0

2 Œp1�
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Notice that during this derivation, G0 may rewrite u0
1 and u0

2 to some v0
1 and v0

2,
respectively, where v0

1, v
0
2 2 V 0�; however, h"Ai QB remains unchanged after this

rewriting.
In this derivation, we obtained the second symbol $ that can appear as the

right neighbor of h"Ai. It is sufficient to show that there is no other symbol
that can appear immediately after h"Ai. By the inspection of P0, only .$ !

"; 0; h"Ai/ can rewrite $. However, this rule cannot be applied when h"Ai occurs
in the given sentential form. In other words, the occurrence of $ in the substring
h"Ai$ cannot be rewritten before h"Ai is erased by rule p2. Hence, h"Ai is always
followed by either QB or $, and thus, the first part of Claim 3.1.99 holds.

(II) By the inspection of rules simulating AB ! " and CD ! " in G0 (see (2)
and (3) in the definition of P0), these two sets of rules work analogously. Thus,
part (I) of Claim 3.1.99 can be proved by analogy with part (I). ut

Let us return to the main part of the proof. Let g be a finite substitution from V 0�

to V� defined as follows:

1. For all X 2 V , g.X/ D fXg.
2. g. QA/ D fAg, g. QB/ D fBg, g.h"Ai/ D fAg, g.$/ D fB;ABg.
3. g. QC/ D fCg, g. QD/ D fDg, g.h"Ci/ D fCg, g.#/ D fC;CDg.

Having this substitution, we can prove the following claim.

Claim 3.1.100. S)�
Gx if and only if S)�

G0x0 for some x 2 g.x0/, x 2 V�, x0 2 V 0�.

Proof. The claim is proved by induction on the length of derivations.

Only If. We show that

S )m
G x implies S)�

G0x

where m � 0, x 2 V�; clearly x 2 g.x/. This is established by induction on m � 0.

Basis. Let m D 0. That is, S )0
G S. Clearly, S )0

G0 S.

Induction Hypothesis. Suppose that the claim holds for all derivations of length m
or less, for some m � 0.

Induction Step. Consider any derivation of the form

S )mC1
G x; x 2 V�

Since m C 1 � 1, there is some y 2 VC and p 2 P [ fAB ! ";CD ! "g such that

S )m
G y )G x Œp�

By the induction hypothesis, there is a derivation

S)�
G0y
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The following three cases cover all possible forms of p.

(i) Let p D H ! y2 2 P; H 2 V � T; y2 2 V�. Then, y D y1Hy3 and x D y1y2y3,
y1; y3 2 V�. Because we have .H ! y2; 0; 0/ 2 P0,

S)�
G0y1Hy3)G0 y1y2y3 Œ.H ! y2; 0; 0/�

and y1y2y3 D x.
(ii) Let p D AB ! ". Then, y D y1ABy3 and x D y1y3; y1; y3 2 V�. In this case,

there is the derivation

S )�
G0 y1ABy3

)G0 y1 QABy3 Œ.A ! QA; 0; QA/�
)G0 y1 QA QBy3 Œ.B ! QB; 0; QB/�
)G0 y1h"Ai QBy3 Œ. QA ! h"Ai; QA QB; 0/�
)G0 y1h"Ai$y3 Œ. QB ! $; h"Ai QB; 0/�
)G0 y1$y3 Œ.h"Ai ! "; 0; QB/�
)G0 y1y3 Œ.$ ! "; 0; h"Ai/�

(iii) Let p D CD ! ". Then, y D y1CDy3 and x D y1y3; y1; y3 2 V�. By analogy
with (ii), there exists the derivation

S )�
G0 y1CDy3

)G0 y1 QCDy3 Œ.C ! QC; 0; QC/�
)G0 y1 QC QDy3 Œ.D ! QD; 0; QD/�
)G0 y1h"Ci QDy3 Œ. QC ! h"Ci; QC QD; 0/�
)G0 y1h"Ci#y3 Œ. QD ! #; h"Ci QD; 0/�
)G0 y1#y3 Œ.h"Ci ! "; 0; QD/�
)G0 y1y3 Œ.# ! "; 0; h"Ci/�

If. By induction on the length n of derivations in G0, we prove that

S )n
G0 x0 implies S)�

Gx

for some x 2 g.x0/, x 2 V�, x0 2 V 0�.

Basis. Let n D 0. That is, S )0
G0 S. It is obvious that S )0

G S and S 2 g.S/.

Induction Hypothesis. Assume that the claim holds for all derivations of length n or
less, for some n � 0.

Induction Step. Consider any derivation of the form

S )nC1
G0 x0; x0 2 V 0�
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Since n C 1 � 1, there is some y0 2 V 0C and p0 2 P0 such that

S )n
G0 y0 )G0 x0 Œp0�

and by the induction hypothesis, there is also a derivation

S)�
Gy

such that y 2 g.y0/.
By the inspection of P0, the following cases (i) through (xiii) cover all possible

forms of p0.

(i) Let p0 D .H ! y2; 0; 0/ 2 P0; H 2 V � T; y2 2 V�. Then, y0 D y0
1Hy0

3,
x0 D y0

1y2y
0
3, y0

1; y
0
3 2 V 0� and y has the form y D y1Zy3, where y1 2 g.y0

1/; y3 2

g.y0
3/ and Z 2 g.H/. Because g.X/ D fXg for all X 2 V � T, the only Z is

H, and thus y D y1Hy3. By the definition of P0 (see (1)), there exists a rule
p D H ! y2 in P, and we can construct the derivation

S)�
Gy1Hy3)Gy1y2y3 Œp�

such that y1y2y3 D x, x 2 g.x0/.
(ii) Let p0 D .A ! QA; 0; QA/. Then, y0 D y0

1Ay0
3, x0 D y0

1
QAy0
3, y0

1; y
0
3 2 V 0�, and

y D y1Zy3, where y1 2 g.y0
1/; y3 2 g.y0

3/ and Z 2 g.A/. Because g.A/ D fAg,
the only Z is A, so we can express y D y1Ay3. Having the derivation S)�

Gy
such that y 2 g.y0/, it is easy to see that also y 2 g.x0/ because A 2 g. QA/.

(iii) Let p0 D .B ! QB; 0; QB/. By analogy with (ii), y0 D y0
1By0

3, x0 D y0
1
QBy0
3,

y D y1By3, where y0
1; y

0
3 2 V 0�, y1 2 g.y0

1/; y3 2 g.y0
3/, and thus y 2 g.x0/

because B 2 g. QB/.
(iv) Let p0 D . QA ! h"Ai; QA QB; 0/. By the permitting condition of this rule, QA QB surely

occurs in y0. By Claim 3.1.98, no more than one QA can occur in y0. Therefore,
y0 must be of the form y0 D y0

1
QA QBy0

3, where y0
1; y

0
3 2 V 0� and QA 62 alph.y0

1y
0
3/.

Then, x0 D y0
1h"Ai QBy0

3 and y is of the form y D y1Zy3, where y1 2 g.y0
1/; y3 2

g.y0
3/ and Z 2 g. QA QB/. Because g. QA QB/ D fABg, the only Z is AB; thus, we

obtain y D y1ABy3. By the induction hypothesis, we have a derivation S)�
Gy

such that y 2 g.y0/. According to the definition of g, y 2 g.x0/ as well because
A 2 g.h"Ai/ and B 2 g. QB/.

(v) Let p0 D . QB ! $; h"Ai QB; 0/. This rule can be applied provided that h"Ai QB 2

sub.y0/. Moreover, by Claim 3.1.98, #QB.y
0/ � 1. Hence, we can express

y0 D y0
1h"Ai QBy0

3, where y0
1; y

0
3 2 V 0� and QB 62 alph.y0

1y
0
3/. Then, x0 D y0

1h"Ai$y0
3

and y D y1Zy3, where y1 2 g.y0
1/; y3 2 g.y0

3/ and Z 2 g.h"Ai QB/. By the
definition of g, g.h"Ai QB/ D fABg, so Z D AB and y D y1ABy3. By the
induction hypothesis, we have a derivation S)�

Gy such that y 2 g.y0/. Because
A 2 g.h"Ai/ and B 2 g.$/, y 2 g.x0/ as well.

(vi) Let p0 D .h"Ai ! "; 0; QB/. Application of .h"Ai ! "; 0; QB/ implies that
h"Ai occurs in y0. Claim 3.1.99 says that h"Ai has either QB or $ as its right
neighbor. Since the forbidding condition of p0 forbids an occurrence of QB in y0,
the right neighbor of h"Ai must be $. As a result, we obtain y0 D y0

1h"Ai$y0
3
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where y0
1; y

0
3 2 V 0�. Then, x0 D y0

1$y0
3 and y is of the form y D y1Zy3,

where y1 2 g.y0
1/; y3 2 g.y0

3/ and Z 2 g.h"Ai$/. By the definition of g,
g.h"Ai$/ D fAB;AABg. If Z D AB, y D y1ABy3. Having the derivation S)�

Gy,
it holds that y 2 g.x0/ because AB 2 g.$/.

(vii) Let p0 D .$ ! "; 0; h"Ai/. Then, y0 D y0
1$y0

3 and x0 D y0
1y

0
3, where y0

1; y
0
3 2 V 0�.

Express y D y1Zy3 so that y1 2 g.y0
1/; y3 2 g.y0

3/ and Z 2 g.$/, where g.$/ D

fB;ABg. Let Z D AB. Then, y D y1ABy3, and there exists the derivation

S)�
Gy1ABy3)Gy1y3 ŒAB ! "�

where y1y3 D x, x 2 g.x0/.

In cases (ii) through (vii), we discussed all six rules simulating the application
of AB ! " in G0 (see (2) in the definition of P0). Cases (viii) through (xiii) should
cover rules simulating the application of CD ! " in G0 (see (3)). However, by the
inspection of these two sets of rules, it is easy to see that they work analogously.
Therefore, we leave this part of the proof to the reader.

We have completed the proof and established Claim 3.1.100 by the principle of
induction. ut

Observe that L.G/ D L.G0/ follows from Claim 3.1.100. Indeed, according to
the definition of g, we have g.a/ D fag for all a 2 T. Thus, from Claim 3.1.100, we
have for any x 2 T�

S)�
Gx if and only if S)�

G0x

Consequently, L.G/ D L.G0/, and the theorem holds. ut

Let us note that in [Mas06], Theorem 3.1.97 has been improved by demonstrating
that even nine conditional rules and ten nonterminals are enough to generate every
recursively enumerable language.

Theorem 3.1.101 (See [Mas06]). Every recursively enumerable language can be
generated by an ssc-grammar of degree .2; 1/ having no more than 9 conditional
rules and 10 nonterminals.

Continuing with the investigation of reduced ssc-grammars, we point out that
Vaszil in [Vas05] proved that if we allow permitting conditions of length three—
that is, ssc-grammars of degree .3; 1/, then the number of conditional rules and
nonterminals can be further decreased.

Theorem 3.1.102. Every recursively enumerable language can be generated by
an ssc-grammar of degree .3; 1/ with no more than 8 conditional rules and 11
nonterminals.

Proof. (See [Vas05].) Let L be a recursively enumerable language. Without any loss
of generality, we assume that L is generated by a phrase-structure grammar

G D
�
V;T;P [ fABC ! "g; S

�



134 3 Regulated Grammars and Computation

where

V � T D fS; S0;A;B;Cg

and P contains only context-free rules of the forms S ! zSx, z 2 fA;Bg�, x 2 T,
S ! S0, S0 ! uS0v, u 2 fA;Bg�, v 2 fB;Cg�, S0 ! " (see Theorem 3.1.9). Every
successful derivation in G consists of the following two phases.

1.

S )�
G zn 	 	 	 z1Sx1 	 	 	 xn

)G zn 	 	 	 z1S0x1 	 	 	 xn I zi 2 fA;Bg�; 1 � i � n:

2.

zn 	 	 	 z1S0x1 	 	 	 xn )�
G zn 	 	 	 z1um 	 	 	 u1S0v1 	 	 	vmx1 	 	 	 xn

)G zn 	 	 	 z1um 	 	 	 u1v1 	 	 	vmx1 	 	 	 xn

where uj 2 fA;Bg�, vj 2 fB;Cg�, 1 � j � m, and the terminal string x1 	 	 	 xn is
generated by G if and only if by using the erasing rule ABC ! ", the substring
zn 	 	 	 z1um 	 	 	 u1v1 	 	 	vm can be deleted.

Next, we introduce the ssc-grammar

G0 D
�
V 0;T;P0; S

�

of degree .3; 1/, where

V 0 D
˚
S; S0;A;A0;A00;B;B0;B00;C;C0;C00

�
[ T

and P0 is constructed as follows:

1. for every H ! y 2 P, add .H ! y; 0; 0/ to P0;
2. for every X 2 fA;B;Cg, add .X ! X0; 0;X0/ to P0;
3. add the following six rules to P0

.C0 ! C00;A0B0C0; 0/

.A0 ! A00;A0B0C00; 0/

.B0 ! B00;A00B0C00; 0/

.A00 ! "; 0;C00/

.C00 ! "; 0;B0/

.B00 ! "; 0; 0/

Observe that G0 satisfies all the requirements of this theorem—that is, it contains
only 8 conditional rules and 11 nonterminals. G0 reproduces the first two phases of
generating a terminal string in G by using the rules of the form .H ! y; 0; 0/ 2 P0.
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The third phase, during which ABC ! " is applied, is simulated by the additional
rules. Examine these rules to see that all strings generated by G can also be generated
by G0. Indeed, for every derivation step

y1ABCy2 )G y1y2 ŒABC ! "�

in G, y1; y2 2 V�, there exists the following derivation in G0

y1ABCy2 )G0 y1A0BCy2 Œ.A ! A0; 0;A0/�

)G0 y1A0B0Cy2 Œ.B ! B0; 0;B0/�

)G0 y1A0B0C0y2 Œ.C ! C0; 0;C0/�

)G0 y1A0B0C00y2 Œ.C0 ! C00;A0B0C0; 0/�

)G0 y1A00B0C00y2 Œ.A0 ! A00;A0B0C00; 0/�

)G0 y1A00B00C00y2 Œ.B0 ! B00;A00B0C00; 0/�

)G0 y1A00B00y2 Œ.C00 ! "; 0;B0/�

)G0 y1B00y2 Œ.A00 ! "; 0;C00/�

)G0 y1y2 Œ.B00 ! "; 0; 0/�

As a result, L.G/ � L.G0/. In the following, we show that G0 does not generate
strings that cannot be generated by G; thus, L.G0/ � L.G/ D ;, so L.G0/ D L.G/.

Let us study how G0 can generate a terminal string. All derivations start from S.
While the sentential form contains S or S0, its form is zSw or zuS0vw, z; u; v 2

fA;B;C;A0;B0;C0g�, w 2 T�, where if g.X0/ D X for X 2 fA;B;Cg and g.X/ D X
for all other symbols of V , then g.zSw/ or g.zuS0vw/ are valid sentential forms
of G. Furthermore, zu contains at most one occurrence of A0, v contains at most
one occurrence of C0, and zuv contains at most one occurrence of B0 (see 2 in the
construction of P0). After .S0 ! "; 0; 0/ is used, we get a sentential form zuvw with
z, u, v, and w as above such that

S)�
Gg.zuvw/

Next, we demonstrate that

zuv)�
G0" implies g.zuv/)�

G"

More specifically, we investigate all possible derivations rewriting a sentential form
containing a single occurrence of each of the letters A0, B0, and C0.

Consider a sentential form of the form zuvw, where z; u; v 2 fA, B, C, A0, B0,
C0g�, w 2 T�, and #A0.zu/ D #B0.zuv/ D #C0.v/ D 1. By the definition of rules
rewriting A0, B0, and C0 (see 3 in the construction of P0), we see that these three
symbols must form a substring A0B0C0; otherwise, no next derivation step can be
made. That is, zuvw D zNuA0B0C0 Nvw for some Nu; Nv 2 fA;B;Cg�. Next, observe that
the only applicable rule is .C0 ! C00;A0B0C0; 0/. Thus, we get
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zNuA0B0C0 Nvw )G0 zNuA0B0C00 Nvw

This sentential form can be rewritten in two ways. First, we can rewrite A0 to A00

by .A0 ! A00;A0B0C00; 0/. Second, we can replace another occurrence of C with C0.
Let us investigate the derivation

zNuA0B0C00 Nvw )G0 zNuA00B0C00 Nvw Œ.A0 ! A00;A0B0C00; 0/�

As before, we can either rewrite another occurrence of A to A0 or rewrite an
occurrence of C to C0 or rewrite B0 to B00 by using .B0 ! B00;A00B0C00; 0/. Taking into
account all possible combinations of the above-described steps, we see that after the
first application of .B0 ! B00;A00B0C00; 0/, the whole derivation is of the form

zNuA0B0C0 Nvw )C
G0 zu1Xu2A

00B00C00v1Yv2w

where X 2 fA0; "g, Y 2 fC0; "g, u1g.X/u2 D Nu, and v1g.Y/v2 D Nv. Let zu1Xu2 D x
and v1Yv2 D y. The next derivation step can be made in four ways. By an
application of .B ! B0; 0;B0/, we can rewrite an occurrence of B in x or y. In both
cases, this derivation is blocked in the next step. The remaining two derivations are

xA00B00C00yw )G0 xA00C00yw Œ.B00 ! "; 0; 0/�

and

xA00B00C00yw )G0 xA00B00yw Œ.C00 ! "; 0;B0/�

Let us examine how G0 can rewrite xA00C00yw. The following three cases cover all
possible steps.

(i) If xA00C00yw )G0 x1B0x2A00C00yw Œ.B ! B0; 0;B0/�; where x1Bx2 D x, then the
derivation is blocked.

(ii) If xA00C00yw )G0 xA00C00y1B0y2w Œ.B ! B0; 0;B0/�; where y1By2 D y, then no
next derivation step can be made.

(iii) Let xA00C00yw )G0 xA00yw Œ.C00 ! "; 0;B0/�: Then, all the following
derivations

xA00yw )G0 xyw

and

xA00yw )G0 x1B
0x2A

00yw )G0 x1B
0x2yw

where x1Bx2 D x, and

xA00yw )G0 xA00y1B
0y2w )G0 xy1B

0y2w
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where y1By2 D y, produce a sentential form in which the substring A00B00C00 is
erased. This sentential form contains at most one occurrence of A0, B0, and C0.

Return to

xA00B00C00yw )G0 xA00B00yw

Observe that by analogy with case (iii), any rewriting of xA00B00yw removes the
substring A00B00 and produces a sentential form containing at most one occurrence
of A0, B0, and C0.

To summarize the considerations above, the reader can see that as long as there
exists an occurrence of A00, B00, or C00 in the sentential form, only the erasing rules
or .B ! B0; 0;B0/ can be applied. The derivation either enters a sentential form that
blocks the derivation or the substring A0B0C0 is completely erased, after which new
occurrences of A, B, and C can be changed to A0, B0, and C0. That is,

zNuA0B0C0 Nvw )C
G0 xyw implies g.zNuA0B0C0 Nvw/ )G g.xyw/

where z; Nu; Nv 2 fA;B;Cg�, x; y 2 fA;B;C;A0;B0;C0g�, w 2 T�, and zNu D g.x/,
Nvw D g.yw/. In other words, the rules constructed in 2 and 3 correctly simulate the
application of the only non-context-free rule ABC ! ". Recall that g.a/ D a, for
all a 2 T. Hence, g.xyw/ D g.xy/w. Thus, L.G0/ � L.G/ D ;.

Having L.G/ � L.G0/ and L.G0/ � L.G/ D ;, we get L.G/ D L.G0/, and the
theorem holds. ut

Theorem 3.1.102 was further slightly improved in [Oku09], where the following
result was proved (the number of nonterminals was reduced from 11 to 9).

Theorem 3.1.103 (See [Oku09]). Every recursively enumerable language can be
generated by an ssc-grammar of degree .3; 1/ with no more than 8 conditional rules
and 9 nonterminals.

Let us close this section by stating several open problems.

Open Problem 3.1.104. In Theorems 3.1.83, 3.1.86, 3.1.89, and 3.1.94, we proved
that ssc-grammars of degrees .1; 2/ and .2; 1/ generate the family of recursively
enumerable languages, and propagating ssc-grammars of degrees .1; 2/ and .2; 1/
generate the family of context-sensitive languages. However, we discussed no
ssc-grammars of degree .1; 1/. According to Penttonen (see Theorem 3.1.76),
propagating sc-grammars of degree .1; 1/ generate a proper subfamily of context-
sensitive languages. That is, SSC�".1; 1/ � SC�".1; 1/ � CS. Are propagating
ssc-grammars of degree .1; 1/ as powerful as propagating sc-grammars of degree
.1; 1/? Furthermore, consider ssc-grammars of degree .1; 1/ with erasing rules.
Are they more powerful than propagating ssc-grammars of degree .1; 1/? Do they
generate the family of all context-sensitive languages or, even more, the family of
recursively enumerable languages? ut

Open Problem 3.1.105. In Theorems 3.1.97 through 3.1.103, several reduced
normal forms of these grammars were presented. These normal forms give rise to
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the following questions. Can any of the results be further improved with respect
to the number of conditional rules or nonterminals? Are there analogical reduced
forms of ssc-grammars with degrees .1; 2/ and .1; 3/? Moreover, reconsider these
results in terms of propagating ssc-grammars. Is it possible to achieve analogical
results if we disallow erasing rules? ut

3.2 Grammars Regulated by States

A state grammar G is a context-free grammar extended by an additional state
mechanism that strongly resembles a finite-state control of finite automata. During
every derivation step, G rewrites the leftmost occurrence of a nonterminal that
can be rewritten under the current state; in addition, it moves from a state to
another state, which influences the choice of the rule to be applied in the next
step. If the application of a rule always takes place within the first n occurrences
of nonterminals, G is referred to as n-limited.

The present section consists of Sects. 3.2.1 and 3.2.2. The former defines and
illustrates state grammars. The latter describes their generative power.

3.2.1 Definitions and Examples

In this section, we define state grammars and illustrate them by an example.

Definition 3.2.1. A state grammar (see [Kas70]) is a quintuple

G D
�
V;W;T;P; S

�

where

• V is a total alphabet;
• W is a finite set of states;
• T � V is an alphabet of terminals;
• S 2 V � T is the start symbol;
• P � .W � .V � T// � .W � VC/ is a finite relation.

Instead of .q;A; p; v/ 2 P, we write .q;A/ ! .p; v/ 2 P. For every z 2 V�,
define

G states.z/ D
˚
q 2 W j .q;A/ ! .p; v/ 2 P;A 2 alph.z/

�

If .q;A/ ! .p; v/ 2 P, x; y 2 V�, and G states.x/ D ;, then G makes a derivation
step from .q; xAy/ to .p; xvy/, symbolically written as

.q; xAy/ ) .p; xvy/ Œ.q;A/ ! .p; v/�
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In addition, if n is a positive integer satisfying that #V�T .xA/ � n, we say that
.q; xAy/ ) .p; xvy/ Œ.q;A/ ! .p; v/� is n-limited, symbolically written as

.q; xAy/n).p; xvy/ Œ.q;A/ ! .p; v/�

Whenever there is no danger of confusion, we simplify .q; xAy/ ) .p; xvy/
Œ.q;A/ ! .p; v/� and .q; xAy/n).p; xvy/ Œ.q;A/ ! .p; v/� to

.q; xAy/ ) .p; xvy/

and

.q; xAy/n).p; xvy/

respectively. In the standard manner, we extend ) to)m, where m � 0; then, based
on )m, we define )Cand)�.

Let n be a positive integer, and let 
; ! 2 W�VC. To express that every derivation
step in 
)m!; 
)C!, and 
)�! is n-limited, we write 
n)

m!; 
n)
C!, and


n)
�! instead of 
)m!; 
)C!, and 
)�!, respectively.

By strings.
n)�!/, we denote the set of all strings occurring in the derivation

n)

�!. The language of G, denoted by L.G/, is defined as

L.G/ D
˚
w 2 T� j .q; S/)�.p;w/; q; p 2 W

�

Furthermore, for every n � 1, define

L.G; n/ D
˚
w 2 T� j .q; S/n)

�.p;w/; q; p 2 W
�

A derivation of the form .q; S/n)�.p;w/, where q; p 2 W and w 2 T�, represents a
successful n-limited generation of w in G. ut

Next, we illustrate the previous definition by an example.

Example 3.2.2. Consider the state grammar

G D
�
fS;X;Y; a; bg; fp0; p1; p2; p3; p4g; fa; bg;P; S

�

with the following nine rules in P

.p0; S/ ! .p0;XY/

.p0;X/ ! .p1; aX/

.p1;Y/ ! .p0; aY/

.p0;X/ ! .p2; bX/

.p2;Y/ ! .p0; bY/

.p0;X/ ! .p3; a/

.p3;Y/ ! .p0; a/

.p0;X/ ! .p4; b/

.p4;Y/ ! .p0; b/
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Observe that G generates the non-context-free language

L.G/ D
˚
ww j w 2 fa; bgC

�

Indeed, first, S is rewritten to XY. Then, by using its states, G ensures that whenever
X is rewritten to aX, the current state is changed to force the rewrite of Y to aY.
Similarly, whenever X is rewritten to bX, the current state is changed to force the
rewrite of Y to bY. Every successful derivation is finished by rewriting X to a or b
and then Y to a or b, respectively.

For example, abab is produced by the following derivation

.p0; S/ ) .p0;XY/ Œ.p0; S/ ! .p0;XY/�
) .p1; aXY/ Œ.p0;X/ ! .p1; aX/�
) .p0; aXaY/ Œ.p1;Y/ ! .p0; aY/�
) .p4; abaY/ Œ.p0;X/ ! .p4; b/�
) .p0; abab/ Œ.p4;Y/ ! .p0; b/� ut

By ST, we denote the family of languages generated by state grammars. For
every n � 1, STn denotes the family of languages generated by n-limited state
grammars. Set

ST1 D
[

n�1

STn

3.2.2 Generative Power

In this section, which closes the chapter, we give the key result concerning state
grammars, originally established in [Kas70].

Theorem 3.2.3. CF D ST1 � ST2 � 	 	 	 � ST1 � ST D CS

3.3 Grammars Regulated by Control Languages

In essence, a grammar with a control language H is a context-free grammar G
extended by a regular control language 	 defined over the set of rules of G. Thus,
each control string in 	 represents, in effect, a sequence of rules in G. A terminal
string w is in the language generated by H if and only if 	 contains a control string
according to which G generates w.

The present section is divided into two subsections—Sects. 3.3.1 and 3.3.2. The
former defines and illustrates regular-controlled grammars. The latter states their
generative power.
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3.3.1 Definitions and Examples

In this section, we define the notion of a regular-controlled grammar and illustrate
it by examples. Before reading this definition, recall the notion of rule labels,
formalized in Definition 2.3.3.

Definition 3.3.1. A regular-controlled (context-free) grammar (see [MVMP04]) is
a pair

H D
�
G; 	

�

where

• G D .V , T, � , P, S/ is a context-free grammar, called core grammar;
• 	 � �� is a regular language, called control language.

The language of H, denoted by L.H/, is defined as

L.H/ D
˚
w 2 T� j S )�

G w Œ˛� with ˛ 2 	
�

ut

In other words, L.H/ in the above definition consists of all strings w 2 T� such
that there is a derivation in G,

S )G w1 Œr1� )G w2 Œr2� )G 	 	 	 )G wn Œrn�

where

w D wn and r1r2 	 	 	 rn 2 	 for some n � 1

In what follows, instead of x )G y, we sometimes write x )H y—that is, we use
)G and )H interchangeably.

Note that if 	 D ��, then there is no regulation, and thus L.H/ D L.G/ in this
case.

Example 3.3.2. Let H D .G, 	/ be a regular-controlled grammar, where

G D
�
fS;A;B;C; a; b; cg; fa; b; cg; �;P; S

�

is a context-free grammar with P consisting of the following seven rules

r1W S ! ABC r2W A ! aA
r3W B ! bB
r4W C ! cC

r5W A ! "

r6W B ! "

r7W C ! "

and 	 D fr1gfr2r3r4g�fr5r6r7g.
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First, r1 has to be applied. Then, r2, r3, and r4 can be consecutively applied any
number of times. The derivation is finished by applying r5, r6, and r7. As a result,
this grammar generates the non-context-free language

L.H/ D
˚
anbncn j n � 0

�

For example, the sentence aabbcc is obtained by the following derivation

S )H ABC Œr1�
)H aABC Œr2�
)H aAbBC Œr3�
)H aAbBcC Œr4�
)H aaAbBcC Œr2�
)H aaAbbBcC Œr3�
)H aaAbbBccC Œr4�
)H aabbBccC Œr5�
)H aabbccC Œr6�
)H aabbcc Œr7�

As another example, the empty string is derived in this way

S )H ABC Œr1� )H BC Œr5� )H C Œr6� )H " Œr7� ut

Next, we introduce the concept of appearance checking. Informally, it allows
us to skip the application of certain rules if they are not applicable to the current
sentential form.

Definition 3.3.3. A regular-controlled grammar with appearance checking
(see [MVMP04]) is a triple

H D
�
G; 	;W

�

where

• G and 	 are defined as in a regular-controlled grammar;
• W � � is the appearance checking set.

We say that x 2 VC directly derives y 2 V� in G in the appearance checking
mode W by application of rW A ! w 2 P, symbolically written as

x ).G;W/ y Œr�

if either

x D x1Ax2 and y D x1wx2
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or

A … alph.x/; r 2 W; and x D y

Define )k
.G;W/ for k � 0, )C

.G;W/, and )�
.G;W/ in the standard way. The language

of H, denoted by L.H/, is defined as

L.H/ D
˚
w 2 T� j S )�

.G;W/ w Œ˛� with ˛ 2 	
�

ut

According to Definition 3.3.1, in a regular-controlled grammar without appear-
ance checking, once a control string has been started by G, all its rules have to
be applied. G with an appearance checking set somewhat relaxes this necessity,
however. Indeed, if the left-hand side of a rule is absent in the sentential form under
scan and, simultaneously, this rule is in the appearance checking set, then G skips
its application and moves on to the next rule in the control string.

Observe that the only difference between a regular-controlled grammar with
and without appearance checking is the derivation mode ().G;W/ instead of )G).
Furthermore, note that when W D ;, these two modes coincide, so any regular-
controlled grammar represents a special case of a regular-controlled grammar with
appearance checking.

Example 3.3.4 (From Chapter 3 of [RS97b]). Let H D .G, 	 , W/ be a regular-
controlled grammar with appearance checking, where

G D
�
fS;A;X; ag; fag; �;P; S

�

is a context-free grammar with P consisting of the following rules

r1W S ! AA
r2W S ! X
r3W A ! S

r4W A ! X
r5W S ! a

and 	 D .fr1g�fr2gfr3g�fr4g/�fr5g�, W D fr2; r4g.
Assume that we have the sentential form

S2
m

for some m � 0, obtained by using a sequence of rules from .fr1g�fr2gfr3g�fr4g/�.
This holds for the start symbol (m D 0). We can either repeat this sequence or finish
the derivation by using r5 until we have

a2
m

In the former case, we might apply r1 as many times as we wish. However, if we
apply it only k many times, where k < m, then we have to use r2, which blocks
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the derivation. Indeed, there is no rule with X on its left hand side. Thus, this rule
guarantees that every S is eventually rewritten to AA. Notice that r2 2 W. As a result,
if no S occurs in the sentential form, we can skip it (it is not applicable), so we get

S2
m

)�
.G;W/ .AA/2

m
D A2

mC1

Then, by analogy, we have to rewrite each A to S, so we get

A2
mC1

)�
.G;W/ S2

mC1

which is of the same form as the sentential form from which we started the
derivation. Therefore, this grammar generates the non-context-free language

L.H/ D
n
a2

n
j n � 0

o

For example, the sentence aaaa is obtained by the following derivation

S ).G;W/ AA Œr1�
).G;W/ AS Œr3�
).G;W/ SS Œr3�
).G;W/ AAS Œr1�
).G;W/ AAAA Œr1�
).G;W/ AASA Œr3�
).G;W/ AASS Œr3�
).G;W/ SASS Œr3�
).G;W/ SSSS Œr3�
).G;W/ SSSa Œr5�
).G;W/ aSSa Œr5�
).G;W/ aaSa Œr5�
).G;W/ aaaa Œr5�

As another example, a single a is generated by

S ).G;W/ a Œr5� ut

We can disallow erasing rules in the underlying core grammar. This is formalized
in the following definition.

Definition 3.3.5. Let H D .G, 	/ (H D .G, 	 , W/) be a regular-controlled
grammar (with appearance checking). If G is propagating, then H is said to be a
propagating regular-controlled grammar (with appearance checking). ut
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By rCac, rC�"
ac , rC, and rC�", we denote the families of languages generated

by regular-controlled grammars with appearance checking, propagating regular-
controlled grammars with appearance checking, regular-controlled grammars, and
propagating regular-controlled grammars, respectively.

3.3.2 Generative Power

The present section concerns the generative power of regular-controlled grammars.
More specifically, the next theorem summarizes the relations between the language
families defined in the conclusion of the previous section.

Theorem 3.3.6 (See Theorem 1 in [MVMP04]).

(i) All languages in rC over a unary alphabet are regular.
(ii) CF � rC�" � rC�"

ac � CS
(iii) CF � rC�" � rC � rCac D RE

Open Problem 3.3.7. Is rC � rC�" empty? Put in other words, can any regular-
controlled grammar be converted to an equivalent propagating regular-controlled
grammar? ut

3.4 Matrix Grammars

As already pointed out in the beginning of this chapter, in essence, any matrix
grammar can be viewed as a special regular-controlled grammar with a control
language that has the form of the iteration of a finite language. More precisely, a
matrix grammar H is a context-free grammar G extended by a finite set of sequences
of its rules, referred to as matrices. In essence, H makes a derivation so it selects a
matrix, and after this selection, it applies all its rules one by one until it reaches the
very last rule. Then, it either completes its derivation, or it makes another selection
of a matrix and continues the derivation in the same way.

This section is divided into three subsections. Section 3.4.1 defines and illustrates
matrix grammars. Section 3.4.2 determines their power. Finally, Sect. 3.4.3 studies
even matrix grammars as special cases of matrix grammars, which work in parallel.
Consequently, in a very natural way, Sect. 3.4.3 actually introduces the central topic
of the next chapter grammatical parallelism (see Chap. 4).

3.4.1 Definitions and Examples

We open this section by giving the rigorous definition of matrix grammars. Then,
we illustrate this definition by an example.
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Definition 3.4.1. A matrix grammar with appearance checking (M for short;
see [DP89]) is a triple

H D
�
G;M;W

�

where

• G D .V , T, � , P, S/ is a context-free grammar, called core grammar;
• M � �C is a finite language whose elements are called matrices;
• W � � is the appearance checking set.

The direct derivation relation, symbolically denoted by )H , is defined over V�

as follows: for r1r2 	 	 	 rn 2 M, for some n � 1, and x; y 2 V�,

x )H y

if and only if

x D x0 ).G;W/ x1 Œr1� ).G;W/ x2 Œr2� ).G;W/ 	 	 	 ).G;W/ xn D y Œrn�

where xi 2 V�, for all i, 1 � i � n�1, and the application of rules in the appearance
checking mode is defined as in Definition 3.3.3.

Define )k
H for k � 0, )C

H , and )�
H in the standard way. The language of H,

denoted by L.H/, is defined as

L.H/ D
˚
w 2 T� j S )�

H w
�

ut

Note that if M D � , then there is no regulation, and thus L.H/ D L.G/ in this
case. Sometimes, for brevity, we use rules and rule labels interchangeably.

Definition 3.4.2. Let H D .G, M, W/ be a matrix grammar with appearance
checking. If W D ;, then we say that H is a matrix grammar without appearance
checking or, simply, a matrix grammar and we just write H D .G, M/. ut

Without appearance checking, once a matrix has been started, H has to apply
all its rules. However, with an appearance checking set of the rules in the matrices,
H may sometimes skip the application of a rule within a matrix. More precisely,
if the left-hand side of a rule is absent in the current sentential form while the
corresponding rule of the applied matrix occurs in the appearance checking set,
then H moves on to the next rule in the matrix.

Example 3.4.3 (From [MVMP04]). Let H D .G, M/ be a matrix grammar, where
G D .V , T, � , P, S/ is a context-free grammar with V D fS, A, B, a, bg, T D fa,
bg, P consists of the following rules
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r1W S ! AB
r2W A ! aA
r3W B ! aB

r4W A ! bA
r5W B ! bB
r6W A ! a

r7W B ! a
r8W A ! b
r9W B ! b

and M D fr1; r2r3; r4r5; r6r7; r8r9g.
We start with the only applicable matrix r1 and we get AB. Next, we can either

• terminate the derivation by using the matrix r6r7 and obtain aa,
• terminate the derivation by using the matrix r8r9 and obtain bb,
• rewrite AB to aAaB by using the matrix r2r3, or
• rewrite AB to bAbB by using the matrix r4r5.

If the derivation is not terminated, we can continue analogously. For example, the
sentence aabaab is obtained by the following derivation

S )H AB
)H aAaB
)H aaAaaB
)H aabaab

Clearly, this grammar generates the non-context-free language

L.H/ D
˚
ww j w 2 fa; bgC

�
ut

As with regular-controlled grammars, we can disallow erasing rules in the
underlying core grammar.

Definition 3.4.4. Let H D .G, M, W/ be a matrix grammar (with appearance
checking). If G is propagating, then H is a propagating matrix grammar (with
appearance checking). ut

The families of languages generated by matrix grammars with appearance check-
ing, propagating matrix grammars with appearance checking, matrix grammars, and
propagating matrix grammars are denoted by Mac, M�"

ac , M, and M�", respectively.

3.4.2 Generative Power

This section states the relations between the language families defined in the
conclusion of the previous section.

Theorem 3.4.5 (See Theorem 2 in [MVMP04]).

(i) Mac D rCac

(ii) M�"
ac D rC�"

ac
(iii) M D rC
(iv) M�" D rC�"
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Notice that the relations between the language families generated by matrix
grammars are analogical to the relations between language families generated by
regular-controlled grammars (see Theorem 3.3.6).

3.4.3 Even Matrix Grammars

In essence, even matrix grammars can be seen as sequences of context-free
grammars, referred to as their components, which work in parallel. More precisely,
for a positive integer n, an n-even matrix grammar is an ordered sequence of n
context-free grammars with pair-wise disjoint nonterminal alphabets and a shared
terminal alphabet, which rules are fixed n-tuples containing one rule of each
component—that is, in every derivation step, each of these components rewrites a
nonterminal occurring in its current sentential form. A sentential form of an n-even
matrix grammar is a concatenation of sentential forms of all of its components from
the first to the nth. A derivation is successful if and only if all components generate
a terminal string at once. Of course, one-component even matrix grammars are
nothing but context-free grammars, so they characterize the family of context-free
languages. Surprisingly, two-component even matrix grammars are significantly
stronger as the present section demonstrates; indeed, they are as powerful as
ordinary matrix grammars (see Sect. 3.4.1). This section also points out that
even matrix grammars with more than two components are equivalent with two-
component even matrix grammars. Then, it places and studies the following three
leftmost derivation restrictions on even matrix grammars. The first restriction
requires that every rule is applied so it rewrites the leftmost possible nonterminal
in each component. The second restriction parallels the first restriction; in addition,
however, in each component, it makes the selection of the rule so the leftmost
possible nonterminal is rewritten in the current sentential form. Finally, the third
restriction requires that the leftmost nonterminal of each component is rewritten.
As the section demonstrates, working under the second and third restriction, even
matrix grammars are computational complete—that is, they are equivalent with
Turing machines. The section has not precisely determined the generative power
of even matrix grammars working under the first restriction, so this determination
represents an open problem.

Definitions and Examples

In this section, we define even matrix grammars. Furthermore, we introduce their
leftmost variants and illustrate them by an example.

Definition 3.4.6. Let n � 1. An even matrix grammar of degree n (nEMG for short)
is an (n C 3)-tuple, Gn D .N1;N2; : : : ;Nn;T;P; S/, where
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(1) N1;N2; : : : ;Nn are pairwise disjoint nonterminal alphabets;
(2) T is a terminal alphabet, T \ Ni D ;, for 1 � i � n;
(3) S is the start symbol such that S … N1 [ 	 	 	 [ Nn [ T;
(4) P is a finite set of rewriting rules of the form:

(4.a) .S/ ! .v/, v 2 T�.
(4.b) .S/ ! .v1v2 : : : vn/, vi 2 .Ni [ T/�, alph.vi/\ Ni ¤ ;, for 1 � i � n.
(4.c) .A1;A2; : : : ;An/ ! .v1; v2; : : : ; vn/, Ai 2 Ni, vi 2 .Ni [ T/�,

for 1 � i � n. ut

Definition 3.4.7. Let Gn D .N1; : : : ;Nn;T;P; S/ be an nEMG, for some n � 1.
Consider any string u1A1w1 : : : unAnwn, where uiwi 2 .Ni [ T/�, Ai 2 Ni, and some
rule .A1; : : : ;An/ ! .v1; : : : ; vn/, where vi 2 .Ni [ T/�, for 1 � i � n. Then, Gn

makes a derivation step

u1A1w1 : : : unAnwn ) u1v1w1 : : : unvnwn

Based on additional restrictions, we define the following three modes of leftmost
derivations:

(1) If Ai … alph.ui/, for 1 � i � n, then write

u1A1w1 : : : unAnwn 1)u1v1w1 : : : unvnwn

(2) If

u1A1w1 : : : unAnwn D u0
1B1w

0
1u

0
2B2w

0
2 : : : u

0
nBnw0

n

where u0
i;w

0
i 2 .Ni [ T/�, Bi 2 Ni, for some 1 � j � n: ju0

ij D juij, i < j,
ju0

jj < jujj, for 1 � i � n, and in P, there is no applicable rule

.B1;B2; : : : ;Bn/ ! .x1; x2; : : : ; xn/

then write

u1A1w1 : : : unAnwn 2)u1v1w1 : : : unvnwn

(3) If Ni \ alph.ui/ D ;, for 1 � i � n, then write

u1A1w1 : : : unAnwn 3)u1v1w1 : : : unvnwn

In what follows, we write 0) instead of ). We say that i) represents the direct
derivation of mode i, for i D 0; 1; 2; 3. ut
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For the clarity, let us informally describe the defined modes of leftmost derivations.
In the first mode, any applicable rule is chosen and the leftmost possible nontermi-
nals are rewritten. In the second mode, there is a specific rule chosen, which can
rewrite nonterminals as to the left as possible—there exists no rule, which could be
applied more leftmost—, while the lower components are more prior. In the third
mode, always the leftmost nonterminal of each component must be rewritten.

Definition 3.4.8. Let Gn D .N1;N2; : : : ;Nn;T;P; S/ be an nEMG, and let % be any
relation over .N1 [ T/�.N2 [ T/� : : : .Nn [ T/�. Set

L .Gn; %/ D fx j x 2 T�; S %� xg

L .Gn; %/ is said to be the language that Gn generates by %.

nEM% D fL .Gn; %/ j Gn is a nEMGg

is said to be the family of languages that nEMGs generate by %. Let EM% denotes
the family of languages generated by all even matrix grammars by %. ut

We illustrate the previous definitions by the next example.

Example 3.4.9. Let G D .N1;N2;T;P; S/, where N1 D fA;Ag, N2 D fB;B;C;Cg,
T D fa; b; c; dg, be a 2EMG with P containing the following rules:

(1) .S/ ! .AABC/
(2) .A;B/ ! .aAb; cBd/
(3) .A;C/ ! .aAb; cCd/
(4) .A;B/ ! .A;B/
(5) .A;C/ ! .";C/

(6) .A;B/ ! .aAb; cBd/
(7) .A;C/ ! .aAb; cCd/
(8) .A;B/ ! .A; "/
(9) .A;C/ ! ."; "/

Next, we illustrate i), 0 � i � 3, in terms of G.

0. Using derivations of mode 0, after applying the starting rule (1), G uses (2)
and/or (3). Then, the rule (4) is applied, however, the rule (3) is still applicable,
until the rule (5) is used. Next, the derivation proceeds by the rules (6) and/or (7)
and eventually finishes with the rules (8) and (9). The derivation may proceed
as follows.
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S 1)AABC
1)

�akAbkalAblcmBdmcnCdn

1)akAbkalAblcmBdmcnCdn

1)
�akCiCjAbkCiCjalAblcmCiBdmCicnCjCdnCj

1)akCiCjAbkCiCjalblcmCiBdmCicnCjCdnCj

1)
�akCiCjCoCpAbkCiCjCoCpalblcmCiCoBdmCiCocnCjCpCdnCjCp

1)akCiCjCoCpAbkCiCjCoCpalblcmCiCodmCiCocnCjCpCdnCjCp

1)akCiCjCoCpbkCiCjCoCpalblcmCiCodmCiCocnCjCpdnCjCp

for i; j; k; l;m; n; o; p � 0. Consequently,

L .G; 1)/ D
˚
akbkalblcmdmcndn j k C l D m C n; for k; l;m; n � 0

�

which is a non-context-free language.
1. Using mode 1 leftmost derivations, after applying the starting rule (1), G

continues using rules (2) and/or (3), until the rule (4) is applied. The rule (3)
is still applicable, until the rule (5) is used. Next, the derivation proceeds by the
rules (6) and/or (7) and eventually finishes with the rules (8) and (9):

S 1)AABC
1)

�aiCjAbiCjAciBdicjCdj

1)aiCjAbiCjAciBdicjCdj

1)
�aiCjAbiCjakAbkciBdicjCkCdjCk

1)aiCjbiCjakAbkciBdicjCkCdjCk

1)
�aiCjbiCjakCoCpAbkCoCpciCoBdiCocjCkCpCdjCkCp

1)aiCjbiCjakCoCpAbkCoCpciCodiCocjCkCpCdjCkCp

1)aiCjbiCjakCoCpbkCoCpciCodiCocjCkCpdjCkCp

for i; j; k; o; p � 0. Consequently,

L .G; 1)/ D
˚
akbkalblcmdmcndn j k C l D m C n; for k; l;m; n � 0

�

2. With derivations of leftmost mode 2, the situation is different. First, the starting
rule (1) is applied, however, then only the rule (2) is applicable, until the rule (4)
is used. Next, the rule (5) must be applied. The derivation continues with the
applications of the rule (6), since the rule (7) is not applicable, until the rules (8)
and (9) are used:

S 2)AABC 2)
�aiAbiAciBdiC

2)aiAbiAciBdiC 2)aibiAciBdiC

2)
�aibiajAbjciCjBdiCjC 2)aibiajAbjciCjdiCjC

2)aibiajbjciCjdiCj

for i; j � 0. Consequently, L .G; 2)/ D
˚
aibiajbjciCjdiCj j for i; j � 0

�
.
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3. The derivation performed by the leftmost mode 3 derivations starts with the
rule (1), continues with applying the rule (2) and eventually uses the rule (4).
However, then, the derivation is blocked, because there is no rule rewriting A
and B:

S 3)AABC 3)
�aiAbiAciBdiC 3)aiAbiAciBdiC 3);

Consequently, L .G; 3)/ D ;. ut

Generative Power

In this section, we investigate the generative power of even matrix grammars
working under the derivation modes introduced in the previous section. We pay
a special attention to the number of their components.

Since any context-free grammar is 1EMG, we obtain the next theorem.

Theorem 3.4.10. 1EMi) D CF, for i D 0; 1; 2; 3. ut

Mode 0

From Theorem 3.4.10, every one-component even matrix grammar generates a
context-free language. From Example 3.4.9, two-component even matrix grammars
are more powerful than one-component ones. Next we prove that additional
components do not increase the power of even matrix grammars.

Theorem 3.4.11. nEM
0) D 2EM

0), for n � 2.

Proof. Construction. Let G D .N1;N2; : : : ;Nn;T;P; S/ be any nEMG, for some
n � 2. Suppose, the rules in P are in the form

r W .A1;A2; : : : ;An/ ! .w1;w2; : : : ;wn/

where 1 � r � card.P/ is the unique numeric label. Set N D N1 [ N2 [ 	 	 	 [ Nn.
Define 2EMG G0 D .N, N0, T, P0, S/, where N0 D fQi

j j 1 � i � card.P/; 1 �

j � ng. Construct P0 as follows. Initially, set P0 D ;. Perform (1) through (3), given
next:

(1) for each r W .S/ ! .w/ 2 P, w 2 T�, add .S/ ! .w/ to P0;
(2) for each r W .S/ ! .w/ 2 P, alph.w/ � T ¤ ;,

add .S/ ! .wQt
1/, where t 2 f1; 2; : : : ; card.P/g, to P0;

(3) for each r W .A1;A2; : : : ;An/ ! .w1;w2; : : : ;wn/ 2 P, add

(3.a) .Ai;Qr
i / ! .wi;Qr

iC1/, for 1 � i < n,
(3.b) .An;Qr

n/ ! .wn;Qt
1/, for t 2 f1; 2; : : : ; card.P/g,

(3.c) .An;Qr
n/ ! .wn; "/, to P0.
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Claim 3.4.12. L .G; 0)/ D L .G0; 0)/.

Proof. We establish the proof by proving the following two claims.

Claim 3.4.13. L .G; 0)/ � L .G0; 0)/.

Proof. To prove the claim, we show that for any sequence of derivation steps of G,
generating the sentential form w, there is the corresponding sequence of derivation
steps of G0 generating the corresponding sentential form or the same terminal string,
if it is successful, by induction on m—the number of the derivation steps of G.

Basis. Let m D 0. The correspondence of the sentential forms of G and G0 is trivial.
Let m D 1. Then, some starting rule from P of the form .S/ ! .v/ is applied.
However, in P0, there is the corresponding rule .S/ ! .v/, in the case the derivation
is finished, or .S/ ! .vQr

1/, for 1 � r � card.P/, otherwise. Without any loss of
generality, suppose r is the label of the next rule applied by G. The basis holds.

Induction Hypothesis. Suppose that there exists k � 1 such that the assumption of
correspondence holds for all sequences of the derivation steps of G of the length m,
where 0 � m � k.

Induction Step. Consider any sequence of moves

S 0)
kC1w

Since k C 1 � 1, this sequence can be expressed as

S0)
kv1A1u1v2A2u2 : : : vnAnun0)v1x1u1v2x2u2 : : : vnxnun

where Ai 2 Ni, vi; ui 2 .Ni [ T/� and the last derivation step is performed by some
rule

r W .A1;A2; : : : ;An/ ! .x1; x2; : : : ; xn/ 2 P

Then, there exits a sequence of derivation steps of G0

S0)
�v1A1u1v2A2u2 : : : vnAnunQr

1

From the construction of G0, there exist rules

.A1;Q
r
1/ ! .x1;Q

r
2/; .A2;Q

r
2/ ! .x2;Q

r
3/; : : : ; .An�1;Q

r
n�1/ ! .xn�1;Q

r
n/;

.An;Q
r
n/ ! .xn;Q

t
1/; .An;Q

r
n/ ! .xn; "/

for 1 � t � card.P/. Therefore, in G0, there is the sequence of derivation steps

S 0)
� v1A1u1v2A2u2 : : : vnAnunQr

1

0) v1x1u1v2A2u2 : : : vnAnunQr
2

0) v1x1u1v2x2u2 : : : vnAnunQr
3

0)
n�3 v1x1u1v2x2u2 : : : vn�1xn�1un�1vnAnunQr

n
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Next, there are two possible situations. First, suppose the derivation of G is not
finished and the rule labeled by some t is applied next. Then,

v1x1u1v2x2u2 : : : vnAnunQr
n 0) v1x1u1v2x2u2 : : : vnxnunQt

1

in G0, generating the sentential form corresponding to the new sentential form of G,
where v1x1u1v2x2u2 : : : vnxnunQt

1 D wQt
1. Second, suppose w 2 T�. By the last of

the highlighted rules of G0

v1x1u1v2x2u2 : : : vnAnunQr
n 0) v1x1u1v2x2u2 : : : vnxnun

where v1x1u1v2x2u2 : : : vnxnun D w and Claim 3.4.13 holds. ut

Claim 3.4.14. L .G; 0)/ 
 L .G0; 0)/.

Proof. To prove the claim, we show that for any sequence of derivation steps of G0,
generating the sentential form w, there is the corresponding sequence of derivation
steps of G generating the corresponding sentential form or the same terminal string,
if it is successful, by induction on m—the number of the derivation steps of G0.
First, assume that in G0 the symbols Qx

y of the second component serve as states of
computation. With the application of the starting rule, some symbol Qr

1 is inserted. It
means, G0 is about to simulate the application of the rule r of G. The only applicable
rule is then the rule rewriting Qr

1 to Qr
2. And it holds equally for any Qx

y, where
y < n. Therefore, except the starting rules, these rules have always to be applied in
sequence. We use this assumption in the next proof.

Basis. Let m D 0. The sentential forms of G and G0 correspond. Let m D 1. Then,
some starting rule from P0 of the form .S/ ! .v/ or .S/ ! .vQr

1/, for some r 2

f1; 2; : : : ; card.P/g is applied. However, this rule is introduced by the rule .S/ ! .v/

of P. Therefore, G can make the derivation step corresponding to the one made by
G0 and the basis holds.

Induction Hypothesis. Suppose that there exists k � 1 such that the assumption of
correspondence holds for all sequences of the derivation steps of G0 of the length m,
where 0 � m � k.

Induction Step. Recall the previous assumption. Let us consider any sequence of
moves

S 0)
kCnw

This sequence can be written in the form

S 0)
� v1A1u1v2A2u2 : : : vnAnunQr

1

0) v1x1u1v2A2u2 : : : vnAnunQr
2

0) v1x1u1v2x2u2 : : : vnAnunQr
3

0)
n�2 v1x1u1v2x2u2 : : : vnxnunX
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where Ai 2 Ni, vi; ui 2 .Ni [T/� and X D Qt
1, for 1 � t � card.P/, or X D ". There

are n rules from P0 used

.A1;Q
r
1/ ! .x1;Q

r
2/; .A2;Q

r
2/ ! .x2;Q

r
3/; : : : ; .An;Q

r
n/ ! .xn;X/

These rules are introduced by the rule of G

r W .A1;A2; : : : ;An/ ! .x1; x2; : : : ; xn/ 2 P

By the induction hypothesis, in the terms of G

S 0)
� v1A1u1v2A2u2 : : : vnAnun

Thus, using the rule r

v1A1u1v2A2u2 : : : vnAnun 0) v1x1u1v2x2u2 : : : vnxnun D w

If X D ", w 2 T� and G0 generates the terminal string, G generates the same terminal
string and Claim 3.4.14 holds. ut

We have proved L .G; 0)/ � L .G0; 0)/ and L .G; 0)/ 
 L .G0; 0)/,
therefore L .G; 0)/ D L .G0; 0)/ and Claim 3.4.12 holds. ut

Since G is any nEMG, for some n � 2, and G0 is 2EMG, Theorem 3.4.11
holds. ut

We have proved

CF D 1EM0) � 2EM0) D EM0)

however, this classification of even matrix languages is not very precise. Let us recall
(see Theorem 3.3.6 and 3.4.5) that

CF � M � CS

By the following theorem we prove that even matrix grammars characterize
precisely the family of matrix languages.

Theorem 3.4.15. EM0) D M.

Proof. Without any loss of generality, we consider only 2EMGs.

Claim 3.4.16. 2EM
0) � M:

Proof. Construction. Let G D .N1;N2;T;P; S/ be any 2EMG. Suppose that the rules
in P are of the form

r W .A1;A2/ ! .w1;w2/
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where 1 � r � card.P/ is a unique numerical label. Define matrix grammar H D

.G0;M/, where G0 D .N1 [ N2 [ fSg [ T, T, P0, S/. Construct P0 and M as follows.
Initially, set P0 D M D ;. Perform (1) and (2), given next:

(1) for each r W .S/ ! .w/ 2 P,

(1.a) add r W S ! w to P0,
(1.b) add r to M;

(2) for each r W .A1;A2/ ! .w1;w2/ 2 P,

(2.a) add r1 W A1 ! w1 and
(2.b) add r2 W A2 ! w2 to P0,
(2.c) add r1r2 to M.

Claim 3.4.17. L .G; 0)/ D L .H/.

Proof. Basic Idea. Every 2EMG first applies some starting rule. Next, in every
derivation step simultaneously in each component there is a nonterminal rewritten
to some string. This process can be simulated by matrix grammar as follows. For
every starting rule of G, there is the same applicable rule of H. They both generate
the equal terminal strings or a sentential forms w1w2, where alph.w1/ \ N2 D ;

and alph.w2/ \ N1 D ;. Then, for every rule .A1;A2/ ! .x1; x2/ in G, there are
two rules A1 ! x1 and A2 ! x2 in H, which must be applied consecutively.
Since N1 \ N2 D ;, every sentential form remains of the form w1w2, where
alph.w1/ \ N2 D ; and alph.w2/ \ N1 D ;. Thus, H simulates both separated
components of G. A detailed version of the proof is left to the reader.

Since for any 2EMG we can construct a matrix grammar generating the same
language, Claim 3.4.16 holds. ut

Claim 3.4.18. 2EM0) 
 M:

Proof. Construction. Let H D .G;M/, where G D .V;T;P; S/, V � T D N, S 2 N,
be any matrix grammar. Without any loss of generality, suppose every m 2 M has
its unique label. Define 2EMG G0 D .N;N0;T;P0; S0/, where S0 … N,

N0 D fQr
i j r W p1p2 : : : pk 2 M; i 2 f1; 2; : : : ; kg; k � 1g

Construct P0 as follows. Initially set P0 D ;. Perform (1) given next:

(1) for each r W p1p2 : : : pk 2 M, k � 1, where pi W Ai ! wi, i 2 f1; 2; : : : ; kg,

(1.a) add .S0/ ! .SQr
1/,

(1.b) .Ai;Qr
i / ! .wi;Qr

iC1/, for i < k,
(1.c) .Ak;Qr

k/ ! .wk;Qt
1/, for some t W v 2 M, and

(1.d) .Ak;Qr
k/ ! .wk; "/ to P0.

Claim 3.4.19. L .G0; 0)/ D L .H/.

Proof. We establish Claim 3.4.19 by proving the following two claims.

Claim 3.4.20. L .G0; 0)/ 
 L .H/.
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Proof. We prove the claim by the induction on the number of derivation steps m.

Basis. Let m D 0. By the application of the rule .S0/ ! .SQr
1/, G0 generates the

sentential form corresponding to the starting symbol of H. Without any loss of
generality, suppose r is the label of the next matrix applied by H. The basis holds.

Induction Hypothesis. Suppose that there exists k � 0 such that Claim 3.4.20 holds
for all sequences of the derivation steps of the length m, where 0 � m � k.

Induction Step. Consider any sequence of moves

S )kC1 w0

where w0 2 .N [ T/�. Since k C 1 � 1,

S )k w ) w0

for some w 2 .N [ T/�. Then, the last derivation step is performed by some matrix

r W p1p2 : : : pn

where n � 1. By the induction hypothesis

S0
0) SQs

1 0)
� wQr

1

in G0, for some s 2 M. By the construction of G0, there exists the sequence of rules
corresponding to the matrix r

.A1;Q
r
1/ ! .w1;Q

r
2/; .A2;Q

r
2/ ! .w2;Q

r
3/ : : : .An;Q

r
n/ ! .wn;X/

where X D Qt
1, where t 2 M is the next matrix applied by H, if alph.w0/ \ N ¤ ;,

or X D " otherwise. By the application of this sequence of rules

wQr
1 0)

� w0X

which completes the proof. ut

Claim 3.4.21. L .G0; 0)/ � L .H/.

Proof. We prove the claim by the induction on the number of derivation steps m.

Basis. Let m D 1. Then, G0 applied some starting rule .S0/ ! .SQr
1/. The resulting

sentential form corresponds to the starting sentential form of H. The basis holds.

Induction Hypothesis. Suppose that there exists k � 1 such that Claim 3.4.21 holds
for all sequences of the derivation steps of the length m, where 1 � m � k.

Induction Step. Notice that the rules of G0, except the starting ones, form sequences



158 3 Regulated Grammars and Computation

.A1;Q
r
1/ ! .w1;Q

r
2/; .A2;Q

r
2/ ! .w2;Q

r
3/ : : : .An;Q

r
n/ ! .wn;X/

where X D Qt
1; ", for some t 2 M. These sequences must be always fully applied.

Therefore, consider any sequence of moves

S0
0) S 0)

kCl w0

where w0 2 .N [ T/� and l � 1 is the length of any such sequence of the rules,
which is applied last. Then,

S0
0) S 0)

k w 0)
l w0

The used sequence of the rules is introduced by some matrix r W v 2 M. By the
induction hypothesis

S )� w

in H. However, by the matrix r

w ) w0Œr�

which completes the proof. ut

Since L .G0; 0)/ 
 L .H/ and L .G0; 0)/ � L .H/, L .G0; 0)/DL .H/. ut

Since for any matrix grammar we can construct an 2EMG generating the same
language, Claim 3.4.18 holds. ut

On the basis of Claims 3.4.16 and 3.4.18 Theorem 3.4.15 holds. ut

Mode 1

The following theorem can be proved by analogy with the proof of Theorem 3.4.11.

Theorem 3.4.22. nEM1) D 2EM1), for n � 2.

Proof. Left to the reader. ut

Open Problem 3.4.23. Does 2EM
0) D 2EM

1) hold?

However, it is still an open problem whether mode 1 leftmost derivations increase
the generative power of SMGs.

Mode 2

As we prove next, leftmost derivations of mode 2 significantly increase the
generative power of even matrix grammars.

Theorem 3.4.24. 2EM2) D RE.
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By the Turing-Church thesis, 2EM2) � RE. Thus, we only have to prove the
opposite inclusion.

Proof. Construction. Recall Theorem 2.3.18. There exist context-free grammars
Gi D .Ni, T, Pi, Si/, where L .Gi/ D Li, for i D 1; 2. Without any loss of
generality, assume that N1 \ N2 D ; and G1,G2 are in Greibach normal form
(see Definition 3.1.21). Let T D fa1; : : : ; ang. Introduce four new symbols—
0; 1; 0; 1 … .N1 [ N2 [ T/. Define the following homomorphisms

(1) c W ai 7! 10i; c W ai 7! 1 0
i
;

(2) �1 W N1 [ T 7! N1 [ T [ f0; 1g,(
A 7! A; A 2 N1;

a 7! h.a/c.a/; a 2 TI

(3) o W a 7! a; a 2 f0; 1g;
(4) �2 W N2 [ T 7! N2 [ f0; 1g,(

A 7! A; A 2 N2;

a 7! c.a/; a 2 T:

Then, let G D .N0
1;N

0
2;T;P; S/ be 2EMG, where S … N0

1 [ N0
2,

N0
1 D N1 [ f0; 1g;N0

2 D N2 [ f0; 1g

Construct P as follows. Initially, set P D ;. Perform (1) through (3), given next:

(1) add .S/ ! .S1S2/ to P;
(2) for each .A1/ ! .w1/ 2 P1 and for each .A2/ ! .w2/ 2 P2, add

.A1;A2/ ! .�1.w1/; �2.w2// to P;
(3) add

a. .0; 0/ ! ."; "/,
b. .1; 1/ ! ."; "/,
c. .0; 1/ ! .0; 1/,
d. .1; 0/ ! .1; 0/ to P.

Claim 3.4.25. L .G; 2)/ D L.

Proof. Every derivation of G starts with the application of the rule (1). Next, G
simulates the leftmost derivations of G1 and G2, respectively, with the rules (2).
Without any loss of generality, suppose every A 2 N1 [ N2

A 0)
�w;w 2 T�

Since G1 and G2 are in Greibach normal form, after every application of the rule (2),
the leftmost nonterminal symbol in both components of G is the beginning of binary
coding of some terminal symbol. Then,

S 2)S1S2 2)eawaw0

where e 2 T, a; o.a/ 2 f0; 1g�, w 2 N�
1 , w0 2 N�

2 . If and only if a D o.a/, by the
rules (3)a and (3)b

eawaw0
2)

�eww0
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and the derivation may possibly continue with an application of another rule (2).
Suppose, a ¤ o.a/. Then, jaj ¤ jaj and a or o.a/ contains more 0s, which remain
in the sentential form even after erasing the shorter coding. Next, two cases are
possible. If the derivation already finished, the remaining 0s or 0s are permanent
and the derivation is not terminating. Otherwise, another rule (2) is applied and
another codings are inserted. However, then the leftmost nonterminal symbol in
one component is 0 or 1 and in the second one is 1 or 0, respectively. The rule (3)c
or (3)d must be applied and again infinitely many times, which blocks the derivation.
Then, every application of the rule (2) generates the binary codings a; a, where
a D o.a/, a 2 f0; 1g�, a 2 f0; 1g�, if and only if the derivation is terminating.
Thus, if both components of G generate the corresponding encoded symbols in every
derivation step of simulated G1 and G2, they generate the corresponding encoded
strings. Therefore, obviously

S 2)
�x; x 2 T�

where x 2 h.L1 \ L2/. Accordingly, x 2 L, so L .G; 2)/ D L. ut

Since L is an arbitrary recursively enumerable language, the proof of Theo-
rem 3.4.24 is completed. ut

Mode 3

By the following theorem we establish the generative power of even matrix
grammars working under the leftmost mode 3 derivations.

Theorem 3.4.26. 2EM3) D RE.

We omit the proof, since the proof of Theorem 3.4.24 is fully applicable to prove
Theorem 3.4.26. Only notice that the rules (3)c and (3)d are not necessary, the more
strict leftmost derivations would block the derivation anyway.

Summary

Let us state all the achieved results.

CF D 1EMi) � 2EM0) D EM0) D M � CS; i 2 f0; 1; 2; 3g

CF � 2EM1) D EM1) � CS

2EM
2) D EM

2) D 2EM
3) D EM

3) D RE

We prove that even matrix grammars with two components are exactly as strong
as matrix grammars. Additionally, we prove that the presence of more than two
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components has no influence on their generative power. Three leftmost modes of
derivations are introduced and studied. The previous conclusion on the number of
components still hold for leftmost derivations. The more strict leftmost derivations
increase the generative power significantly—even matrix grammars become Turing
complete. However, we are still not sure about the most liberal leftmost derivations,
thus we provide Open Problem 3.4.23, which we suggest for the future research.

Of course, even matrix grammars represent variants of ordinary matrix gram-
mars, and as such, from a general viewpoint, they generate their languages in
a regulated way. At the same time, however, they can be viewed as language
generators working in parallel, which represents the central topic of the next
chapter. Before opening this topic, however, we briefly cover one more grammatical
regulation—programmed grammars.

3.5 Programmed Grammars

The regulation of a programmed grammar is based upon two binary relations,
represented by two sets attached to the grammatical rules. More precisely, a
programmed grammar G is a context-free grammar, in which two sets, �r and 'r,
are attached to each rule r, where �r and 'r are subsets of the entire set of rules in G.
G can apply r in the following two ways.

(1) If the left-hand side of r occurs in the sentential form under scan, G rewrites the
left-hand side of r to its right-hand side, and during the next derivation step, it
has to apply a rule from �r.

(2) If the left-hand side of r is absent in the sentential form under scan, then G skips
the application of r, and during the next derivation step, it has to apply a rule
from 'r.

This brief section consists of two subsections. Section 3.5.1 defines and illus-
trates programmed grammars while Sect. 3.5.2 gives their generative power.

3.5.1 Definitions and Examples

In this section, we define programmed grammars and illustrate them by an example.

Definition 3.5.1. A programmed grammar with appearance checking (see [DP89])
is a quintuple

G D
�
V;T; �;P; S

�

where

• V , T, � , and S are defined as in a context-free grammar, V � T D N;
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• P � � � N � V� � 2� � 2� is a finite relation, called the set of rules, such that
card.�/ D card.P/ and if .r, A, x, �r, 'r/, .s, A, x, �s, 's/ 2 P, then .r, A, x, �r ,
'r/ D .s, A, x, �s, 's/.

Instead of .r, A, x, �r, 'r/ 2 P, we write .rW A ! x; �r; 'r/ 2 P. For .rW A !

x; �r; 'r/ 2 P, A is referred to as the left-hand side of r, and x is referred to as the
right-hand side of r.

The direct derivation relation, symbolically denoted by )G, is defined over V��

� as follows: for .x1; r/; .x2; s/ 2 V� � � ,

.x1; r/ )G .x2; s/

if and only if either

x1 D yAz; x2 D ywz; .rW A ! w; �r; 'r/ 2 P; and s 2 �r

or

x1 D x2; .rW A ! w; �r; 'r/ 2 P;A … alph.x1/; and s 2 'r

Let .rW A ! w; �r; 'r/ 2 P. Then, �r and 'r are called the success field of r and the
failure field of r, respectively. Observe that due to our definition of the relation of a
direct derivation, if �r [ 'r D ;, then r is never applicable. Therefore, we assume
that �r [ 'r ¤ ;, for all .rW A ! w; �r; 'r/ 2 P. Define )k

G for k � 0, )�
G, and

)C
G in the standard way. Let .S; r/ )�

G .w; s/, where r; s 2 � and w 2 V�. Then,
.w; s/ is called a configuration. The language of G is denoted by L.G/ and defined
as

L.G/ D
˚
w 2 T� j .S; r/ )�

G .w; s/; for some r; s 2 �
�

ut

Definition 3.5.2. Let G D .V , T, � , P, S/ be a programmed grammar with
appearance checking. G is propagating if every .rW A ! x; �r; 'r/ 2 P satisfies
that jxj � 1. Rules of the form .rW A ! "; �r; 'r/ are called erasing rules. If every
.rW A ! x; �r; 'r/ 2 P satisfies that 'r D ;, then G is a programmed grammar
without appearance checking or, simply, a programmed grammar. Then, for the
brevity, instead of .rW A ! x; �r;;/, we write .rW A ! x; �r/.

If G is of index k (see Definition 2.3.13), for some k � 1, it is programmed
grammar of index k (with appearance checking). ut

Example 3.5.3 (From [DP89]). Consider the programmed grammar with appear-
ance checking

G D
�
fS;A; ag; fag; fr1; r2; r3g;P; S

�
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where P consists of the three rules

.r1W S ! AA; fr1g; fr2; r3g/

.r2W A ! S; fr2g; fr1g/

.r3W A ! a; fr3g;;/

Since the success field of ri is frig, for each i 2 f1; 2; 3g, the rules r1, r2, and
r3 have to be used as many times as possible. Therefore, starting from Sn, for some
n � 1, the successful derivation has to pass to A2n and then, by using r2, to S2n,
or, by using r3, to a2n. A cycle like this, consisting of the repeated use of r1 and
r2, doubles the number of symbols. In conclusion, we obtain the non-context-free
language

L.G/ D
n
a2

n
j n � 1

o

For example, the sentence aaaa is obtained by the following derivation

.S; r1/ )G .AA; r2/
)G .AS; r2/
)G .SS; r1/
)G .AAS; r1/
)G .AAAA; r2/
)G .AASA; r2/
)G .AASS; r2/
)G .SASS; r2/
)G .SSSS; r3/
)G .SSSa; r3/
)G .aSSa; r3/
)G .aaSa; r3/
)G .aaaa; r3/

Notice the similarity between G from this example and H from Example 3.3.4. ut

By Pac, P�"
ac , P, and P�", we denote the families of languages generated

by programmed grammars with appearance checking, propagating programmed
grammars with appearance checking, programmed grammars, and propagating
programmed grammars, respectively.

For a positive integer k, By kPac, kP�"
ac , kP, and kP�", we denote the families

of languages generated by programmed grammars of index k with appearance
checking, propagating programmed grammars of index k with appearance checking,
programmed grammars of index k, and propagating programmed grammars of index
k, respectively.
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3.5.2 Generative Power

The next theorem states the power of programmed grammars.

Theorem 3.5.4 (See Theorem 5.3.4 in [MZ14]).

(i) Pac D Mac

(ii) P�"
ac D M�"

ac
(iii) P D M
(iv) P�" D M�"

Observe that programmed grammars, matrix grammars, and regular-controlled
grammars are equally powerful (see Theorems 3.4.5 and 3.5.4).

Theorem 3.5.5 (See Theorems 3.1.2i and 3.1.7 in [DP89]).

kP � kC1P

for any k � 1.

Programmed grammars of finite index establish an infinite hierarchy of language
families.



Chapter 4
Parallel Grammars and Computation

Originally, computer programs were always executed strictly sequentially. Indeed,
to perform a computational task, an algorithm was written and implemented
as an instruction sequence executed on a central processing unit on a single
computer. Only one instruction was executed at a time, so after this instruction was
completed, the next instruction was executed until all the sequence of instructions
was performed in this one-by-one way. In the mid-1980s or so, however, computer
programmers introduced the first pioneer programs that performed several parts
of a single computational task simultaneously. At that time, parallel computation
emerged in computer science.

In general, parallel computation can be thus viewed as a modern type of
computation in which many computational processes are carried out simultaneously.
From a hardware standpoint, parallel computation is often executed on various
computers, such as a single computer with multiple processors or several networked
computers with specialized hardware, and it may simultaneously process quite
diverse data. It can be performed at various levels, ranging from bit-level through
instruction-level up to task-level parallelism. Over the past few years, parallel
computing has become the dominant paradigm in computer architecture, mainly in
the form of multi-core processors. From a software standpoint, parallel computation
is conceptually accomplished by breaking a single computational task into many
independent subtasks so that each subtask can be simultaneously executed with the
others. All the independent subtasks are processed independently and their results
are combined together upon completion.

Making use of mutually cooperating multiprocessor computers, most modern
information technologies work in parallel. It thus comes as no surprise that the
investigation of parallel computation fulfill a central role within computer science as
a whole. In order to build up a systematized body of knowledge about computation
in parallel, we need its proper formalization in the first place. The present chapter
describes several types of parallel grammars, which can act as a grammatical
formalization like this very well.

© Springer International Publishing AG 2017
A. Meduna, O. Soukup, Modern Language Models and Computation,
DOI 10.1007/978-3-319-63100-4_4
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To give an insight into parallel grammars, recall that up until now, in all grammars
under consideration, a single rule was applied during every derivation step. To obtain
parallel grammars, this one-rule application is generalized to the application of
several rules during a single step. Parallel grammars represent the subject of this
chapter. First, it studies partially parallel generation of languages (see Sect. 4.1),
after which it investigates the totally parallel generation of languages (see Sect. 4.2).

4.1 Partially Parallel Grammars

Partially parallel language generation is represented by the notion of a scattered con-
text grammar, which is based on finite sequences of context-free rules. According to
these sequences, the grammar simultaneously rewrites several nonterminals during
a single derivation step while keeping the rest of the rewritten string unchanged.

4.1.1 Definitions and Examples

In this section, we define scattered context grammars and illustrate them by
examples.

Definition 4.1.1. A scattered context grammar (an SCG for short) is a quadruple

G D
�
V;T;P; S

�
I N D V � T

where

• V is a total alphabet;
• T � V an alphabet of terminals;

• P �
1S

mD1

Nm � .V�/m is a finite set of rules of the form

.A1;A2; : : : ;An/ ! .x1; x2; : : : ; xn/

where Ai 2 N, and xi 2 V�, for 1 � i � n, for some n � 1;
• S 2 V � T is the start symbol;
• N is an alphabet of nonterminals.

If

u D u1A1 : : : unAnunC1

v D u1x1 : : : unxnunC1
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and p D .A1; : : : ;An/ ! .x1; : : : ; xn/ 2 P, where ui 2 V�, for all i, 1 � i � n C 1,
then G makes a derivation step from u to v according to p, symbolically written as

u )G v Œp�

or, simply, u )G v. Set

lhs.p/ D A1 : : :An

rhs.p/ D x1 : : : xn

and

len.p/ D n

If len.p/ � 2, p is said to be a context-sensitive rule while for len.p/ D 1, p is said
to be context-free. Define )k

G , )�
G , and )C

G in the standard way. The language
of G is denoted by L.G/ and defined as

L.G/ D
˚
w 2 T� j S )�

G w
�

A language L is a scattered context language if there exists a scattered context
grammar G such that L D L.G/. ut

Definition 4.1.2. A propagating scattered context grammar is a scattered context
grammar

G D
�
V;T;P; S

�

in which every .A1; : : : ;An/ ! .x1; : : : ; xn/ 2 P satisfies jxij � 1, for all i,
1 � i � n. A propagating scattered context language is a language generated by a
propagating scattered context grammar. ut

Example 4.1.3. Consider the non-context-free language L D fanbncn j n � 1g. This
language can be generated by the scattered context grammar

G D
�
fS;A; a; b; cg; fa; b; cg;P; S

�

where

P D
˚
.S/ ! .aAbAcA/;
.A;A;A/ ! .aA; bA; cA/;
.A;A;A/ ! ."; "; "/

�
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For example, the sentence aabbcc is generated by G as follows:

S )G aAbAcA )G aaAbbAccA )G aabbcc

Notice, however, that L can be also generated by the propagating scattered context
grammar

G0 D
�
fS;A; a; b; cg; fa; b; cg;P0; S

�

where

P0 D
˚
.S/ ! .AAA/;
.A;A;A/ ! .aA; bA; cA/;
.A;A;A/ ! .a; b; c/

�
ut

For brevity, we often label rules of scattered context grammars with labels (just
like we do in other grammars), as illustrated in the next example.

Example 4.1.4. Consider the non-context-free language

L D
˚
.abn/m j m � n � 2

�

This language is generated by the propagating scattered context grammar

G D
�
fS; S1; S2;B;M;X;Y;Z; a; bg; fa; bg;P; S

�

with P containing the following rules

1 W .S/ ! .MS/
2 W .S/ ! .S1S2/
3 W .S1; S2/ ! .MS1;BS2/
4 W .S1; S2/ ! .MX;BY/
5 W .X;B;Y/ ! .BX;Y; b/
6 W .M;X;Y/ ! .X;Y; ab/
7 W .M;X;Y/ ! .Z;Y; ab/
8 W .Z;B;Y/ ! .Z; b;Y/
9 W .Z;Y/ ! .a; b/

Clearly, by applying rules 1 through 4, G generates a string from

fMgCfXgfBgCfYg

In what follows, we demonstrate that the string is of the form Mm�1XBn�1Y,
where m, n � 2. Rule 1 allows G to add Ms to the beginning of the sentential form,
so m � n holds true. Observe that each of the rules 5 through 8 either shifts the last
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nonterminal Y left or keeps its position unchanged. As a result, always the rightmost
nonterminal preceding Y has to be replaced with Y by rules 5 through 7; otherwise,
the skipped nonterminals cannot be rewritten during the rest of the derivation. For
the same reason, the rightmost nonterminal M preceding X has to be rewritten by
the rule 6. Rules 5 and 6 are applied in a cycle consisting of n � 1 applications of 5
and one application of 6:

Mm�1XBn�1Y )n�1
G Mm�1Bn�1XYbn�1 Œ5n�1�

)G Mm�2XBn�1Yabn Œ6�

At this point, the substring preceding Y differs from the original string only in
the number of Ms decremented by 1, and the cycle can be repeated again. After
repeating this cycle m � 2 times, we obtain MXBn�1Y.abn/m�2. The derivation is
completed as follows:

MXBn�1Y.abn/m�2 )n�1
G MBn�1XYbn�1.abn/m�2 Œ5n�1�

)G ZBn�1Y.abn/m�1 Œ7�

)n�1
G Zbn�1Y.abn/m�1 Œ8n�1�

)G .abn/m Œ9� ut

Example 4.1.5 (See [Mas07b, Mas07a]). Consider the non-context-free language

L D
n
a2

n
j n � 0

o

This language is generated by the propagating scattered context grammar

G D
�
fS;W;X;Y;Z;A; ag; fag;P; S

�

with P containing these rules

1 W .S/ ! .a/
2 W .S/ ! .aa/
3 W .S/ ! .WAXY/
4 W .W;A;X;Y/ ! .a;W;X;AAY/
5 W .W;X;Y/ ! .a;W;AXY/
6 W .W;X;Y/ ! .Z;Z; a/
7 W .Z;A;Z/ ! .Z; a;Z/
8 W .Z;Z/ ! .a; a/

In what follows, we demonstrate that L.G/ D L. Rules 1 and 2 generate a and
aa, respectively. Rule 3 starts off the derivation of longer strings in L. Consider the
following derivation of a16 2 L.G/
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S )GWAXY Œ3�

)GaWXA2Y Œ4�

)Ga2WA3XY Œ5�

)Ga3WA2XA2Y Œ4�
)Ga4WAXA4Y Œ4�

)Ga5WXA6Y Œ4�

)Ga6WA7XY Œ5�

)Ga6ZA7Za Œ6�

)7
Ga13ZZa Œ77�

)Ga16 Œ8�

Observe that in any successful derivation, rules 4 and 5 are applied in a cycle,
and after the required number of As is obtained, the derivation is finished by rules 6,
7, and 8. In a greater detail, observe that the rule .W;A;X;Y/ ! .a;W;X;AAY/
removes one A between W and X, and inserts two As between X and Y. In a
successful derivation, this rule has to rewrite the leftmost nonterminal A. After all As
are removed between W and X, the rule .W;X;Y/ ! .a;W;AXY/ can be used to
bring all As occurring between X and Y back between W and X, and the cycle can
be repeated again. Alternatively, rule 6 can be used, which initializes the final phase
of the derivation in which all As are replaced with as by rules 7 and 8.

By adding one more stage, the above grammar can be extended so that it
generates the language

n
a2

2n

j n � 0
o

The first stage, similar to the above grammar, generates 2n identical symbols that
serve as a counter for the second stage. In the second stage, a string consisting of
identical symbols, which are different from those generated during the first stage, is
doubled 2n times, thus obtaining 22

n
identical symbols. This doubling starts from a

string consisting of a single symbol. See [Mas07a] for the details. ut

The families of languages generated by scattered context grammars and propa-
gating scattered context grammars are denoted by SC and SC�", respectively.

4.1.2 Generative Power

This brief section establishes the power of scattered context grammars. In addition,
it points out a crucially important open problem, referred to as the PSC = CS
problem, which asks whether SC�" and CS coincide.
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Theorem 4.1.6 (See [MT10]). CF � SC�" � CS � SC D RE. ut

Open Problem 4.1.7. Is the inclusion SC�" � CS, in fact, an identity? ut

4.1.3 Normal Forms

This section demonstrates how to transform any propagating scattered context
grammar to an equivalent 2-limited propagating scattered context grammar, which
represent an important normal form of propagating scattered context grammars.
More specifically, in a 2-limited propagating scattered context grammar, each rule
consist of no more than two context-free rules, either of which has on their right-
hand side no more than two symbols.

Definition 4.1.8. A 2-limited propagating scattered context grammar is a propa-
gating scattered context grammar, G D .V , T, P, S/, such that

• .A1; : : : ;An/ ! .w1; : : : ;wn/ 2 P implies that n � 2, and for every i, 1 � i � n,
1 � jwij � 2, and wi 2

�
V � fSg

��
;

• .A/ ! .w/ 2 P implies that A D S. ut

The proof of the transformation is divided into two lemmas.

Lemma 4.1.9. If L � T� is a language generated by a propagating scattered
context grammar, G D .V, T, P, S/, and if c is a symbol such that c … T, then there
is a 2-limited propagating scattered context grammar, NG, such that L. NG/ D Lfcg.

Proof. Let Nn be the number of the rules in P. Number the rules of P from 1 to Nn. Let
.Ai1; : : : ;Aini/ ! .wi1; : : : ;wini / be the ith rule. Let C and NS be new symbols,

W D
˚
hi; ji j 1 � i � Nn; 1 � j � ni

�

NV D V [ fC; NSg [ W [
˚
hC; ii j 1 � i � Nn

�

Let G0 D
�

NV;T [ fcg;P0; NS
�

be a propagating scattered context grammar, where P0

is defined as follows:

1. for each 1 � i � Nn, add
.NS/ ! .ShC; ii/ to P0;

2. for each i such that ni D 1 and 1 � k � Nn, add
.Ai1; hC; ii/ ! .wi1; hC; ki/ to P0;

3. for each i such that ni > 1, 1 � j � ni � 1, 1 � k � Nn, add

a. .Ai1; hC; ii/ ! .hi; 1i;C/,
b. .hi; ji;Ai.jC1// ! .wij; hi; j C 1i/, and
c. .hi; nii;C/ ! .wini ; hC; ki/ to P0;

4.

a. for each i such that ni D 1, add
.Ai1; hC; ii/ ! .wi1; c/ to P0;
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b. for each i such that ni > 1, add
.hi; nii;C/ ! .wini ; c/ to P0.

Clearly, L.G0/ D Lfcg. Since for some i and j, wij may satisfy jwijj > 2, G0 may
not be a 2-limited propagating scattered context grammar. However, by making use
of standard techniques, one can obtain a 2-limited propagating scattered context
grammar NG from G0 such that L. NG/ D L.G0/. ut

Lemma 4.1.10. If L � TC, c is a symbol such that c … T, and G D .V, T[fcg, P, S/
is a 2-limited propagating scattered context grammar satisfying L.G/ D Lfcg, then
there is a 2-limited propagating scattered context grammar NG such that L. NG/ D L.

Proof. For each a 2 T [ fSg, let Na be a new symbol. Let

L1 D fA1A2A3 j S )�
G A1A2A3;Ai 2 V; for all i D 1; 2; 3g

L2 D fA1A2A3A4 j S )�
G A1A2A3A4;Ai 2 V; for all i D 1; 2; 3; 4g

Let h be the homomorphism from V� to .fNa j a 2 Tg [ .V � T//� defined as
h.a/ D Na, for each a 2 T, and h.A/ D A, for each A 2 V � T. Let

V 0 D h.V/[ T [ fS0g [
˚
ha; bi j a; b 2 V

�

Let G0 D .V 0, T, P0, S0/, where for all a, b 2 T, A1, . . . , A6 2 V , A 2 h.V/, P0 is
defined as follows:

1.

a. for each a 2 T \ L, add
.S0/ ! .a/ to P0;

b. for each A1A2A3 2 L1, add
.S0/ ! .h.A1/hA2;A3i/ to P0;

c. for each A1A2A3A4 2 L2, add
.S0/ ! .h.A1A2/hA3;A4i/ to P0;

2.

a. for each .A1;A2/ ! .w1;w2/ 2 P, add
.A1;A2/ ! .h.w1/; h.w2// to P0;

b. for each .A1;A2/ ! .w1;w2/ 2 P,
i. where jw2j D 1, add

A. .A1; hA2;A3i/ ! .h.w1/; hw2;A3i/, and
B. .A1; hA3;A2i/ ! .h.w1/; hA3;w2i/ to P0;

ii. where w2 D A4A5, add
A. .A1; hA2;A3i/ ! .h.w1/; h.A4/hA5;A3i/, and
B. .A1; hA3;A2i/ ! .h.w1/; h.A3/hA4;A5i/ to P0.

c. for each .A1;A2/ ! .w1;w2/ 2 P,
i. where jw1j D jw2j D 1, add
.A; hA1;A2i/ ! .A; hw1;w2i/ to P0;
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ii. where w1w2 D A3A4A5, add
.A; hA1;A2i/ ! .A; h.A3/hA4;A5i/ to P0;

iii. where w1w2 D A3A4A5A6, add
.A; hA1;A2i/ ! .A; h.A3A4/hA5;A6i/ to P0;

3. for each a, b 2 T, add

a. .Na; hb; ci/ ! .a; hb; ci/, and
b. .Na; hb; ci/ ! .a; b/ to P0.

Note that the construction simply combines the symbol c with the symbol to its left.
The reason for introducing a new symbol Na, for each a 2 T, is to guarantee that
there always exists a nonterminal A whenever a rule from (2.3) is to be applied, and
a nonterminal Na that enables hb; ci to be converted to b by a rule from (3). Clearly,
L.G0/ D L. G0 may not be a 2-limited propagating scattered context grammar since
in (2.3),

ˇ
ˇh.A3A4/hA5;A6i

ˇ
ˇ D 3. Once again, by standard techniques, we can obtain

a 2-limited propagating scattered context grammar NG from G0 such that L. NG/ D

L.G0/. ut

By Lemmas 4.1.9 and 4.1.10, any propagating scattered context grammar can
be converted to an equivalent 2-limited propagating scattered context grammar as
stated in the following theorem.

Theorem 4.1.11. If G is a propagating scattered context grammar, then there exists
a 2-limited propagating scattered context grammar NG such that L. NG/ D L.G/. ut

4.1.4 Reduction

The present section discusses the reduction of scattered context grammars. Perhaps
most importantly, it studies how to reduce the size of their components, such
as the number of nonterminals or the number of context-sensitive rules, without
any decrease of their generative power. Indeed, any reduction like this is highly
appreciated in both theory and practice because it makes scattered context rewriting
more succinct and economical while preserving its power.

Definition 4.1.12. Let G D .V , T, P, S/ be a scattered context grammar. Then, its
degree of context sensitivity, symbolically written as dcs.G/, is defined as

dcs.G/ D card
�˚

p j p 2 P; lhs.p/ � 2
��

The maximum context sensitivity of G, denoted by mcs.G/, is defined as

mcs.G/ D max
�˚

len.p/� 1 j p 2 P
��
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The overall context sensitivity of G, denoted by ocs.G/, is defined as

ocs.G/ D len.p1/C 	 	 	 C len.pn/� n

where P D fp1; : : : ; png. ut

We present several results that reduce one of these measures while completely
ignoring the other measures. Frequently, however, results of this kind are achieved at
the cost of an enormous increase of the other measures. Therefore, we also undertake
a finer approach to this descriptional complexity by simultaneously reducing several
of these measures while keeping the generative power unchanged.

We start by pointing out a result regarding scattered context grammars with a
single nonterminal.

Theorem 4.1.13 (See Theorem 5 in [Med00c]). One-nonterminal scattered con-
text grammars cannot generate all recursively enumerable languages.

For scattered context grammars containing only one context-sensitive rule (see
Definition 4.1.1), the following theorem holds.

Theorem 4.1.14. There exists a scattered context grammar G such that G defines a
non-context-free language, and

dcs.G/ D mcs.G/ D ocs.G/ D 1

Proof. Consider the scattered context grammar

G D
�
fS;A;C; a; b; cg; fa; b; cg;P; S

�

where the set of rules P is defined as

P D
˚
.S/ ! .AC/;
.A/ ! .aAb/;
.C/ ! .cC/;
.A;C/ ! ."; "/

�

It is easy to verify that L.G/ D fanbncn j n � 0g and dcs.G/ D mcs.G/ D ocs.G/
D 1. ut

Next, we concentrate our attention on reducing the number of nonterminals in
scattered context grammars. We first demonstrate how the number of nonterminals
can be reduced to three.

Theorem 4.1.15. For every recursively enumerable language L, there is a scattered
context grammar G D .V, T, P, S/ such that L.G/ D L, and

card
�
V � T

�
D 3
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Proof. Let L be a recursively enumerable language. By Theorem 2.3.43, there exists
a queue grammar Q D . NV , T, W, F, R, g/ such that L D L.Q/. Without any loss
of generality, assume that Q satisfies the normal form of Definition 3.1.23. Set n D

card. NV [W/. Introduce a bijective homomorphismˇ from NV [W to fBg�fAgfBg� \

fA;Bgn. Without any loss of generality, assume that . NV [W/\fA;B; Sg D ;. Define
the scattered context grammar

G D
�
T [ fA;B; Sg;T;P; S

�

where P is constructed in the following way

(1) for g D ab, where a 2 NV � T and b 2 W � F, add .S/ !
�
ˇ.b/SSˇ.a/SA

�
to P;

(2) for each a 2 fA;Bg, add .S; S; a; S/! .S; "; aS; S/ to P;
(3) for each .a; b; x; c/ 2 R, where a 2 NV �T, x 2 . NV �T/�, and b, c 2 W �F �f1g,

extend P by adding

.b1; : : : ; bn; S; a1; : : : ; an; S; S/
!
�
c1; : : : ; cn; "; e1; : : : ; en; SS; ˇ.x/S

�

where b1 	 	 	 bn D ˇ.b/, a1 	 	 	 an D ˇ.a/, c1 	 	 	 cn D ˇ.c/, and e1 	 	 	 en D ";
(4) for each .a; b; x; c/ 2 R, where a 2 NV � T, b 2 W � F � f1g, x 2 . NV � T/�, and

(4.1) c D 1, extend P by adding

.b1; : : : ; bn; S; a1; : : : ; an; S; S/
!
�
c1; : : : ; cn; "; e1; : : : ; en; SS; ˇ.x/S

�

(4.2) c 2 F and x D ", extend P by adding

.b1; : : : ; bn; S; a1; : : : ; an; S; S;A/
!.e1; : : : ; en; "; enC1; : : : ; e2n; "; "; "/

where b1 	 	 	 bn D ˇ.b/, a1 	 	 	 an D ˇ.a/, c1 	 	 	 cn D ˇ.c/, and e1 	 	 	 e2n D ";
(5) for each .a; 1; x; c/ 2 R, where a 2 NV � T, x 2 T, and

(5.1) c D 1, extend P by adding

.b1; : : : ; bn; S; a1; : : : ; an; S; S/
!.c1; : : : ; cn; "; e1; : : : ; en; SS; xS/

(5.2) c 2 F, extend P by adding

.b1; : : : ; bn; S; a1; : : : ; an; S; S;A/
!.e1; : : : ; en; "; enC1; : : : ; e2n; "; "; x/

where b1 	 	 	 bn D ˇ.1/, a1 	 	 	 an D ˇ.a/, c1 	 	 	 cn D ˇ.c/, and e1 	 	 	 e2n D ".
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The constructed scattered context grammar G simulates the queue grammar Q
that satisfies the normal form of Definition 3.1.23. The rule from (1), applied only
once, initializes the derivation. One of the rules from (4.2) and (5.2) terminates the
derivation. In a greater detail, a rule from (4.2) is used in the derivation of " 2 L.Q/;
in a derivation of every other string, a rule from (5.2) is used in the last step of the
derivation.

Every sentential form of G can be divided into two parts. The first n nonterminals
encode the state of Q. The second part represents the queue, where the first symbol S
always occurs at the beginning of the queue and the third S always occurs at the end
of the queue, followed by the ultimate nonterminal A.

During any successful derivation of G, a rule introduced in (2) is always
applied after the application of a rule introduced in (1), (3), (4.1), and (5.1).
More precisely, to go on performing the successful derivation, after applying rules
from (1), (3), (4.1), and (5.1), G shifts the second occurrence of S right in the
current sentential form. G makes this shift by using rules introduced in (2) to obtain
a sentential form having precisely n occurrences of d 2 fA;Bg between the first
occurrence of S and the second occurrence of S.

The following claims demonstrate that the rule from (1) can be used only once
during a successful derivation.

Claim 4.1.16. Let S )�
G x be a derivation during which G uses the rules introduced

in (1) i times, for some i � 1. Then, #S.x/ D 1 C 2i � 3j, #B.x/ D .n � 1/k, and
#A.x/ D kCi�j, where k is a non-negative integer and j is the number of applications
of rules introduced in (4.2) and (5.2) such that j � 1 and 1C 2i � 3j.

Proof. Notice that the rules introduced in (2), (3), (4.1), and (5.1) preserve the
number of As, Bs, and Ss present in the sentential form. Next, observe that every
application of the rule from (1) adds 2 Ss to the sentential form and every application
of a rule from (4.2) or (5.2) removes 3 Ss from the sentential form. Finally, notice
the last A on the right-hand side of the rule from (1) and on the left-hand sides of
the rules from (4.2) and (5.2). Based on these observations, it is easy to see that
Claim 4.1.16 holds. ut

Claim 4.1.17. Let S )�
G x be a derivation during which G applies the rule

introduced in (1) two or more times. Then, x … T�.

Proof. Let S )�
G x, where x 2 T�. Because x 2 T�, #S.x/ D #B.x/ D #A.x/ D

0. As a result, we get k D 0, and i D j D 1 from the equations introduced in
Claim 4.1.16. Thus, for i � 2, x … T�. ut

Next, we demonstrate that rules from (4.2) and (5.2) can only be used during the
last derivation step of a successful derivation.

Claim 4.1.18. G generates every w 2 L.G/ as follows:

S )G u Œp� )�
G v )G w Œq�
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where p is the rule introduced in (1), q is a rule introduced in (4.2) or (5.2), and
during u )�

G v, G makes every derivation step by a rule introduced in (2), (3), (4.1),
or (5.1).

Proof. Let w 2 L.G/. By Claim 4.1.17, as w 2 T�, G uses the rule introduced in (1)
only once. Because S )�

G w begins from S, we can express S )�
G w as

S )G u Œp� )�
G w

where p is the rule introduced in (1), and G never uses this rule during u )�
G w.

Observe that every rule r introduced in (2), (3), (4.1), and (5.1) satisfies #S.lhs.r// D

3 and #S.rhs.r// D 3. Furthermore, notice that every rule q introduced in (4.2)
and (5.2) satisfies #S.lhs.q// D 3 and #S.rhs.q// D 0. These observations imply

S )G u Œp� )�
G v )G w Œq�

where p is the rule introduced in (1), q is a rule introduced in (4.2) or (5.2),
and during u )�

G v, G makes every step by a rule introduced in (2), (3), (4.1),
or (5.1). ut

In what follows, we demonstrate that in order to apply a rule from (3) through (5),
there have to be exactly n nonterminals between the first and the second occurrence
of S. This can be accomplished by one or more applications of a rule from (2).

Claim 4.1.19. If x )G y Œp� is a derivation step in a successful derivation of G,
where p is a rule from (3) through (5), then x D x1Sx2Sx3SA, where x1, x2, x3 2�
T [ fA;Bg

�C
, #fA;Bg.x1/ D k, #fA;Bg.x2/ D m, and k D m D n.

Proof. If k < n or m < n, no rule introduced in (3) through (5) can be used.
Therefore, k � n and m � n.

Assume that k > n. The only rules that remove the symbols from fA;Bg in
front of the first symbol S are those introduced in (4.2) and (5.2), and these rules
remove precisely n nonterminals preceding the first symbol S. For k > n, k � n
nonterminals remain in the sentential form after the last derivation step so the
derivation is unsuccessful. Therefore, k D n.

Assume that m > n. Then, after the application of a rule introduced in (3)
through (5), m symbols from fA;Bg appear in front of the first S. Therefore, the
number of nonterminals appearing in front of the first occurrence of S is greater
than n, which contradicts the argument given in the previous paragraph. As a result,
m D n. ut

Based on Claims 4.1.16 through 4.1.19 and the properties of Q, we can express
every successful derivation of G as

• either S )G rhs.p1/ Œp1� )�
G u Œ	� )G v Œp4a� )�

G w Œ� � )G z Œp5b�

for z ¤ ";
• or S )G rhs.p1/ Œp1� )�

G u Œ	� )G " Œp4b�;
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where p1, p4a, p4b, and p5b, are rules introduced in (1), (4.1), (4.2), and (5.2),
respectively, 	 is a sequence of rules from (2) and (3), � is a sequence of rules
from (2) and (5.1), and the derivation satisfies the following properties.

• Every derivation step in rhs.p1/ )�
G u Œ	� has one of these forms:

ˇ.b1/Sa0
1Sa00

1d1y0
1SA )G ˇ.b1/Sa0

1a
00
1d1Sy0

1SA Œp2�; or
ˇ.b1/Sˇ.a1/Sˇ.y1/SA )G ˇ.c1/SSˇ.y1x1/SA Œp3�

where a0
1, a00

1 , y0
1 2 fA;Bg�, d1 2 fA;Bg, .a1; b1; x1; c1/ 2 R, b1 ¤ 1, c1 ¤ 1,

y1 2 . NV � T/�, and p2, p3 are rules introduced in (2), (3), respectively.
• The derivation step u )G v Œp4a� has this form

ˇ.b2/Sˇ.a2/Sˇ.y2/SA )G ˇ.1/SSˇ.y2x2/SA Œp4a�

where .a2; b2; x2; 1/ 2 R, b2 ¤ 1, and y2 2 . NV � T/C. Observe that if y2x2 D ",
no rule is applicable after this step and the derivation is blocked.

• The derivation step u )G " Œp4b� has this form

ˇ.b3/Sˇ.a3/Sˇ.y3/SA )G " Œp4b�

where .a3; b3; "; c3/ 2 R, b3 ¤ 1, c3 2 F, and y3 D ". As no rule can be applied
after a rule from (4.2) is used, if y3 ¤ ", there remain some nonterminals in the
sentential form so the derivation is unsuccessful.

• Every derivation step in v )�
G w Œ� � has one of these forms

ˇ.1/Sa0
4Sa00

4d4y0
4t4SA )G ˇ.1/Sa0

4a
00
4d4Sy4t4SA Œp2�; or

ˇ.1/Sˇ.a4/Sˇ.y4/t4SA )G ˇ.1/SSˇ.y4/t4x4SA Œp5a�

where a0
4, a00

4 , y0
4 2 fA;Bg�, d4 2 fA;Bg, .a4; 1; x4; 1/ 2 R, y4 2 . NV � T/�,

t4 2 T�, and p2, p5a are rules introduced in (2), (5.1), respectively.
• The derivation step w )G z Œp5b� has this form

ˇ.1/Sˇ.a5/St5SA )G t5x5 Œp5b�

where .a5; 1; x5; c5/ 2 R, c5 2 F, and t5 2 T�.

Observe that

S )G rhs.p1/ Œp1� )�
G u Œ	� )G v Œp4a� )�

G w Œ� � )G z Œp5b�, for z ¤ "

if and only if

g )�
Q a2y2b2 )Q y2x21 Œ.a2; b2; x2; 1/�

)�
Q a5t51 )Q zc5 Œ.a5; 1; x5; c5/�
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or

S )G rhs.p1/ Œp1� )�
G u Œ	� )G " Œp4b�

if and only if

g )�
Q a3y3b3 )Q c3 Œ.a3; b3; "; c3/�

As a result, L.Q/ D L.G/, so the theorem holds. ut

Recall that one-nonterminal scattered context grammars are incapable of generat-
ing all recursively enumerable languages (see Theorem 4.1.13). By Theorem 4.1.15,
three-nonterminal scattered context grammars characterize RE. As stated in the
following theorem, the optimal bound for the needed number of nonterminals is,
in fact, two. This very recent result is proved in [CVV10].

Theorem 4.1.20 (See [CVV10]). For every recursively enumerable language L,
there is a scattered context grammar G D .V, T, P, S/ such that L.G/ D L, and

card
�
V � T

�
D 2

Up until now, we have reduced only one measure of descriptional complexity
regardless of all the other measures. We next reconsider this topic in a finer way
by simultaneously reducing several measures. It turns out that this simultaneous
reduction results in an increase of all the measures involved. In addition, reducing
the number of nonterminals necessarily leads to an increase of the number of
context-sensitive rules and vice versa.

Theorem 4.1.21. For every recursively enumerable language L, there is a scattered
context grammar G D .V, T, P, S/ such that L.G/ D L, and

card.V � T/ D 5

dcs.G/ D 2

mcs.G/ D 3

ocs.G/ D 6

Proof. (See [Vas05].) Let

G0 D
�
fS0;A;B;C;Dg [ T;T;P0 [ fAB ! ";CD ! "g; S0

�

be a phrase-structure grammar in the Geffert normal form, where P0 is a set of
context-free rules, and L.G0/ D L (see Theorem 3.1.11). Define the homomor-
phism h from fA;B;C;Dg� to f0; 1g� so that h.A/ D h.B/ D 00, h.C/ D 10,
and h.D/ D 01. Define the scattered context grammar

G D
�
fS; NS; 0; 1; $g [ T;T;P; S

�
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with P constructed as follows:

(1) for each S0 ! zS0a 2 P0, where z 2 fA;Cg�, a 2 T, extend P by adding

.S/ !
�
h.z/Sa

�

(2) add .S/ ! .NS/ to P;
(3) for each S0 ! uS0v 2 P0, where u 2 fA;Cg�, v 2 fB;Dg�, extend P by adding

.NS/ !
�
h.u/NSh.v/

�

(4) extend P by adding

(4.a) .NS/ ! .$$/,
(4.b) .0; $; $; 0/ ! .$; "; "; $/,
(4.c) .1; $; $; 1/ ! .$; "; "; $/,
(4.d) .$/ ! ."/.

Observe that G0 generates every a1 	 	 	 ak 2 L.G0/ in the following way

S0 )G0 zak S0ak

)G0 zak zak�1S
0ak�1ak

:::

)G0 zak 	 	 	 za2S
0a2 	 	 	 ak

)G0 zak 	 	 	 za2za1S
0a1a2 	 	 	 ak

)G0 zak 	 	 	 za2za1ulS0vla1a2 	 	 	 ak
:::

)G0 zak 	 	 	 za1ul 	 	 	 u2S0v2 	 	 	 vla1 	 	 	 ak

)G0 zak 	 	 	 za1ul 	 	 	 u2u1v1v2 	 	 	vla1 	 	 	 ak

D dm 	 	 	 d2d1e1e2 	 	 	 ena1 	 	 	 ak

)G0 dm 	 	 	 d2e2 	 	 	 ena1 	 	 	 ak
:::

)G0 dmena1 	 	 	 ak

)G0 a1 	 	 	 ak

where a1, . . . , ak 2 T, za1 , . . . , zak , u1, . . . , ul 2 fA;Cg�, v1, . . . , vl 2 fB;Dg�, d1,
. . . , dm 2 fA;Cg, and e1, . . . , en 2 fB;Dg. After erasing S0 from the sentential form,
G0 verifies that the generated strings zak 	 	 	 za1ul 	 	 	 u1 and v1 	 	 	vl are identical. If
m ¤ n, or diei … fAB;CDg, for some i � 1, the generated strings do not coincide,
and the derivation is blocked, so a1 	 	 	 ak does not belong to the generated language.
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The above derivation can be straightforwardly simulated by G as follows:

S )G h.zak/Sak

)G h.zak/h.zak�1 /Sak�1ak
:::

)G h.zak/ 	 	 	 h.za2 /Sa2 	 	 	 ak

)G h.zak/ 	 	 	 h.za2 /h.za1 /Sa1a2 	 	 	 ak

)G h.zak 	 	 	 za2za1 /
NSa1a2 	 	 	 ak Œp2�

)G h.zak 	 	 	 za2za1 /h.ul/NSh.vl/a1a2 	 	 	 ak
:::

)G h.zak 	 	 	 za1 /h.ul/ 	 	 	 h.u2/NSh.v2/ 	 	 	 h.vl/a1 	 	 	 ak

)G h.zak 	 	 	 za1 /h.ul/ 	 	 	 h.u2/h.u1/NSh.v1/h.v2/ 	 	 	 h.vl/a1 	 	 	 ak

)G h.zak 	 	 	 za1 /h.ul 	 	 	 u2u1/$$h.v1v2 	 	 	vl/a1 	 	 	 ak Œp4a�

D fr 	 	 	 f2f1$$g1g2 	 	 	 gsa1 	 	 	 ak

)G fr 	 	 	 f2$$g2 	 	 	 gsa1 	 	 	 ak
:::

)G fr$$gsa1 	 	 	 ak

)G $$a1 	 	 	 ak

)G $a1 	 	 	 ak Œp4d�

)G a1 	 	 	 ak Œp4d�

where f1, . . . , fr, g1, . . . , gs 2 f0; 1g, and p2, p4a, and p4d are rules introduced
in (2), (4.a), and (4.d), respectively. In this derivation, the context-free rules of G0

are simulated by the rules introduced in (1) through (3), and the context-sensitive
rules of G0 are simulated by the rules introduced in (4.b) and (4.c). There are the
following differences between the derivations in G0 and G.

• Instead of verifying the identity of zak 	 	 	 za1ul 	 	 	 u1 and v1 	 	 	vl, G verifies
that h.zak 	 	 	 za1ul 	 	 	 u1/ and h.v1 	 	 	vl/ coincide. This means that instead of
comparing strings over fA;B;C;Dg, G compares the strings fr 	 	 	 f1 and g1 	 	 	 gs

over f0; 1g.
• The rule introduced in (2) guarantees that no rule from (1) can be used after

its application. Similarly, the rule introduced in (4.a) prevents the rules of (1)
through (3) from being applied.

• When applying the rules from (4.b) and (4.c), some symbols fi and gj, where i,
j � 1, can be skipped. However, if some 0s and 1s that do not directly neighbor
with the $s are rewritten, the form of these rules guarantees that the skipped
nonterminals can never be rewritten later in the derivation, so the derivation is
necessarily unsuccessful in this case.
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• The rule from (4.d) can be used anytime the symbol $ appears in the sentential
form. However, when this rule is used and some nonterminals from f0; 1g

occur in the sentential form, these nonterminals can never be removed from
the sentential form, so the derivation is blocked. As a result, the rule from (4.d)
has to be applied at the very end of the derivation.

These observations imply that L D L.G/ D L.G0/. As obvious, card.V � T/ D 5,
dcs.G/ D 2, mcs.G/ D 3, ocs.G/ D 6. Thus, the theorem holds. ut

Theorem 4.1.22. For every recursively enumerable language L, there is a scattered
context grammar NG D .V, T, NP, S/ such that L. NG/ D L, and

card.V � T/ D 8

dcs. NG/ D 6

mcs. NG/ D 1

ocs. NG/ D 6

Proof. We slightly modify the construction given in the proof of Theorem 4.1.21.
Define the scattered context grammar

NG D
�
fS; NS; 0; 1; $L; $R; $0; $1g [ T;T; NP; S

�

and initialize NP with the set of all rules introduced in steps (1) through (3) of the
construction given in the proof of Theorem 4.1.21. Then, add the following rules
to NP

(4)

(4.a) .NS/ ! .$L$R/,
(4.b) .0; $L/ ! .$0; "/, .$R; 0/ ! ."; $0/, .$0; $0/ ! .$L; $R/,
(4.c) .1; $L/ ! .$1; "/, .$R; 1/ ! ."; $1/, .$1; $1/ ! .$L; $R/,
(4.d) .$L/ ! ."/, and .$R/ ! ."/.

Observe that a single derivation step made by a rule introduced in step (4.b) or (4.c)
of the construction of G is simulated in NG by the above rules from (4.b) or (4.c) in
three derivation steps. In a greater detail, a derivation of the form

x0$$0yz )G x$$yz Œ.0; $; $; 0/ ! .$; "; "; $/�

is simulated by NG as follows:

x0$L$R0yz ) NG
x$0$R0yz Œ.0; $L/ ! .$0; "/�

) NG
x$0$0yz Œ.$R; 0/ ! ."; $0/�

) NG
x$L$Ryz Œ.$0; $0/ ! .$L; $R/�
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where x, y 2 f0; 1g�, and z 2 T�. The rest of the proof resembles the proof of
Theorem 4.1.21 and is, therefore, left to the reader. ut

Theorem 4.1.23. For every recursively enumerable language L, there is a scattered
context grammar G D .V, T, P, S/ such that L.G/ D L, and

card.V � T/ D 4

dcs.G/ D 4

mcs.G/ D 5

ocs.G/ D 20

Proof. Let

G0 D
�
fS0;A;B;C;Dg [ T;T;P0 [ fAB ! ";CD ! "g; S0

�

be a phrase-structure grammar in the Geffert normal form, where P0 is a set of
context-free rules, and L.G0/ D L (see Theorem 3.1.11). Define the homomor-
phism h from fA;B;C;Dg� to f0; 1g� so that h.A/ D h.B/ D 00, h.C/ D 10,
and h.D/ D 01. Define the scattered context grammar

G D
�
fS; 0; 1; $g [ T;T;P; S

�

with P constructed as follows:

(1) add .S/ ! .11S11/ to P;
(2) for each S0 ! zS0a 2 P0, add .S/ ! .h.z/S1a1/ to P;
(3) for each S0 ! uS0v 2 P0, add .S/ ! .h.u/Sh.v// to P;
(4) for each S0 ! uv 2 P0, add .S/ ! .h.u/$$h.v// to P.
(5) add

(5.a) .0; 0; $; $; 0; 0/ ! .$; "; "; "; "; $/,
(5.b) .1; 0; $; $; 0; 1/ ! .$; "; "; "; "; $/,
(5.c) .1; 1; $; $; 1; 1/ ! .11$; "; "; "; "; $/, and
(5.d) .1; 1; $; $; 1; 1/ ! ."; "; "; "; "; "/ to P.

Every successful derivation starts by an application of the rule introduced in (1),
and this rule is not used during the rest of the derivation. Rules from (2) through (4)
simulate the context-free rules of G0. After the rule from (4) is used, only rules
from (5) are applicable. The rules from (5.a) and (5.b) verify that the strings over
f0; 1g, generated by the rules from (2) through (4), coincide. The rule from (5.c)
removes the 1s between the terminal symbols and, in addition, makes sure that rules
from (2) can never be used in a successful derivation after a rule from (3) is applied.
Finally, the rule from (5.d) completes the derivation.
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The proof of the theorem is based on five claims, established next.

Claim 4.1.24. Every successful derivation in G can be expressed as

S )�
Gv Œ	�

)Gw Œp4�
)�

Gy Œ� �
)Gz Œp5d�

where

v 2 f0; 1g�fSg
�
f0; 1g [ T

��

w 2 f0; 1gCf$gf$g
�
f0; 1g [ T

��

y 2 f1gf1gf$gT�f$gT�f1gT�f1gT�

z 2 T�, p4 and p5d are rules introduced in (4) and (5.d), respectively, and 	
and � are sequences of rules introduced in (1) through (3) and (5.a) through (5.c),
respectively.

Proof. As S appears on the left-hand side of every rule introduced in (1) through (4),
all of them are applicable while S occurs in the sentential form. On the other hand,
no rule from (5) can be used at this point. After p4 is used, it replaces S with $$, so
rules from (1) through (4) are not applicable and only rules from (5) can be used.
Therefore, the beginning of the derivation can be expressed as

S )�
Gv Œ	�

)Gw Œp4�

Because all rules, except for p5d, contain nonterminals on their right-hand sides, p5d

has to be applied in the last derivation step and no other rule can be applied after its
use. Applications of rules from (2) through (4) may introduce some nonterminals 0
and 1 to the sentential form, so in this case, the rules from (5.a) and (5.b) are applied
to remove them. As a result,

w )�
Gy Œ� �

)Gz Œp5d�

and the sentential forms satisfy the conditions given in the claim. ut

Claim 4.1.25. In w )C
G z from Claim 4.1.24, every sentential form s satisfies

s 2 f0; 1g�f$gT�f$g
�
f0; 1g [ T

��

Proof. The form of the rules introduced in (5) implies that whenever a nonterminal
appears between the two occurrences of $, it can never be removed during the rest
of the derivation. Therefore, the claim holds. ut
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Claim 4.1.26. In w )C
G z from Claim 4.1.24, every sentential form s satisfies

s 2 f1gf1g
�
f1gf0g [ f0gf0g

��
f$gT�f$g

�
f0; 1g [ T

��

Proof. Claim 4.1.25 implies that whenever rules from (5) are used, each of these
rules is applied to the nonterminals from f0; 1g immediately preceding the first
occurrence of $ and immediately following the second occurrence of $; otherwise,
the derivation is unsuccessful. As a result, the only rule that removes the substring
11 preceding the first occurrence of $ is (5.d). However, by Claim 4.1.24, (5.d) is
used during the very last derivation step, so the substring 11 has to appear at the
beginning of the sentential form in order to generate a string over T. ut

Claim 4.1.27. The derivation

S )�
G v Œ	�

from Claim 4.1.24 can be expressed, in a greater detail, as

S )G11S11 Œp1�
)�

Gv

where p1 is the rule introduced in (1), and this rule is not used during the rest of the
derivation.

Proof. The rule introduced in (1) is the only rule that introduces the substring 11
in front of the first occurrence of $. By Claim 4.1.26, in front of the first $, this
substring appears only at the beginning of every sentential form in w )C

G z, so p1
has to be applied at the beginning of the derivation and cannot be used later in the
derivation. ut

Claim 4.1.28. The derivation

w )�
Gy Œ� �

)Gz Œp5d�

from Claim 4.1.24 can be expressed, in a greater detail, as

w )�
Gx Œ�1�

)�
Gy Œ�2�

)Gz Œp5d�

where

x 2 f1gf1g
�
f1gf0g [ f0gf0g

��
f$gT�f$g

�
f0; 1g [ T

��
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�1 is a sequence of rules introduced in (5.a) and (5.b), and �2 is a sequence of rules
introduced in (5.c).

Proof. The proof of this claim follows immediately from Claims 4.1.25 and 4.1.26.
ut

Claim 4.1.29. The derivation

11S11 )�
G v

from Claims 4.1.24 and 4.1.27 can be expressed in a greater detail as

11S11 )�
Gu Œ	1�

)�
Gv Œ	2�

where

u 2 f1gf1g
�
f1gf0g [ f0gf0g

��
S
�
f0gf1g [ f0gf0g

���
f1gTf1g

��
f1gf1g

and 	1, 	2 are sequences of rules introduced in (2), (3), respectively.

Proof. By Claim 4.1.27, every derivation starts by an application of the rule
from (1). Therefore, u ends with 11. Next, notice that the two nonterminals 1
surrounding a, where a 2 T, introduced by every application of a rule from (2)
can only be removed by the rule from (5.c). Indeed, by Claim 4.1.25, any other rule
leaves a nonterminal between the two symbols $, so the derivation is unsuccessful.
By Claim 4.1.28, rules from (5.a) and (5.b) cannot be applied after the rule from (5.c)
is used. As a result, the generation of the strings over f0; 1g by rules from (2) and (3)
has to correspond to their removal by (5.a), (5.b), and (5.c). This implies that rules
from (2) have to be applied before rules from (3). ut

Based upon Claims 4.1.24 through 4.1.29, we see that every successful derivation
is of this form

S )G11S11 Œp1�
)�

Gu Œ	1�

)�
Gv Œ	2�

)Gw Œp4�
)�

Gx Œ�1�

)�
Gy Œ�2�

)Gz Œp5d�

As the rest of this proof can be made by analogy with the proof of Theorem 4.1.21,
we leave it to the reader. ut
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4.1.5 Economical Transformations

The generation of languages is frequently performed in a specifically required way
and based upon a prescribed set of grammatical components, such as a certain
collection of nonterminals or rules. On the other hand, if these requirements are met,
the generation can be based upon grammars of various types. For this purpose, we
often make use of transformations that convert grammars of some type to equivalent
grammars of another type so the transformed grammars strongly resemble the
original grammars regarding the way they work as well as the components they
consist of. In other words, we want the output grammars resulting from these
transformations to work similarly to the way the given original grammars work and,
perhaps even more importantly, to contain the same set of grammatical components
possibly extended by very few additional components. Transformations that produce
scattered context grammars in this economical way are discussed throughout the rest
of this section. Because phrase-structure grammars represent one of the very basic
grammatical models in formal language theory (see Sect. 2.3.1), this section pays a
special attention to the economical transformations that convert these fundamental
grammars to equivalent scattered context grammars.

To compare the measures of scattered context and phrase-structure grammars,
we first define the degree of context-sensitivity of phrase-structure grammars
analogously to the degree of context sensitivity of scattered context grammars (see
Definition 4.1.12).

Definition 4.1.30. Let G D .V , T, P, S/ be a phrase-structure grammar. Its degree
of context sensitivity, symbolically written as dcs.G/, is defined as

dcs.G/ D card
�
fx ! y j x ! y 2 P; jxj � 2g

�
ut

Theorem 4.1.31. For every phrase-structure grammar G D .V, T, P, S/ in the
Kuroda normal form, there is a scattered context grammar NG D . NV, T, NP, NS/ such
that L. NG/ D L.G/, and

card. NV/ D card.V/C 5

card. NP/ D card.P/C 4

dcs. NG/ D dcs.G/C 2

Proof. Let G D .V , T, P, S/ be a phrase-structure grammar in the Kuroda normal
form. Without any loss of generality, assume that V \ fNS;F; 0; 1; $g D ;. Set NV D

V [ fNS;F; 0; 1; $g. Define the scattered context grammar

NG D . NV;T; NP; NS/
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where NP is constructed as follows:

(1) add .NS/ ! .FFFS/ to NP;
(2) for each AB ! CD 2 P, add .A;B/ ! .C0; 1D/ to NP;
(3) for each A ! BC 2 P, add .A/ ! .BC/ to NP;
(4) for each A ! a 2 P, where a 2 T [ f"g, add .A/ ! .$a/ to NP;
(5) add

(5.a) .F; 0; 1;F;F/ ! .";F;F; ";F/,
(5.b) .F;F;F; $/ ! ."; ";F;FF/,
(5.c) .F/ ! ."/ to NP.

The rule from (1) starts a derivation and introduces three occurrences of the
nonterminal F, which are present in every sentential form until three applications
of the rule from (5.c) complete the derivation. Rules from (2), (3), and (4) simulate
the corresponding rules of the Kuroda normal form behind the last occurrence of F.
The rules from (5.a) and (5.b) guarantee that before (5.c) is applied for the first time,
every sentential form in a successful derivation belongs to

T�fFg
�
T [ f"g

�
f0i1i j i � 0gfFgfFg

�
V [ f0; 1; $g

��

and, thereby, the simulation of every derivation of G is performed properly. Notice
that there are only terminals in front of the first nonterminal F. Moreover, the only
nonterminals appearing between the first occurrence and the second occurrence of F
are from f0; 1g, and there is no symbol between the second and the third occurrence
of F in a successful derivation.

Next, we establish several claims to demonstrate that L.G/ D L. NG/ in a rigorous
way.

Claim 4.1.32. Every successful derivation of NG can be expressed as

NS ) NG
FFFS Œp1�

)�
NG

uFvFxFy Œ� �

)�
NG

w

)3
NG

z Œp5cp5cp5c�

where u, z 2 T�, v, x, y 2
�

NV � fNS;Fg
��

, w 2
�

NV � fNSg
��

, p1 and p5c are rules
introduced in (1) and (5.3), respectively, and � is a sequence of rules introduced
in (2) through (5.2).

Proof. The only rule with NS on its left-hand side is the rule introduced in (1), and
because no rule contains NS on its right-hand side, this rule is not used during the rest
of the derivation process. As a result,

NS ) NG
FFFS Œp1�
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Observe that no rule from (2) through (4) contains the nonterminal F and rules
from (5.a) and (5.b) contain three nonterminals F on their left-hand sides as well as
their right-hand sides. The rule from (5.c), which is the only rule with its right-hand
side over T, removes F from the sentential form, so no rule from (5.a) and (5.b)
can be used once it is applied. Notice that rules from (4) simulate A ! a, where
A 2 V � T, a 2 T [ f"g, and these rules introduce $ to the sentential form. In
addition, observe that only the rule from (5.b) rewrites $. Consequently, to generate
a string over T, rules from (2) through (4) cannot be used after the rule from (5.c) is
applied. Therefore,

w )3
NG

z Œp5cp5cp5c�

Notice that rules from (5.a) and (5.b) cannot rewrite any symbol in u. If alph.u/\
. NV �T/ ¤ ;, then a nonterminal from f0; 1; $g remains in front of the first F because
rules from (2) through (4) cannot rewrite u to a string over T, so the derivation would
be unsuccessful in this case. Therefore, u 2 T�, and the claim holds. ut

Claim 4.1.33. Let

NS )C
NG

uFvFxFy )�
NG

w )3
NG

z

where u, z 2 T�, v, x, y 2
�

NV � fNS;Fg
��

, and w 2
�

NV � fNSg
��

. Then, x 2 T�.

Proof. First, notice that if . NV � T/ \ alph.x/ ¤ ;, x cannot be rewritten to a string
over T by using only rules from (2) through (4). Next, examine the rules from (5.a)
and (5.b) to see that these rules cannot rewrite any symbol from x, and the rule
from (5.b) moves x in front of the first occurrence of F. However, by Claim 4.1.32,
no nonterminal can appear in front of the first F. As a result, . NV �T/\alph.x/ D ;,
so x 2 T�. ut

Claim 4.1.34. Let

NS )C
NG

uFvFxFy )�
NG

w )3
NG

z

where u, z 2 T�, v, x, y 2
�

NV � fNS;Fg
��

, and w 2
�

NV � fNSg
��

. Then, v D v0v00,
where v0 2

�
f0g [ T

��
, v00 2

�
f1g [ T

��
, and #0.v0/ D #1.v00/.

Proof. First, notice that if . NV � T/ \ alph.v/ ¤ ;, v cannot be rewritten to a string
over T by using only rules from (2) through (4). Next, examine the rules from (5.a)
and (5.b).

First, observe that the rule from (5.b) can only be applied if v 2 T�. Indeed, (5.b)
moves v in front of the first F, and if . NV � T/ \ alph.v/ ¤ ;, then Claim 4.1.32
implies that the derivation is unsuccessful. Therefore, . NV �T/\alph.v/ D ; before
the rule from (5.b) is applied. Second, observe that because the rule from (5.a)
rewrites only nonterminals over f0; 1g in v,

�
.V � T/[ f$g

�
\ alph.v/ D ;. Finally,

observe that the rule from (5.a) has to be applied so that the first 0 following the
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first F and the first 1 preceding the second F is rewritten by (5.a). If this property
is not satisfied, the form of (5.a) implies that 0 appears in front of the first F
or 1 appears in between the second F and the third F. However, by Claims 4.1.32
and 4.1.33, this results into an unsuccessful derivation.

Based on these observations, we see that in order to generate z 2 T�, v has to
satisfy v D v0v00, where v0 2

�
f0g[T

��
, v00 2

�
f1g[T

��
, and #0.v0/ D #1.v00/. ut

Claim 4.1.35. Let

NS )C
NG

uFvFxFy )�
NG

w )3
NG

z

where u, z 2 T�, v, x, y 2
�

NV � fNS;Fg
��

, and w 2
�

NV � fNSg
��

. Then,

y 2
�
T [ f"g

��
f0i1i j i � 0gK

��

with K D .V � T/ [ f$g
�
T [ f"g

�
, v 2 .T [ f"g/f0i1i j i � 0g, and x D ".

Proof. First, consider the rule introduced in (5.b). This rule rewrites $ to FF in its
last component. Because the nonterminal $ is introduced by rules from (4), $ may
be followed by a 2 T. Therefore, after (5.b) is applied, the last nonterminal F may
be followed by a. As a result, the prefix of y is always over T [ f"g.

Second, notice that when the rule (5.b) is used, the first nonterminal $ following
the third nonterminal F has to be rewritten. In addition, the substring appearing
between these symbols has to be in f0i1i j i � 0g. The form of the rule introduced
in (5.b) implies that after its application, this substring is moved in between the
first occurrence of F and the second occurrence of F, so the conditions given by
Claim 4.1.34 are satisfied. Therefore,

v 2
�
T [ f"g

�
f0i1i j i � 0g

and because no terminal appears in the suffix of v, the proof of Claim 4.1.34 implies
that x D ". By induction, prove that

y 2
�
T [ f"g

��
f0i1i j i � 0gK

��

The induction part is left to the reader. ut

Next, we define the homomorphism ˛ from NV� to V� as ˛. NA/ D ", for all NA 2
NV � V , and ˛.A/ D A, for all A 2 V , and use this homomorphism in the following
claims.

Claim 4.1.36. Let NS )m
NG

w )�
NG

z, where m � 1, z 2 T�, and w 2 NV�. Then, S )�
G

˛.w/.

Proof. This claim is established by induction on m � 1.

Basis. Let m D 1. Then, NS ) NG
FFFS. Because ˛.FFFS/ D S, S )0

G S, so the basis
holds.
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Induction Hypothesis. Suppose that the claim holds for every m � j, for some j � 1.

Induction Step. Let NS )
jC1
NG

w )�
NG

z, where z 2 T� and w 2 NV�. Based on
Claims 4.1.32 and 4.1.35, express this derivation as

NS )
j
NG

uFvFxFy

) NG
w Œp�

)�
NG

z

where u 2 T�, x D ",

y 2
�
T [ f"g

��
f0i1i j i � 0gK

��

with K D .V � T/ [ f$g
�
T [ f"g

�
, and

v 2
�
T [ f"g

�
f0i1i j i � 0g

By the induction hypothesis, S )�
G ˛.uFvFxFy/. Next, this proof considers all

possible forms of p.

• Assume that p D .A;B/ ! .C0; 1D/ 2 NP, where A;B;C;D 2 V � T.
Claim 4.1.35 and its proof imply y D y0Ay00By000, where y00 2 f0i1i j i � 0g,
and

w D uFvFxFy0C0y001Dy000

As .A;B/ ! .C0; 1D/ 2 NP, AB ! CD 2 P holds true. Because ˛.y00/ D ",

˛.uFvFxFy0Ay00By000/ )G ˛.uFvFxFy0C0y001Dy000/

Therefore, S )�
G ˛.w/.

• Assume that p D .A/ ! .BC/ 2 NP, where A, B, C 2 V � T. Claim 4.1.35
implies that y D y0Ay00, and

w D uFvFxFy0BCy00

As .A/ ! .BC/ 2 NP, A ! BC 2 P holds true. Notice that

˛.uFvFxFy0Ay00/ )G ˛.uFvFxFy0BCy00/

Therefore, S )�
G ˛.w/.

• Assume that p D .A/ ! .$a/ 2 NP, where A 2 V � T and a 2 T [ f"g.
Claim 4.1.35 implies that y D y0Ay00, and

w D uFvFxFy0$ay00
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As .A/ ! .$a/ 2 NP, A ! a 2 P holds true. Notice that

˛.uFvFxFy0Ay00/ )G ˛.uFvFxFy0$ay00/

Therefore, S )�
G ˛.w/.

• Assume that p is a rule from (5). Notice that these rules rewrite only nontermi-
nals over f0; 1;F; $g. Therefore, ˛.w/ D ˛.uFvFxFy/, so S )�

G ˛.w/.

Based on the arguments above, NS )
j
NG

uFvFxFy ) NG
w Œp�, for any p 2 NP, implies

that S )�
G ˛.w/. Thus, the claim holds. ut

Claim 4.1.37. L. NG/ � L.G/

Proof. By Claim 4.1.36, if NS )C
NG

z with z 2 T�, then S )�
G z. Therefore, the claim

holds. ut

Claim 4.1.38. Let S )m
G w )�

G z, where m � 0, w 2 V�, and z 2 T�. Then, NS )C
NG

uFvFxFy, where u 2 T�,

y 2
�
T [ f"g

��
f0i1i j i � 0gK

��

with K D .V � T/ [ f$g
�
T [ f"g

�
,

v 2
�
T [ f"g

�
f0i1i j i � 0g

and x D ", so that w D ˛.uFvFxFy/.

Proof. This claim is established by induction on m � 0.

Basis. Let m D 0. Then, S )0
G S )�

G z. Notice that NS ) NG
FFFS by using the rule

introduced in (1), and S D ˛.FFFS/. Thus, the basis holds.

Induction Hypothesis. Suppose that the claim holds for every m � j, where j � 1.

Induction Step. Let S )
jC1
G w )�

G z, where w 2 V�, and z 2 T�. Express this
derivation as

S )
j
Gt

)Gw Œp�
)�

Gz

where w 2 V� and p 2 P. By the induction hypothesis, NS )C
NG

uFvFxFy, where
u 2 T�,

y 2
�
T [ f"g

��
f0i1i j i � 0gK

��

with K D .V � T/ [ f$g
�
T [ f"g

�
,

v 2
�
T [ f"g

�
f0i1i j i � 0g
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and x D " so that t D ˛.uFvFxFy/. Next, this proof considers all possible forms
of p:

• Assume that p D AB ! CD 2 P, where A, B, C, D 2 V � T. Express t )G w
as t0ABt00 )G t0CDt00, where t0ABt00 D t and t0CDt00 D w. Claim 4.1.35 implies
that y D y0A0k1kBy00, where k � 0, ˛.uFvFxFy0/ D t0, and ˛.y00/ D t00. As
AB ! CD 2 P, .A;B/ ! .C0; 1D/ 2 NP holds true. Then,

uFvFxFy0A0k1kBy00 ) NG
uFvFxFy0C0kC11kC1Dy00

Therefore,

NS )C
NG

uFvFxFy0C0kC11kC1Dy00

and w D ˛.uFvFxFy0C0kC11kC1Dy00/.
• Assume that p D A ! BC 2 P, where A, B, C 2 V � T. Express t )G w

as t0At00 )G t0BCt00, where t0At00 D t and t0BCt00 D w. Claim 4.1.35 implies
that y D y0Ay00, where ˛.uFvFxFy0/ D t0 and ˛.y00/ D t00. As A ! BC 2 P,
.A/ ! .BC/ 2 NP holds true. Then,

uFvFxFy0Ay00 ) NG
uFvFxFy0BCy00

Therefore,

NS )C
NG

uFvFxFy0BCy00

and w D ˛.uFvFxFy0BCy00/.
• Assume that p D A ! a 2 P, where A 2 V � T and a 2 T [ f"g. Express t )G

w as t0At00 )G t0at00, where t0At00 D t and t0at00 D w. Claim 4.1.35 implies
that y D y0Ay00, where ˛.uFvFxFy0/ D t0 and ˛.y00/ D t00. As A ! a 2 P,
.A/ ! .$a/ 2 NP holds true. Then,

uFvFxFy0Ay00 ) NG
uFvFxFy0$ay00

Therefore,

NS )C
NG

uFvFxFy0$ay00

and w D ˛.uFvFxFy0$ay00/.

Consider the arguments above to see that S )
j
G t )G w Œp�, for any p 2 P, implies

that NS )C
NG

s, where w D ˛.s/. Thus, the claim holds. ut

Claim 4.1.39. L.G/ � L. NG/

Proof. By Claims 4.1.32, 4.1.35, and 4.1.38, if S )�
G z, where z 2 T�, then NS )C

NG
z. Therefore, Claim 4.1.39 holds. ut
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By Claims 4.1.37 and 4.1.39, L. NG/ D L.G/. Observe that card. NV/ D card.V/C5,
card. NP/ D card.P/C 4, and dcs. NG/ D dcs.G/C 2. Thus, the theorem holds. ut

In the conclusion of this section, we point out several open problem areas.

Open Problem 4.1.40. By Theorem 4.1.21, scattered context grammars with two
context-sensitive rules characterize RE. What is the generative power of scattered
context grammars with one context-sensitive rule? ut

Open Problem 4.1.41. Revert the transformation under discussion and study eco-
nomical transformations of scattered context grammars to phrase-structure gram-
mars. ut

Open Problem 4.1.42. From a much broader perspective, apart from the transfor-
mations between scattered context grammars and phrase-structure grammars, study
economical transformations between other types of grammars. ut

4.2 Totally Parallel Grammars

The totally parallel generation of languages works so that all symbols of the current
sentential form are simultaneously rewritten during every single derivation step. The
present section discusses this rewriting performed by Extended tabled zero-sided
Lindenmayer grammars or, more briefly, ET0L grammars (see Section 2.3.4). Recall
that these grammars can be understood as generalized parallel versions of context-
free grammars. More precisely, there exist three main conceptual differences
between them and context-free grammars. First, instead of a single set of rules,
they have finitely many sets of rules. Second, the left-hand side of a rule may be
formed by any grammatical symbol, including a terminal. Third, all symbols of
a string are simultaneously rewritten during a single derivation step. The present
section restricts its attention to ET0L grammars that work in a context-conditional
way. Specifically, by analogy with context-conditional grammars that work in a
sequential way (see Sect. 3.1), the section discusses context-conditional ET0L
grammars that capture this dependency so each of their rules may be associated with
finitely many strings representing permitting conditions and, in addition, finitely
many strings representing forbidding conditions. A rule like this can rewrite a
symbol if all its permitting conditions occur in the current rewritten sentential form
and, simultaneously, all its forbidding conditions do not. Otherwise, these grammars
work just like ordinary ET0L grammars. The section consists of four subsections.
Section 4.2.1 defines the basic version of context-conditional ET0L grammars.
The other sections investigate three variants of the basic version—forbidding ET0L
grammars (Sect. 4.2.2), simple semi-conditional ET0L grammars (Sect. 4.2.3), and
left random context ET0L grammars (Sect. 4.2.4). All these sections concentrate
their attention on establishing the generative power of the ET0L grammars under
investigation.
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4.2.1 Context-Conditional ET0L Grammars

In the present subsection, we demonstrate that context-conditional ET0L grammars
characterize the family of recursively enumerable languages (see Theorem 4.2.11),
and, without erasing rules, they characterize the family of context-sensitive lan-
guages (see Theorem 4.2.9).

Definitions

In this section, we define context-conditional ET0L grammars.

Definition 4.2.1. A context-conditional ET0L grammar (a C-ET0L grammar for
short) is a .t C 3/-tuple

G D
�
V;T;P1; : : : ;Pt; S

�

where t � 1, and V , T, and S are the total alphabet, the terminal alphabet (T � V),
and the start symbol (S 2 V � T), respectively. Every Pi, where 1 � i � t, is a finite
set of rules of the form

�
a ! x;Per;For

�

with a 2 V , x 2 V�, and Per;For � VC are finite languages. If every .a ! x, Per,
For/ 2 Pi for i D 1; 2; : : : ; t satisfies that jxj � 1, then G is said to be propagating
(a C-EPT0L grammar for short). G has degree .r; s/, where r and s are natural
numbers, if for every i D 1; : : : ; t and .a ! x;Per;For/ 2 Pi, max-len.Per/ � r
and max-len.For/ � s.

Let u; v 2 V�, u D a1a2 	 	 	 aq, v D v1v2 	 	 	vq, q D juj, aj 2 V , vj 2 V�, and
p1; p2; : : : ; pq be a sequence of rules pjW .aj ! vj;Perj;Forj/ 2 Pi for all j D 1; : : : ; q
and some i 2 f1; : : : ; tg. If for every pj, Perj � sub.u/ and Forj \ sub.u/ D ;, then
u directly derives v according to p1; p2; : : : ; pq in G, denoted by

u )G v Œp1; p2; : : : ; pq�

In the standard way, define )k
G for k � 0, )�

G, and )C
G . The language of G is

denoted by L.G/ and defined as

L
�
G
�

D
˚
x 2 T� j S)�

Gx
�

ut

Definition 4.2.2. Let G D .V , T, P1, : : : , Pt, S/ be a C-ET0L grammar, for some
t � 1. If t D 1, then G is called a context-conditional E0L grammar (a C-E0L
grammar for short). If G is a propagating C-E0L grammar, then G is said to be a
C-EP0L grammar. ut
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The language families defined by C-EPT0L, C-ET0L, C-EP0L, and C-E0L
grammars of degree .r; s/ are denoted by C - EPT0L.r; s/, C - ET0L.r; s/,
C - EP0L.r; s/, and C - E0L.r; s/, respectively. Set

C - EPT0L D

1[

rD0

1[

sD0

C - EPT0L.r; s/ C - ET0L D

1[

rD0

1[

sD0

C - ET0L.r; s/

C - EP0L D

1[

rD0

1[

sD0

C - EP0L.r; s/ C - E0L D

1[

rD0

1[

sD0

C - E0L.r; s/

Generative Power

In this section, we discuss the generative power of context-conditional grammars.

Lemma 4.2.3. C - EP0L � C - EPT0L � C - ET0L and C - EP0L � C - E0L �

C - ET0L. For any r; s � 0, C - EP0L.r; s/ � C - EPT0L.r; s/ � C - ET0L.r; s/,
and C - EP0L.r; s/ � C - E0L.r; s/ � C - ET0L.r; s/.

Proof. This lemma follows from Definitions 4.2.1 and 4.2.2. ut

Theorem 4.2.4.

CF
�

C - E0L.0; 0/ D C - EP0L.0; 0/ D E0L D EP0L
�

C - ET0L.0; 0/ D C - EPT0L.0; 0/ D ET0L D EPT0L
�

CS

Proof. Clearly, C-EP0L and C-E0L grammars of degree .0; 0/ are ordinary EP0L
and E0L grammars, respectively. Analogously, C-EPT0L and C-ET0L grammars of
degree .0; 0/ are EPT0L and ET0L grammars, respectively. Since CF � E0L D

EP0L � ET0L D EPT0L � CS (see Theorem 2.3.41), we get CF �

C - E0L.0; 0/ D C - EP0L.0; 0/ D E0L � C - ET0L.0; 0/ D C - EPT0L.0; 0/ D

ET0L � CS; therefore, the theorem holds. ut

Lemma 4.2.5. C - EPT0L.r; s/ � CS, for any r � 0, s � 0.

Proof. For r D 0 and s D 0, we have

C - EPT0L.0; 0/ D EPT0L � CS
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The following proof demonstrates that the inclusion holds for any r and s such that
r C s � 1.

Let L be a language generated by a C-EPT0L grammar

G D
�
V;T;P1; : : : ;Pt; S

�

of degree .r; s/, for some r; s � 0, r C s � 1, t � 1. Let k be the greater number of r
and s. Set

M D
˚
x 2 VC j jxj � k

�

For every Pi, where 1 � i � t, define

cf-rules.Pi/ D
˚
a ! z j .a ! z;Per;For/ 2 Pi; a 2 V; z 2 VC

�

Then, set

NF D fbX; xc j X � M; x 2 M [ f"gg

NT D fhXi j X � Mg

NB D fdQe j Q � cf-rules.Pi/ 1 � i � tg
V 0 D V [ NF [ NT [ NB [ fB;C; $; S0; #g

T 0 D T [ f#g

Construct the context-sensitive grammar

G0 D
�
V 0;T 0;P0; S0

�

with the finite set of rules P0 constructed by performing (1) through (7), given next.

(1) Add S0 ! Bb;; "cSC to P0.
(2) For all X � M, x 2 .Vk [ f"g/ and y 2 Vk, extend P0 by adding

bX; xcy ! ybX [ sub.xy; k/; yc

(3) For all X � M, x 2 .Vk [ f"g/ and y 2 VC, jyj � k, extend P0 by adding

bX; xcyC! yhX [ sub.xy; k/iC

(4) For all X � M and Q � cf-rules.Pi/, where i 2 f1; : : : ; tg, such that for every
a ! z 2 Q, there exists .a ! z;Per;For/ 2 Pi satisfying Per � X and
For \ X D ;, extend P0 by adding

hXiC! dQeC
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(5) For every Q � cf-rules.Pi/ for some i 2 f1; : : : ; tg, a 2 V and z 2 VC such that
a ! z 2 Q, extend P0 by adding

adQe ! dQez

(6) For all Q � cf-rules.Pi/ for some i D f1; : : : ; tg, extend P0 by adding

BdQe ! Bb;; "c

(7) AddBb;; "c ! #$, $C! ##, and $a ! a$, for all a 2 T, to P0.

To prove that L.G/ D L.G0/, we first establish Claims 4.2.6 through 4.2.8.

Claim 4.2.6. Every successful derivation in G0 has the form

S0 )G0 Bb;; "cSC
)C

G0 Bb;; "cxC
)G0 #$xC
)

jxj
G0 #x$C

)G0 #x##

such that x 2 TC and duringBb;; "cSC )C
G0 Bb;; "cxC, every sentential form w

satisfies w 2 fBgHCfCg, where H � V 0 � fB;C; #; $; S0g.

Proof. The only rule that can rewrite the start symbol is S0 ! Bb;; "cSC; thus,

S0 )G0 Bb;; "cSC

After that, every sentential form that occurs in

Bb;; "cSC)C
G0 Bb;; "cxC

can be rewritten by using any of the rules introduced in (2) through (6) from the
construction of P0. By the inspection of these rules, it is obvious that the edge
symbolsB andC remain unchanged and no other occurrences of them appear inside
the sentential form. Moreover, there is no rule generating a symbol from f#; $; S0g.
Therefore, all these sentential forms belong to fBgHCfCg.

Next, let us explain how G0 generates a string from L.G0/. Only Bb;; "c ! #$
can rewriteB to a symbol from T (see (7) in the definition of P0). According to the
left-hand side of this rule, we obtain

S0 )G0 Bb;; "cSC)�
G0 Bb;; "cxC )G0 #$xC

where x 2 HC. To rewrite C, G0 uses $C ! ##. Thus, G0 needs $ as the left
neighbor of C. Suppose that x D a1a2 	 	 	 aq, where q D jxj and ai 2 T, for all
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i 2 f1; : : : ; qg. Since for every a 2 T there is $a ! a$ 2 P0 (see (7)), we can
construct

#$a1a2 	 	 	 anC)G0 #a1$a2 	 	 	 anC
)G0 #a1a2$ 	 	 	 anC
)

jxj�2
G0 #a1a2 	 	 	 an$C

Notice that this derivation can be constructed only for x that belong to TC. Then,
$C is rewritten to ##. As a result,

S0 )G0 Bb;; "cSC )C
G0 Bb;; "cxC )G0 #$xC )

jxj
G0 #x$C )G0 #x##

with the required properties. Thus, the claim holds. ut

The following claim demonstrates how G0 simulates a direct derivation from G—
the heart of the construction.

Let x )˚
G0 y denote the derivation x )C

G0 y such that x D Bb;; "cuC, y D

Bb;; "cvC, u; v 2 VC, and during x )C
G0 y, there is no other occurrence of a string

of the formBb;; "czC, z 2 V�.

Claim 4.2.7. For every u; v 2 V�,

Bb;; "cuC)˚
G0 Bb;; "cvC if and only if u )G v

Proof. The proof is divided into the only-if part and the if part.

Only If. Let us show how G0 rewrites Bb;; "cuC to Bb;; "cvC by performing a
derivation consisting of a forward phase and a backward phase.

During the first, forward phase, G0 scans u to obtain all nonempty substrings of
length k or less. By repeatedly using rules

bX; xcy ! ybX [ sub.xy; k/; yc

where X � M, x 2 .Vk [ f"g/, y 2 Vk (see (2) in the definition of P0), the
occurrence of a symbol with form bX; xc is moved toward the end of the sentential
form. Simultaneously, the substrings of u are collected in X. The forward phase is
finished by

bX; xcyC! yhX [ sub.xy; k/iC

where x 2 .Vk [ f"g/, y 2 VC, jyj � k (see (3)); the rule reaches the end of u and
completes X D sub.u; k/. Formally,

Bb;; "cuC )C
G0 BuhXiC
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such that X D sub.u; k/. Then, hXi is changed to dQe, where

Q D
˚
a ! z j .a ! z;Per;For/ 2 Pi; a 2 V; z 2 VC;

Per;For � M; Per � X; For \ X D ;
�

for some i 2 f1; : : : ; tg, by

hXiC! dQeC

(see (4)). In other words, G0 selects a subset of rules from Pi that could be used to
rewrite u in G.

The second, backward phase simulates rewriting of all symbols in u in parallel.
Since

adQe ! dQez 2 P0

for all a ! z 2 Q, a 2 V , z 2 VC (see (5)),

BudQeC )
juj
G0 BdQevC

such that dQe moves left and every symbol a 2 V in u is rewritten to some z provided
that a ! z 2 Q. Finally, dQe is rewritten to b;; "c by

BdQe ! Bb;; "c

As a result, we obtain

Bb;; "cuC)C
G0 BuhXiC )G0 BudQeC

)
juj
G0 BdQevC)G0 Bb;; "cvC

Observe that this is the only way of deriving

Bb;; "cuC)˚
G0 Bb;; "cvC

Let us show that u )G v. Indeed, because we have .a ! z;Per;For/ 2 Pi for
every adQe ! dQez 2 P used in the backward phase, where Per � sub.u; k/ and
For \ sub.u; k/ D ; (see the construction of Q), there exists a derivation

u )G v Œp1 	 	 	 pq�

where juj D q, and pjW .a ! z;Per;For/ 2 Pi such that adQe ! dQez has been
applied in the .q � j C 1/th derivation step in

BudQeC)
juj
G0 BdQevC

where a 2 V , z 2 VC, 1 � j � q.
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If. The converse implication can be proved similarly to the only-if part, so we leave
it to the reader. ut

Claim 4.2.8. S0 )C
G0 Bb;; "cxC if and only if S)�

Gx, for all x 2 VC.

Proof. The proof is divided into the only-if part and the if part.

Only If. The only-if part is proved by induction on the ith occurrence of the sentential
form w satisfying w D Bb;; "cuC, u 2 VC, during the derivation in G0.

Basis. Let i D 1. Then, S0 )G0 Bb;; "cSC and S )0
G S.

Induction Hypothesis. Suppose that the claim holds for all 1 � i � h, for some
h � 1.

Induction Step. Let i D h C 1. Since h C 1 � 2, we can express

S0 )C
G0 Bb;; "cxiC

as

S0 )C
G0 Bb;; "cxi�1C)˚

G0 Bb;; "cxiC

where xi�1; xi 2 VC. By the induction hypothesis,

S)�
Gxi�1

Claim 4.2.7 says that

Bb;; "cxi�1C)˚
G0 Bb;; "cxiC if and only if xi�1 )G xi

Hence,

S)�
Gxi�1)Gxi

and the only-if part holds.

If. By induction on h, we prove that

S )h
G x implies that S0 )C

G0 Bb;; "cxC

for all h � 0, x 2 VC.

Basis. For h D 0, S )0
G S and S0 )G0 Bb;; "cSC.

Induction Hypothesis. Assume that the claim holds for all 0 � h � n, for some
n � 0.

Induction Step. Consider any derivation of the form

S )nC1
G x
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where x 2 VC. Since n C 1 � 1, there exists y 2 VC such that

S )n
G y )G x

and by the induction hypothesis, there is also a derivation

S0 )C
G0 Bb;; "cyC

From Claim 4.2.7, we have

Bb;; "cyC)˚
G0 Bb;; "cxC

Therefore,

S0 )C
G0 Bb;; "cyC)˚

G0 Bb;; "cxC

and the converse implication holds as well. ut

From Claims 4.2.6 and 4.2.8, we see that any successful derivation in G0 is of the
form

S0 )C
G0 Bb;; "cxC)C

G0 #x##

such that

S)�
Gx; x 2 TC

Therefore, for each x 2 TC, we have

S0 )C
G0 #x## if and only if S )�

G x

Define the homomorphism h over .T [ f#g/� as h.#/ D " and h.a/ D a for all
a 2 T. Observe that h is 4-linear erasing with respect to L.G0/. Furthermore, notice
that h.L.G0// D L.G/. Since CS is closed under linear erasing (see Theorem 10.4
on page 98 in [Sal73]), L 2 CS. Thus, Lemma 4.2.5 holds. ut

Theorem 4.2.9. C - EPT0L D CS

Proof. By Lemma 4.2.5, C - EPT0L � CS. Later in this section, we define two
special cases of C-EPT0L grammars and prove that they generate all the family
of context-sensitive languages (see Theorems 4.2.30 and 4.2.47). Therefore, CS �

C - EPT0L, and hence C - EPT0L D CS. ut

Lemma 4.2.10. C - ET0L � RE

Proof. This lemma follows from Turing-Church thesis. To obtain an algorithm
converting any C-ET0L grammar to an equivalent phrase-structure grammar, use
the technique presented in Lemma 4.2.5. ut
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Theorem 4.2.11. C - ET0L D RE

Proof. By Lemma 4.2.10, C - ET0L � RE. In Sects. 4.2.2 and 4.2.3, we introduce
two special cases of C-ET0L grammars and demonstrate that even these grammars
generate RE (see Theorems 4.2.33 and 4.2.44); therefore, RE � C - ET0L. As a
result, C - ET0L D RE. ut

4.2.2 Forbidding ET0L Grammars

Forbidding ET0L grammars, discussed in the present section, represent context-
conditional ET0L grammars in which no rule has any permitting condition. First,
this section defines and illustrates them. Then, it establishes their generative power
and reduces their degree without affecting the power.

Definitions and Examples

In this section, we define forbidding ET0L grammars.

Definition 4.2.12. Let G D .V;T;P1; : : : ;Pt; S/ be a C-ET0L grammar. If every
pW .a ! x;Per;For/ 2 Pi, where i D 1; : : : ; t, satisfies Per D ;, then G is said to
be forbidding ET0L grammar (an F-ET0L grammar for short). If G is a propagating
F-ET0L grammar, then G is said to be an F-EPT0L grammar. If t D 1, G is called
an F-E0L grammar. If G is a propagating F-E0L grammar, G is called an F-EP0L
grammar. ut

Let G D .V;T;P1; : : : ;Pt; S/ be an F-ET0L grammar of degree .r; s/. From the
above definition, .a ! x;Per;For/ 2 Pi implies that Per D ; for all i D 1; : : : ; t.
By analogy with sequential forbidding grammars, we thus omit the empty set in the
rules. For simplicity, we also say that the degree of G is s instead of .r; s/.

The families of languages generated by F-E0L grammars, F-EP0L grammars, F-
ET0L grammars, and F-EPT0L grammars of degree s are denoted by F - E0L.s/,
F - EP0L.s/, F - ET0L.s/, and F - EPT0L.s/, respectively. Moreover, set

F - EPT0L D

1[

sD0

F - EPT0L.s/ F - ET0L D

1[

sD0

F - ET0L.s/

F - EP0L D

1[

sD0

F - EP0L.s/ F - E0L D

1[

sD0

F - E0L.s/

Example 4.2.13. Let

G D
�
fS;A;B;C; a; Na; bg; fa; bg;P; S

�
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be an F-EP0L grammar, where

P D f.S ! ABA;;/;
.A ! aA; fNag/;

.B ! bB;;/;

.A ! Na; fNag/;

.Na ! a;;/;

.B ! C;;/;

.C ! bC; fAg/;

.C ! b; fAg/;

.a ! a;;/;

.b ! b;;/g

Obviously, G is an F-EP0L grammar of degree 1. Observe that for every string
from L.G/, there exists a derivation of the form

S )G ABA
)G aAbBaA
)C

G am�1Abm�1Bam�1A
)G am�1 Nabm�1Cam�1 Na
)G ambmCam

)C
G ambn�1Cam

)G ambnam

with 1 � m � n. Hence,

L
�
G
�

D
˚
ambnam j 1 � m � n

�

Note that L.G/ 62 E0L (see page 268 in [RS97a]); however, L.G/ 2 F - EP0L.1/.
As a result, F-EP0L grammars of degree 1 are more powerful than ordinary E0L
grammars. ut

Generative Power and Reduction

Next, we investigate the generative power of F-ET0L grammars of all degrees.

Theorem 4.2.14. F - EPT0L.0/ D EPT0L, F - ET0L.0/ D ET0L, F - EP0L.0/ D

EP0L, and F - E0L.0/ D E0L

Proof. This theorem follows from Definition 4.2.12. ut

Lemmas 4.2.15, 4.2.18, 4.2.20, and 4.2.21, given next, inspect the gener-
ative power of forbidding ET0L grammars of degree 1. As a conclusion, in
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Theorem 4.2.22, we demonstrate that both F-EPT0L(1) and F-ET0L(1) grammars
generate precisely the family of ET0L languages.

Lemma 4.2.15. EPT0L � F - EP0L.1/

Proof. Let

G D
�
V;T;P1; : : : ;Pt; S

�

be an EPT0L grammar, where t � 1. Set

W D
˚
ha; ii j a 2 V; i D 1; : : : ; t

�

and

Fi D
˚
ha; ji 2 W j j 6D i

�

Then, construct an F-EP0L grammar of degree 1

G0 D
�
V 0;T;P0; S

�

where V 0 D V [ W, .V \ W D ;/ and the set of rules P0 is defined as follows:

(1) for each a 2 V and i D 1; : : : ; t, add .a ! ha; ii;;/ to P0;
(2) if a ! z 2 Pi for some i 2 f1; : : : ; tg, a 2 V , z 2 VC, add .ha; ii ! z;Fi/ to P0.

Next, to demonstrate that L.G/ D L.G0/, we prove Claims 4.2.16 and 4.2.17.

Claim 4.2.16. For each derivation S )n
G0 x, n � 0,

(I) if n D 2k C 1 for some k � 0, x 2 WC;
(II) if n D 2k for some k � 0, x 2 VC.

Proof. The claim follows from the definition of P0. Indeed, every rule in P0 is either
of the form .a ! ha; ii;;/ or .ha; ii ! z;Fi/, where a 2 V , ha; ii 2 W, z 2 VC,
i 2 f1; : : : ; tg. Since S 2 V ,

S )2kC1
G0 x implies x 2 WC

and

S )2k
G0 x implies x 2 VC

Thus, the claim holds. ut

Define the finite substitution � from V� to V 0� such that for every a 2 V ,

�.a/ D
˚
a
�

[
˚
ha; ii 2 W j i D 1; : : : ; t

�
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Claim 4.2.17. S )�
G x if and only if S )�

G0 x0 for some x0 2 �.x/, x 2 VC,
x0 2 V 0C.

Proof. The proof is divided into the only-if part and the if part.

Only If. By induction on h � 0, we show that for all x 2 VC,

S )h
G x implies S )2h

G0 x

Basis.Let h D 0. Then, the only x is S; therefore, S )0
G S and also S )0

G0 S.

Induction Hypothesis. Suppose that

S )h
G x implies S )2h

G0 x

for all derivations of length 0 � h � n, for some n � 0.

Induction Step. Consider any derivation of the form

S )nC1
G x

Since n C 1 � 1, this derivation can be expressed as

S )n
G y )G x Œp1; p2; : : : ; pq�

such that y 2 VC, q D jyj, and pj 2 Pi for all j D 1; : : : ; q and some i 2 f1; : : : ; tg.
By the induction hypothesis,

S )2n
G0 y

Suppose that y D a1a2 	 	 	 aq, aj 2 V . Let

S )2n
G0 a1a2 	 	 	 aq

)G0 ha1; iiha2; ii 	 	 	 haq; ii Œp0
1; p

0
2; 	 	 	 ; p

0
q�

)G0 z1z2 	 	 	 zq Œp00
1 ; p

00
2 ; 	 	 	 ; p

00
q �

where p0
jW .aj ! haj; ii;;/ and p00

j W .haj; ii ! zj;Fi/ such that pjW aj ! zj, zj 2 VC,
for all j D 1; : : : ; q. Then, z1z2 	 	 	 zq D x; therefore,

S )
2.nC1/

G0 x

If. The converse implication is established by induction on h � 0. That is, we prove
that

S )h
G0 x0 implies S)�

Gx

for some x0 2 �.x/, h � 0.
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Basis. For h D 0, S )0
G0 S and S )0

G S; clearly, S 2 �.S/.

Induction Hypothesis. Assume that there exists a natural number n such that the
claim holds for every h, where 0 � h � n.

Induction Step. Consider any derivation of the form

S )nC1
G0 x0

Express this derivation as

S )n
G0 y0 )G0 x0 Œp0

1; p
0
2; : : : ; p

0
q�

where y0 2 V 0C, q D jy0j, and p0
1; p

0
2; : : : ; p

0
q is a sequence of rules from P0. By the

induction hypothesis,

S)�
Gy

where y 2 VC, y0 2 �.y/. Claim 4.2.16 says that there exist the following two
cases—(i) and (ii).

(i) Let n D 2k for some k � 0. Then, y0 2 VC, x0 2 WC, and every rule

p0
jW .aj ! haj; ii;;/

where aj 2 V , haj; ii 2 W, i 2 f1; : : : ; tg, 1 � j � q. In this case, haj; ii 2 �.aj/

for every aj and any i (see the definition of g); hence, x0 2 �.y/ as well.
(ii) Let n D 2k C 1. Then, y0 2 WC, x0 2 VC, and each p0

j is of the form

p0
jW .haj; ii ! zj;Fi/

where haj; ii 2 W, zj 2 VC, i 2 f1; : : : ; tg, 1 � j � q. Moreover, according
to the forbidding conditions of p0

j, all haj; ii in y0 have the same i. Thus, y0 D

ha1; iiha2; ii 	 	 	 haq; ii, y D ��1.y0/ D a1a2 	 	 	 aq, and x0 D z1z2 	 	 	 zq. By the
definition of P0,

.haj; ii ! zj;Fi/ 2 P0 implies aj ! zj 2 Pi

Therefore,

S)�
Ga1a2 	 	 	 aq)Gz1z2 	 	 	 zq Œp1; p2; : : : ; pq�

where pjW aj ! zj 2 Pi such that p0
jW .haj; ii ! zj;Fi/. Obviously, x0 D x D

z1z2 	 	 	 zq.

This completes the induction and establishes Claim 4.2.17. ut
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By Claim 4.2.17, for any x 2 TC,

S)�
Gx if and only if S)�

G0x

Therefore, L.G/ D L.G0/, so the lemma holds. ut

In order to simplify the notation in the proof of the following lemma, for every
subset of rules

P �
˚
.a ! z;F/ j a 2 V; z 2 V�; F � V

�

define

left.P/ D
˚
a j .a ! z;F/ 2 P

�

Informally, left.P/ denotes the set of the left-hand sides of all rules in P.

Lemma 4.2.18. F - EPT0L.1/ � EPT0L

Proof. Let

G D
�
V;T;P1; : : : ;Pt; S

�

be an F-EPT0L grammar of degree 1, t � 1. Let Q be the set of all subsets O � Pi,
1 � i � t, such that every .a ! z;F/ 2 O, a 2 V , z 2 VC, F � V , satisfies
F \ left.O/ D ;. Introduce a new set Q0 so that for each O 2 Q, add

˚
a ! z j .a ! z;F/ 2 O

�

to Q0. Express

Q0 D
˚
Q0
1; : : : ;Q

0
m

�

where m is the cardinality of Q0. Then, construct the EPT0L grammar

G0 D
�
V;T;Q0

1; : : : ;Q
0
m; S

�

To see the basic idea behind the construction of G0, consider a pair of rules
p1W .a1 ! z1;F1/ and p2W .a2 ! z2;F2/ from Pi, for some i 2 f1; : : : ; tg. During
a single derivation step, p1 and p2 can concurrently rewrite a1 and a2 provided that
a2 62 F1 and a1 62 F2, respectively. Consider any O � Pi containing no pair of rules
.a1 ! z1;F1/ and .a2 ! z2;F2/ such that a1 2 F2 or a2 2 F1. Observe that for any
derivation step based on O, no rule from O is blocked by its forbidding conditions;
thus, the conditions can be omitted. A formal proof is given next.

Claim 4.2.19. S )h
G x if and only if S )h

G0 x, x 2 V�, m � 0.
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Proof. The claim is proved by induction on h � 0.

Only If. By induction h � 0, we prove that

S )h
G x implies S )h

G0 x

for all x 2 V�.

Basis. Let h D 0. As obvious, S )0
G S and S )0

G0 S.

Induction Hypothesis. Suppose that the claim holds for all derivations of length
0 � h � n, for some n � 0.

Induction Step. Consider any derivation of the form

S )nC1
G x

Since n C 1 � 1, there exists y 2 VC, q D jyj, and a sequence p1; : : : ; pq, where
pj 2 Pi for all j D 1; : : : ; q and some i 2 f1; : : : ; tg, such that

S )n
G y )G x Œp1; : : : ; pq�

By the induction hypothesis,

S )n
G0 y

Set

O D
˚
pj j 1 � j � q

�

Observe that

y )G x Œp1; : : : ; pq�

implies that alph.y/ D left.O/:Moreover, every pjW .a ! z;F/ 2 O, a 2 V , z 2 VC,
F � V , satisfies F \ alph.y/ D ;. Hence, .a ! z;F/ 2 O implies F \ left.O/ D ;.
Inspect the definition of G0 to see that there exists

Q0
r D

˚
a ! z j .a ! z;F/ 2 O

�

for some r, 1 � r � m. Therefore,

S )n
G0 y )G0 x Œp0

1; : : : ; p
0
q�

where p0
jW a ! z 2 Q0

r such that pjW .a ! z;F/ 2 O, for all j D 1; : : : ; q.
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If. The if part demonstrates for every h � 0,

S )h
G0 x implies that S )h

G x

where x 2 V�.

Basis. Suppose that h D 0. As obvious, S )0
G0 S and S )0

G S.

Induction Hypothesis. Assume that the claim holds for all derivations of length 0 �

h � n, for some n � 0.

Induction Step. Consider any derivation of the form

S )nC1
G0 x

As n C 1 � 1, there exists a derivation

S )n
G0 y )G0 x Œp0

1; : : : ; p
0
q�

such that y 2 VC, q D jyj, each p0
i 2 Q0

r for some r 2 f1; : : : ;mg, and by the
induction hypothesis,

S )n
G y

Then, by the definition of Q0
r, there exists Pi and O � Pi such that every .a !

z;F/ 2 O, a 2 V , z 2 VC, F � V , satisfies a ! z 2 Q0
r and F \ left.O/ D ;. Since

alph.y/ � left.O/, .a ! z;F/ 2 O implies that F \ alph.y/ D ;. Hence,

S )n
G y )G x Œp1; : : : ; pq�

where pjW .a ! z;F/ 2 O for all j D 1; : : : ; q. ut

From the claim above,

S)�
Gx if and only if S)�

G0x

for all x 2 T�. Consequently, L.G/ D L.G0/, and the lemma holds. ut

The following two lemmas can be proved by analogy with Lemmas 4.2.15
and 4.2.18. The details are left to the reader.

Lemma 4.2.20. ET0L � F - E0L.1/ ut

Lemma 4.2.21. F - ET0L.1/ � ET0L ut

Theorem 4.2.22.

F - EP0L.1/ D F - EPT0L.1/ D F - E0L.1/ D F - ET0L.1/ D ET0L D EPT0L
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Proof. By Lemmas 4.2.15 and 4.2.18, EPT0L � F - EP0L.1/ and F - EPT0L.1/ �

EPT0L, respectively. Since F - EP0L.1/ � F - EPT0L.1/, we get F - EP0L.1/ D

F - EPT0L.1/ D EPT0L. Analogously, from Lemmas 4.2.20 and 4.2.21, we have
F - E0L.1/ D F - ET0L.1/ D ET0L. Theorem 2.3.41 implies that EPT0L D

ET0L. Therefore,

F - EP0L.1/ D F - EPT0L.1/ D F - E0L.1/ D F - ET0L.1/ D EPT0L D ET0L

Thus, the theorem holds. ut

Next, we investigate the generative power of F-EPT0L grammars of degree 2.
The following lemma establishes a normal form for context-sensitive grammars so
that the grammars satisfying this form generate only sentential forms containing no
nonterminal from NCS as the leftmost symbol of the string. We make use of this
normal form in Lemma 4.2.24.

Lemma 4.2.23. Every context-sensitive language L 2 CS can be generated by a
context-sensitive grammar, G D .N1 [ NCF [ NCS [ T;T;P; S1/, where N1, NCF,
NCS, and T are pairwise disjoint alphabets, S1 2 N1, and in P, every rule has one of
the following forms

(i) AB ! AC, where A 2 .N1 [ NCF/, B 2 NCS, C 2 NCF;
(ii) A ! B, where A 2 NCF, B 2 NCS;

(iii) A ! a, where A 2 .N1 [ NCF/, a 2 T;
(iv) A ! C, where A;C 2 NCF;
(v) A1 ! C1, where A1;C1 2 N1;

(vi) A ! DE, where A;D;E 2 NCF;
(vii) A1 ! D1E, where A1;D1 2 N1, E 2 NCF.

Proof. Let

G0 D
�
NCF [ NCS [ T;T;P0; S

�

be a context-sensitive grammar of the form defined in Theorem 3.1.6. From this
grammar, we construct a grammar

G D
�
N1 [ NCF [ NCS [ T;T;P; S1

�

where

N1 D fX1 j X 2 NCFg

P D P0 [ fA1B ! A1C j AB ! AC 2 P0;A;C 2 NCF;B 2 NCS;A1 2 N1g
[ fA1 ! a j A ! a 2 P0;A 2 NCF;A1 2 N1; a 2 Tg

[ fA1 ! C1 j A ! C 2 P0;A;C 2 NCF;A1;C1 2 N1g
[ fA1 ! D1E j A ! DE 2 P0;A;D;E 2 NCF;A1;D1 2 N1g
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G works by analogy with G0 except that in G every sentential form starts with
a symbol from N1 [ T followed by symbols that are not in N1. Notice, however,
that by AB ! AC, G0 can never rewrite the leftmost symbol of any sentential form.
Based on these observations, it is rather easy to see that L.G/ D L.G0/; a formal
proof of this identity is left to the reader. As G is of the required form, Lemma 4.2.23
holds. ut

Lemma 4.2.24. CS � F - EP0L.2/

Proof. Let L be a context-sensitive language generated by a grammar

G D
�
N1 [ NCF [ NCS [ T;T;P; S1

�

of the form of Lemma 4.2.23. Set

V D N1 [ NCF [ NCS [ T
PCS D fAB ! AC j AB ! AC 2 P;A 2 .N1 [ NCF/;B 2 NCS;C 2 NCFg

PCF D P � PCS

Informally, PCS and PCF are the sets of context-sensitive and context-free rules in P,
respectively, and V denotes the total alphabet of G.

Let f be an arbitrary bijection from V to f1; : : : ;mg, where m is the cardinality
of V , and let f �1 be the inverse of f .

Construct an F-EP0L grammar of degree 2,

G0 D
�
V 0;T;P0; S1

�

with V 0 defined as

W0 D fhA;B;Ci j AB ! AC 2 PCSg

WS D fhA;B;C; ji j AB ! AC 2 PCS; 1 � j � m C 1g

W D W0 [ WS

V 0 D V [ W

where V , W0, and WS are pairwise disjoint alphabets. The set of rules P0 is
constructed by performing (1) through (3), given next.

(1) For every X 2 V , add .X ! X;;/ to P0.
(2) For every A ! u 2 PCF, add .A ! u;W/ to P0.
(3) For every AB ! AC 2 PCS, extend P0 by adding

(3.a) .B ! hA;B;Ci;W/;
(3.b) .hA;B;Ci ! hA;B;C; 1i;W � fhA;B;Cig/;
(3.c) .hA;B;C; ji ! hA;B;C; j C 1i; ff �1.j/hA;B;C; jig/ for all 1 � j � m

such that f .A/ 6D j;
(3.d) .hA;B;C; f .A/i ! hA;B;C; f .A/C 1i;;/;
(3.e) .hA;B;C;m C 1i ! C; fhA;B;C;m C 1i2g/.



4.2 Totally Parallel Grammars 213

Let us informally explain how G0 simulates the non-context-free rules of the form
AB ! AC (see rules of (3) in the construction of P0). First, chosen occurrences of
B are rewritten with hA;B;Ci by .B ! hA;B;Ci;W/. The forbidding condition
of this rule guarantees that there is no simulation already in process. After that,
left neighbors of all occurrences of hA;B;Ci are checked not to be any symbols
from V � fAg. In a greater detail, G0 rewrites hA;B;Ci with hA;B;C; ii for i D 1.
Then, in every hA;B;C; ii, G0 increments i by one as long as i is less or equal to the
cardinality of V; simultaneously, it verifies that the left neighbor of every hA;B;C; ii
differs from the symbol that f maps to i except for the case when f .A/ D i. Finally,
G0 checks that there are no two adjoining symbols hA;B;C;m C 1i. At this point,
the left neighbors of hA;B;C;m C1i are necessarily equal to A, so every occurrence
of hA;B;C;m C 1i is rewritten to C.

Observe that the other symbols remain unchanged during the simulation. Indeed,
by the forbidding conditions, the only rules that can rewrite symbols X 62 W are
of the form .X ! X;;/. Moreover, the forbidding condition of .hA;B;Ci !

hA;B;C; 1i;W � fhA;B;Cig/ implies that it is not possible to simulate two different
non-context-free rules at the same time.

To establish that L.G/ D L.G0/, we first prove Claims 4.2.25 through 4.2.29.

Claim 4.2.25. S1 )h
G0 x0 implies that lms.x0/ 2 .N1 [ T/ for every h � 0, x0 2 V 0�.

Proof. The claim is proved by induction on h � 0.

Basis. Let h D 0. Then, S1 )0
G0 S1 and S1 2 N1.

Induction Hypothesis. Assume that the claim holds for all derivations of length h �

n, for some n � 0.

Induction Step. Consider any derivation of the form

S1 )nC1
G0 x0

where x0 2 V 0�. Since n C 1 � 1, there is a derivation

S1 )n
G0 y0 )G0 x0 Œp1; : : : ; pq�

y0 2 V 0�, q D jy0j, and by the induction hypothesis, lms.y0/ 2 .N1 [ T/. Inspect P0

to see that the rule p1 that rewrites the leftmost symbol of y0 is one of the following
forms .A1 ! A1;;/, .a ! a;;/, .A1 ! a;W/, .A1 ! C1;W/, or .A1 ! D1E;W/,
where A1;C1;D1 2 N1, a 2 T, E 2 NCF (see (1) and (2) in the definition of P0

and Lemma 4.2.23). It is obvious that the leftmost symbols of the right-hand sides
of these rules belong to .N1 [ T/. Hence, lms.x0/ 2 .N1 [ T/, so the claim
holds. ut

Claim 4.2.26. S1 )n
G0 y0

1Xy0
3, where X 2 WS, implies that y0

1 2 V 0C and y0
3 2 V 0�,

for any n � 0.
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Proof. Informally, the claim says that every occurrence of a symbol from WS

has always a left neighbor. Clearly, this claim follows from the statement of
Claim 4.2.25. Since WS \ .N1 [ T/ D ;, X cannot be the leftmost symbol in a
sentential form and the claim holds. ut

Claim 4.2.27. S1 )h
G0 x0, h � 0, implies that x0 has one of the following three

forms

(I) x0 2 V�;
(II) x0 2 .V [ W0/

� and #W0 .x
0/ > 0;

(III) x0 2 .V [ fhA;B;C; jig/�, #fhA;B;C;jig.x0/ > 0, and ff �1.k/hA;B;C; ji j 1 �

k < j; k 6D f .A/g \ sub.x0/ D ;, where hA;B;C; ji 2 WS, A 2 .N1 [ NCF/,
B 2 NCS, C 2 NCF , 1 � j � m C 1.

Proof. We prove the claim by induction on h � 0.

Basis. Let h D 0. Clearly, S1 )0
G0 S1 and S1 is of type (I).

Induction Hypothesis. Suppose that the claim holds for all derivations of length
h � n, for some n � 0.

Induction Step. Consider any derivation of the form

S1 )nC1
G0 x0

Since n C 1 � 1, there exists y0 2 V 0� and a sequence of rules p1; : : : ; pq, where
pi 2 P0, 1 � i � q, q D jy0j, such that

S1 )n
G0 y0 )G0 x0 Œp1; : : : ; pq�

Let y0 D a1a2 : : : aq, ai 2 V 0.
By the induction hypothesis, y0 can only be of forms (I) through (III). Thus, the

following three cases cover all possible forms of y0.

(i) Let y0 2 V� (form (I)). In this case, every rule pi can be either of the form .ai !

ai;;/, ai 2 V , or .ai ! u;W/ such that ai ! u 2 PCF, or .ai ! hA; ai;Ci;W/,
ai 2 NCS, hA; ai;Ci 2 W0 (see the definition of P0).

Suppose that for every i 2 f1; : : : ; qg, pi has one of the first two listed forms.
According to the right-hand sides of these rules, we obtain x0 2 V�; that is, x0

is of form (I).
If there exists i such that piW .ai ! hA; ai;Ci;W/ for some A 2 .N1 [ NCF/,

ai 2 NCS, C 2 NCF, hA; ai;Ci 2 W0, we get x0 2 .V [ W0/
� with #W0 .x

0/ > 0.
Thus, x0 belongs to (II).

(ii) Let y0 2 .V [ W0/
� and #W0 .y

0/ > 0 (form (II)). At this point, pi is either
.ai ! ai;;/ (rewriting ai 2 V to itself) or .hA;B;Ci ! hA;B;C; 1i;W �

fhA;B;Cig/ rewriting ai D hA;B;Ci 2 W0 to hA;B;C; 1i 2 WS, where A 2

.N1 [ NCF/, B 2 NCS, C 2 NCF. Since #W0 .y
0/ > 0, there exists at least

one i such that ai D hA;B;Ci 2 W0. The corresponding rule pi can be used
provided that #W�fhA;B;Cig.y0/ D 0: Therefore, y0 2 .V [ fhA;B;Cig/�, so
x0 2 .V [ fhA;B;C; 1ig/�; #fhA;B;C;1ig.x0/ > 0: That is, x0 is of type (III).
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(iii) Assume that y0 2 .V [ fhA;B;C; jig/�, #fhA;B;C;jig.y0/ > 0; and

sub.y0/ \
˚
f �1.k/hA;B;C; ji j 1 � k < j; k 6D f .A/

�
D ;

where hA;B;C; ji 2 WS, A 2 .N1 [ NCF/, B 2 NCS, C 2 NCF, 1 � j � m C 1

(form (III)). By the inspection of P0, we see that the following four forms of
rules can be used to rewrite y0 to x0

(iii.a) .ai ! ai;;/, ai 2 V;
(iii.b) .hA;B;C; ji ! hA;B;C; j C 1i; ff �1.j/hA;B;C; jig/, 1 � j � m, j 6D

f .A/;
(iii.c) .hA;B;C; f .A/i ! hA;B;C; f .A/C 1i;;/;
(iii.d) .hA;B;C;m C 1i ! C; fhA;B;C;m C 1i2g/.

Let 1 � j � m, j 6D f .A/. Then, symbols from V are rewritten to themselves
(case (iii.a)) and every occurrence of hA;B;C; ji is rewritten to hA;B;C; j C

1i by (iii.b). Clearly, we obtain x0 2 .V [ fhA;B;C; j C 1ig/� such that
#fhA;B;C;jC1ig.x0/ > 0. Furthermore, (iii.b) can be used only when f �1.j/hA,
B, C, ji 62 sub.y0/: As

sub.y0/\
˚
f �1.k/hA;B;C; ji j 1 � k < j; k 6D f .A/

�
D ;

it holds that

sub.y0/\
˚
f �1.k/hA;B;C; ji j 1 � k � j; k 6D f .A/

�
D ;

Since every occurrence of hA;B;C; ji is rewritten to hA;B;C; j C 1i and other
symbols are unchanged,

sub.x0/ \
˚
f �1.k/hA;B;C; j C 1i j 1 � k < j C 1; k 6D f .A/

�
D ;

Therefore, x0 is of form (III).
Next, assume that j D f .A/. Then, all occurrences of hA;B;C; ji are

rewritten to hA;B;C; j C 1i by (iii.c), and symbols from V are rewritten
to themselves. As before, we obtain x0 2 .V [ fhA;B;C; j C 1ig/� and
#fhA;B;C;jC1ig.x0/ > 0. Moreover, because

sub.y0/\
˚
f �1.k/hA;B;C; ji j 1 � k < j; k 6D f .A/

�
D ;

and j is f .A/,

sub.x0/ \
˚
f �1.k/hA;B;C; j C 1i j 1 � k < j C 1; k 6D f .A/

�
D ;

and x0 belongs to (III) as well.
Finally, let j D m C 1. Then, every occurrence of hA;B;C; ji is rewritten

to C (case (iii.d)). Therefore, x0 2 V�, so x0 has form (I).



216 4 Parallel Grammars and Computation

In (i), (ii), and (iii), we have considered all derivations that rewrite y0 to x0, and in
each of these cases, we have shown that x0 has one of the requested forms. Therefore,
Claim 4.2.27 holds. ut

To prove the following claims, we need a finite symbol-to-symbols substitution
� from V� into V 0� defined as

�.X/ D fXg [ fhA;X;Ci j hA;X;Ci 2 W0g

[ fhA;X;C; ji j hA;X;C; ji 2 WS; 1 � j � m C 1g

for all X 2 V , A 2 .N1 [ NCF/, C 2 NCF . Let ��1 be the inverse of � .

Claim 4.2.28. Let y0 D a1a2 	 	 	 aq, ai 2 V 0, q D jy0j, and ��1.ai/ )
hi
G ��1.ui/ for

all i 2 f1; : : : ; qg and some hi 2 f0; 1g, ui 2 V 0C. Then, ��1.y0/ )r
G �

�1.x0/ such
that x0 D u1u2 	 	 	 uq, r D

Pq
iD1 hi, r � q.

Proof. First, consider any derivation of the form

��1.X/ )h
G �

�1.u/

where X 2 V 0, u 2 V 0C, h 2 f0; 1g. If h D 0, then ��1.X/ D ��1.u/. Let h D 1.
Then, there surely exists a rule pW ��1.X/ ! ��1.u/ 2 P such that

��1.X/ )G �
�1.u/ Œp�

Return to the statement of this claim. We can construct

��1.a1/��1.a2/ 	 	 	��1.aq/ )
h1
G ��1.u1/��1.a2/ 	 	 	��1.aq/

)
h2
G ��1.u1/��1.u2/ 	 	 	��1.aq/
:::

)
hq

G ��1.u1/��1.u2/ 	 	 	��1.uq/

where

��1.y0/ D ��1.a1/ 	 	 	��1.aq/

and

��1.u1/ 	 	 	��1.uq/ D ��1.u1 	 	 	 uq/ D ��1.x0/

In such a derivation, each ��1.ai/ is either left unchanged (if hi D 0) or rewritten
to ��1.ui/ by the corresponding rule ��1.ai/ ! ��1.ui/. Obviously, the length of
this derivation is

Pq
iD1 hi. ut

Claim 4.2.29. S1 )�
G x if and only if S1 )�

G0 x0, where x 2 V�, x0 2 V 0�, x0 2 �.x/.
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Proof. The proof is divided into the only-if part and the if part.

Only If. The only-if part is established by induction on h � 0. That is, we show that

S1 )h
G x implies S1)

�
G0x

where x 2 V�, for h � 0.

Basis. Let h D 0. Then, S1 )0
G S1 and S1 )0

G0 S1 as well.

Induction Hypothesis. Assume that the claim holds for all derivations of length 0 �

h � n, for some n � 0.

Induction Step. Consider any derivation of the form

S1 )nC1
G x

Since n C 1 > 0, there exists y 2 V� and p 2 P such that

S1 )n
G y )G x Œp�

and by the induction hypothesis, there is also a derivation

S1 )�
G0 y

Let y D a1a2 	 	 	 aq, ai 2 V , 1 � i � q, q D jyj. The following cases (i) and (ii)
cover all possible forms of p.

(i) Let pW A ! u 2 PCF , A 2 .N1[NCF/, u 2 V�. Then, y D y1Ay3 and x D y1uy3,
y1; y3 2 V�. Let s D jy1j C 1. Since we have .A ! u;W/ 2 P0, we can
construct a derivation

S1 )�
G0 y )G0 x Œp1; 	 	 	 ; pq�

such that psW .A ! u;W/ and piW .ai ! ai;;/ for all i 2 f1; 	 	 	 ; qg, i 6D s.
(ii) Let pW AB ! AC 2 PCS, A 2 .N1[NCF/, B 2 NCS, C 2 NCF . Then, y D y1ABy3

and x D y1ACy3, y1; y3 2 V�. Let s D jy1j C 2. In this case, there is the
following derivation

S1)�
G0 y1ABy3

)G0 y1AhA;B;Ciy3 ŒpsW .B ! hA;B;Ci;W/�
)G0 y1AhA;B;C; 1iy3 ŒpsW .hA;B;Ci ! hA;B;C; 1i;

W � fhA;B;Cig/�

)G0 y1AhA;B;C; 2iy3 ŒpsW .hA;B;C; 1i ! hA;B;C; 2i;
ff �1.1/hA;B;C; jig/�

:::

)G0 y1AhA;B;C; f .A/iy3 ŒpsW .hA;B;C; f .A/� 1i !

hA;B;C; f .A/i; ff �1.f .A/� 1/

hA;B;C; f .A/� 1ig/�
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)G0y1AhA;B;C; f .A/C 1iy3 ŒpsW .hA;B;C; f .A/i !

hA;B;C; f .A/C 1i;;/�

)G0y1AhA;B;C; f .A/C 2iy3 ŒpsW .hA;B;C; f .A/C 1i !

hA;B;C; f .A/C 2i; ff �1.f .A/C 1/

hA;B;C; f .A/C 1ig/�
:::

)G0y1AhA;B;C;m C 1iy3 ŒpsW .hA;B;C;mi ! hA;B;C;m C 1i;

ff �1.m/hA;B;C;mig/�

)G0y1ACy3 ŒpsW .hA;B;C;m C 1i ! C;
fhA;B;C;m C 1i2g/�

such that piW .ai ! ai;;/ for all i 2 f1; : : : ; qg, i 6D s.

If. By induction on h � 0, we prove that

S1 )h
G0 x0 implies S1)

�
Gx

where x0 2 V 0�, x 2 V� and x0 2 �.x/.

Basis. Let h D 0. The only x0 is S1 because S1 )0
G0 S1. Obviously, S1 )0

G S1 and
S1 2 �.S1/.

Induction Hypothesis. Suppose that the claim holds for any derivation of length
0 � h � n, for some n � 0.

Induction Hypothesis. Consider any derivation of the form

S1 )nC1
G0 x0

Since n C 1 � 1, there exists y0 2 V 0� and a sequence of rules p1; : : : ; pq from P0,
q D jx0j, such that

S1 )n
G0 y0 )G0 x0 Œp1; : : : ; pq�

Let y0 D a1a2 	 	 	 aq, ai 2 V 0, 1 � i � q. By the induction hypothesis, we have

S1 )�
G y

where y 2 V� such that y0 2 �.y/.
From Claim 4.2.27, y0 has one of the following forms (i), (ii), or (iii), described

next.

(i) Let y0 2 V 0� (see (I) in Claim 4.2.27). Inspect P0 to see that there are three
forms of rules rewriting symbols ai in y0:
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(i.a) piW .ai ! ai;;/ 2 P0, ai 2 V . In this case,

��1.ai/ )0
G �

�1.ai/

(i.b) piW .ai ! ui;W/ 2 P0 such that ai ! ui 2 PCF. Since ai D ��1.ai/,
ui D ��1.ui/ and ai ! ui 2 P,

��1.ai/ )G �
�1.ui/ Œai ! ui�

(i.c) piW .ai ! hA; ai;Ci;W/ 2 P0, ai 2 NCS, A 2 .N1[NCF/, C 2 NCF. Since
��1.ai/ D ��1.hA; ai;Ci/, we have

��1.ai/ )0
G �

�1.hA; ai;Ci/

We see that for all ai, there exists a derivation

��1.ai/ )
hi
G �

�1.zi/

for some hi 2 f0; 1g, where zi 2 V 0C, x0 D z1z2 	 	 	 zq. Therefore, by
Claim 4.2.28, we can construct

S1 )�
G y )r

G x

where 0 � r � q, x D ��1.x0/.
(ii) Let y0 2 .V [ W0/

� and #W0 .y
0/ > 0 (see (II)). At this point, the following two

forms of rules can be used to rewrite ai in y0—(ii.a) or (ii.b).

(ii.a) piW .ai ! ai;;/ 2 P0, ai 2 V . As in case (i.a),

��1.ai/ )0
G �

�1.ai/

(ii.b) piW .hA;B;Ci ! hA;B;C; 1i;W � fhA;B;Cig/, ai D hA;B;Ci 2 W0,
A 2 .N1 [ NCF/, B 2 NCS, C 2 NCF . Since ��1.hA;B;Ci/ D

��1.hA;B;C; 1i/,

��1.hA;B;Ci/ )0
G �

�1.hA;B;C; 1i/

Thus, there exists a derivation

S1)
�
Gy)0

Gx

where x D ��1.x0/:

(iii) Let y0 2 .V [ fhA;B;C; jig/�, #fhA;B;C;jig.y0/ > 0, and

sub.y0/\
˚
f �1.k/hA;B;C; ji j 1 � k < j; k 6D f .A/

�
D ;
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where hA;B;C; ji 2 WS, A 2 .N1 [ NCF/, B 2 NCS, C 2 NCF, 1 � j � m C 1

(see (III)). By the inspection of P0, the following four forms of rules can be
used to rewrite y0 to x0:

(iii.a) piW .ai ! ai;;/, ai 2 V;
(iii.b) piW .hA;B;C; ji ! hA;B;C; j C 1i; ff �1.j/hA;B;C; jig/, 1 � j � m,

j 6D f .A/;
(iii.c) piW .hA;B;C; f .A/i ! hA;B;C; f .A/C 1i;;/;
(iii.d) piW .hA;B;C;m C 1i ! C; fhA;B;C;m C 1i

2
g/.

Let 1 � j � m. G0 can rewrite such y0 using only the rules (iii.a) through (iii.c).
Since ��1.hA;B;C; ji/ D ��1.hA;B;C; j C 1i/ and ��1.ai/ D ��1.ai/, by
analogy with (ii), we obtain

S1)
�
Gy)0

Gx

such that x D ��1.x0/.
Let j D mC1. In this case, only the rules (iii.a) and (iii.d) can be used. Since

#fhA;B;C;jig.y0/ > 0, there is at least one occurrence of hA;B;C;m C 1i in y0,
and by the forbidding condition of the rule (iii.d), hA;B;C;m C 1i

2
62 sub.y0/.

Observe that for j D m C 1,

ff �1.k/hA;B;C;m C 1i j 1 � k < j; k 6D f .A/g
D fXhA;B;C;m C 1i j X 2 V; X 6D Ag

and thus

sub.y0/\
˚
XhA;B;C;m C 1i j X 2 V; X 6D A

�
D ;

According to Claim 4.2.26, hA;B;C;m C 1i has always a left neighbor in y0.
As a result, the left neighbor of every occurrence of hA;B;C;m C 1i is A.
Therefore, we can express y0, y, and x0 as follows:

y0 D y1AhA;B;C;m C 1iy2AhA;B;C;m C 1iy3 	 	 	 yrAhA;B;C;m C 1iyrC1

y D ��1.y1/AB��1.y2/AB��1.y3/ 	 	 	��1.yr/AB��1.yrC1/

x0 D y1ACy2ACy3 	 	 	 yrACyrC1

where r � 1, ys 2 V�, 1 � s � r C 1. Since we have pW AB ! AC 2 P, there
is a derivation

S1 )�
G �

�1.y1/AB��1.y2/AB��1.y3/ 	 	 	��1.yr/AB��1.yrC1/

)G �
�1.y1/AC��1.y2/AB��1.y3/ 	 	 	��1.yr/AB��1.yrC1/ Œp�

)G �
�1.y1/AC��1.y2/AC��1.y3/ 	 	 	��1.yr/AB��1.yrC1/ Œp�

:::

)G �
�1.y1/AC��1.y2/AC��1.y3/ 	 	 	��1.yr/AC��1.yrC1/ Œp�
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where

��1.y1/AC��1.y2/AC��1.y3/ 	 	 	��1.yr/AC��1.yrC1/ D ��1.x0/ D x

Since cases (i), (ii), and (iii) cover all possible forms of y0, we have completed the
induction and established Claim 4.2.29. ut

The equivalence of G and G0 follows from Claim 4.2.29. Indeed, observe that by
the definition of � , we have �.a/ D fag for all a 2 T. Therefore, by Claim 4.2.29,
we have for any x 2 T�,

S1)
�
Gx if and only if S1)

�
G0 x

Thus, L.G/ D L.G0/, and the lemma holds. ut

Theorem 4.2.30. CS D F - EP0L.2/ D F - EPT0L.2/ D F - EP0L D F - EPT0L

Proof. By Lemma 4.2.24, CS � F - EP0L.2/ � F - EPT0L.2/ � F - EPT0L.
From Lemma 4.2.5 and the definition of F-ET0L grammars, F - EPT0L.s/ �

F - EPT0L � C - EPT0L � CS for any s � 0. Moreover, F - EP0L.s/ �

F - EP0L � F - EPT0L. Thus, CS D F - EP0L.2/ D F - EPT0L.2/ D F - EP0L D

F - EPT0L; and the theorem holds. ut

Return to the proof of Lemma 4.2.24. Observe the form of the rules in the F-EP0L
grammar G0. This observation gives rise to the next corollary.

Corollary 4.2.31. Every context-sensitive language can be generated by an F-
EP0L grammar G D .V, T, P, S/ of degree 2 such that every rule from P has
one of the following forms

(i) .a ! a;;/, a 2 V;
(ii) .X ! x;F/, X 2 V � T, jxj 2 f1; 2g, max-len.F/ D 1;

(iii) .X ! Y; fzg/, X;Y 2 V � T, z 2 V2. ut

Next, we demonstrate that the family of recursively enumerable languages is
generated by the forbidding E0L grammars of degree 2.

Lemma 4.2.32. RE � F - E0L.2/

Proof. Let L be a recursively enumerable language generated by a phrase-structure
grammar

G D
�
V;T;P; S

�

having the form defined in Theorem 3.1.7, where

V D NCF [ NCS [ T
PCS D fAB ! AC 2 P j A;C 2 NCF;B 2 NCSg

PCF D P � PCS

Let $ be a new symbol and m be the cardinality of V [ f$g. Furthermore, let f be an
arbitrary bijection from V [ f$g onto f1; : : : ;mg, and let f �1 be the inverse of f .
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Define the F-E0L grammar

G0 D
�
V 0;T;P0; S0

�

of degree 2 as follows:

W0 D
˚
hA;B;Ci j AB ! AC 2 P

�

WS D
˚
hA;B;C; ji j AB ! AC 2 P; 1 � j � m

�

W D W0 [ WS

V 0 D V [ W [
˚
S0; $

�

where A;C 2 NCF;B 2 NCS, and V , W0, WS, and fS0; $g are pairwise disjoint
alphabets. The set of rules P0 is constructed by performing (1) through (4), given
next.

(1) Add .S0 ! $S;;/, .$ ! $;;/ and .$ ! ";V 0 � T � f$g/ to P0.
(2) For all X 2 V , add .X ! X;;/ to P0.
(3) For all A ! u 2 PCF, A 2 NCF, u 2 f"g[NCS[T[.

S2
iD1 Ni

CF/, add .A ! u;W/
to P0.

(4) If AB ! AC 2 PCS, A;C 2 NCF , B 2 NCS, then add the following rules into P0.

(4.a) .B ! hA;B;Ci;W/;
(4.b) .hA;B;Ci ! hA;B;C; 1i;W � fhA;B;Cig/;
(4.c) .hA;B;C; ji ! hA;B;C; j C 1i; ff �1.j/hA;B;C; jig/ for all 1 � j � m

such that f .A/ 6D j;
(4.d) .hA;B;C; f .A/i ! hA;B;C; f .A/C 1i;;/;
(4.e) .hA;B;C;m C 1i ! C; fhA;B;C;m C 1i2g/.

Let us only give a gist of the reason why L.G/ D L.G0/. The construction above
resembles the construction in Lemma 4.2.24 very much. Indeed, to simulate the non-
context-free rules AB ! AC in F-E0L grammars, we use the same technique as in
F-EP0L grammars from Lemma 4.2.24. We only need to guarantee that no sentential
form begins with a symbol from NCS. This is solved by an auxiliary nonterminal $
in the definition of G0. The symbol is always generated in the first derivation step
by .S0 ! $S;;/ (see (1) in the definition of P0). After that, it appears as the leftmost
symbol of all sentential forms containing some nonterminals. The only rule that can
erase it is .$ ! ";V 0 � T � f$g/.

Therefore, by analogy with the technique used in Lemma 4.2.24, we can establish

S)�
Gx if and only if S0)C

G0$x0

such that x 2 V�, x0 2 .V 0 � fS0; $g/�, x0 2 �.x/, where � is a finite substitution
from V� into .V 0 � fS0; $g/� defined as

�.X/ D fXg [ fhA;X;Ci j hA;X;Ci 2 W0g

[ fhA;X;C; ji j hA;X;C; ji 2 WS; 1 � j � m C 1g

for all X 2 V , A;C 2 NCF . The details are left to the reader.
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As in Lemma 4.2.24, we have �.a/ D fag for all a 2 T; hence, for all x 2 T�,

S)�
Gx if and only if S0)C

G0$x

Since

$x )G0 x Œ.$ ! ";V 0 � T � f$g/�

we obtain

S)�
Gx if and only if S0)C

G0 x

Consequently, L.G/ D L.G0/; thus, RE � F - E0L.2/. ut

Theorem 4.2.33. RE D F - E0L.2/ D F - ET0L.2/ D F - E0L D F - ET0L

Proof. By Lemma 4.2.32, we have RE � F - E0L.2/ � F - ET0L.2/ � F - ET0L.
From Lemma 4.2.10, it follows that F - ET0L.s/ � F - ET0L � C - ET0L � RE,
for any s � 0. Thus, RE D F - E0L.2/ D F - ET0L.2/ D F - E0L D F - ET0L, so
the theorem holds. ut

By analogy with Corollary 4.2.31, we obtain the following normal form.

Corollary 4.2.34. Every recursively enumerable language can be generated by an
F-E0L grammar G D .V, T, P, S/ of degree 2 such that every rule from P has one
of the following forms

(i) .a ! a;;/, a 2 V;
(ii) .X ! x;F/, X 2 V � T, jxj � 2, F 6D ;, and max-len.F/ D 1;

(iii) .X ! Y; fzg/, X;Y 2 V � T, z 2 V2. ut

Moreover, we obtain the following relations between F-ET0L language families.

Corollary 4.2.35.

CF
�

F - EP0L.0/ D F - E0L.0/ D EP0L D E0L
�

F - EP0L.1/ D F - EPT0L.1/ D F - E0L.1/ D F - ET0L.1/
D F - EPT0L.0/ D F - ET0L.0/ D EPT0L D ET0L

�

F - EP0L.2/ D F - EPT0L.2/ D F - EP0L D F - EPT0L D CS
�

F - E0L.2/ D F - ET0L.2/ D F - E0L D F - ET0L D RE

Proof. This corollary follows from Theorems 4.2.14, 4.2.22, 4.2.30, and 4.2.33. ut
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4.2.3 Simple Semi-Conditional ET0L Grammars

Simple semi-conditional ET0L grammars represent another variant of context-
conditional ET0L grammars with restricted sets of context conditions. By analogy
with sequential simple semi-conditional grammars (see Sect. 3.1.6), these grammars
are context-conditional ET0L grammars in which every rule contains no more
than one context condition. This section defines them, establishes their power and
reduces their degree.

Definitions

In this section, we define simple semi-conditional ET0L grammars.

Definition 4.2.36. Let G D .V;T;P1; : : : ;Pt; S/ be a context-conditional ET0L
grammar, for some t � 1. If for all pW .a ! x;Per;For/ 2 Pi for every i D 1; : : : ; t
holds that card.Per/ C card.For/ � 1, G is said to be a simple semi-conditional
ET0L grammar (SSC-ET0L grammar for short). If G is a propagating SSC-ET0L
grammar, then G is called an SSC-EPT0L grammar. If t D 1, then G is called an
SSC-E0L grammar; if, in addition, G is a propagating SSC-E0L grammar, G is said
to be an SSC-EP0L grammar. ut

Let G D .V;T;P1; : : : ;Pt; S/ be an SSC-ET0L grammar of degree .r; s/. By
analogy with ssc-grammars (see Sect. 3.1.6), in each rule .a ! x;Per;For/ 2 Pi,
i D 1; : : : ; t, we omit braces and instead of ;, we write 0. For example, we write
.a ! x;EF; 0/ instead of .a ! x; fEFg;;/.

Let SSC - EPT0L.r; s/, SSC - ET0L.r; s/, SSC - EP0L.r; s/, and SSC - E0L.r; s/
denote the families of languages generated by SSC-EPT0L, SSC-ET0L, SSC-EP0L,
and SSC-E0L grammars of degree .r; s/, respectively. Furthermore, the families
of languages generated by SSC-EPT0L, SSC-ET0L, SSC-EP0L, and SSC-E0L
grammars of any degree are denoted by SSC - EPT0L, SSC - ET0L, SSC - EP0L,
and SSC - E0L, respectively. Moreover, set

SSC - EPT0L D

1[

rD0

1[

sD0

SSC - EPT0L.r; s/

SSC - ET0L D

1[

rD0

1[

sD0

SSC - ET0L.r; s/

SSC - EP0L D

1[

rD0

1[

sD0

SSC - EP0L.r; s/

SSC - E0L D

1[

rD0

1[

sD0

SSC - E0L.r; s/
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Generative Power and Reduction

Next, let us investigate the generative power of SSC-ET0L grammars. The following
lemma proves that every recursively enumerable language can be defined by an
SSC-E0L grammar of degree .1; 2/.

Lemma 4.2.37. RE � SSC - E0L.1; 2/

Proof. Let

G D
�
NCF [ NCS [ T;T;P; S

�

be a phrase-structure grammar of the form of Theorem 3.1.7. Then, let V D

NCF [ NCS [ T and m be the cardinality of V . Let f be an arbitrary bijection from V
to f1; : : : ;mg, and f �1 be the inverse of f . Set

M D f#g [

fhA;B;Ci j AB ! AC 2 P;A;C 2 NCF;B 2 NCSg [

fhA;B;C; ii j AB ! AC 2 P;A;C 2 NCF;B 2 NCS; 1 � i � m C 2g

and

W D
˚
ŒA;B;C� j AB ! AC 2 P;A;C 2 NCF;B 2 NCS

�

Next, construct an SSC-E0L grammar of degree .1; 2/

G0 D
�
V 0;T;P0; S0

�

where

V 0 D V [ M [ W [
˚
S0
�

Without any loss of generality, we assume that V , M, W, and fS0g are pairwise
disjoint. The set of rules P0 is constructed by performing (1) through (5), given next.

(1) Add .S0 ! #S; 0; 0/ to P0.
(2) For all A ! x 2 P, A 2 NCF , x 2 f"g [ NCS [ T [ N2

CF , add .A ! x; #; 0/ to P0.
(3) For every AB ! AC 2 P, A;C 2 NCF , B 2 NCS, add the following rules to P0

(3.a) .# ! hA;B;Ci; 0; 0/;
(3.b) .B ! ŒA;B;C�; hA;B;Ci; 0/;
(3.c) .hA;B;Ci ! hA;B;C; 1i; 0; 0/;
(3.d) .ŒA;B;C� ! ŒA;B;C�; 0; hA;B;C;m C 2i/;
(3.e) .hA;B;C; ii ! hA;B;C; i C 1i; 0; f �1.i/ŒA;B;C�/ for all 1 � i � m,

i 6D f .A/;
(3.f) .hA;B;C; f .A/i ! hA;B;C; f .A/C 1i; 0; 0/;
(3.g) .hA;B;C;m C 1i ! hA;B;C;m C 2i; 0; ŒA;B;C�2/;
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(3.h) .hA;B;C;m C 2i ! #; 0; hA;B;C;m C 2iŒA;B;C�/;
(3.i) .ŒA;B;C� ! C; hA;B;C;m C 2i; 0/.

(4) For all X 2 V , add .X ! X; 0; 0/ to P0.
(5) Add .# ! #; 0; 0/ and .# ! "; 0; 0/ to P0.

Let us explain how G0 works. During the simulation of a derivation in G, every
sentential form starts with an auxiliary symbol from M, called the master. This
symbol determines the current simulation mode and controls the next derivation
step. Initially, the master is set to # (see (1) in the definition of P0). In this mode,
G0 simulates context-free rules (see (2)); notice that symbols from V can always
be rewritten to themselves by (4). To start the simulation of a non-context-free rule
of the form AB ! AC, G0 rewrites the master to hA;B;Ci. In the following step,
chosen occurrences of B are rewritten to ŒA;B;C�; no other rules can be used except
rules introduced in (4). At the same time, the master is rewritten to hA;B;C; ii with
i D 1 (see (3.c)). Then, i is repeatedly incremented by one until i is greater than the
cardinality of V (see rules (3.e) and (3.f)). Simultaneously, the master’s conditions
make sure that for every i such that f �1.i/ 6D A, no f �1.i/ appears as the left neighbor
of any occurrence of ŒA;B;C�. Finally, G0 checks that there are no two adjoining
ŒA;B;C� (see (3.g)) and that ŒA;B;C� does not appear as the right neighbor of the
master (see (3.h)). At this point, the left neighbors of ŒA;B;C� are necessarily equal
to A and every occurrence of ŒA;B;C� is rewritten to C. In the same derivation step,
the master is rewritten to #.

Observe that in every derivation step, the master allows G0 to use only a subset of
rules according to the current mode. Indeed, it is not possible to combine context-
free and non-context-free simulation modes. Furthermore, no two different non-
context-free rules can be simulated at the same time. The simulation ends when # is
erased by .# ! "; 0; 0/. After this erasure, no other rule can be used.

The following three claims demonstrate some important properties of derivations
in G0 to establish L.G/ D L.G0/.

Claim 4.2.38. S0 )C
G0 w0 implies that w0 2 M.V [ W/� or w0 2 .V [ W/�.

Furthermore, if w0 2 M.V [ W/�, every v0 such that S0 )C
G0 v

0)�
G0 w0 belongs

to M.V [ W/� as well.

Proof. When deriving w0, G0 first rewrites S0 to #S by using .S0 ! #S; 0; 0/, where
# 2 M and S 2 V . Next, inspect P0 to see that every symbol from M is always
rewritten to a symbol belonging to M or, in the case of #, erased by .# ! "; 0; 0/.
Moreover, there are no rules generating new occurrences of symbols from .M [

fS0g/. Thus, all sentential forms derived from S0 belong either to M.V [ W/� or
to .V [ W/�. In addition, if a sentential form belongs to M.V [ W/�, all previous
sentential forms (except for S0) are also from M.V [ W/�. ut

Claim 4.2.39. Every successful derivation in G0 is of the form

S0 )G0 #S )C
G0 #u0 )G0 w0)�

G0w0

where u0 2 V�, w0 2 T�.
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Proof. From Claim 4.2.38 and its proof, every successful derivation has the
form

S0 )G0 #S )C
G0 #u0 )G0 v

0)�
G0w0

where u0; v0 2 .V [ W/�, w0 2 T�. This claim shows that

#u0 )G0 v
0)�

G0 w0

implies that u0 2 V� and v0 D w0. Consider

#u0 )G0 v
0)�

G0 w0

where u0; v0 2 .V [W/�, w0 2 T�. Assume that u0 contains a nonterminal ŒA;B;C� 2

W. There are two rules rewriting ŒA;B;C�:

p1W .ŒA;B;C� ! ŒA;B;C�; 0; hA;B;C;m C 2i/

and

p2W .ŒA;B;C� ! C; hA;B;C;m C 2i; 0/

Because of its permitting condition, p2 cannot be applied during #u0 )G0 v
0. If

ŒA;B;C� is rewritten by p1—that is, ŒA;B;C� 2 alph.v0/—ŒA;B;C� necessarily
occurs in all sentential forms derived from v0. Thus, no u0 containing a nonterminal
from W results in a terminal string; hence, u0 2 V�. By analogical considerations,
establish that also v0 2 V�. Next, assume that v0 contains some A 2 NCF or B 2 NCS.
The first one can be rewritten by .A ! z; #; 0/, z 2 V�, and the second one by
.B ! ŒA;B;C�; hA;B;Ci; 0/, ŒA;B;C� 2 W, hA;B;Ci 2 M. In both cases, the
permitting condition forbids an application of the rule. Consequently, v0 2 T�. It is
sufficient to show that v0 D w0. Indeed, every rule rewriting a terminal is of the form
.a ! a; 0; 0/, a 2 T. ut

Claim 4.2.40. Let S0 )n
G0 Zx0, Z 2 M, x0 2 .V [ W/�, n � 1. Then, Zx0 has one of

the following forms

(I) Z D #, x0 2 V�;
(II) Z D hA;B;Ci, x0 2 V�, for some A;C 2 NCF, B 2 NCS;

(III) Z D hA;B;C; ii, x0 2 .V [ fŒA;B;C�g/�, 1 � i � m C 1, and ff �1.j/ŒA;B;C�j
1 � j < i; j 6D f .A/g \ sub.x0/ D ; for some A;C 2 NCF , B 2 NCS;

(IV) Z D hA;B;C;m C 2i, x0 2 .V [ fŒA;B;C�g/�, fXŒA;B;C� j X 2 V; X 6D

Ag \ sub.x0/ D ;, and ŒA;B;C�2 62 sub.x0/ for some A;C 2 NCF , B 2 NCS.

Proof. This claim is proved by induction on h � 1.

Basis. Let h D 1. Then, S0 )G0 #S, where #S is of type (I).
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Induction Hypothesis. Suppose that the claim holds for all derivations of length
1 � h � n, for some n � 1.

Induction Step. Consider any derivation of the form

S0 )nC1
G0 Qx0

where Q 2 M, x0 2 .V [ W/�. Since n C 1 � 2, by Claim 4.2.38, there exists
Zy0 2 M.V [ W/� and a sequence of rules p0; p1; : : : ; pq, where pi 2 P0, 0 � i � q,
q D jy0j, such that

S0 )n
G0 Zy0 )G0 Qx0 Œp0; p1; : : : ; pq�

Let y0 D a1a2 	 	 	 aq, where ai 2 .V [ W/ for all i D 1; : : : ; q. By the
induction hypothesis, the following cases (i) through (iv) cover all possible forms
of Zy0.

(i) Let Z D # and y0 2 V� (form (I)). According to the definition of P0, p0 is either
.# ! hA;B;Ci; 0; 0/, A;C 2 NCF , B 2 NCS, or .# ! #; 0; 0/, or .# ! "; 0; 0/,
and every pi is either of the form .ai ! z; #; 0/, z 2 f"g [ NCS [ T [ N2

CF ,
or .ai ! ai; 0; 0/. Obviously, y0 is always rewritten to a string x0 2 V�. If #
is rewritten to hA;B;Ci, we get hA;B;Cix0 that is of form (II). If # remains
unchanged, #x0 is of type (I). In case that # is erased, the resulting sentential
form does not belong to M.V [ W/� required by this claim (which also holds
for all strings derived from x0 (see Claim 4.2.38)).

(ii) Let Z D hA;B;Ci, y0 2 V�, for some A;C 2 NCF , B 2 NCS (form (II)).
In this case, p0W .hA;B;Ci ! hA;B;C; 1i; 0; 0/ and every pi is either .ai !

ŒA;B;C�; hA;B;Ci; 0/ or .ai ! ai; 0; 0/ (see the definition of P0). It is easy to
see that hA;B;C; 1ix0 belongs to (III).

(iii) Let Z D hA;B;C; ji, y0 2 .V [ fŒA;B;C�g/�, and y0 satisfies

˚
f �1.k/ŒA;B;C� j 1 � k < j; k 6D f .A/

�
\ sub.

�
.y0
�

D ;

1 � j � m C 1, for some A;C 2 NCF , B 2 NCS (form (III)). The only
rules rewriting symbols from y0 are .ai ! ai; 0; 0/, ai 2 V , and .ŒA;B;C� !

ŒA;B;C�; 0; hA;B;C;m C 2i/; thus, y0 is rewritten to itself. By the inspection
of P0, p0 can be of the following three forms.

(a) If j 6D f .A/ and j < m C 1,

p0 D
�
hA;B;C; ji ! hA;B;C; j C 1i; 0; f �1.j/ŒA;B;C�

�

Clearly, p0 can be used only when f �1.j/ŒA;B;C� 62 sub.Zy0/. As

˚
f �1.k/ŒA;B;C� j 1 � k < j; k 6D f .A/

�
\ sub.

�
.y0
�

D ;
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it also

˚
f �1.k/ŒA;B;C� j 1 � k � j; k 6D f .A/

�
\ sub.

�
.y0
�

D ;

Since hA;B;C; ji is rewritten to hA;B;C; jC1i and y0 is unchanged, we get
hA;B;C; j C 1iy0 with

˚
f �1.k/ŒA;B;C� j 1 � k < j C 1; k 6D f .A/

�
\ sub.

�
.y0
�

D ;

which is of form (III).
(b) If j D f .A/,

p0 D
�
hA;B;C; f .A/i ! hA;B;C; f .A/C 1i; 0; 0

�

As before, Qx0 D hA;B;C; j C 1iy0. Moreover, because

˚
f �1.k/ŒA;B;C� j 1 � k < j; k 6D f .A/

�
\ sub.

�
.y0
�

D ;

and j D f .A/,

˚
f �1.k/ŒA;B;C� j 1 � k < j C 1; k 6D f .A/

�
\ sub.

�
.x0
�

D ;

Consequently, Qx0 belongs to (III) as well.
(c) If j D m C 1,

p0 D
�
hA;B;C;m C 1i ! hA;B;C;m C 2i; 0; ŒA;B;C�2

�

Then, Qx0 D hA;B;C;m C 2iy0. The application of p0 implies that
ŒA;B;C�2 62 sub.x0/. In addition, observe that for j D m C 1,

ff �1.k/ŒA;B;C� j 1 � k < j; k 6D f .A/g
D fXŒA;B;C� j X 2 V; X 6D Ag

Hence,

˚
XŒA;B;C� j X 2 V; X 6D A

�
\ sub.

�
.x0
�

D ;

As a result, Qx0 is of form (IV).

(iv) Let Z D hA;B;C;m C 2i, y0 2 .V [ fŒA;B;C�g/�, ŒA;B;C�2 62 sub.y0/, and

˚
XŒA;B;C� j X 2 V; X 6D A

�
\ sub.

�
.y0
�

D ;

for some A;C 2 NCF , B 2 NCS (form (IV)). Inspect P0 to see that

p0 D
�
hA;B;C;m C 2i ! #; 0; hA;B;C;m C 2iŒA;B;C�

�
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and pi is either

�
ai ! ai; 0; 0

�
; ai 2 V

or

�
ŒA;B;C� ! C; hA;B;C;m C 2i; 0

�

where 1 � i � q. According to the right-hand sides of these rules, Qx0 2

f#gV�; that is, Qx0 belongs to (I).

In cases (i) through (iv), we have demonstrated that every sentential form obtained
in n C 1 derivation steps satisfies the statement of this claim. Therefore, we have
finished the induction step and established Claim 4.2.40. ut

To prove the following claims, define the finite substitution � from V� into .V [

W/� as

�.X/ D
˚
X
�

[
˚
ŒA;B;C� 2 W j A;C 2 NCF; B 2 NCS

�

for all X 2 V . Let ��1 be the inverse of � .

Claim 4.2.41. Let y0 D a1a2 	 	 	 aq, ai 2 .V [ W/�, q D jy0j, and ��1.ai/ )
hi
G

��1.x0
i/ for all i 2 f1; : : : ; qg and some hi 2 f0; 1g, x0

i 2 .V [ W/�. Then,
��1.y0/ )h

G �
�1.x0/ such that x0 D x0

1x
0
2 	 	 	 x0

q, h D
Pq

iD1 hi, h � q.

Proof. Consider any derivation of the form

��1.X/ )l
G �

�1.u/

X 2 .V [ W/, u 2 .V [ W/�, l 2 f0; 1g. If l D 0, ��1.X/ D ��1.u/. Let l D 1.
Then, there surely exists a rule pW ��1.X/ ! ��1.u/ 2 P such that

��1.X/ )G �
�1.u/ Œp�

Return to the statement of this claim. We can construct this derivation

��1.a1/��1.a2/ 	 	 	��1.aq/ )
h1
G ��1.x0

1/�
�1.a2/ 	 	 	��1.aq/

)
h2
G ��1.x0

1/�
�1.x0

2/ 	 	 	��1.aq/
:::

)
hq

G ��1.x0
1/�

�1.x0
2/ 	 	 	��1.x0

q/

where

��1.y0/ D ��1.a1/ 	 	 	��1.aq/
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and

��1.x0
1/ 	 	 	��1.x0

q/ D ��1.x0
1 	 	 	 x0

q/ D ��1.x0/

In such a derivation, each ��1.ai/ is either left unchanged (if hi D 0) or rewritten
to ��1.x0

i/ by the corresponding rule ��1.ai/ ! ��1.x0
i/. Obviously, the length of

this derivation is
Pq

iD1 hi. ut

Claim 4.2.42. S)�
Gx if and only if S0)C

G0Qx0, where ��1.x0/ D x, Q 2 M, x 2 V�,
x0 2 .V [ W/�.

Proof. The proof is divided into the only-if part and the if part.

Only If. By induction on h � 0, we show that

S )h
G x implies S0 )C

G0 #x

where x 2 V�, h � 0. Clearly, ��1.x/ D x.

Basis. Let h D 0. Then, S )0
G S. In G0, S0 )G0 #S by using .S0 ! #S; 0; 0/.

Induction Hypothesis. Assume that the claim holds for all derivations of length 0 �

h � n, for some n � 0.

Induction Step. Consider any derivation of the form

S )nC1
G x

As n C 1 � 1, there exists y 2 V� and p 2 P such that

S )n
G y )G x Œp�

Let y D a1a2 	 	 	 aq, ai 2 V for all 1 � i � q, where q D jyj. By the induction
hypothesis,

S0 )C
G0 #y

The following cases investigate all possible forms of p.

(i) Let pW A ! z, A 2 NCF , z 2 f"g [ NCS [ T [ N2
CF . Then, y D y1Ay3 and

x D y1zy3, y1; y3 2 V�. Let l D jy1j C 1. In this case, we can construct

S0 )C
G0 #y )G0 #x Œp0; p1; : : : ; pq�

such that p0W .# ! #; 0; 0/, plW .A ! z; #; 0/, and piW .ai ! ai; 0; 0/ for all
1 � i � q, i 6D l.
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(ii) Let pW AB ! AC, A;C 2 NCF , B 2 NCS. Then, y D y1ABy3 and x D y1ACy3,
y1; y3 2 V�. Let l D jy1jC2. At this point, there exists the following derivation

S0 )C
G0 #y1ABy3

)G0 hA;B;Ciy1ABy3
)G0 hA;B;C; 1iy1AŒA;B;C�y3
)G0 hA;B;C; 2iy1AŒA;B;C�y3
:::

)G0 hA;B;C; f .A/iy1AŒA;B;C�y3
)G0 hA;B;C; f .A/C 1iy1AŒA;B;C�y3
:::

)G0 hA;B;C;m C 1iy1AŒA;B;C�y3
)G0 hA;B;C;m C 2iy1AŒA;B;C�y3
)G0 #y1ACy3

If. The if part establishes that

S0 )h
G0 Qx0 implies S)�

G0x

where ��1.x0/ D x, Q 2 M, x0 2 .V [ W/�, x 2 V�, h � 1. This claim is proved by
induction on h � 1.

Basis. Assume that h D 1. Since the only rule that can rewrite S0 is .S0 ! #S; 0; 0/,
S0 )G0 #S. Clearly, S )0

G S and ��1.S/ D S.

Induction Hypothesis. Suppose that the claim holds for any derivation of length
1 � h � n, for some n � 1.

Induction Step. Consider any derivation of the form

S0 )nC1
G0 Qx0

where Qx0 2 M.V [W/�. Since nC1 � 2, by Claim 4.2.38, there exists a derivation

S0 )C
G0 Zy0 )G0 Qx0 Œp0; p1; : : : ; pq�

where Zy0 2 M.V [ W/�, and pi 2 P0 for all i 2 f0; 1; : : : ; qg, q D jy0j. By the
induction hypothesis, there is also a derivation

S)�
G0y

where y 2 V�, ��1.y0/ D y. Let y0 D a1a2 	 	 	 aq. Claim 4.2.40 says that Zy0 has one
of the following forms.
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(i) Let Z D # and y0 2 V�. Then, there are the following two forms of rules
rewriting ai in y0.

(i.a) Let .ai ! ai; 0; 0/, ai 2 V . In this case,

��1.ai/ )0
G �

�1.ai/

(i.b) Let .ai ! xi; #; 0/, xi 2 f"g [ NCS [ T [ N2
CF. Since ai D ��1.ai/,

xi D ��1.xi/ and ai ! xi 2 P,

��1.ai/ )G �
�1.xi/ Œai ! xi�

We see that for all ai, there exists a derivation

��1.ai/ )
hi
G �

�1.xi/

for some hi 2 f0; 1g, where xi 2 V�, x0 D x1x2 	 	 	 xq. Therefore, by
Claim 4.2.41, we can construct

S0)�
Gy)h

Gx

where 0 � h � q, x D ��1.x0/.
(ii) Let Z D hA;B;Ci, y0 2 V�, for some A;C 2 NCF , B 2 NCS. At this point, the

following two forms of rules can be used to rewrite ai in y0.

(ii.a) Let .ai ! ai; 0; 0/, ai 2 V . As in case (i.a),

��1.ai/ )0
G �

�1.ai/

(ii.b) Let .ai ! ŒA;B;C�; hA;B;Ci; 0/, ai D B. Since ��1.ŒA;B;C�/ D

��1.B/, we have

��1.ai/ )0
G �

�1.ŒA;B;C�/

Thus, there exists the derivation

S)�
Gy)0

Gx; x D ��1.x0/

(iii) Let Z D hA;B;C; ji, y0 2 .V [ fŒA;B;C�g/�, and
˚
f �1.k/ŒA;B;C� j 1 � k < j; k 6D f .A/

�
\ sub.

�
.y0
�

D ;

1 � j � m C 1, for some A;C 2 NCF, B 2 NCS. Then, the only rules rewriting
symbols from y0 are

�
ai ! ai; 0; 0

�
; ai 2 V
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and

�
ŒA;B;C� ! ŒA;B;C�; 0; hA;B;C;m C 2i

�

Hence, x0 D y0. Since we have

S)�
Gy; ��1.y0/ D y

it also holds that ��1.x0/ D y.
(iv) Let Z D hA;B;C;m C 2i, y0 2 .V [ fŒA;B;C�g/�, ŒA;B;C�2 62 sub.y0/,

˚
XŒA;B;C� j X 2 V; X 6D A

�
\ sub.

�
.y0
�

D ;

for some A;C 2 NCF , B 2 NCS. G0 rewrites hA;B;C;m C 2i by using

�
hA;B;C;m C 2i ! #; 0; hA;B;C;m C 2iŒA;B;C�

�

which forbids hA;B;C;mC2iŒA;B;C� as a substring of Zy0. As a result, the left
neighbor of every occurrence of ŒA;B;C� in hA;B;C;mC2iy0 is A. Inspect P0 to
see that ai can be rewritten either by .ai ! ai; 0; 0/, ai 2 V , or by .ŒA;B;C� !

C; hA;B;C;m C 2i; 0/. Therefore, we can express

y0 D y1AŒA;B;C�y2AŒA;B;C�y3 	 	 	 ylAŒA;B;C�ylC1

y D y1ABy2ABy3 	 	 	 ylABylC1

x0 D y1ACy2ACy3 	 	 	 ylACylC1

where l � 0, yk 2 V�, 1 � k � l C 1. Since we have pW AB ! AC 2 P, there is
a derivation

S )�
G y1ABy2ABy3 	 	 	 ylABylC1

)G y1ACy2ABy3 	 	 	 ylABylC1 Œp�
)G y1ACy2ACy3 	 	 	 ylABylC1 Œp�
:::

)G y1ACy2ACy3 	 	 	 ylACylC1 Œp�

Since cases (i) through (iv) cover all possible forms of y0, we have completed the
induction and established Claim 4.2.42. ut

Let us finish the proof of Lemma 4.2.37. Consider any derivation of the form

S)�
Gw; w 2 T�

From Claim 4.2.42, it follows that

S0 )C
G0 #w
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because �.a/ D fag for every a 2 T. Then, as shown in Claim 4.2.39,

S0 )C
G0 #w )G0 w

and hence,

S)�
Gw implies S0)C

G0w

for all w 2 T�. To prove the converse implication, consider a successful derivation
of the form

S0 )C
G0 #u )G0 w)�

G0 w

u 2 V�, w 2 T� (see Claim 4.2.39). Observe that by the definition of P0, for every

S0 )C
G0 #u )G0 w

there also exists a derivation

S0 )C
G0 #u)�

G0#w)G0w

Then, according to Claim 4.2.42, S)�
Gw. Consequently, we get for every w 2 T�,

S)�
Gw if and only if S0)�

G0 w

Therefore, L.G/ D L.G0/. ut

Lemma 4.2.43. SSC - ET0L.r; s/ � RE for any r; s � 0.

Proof. By Lemma 4.2.10, C - ET0L � RE. Since SSC - ET0L.r; s/ � C - ET0L
for all r; s � 0 (see Definition 4.2.36), SSC - ET0L.r; s/ � RE for all r; s � 0 as
well. ut

Inclusions established in Lemmas 4.2.37 and 4.2.43 imply the following theorem.

Theorem 4.2.44.

SSC - E0L.1; 2/ D SSC - ET0L.1; 2/ D SSC - E0L D SSC - ET0L D RE

Proof. From Lemmas 4.2.37 and 4.2.43, we have that RE � SSC - E0L.1; 2/
and SSC - ET0L.r; s/ � RE for any r; s � 0. By the definitions it holds that
SSC - E0L.1; 2/ � SSC - ET0L.1; 2/ � SSC - ET0L and SSC - E0L.1; 2/ �

SSC - E0L � SSC - ET0L. Hence, SSC - E0L.1; 2/ D SSC - ET0L.1; 2/ D

SSC - E0L D SSC - ET0L D RE. ut

Next, let us investigate the generative power of propagating SSC-ET0L
grammars.
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Lemma 4.2.45. CS � SSC - EP0L.1; 2/

Proof. We can base this proof on the same technique as in Lemma 4.2.37. However,
we have to make sure that the construction produces no erasing rules. This requires
some modifications of the original algorithm; in particular, we have to eliminate the
rule .# ! "; 0; 0/.

Let L be a context-sensitive language generated by a context-sensitive grammar

G D
�
V;T;P; S

�

of the normal form of Theorem 3.1.6, where

V D NCF [ NCS [ T

Let m be the cardinality of V . Define a bijection f from V to f1; : : : ;mg. Let f �1 be
the inverse of f . Set

M D fh# j Xi j X 2 Vg [

fhA;B;C j Xi j AB ! AC 2 P; X 2 Vg [

fhA;B;C; i j Xi j AB ! AC 2 P; 1 � i � m C 2; X 2 Vg

W D fŒA;B;C;X� j AB ! AC 2 P; X 2 Vg; and
V 0 D V [ M [ W

where V , M, and W are pairwise disjoint. Then, construct the SSC-EP0L grammar
of degree .1; 2/,

G0 D
�
V 0;T;P0; h# j Si

�

with the set of rules P0 constructed by performing (1) through (4), given next.

(1) For all A ! x 2 P, A 2 NCF , x 2 T [ NCS [ N2
CF ,

(1.a) for all X 2 V , add .A ! x; h# j Xi; 0/ to P0;
(1.b) if x 2 T [ NCS, add .h# j Ai ! h# j xi; 0; 0/ to P0;
(1.c) if x D YZ, YZ 2 N2

CF , add .h# j Ai ! h# j YiZ; 0; 0/ to P0.

(2) For all X 2 V and for every AB ! AC 2 P, A;C 2 NCF , B 2 NCS, extend P0 by
adding

(2.a) .h# j Xi ! hA;B;C j Xi; 0; 0/;
(2.b) .B ! ŒA;B;C;X�; hA;B;C j Xi; 0/;
(2.c) .hA;B;C j Xi ! hA;B;C; 1 j Xi; 0; 0/;
(2.d) .ŒA;B;C;X� ! ŒA;B;C;X�; 0; hA;B;C;m C 2iX/;
(2.e) .hA;B;C; i j Xi ! hA;B;C; i C 1 j Xi; 0; f �1.i/ŒA;B;C;X�/ for all 1 �

i � m, i 6D f .A/;
(2.f) .hA;B;C; f .A/ j Xi ! hA;B;C; f .A/C 1 j Xi; 0; 0/

(2.g) .hA;B;C;m C 1 j Xi ! hA;B;C;m C 2 j Xi; 0; ŒA;B;C;X�2/;
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(2.h) .hA;B;C;m C 2 j Xi ! h# j Xi; 0; 0/ for X D A,
.hA;B;C;m C 2 j Xi ! h# j Xi; 0; hA;B;C;m C 2 j XiŒA;B;C;X�/
otherwise;

(2.i) .ŒA;B;C;X� ! C; hA;B;C;m C 2 j Xi; 0/.

(3) For all X 2 V , add .X ! X; 0; 0/ to P0.
(4) For all X 2 V , add .h# j Xi ! h# j Xi; 0; 0/ and .h# j Xi ! X; 0; 0/ to P0.

Consider the construction above and the construction used in the proof of
Lemma 4.2.37. Observe that the present construction does not attach the master as
an extra symbol before sentential forms. Instead, the master is incorporated with its
right neighbor into one composite symbol. For example, if G generates AabCadd,
the corresponding sentential form in G0 is h# j AiabCadd, where h# j Ai is one
symbol. At this point, we need no rule erasing #; the master is simply rewritten
to the symbol with which it is incorporated (see rules of (4)). In addition, this
modification involves some changes to the algorithm: First, G0 can rewrite symbols
incorporated with the master (see rules of (1.b) and (1.c)). Second, conditions of
the rules depending on the master refer to the composite symbols. Finally, G0 can
make context-sensitive rewriting of the composite master’s right neighbor (see rules
of (2.h)). For instance, if

ABadC )G ACadC ŒAB ! AC�

in G, G0 derives

h# j AiBadC )C
G0 h# j AiCadC

Based on the observations above, the reader can surely establish L.G/ D L.G0/

by analogy with the proof of Lemma 4.2.37. Thus, the fully rigorous version of this
proof is omitted. ut

Lemma 4.2.46. SSC - EPT0L.r; s/ � CS, for all r; s � 0.

Proof. By Lemma 4.2.5, C - EPT0L.r; s/ � CS, for any r � 0, s � 0.
Since every SSC-EPT0L grammar is a special case of a C-EPT0L grammar (see
Definition 4.2.36), we obtain SSC - EPT0L.r; s/ � CS, for all r; s � 0. ut

Theorem 4.2.47.

CS D SSC - EP0L.1; 2/ D SSC - EPT0L.1; 2/ D SSC - EP0L D SSC - EPT0L

Proof. By Lemma 4.2.45, we have CS � SSC - EP0L.1; 2/. Lemma 4.2.46 says
that SSC - EPT0L.r; s/ � CS for all r; s � 0. From the definitions, it follows that
SSC - EP0L.1; 2/ � SSC - EPT0L.1; 2/ � SSC - EPT0L and SSC - EP0L.1; 2/ �

SSC - EP0L � SSC - EPT0L. Hence, we have the identity SSC - EP0L.1; 2/ D

SSC - EPT0L.1; 2/ D SSC - EP0L D SSC - EPT0L D CS, so the theorem
holds. ut
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The following corollary summarizes the established relations between the lan-
guage families generated by SSC-ET0L grammars.

Corollary 4.2.48.

CF
�

SSC - EP0L.0; 0/ D SSC - E0L.0; 0/ D EP0L D E0L
�

SSC - EPT0L.0; 0/ D SSC - ET0L.0; 0/ D EPT0L D ET0L
�

SSC - EP0L.1; 2/ D SSC - EPT0L.1; 2/ D SSC - EP0L D SSC - EPT0L D CS
�

SSC - E0L.1; 2/ D SSC - ET0L.1; 2/ D SSC - E0L D SSC - ET0L D RE ut

Open Problem 4.2.49. Notice that Corollary 4.2.48 does not include some related
language families. For instance, it contains no language families generated by SSC-
ET0L grammars with degrees .1; 1/, .1; 0/, and .0; 1/. What is their generative
power? What is the generative power of SSC-ET0L grammars of degree .2; 1/?
Are they as powerful as SSC-ET0L grammars of degree .1; 2/?

4.2.4 Left Random Context ET0L Grammars

As their name indicates, left random context ET0L grammars (LRC-ET0L grammars
for short) represent another variant of context-conditional ET0L grammars. In this
variant, a set of permitting symbols and a set of forbidding symbols are attached to
each of their rules, just like in random context grammars (see Sect. 3.1.3). A rule
like this can rewrite a symbol if each of its permitting symbols occurs to the left
of the rewritten symbol in the current sentential form while each of its forbidding
symbols does not occur there. LRC-ET0L grammars represent the principal subject
of this section.

In the present section, we demonstrate that LRC-ET0L grammars are computa-
tionally complete—that is, they characterize the family of recursively enumerable
languages (see Theorem 4.2.60). In fact, we prove that the family of recursively
enumerable languages is characterized even by LRC-ET0L grammars with a
limited number of nonterminals (see Theorem 4.2.62). We also demonstrate how to
characterize the family of context-sensitive languages by these grammars without
erasing rules (see Theorem 4.2.59).

In addition, we study a variety of special cases of LRC-ET0L grammars. First,
we introduce left random context E0L grammars (LRC-E0L grammars for short),
which represent LRC-ET0L grammars with a single set of rules. We prove that
the above characterizations hold in terms of LRC-E0L grammars as well. Second,
we introduce left permitting E0L grammars (LP-E0L grammars for short), which
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represent LRC-E0L grammars where each rule has only a set of permitting symbols.
Analogously, we define left forbidding E0L grammars (LF-E0L grammars for short)
as LRC-E0L grammars where each rule has only a set of forbidding symbols. We
demonstrate that LP-E0L grammars are more powerful than ordinary E0L grammars
and that LF-E0L grammars are at least as powerful as ordinary ET0L grammars.

Definitions and Examples

In this section, we define LRC-ET0L grammars and their variants. In addition, we
illustrate them by examples.

Definition 4.2.50. A left random context ET0L grammar (a LRC-ET0L grammar
for short) is an .n C 3/-tuple

G D
�
V;T;P1;P2; : : : ;Pn;w

�

where V , T, and w are defined as in an ET0L grammar, N D V � T is the alphabet
of nonterminals, and Pi � V � V� � 2N � 2N is a finite relation, for all i, 1 � i � n,
for some n � 1. By analogy with phrase-structure grammars, elements of Pi are
called rules and instead of .X; y;U;W/ 2 Pi, we write .X ! y;U;W/ throughout
this section. The direct derivation relation over V�, symbolically denoted by )G,
is defined as follows:

u )G v

if and only if

• u D X1X2 	 	 	 Xk,
• v D y1y2 	 	 	 yk,
• .Xi ! yi;Ui;Wi/ 2 Ph,

• Ui � alph.X1X2 	 	 	 Xi�1/, and
• alph.X1X2 	 	 	 Xi�1/ \ Wi D ;,

for all i, 1 � i � k, for some k � 1 and h � n. For .X ! y;U;W/ 2 Pi, U and W
are called the left permitting context and the left forbidding context, respectively. Let
)m

G, )�
G, and )C

G denote the mth power of )G, for m � 0, the reflexive-transitive
closure of )G, and the transitive closure of )G, respectively. The language of G is
denoted by L.G/ and defined as

L.G/ D
˚
x 2 T� j w )�

G x
�

ut

Definition 4.2.51. Let G D .V , T, P1, P2, : : : , Pn, w/ be an LRC-ET0L grammar,
for some n � 1. If every .X ! y;U;W/ 2 Pi satisfies that W D ;, for all i,
1 � i � n, then G is a left permitting ET0L grammar (an LP-ET0L grammar for
short). If every .X ! y;U;W/ 2 Pi satisfies that U D ;, for all i, 1 � i � n, then G
is a left forbidding ET0L grammar (an LF-ET0L grammar for short). ut
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By analogy with ET0L grammars (see their definition in Sect. 2.3.4), we define
LRC-EPT0L, LP-EPT0L, LF-EPT0L, LRC-E0L, LP-E0L, LF-E0L, LRC-EP0L, LP-
EP0L, and LF-EP0L grammars.

The language families that are generated by LRC-ET0L, LP-ET0L, LF-ET0L,
LRC-EPT0L, LP-EPT0L and LF-EPT0L grammars are denoted by LRC - ET0L,
LP - ET0L, LF - ET0L, LRC - EPT0L, LP - EPT0L, and LF - EPT0L, respec-
tively. The language families generated by LRC-E0L, LP-E0L, LF-E0L, LRC-
EP0L, LP-EP0L, and LF-EP0L grammars are denoted by LRC - E0L, LP - E0L,
LF - E0L, LRC - EP0L, LP - EP0L, and LF - EP0L, respectively.

Next, we illustrate the above-introduced notions by two examples.

Example 4.2.52. Consider K D fambnam j 1 � m � ng. This language is generated
by the LF-EP0L grammar

G D
�
fA;B;B0; Na; a; bg; fa; bg;P;ABA

�

with P containing the following nine rules

.A ! aA;;; fNag/

.A ! Na;;; fNag/

.Na ! a;;; fAg/

.a ! a;;;;/

.B ! bB;;;;/

.B ! B0;;;;/

.B0 ! bB0;;; fAg/

.B0 ! b;;; fAg/

.b ! b;;;;/

To rewrite A to a string not containing A, .A ! Na;;; fNag/ has to be used. Since
the only rule which can rewrite Na is .Na ! a;;; fAg/, and the rules that can rewrite
A have Na in their forbidding contexts, it is guaranteed that both As are rewritten to Na
simultaneously; otherwise, the derivation is blocked. The rules .B0 ! bB0;;; fAg/

and .B0 ! b;;; fAg/ are applicable only if there is no A to the left of B0. Therefore,
after these rules are applied, no more as can be generated. Consequently, we see that
for every string from L.G/, there exists a derivation of the form

ABA )�
G am�1Abm�1Bam�1A

)G am�1 Nabm�1B0am�1 Na
)C

G ambnam

with 1 � m � n. Hence, L.G/ D K. ut

Recall that K … E0L (see page 268 in [RS97a]); however, K 2 LF - EP0L. As a
result, LF-EP0L grammars are more powerful than ordinary E0L grammars.

The next example shows how to generate K by an LP-EP0L grammar, which
implies that LP-E0L grammars have greater expressive power than E0L grammars.

Example 4.2.53. Consider the LRC-EP0L grammar

H D
�
fS;A;A0;B;B0; Na; a; bg; fa; bg;P; S

�
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with P containing the following fourteen rules

.S ! ABA0;;;;/

.S ! NaB0 Na;;;;/

.A ! aA;;;;/

.A ! aNa;;;;/

.A0 ! aA0; fAg;;/

.A0 ! Na; fNag;;/

.Na ! Na;;;;/

.Na ! a;;;;/

.a ! a;;;;/

.B ! bB;;;;/

.B ! bB0;;;;/

.B0 ! bB0; fNag;;/

.B0 ! b;;; fNag;;/

.b ! b;;;;/

If the first applied rule is .S ! NaB0 Na;;;;/, then the generated string of terminals
clearly belongs to K from Example 4.2.52. By using this rule, we can obtain a
string with only two as, which is impossible if .S ! ABA0;;;;/ is used instead.
Therefore, we assume that .S ! ABA0;;;;/ is applied as the first rule. Observe that
.A0 ! aA0; fAg;;/ can be used only when there is A present to the left of A0 in the
current sentential form. Also, .A0!a; fNag;;/ can be applied only after .A!aNa;;;;/
is used. Finally, note that .B0!bB0; fNag;;/ and .B0!b;;; fNag;;/ can be applied
only if there is Na to the left of B0. Therefore, after these rules are used, no more as
can be generated. Consequently, we see that for every string from L.G/ with more
than two as, there exists a derivation of the form

S )H ABA0

)�
H am�2Abm�2Bam�2A0

)H am�1 Nabm�1B0am�1A0

)C
H am�1 Nabn�1B0am�1 Na

)H ambnam

with 2 � m � n. Hence, L.H/ D K. ut

Generative Power and Reduction

In this section, we establish the generative power of LRC-ET0L grammars and their
special variants. More specifically, we prove that LRC - EPT0L D LRC - EP0L D

CS (Theorem 4.2.59), LRC - ET0L D LRC - E0L D RE (Theorem 4.2.60),
ET0L � LF - EP0L (Theorem 4.2.69), and E0L � LP - EP0L (Theorem 4.2.70).

First, we consider LRC-EPT0L and LRC-EP0L grammars.

Lemma 4.2.54. CS � LRC - EP0L

Proof. Let G D .V , T, P, S/ be a context-sensitive grammar and let N D V � T.
Without any loss of generality, making use of Theorem 3.1.5, we assume that G is in
the Penttonen normal form. Next, we construct a LRC-EP0L grammar H such that
L.H/ D L.G/. Set

NN D f NA j A 2 Ng
ON D f OA j A 2 Ng

N0 D N [ NN [ ON
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Without any loss of generality, we assume that NN, ON, N, and T are pairwise disjoint.
Construct

H D
�
V 0;T;P0; S

�

as follows. Initially, set V 0 D N0 [ T and P0 D ;. Perform (1) through (5), given
next.

(1) For each A ! a 2 P, where A 2 N and a 2 T, add .A ! a;;;N0/ to P0.
(2) For each A ! BC 2 P, where A;B;C 2 N, add .A ! BC;;; NN [ ON/ to P0.
(3) For each AB ! AC 2 P, where A;B;C 2 N,

(3.1) add .B ! C; f OAg;N [ . ON � f OAg// to P0;
(3.2) for each D 2 N, add .D ! D; f OA;Bg; ON � f OAg/ to P0.

(4) For each D 2 N, add .D ! ND;;; NN [ ON/, .D ! OD;;; NN [ ON/, . ND ! D;;;N [
ON/, and . OD ! D;;;N [ ON/ to P0.

(5) For each a 2 T and each D 2 N, add .a ! a;;;N0/ and .D ! D;;; NN [ ON/
to P0.

Before proving that L.H/ D L.G/, let us give an insight into the construction.
The simulation of context-free rules of the form A ! BC, where A;B;C 2 N, is
done by rules introduced in (2). Rules from (5) are used to rewrite all the remaining
symbols.

H simulates context-sensitive rules—that is, rules of the form AB ! AC, where
A;B;C 2 N—as follows. First, it rewrites all nonterminals to the left of A to their
barred versions by rules from (4), A to OA by .A ! OA;;; NN [ ON/ from (4), and all
the remaining symbols by passive rules from (5). Then, it rewrites B to C by .B !

C; f OAg;N[. ON�f OAg// from (3.1), barred nonterminals to non-barred nonterminals by
rules from (4), OA back to A by . OA ! A;;;N [ ON/ from (4), all other nonterminals by
passive rules from (3.2), and all terminals by passive rules from (5). For example, for

abXYABZ )G abXYACZ

there is

abXYABZ )H ab NX NY OABZ )H abXYACZ

Observe that if H makes an improper selection of the symbols rewritten to their
barred and hatted versions, like in AXB )H OA NXB, then the derivation is blocked
because every rule of the form . ND ! D;;;N [ ON/, where D 2 D, requires that there
are no hatted nonterminals to the left of ND.

To prevent AAB )H AaB )H OAaB )H AaC, rules simulating A ! a, where
A 2 N and a 2 T, introduced in (1), can be used only if there are no nonterminals
to the left of A. Therefore, a terminal can never appear between two nonterminals,
and so every sentential form generated by H is of the form x1x2, where x1 2 T� and
x2 2 N0�.
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To establish L.H/ D L.G/, we prove three claims. Claim 4.2.55 demonstrates
that every y 2 L.G/ can be generated in two stages; first, only nonterminals
are generated, and then, all nonterminals are rewritten to terminals. Claim 4.2.56
shows how such derivations of every y 2 L.G/ in G are simulated by H. Finally,
Claim 4.2.57 shows how derivations of H are simulated by G.

Claim 4.2.55. Let y 2 L.G/. Then, in G, there exists a derivation S )�
G x )�

G y,
where x 2 NC, and during x )�

G y, only rules of the form A ! a, where A 2 N and
a 2 T, are applied.

Proof. Let y 2 L.G/. Since there are no rules in P with symbols from T on their
left-hand sides, we can always rearrange all the applications of the rules occurring
in S )�

G y so the claim holds. ut

Claim 4.2.56. If S )h
G x, where x 2 NC, for some h � 0, then S )�

H x.

Proof. This claim is established by induction on h � 0.

Basis. For h D 0, this claim obviously holds.

Induction Hypothesis. Suppose that there exists n � 0 such that the claim holds for
all derivations of length h, where 0 � h � n.

Induction Step. Consider any derivation of the form

S )nC1
G w

where w 2 NC. Since n C 1 � 1, this derivation can be expressed as

S )n
G x )G w

for some x 2 NC. By the induction hypothesis, S )�
H x.

Next, we consider all possible forms of x )G w, covered by the following two
cases—(i) and (ii).

(i) Let A ! BC 2 P and x D x1Ax2, where A;B;C 2 N and x1; x2 2 N�.
Then, x1Ax2 )G x1BCx2. By (2), .A ! BC;;; NN [ ON/ 2 P0, and by (5),
.D ! D;;; NN [ ON/ 2 P0, for each D 2 N. Since alph.x1Ax2/ \ . NN [ ON/ D ;,

x1Ax2 )H x1BCx2

which completes the induction step for (i).
(ii) Let AB ! AC 2 P and x D x1ABx2, where A;B;C 2 N and x1; x2 2 N�.

Then, x1ABx2 )G x1BCx2. Let x1 D X1X2 	 	 	 Xk, where Xi 2 N, for all i,
1 � i � k, for some k � 1. By (4), .Xi ! NXi;;; NN [ ON/ 2 P0, for all i,
1 � i � k, and .A ! OA;;; NN [ ON/ 2 P0. By (5), .D ! D;;; NN [ ON/ 2 P0, for
all D 2 alph.Bx2/. Since alph.x1ABx2/\ . NN [ ON/ D ;,

X1X2 	 	 	 XkABx2 )H NX1 NX2 	 	 	 NXk OABx2
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By (3.1), .B ! C; f OAg;N [ . ON � f OAg// 2 P0. By (4), . NXi ! Xi;;;N [ ON/ 2 P0,
for all i, 1 � i � k, and . OA ! A;;;N [ ON/ 2 P0. By (3.2), .D ! D; f OA;Bg; ON�

f OAg/ 2 P0, for all D 2 alph.x2/. Since alph. NX1 NX2 	 	 	 NXk/ \ .N [ ON/ D ;,

NX1 NX2 	 	 	 NXk OABx2 )H X1X2 	 	 	 XkACx2

which completes the induction step for (ii).

Observe that cases (i) and (ii) cover all possible forms of x )G w. Thus, the
claim holds. ut

Define the homomorphism � from V 0� to V� as �. NA/ D �. OA/ D �.A/ D A, for
all A 2 N, and �.a/ D a, for all a 2 T.

Claim 4.2.57. If S )h
H x, where x 2 V 0C, for some h � 0, then S )�

G �.x/, and x
is of the form x1x2, where x1 2 T� and x2 2 N0�.

Proof. This claim is established by induction on h � 0.

Basis. For h D 0, this claim obviously holds.

Induction Hypothesis. Suppose that there exists n � 0 such that the claim holds for
all derivations of length h, where 0 � h � n.

Induction Step. Consider any derivation of the form

S )nC1
H w

Since n C 1 � 1, this derivation can be expressed as

S )n
H x )H w

for some x 2 V 0C. By the induction hypothesis, S )�
G �.x/, and x is of the form

x1x2, where x1 2 T� and x2 2 N0�.
Next, we make the following four observations regarding the possible forms

of x )H w.

(i) A rule from (1) can be applied only to the leftmost occurrence of a nonterminal
in x2. Therefore, w is always of the required form.

(ii) Rules from (1) and (2) can be applied only if alph.x/ \ . NN [ ON/ D ;.
Furthermore, every rule from (1) and (2) is constructed from some A ! a 2 P
and A ! BC 2 P, respectively, where A;B;C 2 N and a 2 T. If two or more
rules are applied at once, G can apply them sequentially.

(iii) When a rule from (3.1)—that is, .B ! C; f OAg;N [ . ON � f OAg//—is applied,
OA has to be right before the occurrence of B that is rewritten to C. Otherwise,
the symbols between OA and that occurrence of B cannot be rewritten by any
rule and, therefore, the derivation is blocked. Furthermore, H can apply only
a single such rule. Since every rule in (3.1) is constructed from some AB !

AC 2 P, where A;B;C 2 N, G applies AB ! AC to simulate this rewrite.
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(iv) If rules introduced in (3.2), (4), or (5) are applied, the induction step follows
directly from the induction hypothesis.

Based on these observations, we see that the claim holds. ut

Next, we establish L.H/ D L.G/. Let y 2 L.G/. Then, by Claim 4.2.55, in G,
there exists a derivation S )�

G x )�
G y such that x 2 NC and during x )�

G y, G
uses only rules of the form A ! a, where A 2 N and a 2 T. By Claim 4.2.56,
S )�

H x. Let x D X1X2 	 	 	 Xk and y D a1a2 	 	 	 ak, where Xi 2 N, ai 2 T, Xi !

ai 2 P, for all i, 1 � i � k, for some k � 1. By (1), .Xi ! ai;;;N0/ 2 P0,
for all i. By (5), .ai ! ai;;;N0/ 2 P0 and .Xi ! Xi;;; NN [ ON/ 2 P0, for all i.
Therefore,

X1X2 	 	 	 Xk )H a1X2 	 	 	 Xk

)H a1a2 	 	 	 Xk
:::

)H a1a2 	 	 	 ak

Consequently, y 2 L.G/ implies that y 2 L.H/, so L.G/ � L.H/.
Consider Claim 4.2.57 with x 2 TC. Then, x 2 L.H/ implies that �.x/ D x 2

L.G/, so L.H/ � L.G/. As L.G/ � L.H/ and L.H/ � L.G/, L.H/ D L.G/, so the
lemma holds. ut

Lemma 4.2.58. LRC - EPT0L � CS

Proof. Let G D .V , T, P1, P2, : : : , Pn, w/ be an LRC-EPT0L grammar, for some
n � 1. From G, we can construct a phrase-structure grammar, H D .N0;T;P0; S/,
such that L.G/ D L.H/ and if S )�

H x )�
H z, where x 2 .N0 [ T/C and z 2 TC,

then jxj � 4jzj. Consequently, by the workspace theorem (see Theorem 2.3.19),
L.H/ 2 CS. Since L.G/ D L.H/, L.G/ 2 CS, so the lemma holds. ut

Theorem 4.2.59. LRC - EPT0L D LRC - EP0L D CS

Proof. LRC - EP0L � LRC - EPT0L follows from the definition of an LRC-EP0L
grammar. By Lemma 4.2.54, we have CS � LRC - EP0L, which implies that CS �

LRC - EP0L � LRC - EPT0L. Since LRC - EPT0L � CS by Lemma 4.2.58,
LRC - EP0L � LRC - EPT0L � CS. Hence, LRC - EPT0L D LRC - EP0L D

CS, so the theorem holds. ut

Hence, LRC-EP0L grammars characterize CS. Next, we focus on LRC-ET0L
and LRC-E0L grammars.

Theorem 4.2.60. LRC - ET0L D LRC - E0L D RE

Proof. The inclusion LRC - E0L � LRC - ET0L follows from the definition of a
LRC-E0L grammar. The inclusion LRC - ET0L � RE follows from Turing-Church
thesis. The inclusion RE � LRC - E0L can be proved by analogy with the proof
of Lemma 4.2.54. Observe that by Theorem 3.1.4, G can additionally contain rules
of the form A ! ", where A 2 N. We can simulate these context-free rules in the
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same way we simulate A ! BC, where A;B;C 2 N—that is, for each A ! " 2 P,
we introduce .A ! ", ;, NN [ ON/ to P0. As LRC - E0L � LRC - ET0L � RE and
RE � LRC - E0L � LRC - ET0L, LRC - ET0L D LRC - E0L D RE, so the
theorem holds. ut

The following corollary compares the generative power of LRC-E0L and LRC-
ET0L grammars to the power of E0L and ET0L grammars.

Corollary 4.2.61.

CF � E0L D EP0L � ET0L D EPT0L
�

LRC - EPT0L D LRC - EP0L D CS
�

LRC - ET0L D LRC - E0L D RE

Proof. This corollary follows from Theorem 2.3.41 in Sect. 2.3.4 and from Theo-
rems 4.2.59 and 4.2.60 above. ut

Next, we show that the family of recursively enumerable languages is character-
ized even by LRC-E0L grammars with a limited number of nonterminals. Indeed,
we prove that every recursively enumerable language can be generated by a LRC-
E0L grammar with seven nonterminals.

Theorem 4.2.62. Let K be a recursively enumerable language. Then, there is an
LRC-E0L grammar, H D .V, T, P, w/, such that L.H/ D K and card.V � T/ D 7.

Proof. Let K be a recursively enumerable language. By Theorem 3.1.9, there is a
phrase-structure grammar in the Geffert normal form

G D
�
fS;A;B;Cg;T;P [ fABC ! "g; S

�

satisfying L.G/ D K. Next, we construct an LRC-E0L grammar H such that L.H/ D

L.G/. Set N D fS, A, B, Cg, V D N [ T, and N0 D N [ f NA, NB, #g (without any loss
of generality, we assume that V \ f NA, NB, #g D ;). Construct

H D
�
V 0;T;P0; S#

�

as follows. Initially, set V 0 D N0 [ T and P0 D ;. Perform (1) through (8), given
next.

(1) For each a 2 T,
add .a ! a;;;;/ to P0.

(2) For each X 2 N,
add .X ! X;;; f NA; NB; #g/ and .X ! X; f NA; NB;Cg; fS; #g/ to P0.

(3) Add .# ! #;;; f NA; NBg/, .# ! #; f NA; NB;Cg; fSgg/, and .# ! ";;;N0 �f#g/ to P0.
(4) For each S ! uSa 2 P, where u 2 fA;ABg� and a 2 T,

add .S ! uS#a;;; f NA; NB; #g/ to P0.



4.2 Totally Parallel Grammars 247

(5) For each S ! uSv 2 P, where u 2 fA;ABg� and v 2 fBC;Cg�,
add .S ! uSv;;; f NA; NB; #g/ to P0.

(6) For each S ! uv 2 P, where u 2 fA;ABg� and v 2 fBC;Cg�,
add .S ! uv;;; f NA; NB; #g/ to P0.

(7) Add .A ! NA;;; fS; NA; NB; #g/ and .B ! NB;;; fS; NA; NB; #g/ to P0.
(8) Add . NA ! ";;; fS; NA; NB;C; #g/, . NB ! "; f NAg; fS; NB;C; #g/, and .C ! "; f NA; NBg,

fS;C; #g/ to P0.

Before proving that L.H/ D L.G/, let us informally explain (1) through (8).
H simulates the derivations of G that satisfy the form described in Theorem 3.1.9.
Since H works in a parallel way, rules from (1) through (3) are used to rewrite
symbols that are not actively rewritten. The context-free rules in P are simulated by
rules from (4) through (6). The context-sensitive rule ABC ! " is simulated in a
two-step way. First, rules introduced in (7) rewrite A and B to NA and NB, respectively.
Then, rules from (8) erase NA, NB, and C; for example,

AABCBC#a# )H A NA NBCBC#a# )H ABC#a#

The role of # is twofold. First, it ensures that every sentential form of H is of the
form w1w2, where w1 2 .N0 � f#g/� and w2 2 .T [ f#g/�. Since left permitting
and left forbidding contexts cannot contain terminals, a mixture of symbols from T
and N in H could produce a terminal string out of L.G/. For example, observe that
AaBC )�

H a, but such a derivation does not exist in G. Second, if any of NA and
NB are present, ABC ! " has to be simulated. Therefore, it prevents derivations of
the form Aa)H NAa)Ha (notice that the start string of H is S#). Since H works in a
parallel way, if rules from (7) are used improperly, the derivation is blocked, so no
partial erasures are possible.

Observe that every sentential form of G and H contains at most one occurrence
of S. In every derivation step of H, only a single rule from P [ fABC ! "g can
be simulated at once. ABC ! " can be simulated only if there is no S. #s can be
eliminated by an application of rules from (7); however, only if no nonterminals
occur to the left of # in the current sentential form. Consequently, all #s are erased
at the end of every successful derivation. Based on these observations and on
Theorem 3.1.9, we see that every successful derivation in H is of the form

S# )�
H w1w2#a1#a2 	 	 	 #an#

)�
H #a1#a2 	 	 	 #an#

)�
H a1a2 	 	 	 an

where w1 2 fA;ABg�, w2 2 fBC;Cg�, and ai 2 T for all i D 1; : : : ; n, for some
n � 0.

To establish L.H/ D L.G/, we prove two claims. First, Claim 4.2.63 shows
how derivations of G are simulated by H. Then, Claim 4.2.64 demonstrates the
converse—that is, it shows how derivations of H are simulated by G.

Define the homomorphism ' from V� to V 0� as '.X/ D X for all X 2 N, and
'.a/ D #a for all a 2 T.
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Claim 4.2.63. If S )h
G x )�

G z, for some h � 0, where x 2 V� and z 2 T�, then
S# )�

H '.x/#.

Proof. This claim is established by induction on h � 0.

Basis. For h D 0, this claim obviously holds.

Induction Hypothesis. Suppose that there exists n � 0 such that the claim holds for
all derivations of length h, where 0 � h � n.

Induction Step. Consider any derivation of the form

S )nC1
G w )�

G z

where w 2 V� and z 2 T�. Since n C 1 � 1, this derivation can be expressed as

S )n
G x )G w )�

G z

for some x 2 VC. Without any loss of generality, we assume that x D x1x2x3x4,
where x1 2 fA, ABg�, x2 2 fS, "g, x3 2 fBC, Cg�, and x4 2 T� (see Theorem 3.1.9
and the form of rules in P). Next, we consider all possible forms of x )G w, covered
by the following four cases—(i) through (iv).

(i) Application of S ! uSa 2 P. Let x D x1Sx4, w D x1uSax4, and
S ! uSa 2 P, where u 2 fA, ABg� and a 2 T. Then, by the induction
hypothesis,

S# )�
H '.x1Sx4/#

By (4), rW .S ! uS#a;;; f NA; NB; #g/ 2 P0. Since '.x1Sx4/# D x1S'.x4/# and
alph.x1S/\ f NA, NB, #g D ;, by (1), (2), (3), and by r,

x1S'.x4/# )H x1uS#a'.x4/#

As '.x1uSax4/# D x1uS#a'.x4/#, the induction step is completed for (i).
(ii) Application of S ! uSv 2 P. Let x D x1Sx3x4, w D x1uSvx3x4, and S !

uSv 2 P, where u 2 fA, ABg� and v 2 fBC, Cg�. To complete the induction
step for (ii), proceed by analogy with (i), but use a rule from (5) instead of a
rule from (4).

(iii) Application of S ! uv 2 P. Let x D x1Sx3x4, w D x1uvx3x4, and S ! uv 2 P,
where u 2 fA, ABg� and v 2 fBC, Cg�. To complete the induction step for (iii),
proceed by analogy with (i), but use a rule from (6) instead of a rule from (4).

(iv) Application of ABC ! ". Let x D x0
1ABCx0

3x4, w D x0
1x

0
3x4, where x1x2x3 D

x0
1ABCx0

3, so x )G w by ABC ! ". Then, by the induction hypothesis,

S# )�
H '.x

0
1ABCx0

3x4/#
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Since '.x0
1ABCx0

3x4/# D x0
1ABCx0

3'.x4/# and alph.x0
1ABCx0

3/\ f NA, NB, #g D ;,

x0
1ABCx0

3'.x4/# )H x0
1
NA NBCx0

3'.x4/#

by rules from (1), (2), (3), and (7). Since alph.x0
1/ \ fS, NA, NB, C, #g D ;,

f NAg � alph.x0
1
NA/, alph.x0

1
NA/ \ fS, NB, C, #g D ;, f NA, NBg � alph.x0

1
NA NB/, and fS,

C, #g \ alph.x0
1
NA NB/ D ;,

x0
1
NA NBCx0

3'.x4/# )H x0
1x

0
3'.x4/#

by rules from (1), (2), (3), and (8). As '.x0
1x

0
3x4/# D x0

1x
0
3'.x4/#, the induction

step is completed for (iv).

Observe that cases (i) through (iv) cover all possible forms of x )G w, so the
claim holds. ut

Define the homomorphism � from V 0� to V� as �.X/ D X for all X 2 N, �.a/ D a
for all a 2 T, and �. NA/ D A, �. NB/ D B, �.#/ D ".

Claim 4.2.64. If S# )h
H x )�

H z, for some h � 0, where x 2 V 0� and z 2 T�, then
S )�

G �.x/.

Proof. This claim is established by induction on h � 0.

Basis. For h D 0, this claim obviously holds.

Induction Hypothesis. Suppose that there exists n � 0 such that the claim holds for
all derivations of length h, where 0 � h � n.

Induction Step. Consider any derivation of the form

S# )nC1
H w )�

H z

where w 2 V 0� and z 2 T�. Since n C 1 � 1, this derivation can be expressed as

S# )n
H x )H w )�

H z

for some x 2 V 0C. By the induction hypothesis, S )�
G �.x/. Next, we consider all

possible forms of x )H w, covered by the following five cases—(i) through (v).

(i) Let x D x1Sx2 and w D x1uS#ax2, where x1; x2;2 V 0�, such that x1Sx2 )H

x1uS#ax2 by .S ! uS#a, ;, f NA, NB, #g/—introduced in (4) from S ! uSa 2 P,
where u 2 fA;ABg�, a 2 T—and by the rules introduced in (1), (2), and (3).
Since �.x1Sx2/ D �.x1/S�.x2/,

�.x1/S�.x2/ )G �.x1/uSa�.x2/

As �.x1/uSa�.x2/ D �.x1uS#ax2/, the induction step is completed for (i).
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(ii) Let x D x1Sx2 and w D x1uSvx2, where x1; x2;2 V 0�, such that x1Sx2 )H

x1uSvx2 by .S ! uSv, ;, f NA, NB, #g/—introduced in (5) from S ! uSv 2 P,
where u 2 fA;ABg�, v 2 fBC, Cg�—and by the rules introduced in (1), (2),
and (3). Proceed by analogy with (i).

(iii) Let x D x1Sx2 and w D x1uvx2, where x1; x2;2 V 0�, such that x1Sx2 )H

x1uvx2 by .S ! uv, ;, f NA, NB, #g/—introduced in (6) from S ! uv 2 P, where
u 2 fA;ABg�, v 2 fBC, Cg�—and by the rules introduced in (1), (2), and (3).
Proceed by analogy with (i).

(iv) Let x D x1 NA NBCx2 and w D x0
1x2, where x1, x2 2 V 0� and �.x0

1/ D x1, such
that x1 NA NBCx2 )H x0

1x2 by rules introduced in (1), (2), (3), (7), and (8). Since
�.x1 NA NBCx2/ D �.x1/ABC�.x2/,

�.x1/ABC�.x2/ )G �.x1/�.x2/

by ABC ! ". As �.x1/�.x2/ D �.x0
1x2/, the induction step is completed

for (iv).
(v) Let x )H w only by rules from (1), (2), (3), and from (7). As �.x/ D �.w/, the

induction step is completed for (v).

Observe that cases (i) through (v) cover all possible forms of x )H w, so the
claim holds. ut

Next, we prove that L.H/ D L.G/. Consider Claim 4.2.63 with x 2 T�. Then,
S )�

G x implies that S# )�
H '.x/#. By (3), .# ! ";;;N0 � f#g/ 2 P0, and by (1),

.a ! a;;;;/ 2 P0 for all a 2 T. Since alph.'.x/#/ \ .N0 � f#g/ D ;, '.x/# )H

x. Hence, L.G/ � L.H/. Consider Claim 4.2.64 with x 2 T�. Then, S# )�
H x

implies that S )�
G x. Hence, L.H/ � L.G/. Since card.N0/ D 7, the theorem

holds. ut

We turn our attention to LRC-E0L grammars containing only forbidding condi-
tions.

Lemma 4.2.65. EPT0L � LF - EP0L

Proof. Let G D .V , T, P1, P2, : : : , Pt, w/ be an EPT0L grammar, for some t � 1.
Set

R D
˚
hX; ii j X 2 V; 1 � i � t

�

and

Fi D
˚
hX; ji 2 R j j ¤ i

�
for i D 1; 2; : : : ; t

Without any loss of generality, we assume that V \ R D ;. Define the LF-EP0L
grammar

H D
�
V 0;T;P0;w

�
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where V 0 D V [ R, and P0 is constructed by performing the following two steps:

(1) for each X 2 V and each i 2 f1, 2, : : : , tg, add .X ! hX, ii, ;, ;/ to P0;
(2) for each X ! y 2 Pi, where 1 � i � t, add .hX, ii ! y, ;, Fi/ to P0.

To establish L.H/ D L.G/, we prove three claims. Claim 4.2.66 points out that
the every sentential form in H is formed either by symbols from R or from V ,
depending on whether the length of the derivation is even or odd. Claim 4.2.67
shows how derivations of G are simulated by H. Finally, Claim 4.2.68 demonstrates
the converse—that is, it shows how derivations of H are simulated by G.

Claim 4.2.66. For every derivation w )n
H x, where n � 0,

(i) if n D 2k C 1, for some k � 0, then x 2 RC;
(ii) if n D 2k, for some k � 0, then x 2 VC.

Proof. The claim follows from the construction of P0. Indeed, every rule in P0 is
either of the form .X ! hX, ii, ;, ;/ or .hX, ii ! y, ;, Fi/, where X 2 V , 1 � i � t,
and y 2 VC. Since w 2 VC, w )2kC1

H x implies that x 2 RC, and w )2k
H x implies

that x 2 VC. Thus, the claim holds. ut

Claim 4.2.67. If w )h
G x, where x 2 VC, for some h � 0, then w )�

H x.

Proof. This claim is established by induction on h � 0.

Basis. For h D 0, this claim obviously holds.

Induction Hypothesis. Suppose that there exists n � 0 such that the claim holds for
all derivations of length h, where 0 � h � n.

Induction Step. Consider any derivation of the form

w )nC1
G y

where y 2 VC. Since n C 1 � 1, this derivation can be expressed as

w )n
G x )G y

for some x 2 VC. Let x D X1X2 	 	 	 Xh and y D y1y2 	 	 	 yh, where h D jxj. As
x )G y, Xi ! yi 2 Pm, for all i, 1 � i � h, for some m � t.

By the induction hypothesis, w )�
H x. By (1), .Xi ! hXi, mi, ;, ;/ 2 P0, for all

i, 1 � i � h. Therefore,

X1X2 	 	 	 Xh )H hX1;mihX2;mi 	 	 	 hXh;mi

By (2), .hXi, mi ! yi, ;, Fm/ 2 P0, for all i, 1 � i � h. Since alph.hX1, mihX2,
mi 	 	 	 hXh, mi/\ Fm D ;,

hX1;mihX2;mi 	 	 	 hXh;mi )H y1y2 	 	 	 yh

which proves the induction step. ut
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Define the homomorphism  from V 0� to V� as  .X/ D  .hX, ii/ D X, for all
X 2 V and all i, 1 � i � t.

Claim 4.2.68. If w )h
H x, where x 2 V 0C, for some h � 0, then w )�

G  .x/.

Proof. This claim is established by induction on h � 0.

Basis. For h D 0, this claim obviously holds.

Induction Hypothesis. Suppose that there exists n � 0 such that the claim holds for
all derivations of length h, where 0 � h � n.

Induction Step. Consider any derivation of the form

w )nC1
H y

where y 2 V 0C. Since n C 1 � 1, this derivation can be expressed as

w )n
H x )H y

for some x 2 V 0C. By the induction hypothesis, w )�
G  .x/. By Claim 4.2.66, there

exist the following two cases—(i) and (ii).

(i) Let n D 2k C 1, for some k � 0. Then, x 2 RC, so let x D hX1, m1ihX2,
m2i 	 	 	 hXh, mhi, where h D jxj, Xi 2 V , for all i, 1 � i � h, and mj 2 f1, 2, : : : ,
tg, for all j, 1 � j � h. The only possible derivation in H is

hX1;m1ihX2;m2i 	 	 	 hXh;mhi )H y1y2 	 	 	 yh

by rules introduced in (2), where yi 2 V�, for all i, 1 � i � h. Observe that
m1 D m2 D 	 	 	 D mh; otherwise, hXh, mhi cannot be rewritten (see the form of
left forbidding contexts of the rules introduced to P0 in (2)). By (2), Xj ! yj 2

Pmh , for all j, 1 � j � h. Since  .x/ D X1X2 	 	 	 Xh,

X1X2 	 	 	 Xh )G y1y2 	 	 	 yh

which proves the induction step for (i).
(ii) Let n D 2k, for some k � 0. Then, x 2 VC, so let x D X1X2 	 	 	 Xh, where

h D jxj. The only possible derivation in H is

X1X2 	 	 	 Xh )H hX1;m1ihX2;m2i 	 	 	 hXh;mhi

by rules introduced in (1), where mj 2 f1, 2, : : : , tg, for all j, 1 � j � h. Since
 .y/ D  .x/, where y D hX1, m1ihX2, m2i 	 	 	 hXh, mhi, the induction step
for (ii) follows directly from the induction hypothesis.

Hence, the claim holds. ut
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Next, we establish L.H/ D L.G/. Consider Claim 4.2.67 with x 2 TC. Then,
w )�

G x implies that w )�
H x, so L.G/ � L.H/. Consider Claim 4.2.68 with

x 2 TC. Then, w )�
H x implies that w )�

G  .x/ D x, so L.H/ � L.G/. Hence,
L.H/ D L.G/, so the lemma holds. ut

Theorem 4.2.69.

E0L D EP0L � ET0L D EPT0L � LF - EP0L � LF - E0L

Proof. The inclusions E0L D EP0L, ET0L D EPT0L, and E0L � ET0L follow
from Theorem 2.3.41. From Lemma 4.2.65, we have EPT0L � LF - EP0L. The
inclusion LF - EP0L � LF - E0L follows directly from the definition of an LF-E0L
grammar. ut

Next, we briefly discuss LRC-E0L grammars containing only permitting condi-
tions.

Theorem 4.2.70. E0L D EP0L � LP - EP0L � LP - E0L

Proof. The identity E0L D EP0L follows from Theorem 2.3.41. The inclusions
EP0L � LP - EP0L � LP - E0L follow directly from the definition of an LP-
E0L grammar. The properness of the inclusion EP0L � LP - EP0L follows from
Example 4.2.53. ut

To conclude this section, we compare LRC-ET0L grammars and their special
variants to a variety of conditional ET0L grammars with respect to their generative
power. Then, we formulate some open problem areas.

Consider random context ET0L grammars (abbreviated RC-ET0L grammars),
see [RS78, Sol76] and Section 8 in [DP89]. These grammars have been recently
discussed in connection to various grammar systems (see [BCVHV05, BCVHV07,
BH00, BH08, CVDV08, CVPS95, Das07, FHF01]) and membrane systems (P sys-
tems, see [Sos03]). Recall that as a generalization of LRC-ET0L grammars, they
check the occurrence of symbols in the entire sequential form. Notice, however, that
contrary to our definition of LRC-ET0L grammars, in [RS78, Sol76] and in other
works, RC-ET0L grammars are defined so that they have permitting and forbidding
conditions attached to whole sets of rules rather than to each single rule. Since we
also study LRC-E0L grammars, which contain just a single set of rules, attachment
to rules is more appropriate in our case, just like in terms of other types of regulated
ET0L grammars discussed in this section.

The language families generated by RC-ET0L grammars and propagating RC-
ET0L grammars are denoted by RC - ET0L and RC - EPT0L, respectively (for the
definitions of these families, see [Das07]).

Theorem 4.2.71 (See [BH00]).

RC - EPT0L � CS and RC - ET0L � RE
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Let us point out that it is not known whether the inclusion RC - ET0L � RE is,
in fact, proper (see [BCVHV05, Das07, Sos03]).

Corollary 4.2.72.

RC - EPT0L � LRC - EP0L and RC - ET0L � LRC - E0L

Proof. This corollary follows from Theorems 4.2.59, 4.2.60, and 4.2.71. ut

Corollary 4.2.72 is of some interest because LRC-E0L grammars (i) have only a
single set of rules and (ii) they check only prefixes of sentential forms.

A generalization of LF-ET0L grammars, called forbidding ET0L grammars
(abbreviated F-ET0L grammars), is introduced and discussed in Sect. 4.2.2. Recall
that as opposed to LF-ET0L grammars, these grammars check the absence of for-
bidding symbols in the entire sentential form. Furthermore, recall that F - ET0L.1/
denotes the family of languages generated by F-ET0L grammars whose forbidding
strings are of length one.

Corollary 4.2.73. F - ET0L.1/ � LF - EP0L

Proof. This corollary follows from Lemma 4.2.65 and from Theorem 4.2.22, which
says that F - ET0L.1/ D ET0L. ut

This result is also of some interest because LF-EP0L grammars (i) have only a
single set of rules, (ii) have no rules of the form .A ! ";;;W/, and (iii) they check
only prefixes of sentential forms.

Furthermore, consider conditional ET0L grammars (C-ET0L grammars for short)
and simple semi-conditional ET0L grammars (SSC-ET0L grammars for short)
from Sects. 4.2.1 and 4.2.3, respectively. Recall that these grammars differ from
RC-ET0L grammars by the form of their permitting and forbidding sets. In C-
ET0L grammars, these sets contain strings rather than single symbols. SSC-ET0L
grammars are C-ET0L grammars in which every rule can either forbid or permit the
occurrence of a single string.

Recall that C - ET0L and C - EPT0L denote the language families generated by
C-ET0L grammars and propagating C-ET0L grammars, respectively. The language
families generated by SSC-ET0L grammars and propagating SSC-ET0L grammars
are denoted by SSC - ET0L and SSC - EPT0L, respectively.

Corollary 4.2.74.

C - EPT0L D SSC - EPT0L D LRC - EP0L
�

C - ET0L D SSC - ET0L D LRC - E0L

Proof. This corollary follows from Theorems 4.2.59 and 4.2.60 and from
Theorems 4.2.9, 4.2.11, 4.2.47, and 4.2.44, which say that C - EPT0L D

SSC - EPT0L D CS and C - ET0L D SSC - ET0L D RE. ut
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We close this section by formulating several open problem areas suggested as
topics of future investigation related to the present study.

Open Problem 4.2.75. By Theorem 4.2.69, ET0L � LF - E0L. Is this inclusion,
in fact, an identity?

Open Problem 4.2.76. ET0L and EPT0L grammars have the same generative
power (see Theorem 2.3.41). Are LF-E0L and LF-EP0L grammars equally pow-
erful? Are LP-E0L and LP-EP0L grammars equally powerful?

Open Problem 4.2.77. What is the relation between the language families gener-
ated by ET0L grammars and by LP-E0L grammars?

Open Problem 4.2.78. Establish the generative power of LP-ET0L and LF-ET0L
grammars.

Open Problem 4.2.79. Theorem 4.2.62 has proved that every recursively enumer-
able language can be generated by a LRC-E0L grammar with seven nonterminals.
Can this result be improved?

Open Problem 4.2.80. Recall that LRC-E0L grammars without erasing rules char-
acterize the family of context-sensitive languages (see Theorem 4.2.59). Can we
establish this characterization based upon these grammars with a limited number of
nonterminals?



Chapter 5
Jumping Grammars and Discontinuous
Computation

Indisputably, processing information in a largely discontinuous way has become
a quite common computational phenomenon [BYRN11, BCC10, MRS08]. Indeed,
consider a process p that deals with information i. During a single computational
step, p can read a piece of information x in i, erase it, generate a new piece of
information y, and insert y into i possibly far away from the original occurrence
of x, which was erased. Therefore, intuitively speaking, during its computation, p
keeps jumping across i as a whole. To explore computation like this systematically
and rigorously, the language theory should provide computer science with language-
generating models to explore various information processors mathematically, so it
should do so for the purpose sketched above, too.

However, the classical versions of grammars (see Sect. 2.3) work on words
strictly continuously, and as such, they can hardly serve as appropriate models of
this kind. Therefore, a proper formalization of processors that work in the way
described above necessities an adaptation of classical grammars so they work
on words discontinuously. At the same time, any adaptation of this kind should
conceptually maintain the original structure of these models as much as possible
so computer science can quite naturally base its investigation upon these newly
adapted grammatical models by analogy with the standard approach based upon
their classical versions. Simply put, these new models should work on words in
a discontinuous way while keeping their structural conceptualization unchanged.
This chapter introduces and studies grammars that work in this discontinuous way.
Indeed, the grammars discussed in this section are conceptualized just like classical
grammars except that during the applications of their rules, they can jump over
symbols in either direction within the rewritten strings, and in this jumping way,
they generate their languages.

The present chapter consists of two sections. Section 5.1 studies the jumping
generation of language by classical phrase-structure grammars, which work in a
sequential way (see Sect. 2.3). Then, Sect. 5.2 discusses the same topic in terms of
scattered context grammars, which work in a parallel way (see Sect. 4.1).
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5.1 Jumping Grammars: Sequential Versions

Consider a classical phrase-structure grammar G (see Sect. 2.3.1). Recall that
G represents a language-generating rewriting system based upon an alphabet of
symbols and a finite set of rules. The alphabet of symbols is divided into two disjoint
subalphabets—the alphabet of terminal symbols and the alphabet of nonterminal
symbols. Each rule is of the form x ! y, where x and y are strings over the alphabet
of G, where x and y are referred to as the left-hand side and the right-hand side of
x ! y. G applies x ! y strictly sequentially so it rewrites a string z according to
x ! y so it

(1) selects an occurrence of x in z,
(2) erases it, and
(3) inserts y precisely at the position of this erasure.

More formally, let z D uxv, where u and v are strings. By using x ! y, G rewrites
uxv as uyv. Starting from a special start nonterminal symbol, G repeatedly rewrites
strings according to its rules in this sequential way until it obtains a sentence—that
is, a string that solely consists of terminal symbols; the set of all sentences represents
the language generated by the grammar.

The notion of a jumping grammar, discussed in this chapter, is conceptualized
just like that of a classical grammar; however, it rewrites strings in a jumping way.
Consider G, described above, as a grammar that works in a jumping way. Let z and
x ! y have the same meaning as above. G rewrites a string z according to a rule
x ! y in such a way that it selects an occurrence of x in z, erases it, and inserts y
anywhere in the rewritten string, so this insertion may occur at a different position
than the erasure of x. In other words, G rewrites a string z according to x ! y so it
performs (1) and (2) as described above, but during (3), G can jump over a portion of
the rewritten string in either direction and insert y there. Formally, by using x ! y,
G rewrites ucv as udv, where u; v;w; c; d are strings such that either (i) c D xw and
d D wy or (ii) c D wx and d D yw.

The present section narrows its investigation to the study of the generative power
of jumping grammars. First, it compares the generative power of jumping grammars
with the accepting power of jumping finite automata. More specifically, it demon-
strates that regular jumping grammars are as powerful as jumping finite automata.
Regarding grammars, the general versions of jumping grammars are as powerful as
classical phrase-structure grammars. As there exist many important special versions
of these classical grammars, we discuss their jumping counterparts in the present
section as well. We study the jumping versions of context-free grammars and their
special cases, including regular grammars, right-linear grammars, linear grammars,
and context-free grammars of finite index (see Sect. 2.3.1). Surprisingly, all of
them have a different power than their classical counterparts. In the conclusion
of this section, the section formulates several open problems and suggests future
investigation areas.
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Next, we define four modes of derivation relations, three of which represent
jumping derivation steps. For the sake of convenience, we also recall some
terminology, such as the notion of a phrase-structure grammar, introduced earlier
in this book (see Sect. 2.3.1).

Definition 5.1.1. Let G D .V;T;P; S/ be a phrase-structure grammar. We intro-
duce four modes of derivation steps as derivation relations over V�—namely, s),

lj), rj), and j).
Let u; v 2 V�. We define the four derivation relations as follows

(i) u s) v in G iff there exist x ! y 2 P and w; z 2 V� such that u D wxz and
v D wyz;

(ii) u lj) v in G iff there exist x ! y 2 P and w; t; z 2 V� such that u D wtxz and
v D wytz;

(iii) u rj) v in G iff there exist x ! y 2 P and w; t; z 2 V� such that u D wxtz and
v D wtyz;

(iv) u j) v in G iff u lj) v or u rj) v in G. ut

Let h) be one of the four derivation relations (i) through (iv) over V�; in other
words, h equals s, lj, rj, or j. As usual, for every n � 0, the nth power of h) is
denoted by h)n. The transitive-reflexive closure and the transitive closure of h)

are denoted by h)� and h)C, respectively.

Example 5.1.2. Consider the following RG

G D .fA;B;C; a; b; cg; ˙ D fa; b; cg;P;A/

where P D fA ! aB, B ! bC, C ! cA, C ! cg. Observe that

L.G; s)/ D fabcgfabcg�, but

L.G; j)/ D fw 2 ˙� j #fag.w/ D #fbg.w/ D #fcg.w/g

Notice that although L.G; s)/ is regular, L.G; j)/ 2 CS is a well-known non-
context-free language. ut

Example 5.1.3. Consider the following CSG G D .fS, A, B, a, bg, fa, bg, P, S/
containing the following rules

S ! aABb

S ! ab

AB ! AABB

aA ! aa

Bb ! bb

Trivially, L.G; s)/ D fanbn j n � 1g. Using j), we can make the following
derivation sequence (the rewritten substring is underlined):
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S j) aABb j) aAABBb j) aAABbb j) aaABbb j) aBbbaa j) abbbaa

Notice that L.G; s)/ is context-free, but we cannot generate this language by
any CFG, CSG or even MONG in jumping derivation mode. ut

Lemma 5.1.4. fag�fbg� … L .�MONG; j)/.

Proof. Assume that there exists a MONG G D .V;T;P; S/ such that L.G; j)/ D

fag�fbg�. Let pW x ! y 2 P be the last applied rule during a derivation S j)
C w,

where w 2 L.G; j)/; that is, S j)
� uxv j) w Œp�, where u; v;w 2 T� and

y 2 fagC [ fbgC [ fagCfbgC. In addition, assume that the sentential form uxv is
longer than x such that uv 2 fagCfbgC.

(i) If y contains at least one symbol b, the last jumping derivation step
can place y at the beginning of the sentence and create a string from
fa; bg�fbgfa; bg�fagfa; bg� that does not belong to fag�fbg�.

(ii) By analogy, if y contains at least one symbol a, the last jumping derivation step
can place y at the end of the sentence and therefore, place at least one a behind
some bs.

This is a contradiction, so there is no MONG that generates regular language
fag�fbg� using j). ut

We re-open a discussion related to Lemma 5.1.4 at the end of this section.

Corollary 5.1.5. The following pairs of language families are incomparable, but
not disjoint:

(i) REG and JMON;
(ii) CF and JMON;

(iii) REG and JREG;
(iv) CF and JREG.

Proof. Since REG � CF, it is sufficient to prove that REG � JMON, JREG � CF,
and REG \ JREG are non-empty. By Lemma 5.1.4, fag�fbg� 2 REG�JMON. In
Example 5.1.2, we define a jumping RG that generates a non-context-free language
that belongs to JREG � CF. Observe that regular language fag� belongs to JREG,
so REG \ JREG is non-empty. ut

As even some very simple regular language such as fagCfbgC cannot be
generated by jumping derivation in CSGs or even MONGs, we pinpoint the
following open problem and state a theorem comparing these families with context-
sensitive languages.

Open Problem 5.1.6. Is JCS � JMON proper?

Theorem 5.1.7. JMON � CS.

Proof. To see that JMON � CS, we demonstrate how to transform any jumping
MONG, G D .VG;T;PG; S/, to a MONG, H D .VH ;T;PH ; S/, such that L.G;

j)/ D L.H; s)/. Set VH D NH [ T and NH D NG [ f NX j X 2 VGg. Let �
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be the homomorphism from V�
G to V�

H defined by �.X/ D NX for all X 2 VG. Set
PH D P1 [ P2, where

P1 D
[

˛!ˇ2PG

f˛ ! �.ˇ/, �.ˇ/ ! ˇg

and

P2 D
[

˛!ˇ2PG

fX�.ˇ/ ! �.ˇ/X, �.ˇ/X ! X�.ˇ/ j X 2 VGg

As obvious, L.G; j)/ D L.H; s)/. Clearly, fag�fbg� 2 CS. Thus, by
Lemma 5.1.4, CS � JMON ¤ ;, so this theorem holds. ut

Example 5.1.8. Consider the language of all well-written arithmetic expressions
with parentheses ., / and Œ, �. Eliminate everything but the parentheses in this
language to obtain the language L.G; s)/ defined by the CFG G D .V D

fE; .; /; Œ; �g;T D f.; /; Œ; �g; fE ! .E/E, E ! ŒE�E, E ! "g, E/. G is not of a
finite index (see Example 10.1 on page 210 in [Sal73]). Consider the jumping RLG
H D .V , T, PH, E/, where PH contains

E ! ./E

E ! Œ�E

E ! "

Since H is a RLG, there is at most one occurrence of E in any sentential form
derived from E in H, so H is of index 1. Next, we sketch a proof that L.G;

s)/ D L.H; j)/. As obvious, f"; ./; Œ�g � L.G; s)/ \ L.H; j)/. Consider
˛Eˇ s)˛.E/Eˇ ŒE ! .E/E� s)

� ˛.�/ıˇ in G with � ¤ ". H can simulate this
derivation as follows

˛Eˇ j)˛./Eˇ j)
� ˛./ı0Eı00ˇ j)˛.xE/ıˇ j)

� ˛.�/ıˇ

where ı D ı0ı00, x 2 f./; Œ�g, and ˛; ˇ; �; ı 2 V�. For � D ", we modify the previous
jumping derivation so we make a jumping derivation step from ˛./ı0Eı00ˇ to ˛./ıˇ
by E ! " in H. We deal with E ! ŒE�E analogically, so L.G; s)/ � L.H; j)/.
Since L.G; s)/ contains all proper strings with the three types of parentheses, to
prove L.H; j)/ � L.G; s)/, we have to show that H cannot generate an improper
string of parentheses. As each non-erasing rule of H inserts both left and right
parenthesis in the sentential form at once, the numbers of parentheses are always
well-balanced. In addition, in H we cannot generate an improper mixture of two
kinds of parentheses, such as .Œ/�, or an improper parenthesis order, such as /., so
L.G; s)/ D L.H; j)/. ut
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5.1.1 Results

Relations Between the Language Families Resulting from Various Jumping
Grammars

We establish several relations between the language families generated by jumping
versions of grammars defined earlier in this section.

Theorem 5.1.9. JRLIN D JLIN D JCFfin.

Proof. Since JRLIN � JLIN � JCFfin follows from the definitions, it suffices to
proof that JCFfin � JRLIN.

Construction. Let V and T be an alphabet and an alphabet of terminals, respectively.
Set N D V � T. Let �W V ! N [ f"g be the homomorphism such that �.X/ D X if
X 2 N; otherwise �.X/ D ". Let � W V ! T [ f"g be the homomorphism such that
�.X/ D X if X 2 T; otherwise �.X/ D ". As usual, extend � and � to strings of
symbols.

For every CFG G D .VG, T, PG, S/ and index k � 1, we construct a RLG
H D .VH, T, PH, hSi/ such that L.G; j)k/ D L.H; j)/. Set

VH D fhxi j x 2

k[

iD1

.VG � T/ig [ T

and set

PH D fh˛Aˇi ! �.x/h�i j A ! x 2 PG, ˛; ˇ 2 N�, � D ˛ˇ�.x/, 1 � j� j � kg

[ fhAi ! x j A ! x 2 PG, x 2 T�g

Basic Idea. CFG G working with index k means that every sentential form contains
at most k nonterminal symbols. In jumping derivation mode, the position of
nonterminal symbol does not matter for context-free rewriting. Together with the
finiteness of N, we can store the list of nonterminals using just one nonterminal
from constructed VH � T in the simulating RLG.

For every jumping derivation step �Aı j)k �
0xı0 by A ! x in G, there is a

simulating jumping derivation step �. N�/h�.�Aı/i�. Nı/ j) �. N� 0/�.x/h�.�ıx/i�. Nı0/

in H, where �ı D � 0ı0 D N� Nı D N� 0 Nı0. The last simulating step of jumping application
of A ! w with w 2 T� replaces the only nonterminal of the form hAi by w that can
be placed anywhere in the string. ut

Consider the finite index restriction in the family JCFfin in Theorem 5.1.9.
Dropping this restriction gives rise to the question, whether the inclusion JCFfin �

JCF is proper or not. The next theorem was recently proved.
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Theorem 5.1.10 (See Theorem 3.10 in [Mad16]).

JCFfin � JCF:

Indeed, from a broader perspective, an investigation of finite-index-based restric-
tions placed upon various jumping grammars and their effect on the resulting
generative power represents a challenging open problem area as illustrated by
Example 5.1.8.

Theorem 5.1.11. JCF�" D JCF.

Proof. It is straightforward to establish this theorem by analogy with the same
statement reformulated in terms of ordinary CFGs, which work based on s) (see
Theorem 5.1.3.2.4 on page 328 in [Med00a]). ut

Lemma 5.1.12. RE � JRE.

Proof. Construction. For every PSG G D .VG;T;PG; SG/, we construct another
PSG H D .VH D VG [ fSH; $; #; b; cg;T;PH; SH/ such that L.G; s)/ D L.H;

j)/. SH; $; #; b, and c are new nonterminal symbols in H. Set

PH D fSH ! #SG, # ! b$, b c ! #, # ! "g

[f$˛ !cˇ j ˛ ! ˇ 2 PGg

Basic Idea. Nonterminal # has at most one occurrence in the sentential form. # is
generated by the initial rule SH ! #SG. This symbol participates in the beginning
and end of every simulation of the application of a rule from PG. Each simulation
consists of several jumping derivation steps:

(i) # is expanded to a string of two nonterminals—marker of a position (b), where
the rule is applied in the sentential form, and auxiliary symbol ($) presented as
a left context symbol in the left-hand side of every simulated rule from PG.

(ii) For each x ! y from PG, $x !cy is applied in H. To be able to finish the
simulation properly, the right-hand side (cy) of applied rule has to be placed
right next to the marker symbol b; otherwise, we cannot generate a sentence.

(iii) The end of the simulation (rule b c ! #) checks that the jumping derivation
was applied like in terms of s).

(iv) In the end, # is removed to finish the generation of a string of terminal symbols.

Claim 5.1.13. Let y be a sentential form of H; that is, SH j)
� y. For every X 2

f#; $; b; c; SHg, #fXg.y/ � 1.

Proof. The claim follows from the rules in PH (see the construction in the proof of
Lemma 5.1.12). Note that #f#;$;b;c;SHg.y/ � 2 and in addition, if symbol # occurs in
y then #f$;b;c;SHg.y/ D 0. ut

Define the homomorphism hW V�
H ! V�

G as h.X/ D X for all X 2 VG, h.SH/ D SG,
and h.Y/ D " for all Y 2 f$; #; b; cg.
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Claim 5.1.14. If SG s)
m w in G, where w 2 T� and m � 0, then SH j)

� w in H.

Proof. First, we prove by induction on m � 0 that for every SG s)
m x in G with

x 2 V�
G, there is SH j)

� x0 in H such that h.x0/ D x.

Basis. For SG s)
0 SG in G, there is SH j) #SG in H.

Induction Hypothesis. Suppose there exists k � 0 such that SG s)
m x in G implies

that SH j)
� x0 in H, where h.x0/ D x, for all 0 � m � k.

Induction Step. Assume that SG s)
k y s) x in G. By the induction hypothesis,

SH j)
� y0 in H with h.y0/ D y.

The derivation step y s) x in G is simulated by an application of three jumping
rules from PH in H to get y0

j)
3 x0 with h.x0/ D x as follows.

y0 D u0#v0
j) u00b$˛v00 Œ# ! b$�

j) u00b cˇv00 Œ$ !c�

j) u000#v000 Œb cˇ ! #� D x0

where u0v0 D u00˛v00 and u00ˇv00 D u000v000.
In case x 2 T�, there is one additional jumping derivation step during the

simulation that erases the only occurrence of #-symbol (see Claim 5.1.13) by rule
# ! ".

Note that h.x/ for x 2 T� is the identity. Therefore, in case x 2 T� the induction
proves the claim. ut

Claim 5.1.15. If SH j)
m w in H, for some m � 0, where w 2 T�, then SG s)

� w
in G.

Proof. To prove this claim, first, we prove by induction on m � 0 that for every
SH j)

m x in H with x 2 V�
H such that there exists a jumping derivation x j)

�w,
where w 2 T�, then SG s)

� x0 in G such that h.x/ D x0.

Basis. For m D 0, when we have SH j)
0 SH j)

� w in H, then there is SG s)
0 SG

in G such that h.SH/ D SG. Furthermore, for m D 1, we have SH j)
1 #SG j)

� w in
H, then again there is SG s)

0 SG in G such that h.#SG/ D SG, so the basis holds.

Induction Hypothesis. Suppose there exists k � 1 such that SH j)
m x j)

� w in H
implies that SG s)

� x0 in G, where h.x/ D x0, for all 1 � m � k.

Induction Step. Assume that SH j)
k y j) x j)

� w in H with w 2 T�. By the
induction hypothesis, SG s)

� y0 in G such that h.y/ D y0. Let u; v 2 V�
G and Nu; Nv 2

V�
H. Let us examine the following possibilities of y j) x in H:

(i) y D u#v j) Nub$ Nv D x in H such that uv D Nu Nv: Simply, y0 D uv s)
0 uv in G

and by Claim 5.1.13 h.Nub$ Nv/ D h.Nu Nv/ D h.uv/ D uv.
(ii) ub$˛v j) Nucˇ Nv in H by rule $˛ !cˇ such that uv D Nu Nv: In fact, to be able

to rewrite b, the symbol b needs c as its right neighbor, so u D Nu and v D Nv in
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this jumping derivation step; otherwise the jumping derivation is prevent from
generating a string of terminals. According to rule ˛ ! ˇ, u˛v s) uˇv in G
and h.Nucˇ Nv/ D uˇv.

(iii) ub cv j) Nu# Nv in H such that uv D Nu Nv: In G, uv s)
0 uv and h.Nu# Nv/ D h.Nu Nv/ D

h.uv/ D uv.
(iv) u#v j) uv in H by # ! ": Trivially, uv s)

0 uv in G and h.uv/ D uv.

If x 2 T�, then the induction proves the claim. ut

This closes the proof of Lemma 5.1.12. ut

Theorem 5.1.16. JRE D RE.

Proof. By Turing-Church thesis, JRE � RE. The opposite inclusion holds by
Lemma 5.1.12 that is proved in details by Claims 5.1.14 and 5.1.15. ut

Properties of Jumping Derivations

We demonstrate that the order of nonterminals in a sentential form of jumping CFGs
is irrelevant. Then, in this section, we study the semilinearity of language families
generated by various jumping grammars.

As a generalization of the proof of Theorem 5.1.9, we give the following lemma
demonstrating that the order in which nonterminals occur in sentential forms is
irrelevant in jumping derivation mode based on context-free rules in terms of
generative power.

Lemma 5.1.17. Let � and � be the homomorphisms from the proof of Theo-
rem 5.1.9. For every G 2 �X with X 2 fRG, RLG, LG, CFGg and G D .V, T,
P, S/ with N D V � T, if S j)

� � j)
m w in G, m � 0, � 2 V�, w 2 T�, then for

every ı 2 V� such that �.�/ D �.ı/ and �.ı/ 2 perm.�.�//, there is ı j)
� w in G.

Proof. We prove this lemma by induction on m � 0.

Basis. Let m D 0. That is, S j)
� � j)

0 w in G, so � D w. By �.ı/ D �.�/, we
have � D w D ı, so ı j)

0 w in G.

Induction Hypothesis. Assume that there exists k � 0 such that the lemma holds for
all 0 � m � k.

Induction Step. Assume that S j)
� � j) � 0 ŒA ! x� j)

k w in G with k � 0.
Observe that �.ı/ D �.�/ and �.ı/ 2 perm.�.�//. By the above-mentioned
assumption, j�.�/j � 1—that is j�.ı/j � 1. Thus, the jumping derivation ı j)

� w
in G can be written as ı j) ı0 ŒA ! x� j)

� w. Since all the rules in G are context-
free, the position of A in ı and its context is irrelevant, and the occurrence of A in
ı is guaranteed by the lemma precondition. During the application of A ! x, (1)
an occurrence of A is found in ı, (2) removed, and (3) the right-hand side of the
rule, x, is inserted anywhere in ı instead of A without preserving the position of the
rewritten A. Assume x is inserted into ı0 so that �.ı0/ D �.� 0/. We also preserve that
�.ı0/ 2 perm.�.� 0//; therefore, the lemma holds. ut
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Notice that even if there is no derivation S j)
� ı in G, the lemma holds.

Note that based on the proof of Lemma 5.1.17, we can turn any jumping version
of a CFG to an equivalent jumping CFG satisfying a modified Greibach normal
form, in which each rule is of the form A ! ˛ˇ, where ˛ 2 T�; ˇ 2 N�. Observe
that ˛ … T. Consider, for instance, a context-free rule p with ˛ D a1 	 	 	 an. By
an application of p during a derivation of a string of terminals w, we arrange that
a1 appears somewhere in front of an in w. In other words, from Theorem 13 and
Corollary 14 in [MZ12a] together with Theorem 8.2.68, it follows that for any
language L, L 2 JREG implies L D perm.L/, which means that the order of all
terminals in w 2 L is utterly irrelevant.

Corollary 5.1.18. For every G 2 �X with X 2 fRG, RLG, LG, CFGg,
S j)

� � j)
� w in G implies an existence of a derivation of the following form

S j)
� ˛ˇ j)

� w in G

where ˛ D �.�/, ˇ 2 perm.�.�//, S is the start nonterminal, and w is a string of
terminals.

Definition 5.1.19 ([Gin66]). Let w 2 V� with V D fa1; : : : ; ang. We define Parikh
vector of w by  V.w/ D .#a1 .w/; #a2 .w/; : : : ; #an.w//. A set of vectors is called
semilinear if it can be represented as a union of a finite number of sets of the form
fv0 C

Pm
iD1 ˛ivi j ˛i 2 N; 1 � i � mg, where vi for 0 � i � m is an n-dimensional

vector. A language L � V� is called semilinear if the set  V .L/ D f V.w/ j

w 2 Lg is a semilinear set. A language family is semilinear if all its languages are
semilinear. ut

Lemma 5.1.20. For X 2 fRG, RLG, LG, CFGg, L .�X; j)/ is semilinear.

Proof. By Parikh’s Theorem (see Theorem 6.9.2 on page 228 in [Har78]), for each
context-free language L � V�,  V .L/ is semilinear. Let G be a CFG such that L.G;

s)/ D L. From the definition of j) and CFG it follows that  .L.G; s)// D

 .L.G; j)// therefore  .L.G; j)// is semilinear as well. ut

Recall that the family of context-sensitive languages is not semilinear (for
instance, Example 2.3.1 and Theorem 2.3.1 in [DP89] implies that fa2

n
j n � 0g 2

CS, but is not semilinear language). By no means, this result rules out that L .�CSG;

j)/ or L .�MONG; j)/ are semilinear. There is, however, another kind of results
concerning multiset grammars (see [KMVP00]) saying that a context-sensitive
multiset grammar generates a non-semilinear language. The multiset grammars
work with Parikh vector of a sentential form so the order of symbols in the sentential
form is irrelevant. Then, all permutations of terminal strings generated by the
grammar belong to the generated language.

Instead of the full definition of multiset grammars (see [KMVP00]), based
on notions from the theory of macrosets, we introduce multiset derivation mode
concerning the classical string formal language theory.
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Definition 5.1.21. Let G D .V;T;P; S/ 2 �PSG be a grammar and u; v 2 V�; then,
u m) v Œx ! y� in G iff there exist x ! y 2 P and t; t0; z; z0 2 V� such that
txt0 2 perm.u/, zyz0 2 perm.v/, and tt0 2 perm.zz0/. ut

Lemma 5.1.22. Let G 2 �PSG; then, w 2 L.G; m)/ implies that perm.w/ � L.G;

m)/.

Proof. Consider Definition 5.1.21 with v representing every permutation of v in
every u m) v in G to see that this lemma holds true. ut

Recall that L .�MONG; m)/ is not semilinear (see [KMVP00]). As every
context-sensitive multiset grammar can be transformed into a CSG that generates the
same language under jumping derivation mode, we establish the following theorem.

Theorem 5.1.23. L .�CSG; j)/ is not semilinear. Neither is L .�MONG; j)/.

Proof. Recall that L .�MONG; m)/ contains non-semilinear languages (see The-
orem 1 in [KMVP00]). Thus, to prove Theorem 5.1.23, we only need to prove
that L .�MONG; m)/ � L .�CSG; j)/ because L .�CSG; j)/ � L .�MONG; j)/

follows from Definition 5.1.1.

Construction. For every MONG G D .VG;T;PG; S/, we next construct a CSG H D

.VH;T;PH ; S/ such that L.G; m)/ D L.H; j)/. Let NG D VG � T and h be the
homomorphism hW V�

G ! V�
H defined as h.X/ D X for all X 2 NG and h.a/ D hai

for all a 2 T. First, set VH D VG [ Nt [ Ncs, where Nt D fhai j a 2 Tg and
Ncs D fpX j X 2 NG [ Nt, p 2 PG with j lhs.p/j > 1g. For every p 2 PG with
j lhs.p/j > 1, let gpW .NG[Nt/

� ! N�
cs be the homomorphism defined as gp.X/ D pX

for all X 2 NG [ Nt. Set Pt D fhai ! a j a 2 Tg, Pcf D fA ! h.x/ j A ! x 2 PG,
A 2 VG�T and x 2 V�

Gg, and Pcs D ;. For every rule pW X1X2 	 	 	 Xn ! Y1Y2 	 	 	 Ym 2

PG with 2 � n � m, where Xi;Yi0 2 VG, 1 � i � n, and 1 � i0 � m, add these 2n
new rules with labels p1, p2, : : :, p2n

p1W h.X1X2 � � � Xn/ ! gp.h.X1//h.X2 � � � Xn/

p2W gp.h.X1//h.X2 � � � Xn/ ! gp.h.X1X2//h.X3 � � � Xn/

:
:
:

pnW gp.h.X1X2 � � � Xn�1//h.Xn/ ! gp.h.X1X2 � � � Xn�1Xn//

pnC1W gp.h.X1X2 � � � Xn// ! h.Y1/gp.h.X2 � � � Xn//

pnC2W h.Y1/gp.h.X2 � � � Xn// ! h.Y1Y2/gp.h.X3 � � � Xn//

:
:
:

p2nW h.Y1Y2 � � � Yn�1/gp.h.Xn// ! h.Y1Y2 � � � Yn�1YnYnC1 � � � Ym/

into Pcs. Set Pc D fA ! A j A 2 VH � Tg. Finally, set PH D Pcf [ Pt [ Pc [ Pcs.

Basic Idea. There are two essential differences between multiset derivation mode of
a MONG and jumping derivation mode of a CSG.
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(I) While a MONG rewrites a string at once in a single derivation step, a CSG
rewrites only a single nonterminal that occurs within a given context during a
single derivation step.

(II) In the multiset derivation mode, the mutual neighborhood of the rewritten
symbols is completely irrelevant—that is, G applies any rule without any
restriction placed upon the mutual adjacency of the rewritten symbols in the
multiset derivation mode (see Definition 5.1.21). To put this in a different way,
G rewrites any permutation of the required context in this way.

In the construction of the jumping CSG H, which simulates the multiset MONG
G, we arrange (II) as follows.

(I.a) In H, the only rules generating terminals belong to Pt. By using homomor-
phism h, in every other rule, each terminal a is changed to the corresponding
nonterminal hai.

(II.b) In Pc, there are rules that can rearrange the order of all nonterminals arbitrarily
in any sentential form of H. Thus, considering (I.a), just like in G, no context
restriction placed upon the mutual adjacency of rewritten symbols occurs in
H. Indeed, H only requires the occurrence of the symbols from h.lhs.p//
during the simulation of an application of p 2 PG.

In order to arrange (I), an application of a monotone context-sensitive rule
pW X1X2 	 	 	 Xn ! Y1Y2 	 	 	 Ym 2 PG, 2 � n � m in u m) v Œp� in G is simulated in
H by the following two phases.

(i) First, H verifies that a sentential form u contains all symbols from h.lhs.p// and
marks them by subscript p for the consecutive rewriting. Therefore, to finish
the simulation of the application of p, H has to use rules created based on p
during the construction of Pcs since no other rules from PH rewrite symbols
pX, X 2 NG [ Nt.

u j)
� ˛0 X0

1X
0
2 � � � X0

n ˇ0 Œ�0� j) u1 Œp1�

j)
� ˛1 pX0

1X
0
2 � � � X0

n ˇ1 Œ�1� j) u2 Œp2�

j)
� ˛2 pX0

1 pX0
2 � � � X0

n ˇ2 Œ�2� j) u3 Œp3�
:
:
:

j)
� ˛n�1 pX0

1 pX0
2 � � � pX0

n�1X
0
n ˇn�1 Œ�n�1� j) un Œpn�

where �i 2 P�
c for 0 � i < n and X0

` D h.X`/ for 1 � ` � n.
(ii) Then, by performing un j)

� v, H simulates the application of p in G.

un j)
� ˛n pX0

1 pX0
2 � � � pX0

n ˇn Œ�n� j) unC1 ŒpnC1�

j)
� ˛nC1 Y0

1 pX0
2 � � � pX0

n ˇnC1 Œ�nC1� j) unC2 ŒpnC2�

:
:
:

j)
� ˛2n�1 Y0

1Y
0
2 � � � Y0

n�1 pX0
n ˇ2n�1 Œ�2n�1� j) u2n Œp2n�

D ˛2n Y0
1Y

0
2 � � � Y0

m ˇ2n j)
� v Œ�2n�
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where �i 2 P�
c for n � i � 2n, X0

` D h.X`/ for 1 � ` � n, and Y 0
k D h.Yk/ for

1 � k � m.

The simulation of application of rules of PG is repeated using rules from Pc [

Pcf [ Pcs in H until a multiset derivation of a string of terminals in G is simulated.
(In fact, we can simultaneously simulate more than one application of a rule from
PG if there is no interference in H.)

Then, in the final phase of the entire simulation, each nonterminal hai is replaced
with terminal a by using rules from Pt. To be precise, the rules of Pt can be applied
even sooner, but symbols rewritten by these rules can be no longer rewritten by rules
from Pc [ Pcf [ Pcs in H.

To formally prove that L.G; m)/ D L.H; j)/, we establish the following
claims.

Claim 5.1.24. Every w 2 L.H; j)/ can be generated by a derivation of the form

S j)
� w0

j)
� w in H such that w0 D h.w/ and w 2 T�

Proof. In the construction given in the proof of Theorem 5.1.23, we introduce Pcf

and Pcs such that for every p 2 PH � Pt, rhs.p/ 2 .VH � T/�. In S j)
� w0, we apply

rules only from PH �Pt so w0 2 N�
t , and no terminal symbol occurs in any sentential

form in S j)
� w0. Then, by rules from Pt, we generate w such that w D h.w0/. ut

Claim 5.1.25. If w 2 L.H; j)/, then perm.w/ � L.H; j)/.

Proof. Let w 2 T�. Assume that w is generated in H as described in Claim 5.1.24—
that is, S j)

� w0
j)

� w such that w0 D h.w/. Since rules from Pt rewrite
nonterminals in w0 one by one in the jumping derivation mode, we have w0

j)
� w00

in H for every w00 2 perm.w/. ut

Claim 5.1.26. If S m)` v in G for some ` � 0, then S j)
� v0 in H such that

v0 2 perm.h.v//.

Proof. We prove this claim by induction on ` � 0.

Basis. Let ` D 0. That is, S m)0 S in G, so S j)
0 S in G. By h.S/ D S, S 2

perm.h.S//.

Induction Hypothesis. Assume that the claim holds for all 0 � ` � k, for some
k � 0.

Induction Step. Take any S m)kC1 v. Express S m)kC1 v as

S m)k u m) v ŒpW x ! y�

in G. By the induction hypothesis, S j)
� u0 in H such that u0 2 perm.h.u//.

According to the form of monotone rule pW x ! y 2 PG, there are the following
two cases, (i) and (ii), concerning u m) v in G to examine.
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(i) jxj D 1: Let x D A. By the induction hypothesis, #fAg.u/ � 1 implies #fAg.u0/ �

1. By the construction according to p, we have p0W A ! h.y/ 2 Pcf . Assume u D

u1Au2 m) v in G with u1yu2 2 perm.v/. Then, u0 D u0
1Au0

2 j) u0
3h.y/u

0
4 Œp

0� D

v0 in H, where u0
1u

0
2 D u0

3u
0
4, so v0 2 perm.h.v//.

(ii) jxj � 2: Let x D X1X2 	 	 	 Xn, y D Y1Y2 	 	 	 Ym, where jxj D n � m D jyj,
Xi 2 VG, 1 � i � n, but x … T�, Yi0 2 VG, 1 � i0 � m. By
construction of Pcs, we have p1, p2, : : :, p2n 2 PH . If p can be applied
in G, then, by the induction hypothesis, #fXig.u/ D #fh.Xi/g.u

0/ for 1 �

i � n. To simulate the application of p in H, first, apply rules from Pc

to yield u0
j)

� u0
1h.X1X2 	 	 	 Xn/u0

2. Next, consecutively apply p1, p2, : : :, p2n

so u0
1h.X1X2 	 	 	 Xn/u0

2 j)
� u0

3h.Y1Y2 	 	 	 Ym/u0
4 D v0 with u0

1u
0
2 D u0

3u
0
4 and

v0 2 perm.h.v//. ut

By Claim 5.1.26 with v D w and w 2 T�, for every S m)� w in G, there is a
derivation S j)

� w00 in H such that w00 2 perm.h.w//. By Claim 5.1.24, there is
a jumping derivation in H from w00 to w0 such that w0 2 T� and w0 2 perm.w/.
Therefore, by Lemma 5.1.22 and Claim 5.1.25, if w 2 L.G; m)/, then perm.w/ �

L.H; j)/, so L.G; m)/ � L.H; j)/.

Claim 5.1.27. If S j)
` v j)

� Nv in H for some ` � 0, then S m)� v0 in G such
that Nv 2 perm.h.v0//.

Proof. We prove this claim by induction on ` � 0.

Basis. Let ` D 0. Express S j)
0 S j)

� S as S j)
0 S j)

0 S in H, therefore
S m)0 S in G. By h.S/ D S, S 2 perm.h.S//.

Induction Hypothesis. Assume that the claim holds for all 0 � ` � k, for some
k � 0.

Induction Step. Take any S j)
kC1 v j)

� Nv. Express S j)
kC1 v j)

� Nv as

S j)
k u j) v ŒqW x ! y� j)

� Nv

in H. Without any loss of generality, assume that q 2 PH � Pt so u; v 2 .VH � T/�

(see Claim 5.1.24). If q 2 Pcf [Pcs, then p denotes the rule from PG that implied the
addition of q into Pcf or Pcs during the construction in the proof of Theorem 5.1.23.
Without any loss of generality and with respect to p from PG, assume that there
is no simulation of another context-sensitive rule from PG in progress in H so
#Ncs.u1u2/ D #Ncs.v1v2/ D 0, where u D u1xu2 and v D v1yv2. By the induction
hypothesis, S j)

� u j)
� Nu in H implies S m)� u0 in G such that Nu 2 perm.h.u0//.

Now, we study several cases based on the form of q:

(i) q 2 Pc and x D y D AW Then, in a jumping derivation u j) v Œq� j)
0 Nv in

H, u D u1Au2 and v D v1Av2, where u1u2 D v1v2, so v D Nv 2 perm.u/.
By the induction hypothesis, with u j)

0 Nu in H so u D Nu, there is a derivation
S m)� u0 in G such that u 2 perm.h.u0//. Together with Nv 2 perm.u/, there is
also a derivation S m)� u0

m)0 v0 in G with Nv 2 perm.h.v0//.
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(ii) q 2 Pcf and x D AW Then, u D u1Au2 and v D v1yv2 with u1u2 D v1v2
and v j)

0 Nv in H, so v D Nv. By the induction hypothesis, with u j)
0 Nu in

H so u D Nu, there is S m)� u0 in G with u 2 perm.h.u0// and we can write
u0 D u0

1Au0
2. By the construction, pW A ! y 2 PG, so together with the induction

hypothesis we have S m)� u0
1Au0

2 m) v0 Œp� in G, where v0 2 perm.u0
1yu0

2/, so
Nv 2 perm.h.v0//.

(iii) q D pi 2 Pcs, where 1 � i � 2n and n D j lhs.p/jW Express
S j)

k u j) v j)
� Nv in H as

S j)
k�iC1 Qu j)

i�1 u Œ Q�� j) v Œpi� j)
� ˛2nh.Y1Y2 	 	 	 Ym/ˇ2n Œ N�� D Nv

in H. By the construction of Pcs according to p and by the induction hypothesis,
Q� D p1 	 	 	 pi�1 and N� D piC1 	 	 	 p2n. By the induction hypothesis, S m)� Qu0 in
G such that Qu 2 perm.h.Qu0//. Then, by the application of p 2 PG, we have
S m)� Qu0

m) v0 such that Nv 2 perm.h.v0//.
In (iii), there are three subcases of u j) v with u1u2 D v1v2 in H:

(iii.a) 1 � i � nW Then, u D u1gp.h.X1 	 	 	 Xi�1//h.XiXiC1 	 	 	 Xn/u2 and
v D v1gp.h.X1 	 	 	 Xi�1Xi//h.XiC1 	 	 	 Xn/v2.

(iii.b) n < i < 2n and i0 D i � nW Then, u D u1h.Y1 	 	 	 Yi0�1/gp.h.Xi0Xi0C1 	 	 	

Xn//u2 and v D v1h.Y1 	 	 	 Yi0/gp.h.Xi0C1 	 	 	 Xn//v2.
(iii.c) i D 2nW Then, u D u1h.Y1 	 	 	 Yn�1/gp.h.Xn//u2 and v D v1h.Y1 	 	 	

Yn�1Yn 	 	 	 Ym/v2.

Therefore, the claim holds for k C 1 as well. ut

Assume v 2 N�
t in Claim 5.1.27 so v0 2 T�. Based on Claim 5.1.24, without

any loss of generality, we can assume that all rules from Pt are applied in the end
of a derivation of w 2 T� in H. Specifically, S j)

� v Œ�v� j)
� w Œ�w� in H, where

�v 2 .PH � Pt/
�, �w 2 P�

t , and v D h.w/. By Claim 5.1.27, we have S m)� v0 in
G with v 2 perm.h.v0//. Recall that v 2 N�

t and v0 2 T�. Therefore, S m)� v0 in
G and w 2 perm.v0/.

Next, by Claim 5.1.25, w 2 L.H; j)/ implies perm.w/ � L.H; j)/. By the
previous paragraph and Lemma 5.1.22, for w, we generate perm.w/ in G included
in L.G; m)/, that is, L.H; j)/ � L.G; m)/.

This closes the proof of Theorem 5.1.23. ut

Concerning the semilinearity of language families defined by jumping grammars
under investigation, the following corollary sums up all important properties
established in this section.

Corollary 5.1.28. L .�X; j)/ is semilinear for X 2 fRG, RLG, LG, CFGg and not
semilinear for X 2 fCSG, MONG, PSGg.

Proof. For JRE, the non-semilinearity follows from the well-known facts that CS is
not semilinear (see Example 2.3.1 and Theorem 2.3.1 in [DP89]) and CS � RE and
from Theorem 5.1.16. The rest follows from Lemma 5.1.20 and Theorem 5.1.23. ut
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Corollary 5.1.29. JCF � JCS.

Proof. Obviously, by Definition 5.1.1, JCF � JCS. By Corollary 5.1.28, JCS
contains a non-semilinear language that does not belong to JCF. ut

We close this section by proposing several future investigation areas concerning
jumping grammars. Some of them relate to specific open questions pointed out
earlier in the section; the present section, however, formulates them more generally
and broadly.

I Other Types of Grammars. The present section has concentrated its attention
to the language families resulting from classical grammars, such as the
grammars classified by Chomsky (see [Cho59]). Apart from them, however,
the formal language theory has introduced many other types of grammars,
ranging from regulated grammars through parallel grammars up to grammar
systems. Reconsider the present study in their terms.

II Left and Right Jumping Mode. Considering the left and right jumps introduced
in Definition 5.1.1, study them in terms of classical types of grammars. Later
in Sect. 8.2.5, this book gives an introduction to discussion of left and right
jumping derivation modes in terms of automata.

III Closure Properties. Several results and some open problems concerning clo-
sure properties follows from Sect. 8.2.7. Additionally, study closure properties
of language families generated in a jumping way. Specifically, investigate these
properties in terms of CFGs, CSGs, and MONGs.

IV Alternative Definition of Jumping Mode with Context. Assume context-
sensitive rules (CSG) of the following form

˛Aˇ ! ˛�ˇ, where A 2 N, ˛; ˇ; � 2 V�, � ¤ ":

There are three interesting ways of defining a jumping derivation step:

IV.a Using the previous definition (see Definition 5.1.1) of jumping deriva-
tion; that is, find ˛Aˇ in the current sentential form u˛Aˇv, remove˛Aˇ,
and place ˛�ˇ anywhere in uv. For instance,

aAbc j) caxb ŒaAb ! axb�

IV.b Do not move the context of the rewritten nonterminal; that is, find A
with left context ˛ and right context ˇ, remove this A from the current
sentential form, and place � in the new sentential form, such that string
� will be again in the context of both ˛ and ˇ (but it can be different
occurrence of ˛ and ˇ). For instance,

aAbab j0) abaxb ŒaAb ! axb�

IV.c Similarly to (b), in the third variant we do not move the context of the
rewritten nonterminal either and, in addition, � has to be placed between
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the same occurrence of ˛ and ˇ. As a consequence, context-sensitive
rules are applied sequentially even in this jumping derivation mode. For
instance,

aAbab j00) axbab ŒaAb ! axb�

Notice that this derivation mode influences only the application of
context-free rules (i.e. ˛ D ˇ D ").

Example 5.1.30. Example 5.1.3 shows a CSG that generates fanbn j n � 1g

when the alternative jumping derivation mode
j0
) for CSGs is used. In context

of Lemma 5.1.4, the alternative jumping derivation mode (b) can increase the
generative power of jumping CSGs (a). In fact, it is an open question whether
L .�CSG; j0

)/ � L .�MONG; j0
)/. ut

V Relationship with Formal Macroset Theory. Recently, formal language theory
has introduced various rewriting devices that generate different objects than
classical formal languages. Specifically, in this way, Formal Macroset Theory
has investigated the generation of macrosets—that is, sets of multisets over
alphabets. Notice that some of its results resemble results achieved in the
present study (c.f., for instance, Theorem 1 in [KMVP00] and Theorems 5.1.9
and 5.1.10 above). Explain this resemblance mathematically.

5.2 Jumping Grammars: Semi-Parallel Versions

This section introduces and studies jumping versions of scattered context grammars
(see Sect. 4.1). To give an insight into the key motivation and reason for this study,
let us take a closer look at a more specific kind of information processing in a
discontinuous way. Consider a process p that deals with information i. Typically,
during a single computational step, p (1) reads n pieces of information, x1 through
xn, in i, (2) erases them, (3) generate n new pieces of information, y1 through yn, and
(4) inserts them into i possibly at different positions than the original occurrence of
x1 through xn, which was erased. To explore computation like this systematically
and rigorously, the present section introduces and discusses jumping versions of
scattered context grammars (see [GH69]), which represent suitable grammatical
models of computation like this.

To see this suitability, recall that the notion of a scattered context grammar
G represents a language-generating rewriting system based upon an alphabet of
symbols and a finite set of rules. The alphabet of symbols is divided into two disjoint
subalphabets—the alphabet of terminal symbols and the alphabet of nonterminal
symbols. In G, a rule r is of the form

.A1;A2; : : : ;An/ ! .x1; x2; : : : ; xn/
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for some positive integer n. On the left-hand side of r, the As are nonterminals. On
the right-hand side, the xs are strings. G can apply r to any string u of the form

u D u0A1u1 : : : un�1Anun

where us are any strings. Notice that A1 through An are scattered throughout u, but
they occur in the order prescribed by the left-hand side of r. In essence, G applies r
to u so

(1) it deletes A1, A2, . . . , An in u, after which
(2) it inserts x1, x2, . . . , xn into the string resulting from the deletion (1).

By this application, G makes a derivation step from u to a string v of the form

v D v0x1v1 : : : vn�1xnvn

Notice that x1, x2, . . . , xn are inserted in the order prescribed by the right-hand side
of r. However, they are inserted in a scattered way—that is, in between the inserted
xs, some substrings vs occur.

To formalize the above-described computation, consisting of phases (1) through
(4), the present section introduces and studies the following nine jumping derivation
modes of the standard application.

(1) Mode 1 requires that ui D vi for all i D 0; : : : ; n in the above described
derivation step.

(2) Mode 2 obtains v from u as follows:

(2.a) A1, A2, . . . , An are deleted;
(2.b) x1 through xn are inserted in between u0 and un.

(3) Mode 3 obtains v from u so it changes u by performing (3.a) through (3.c),
described next:

(3.a) A1, A2, . . . , An are deleted;
(3.b) x1 and xn are inserted into u0 and un, respectively;
(3.c) x2 through xn�1 are inserted in between the newly inserted x1 and xn.

(4) In mode 4, the derivation from u to v is performed by the following steps:

(4.a) A1, A2, . . . , An are deleted;
(4.b) a central ui is nondeterministically chosen, for some 0 � i � n;
(4.c) xi and xiC1 are inserted into ui;
(4.d) xj is inserted between uj and ujC1, for all j < i;
(4.e) xk is inserted between uk�2 and uk�1, for all k > i C 1.

(5) In mode 5, v is obtained from u by (5.a) through (5.e), given next:

(5.a) A1, A2, . . . , An are deleted;
(5.b) a central ui is nondeterministically chosen, for some 0 � i � n;
(5.c) x1 and xn are inserted into u0 and un, respectively;
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(5.d) xj is inserted between uj�2 and uj�1, for all 1 < j � i;
(5.e) xk is inserted between uk and ukC1, for all i C 1 � k < n.

(6) Mode 6 derives v from u applying the next steps:

(6.a) A1, A2, . . . , An are deleted;
(6.b) a central ui is nondeterministically chosen, for some 0 � i � n;
(6.c) xj is inserted between uj and ujC1, for all j < i;
(6.d) xk is inserted between uk�2 and uk�1, for all k > i C 1.

(7) Mode 7 obtains v from u performing the steps stated below:

(7.a) A1, A2, . . . , An are deleted;
(7.b) a central ui is nondeterministically chosen, for some 0 � i � n;
(7.c) xj is inserted between uj�2 and uj�1, for all 1 < j � i;
(7.d) xk is inserted between uk and ukC1, for all i C 1 � k < n.

(8) In mode 8, v is produced from u by following the given steps:

(8.a) A1, A2, . . . , An are deleted;
(8.b) x1 and xn are inserted into u1 and un�1, respectively;
(8.c) xi is inserted into ui�1ui, for all 1 < i < n, to the right of xi�1 and to the

left of xiC1.

(9) Mode 9 derives v from u by the next procedure:

(9.a) A1, A2, . . . , An are deleted;
(9.b) x1 and xn are inserted into u0 and un, respectively;
(9.c) xi is inserted into ui�1ui, for all 1 < i < n, to the right of xi�1 and to the

left of xiC1.

As obvious, all these jumping derivation modes reflect and formalize the
above-described four-phase computation performed in a discontinuous way more
adequately than their standard counterpart. Consequently, applications of these
grammars are expected in any scientific area involving this kind of computation,
ranging from applied mathematics through computational linguistics and compiler
writing up to data mining and bioinformatics.

This section is organized as follows. It formally introduces all the new jumping
derivation modes in scattered context grammars. After that, each of them is
illustrated and investigated in a separate subsection. Most importantly, it is demon-
strated that scattered context grammars working under any of the newly introduced
derivation modes are computationally complete—that is, they characterize the
family of recursively enumerable languages. Finally, it suggests four open problem
areas to be discussed in the future.
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5.2.1 Definitions

Let us recall notation concerning scattered context grammars (see Sect. 4.1). In this
section, we formally define nine derivation modes (1) through (9), sketched in the
previous introductory section.

Definition 5.2.1. Let G D .V , T, P, S/ be an SCG, and let % be a relation over V�.
Set

L.G; %/ D fx j x 2 T�; S %� xg

L.G; %/ is said to be the language that G generates by %. Set

JSC% D fL.G; %/ j G is an SCGg

JSC% is said to be the language family that SCGs generate by %. ut

Definition 5.2.2. Let G D .V , T, P, S/ be an SCG. Next, we rigorously define the
following direct derivation relations 1) through 9) over V�, intuitively sketched
in the previous introductory section.

First, let .A/ ! .x/ 2 P and u D w1Aw2 2 V�. Then,

w1Aw2 i)w1xw2; for i D 1; : : : ; 9

Second, let .A1;A2; : : : ;An/ ! .x1; x2; : : : ; xn/ 2 P, u D u0A1u1 : : :Anun, and
u0u1 : : : un D v0v1 : : : vn, where ui, vi 2 V�, 0 � i � n, for some n � 2. Then,

(1) u0A1u1A2u2 : : :Anun 1)u0x1u1x2v2 : : : xnun;
(2) u0A1u1A2u2 : : :Anun 2)v0x1v1x2v2 : : : xnvn, where u0z1 D v0, z2un D vn;
(3) u0A1u1A2u2 : : :Anun 3)v0x1v1x2v2 : : : xnvn, where u0 D v0z1, un D z2vn;
(4) u0A1u1A2u2 : : : ui�1AiuiAiC1uiC1 : : : un�1Anun 4)

u0u1x1u2x2 : : : ui�1xi�1ui1xiui2xiC1ui3xiC2uiC1 : : : xnun�1un, where ui D

ui1ui2ui3 ;
(5) u0A1u1A2 : : : ui�1Ai�1uiAiuiC1 : : :Anun 5)

u01x1u02x2u1 : : : xi�1ui�1uiuiC1xi : : : un1xnun2 ,
where u0 D u01u02 , un D un1un2 ;

(6) u0A1u1A2u2 : : : ui�1AiuiAiC1uiC1 : : : un�1Anun 6)

u0u1x1u2x2 : : : ui�1xi�1uixiC2uiC1 : : : xnun�1un;
(7) u0A1u1A2 : : : ui�1AiuiAiC1uiC1 : : :Anun 7)

u0x2u1 : : : xiui�1uiuiC1xiC1 : : : un;
(8) u0A1u1A2u2 : : :Anun 8)v0x1v1x2v2 : : : xnvn, where u0z1 D v0, z2un D vn,

ju0u1 : : : uj�1j � jv0v1 : : : vjj, jujC1 : : : unj � jvjvjC1 : : : vnj, 0 < j < n;
(9) u0A1u1A2u2 : : :Anun 9)v0x1v1x2v2 : : : xnvn, where u0 D v0z1, un D z2vn,

ju0u1 : : : uj�1j � jv0v1 : : : vjj, jujC1 : : : unj � jvjvjC1 : : : vnj,
0 < j < n. ut
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We close this section by illustrating the above-introduced notation in Defini-
tion 5.2.1. Let G D .V , T, P, S/ be an SCG; then, L.G; 5)/ D fx j x 2

T�; S 5)
�xg and JSC5) D fL.G; 5)/ j G is an SCGg. To give another example,

JSC1) denotes the family of all scattered context languages.

5.2.2 Results

This section is divided into nine subsections, each of which is dedicated to the
discussion of one of the nine jumping derivation modes introduced in the previous
section. More specifically, the section (1) repeats the definition of the mode in
question, (2) illustrates it by an example, and (3) determines the generative power
of SCGs using this mode. Most importantly, the section demonstrates that scattered
context grammars working under any of these newly introduced derivation modes
are computationally complete–that is, they characterize the family of recursively
enumerable languages.

Let us recall Theorem 2.3.18 in Sect. 2.3.1, which fulfills an important role in the
proofs throughout this section.

Jumping Derivation Mode 1

1) represents, in fact, the ordinary scattered context derivation mode.

Definition 5.2.3. Let G D .V , T, P, S/ be an SCG. Let u0A1u1 : : :Anun 2 V� and
.A1,A2,: : : ,An/ ! .x1,x2,: : : ,xn/ 2 P, for n � 1. Then,

u0A1u1A2u2 : : :Anun 1)u0x1u1x2v2 : : : xnun ut

Example 5.2.4. Let G D .V , T, P, S/ be an SCG, where V D fS, S0, S00, S000, A, B,
C A0, B0, C0, a, b, cg, T D fa, b, cg, and P contains the following rules:

(i) .S/ ! .aSA/
(ii) .S/ ! .bSB/

(iii) .S/ ! .cSC/
(iv) .S/ ! .S0S00/

(v) .S0;A/ ! .aS0;A0/

(vi) .S0;B/ ! .bS0;B0/

(vii) .S0;C/ ! .cS0;C0/

(viii) .S0; S00/ ! ."; S000/

(ix) .S000;A0/ ! .S000; a/
(x) .S000;B0/ ! .S000; b/

(xi) .S000;C0/ ! .S000; c/
(xii) .S000 ! "/

Consider 1). Then, the derivation of G is as follows.
First, G generates any string w 2 T� to the left of S and its reversal in capital

letters to the right of S with linear rules. Then, it replaces S with S0S00. Next, while
nondeterministically rewriting nonterminal symbols to the right of S00 to their prime
versions, it generates the sequence of terminals in the same order to the left of S0,
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which we denote w0. Since all the symbols to the right of S0 must be rewritten, the
sequence of symbols generated to the left of S0 must have the same composition
of symbols. Otherwise, no terminal string can be generated, so the derivation is
blocked. Thereafter, S0 is erased, and S00 is rewritten to S000. Finally, the prime
versions of symbols to the right of S000 are rewritten to the terminal string denoted
w00. Consequently,

L.G; 1)/ D
˚
x 2 T� j x D ww0w00;w D reversal.w00/;

w0 is any permutation of w
�

For instance, the string abccabcba is generated by G in the following way:

S 1)aSA 1)abSBA 1)abcSCBA 1)abcS0S00CBA 1)abccS0S00C0BA

1)abccaS0S00C0BA0
1)abccabS0S00C0B0A0

1)abccabS000C0B0A0

1)abccabS000cB0A0
1)abccabS000cbA0

1)abccabS000cba 1)abccabcba ut

Next, we prove that SCGs working under 1) characterize RE.

Theorem 5.2.5 (See [FM03b]). JSC1) D RE.

Proof. As obvious, any SCG G can be turned to a Turing machine M so M accepts
L.G; 1)/. Thus, JSC1) � RE. Therefore, we only need to prove RE � JSC1).

Let L 2 RE. Express L D h.L1\L2/, where h, L1, and L2 have the same meaning
as in Theorem 2.3.18. Since L2 is context-free, so is reversal.L2/ (see page 419 in
[Woo87]). Thus, there are context-free grammars G1 and G2 that generate L1 and
reversal.L2/, respectively. More precisely, let Gi D .Vi;T;Pi; Si/ for i D 1; 2. Let
T D fa1; : : : ; ang and 0, 1, $, S … V1 [ V2 be the new symbols. Without any loss of
generality, assume that V1 \ V2 D ;. Define the new morphisms

(I) c W ai 7! 10i1;
(II) C1 W V1 [ T ! V1 [˙ [ f0; 1g�,�

A 7! A; A 2 V1;
a 7! f .a/; a 2 TI

(III) C2 W V2 [ T ! V2 [ f0; 1g�,�
A 7! A; A 2 V2;
a 7! c.a/; a 2 TI

(IV) f W ai 7! h.ai/c.ai/;
(V) t W ˙ [ f0; 1; $g ! ˙ ,�

a 7! a; a 2 ˙;

A 7! "; A … ˙ I

(VI) t0 W ˙ [ f0; 1; $g ! f0; 1g,�
a 7! a; a 2 f0; 1g;

A 7! "; A … f0; 1g:

Finally, let G D .V; ˙;P; S/ be SCG, with V D V1 [ V2 [ fS; 0; 1; $g and P
containing the rules

(1) .S/ ! .$S11111S2$/;
(2) .A/ ! .Ci.w//, for all A ! w 2 Pi, where i D 1; 2;
(3) .$; a; a; $/ ! ."; $; $; "/, for a D 0; 1;
(4) .$/ ! ."/.

Claim 5.2.6. L.G; 1)/ D L.
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Proof. Basic Idea. First, the starting rule (1) is applied. The starting nonterminals
S1 and S2 are inserted into the current sentential form. Then, by using the rules (2)
G simulates derivations of both G1 and G2 and generates the sentential form w D

$w11111w2$.
Suppose S 1)�w, where alph.w/ \ .N1 [ N2/ D ;. Recall, N1 and N2 denote

the nonterminal alphabets of G1 and G2, respectively. If t0.w1/ D reversal.w2/, then
t.w1/ D h.v/, where v 2 L1 \ L2 and h.v/ 2 L. In other words, w represents a
successful derivation of both G1 and G2, where both grammars have generated the
same sentence v; therefore G must generate the sentence h.v/.

The rules (3) serve to check, whether the simulated grammars have generated the
identical words. Binary codings of the generated words are erased while checking
the equality. Always the leftmost and the rightmost symbols are erased, otherwise
some symbol is skipped. If the codings do not match, some 0 or 1 cannot be erased
and no terminal string can be generated.

Finally, the symbols $ are erased with the rule (4). If G1 and G2 generated the
same sentence and both codings were successfully erased, G has generated the
terminal sentence h.v/ 2 L. ut

Claim 5.2.6 implies RE � JSC1). Thus, Theorem 5.2.5 holds. ut

Jumping Derivation Mode 2

Definition 5.2.7. Let G D .V , T, P, S/ be an SCG. Let u D u0A1u1 : : :Anun 2 V�

and .A1,A2,: : : ,An/ ! .x1,x2,: : : ,xn/ 2 P, for n � 1. Then,

u0A1u1A2u2 : : :Anun 2)v0x1v1x2v2 : : : xnvn

where u0u1 : : : un D v0v1 : : : vn, u0z1 D v0 and z2un D vn, z1; z2 2 V�. ut

Informally, by using .A1,A2,: : : ,An/ ! .x1,x2,: : : ,xn/ 2 P G obtains v D

v0x1v1x2v2 : : : xnvn from u D u0A1u1A2u2 : : :Anun in 2) as follows:

(1) A1, A2, . . . , An are deleted;
(2) x1 through xn are inserted in between u0 and un.

Notice, the mutual order of inserted right-hand-side strings must be always
preserved.

Example 5.2.8. Consider SCG defined in Example 5.2.4 and 2). Context-free
rules act in the same way as in 1) unlike context-sensitive rules. Let us focus on
the differences.

First, G generates the sentential form wS0S00w, where w 2 T� and w is the
reversal of w in capital letters, with context-free derivations. Then, the nonterminals
to the right of S0 are rewritten to their prime versions and possibly randomly shifted
closer to S0, which may arbitrarily change their order. Additionally, the sequence of
terminals in the same order is generated to the left of S0, which we denote w0. S0
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may be also shifted, however, in such case it appears to the right of S00 and future
application of the rule (viii) is excluded and no terminal string can be generated.
Since all the symbols to the right of S0 must be rewritten, the sequence generated to
the left of S0 must have the same composition of symbols. Next, S0 is erased and S00 is
rewritten to S000 at once, which ensures their mutual order is preserved. If any prime
symbol occurs to the left of S000, it cannot be erased and the derivation is blocked.
Finally, the prime versions of symbols to the right of S000 are rewritten to the terminal
string denoted w00, which also enables random disordering. Consequently,

L.G; 2)/ D
˚
x 2 T� j x D ww0w00;w0;w00 are any permutations of w

�

For example, the string abcacbbac is generated by G in the following way:

S 2)aSA 2)abSBA 2)abcSCBA 2)abcS0S00CBA 2)abcaS0S00A0CB

2)abcacS0S00A0C0B 2)abcacbS0S00B0A0C0
2)abcacbS000B0A0C0

2)abcacbS000B0A0c 2)abcacbS000bA0c 2)abcacbS000bac 2)abcacbbac ut

Theorem 5.2.9. JSC2) D RE.

Proof. Clearly JSC
2) � RE, so we only need to prove RE � JSC

2).
Let G D .V; ˙;P; S/ be the SCG constructed in the proof of Theorem 5.2.5.

First, we modify G to a new SCG G0 so L.G; 1)/ D L.G0; 1)/. Then, we prove
L.G0; 2)/ D L.G0; 1)/.

Construction. Set

N D fd; e; b; c; j;X;X;X;X;Y;Y;Y;Yg

where V \ N D ;. Define the new morphisms

(I) C1 W V1 [ T,(
A 7! A; A 2 V1;

a 7! df .a/e j; a 2 TI

(II) C2 W V2 [ T,(
A 7! A A 2 V2;

a 7! j dc.a/e; a 2 TI

(III) b W ˙ [ f0; 1; $g [ N ! f0; 1g,(
A 7! A; A 2 f0; 1g;

A 7! "; A … f0; 1g:

(IV) t0 W ˙ [ f0; 1; $g [ N ! f0; 1; $g [ N,(
A 7! A; A 2 f$g [ N;

A 7! t0.A/; A … f$g [ N:

Let G0 D .V 0; ˙;P0; S/ be SCG, with V 0 D V [ N and P0 containing

(1) .S/ ! .eX$S1d11 jj 11eS2$Yd/;
(2) .A/ ! .Ci.w// for A ! w 2 Pi, where i D 1; 2;
(3) .e;X; d/ ! .c;X; c/,.e;Y; d/ ! .b;Y; b/;
(4) .c;X; c/ ! .c;X; c/,.b;Y; b/ ! .b;Y; b/;
(5) .$; 0;X;Y; 0; $/ ! ."; $;X;Y; $; "/;
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(6) .$;X;Y; $/ ! .";X$; $Y; "/;
(7) .c;X; $; c; b; $;Y; b/ ! ."; "; ";X$; $Y; "; "; "/;
(8) .X; 1; 1; j; j; 1; 1;Y/ ! ."; "; ";X;Y; "; "; "/;
(9) .$/ ! ."/, .X/ ! ."/, .Y/ ! ."/.

Notice that X and Y hold the current state of computation and force the context-
sensitive rules to be used in the following order:

(a) after applying the rule (3), only the rule (4) may be applied;
(b) after applying the rule (4), only the rule (5) or (6) may be applied;
(c) after applying the rule (5), only the rule (4) may be applied;
(d) after applying the rule (6), only the rule (7) may be applied;
(e) after applying the rule (7), only the rule (8) may be applied;
(f) after applying the rule (8), only the rule (3) may be applied.

Claim 5.2.10. L.G0; 1)/ D L.G; 1)/.

Proof. The context-free rules (1) and (2) of G0 correspond one to one to the rules (1)
and (2) of G, only the codings of terminals contain additional symbols. Thus, for
every derivation in G

S 1)
� $v11111v2$ D v

where v is generated by using the rules (1) and (2) and alph.v/ \ .N1 [ N2/ D ;,
there is

S 1)
� eX$w1d11 jj 11ew2$YdD w

in G0 generated by the rules (1) and (2), where b.w1/ D t0.v1/, b.w2/ D v2. This also
holds vice versa. Since such a sentential form represents a successful derivations of
both G1 and G2, without any loss of generality, we can consider it in every successful
derivation of either G, or G0. Additionally, in G

v 1)
� v0; v0 2 ˙�

if and only if t0.v1/ D reversal.v2/. Note, v0 D t.v/. Therefore, we have to prove

w 1)
� w0;w0 2 ˙�

if and only if t0.w1/ D reversal.w2/. Then, v0 D w0.

Claim 5.2.11. In G0, for

S 1)
� eX$w1d11 jj 11ew2$YdD w; alph.w/\ .N1 [ N2/ D ;
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where w is generated by using the rules (1) and (2),

w 1)
� w0

where w0 2 ˙� if and only if t0.w1/ D reversal.w2/.

For the sake of readability, in the next proof we omit all symbols from ˙ in
w1—that is, we consider only nonterminal symbols, which are to be erased.

Proof. If. Suppose w1 D reversal.w2/, then w 1)
� ". From the construction of G0,

w1 D .d10i11e j/.d10i21e j/ : : : .d10in1e j/, where ij 2 f1; : : : ; j˙ jg, 1 � j � n,
n � 0. Consider two cases—(I) n D 0 and (II) n � 1.

(I) If n D 0, w DeX$d11 jj 11e$Yd. Then, by using the rules (3) and (4), the
rules (7) and (8), and four times the rules (9), we obtain

eX$d11 jj 11e$Yd 1)cX$c11 jj 11e$Yd 1)

cX$c11 jj 11b$Yb 1)cX$c11 jj 11b$Yb 1)

cX$c11 jj 11b$Yb 1)X$11 jj 11$Y 1)

$XY$ 1)XY$ 1)Y$ 1)$ 1)"

and the claim holds.
(II) Let n � 1,

w DeX$d10i01e j .d10im1e j/kd11 jj 11e.j d10jm01e/k j d10j01e$Yd

DeX$d10i01e j u j d10j01e$Yd

where k � 0, m;m0 2 f1; : : : ; kg, i0; im; j0; jm0 2 f1; : : : ; j˙ jg. Sequentially
using both rules (3) and (4) and the rule (7) we obtain the derivation

eX$d10i01e j u j d10j01e$Yd 1) cX$c10i01e j u j d10j01e$Yd 1)

cX$c10i01e j u j d10j01b$Yb 1)cX$c10i01e j u j d10j01b$Yb 1)

cX$c10i01e j u j d10j01b$Yb 1)X$10i01e j u j d10j01$Y

Next, we prove

w0 D X$10i01e j .d10im1e j/kd11 jj 11e.j d10jm01e/k j d10j01$Y 1)
�"

by induction on k � 0.

Basis. Let k D 0. Then,

w0 D X$10i01e j d11 jj 11e j d10j01$Y
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By using a rule (8) and twice a rule (3) G0 performs

X$10i01e j d11 jj 11e j d10j01$Y 1)$0i0eXd11 jj 11eYd0j0$

1)$0i0cXc11 jj 11eYd0j0$ 1)$0i0cXc11 jj 11bYb0j0$

Since i0 D j0, both sequences of 0s are simultaneously erased by repeatedly
using both rules (4) and the rule (5). Observe that

$0i0cXc11 jj 11bYb0j0$ 1)
�$cXc11 jj 11bYb$

Finally, by applying the rules (4), (6), (7), (8), and (9), we finish the derivation
as

$cXc11 jj 11bYb$ 1)cX$c11 jj 11b$Yb 1)

X$11 jj 11$Y 1)$XY$ 1)
�"

and the basis holds.

Induction Hypothesis. Suppose there exists k � 0 such that

w0 D X$10i01e j .d10im1e j/ld11 jj 11e.j d10jm01e/l j d10j01$Y 1)
�"

where m;m0 2 f1; : : : ; lg, i0; im; j0; jm0 2 f1; : : : ; j˙ jg, for all 0 � l � k.

Induction Step. Consider any

w0 D X$10i01e j .d10im1e j/kC1d11 jj 11e.j d10jm01e/kC1 j d10j01$Y

where m;m0 2 f1; : : : ; k C 1g, i0; im; j0; jm0 2 f1; : : : ; j˙ jg. Since k C 1 � 1

w0 D X$10i01e j d10i001e j u j d10j001e j d10j01$Y
u D .d10im1e j/kd11 jj 11e.j d10jm01e/k

By using the rule (8) and both rules (3) G0 performs

X$10i01e j d10i001e j u j d10j001e j d10j01$Y 1)

$0i0eXd10i001e j u j d10j001eYd0j0$ 1)

$0i0cXc10i001e j u j d10j001eYd0j0$ 1)

$0i0cXc10i001e j u j d10j001bYb0j0$

Since i0 D j0, the prefix of 0s and the suffix of 0s are simultaneously erased by
repeatedly using the rules (4) and the rule (5).

$0i0cXc10i001e j u j d10j001bYb0j0$ 1)
� $cXc10i001e j u j d10j001bYb$
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Finally, G0 uses the rule (6) and the rule (7)

$cXc10i001e j u j d10j001bYb$ 1) cX$c10i001e j u j d10j001b$Yb 1)

X$10i001e j u j d10j001$Y D w00

where

w00 D X$10i001e j .d10im1e j/kd11 jj 11e.j d10jm01e/k j d10j001$Y

By the induction hypothesis, w00
1)

�", which completes the proof.

Only If. Suppose that w1 ¤ reversal.w2/, then there is no w0 satisfying w 1)
�w0

and w0 D ".
From the construction of G0, there is no rule shifting the left $ to the left and no

rule shifting the right $ to the right. Since the rule (5) is the only one erasing 0s and
these 0s must occur between two $s, if there is any 0, which is not between the two
$s, it is unable to be erased. Moreover, an application of the rule (5) moves the left
$ on the previous position of erased left 0; if it is not the leftmost, the derivation is
blocked. It is symmetric on the right. A similar situation is regarding 1s, X, and Y.
Thus, for the sentential form w, if 0 or 1 is the rightmost or the leftmost symbol of
w, no terminal string can be generated.

Since w1 ¤ reversal.w2/, the codings of terminal strings generated by G1 and
G2 are different. Then, there is a and a0, where w1 D vau, w2 D u0a0 reversal.v/,
and a ¤ a0. For always the outermost 0 or 1 is erased, otherwise the derivation is
blocked, suppose the derivation correctly erases both strings v, so a and a0 are the
outermost symbols. The derivation can continue in the following two ways.

(I) Suppose the outermost 0s are erased before the outermost 1s. Then, the rule (5)
is used, which requires X and Y between the previous positions of 0s. However,
there is 1, a or a0, which is not between X and Y.

(II) Suppose the outermost 1s are erased before the outermost 0s. Then, the rule (8)
is used, which requires X and Y in the current sentential form. The symbols
X and Y are produced by the rule (7), which requires X and $ between two
symbols c and Y and $ between two symbols b. Suppose w0 is the current
sentential form. Since w1 or reversal.w2/ is of the form

: : : d10i01e j d10i11e j d10i21e j : : :

where i0; i1; i2 2 f1; : : : ; j˙ jg, there is 0 as the leftmost or rightmost symbol
of w0 and X$ and $Y occurs between cs and bs, respectively. However, this 0
is obviously not between the two $ and remains permanently in the sentential
form.

We showed that G0 can generate the terminal string from the sentential form w if
and only if t0.w1/ D reversal.w2/, so the claim holds. ut
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We proved that for any w 2 ˙�, S 1)
�w in G if and only if S 1)

�w in G0, and
Claim 5.2.10 holds. ut

Let us turn to 2).

Claim 5.2.12. L.G0; 2)/ D L.G0; 1)/.

Proof. In 2), applications of context-free rules progress in the same way as in
1). While using context-sensitive rules inserted right-hand-side strings can be
nondeterministically scattered between the previous positions of the leftmost and
rightmost affected nonterminals, only their order is preserved. We show, we can
control this by the construction of G0.

Recall the observations made at the beginning of the proof of Claim 5.2.10. Since
the behaviour of context-free rules remains unchanged in terms of 2), these still
hold true. It remains to prove that Claim 5.2.11 also holds in 2).

In a special case, 2) behave exactly as 1), hence definitely L.G0; 1)/ �

L.G0; 2)/. We prove

w … L.G0; 1)/ ) w … L.G0; 2)/

Therefore, to complete the proof of Claim 5.2.12, we establish the following claim.

Claim 5.2.13. In G0, for

S 1)
� eX$w1d11 jj 11ew2$YdD w; alph.w/\ .N1 [ N2/ D ;

where w is generated only by using the rules (1) and (2), and t0.w1/ ¤ reversal.w2/,
there is no w0, where

w 1)
� w0;w0 2 ˙�

For the sake of readability, in the next proof we omit all symbols from ˙ in
w1—we consider only nonterminal symbols, which are to be erased.

Proof. Suppose any w, where

S 1)
� w DeX$w1d11 jj 11ew2$Yd

in G0 and w is generated by using the rules (1) and (2), alph.w/ \ .N1 [ N2/ D ;,
and w1 ¤ reversal.w2/.

From the construction of G0, there is no rule shifting the left $ to the left and no
rule shifting the right $ to the right. Neither 2) can do this. Since the rule (5) is the
only one erasing 0s and these 0s must be between two $s, if there is any 0, which is
not between the two $s, it cannot be erased. A similar situation is regarding 1s, X,
and Y. Thus, for the sentential form w, if 0 or 1 is the outermost symbol of w, no
terminal string can be generated.

Consider two cases (I) w1 D " or w2 D " and (II) w1 ¤ " and w2 ¤ ".
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(I) Suppose the condition does not apply. Without any loss of generality, suppose
w1 D ". Since w1 ¤ reversal.w2/, w2 ¤ ": Then,

w DeX$d11 jj 11e.j d10im1e/k j d10i01e$Yd

where k � 0, m 2 f1; : : : ; kg, im; i0 2 f1; : : : ; j˙ jg.
First, the rules (3) and (9) are the only applicable, however, application of the

rule (9) would block the derivation, so we do not consider it. While rewriting X,
the leftmost e is rewritten. Unless the leftmost d is chosen, it becomes unpaired
and, thus, cannot be erased. It is symmetric with Y. After the application of the
rules (3), the rules (4) becomes applicable. The positions of the symbols $ must
be preserved for future usage of the rule (7). Then, the only way of continuing
a successful derivation is

eX$d11 jj 11e.j d10im1e/k j d10i01e$Yd 2)

cX$c11 jj 11e.j d10im1e/k j d10i01e$Yd 2)

cX$c11 jj 11e.j d10im1e/k j d10i01b$Yb 2)

cX$c11 jj 11e.j d10im1e/k j d10i01b$Yb 2)

cX$c11 jj 11e.j d10im1e/k j d10i01b$Yb

Notice that if neighboring nonterminals are rewritten, 2) do not shift any
symbol.

Next, the rule (7) is the only applicable possibly shifting X, Y, and $s
anywhere into the current sentential form. However, if any shift is performed,
there is a symbol 1 as the outer most symbol, which is obviously unable to be
erased.
Thus,

cX$c11 jj 11e.j d10im1e/k j d10i01b$Yb2)

X$11 jj 11e.j d10im1e/k j d10i01$Y D w0

Next, consider two cases depending on k.

(I.i) Suppose k D 0. Then,

w0 D X$11 jj 11e j d10i01$Y

Since i0 > 0, the rule (5) must be used. It requires presence of X
and Y in the current sentential form. These can be obtained only by
application of the rule (8) and both rules from (3) and (4). However,
it must rewrite two pairs of e,d, but there is only one remaining.
Therefore, there are i0 symbols 0, which cannot be erased, and no
terminal string can be generated.
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(I.ii) Suppose k > 0. Then, w0 is of the form

X$11 jj 11e j due j d10i01$Y

The rule (8) is the only applicable. It rewrites X to X, Y to Y and put
them potentially anywhere into the current sentential form. However,
the rules (3), which are the only containing X and Y on the left-hand
side, require X and Y situated between e and d.

X$11 jj 11e j due j d10i01$Y 2) $11 jj 11eXdueYd0i0$

Without any loss of generality, we omit other possibilities of erasing
the symbols j or 1, because the derivation would be blocked in the
same way. Since there is no 0 to the left of X, the future application of
the rule (5) is excluded and the rightmost sequence of 0s is obviously
skipped and cannot be erased any more.

(II) Suppose the condition applies. Then,

w D eX$d10i1e j .d10jm1e j/kd11 jj 11e.j d10jm01e/k
0

j d10i01e$Yd

D eX$d10i1e j due j d10i01e$Yd

where k; k0 � 0, m 2 f1; : : : ; kg, m0 2 f1; : : : ; k0g, im; i0m; j; j
0 2 f1; : : : ; j˙ jg.

First, the situation is completely the same as in (I), the only possibly non-
blocking derivation consists of application of both rules (3) and (4) followed by
application of the rule (7). No left-hand-side string may be shifted during the
application of these rules or the derivation is blocked.

eX$d10i1e j due j d10i01e$Yd 2) cX$c10i1e j due j d10i01e$Yd 2)

cX$c10i1e j due j d10i01b$Yb 2) cX$c10i1e j due j d10i01b$Yb 2)

cX$c10i1e j due j d10i01b$Yb 2) X$10i1e j due j d10i01$Y

Next, the rule (8) is the only applicable rule, which erases four symbols 1, two j,
rewrites X to X and Y to Y, and inserts them possibly anywhere into the current
sentential form. However, X must be inserted between e and d, otherwise the
rule (3) is not applicable and X remains permanently in the sentential form.
Unless the leftmost pair of e and d is chosen, there are skipped symbols 1
remaining to the left of X. The rules (6) and (7) ensures the derivation is
blocked, if X is shifted to the right. Additionally, the only way to erase 1s is
the rule (8), but these 1s must be to the right of X. Thus, the skipped symbols 1
cannot be erased. Therefore, the pair of e and d is the leftmost or the derivation
is blocked. Moreover, the two erased 1s are also the leftmost or they cannot be
erased in the future and the same holds for the left erased symbol j. A similar
situation is regarding Y. Then,
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X$10i1e j due j d10i01$Y 2) $0ieXdueYd0i0$

and by using the rules (3) and repeatedly the rules (4) and (5) both outer most
sequences of 0s can be erased, if i D i0. Additionally, the rules (4) ensure, X
and Y are never shifted. If there is any 0 skipped, it cannot be erased and the
derivation is blocked.

$0ieXdueYd0i0$ 2)
� $0icXcubYb0i0$ 2)

� $cXcubYb$

Finally, by the rules (6) and (7) both terminal codings can be completely erased
and X, Y , and two $ are the outermost symbols, if no symbol is skipped.

$cXcubYb$ 2) cX$cub$Yb 2) X$u$Y

Since w1 ¤ w2, w1 D vau and w2 D u0a0reversall.v/, where a ¤ a0 are the
outermost non-identical terminal codings. Derivation can always erase vs, as it
was described, or be blocked before. Without any loss of generality, we have to
consider two cases.

(II.i) Suppose au D ". Then, u0a0 ¤ " and the situation is the same as in (I),
no terminal string can be generated and the derivation is blocked.

(II.ii) Suppose au ¤ ", u0a0 ¤ ". If the derivation is not blocked before, it
may generate the sentential form

$0ieXdueYd0i0$

where 10i1 D a, 10i01 D a0. Then, i ¤ i0 and while simultaneously
erasing the sequences of 0s of both codings, one is erased before the
second one. The rule (5) becomes inapplicable and there is no way not
to skip the remaining part of the second sequence of 0s. The derivation
is blocked.

We covered all possibilities and showed, there is no way to generate terminal string
w0 … L.G0; 1)/, and the claim holds. ut

Since S 1)
�w, w 2 ˙� if and only if S 2)

�w, Claim 5.2.12 holds. ut

We proved that L.G0; 2)/DL.G0; 1)/, L.G0; 1)/DL.G; 1)/, and L.G; 1)/

D L, then L.G0; 2)/ D L, so the proof of Theorem 5.2.9 is completed. ut

Jumping Derivation Mode 3

Definition 5.2.14. Let G D .V , T, P, S/ be an SCG. Let u D u0A1u1 : : :Anun 2 V�

and .A1,A2,: : : ,An/ ! .x1,x2,: : : ,xn/ 2 P, for n � 1. Then,
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u0A1u1A2u2 : : :Anun 3)v0x1v1x2v2 : : : xnvn

where u0u1 : : : un D v0v1 : : : vn, u0 D v0z1 and un D z2vn, z1; z2 2 V�. ut

Informally, G obtains v D v0x1v1x2v2 : : : xnvn from u D u0A1u1A2u2 : : :Anun by
.A1,A2,: : : ,An/ ! .x1,x2,: : : ,xn/ 2 P in terms of 3) as follows:

(1) A1, A2, . . . , An are deleted;
(2) x1 and xn are inserted into u0 and un, respectively;
(3) x2 through xn�1 are inserted in between the newly inserted x1 and xn.

Example 5.2.15. Let G D .V , T, P, S/, where V D fS, A, $, a, bg, T D fa, bg, be
an SCG with P containing the following rules:

(i) .S/ ! .A$/
(ii) .A/ ! .aAb/

(iii) .A; $/ ! .A; $/

(iv) .A/ ! ."/

(v) .$/ ! ."/

Consider G uses 3). Notice that context-free rules are not influenced by 3).
After applying starting rule (i), G generates anbn, where n � 0, by using the

rule (ii) or finishes the derivation with rules (iv) and (v). However, at any time
during the derivation the rule (iii) can be applied. It inserts or erases nothing, but
it potentially shifts A to the left. Notice, the symbol $ is always the rightmost and,
thus, cannot be shifted. Then,

L.G; 3)/ D
˚
x 2 T� j x D " or x D uvwbn; uw D an; n � 0;

and v is defined recursively as x
�

For example, the string aaaababbabbb is generated by G in the following way:

S 3)A$ 3)aAb$ 3)aaAbb$ 3)aaaAbbb$ 3)aaAabbb$

3)aaaAbabbb$ 3)aaaaAbbabbb$ 3)aaaAabbabbb$

3)aaaaAbabbabbb$ 3)aaaababbabbb$ 3)aaaababbabbb ut

Theorem 5.2.16. JSC
3) D RE.

Proof. Clearly JSC3) � RE, so we only need to prove RE � JSC3).
Let G D .V; ˙;P; S/ be the SCG constructed in the proof of Theorem 5.2.5.

Next, we modify G to a new SCG G0 satisfying L.G; 1)/ D L.G0; 1)/. Finally,
we prove L.G0; 3)/ D L.G0; 1)/.

Construction. Let G0 D .V; ˙;P0; S/ be SCG with P0 containing

(1) .S/ ! .S111$$11S2/;
(2) .A/ ! .Ci.w// for A ! w 2 Pi, where i D 1; 2;
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(3) .a; $; $; a/ ! .$; "; "; $/, for a D 0; 1;
(4) .$/ ! ."/.

We establish the proof of Theorem 5.2.16 by demonstrating the following two
claims.

Claim 5.2.17. L.G0; 1)/ D L.G; 1)/.

Proof. G0 is closely related to G, only the rules (1) and (3) are slightly modified.
As a result the correspondence of the sentences generated by the simulated G1,
G2, respectively, is not checked in the direction from the outermost to the central
symbols but from the central to the outermost symbols. Again, if the current two
symbols do not match, they cannot be erased both and the derivation blocks. ut

Claim 5.2.18. L.G0; 3)/ D L.G0; 1)/.

Proof. Without any loss of generality, we can suppose the rules (1) and (2) are used
only before the first usage of the rule (3). The context-free rules work unchanged
with 3). Then, for every derivation

S 1)
�w D w111$$11w2

generated only by the rules (1) and (2), where alph.w/\ .N1 [ N2/ D ;, there is the
identical derivation

S 3)
�w

and vice versa. Since

w 1)
�w0;w0 2 ˙�

if and only if t0.w1/ D reversal.w2/, we can complete the proof of the previous
claim by the following one.

Claim 5.2.19. Let the sentential form w be generated only by the rules (1) and (2).
Without any loss of generality, suppose alph.w/ \ .N1 [ N2/ D ;. Consider

S 3)
�w D w111$$11w2

Then, w 3)
�w0, where w0 2 ˙� if and only if t0.w1/ D reversal.w2/.

For better readability, in the next proof we omit all symbols of w1 from ˙—we
consider only nonterminal symbols, which are to be erased.

Basic Idea. The rules (3) are the only with 0s and 1s on their left-hand sides. These
symbols are simultaneously erasing to the left and to the right of $s checking the
equality. While proceeding from the center to the edges, when there is any symbol
skipped, which is remaining between $s, there is no way, how to erase it, and no
terminal string can be generated.
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Consider 3). Even when the symbols are erasing one after another from the
center to the left and right, 3) can potentially shift the left $ to the left and the
right $ to the right skipping some symbols. Also in this case the symbols between
$s cannot be erased anymore.

Proof. If. Recall

w D 10m1110m21 : : : 10ml111$$1110ml1 : : : 10m2110m11

Suppose the check works properly not skipping any symbol. Then,

w 3)
�w0 D $$

and twice applying the rule (4) the derivation finishes. ut

Proof. Only If. If w1 ¤ reversal.w2/, though the check works properly,

w 1)
�w0 D w0

1x$$x0w0
2

and x; x0 2 f0; 1g, x ¤ x0. Continuing the check with application of the rules (3) will
definitely skip x or x0. Consequently, no terminal string can be generated.

We showed that G0 can generate the terminal string from the sentential form w if
and only if t0.w1/ D reversal.w2/, and the claim holds. ut

Since S 1)
�w, w 2 ˙� if and only if S 3)

�w, Claim 5.2.18 holds. ut

We proved that L.G; 1)/ D L, L.G0; 1)/ D L.G; 1)/, L.G0; 3)/ D

L.G0; 1)/; therefore, L.G0; 3)/ D L holds. Thus, the proof of Theorem 5.2.16
is completed. ut

Jumping Derivation Mode 4

Definition 5.2.20. Let G D .V , T, P, S/ be an SCG. Let uAv 2 V� and .A/ !

.x/ 2 P. Then, uAv 4)uxv. Let u D u0A1u1 : : :Anun 2 V� and .A1,A2,: : : ,An/ !

.x1,x2,: : : ,xn/ 2 P, for n � 2. Then,

u0A1u1A2u2 : : : ui�1AiuiAiC1uiC1 : : : un�1Anun 4)

u0u1x1u2x2 : : : ui�1xi�1ui1xiui2xiC1ui3xiC2uiC1 : : : xnun�1un

where ui D ui1ui2ui3 . ut

Informally, v D u0u1x1u2x2 : : : ui�1xi�1ui1xiui2xiC1ui3xiC2uiC1 : : : xnun�1un

is obtained from u D u0A1u1A2u2 : : : ui�1AiuiAiC1uiC1 : : : un�1Anun in G by
.A1,A2,: : : ,An/ ! .x1,x2,: : : ,xn/ 2 P in 4) as follows:
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(1) A1, A2, . . . , An are deleted;
(2) a central ui is nondeterministically chosen, for some i 2 f0; : : : ; ng;
(3) xi and xiC1 are inserted into ui;
(4) xj is inserted between uj and ujC1, for all j < i;
(5) xk is inserted between uk�2 and uk�1, for all k > i C 1.

Example 5.2.21. Let G D .V , T, P, S/, where V D fS, A, B, C, $, a, b, c, dg,
T D fa, b, c, dg, be an SCG with P containing the following rules:

(i) .S/ ! .AB$$BA/
(ii) .A/ ! .aAb/

(iii) .B/ ! .cBd/

(iv) .A;B;B;A/ ! .A;C;C;A/
(v) .$;C;C; $/ ! ."; "; "; "/

(vi) .A/ ! ."/

Consider G uses 4). Then, every context-sensitive rule is applied in the
following way. First, all affected nonterminals are erased. Next, some position of
the current sentential form called center is nondeterministically chosen. Finally, the
corresponding right-hand sides of the selected rule are inserted each at the original
place of the neighboring erased nonterminal closer to the center. The central right-
hand-side strings are randomly put closer to the chosen central position. In this
example, we show how to control the choice.

First the rule (i) rewrites S to AB$$BA. Then, G uses the rules (ii) and (iii)
generating a sentential form

an1Abn1cn2Bdn2$$cn3Bdn3an4Abn4

where ni � 0, for i 2 f1; 2; 3; 4g. If the rule (vi) is used, derivation is blocked. Next,
G uses the context-sensitive rule (iv), which may act in several different ways. In
any case, it inserts two Cs into the current sentential form and the only possibility
to erase them is the rule (v). However, thereby we force the rule (iv) to choose
the center for interchanging nonterminals between Bs and moreover to insert Cs
between the two symbols $. Finally, G continues by using the rule (ii) and eventually
finishes twice using the rule (vi). Consequently,

L.G; 4)/ D
˚
x 2 T� j x D an1bn1cn2an3bn3dn2cn4an5bn5dn4an6bn6 ;

ni � 0; i 2 f1; 2; 3; 4; 5; 6g
�

Then, the string aabbcabdccddab is generated by G in the following way:

S 4)AB$$BA 4)aAbB$$BA 4)aaAbbB$$BA 4)aaAbbcBd$$BA

4)aaAbbcBd$$cBdA 4)aaAbbcBd$$ccBddA 4)aaAbbcBd$$ccBddaAb

4)aabbcAd$CC$ccAddab 4)aabbcAdccAddab 4)aabbcaAbdccAddab

4)aabbcabdccAddab 4)aabbcabdccddab ut
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Theorem 5.2.22. JSC4) D RE.

Proof. As obvious, JSC4) � RE, so we only prove RE � JSC4).
Let G D .V; ˙;P; S/ be the SCG constructed in the proof of Theorem 5.2.5.

Next, we modify G to a new SCG G0 so L.G; 1)/ D L.G0; 4)/.

Construction. Introduce five new symbols—D,E,F,j, and >. Set N D fD,E,F,j,>g.
Let G0 D .V 0; ˙;P0; S/ be SCG, with V 0 D V [ N and P0 containing the rules

(1) .S/ ! .F$S111jEj11S2$F/;
(2) .A/ ! .Ci.w// for A ! w 2 Pi, where i D 1; 2;
(3) .F/ ! .FF/;
(4) .$; a; a; $/ ! .";D;D; "/, for a D 0; 1;
(5) .F;D; j; j;D;F/ ! .$; ";>;>; "; $/;
(6) .>;E;>/ ! ."; jEj; "/;
(7) .$/ ! ."/, .E/ ! ."/, .j/ ! ."/.

Claim 5.2.23. L.G; 1)/ D L.G0; 4)/.

Proof. The behaviour of context-free rules remains unchanged under 4). Since the
rules of G0 simulating the derivations of G1 and G2 are identical to the ones of G
simulating both grammars, for every derivation of G

S 1)
� $w11111w2$ D w

where w is generated only by using the rules (1) and(2) and alph.w/\.N1[N2/ D ;,
there is

S 4)
� F$w111jEj11w2$##F D w0

in G0, generated by the corresponding rules (1) and (2), and vice versa. Without
any loss of generality, we can consider such a sentential form in every successful
derivation. Additionally, in G

w 1)
� v; v 2 ˙�

if and only if t0.w1/ D reversal.w2/; then v D t.w/. Therefore, we have to prove

w0
4)

� v0; v0 2 ˙�

if and only if t0.w1/ D reversal.w2/. Then, obviously v0 D v and we can complete
the proof by the following claim.

Claim 5.2.24. In G0, for

S 4)
� w D Fi1$w111jEj11w2$##Fi2 ; alph.w/\ .N1 [ N2/ D ;
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where w is generated only by using the rules (1) and (2),

w 4)
� w0

where w0 2 ˙� if and only if t0.w1/ D reversal.w2/, for some i1; i2 � 0.

The new rule (3) potentially arbitrarily multiplies the number of Fs to the left
and right. Then, Fs from both sequences are simultaneously erasing by using the
rule (5). Thus, without any loss of generality, suppose i1 D i2 equal the number of
future usages of the rule (5).

For the sake of readability, in the next proof, in w1, we omit all symbols from
˙—we consider only nonterminal symbols, which are to be erased.

Proof. If. Suppose w1 D reversal.w2/, then w 4)
� ". We prove this by the induction

on the length of w1,w2, where jw1j D jw2j D k.

Basis. Let k D 0. Then, w D FF$11jEj11$FF. Except the rules (7), the rule (4) is
the only applicable. The center for interchanging the right-hand-side strings must be
chosen between the two rewritten 1s and additionally inserted Ds must remain on
the different sides of the central string jEj. Moreover, if any 1 stays outside the two
Ds, it cannot be erased, so

FF$11jEj11$FF4)FFD1jEj1DFF

Next, the rule (5) rewrites Ds back to $s, erases Fs, and changes js to >s. The center
must be chosen between the two js and inserted >s may not be shifted, otherwise
they appear on the same side of E and the rule (6) is inapplicable. It secures the
former usage of the rule (4) was as expected, so

FFD1jEj1DFF4)F$1>E>1$F

By the rule (6) the symbols > may be rewritten back to js. No left-hand-side string
may be shifted during the application of the rule and the choice of the central
position has no influence, because the neighboring symbols are rewritten. It secures
the former usage of the rule (5) was as expected; therefore,

F$1>E>1$F4)F$1jEj1$F

Then, the same sequence of rules with the same restrictions can be used again to
erase remaining 1s and the check is finished by the rules (7) as

F$1jEj1$F4)FDjEjDF4)$>E>$4)$jEj$4)�"

and the basis holds.
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Induction Hypothesis. Suppose there exists k � 0 such that the claim holds for all
0 � m � k, where

w D Fi1$w111jEj11w2$Fi2 ; jw1j D jw2j D m

Induction Step. Consider G0 generating w with

w D Fi1$w111jEj11w2$Fi2

where jw1j D jw2j D k C 1, w1 D reversal.w2/ D aw0
1, and a 2 f0; 1g. Except the

rules (7), the rule (4) is the only applicable. The center for interchanging of the right-
hand-side strings must be chosen between the two rewritten 0s or 1s and additionally
inserted Ds must remain on the different sides of the central string jEj. Moreover,
the outermost 0s or 1s must be rewritten and Ds may not be shifted between the new
outermost ones, otherwise they cannot be erased.

Fi1$w111jEj11w2$Fi2
4)Fi1Dw0

111jEj11w0
2DFi2

Next, the rule (5) rewrites Ds back to $s, erases Fs, and changes js to >s. The center
must be chosen between the two js and inserted >s may not be shifted, otherwise
they appear on the same side of E and the rule (6) is inapplicable. It secures the
former usage of the rule (4) was as expected.

Fi1Dw0
111jEj11w0

2DFi2
4)Fi01$w0

111>E>11w0
2$Fi02

By the rule (6) the symbols > may be rewritten back to js. No left-hand-side string
may be shifted during the application of the rule and the position of the chosen
center has no influence, because the neighboring symbols are rewritten. It secures
the former usage of the rule (5) was as expected.

Fi01$w0
111>E>11w0

2$Fi024)Fi01$w0
111jEj11w0

2$Fi02 D w0

By the induction hypothesis, w0
4)

�", which completes the proof.

Only If. Suppose w1 ¤ reversal.w2/; there is no w0, where w 4)
� w0 and w0 D ".

Since w1 ¤ reversal.w2/, w1 D vau, w2 D u0a0 reversal.v/, and a ¤ a0. Suppose
both vs are correctly erased and no symbol is skipped producing the sentential form

Fi1$au11jEj11u0a0$Fi2

Next, the rule (4) can be applied to erase outermost 0s or 1s. However, then, there is
0 or 1 outside inserted Ds and, thus, unable to be erased, which completes the proof.

We showed that G0 can generate the terminal string from the sentential form w if
and only if t0.w1/ D reversal.w2/, and the claim holds. ut
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We proved that for some w 2 ˙�, S 1)
�w in G if and only if S 4)

�w in G0,
and the claim holds. ut

Since L.G; 1)/DL.G0; 4)/DL, the proof of Theorem 5.2.22 is completed. ut

Jumping Derivation Mode 5

Definition 5.2.25. Let G D .V , T, P, S/ be an SCG. Let uAv 2 V� and .A/ !

.x/ 2 P. Then, uAv 5)uxv. Let u D u0A1u1 : : :Anun 2 V� and .A1,A2,: : : ,An/ !

.x1,x2,: : : ,xn/ 2 P, for n � 2. Then,

u0A1u1A2 : : : ui�1Ai�1uiAiuiC1 : : :Anun 5)

u01x1u02x2u1 : : : xi�1ui�1uiuiC1xi : : : un1xnun2

where u0 D u01u02 , un D un1un2 . ut

Informally, G obtains u01x1u02x2u1 : : : xi�1ui�1uiuiC1xi : : : un1xnun2 from
u0A1u1A2 : : : ui�1Ai�1uiAiuiC1 : : :Anun by .A1,A2,: : : ,An/ ! .x1,x2,: : : ,xn/ 2 P
in 5) as follows:

(1) A1, A2, . . . , An are deleted;
(2) a central ui is nondeterministically chosen, for some i 2 f0; : : : ; ng;
(3) x1 and xn are inserted into u0 and un, respectively;
(4) xj is inserted between uj�2 and uj�1, for all 1 < j � i;
(5) xk is inserted between uk and ukC1, for all i C 1 � k < n.

Example 5.2.26. Let G D .V , T, P, S/, where V D fS, A, B, $, a, bg, T D fa, bg,
be an SCG with P containing the following rules:

(i) .S/ ! .$AA$/
(ii) .A/ ! .aAb/

(iii) .A;A/ ! .B;B/

(iv) .B; $; $;B/ ! .A; "; ";A/
(v) .A/ ! ."/

Recall Example 5.2.21. 4) interchanges the positions of nonterminals influ-
enced by context-sensitive rules in the direction from the outer ones to the central
ones. Opposed to 4), 5) interchanges nonterminals in the direction from a
nondeterministically chosen center. In the present example, we show one possibility
to control the choice.

Consider G uses 5). First the rule (i) rewrites S to $AA$. Then, G uses the
rule (ii) generating the sentential form

$amAbmanAbn$



5.2 Jumping Grammars: Semi-Parallel Versions 297

where m; n � 0. If the rule (v) is used, derivation is blocked, because there is no
way to erase the symbols $. Next, G uses the context-sensitive rule (iii), which
nondeterministically chooses a center and nondeterministically shifts Bs from the
previous positions of As in the direction from this center. However, for the future
application of the rule (iv) the chosen center must lie between As and moreover Bs
must be inserted as the leftmost and the rightmost symbols of the current sentential
form. The subsequent usage of the rule (iv) preserves As as the leftmost and the
rightmost symbols independently of the effect of 5). Finally, G continues by using
the rule (ii) and eventually finishes twice using the rule (v). If the rule (iii) is used
again, there is no possibility to erase inserted Bs. Consequently,

L.G; 5)/ D
˚
x 2 T� j x D akbkalblambmanbn; k; l;m; n � 0

�

Then, the string aabbabaaabbb is generated by G in the following way:

S 5)$AA$ 5)$aAbA$ 5)$aaAbbA$ 5)$aaAbbaAb$

5)B$aabbab$B 5)AaabbabA 5)AaabbabaAb 5)AaabbabaaAbb

5)AaabbabaaaAbbb 5)aabbabaaaAbbb 5)aabbabaaabbb ut

Theorem 5.2.27. JSC5) D RE.

Proof. As obvious, JSC5) � RE, so we only prove RE � JSC5).
Let G D .V; ˙;P; S/ be the SCG constructed in the proof of Theorem 5.2.5.

Next, we modify G to a new SCG G0 so L.G; 1)/ D L.G0; 5)/.

Construction. Introduce four new symbols—D,E,F, and ı. Set N D fD,E,F,ıg. Let
G0 D .V 0; ˙;P0; S/ be SCG, with V 0 D V [ N and P0 containing the rules

(1) .S/ ! .$S11111S2$ ı E ı F/;
(2) .A/ ! .Ci.w// for A ! w 2 Pi, where i D 1; 2;
(3) .F/ ! .FF/;
(4) .$; a; a; $;E;F/ ! ."; "; $; $; ";D/, for a D 0; 1;
(5) .ı;D; ı/ ! ."; ıEı; "/;
(6) .$/ ! ."/, .E/ ! ."/, .ı/ ! ."/.

Claim 5.2.28. L.G; 1)/ D L.G0; 5)/.

Proof. Context-free rules are not influenced by 5). The rule (3) must generate
precisely as many Fs as the number of applications of the rule (4). Context-sensitive
rules of G0 correspond to context-sensitive rules of G, except the special rule (5).
We show, the construction of G0 forces context-sensitive rules to work exactly in the
same way as the rules of G do.

Every application of the rule (4) must be followed by the application of the
rule (5) to rewrite D back to E, which requires the symbol D between two ıs. It
ensures the previous usage of context-sensitive rule selected the center to the right
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of the rightmost affected nonterminal and all right-hand-side strings changed their
positions with the more left ones. The leftmost right-hand-side string is then shifted
randomly to the left, but it is always ". 5) has no influence on the rule (5).

From the construction of G0, it works exactly in the same way as G does. ut

L.G; 1)/ D L.G0; 5)/ and L.G; 1)/ D L; therefore L.G0; 5)/ D L. Thus,
the proof of Theorem 5.2.27 is completed. ut

Jumping Derivation Mode 6

Definition 5.2.29. Let G D .V , T, P, S/ be an SCG. Let uAv 2 V� and .A/ !

.x/ 2 P. Then, uAv 6)uxv. Let u D u0A1u1 : : :Anun 2 V� and .A1,A2,: : : ,An/ !

.x1,x2,: : : ,xn/ 2 P, for n � 2. Then,

u0A1u1A2u2 : : : ui�1AiuiAiC1uiC1 : : : un�1Anun 6)

u0u1x1u2x2 : : : ui�1xi�1uixiC2uiC1 : : : xnun�1un ut

Informally, G obtains u0u1x1u2x2 : : : ui�1xi�1uixiC2uiC1 : : : xnun�1un from
u0A1u1A2u2 : : : ui�1AiuiAiC1uiC1 : : : un�1Anun by using .A1,A2,: : : ,An/ ! .x1,
x2,: : : ,xn/ 2 P in 6) as follows:

(1) A1, A2, . . . , An are deleted;
(2) a central ui is nondeterministically chosen, for some i 2 f0; : : : ; ng;
(3) xj is inserted between uj and ujC1, for all j < i;
(4) xk is inserted between uk�2 and uk�1, for all k > i C 1.

Example 5.2.30. Let G D .V , T, P, S/, where V D fS, A, B, a, bg, T D fa, bg, be
an SCG with P containing the following rules:

(i) .S/ ! .ABBA/
(ii) .A/ ! .aAb/

(iii) .A;B;B;A/ ! .AB;B;B;BA/
(iv) .A;B;B;A/ ! .";B;B; "/

Consider G uses 6). 6) interchanges nonterminals similarly as 4) does in
Example 5.2.21, however, the central nonterminals are removed. This property
can be used to eliminate nondeterminism of choosing of the center, which we
demonstrate next.

The rules (i) and (ii) are context-free, not affected by 6). First the starting rule (i)
rewrites S to ABBA. Then, G uses the rule (ii) generating the sentential form

amAbmBBanAbn

where m; n � 0. Next, G uses the context-sensitive rule (iii) or (iv). Notice, there
is no rule erasing Bs, thus in both cases the center of interchanging of nonterminals
must be chosen between the two Bs. Otherwise, in both cases there is exactly one



5.2 Jumping Grammars: Semi-Parallel Versions 299

A remaining, thus the only applicable rule is the rule (ii), which is context-free and
not erasing. Therefore, G uses the rule (iii) generating the sentential form

ambmABBAanbn

and continues by using the rule (ii) or it uses the rule (iv) and finishes the derivation.
Subsequently, the language G generates is

L.G; 6)/ D
˚
x 2 T� j x D an1bn1an2bn2 : : : an2k bn2k ; k; ni � 0; 1 � i � 2k

�

Then, the string aabbabaabbab is generated by G in the following way:

S 6)ABBA 6)aAbBBA 6)aaAbbBBA 6)aaAbbBBaAb

6)aabbABBAab 6)aabbaAbBBAab 6)aabbaAbBBaAbab

6)aabbaAbBBaaAbbab 6)aabbabaabbab ut

Theorem 5.2.31. JSC6) D RE.

Proof. Clearly, JSC6) � RE. Next, we prove RE � JSC6).
Let G D .V; ˙;P; S/ be the SCG constructed in the proof of Theorem 5.2.5.

Next, we modify G to a new SCG G0 so L.G; 1)/ D L.G0; 6)/.

Construction. Introduce two new symbols—E and F. Let G0 D .V 0; ˙;P0; S/ be
SCG, with V 0 D V [ fE;Fg and P0 containing the rules

(1) .S/ ! .F$S11111S2$/;
(2) .A/ ! .Ci.w// for A ! w 2 Pi, where i D 1; 2;
(3) .F/ ! .FF/;
(4) .F; $; a; a; $/ ! .E;E; "; $; $/, for a D 0; 1;
(5) .$/ ! ."/.

Claim 5.2.32. L.G; 1)/ D L.G0; 6)/.

Proof. Context-free rules are not influenced by 6). Context-sensitive rules of G0

closely correspond to context-sensitive rules of G. The new symbols are used to
force modified rules to act in the same way as sample ones do. The symbols F
are first multiplied and then consumed by context-sensitive rules, so their number
must equal the number of usages of these rules. The new symbols E are essential. E
never appears on the left-hand side of any rule, thus whenever it is inserted into the
sentential form, no terminal string can be generated. Therefore, the center is always
chosen between two Es, which are basically never inserted, and other right-hand-
side strings are then inserted deterministically.

G0 with 6) works in the same way as G with 1) does. ut

L.G; 1)/ D L.G0; 6)/, hence L.G0; 6)/ D L. Thus, the proof of Theo-
rem 5.2.31 is completed. ut



300 5 Jumping Grammars and Discontinuous Computation

Jumping Derivation Mode 7

Definition 5.2.33. Let G D .V , T, P, S/ be an SCG. Let .A/ ! .x/ 2 P and
uAv 2 V�. Then, uAv 7)uxv. Let u D u0A1u1 : : :Anun 2 V� and .A1,A2,: : : ,An/ !

.x1,x2,: : : ,xn/ 2 P, for n � 2. Then,

u0A1u1A2 : : : ui�1AiuiAiC1uiC1 : : :Anun 7)

u0x2u1 : : : xiui�1uiuiC1xiC1 : : : un ut

Informally, by using the rule .A1,A2,: : : ,An/ ! .x1,x2,: : : ,xn/ 2 P, G obtains
u0x2u1 : : : xiui�1uiuiC1xiC1 : : : un from u0A1u1A2 : : : ui�1AiuiAiC1uiC1 : : :Anun in
7) as follows:

(1) A1, A2, . . . , An are deleted;
(2) a central ui is nondeterministically chosen, for some i 2 f0 : : : ; ng;
(3) xj is inserted between uj�2 and uj�1, for all 1 < j � i;
(4) xk is inserted between uk and ukC1, for all i C 1 � k < n.

Example 5.2.34. Let G D .V , T, P, S/, where V D fS, A, B, C, $, a, b, cg, T D fa,
b, cg, be an SCG with P containing the following rules:

(i) .S/ ! .ABC$/
(ii) .A/ ! .aAa/

(iii) .B/ ! .bBb/
(iv) .C/ ! .cCc/

(v) .A;B;C/ ! .A;B;C/
(vi) .A;B/ ! .A;B/

(vii) .A; $/ ! ."; "/

Consider G uses 7). 7) interchanges nonterminals in the direction from the
nondeterministically chosen center and erases the outermost nonterminals. In this
example, we show that we may force the center to lie outside the part of a sentential
form between the affected nonterminals.

The derivation starts by using the starting rule (i) and continues by using the
rules (ii) through (iv) generating the sentential form

amAambnBbnclCcl$

where m; n; l � 0. Next, G uses the context-sensitive rule (v) choosing the center
to the left of A erasing C. If a different central position is chosen, the symbol A is
erased while B or C cannot be erased in the future and the derivation is blocked.
There is the same situation, if one of the rules (vi) or (vii) is used instead. Notice,
no rule erases B or C. Then, the derivation continues by using the rules (ii) and (iii)
and eventually the rule (vi) rewriting B to A and erasing B. Otherwise, A is erased
and the symbol $ cannot be erased any more. G continues by using the rule (ii) and
finally finishes the derivation with the rule (vii). Subsequently,

L.G; 7)/ D
˚
x 2 T� j x D a2m1bn1a2m2bn1clbn2a2m3bn2cl;

m1;m2;m3; n1; n2; l � 0
�
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Then, the string aabaabccbaabcc is generated by G in the following way:

S 7)ABC$ 7)aAaBC$ 7)aAabBbC$ 7)aAabBbcCc$

7)aAabBbccCcc$ 7)aabAbccBcc$ 7)aabaAabccBcc$ 7)

aabaAabccbBbcc$

7)aabaabccbAbcc$ 7)aabaabccbaAabcc$ 7)aabaabccbaabcc ut

Theorem 5.2.35. JSC7) D RE.

Proof. Clearly, JSC7) � RE. We prove RE � JSC7).
Let G D .V; ˙;P; S/ be the SCG constructed in the proof of Theorem 5.2.5.

Next, we modify G to a new SCG G0 so L.G; 1)/ D L.G0; 7)/.

Construction. Introduce four new symbols—E,F,H, and j. Set N D fE,F,H,jg. Let
G0 D .V 0; ˙;P0; S/ be SCG, with V 0 D V [ N and P0 containing the rules

(1) .S/ ! .FHS111$j$11S2/;
(2) .A/ ! .Ci.w// for A ! w 2 Pi, where i D 1; 2;
(3) .F/ ! .FF/;
(4) .a; $; $; a/ ! .";E;E; "/, for a D 0; 1;
(5) .F;H;E; j;E/ ! .H; $; j; $; "/;
(6) .$/ ! ."/, .H/ ! ."/, .j/ ! ."/.

Claim 5.2.36. L.G; 1)/ D L.G0; 7)/.

Proof. The behaviour of context-free rules remains unchanged under 7). Since the
rules of G0 simulating the derivations of G1, G2, respectively, are identical to the
ones of G simulating both grammars, for every derivation of G

S 1)
� $w11111w2$ D w

where w is generated only by using the rules (1) and (2) and alph.w/\.N1[N2/ D ;,
there is

S 7)
� FHw111$j$11w2 D w0

in G0, generated by the corresponding rules (1) and (2), and vice versa. Without
any loss of generality, we can consider such a sentential form in every successful
derivation. Additionally, in G

w 1)
� v; v 2 ˙�

if and only if t0.w1/ D reversal.w2/; then v D t.w/. Therefore, we have to prove

w0
4)

� v0; v0 2 ˙�
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if and only if t0.w1/ D reversal.w2/. Then, obviously v0 D v and we can complete
the proof by the following claim.

Claim 5.2.37. In G0, for some i � 1,

S 7)
� w D FiHw1$j$w2E

where w is generated only by using the rules (1) through (3) and alph.w/ \ .N1 [

N2/ D ;. Then,

w 7)
� w0

where w0 2 ˙� if and only if t0.w1/ D reversal.w2/.

The new rule (3) may potentially arbitrarily multiply the number of Fs to the
left. Then, Fs are erasing by using the rule (5). Thus, without any loss of generality,
suppose i equals the number of the future usages of the rule (5).

For the sake of readability, in the next proof we omit all symbols in w1 from
˙—we consider only nonterminal symbols, which are to be erased.

Proof. If. Suppose w1 D reversal.w2/, then w 7)
� ". We prove this by the induction

on the length of w1, w2, where jw1j D jw2j D k. Then, obviously i D k. By the
construction of G0, the least k equals 2, but we prove the claim for all k � 0.

Basis. Let k D 0. Then,

w D H$j$

By the rules (6)

H$j$ 7)
� "

and the basis holds.

Induction Hypothesis. Suppose there exists k � 0 such that the claim holds for all
m, where

w D FmHw1$j$w2; jw1j D jw2j D m; 0 � m � k

Induction Step. Consider G0 generates w, where

w D FkC1Hw1$j$w2; jw1j D jw2j D k C 1

Since w1 D reversal.w2/ and jw1j D jw2j D k C 1, w1 D w0
1a, w2 D aw0

2.
The symbols a can be erased by application of the rules (4) and (5) under several
conditions. First, when the rule (4) is applied, the center for interchanging right-
hand-side strings must be chosen between the two $s, otherwise both Es appear on
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the same side of the symbol j and the rule (5) is not applicable. Next, no 0 or 1 may
be skipped, while proceeding in the direction from the center to the edges. Finally,
when the rule (5) is applied, a center must be chosen to the left of F, otherwise H is
erased and the future application of this rule is excluded.

FkC1Hw0
1a$j$aw0

2 7) FkC1Hw0
1DjDw0

2 7) FkHw0
1$j$w0

2 D w0

By the induction hypothesis, w0
7)

�", which completes the proof.

Only If. Suppose w1 ¤ reversal.w2/, then, there is no w0, where w 7)
� w0 and

w0 D ".
Since w1 ¤ reversal.w2/, w1 D uav, w2 D reversal.v/a0u0, and a ¤ a0. Suppose

both vs are correctly erased and no symbol is skipped producing the sentential form

FiHua$j$a0u0

Next the rule (4) can be applied to erase innermost 0s or 1s. However, since a ¤ a0,
even if the center is chosen properly between the two $s, there is 0 or 1 between
inserted Es and, thus, unable to be erased, which completes the proof.

We showed that G0 can generate the terminal string from the sentential form w if
and only if t0.w1/ D reversal.w2/, and the claim holds. ut

We proved S 1)
�w, w 2 ˙�, in G if and only if S 7)

�w in G0, hence
L.G; 1)/ D L.G0; 7)/ and the claim holds. ut

Since L.G; 1)/ D L.G0; 7)/ and L.G; 1)/ D L, the proof of Theorem 5.2.35
is completed. ut

Jumping Derivation Mode 8

Definition 5.2.38. Let G D .V , T, P, S/ be an SCG. Let u D u0A1u1 : : :Anun 2 V�

and .A1,A2,: : : ,An/ ! .x1,x2,: : : ,xn/ 2 P, for n � 1. Then,

u0A1u1A2u2 : : :Anun 8)v0x1v1x2v2 : : : xnvn

where u0z1 D v0, z2un D vn, ju0u1 : : : uj�1j � jv0v1 : : : vjj, jujC1 : : : unj �

jvjvjC1 : : : vnj, 0 < j < n, and z1; z2 2 V�. ut

Informally, G obtains v0x1v1x2v2 : : : xnvn from u0A1u1A2u2 : : :Anun by using
.A1,A2,: : : ,An/ ! .x1,x2,: : : ,xn/ 2 P in 8) as follows:

(1) A1, A2, . . . , An are deleted;
(2) x1 and xn are inserted into u1 and un�1, respectively;
(3) xi is inserted into ui�1ui, for all 1 < i < n, to the right of xi�1 and to the left of

xiC1.
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Example 5.2.39. Let G D .V , T, P, S/, where V D fS, S, A, B, C, a, b, cg, T D fa,
b, cg, be an SCG with P containing the following rules:

(i) .S/ ! .AS/
(ii) .S/ ! .S/

(iii) .S/ ! .bScC/

(iv) .S/ ! .B/
(v) .B/ ! .BB/

(vi) .A;B;C/ ! .a; "; "/

Consider G uses 8). 8) acts in a similar way as 2) does. When a rule is to
be applied, there is a nondeterministically chosen center in between the affected
nonterminals and rule right-hand-side strings can be shifted in the direction to this
center, but not farther than the neighboring affected nonterminal was.

The rules (i) through (v) are context-free. Without any loss of generality, we
suppose these rules are used only before the first application of the rule (vi)
producing the string

AmbnBl.cC/n

The derivation finishes with the sequence of applications of the rule (vi). For As,
Bs, and Cs are being rewritten together, m D n D l. Moreover, inserted a is always
between the rewritten A and B. Subsequently,

L.G; 8)/ D
˚
x 2 T� j x D wcn;w 2 fa; bg�; #a.w/ D #b.w/ D n; n � 1

�

For example, the string baabbaccc is generated by G in the following way:

S 8)AS 8)AAS 8)AAAS 8)AAAS 8)AAAbScC 8)AAAbbScCcC

8)AAAbbbScCcCcC 8)AAAbbbBcCcCcC 8)AAAbbbBBcCcCcC

8)AAAbbbBBBcCcCcC 8)AAbbbaBBccCcC 8)AbabbaBcccC 8)

baabbaccc ut

Theorem 5.2.40. JSC8) D RE.

Proof. Prove this theorem by analogy with the proof of Theorem 5.2.9. ut

Jumping Derivation Mode 9

Definition 5.2.41. Let G D .V , T, P, S/ be an SCG. Let u D u0A1u1 : : :Anun 2 V�

and .A1,A2,: : : ,An/ ! .x1,x2,: : : ,xn/ 2 P, for n � 1. Then,

u0A1u1A2u2 : : :Anun 9)v0x1v1x2v2 : : : xnvn

where u0 D v0z1, un D z2vn, ju0u1 : : : uj�1j � jv0v1 : : : vjj, jujC1 : : : unj �

jvjvjC1 : : : vnj, 0 < j < n, and z1; z2 2 V�. ut
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Informally, G obtains v0x1v1x2v2 : : : xnvn from u0A1u1A2u2 : : :Anun by using
.A1,A2,: : : ,An/ ! .x1,x2,: : : ,xn/ 2 P in 9) as follows:

(1) A1, A2, . . . , An are deleted;
(2) x1 and xn are inserted into u0 and un, respectively;
(3) xi is inserted into ui�1ui, for all 1 < i < n, to the right of xi�1 and to the left of

xiC1.

Example 5.2.42. Let G D .V , T, P, S/, where V D fS, S, A, B, C, $, a, b, cg,
T D fa, b, cg, be an SCG with P containing the following rules:

(i) .S/ ! .aSa/
(ii) .S/ ! .A/

(iii) .A/ ! .$A/
(iv) .A/ ! .C/

(v) .C/ ! .cBC$/
(vi) .C/ ! ."/

(vii) .$;B; $/ ! ."; b; "/

Consider G uses 9). 9) acts similarly to 3) with respect to the direction of
shift of the rule right-hand sides, but with limitation as in 8). When a rule is to
be applied, there is a nondeterministically chosen center in between the affected
nonterminals and rule right-hand-side strings can be shifted in the direction from
this center, but not farther than the neighboring affected nonterminal was.

The rules (i) through (vi) are context-free. Without any loss of generality, we can
suppose these rules are used only before the first application of the rule (vii), which
produce the sentential form

am$n.cB/l$lam

The derivation finishes with the sequence of applications of the rule (vii). The
symbols $ and Bs are being rewritten together, thus n D l must hold. Additionally,
9) ensures, b is always inserted between the rewritten $s. Subsequently,

L.G; 9)/ D
˚
x 2 T� j x D amwam;w 2 fb; cg�; #b.w/ D #c.w/;m � 0

�

For example, the string aabcbcaa is generated by G in the following way:

S 9)aSa 9)aaSaa 9)aaAaa 9)aa$Aaa 9)aa$$Aaa

9)aa$$Caa 9)aa$$cBC$aa 9)aa$$cBcBC$$aa

9)aa$$cBcB$$aa 9)aa$bccB$aa 9)aabcbcaa ut

Theorem 5.2.43. JSC9) D RE.

Proof. Prove this theorem by analogy with the proof of Theorem 5.2.16. ut
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Open Problem Areas

Finally, let us suggest some open problem areas concerning the subject of this
section.

Open Problem 5.2.44. Return to derivation modes (1) through (9) in Sect. 5.2.2.
Introduce and study further modes. For instance, in a more general way, discuss
a jumping derivation mode, in which the only restriction is to preserve a mutual
order of the inserted right-hand-side strings, which can be nondeterministically
spread across the whole sentential form regardless of the positions of the rewritten
nonterminals. In a more restrictive way, study a jumping derivation mode over
words satisfying some prescribed requirements, such as a membership in a regular
language.

Open Problem 5.2.45. Consider propagating versions of jumping scattered con-
text grammars. In other words, rule out erasing rules in them. Reconsider the
investigation of the present section in its terms.

Open Problem 5.2.46. The present section has often demonstrated that some
jumping derivation modes work just like ordinary derivation modes in scattered con-
text grammars. State general combinatorial properties that guarantee this behaviour.

Open Problem 5.2.47. Establish normal forms of scattered context grammars
working in jumping ways.



Chapter 6
Algebra, Grammars, and Computation

In terms of algebra, the context-free and E0L grammatical derivations are tradition-
ally defined over the free monoids generated by total alphabets of these grammars
under the operation of concatenation. The present chapter, however, introduces and
investigates these derivations over different algebraic structures in order to increase
the generative power of these grammars. (see [Med90a, Med95b, MK02]).

Specifically, in this chapter, we define the context-free and E0L derivations over
free groups, which represent a fundamental algebraic structure in mathematics. By
this natural modification of the grammatical derivations, we significantly increase
the generative power of context-free and E0L grammars. As a matter of fact, we
show that they characterize the family of recursively enumerable languages under
this alternative definition. In addition, this characterization is very economical
because it is based upon the context-free grammars with no more than eight
nonterminals and the E0L grammars with no more than six nonterminals.

From a broader perspective, the results achieved in this chapter demonstrate
that algebraically alternative definitions of some fundamental concepts, such as
derivations, in grammatically based models may result into a significant increase
of their generative power. As a result, the study of these alternative grammatical
concepts definitely represents an important investigation area in the formal language
theory today.

6.1 Sequential and Parallel Generation over Free Groups:
Conceptualization

The classical theory of formal languages defines grammatical derivations over the
free monoids generated by total alphabets of these grammars under the operation
of concatenation. The present section, however, defines derivations over different
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algebraic structures. Specifically, it introduces sequential derivations made by
context-free grammars and, in addition, parallel derivations made by E0L grammars
over free groups.

6.1.1 Definitions

Let us recall basic notions concerning languages (see Sect. 2.1) and phrase-structure
grammars in Kuroda normal form (see Definition 3.1.1). Next, this section mentions
only the new notions used in this chapter.

For an alphabet, V , V� represents the set of all strings over V , and is, thus, a
free monoid generated by V under the operation of concatenation. Furthermore, Vı

represents the free group generated by V under the operation of concatenation. The
unit of Vı is denoted by ". For every string, w 2 Vı, there is the inverse string of w,
denoted by w, with the property that ww D ww D ".

The inverse string of w D a1a2 : : : an, where ai 2 V , i D 1; 2; : : : ; n, n � 0,
is defined as w D anan�1 : : : a1. The string is said to be reduced, if it contains no
pairs of the form xx or xx, where x; x 2 Vı. Let w D uxyv 2 Vı be a string, where
x; y; u; v 2 Vı and x D y. To express that x and y are mutually inverse and can
be distracted, we underline xy in uxyv. As well as for any string w 2 V�, for any
reduced string w 2 Vı, jwj denotes the length of w.

For example, if V D fa; b; c; a; b; cg, then the inverse string of bcaa 2 Vı is
aacb 2 Vı. Because aa D aa D ", bb D bb D " and cc D cc D ", it is obvious that
bcaaaacb D aacbbcaa D ".

Definition 6.1.1. A context-free grammar (see Sect. 2.3.1) over a free group (a
CFGı for short) is a quadruple, G D .V;T;P; S/, where V , S, and T have the same
meaning as for classical context-free grammar and P is a finite set of rules of the
form A ! x, where A 2 V � T and x 2 Vı. If A ! x 2 P, u D u1Au2 and
v D u1xu2, where u; v 2 Vı, then u directly derives v over Vı by using A ! x in G,
symbolically written as u ı) v ŒA ! x� in G or, simply, u ı) v. Let ı)n denotes
the n�fold product of ı ), where n � 0. Beyond, let ı )C and ı )� denote the
transitive closure of ı) and the transitive-reflexive closure of ı), respectively. The
language generated by G over Vı, L.G/ı, is defined as L.G/ı D fy 2 T� W S ı)� y
in Gg. ut

Definition 6.1.2. An E0L grammar (see Sect. 2.3.4) over a free group (an E0Lı

grammar for short) is a quadruple, G D .V;T;P;w/, where V and T have the same
meaning as for classical E0L grammars, P is a finite set of rules of the form X ! x,
where X 2 V , x 2 Vı, and w 2 Vı is the axiom. If A1 ! x1; : : : ;An ! xn 2

P, u D A1 : : :An and v D x1 : : : xn, where u; v 2 Vı, then u directly derives v
over Vı by using Ai ! xi in G for i D 1; 2; : : : ; n, symbolically written as u ı )

v ŒA1 ! x1; : : : ;An ! xn� or, simply, u ı ) v in G. Let ı )n denotes the n�fold
product of ı), where n � 0. Furthermore, let ı)C and ı)� denote the transitive
closure of ı) and the transitive-reflexive closure of ı), respectively. The language
generated by G over Vı, L.G/ı, is defined as L.G/ı D fy 2 T� W w ı)� y in E0L
grammar Gg. ut
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The families of languages generated by context-free grammars over free groups
and languages generated by E0L grammars over free groups are denoted by CFı

and E0Lı, respectively.

6.2 Results: Computational Completeness

In the present section, we show that by the modification of the grammatical
derivations described in the previous section, we significantly increase the gener-
ative power of context-free and E0L grammars. In fact, we demonstrate that they
characterize the family of recursively enumerable languages under this alternative
definition.

Lemma 6.2.1. For every phrase-structure grammar, H D .V;T;P; S/, there exists
an equivalent phrase-structure grammar, G D .VG;T;PG; S/, so that each rule in
PG has one of these forms:

(i) AB ! CD, where A ¤ C;
(ii) A ! BC, where A ¤ B;

(iii) A ! x,

where VG D NG [ T, A;B;C;D 2 NG, and x 2 T [ f"g.

Proof. Let H D .V;T;P; S/ be a grammar, N D V � T. Without any loss of
generality, assume that H satisfies the Kuroda normal form. Define the grammar
G D .VG;T;PG; S/, VG D NG [ T, where NG and PG are constructed as follows:

I. set NG D N and add P’s rules that satisfy (i) through (iii) to PG;
II. for every AB ! AD 2 P, add AB ! A0D0, A0D0 ! AD to PG and A0, D0 to

NG, where A0 and D0 are two new nonterminals;
III. for every A ! AB 2 P, add A ! A0B0, A0B0 ! AB to PG and A0, B0 to NG,

where A0 and B0 are two new nonterminals.

A formal proof that H and G are equivalent is left for the reader. ut

Theorem 6.2.2. CFı D RE.

Proof. Construction. Consider that G D .V;T;P; S/ is a phrase-structure grammar,
N D V � T. Without any loss of generality, assume that G satisfies the properties
described in Lemma 6.2.1.

We construct the CFı grammar, � D .V� ;T;P� ; S� /, where N� D V� �

T D f0; 0; 1; 1; 2; 2; S� ; S� g. Define the injections, g W N ! f0; 1gn and
h W N ! f0; 1g2n, such that h.A/ D g.A/ reversal.g.A//, where A 2 N and
n D dlog2.card.N//e. Note that the inverses of 0; 1; 2 2 N� are 0; 1; 2 2 N� ,
respectively. Furthermore, if h.A/ D a1 : : : anan : : : a1, ai 2 f0; 1g for i D

1; 2; : : : ; n, n � 0, then h.A/ D a1 : : : anan : : : a1. The set of rules, P� , is constructed
as follows:
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I. add S� ! h.S/2 to P� ;
II. for every AB ! CD 2 P, add 2 ! h.B/2h.A/22h.C/2h.D/2 to P� ;

III. for every A ! BC 2 P, add 2 ! h.A/22h.B/2h.C/2 to P� ;
IV. for every A ! x 2 P, add 2 ! h.A/x to P� ,

where A;B;C;D 2 N and x 2 T [ f"g. The construction of � is completed.

Basic Idea. In essence, � codes G0s nonterminals in a binary way. � simulates G0s
application of a context-free rule of the form A ! BC (see III.) so it rewrites 2 that
follows h.A/ to h.A/22h.B/2h.C/2; as a result, a substring h.A/h.A/ is produced.
This proper form is eliminated by a group reduction; any improper form—that is,
any form different from h.A/h.A/—cannot be eliminated in this way, so a terminal
string is not generated at this point. � simulates the application of a rule of the
form A ! x from IV. analogously. In a similar way, � simulates the application
of AB ! CD (see II.). In that case, however, it rewrites 2 that follows h.A/2h.B/
to a string that starts with the inverse binary code of two nonterminals, h.B/2h.A/,
rather than a single nonterminal.

Proof. First, we prove L.G/ � L.� /ı. By induction, we demonstrate Claims 6.2.3
and 6.2.4. Without any loss of generality, assume that every w 2 L.G/ can be
generated by derivation of the form S )� w0 )� w, where w0 2 N� is generated
from S using only rules of the form AB ! CD, A ! BC, and A ! ", while w is
obtained from w0 using only rules of type A ! a, where A;B;C;D 2 N and a 2 T.

Claim 6.2.3. If S )i y1y2 : : : ym in G, then S� ı )iC1 h.y1/2h.y2/2 : : : h.ym/2 in
� , where y1; : : : ; ym 2 N, m � 0.

Proof. Basis. Let i D 0. Then, S )0 S in G. By construction, S� ! h.S/2 2 P� ,
so S� )1 h.S/2 in � .

Induction Hypothesis. Assume that the implication of Claim 6.2.3 holds for all 0 �

i � l, where l is a non-negative integer.

Induction Step. Consider any derivation of the form S )lC1 ˇ, where ˇ 2 N�.
Express this derivation as S )l ˛ ) ˇ, where ˛ 2 N�. Express ˛ D

y1y2 : : : yk, where y1; : : : ; yk 2 N, k � 0. By the induction hypothesis, S� ı )lC1

h.y1/2h.y2/2 : : : h.yk/2 D ˛� in � . Note that in the proof of this claim, we express
the prefix and suffix of the current sentential form as u D p1 : : : pr and v D q1 : : : qs,
respectively, where pj; qk 2 N, for j D 1; : : : ; r, k D 1; : : : ; s, r; s � 0. The
following cases 1. through 3. cover all possibilities how G can make ˛ ) ˇ.

1. Let AB ! CD 2 P, where A;B;C;D 2 N. Then, ˛ D uABv ) uCDv D ˇ in
G. By II., 2 ! h.B/2h.A/22h.C/2h.D/2 2 P� and ˛� D h.p1/2 : : :
: : : h.pr/2h.A/2h.B/2h.q1/2 : : : h.qs/2

ı) h.p1/2 : : :
: : : h.pr/2h.A/2h.B/h.B/2h.A/22h.C/2h.D/2h.q1/2 : : : h.qs/2 D

D h.p1/2 : : : h.pr/2h.C/2h.D/2h.q1/2 : : : h.qs/2 D ˇ� in � . Thus S )lC1 ˇ in
G and S� ı)lC2 ˇ� in � .
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2. Let A ! BC 2 P, where A;B;C 2 N. Then, ˛ D uAv ) uBCv D ˇ in G.
By III., 2 ! h.A/22h.B/2h.C/2 2 P� and ˛� D h.p1/2 : : :
: : : h.pr/2h.A/2h.q1/2 : : : h.qs/2

ı) h.p1/2 : : :
: : : h.pr/2h.A/h.A/22h.B/2h.C/2h.q1/2 : : : h.qs/2 D h.p1/2 : : :

: : : h.pr/2h.B/2h.C/2h.q1/2 : : : h.qs/2 D ˇ� in � . Clearly, S )lC1 ˇ in G and
S� ı)lC2 ˇ� in � as well.

3. Let A ! " 2 P, where A 2 N. Then, ˛ D uAv ) uv D ˇ in G. By IV.,
2 ! h.A/ 2 P� and ˛� D h.p1/2 : : :
: : : h.pr/2h.A/2h.q1/2 : : : h.qs/2

ı) h.p1/2 : : :
: : : h.pr/2h.A/h.A/22h.q1/2 : : : h.qs/2 D h.p1/2 : : :
: : : h.pr/2h.q1/2 : : : h.qs/2 D ˇ� in � . Clearly, S )lC1 ˇ in G and S� ı )lC2

ˇ� in � .

The induction step is completed, so Claim 6.2.3 holds. ut

Now, we establish Claim 6.2.4.

Claim 6.2.4. If y1 : : : yk )k w in G using only rules of the form A ! a 2 P, then
h.y1/2 : : : h.yk/2

ı)k w in � , where A; yi 2 N, for i D 1; 2; : : : ; k, k � 0, a 2 T,
and w 2 T�.

Without any loss of generality, assume that w is produced by the leftmost
derivations.

Proof. Basis. Let k D 0. Then, " )0 " in G. Clearly, " ı)0 " in � .

Induction Hypothesis. Assume that the implication of Claim 6.2.4 holds for every
0 � k � l, where l is a non-negative integer.

Induction Step. Consider any sentential form y1y2 : : : ylylC1, where yi 2 N, for
i D 1; 2; : : : ; l C 1. Express the derivation from Claim 6.2.4 as y1y2 : : : ylylC1 )l

wylC1 ) wa, where w 2 T�, a 2 T.
Let ylC1 ! a 2 P, where ylC1 2 N and a 2 T. Then, wylC1 ) wa in G. By IV.,

2 ! h.ylC1/a 2 P� , so wh.ylC1/2
ı ) wh.ylC1/h.ylC1/a D wa in � . Clearly,

h.y1/2h.y2/2 : : : h.yl/2h.ylC1/2
ı)lC1 wa in � .

The induction step is completed, so Claim 6.2.4 holds. ut

By Claims 6.2.3 and 6.2.4, L.G/ � L.� /ı.
Next, we prove L.� /ı � L.G/. Again, assume that every w 2 L.� /ı can be

generated by a derivation of the form S� ı )� w0 ı )� w, where w0 is generated
from S� using only rules of form S� ! h.S/2, 2 ! h.B/2h.A/22h.C/2h.D/2,
2 ! h.A/22h.B/2h.C/2, and 2 ! h.A/, while w is obtained from w0 using only
rules of type 2 ! h.A/a, where A;B;C;D 2 N and a 2 T. Note that w0 is of the
form h.y1/2 : : : h.ym/2, where yj 2 N, for j D 1; : : : ;m, m � 0. By induction on any
i � 0, we first establish Claim 6.2.5.

Claim 6.2.5. If S� ı ) h.S/2 ı )i h.y1/2h.y2/2 : : : h.ym/2 in � , then S )i

y1y2 : : : ym in G, where yj 2 N, for j D 1; 2; : : : ;m.
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Proof. Basis. Let i D 0. Then, m D 1, h.y1/ D h.S/ and S� ı) h.S/2 ı)0 h.S/2
in � . In G, y1 D S and S )0 S.

Induction Hypothesis. Assume that Claim 6.2.5 holds for all 0 � i � l, where l is a
non-negative integer.

Induction Step. Consider any derivation of the form S� ı) h.S/2 ı)lC1 ˇ. More
precisely, express this derivation as S� ı) h.S/2 ı)l ˛ ı) ˇ, where ˛; ˇ 2 Vı

� .
To be accurate, ˛ and ˇ are of the form h.y1/2 : : : h.yk/2, where yj 2 N, for j D

1; : : : ; k, k � 0.
Assume that ˛ D h.y1/2h.y2/2 : : : h.yk/2, where yj 2 N, for j D 1; : : : ; k, k � 0.

By the induction hypothesis, S )l y1y2 : : : yk. There are the following possibilities
how � can make the derivation ˛ ı) ˇ. Note that in what follows, u; v 2 Vı

� and
they are of the same form as ˛ and ˇ; in the case of G, uG; vG 2 N�.

1. Let 2 ! h.A/ 2 P� , where A 2 N. Then,

˛ D uh.X/2h.Y/2v ) uh.X/h.A/h.Y/2v D ˇ

where X;Y 2 N. Express the substrings h.X/, h.A/, and h.Y/ as h.X/ D

X1 : : :XnXn : : :X1, h.A/ D A1 : : :AnAn : : :A1, and h.Y/ D Y1 : : : YnYn : : : Y1,
respectively, where Xi, Ai, Yi 2 N� , for i D 1; 2; : : : n. Recall that

n D dlog2.card.N//e

and more precisely, Xi, Ai, Yi 2 f0; 1g. In 1.a. through 1.d, given next, we cover
all possible cases concerning X, Y, and A.

1.a Consider that X 6D A and A 6D Y. Let Xi D Ai and Aj D Yj, for
every i D 1; 2; : : : ; r and j D 1; 2 : : : ; s, where 0 � r < n, 0 � s <
n. Then, ˇ D uX1 : : :XnXn : : :X1A1 : : :AnAn : : :A1Y1 : : : YnYn : : : Y12v
is reduced to ˇ D uX1 : : :XnXn : : :XrC1ArC1 : : :AnAn : : :AsC1YsC1 : : :

: : : YnYn : : : Y12v. Since the reduced sentential form contains the substring
of inverses, ArC1 : : :AnAn : : :AsC1, and, moreover,

jX1 : : :XnXn : : :XrC1ArC1 : : :AnAn : : :AsC1YsC1 : : : YnYn : : : Y1j 6D 2n

and P� contains no rule rewriting 0s and 1s, there is no way of removing
them. Thus, we are not able to produce a valid terminal string.

1.b Now, consider that X D A and A 6D Y. Then, ˇ is reduced to ˇ D

uY1 : : : YnYn : : : Y12v D uh.Y/2v. Observe that h.X/ is removed. By IV.,
A ! " 2 P. Since A D X, then ˛G D uGXYvG ) uGYvG D ˇG in G.
Clearly, S )lC1 ˇG in G and Claim 6.2.5 holds.

1.c Next, consider that X 6D A and A D Y. Then, ˇ is reduced to ˇ D

uX1 : : :XnXn : : :X12v D uh.X/2v. Observe that, in this case, h.Y/ is
removed. By IV., A ! " 2 P. Since A D Y, then ˛G D uGXYvG )

uGXvG D ˇG in G. Therefore, S )lC1 ˇG in G and Claim 6.2.5 holds
too.
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1.d Finally, consider that X D A and A D Y. Then, ˇ D uX1 : : :XnXn : : :

: : :X12v D uh.X/2v D uY1 : : : YnYn : : : Y12v D uh.Y/2v. In that case,
h.X/ or h.Y/ is removed. By IV., A ! " 2 P. Since A D X D Y, then
˛G D uGXYvG ) uGXvG D uGYvG D ˇG and, thus, S )lC1 ˇG in G.
You can see that Claim 6.2.5 holds as well.

2. Let 2 ! h.A/22h.B/2h.C/2 2 P� , where A;B;C 2 N. Then,

˛ D uh.X/2h.Y/2v ) uh.X/h.A/22h.B/2h.C/2h.Y/2v D ˇ

where X;Y 2 N. By Lemma 6.2.1, A 6D B. In 2.a. and 2.b, given next, we cover
all possible cases concerning X and A.

2.a Consider that X 6D A. Observe that the situation is analogical to 1.a, so the
derivation of a terminal string is blocked.

2.b Now, consider that X D A. In that case, the situation is analogical to 1.b.
The resulting sentential form is ˇ D uh.B/2h.C/2h.Y/2v. By III., A !

BC 2 P, so ˛G D uGXYvG D uGAYvG ) uGBCYvg D ˇG. Obviously,
S )lC1 ˇG in G and Claim 6.2.5 holds.

3. Let 2 ! h.B/2h.A/22h.C/2h.D/2 2 P� , where A;B;C;D 2 N. Then, ˛ D

uh.X/2h.Y/2h.Z/2v ı ) uh.X/2h.Y/h.B/2h.A/22h.C/2h.D/2h.Z/2v D ˇ. By
Lemma 6.2.1, A 6D C. In 3.a. through 3.c, given next, we cover all possible cases
concerning X, Y, A, and B.

3.a Consider that Y D B and X 6D A. Then, the subsequence 2h.Y/h.B/2 is
erased and the resulting, still non-completely-reduced, sentential form is
ˇ D uh.X/h.A/h.C/2h.D/2h.Z/2v, so the situation is analogical to 1.a.
and the derivation of a valid terminal string is blocked.

3.b Now, consider that Y 6D B. Then, the resulting non-completely-reduced
sentential form is ˇ D uh.X/2h.Y/h.B/2h.A/h.C/2h.D/2h.Z/2v.
Express the subsequences h.X/, h.Y/, h.B/, h.A/, and h.C/ as h.X/ D

X1 : : :XnXn : : :X1, h.Y/ D Y1 : : : YnYn : : : Y1, h.B/ D B1 : : :BnBn : : :

: : :B1, h.A/ D A1 : : :AnAn : : :A1, and h.C/ D C1 : : :CnCn : : :C1,
respectively, where Bi, Ci;Xi; Yi 2 f0; 1g, for i D 1; 2; : : : n. Recall that
by Lemma 6.2.1, A 6D C. Assume that Yi D Bi, for every i D 1; 2; : : : ; r
and Aj D Cj, for every j D 1; 2; : : : ; s, where 0 � r < n and 0 � s < n.
Then, ˇ is reduced to uX1 : : :XnXn : : :X12Y1 : : : YnYn : : : YrC1BrC1 : : :

: : :BnBn : : :B12A1 : : :AnAn : : :AsC1CsC1 : : :CnCn : : :C12h.D/2h.z/2v.
Observe that the possible equality or unequality of X and A is not
important in this case. Since the reduced sentential form contains the
substring BrC1 : : :BnBn : : :B12A1 : : :AnAn : : :AsC1 and moreover, the
constant length 2n of encoded nonterminals is violated, there is no way
of deriving a valid terminal string, so the derivation is blocked.

3.c Finally, consider that Y D B and X D A. Then, ˇ is reduced to ˇ D

uh.C/2h.D/2h.Z/2v. This is the correct sentential form. By II., AB !

CD 2 P, so ˛G D uGXYZvG D uGABZvG ) uGCDZvG D ˇG. Indeed,
S )lC1 ˇG in G and Claim 6.2.5 holds.
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The induction step is completed, so Claim 6.2.5 holds. ut

Now, we establish Claim 6.2.6.

Claim 6.2.6. If h.y1/2 : : : h.yk/2
ı )k w in � using only rules of the form 2 !

h.A/a, then y1 : : : yk )k w in G, where A, yi 2 N, for i D 1; 2; : : : k, k � 0,
a 2 T, and w 2 T�. Without any loss of generality, assume that the terminal string
is produced by the leftmost derivations.

Proof. Basis. Let k D 0. Then, " ı)0 " in � . Clearly, " )0 " in G.

Induction Hypothesis. Assume that the implication of Claim 6.2.6 holds for every
0 � k � l, where l is a non-negative integer.

Induction Step. Consider any sentential form of the form

h.y1/2h.y2/2 : : : h.yl/2h.ylC1/2

where yi 2 N for i D 1; 2; : : : l C 1. Express the derivation from Claim 6.2.6 as
h.y1/2h.y2/2 : : : h.lk/2h.ylC1/2

ı)k wh.ylC1/2
ı) wa, where w 2 T�, a 2 T.

Let 2 ! h.ylC1/a 2 P� , where ylC1 2 N and a 2 T. Then, wh.ylC1/2
ı )

wh.ylC1/h.ylC1/a D wa in � . By IV., ylC1 ! a 2 P, so wylC1 ) wa in G. Clearly,
y1y2 : : : ykylC1 )lC1 wa in G too.

The induction step is completed, so Claim 6.2.6 holds. ut

By Claims 6.2.5 and 6.2.6, L.� /ı � L.G/.
All together, Claims 6.2.3, 6.2.4, 6.2.5, and 6.2.6 imply L.G/ D L.� /ı, so

CFı D RE. ut

Theorem 6.2.7. E0Lı D RE.

Proof. Consider a phrase-structure grammar, G D .V;T;P; S/, satisfying the
properties described in Lemma 6.2.1. Define the injections, g W N ! f0; 1gn and
h W N ! f0; 1g2n, such that h.A/ D g.A/ reversal.g.A//, where A 2 N and n D

dlog2.card.N//e. If h.A/ D a1 : : : anan : : : a1, ai 2 f0; 1g, where i D 1; 2; : : : ; n,
n � 0, then h.A/ D a1 : : : anan : : : a1.

We construct the E0Lı grammar, � D .V� ;T;P� ;w� /, where V� � T D

f0; 0; 1; 1; 2; 2g and w� D h.S/2 as follows:

I. add 0 ! 0, 1 ! 1, and 2 ! 2 to P� ;
II. for every AB ! CD 2 P, add 2 ! h.B/2h.A/22h.C/2h.D/2 to P� ;

III. for every A ! BC 2 P, add 2 ! h.A/22h.B/2h.C/2 to P� ;
IV. for every A ! x 2 P, add 2 ! h.A/x to P� ,

where A;B;C;D 2 N and x 2 T [ f"g.
A formal verification of this construction is analogical to the proof of Theo-

rem 6.2.7, so it is left to the reader. ut

Corollary 6.2.8. CFı D E0Lı.
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6.2.1 Conclusion

As the main result of this chapter, we have demonstrated that the context-free and
E0L grammars defined over free groups define the entire family of recursively
enumerable languages. It is noteworthy, however, that the proofs of Theorems 6.2.2
and 6.2.7 are based on a proof technique that can be also used to achieve some well
known results of the formal language theory in an alternative way.

Specifically, consider the characterization of recursively enumerable languages
by phrase-structure grammars (defined standardly over free monoids) with only two
context rules—AB ! " and CD ! " (see Theorem 3.1.11). By an easy modification
of the proof technique mentioned above, we can achieve this result in a completely
new, alternative way. We leave the details of this modification to the reader because
it is simple and, as already noted, out of the main topic of the present chapter.



Part III
Modern Automata

To a large extent, in terms of automata, this four-chapter part parallels what Part II
covers in terms of grammars. Indeed, Chap. 7 gives the fundamentals of automata
that formalize regulated computation. Similarly to grammars discussed in Chap. 5,
Chap. 8 discusses automata that formalize a discontinuous way of computation
so they jump across the words they work on discontinuously. Chapter 9 discusses
language models for computation based upon new data structures. More specifically,
it studies deep pushdown automata, underlined by stacks that can be modified deeper
than on their top. Finally, Chap. 10 studies automata that work over free groups, so
it parallels Chap. 6, which studies the same topic in grammatical terms.



Chapter 7
Regulated Automata and Computation

Just like there exist regulated grammars, which formalize regulated computation
(see Chap. 3), there also exist their automata-based counterparts for this purpose.
Basically, in a very natural and simple way, these automata regulate the selection
of rules according to which their sequences of moves are made. These regulated
automata represent the principle subject of the present chapter, which covers their
most essential types.

The chapter is divided into three sections. Section 7.1 discusses self-regulating
versions of finite and pushdown automata. Section 7.2 studies these automata with
control languages by which they regulate their computation. Section 7.3 investigates
self-reproducing pushdown transducers.

7.1 Self-Regulating Automata

This chapter studies finite and pushdown automata that regulate the selection of a
rule according to which the current move is made by a rule according to which a
previous move was made, hence their name—self-regulating automata. To give a
more precise insight into self-regulating automata, consider a finite automaton M
with a finite binary relation R over the set of rules in M. Furthermore, suppose that
M makes a sequence of moves � that leads to the acceptance of a string, so � can be
expressed as a concatenation of n C 1 consecutive subsequences, � D �0�1 	 	 	�n,
where j�kj D j�jj, 0 � k; j � n, in which rj

i denotes the rule according to which the
ith move in �j is made, for all 0 � j � n and 1 � i � j�jj (as usual, j�jj denotes
the length of �j). If for all 0 � j < n, .rj

1; r
jC1
1 / 2 R, then M represents an n-turn
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first-move self-regulating finite automaton with respect to R. If for all 0 � j < n and
all 1 � i � j�ij, .r

j
i; r

jC1
i / 2 R, then M represents an n-turn all-move self-regulating

finite automaton with respect to R.
Section 7.1 is divided into two sections. In Sect. 7.1.1, based on the number of

turns, we establish two infinite hierarchies of language families that lie between
the families of regular and context-sensitive languages. First, we demonstrate that
n-turn first-move self-regulating finite automata give rise to an infinite hierarchy
of language families coinciding with the hierarchy resulting from .n C 1/-parallel
right-linear grammars (see [RW73, RW75, Woo73, Woo75]). Recall that n-parallel
right-linear grammars generate a proper language subfamily of the language family
generated by .n C1/-parallel right-linear grammars (see Theorem 5 in [RW75]). As
a result, n-turn first-move self-regulating finite automata accept a proper language
subfamily of the language family accepted by .nC1/-turn first-move self-regulating
finite automata, for all n � 0. Similarly, we prove that n-turn all-move self-
regulating finite automata give rise to an infinite hierarchy of language families
coinciding with the hierarchy resulting from .n C 1/-right-linear simple matrix
grammars (see [DP89, Iba70, Woo75]). As n-right-linear simple matrix grammars
generate a proper subfamily of the language family generated by .n C 1/-right-
linear simple matrix grammars (see Theorem 1.5.4 in [DP89]), n-turn all-move
self-regulating finite automata accept a proper language subfamily of the language
family accepted by .n C 1/-turn all-move self-regulating finite automata. Further-
more, since the families of right-linear simple matrix languages coincide with the
language families accepted by multi-tape non-writing automata (see [FR68]) and by
finite-turn checking automata (see [Sir71]), all-move self-regulating finite automata
characterize these families, too. Finally, we summarize the results about both infinite
hierarchies.

In Sect. 7.1.2, by analogy with self-regulating finite automata, we introduce
and discuss self-regulating pushdown automata. Regarding self-regulating all-move
pushdown automata, we prove that they do not give rise to any infinite hierarchy
analogical to the achieved hierarchies resulting from the self-regulating finite
automata. Indeed, zero-turn all-move self-regulating pushdown automata define the
family of context-free languages while one-turn all-move self-regulating pushdown
automata define the family of recursively enumerable languages. On the other hand,
as far as self-regulating first-move pushdown automata are concerned, the question
whether they define an infinite hierarchy is open.

7.1.1 Self-Regulating Finite Automata

First, the present section defines n-turn first-move self-regulating finite automata and
n-turn all-move self-regulating finite automata. Then, it determines the accepting
power of these automata.
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Definitions and Examples

In this section, we define and illustrate n-turn first-move self-regulating finite
automata and n-turn all-move self-regulating finite automata. Recall the formaliza-
tion of rule labels from Definition 2.4.3 because we make use of it in this section
frequently.

Definition 7.1.1. A self-regulating finite automaton (an SFA for short) is a septuple

M D
�
Q; ˙; ı; q0; qt;F;R

�

where

1. .Q; ˙; ı; q0;F/ is a finite automaton,
2. qt 2 Q is a turn state, and
3. R � � � � is a finite relation on the alphabet of rule labels. ut

In this chapter, we consider two ways of self-regulation—first-move and all-
move. According to these two types of self-regulation, two types of n-turn self-
regulating finite automata are defined.

Definition 7.1.2. Let n � 0 and M D .Q; ˙; ı; q0; qt;F;R/ be a self-regulating
finite automaton. M is said to be an n-turn first-move self-regulating finite automaton
(an n-first-SFA for short) if every w 2 L.M/ is accepted by M in the following way

q0w `�
M f Œ��

such that

� D r01 	 	 	 r0k r11 	 	 	 r1k 	 	 	 rn
1 	 	 	 rn

k

where k � 1, r0k is the first rule of the form qx ! qt, for some q 2 Q, x 2 ˙�, and

.rj
1; r

jC1
1 / 2 R

for all j D 0; 1; : : : ; n. ut

The family of languages accepted by n-first-SFAs is denoted by FSFAn.

Example 7.1.3. Consider a 1-first-SFA

M D
�
fs; t; f g; fa; bg; ı; s; t; ff g; f.1; 3/g

�

with ı containing rules (see Fig. 7.1)

1W sa ! s
2W sa ! t
3W tb ! f
4W fb ! f



322 7 Regulated Automata and Computation

s t f
a b

a b

Fig. 7.1 1-turn first-move self-regulating finite automaton M

With aabb, M makes

saabb `M sabb Œ1� `M tbb Œ2� `M fb Œ3� `M f Œ4�

In brief, saabb `�
M f Œ1234�. Observe that L.M/ D fanbn j n � 1g, which belongs

to CF � REG. ut

Definition 7.1.4. Let n � 0 and M D .Q; ˙; ı; q0; qt;F;R/ be a self-regulating
finite automaton. M is said to be an n-turn all-move self-regulating finite automa-
ton (an n-all-SFA for short) if every w 2 L.M/ is accepted by M in the
following way

q0w `�
M f Œ��

such that

� D r01 	 	 	 r0k r11 	 	 	 r1k 	 	 	 rn
1 	 	 	 rn

k

where k � 1, r0k is the first rule of the form qx ! qt, for some q 2 Q, x 2 ˙�, and

.rj
i; r

jC1
i / 2 R

for all i D 1; 2; : : : ; k and j D 0; 1; : : : ; n � 1. ut

The family of languages accepted by n-all-SFAs is denoted by ASFAn.

Example 7.1.5. Consider a 1-all-SFA

M D
�
fs; t; f g; fa; bg; ı; s; t; ff g; f.1; 4/; .2; 5/; .3; 6/g

�

with ı containing the following rules (see Fig. 7.2)

1W sa ! s
2W sb ! s
3W s ! t
4W ta ! t
5W tb ! t
6W t ! f
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s t f
ε ε

a,b a,b

Fig. 7.2 1-turn all-move self-regulating finite automaton M

With abab, M makes

sabab `M sbab Œ1� `M sab Œ2� `M tab Œ3� `M tb Œ4� `M t Œ5� `M f Œ6�

In brief, sabab `�
M f Œ123456�. Observe that L.M/ D fww j w 2 fa; bg�g, which

belongs to CS � CF. ut

Accepting Power

In this section, we discuss the accepting power of n-first-SFAs and n-all-SFAs.

n-Turn First-Move Self-Regulating Finite Automata

We prove that the family of languages accepted by n-first-SFAs coincides with the
family of languages generated by so-called .n C 1/-parallel right-linear grammars
(see [RW73, RW75, Woo73, Woo75]). First, however, we define these grammars
formally.

Definition 7.1.6. For n � 1, an n-parallel right-linear grammar (see [RW73,
RW75, Woo73, Woo75]) (an n-PRLG for short) is an .n C 3/-tuple

G D
�
N1; : : : ;Nn;T; S;P

�

where Ni, 1 � i � n, are pairwise disjoint nonterminal alphabets, T is a terminal
alphabet, S 62 N is an initial symbol, where N D N1 [ 	 	 	 [ Nn, and P is a finite set
of rules that contains these three kinds of rules

1. S ! X1 	 	 	 Xn, Xi 2 Ni, 1 � i � n;
2. X ! wY, X;Y 2 Ni for some i, 1 � i � n, w 2 T�;
3. X ! w, X 2 N, w 2 T�.

For x; y 2 .N [ T [ fSg/�,

x )G y
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if and only if

1. either x D S and S ! y 2 P,
2. or x D y1X1 	 	 	 ynXn, y D y1x1 	 	 	 ynxn, where yi 2 T�, xi 2 T�N [ T�, Xi 2 Ni,

and Xi ! xi 2 P, 1 � i � n.

Let x; y 2 .N [ T [ fSg/� and ` > 0. Then, x )`
G y if and only if there exists a

sequence

x0 )G x1 )G 	 	 	 )G x`

where x0 D x, x` D y. As usual, x )C
G y if and only if there exists ` > 0 such that

x )`
G y, and x )�

G y if and only if x D y or x )C
G y.

The language of G is defined as

L.G/ D
˚
w 2 T� j S )C

G w
�

A language K � T� is an n-parallel right-linear language (n-PRLL for short) if
there is an n-PRLG G such that K D L.G/. ut

The family of n-PRLLs is denoted by PRLn.

Definition 7.1.7. Let G D .N1; : : : ;Nn;T; S;P/ be an n-PRLG, for some n � 1,
and 1 � i � n. By the ith component of G, we understand the 1-PRLG

G D
�
Ni;T; S

0;P0
�

where P0 contains rules of the following forms:

1. S0 ! Xi if S ! X1 	 	 	 Xn 2 P, Xi 2 Ni;
2. X ! wY if X ! wY 2 P and X;Y 2 Ni;
3. X ! w if X ! w 2 P and X 2 Ni. ut

To prove that the family of languages accepted by n-first-SFAs coincides with
the family of languages generated by .nC1/-PRLGs, we need the following normal
form of PRLGs.

Lemma 7.1.8. For every n-PRLG G D .N1; : : : ;Nn;T; S;P/, there is an equivalent
n-PRLG G0 D .N0

1; : : : ;N
0
n;T; S;P

0/ that satisfies:

(i) if S ! X1 	 	 	 Xn 2 P0, then Xi does not occur on the right-hand side of any rule,
for i D 1; 2; : : : ; n;

(ii) if S ! ˛, S ! ˇ 2 P0 and ˛ 6D ˇ, then alph.˛/ \ alph.ˇ/ D ;.

Proof. If G does not satisfy the conditions from the lemma, then we construct a new
n-PRLG

G0 D
�
N0
1; : : : ;N

0
n;T; S;P

0
�
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S
⇓

X1
1 X2

1 ··· Xn
1

⇓
x1
1X1

2 x2
1X2

2 ··· xn
1 Xn

2
⇓
...

⇓
x1
1 ··· x1

k−1X1
k x2

1 ··· X2
k ··· xn

1 ··· Xn
k

⇓
w = x1

1 ··· x1
k x2

1 ··· x2
k ··· xn

1 ··· xn
k

in G

q0
ε ↓

X1
1

x1
1 ↓

X1
2

x1
2 ↓

...

x1
k−1 ↓

X1
k

x1
k ↓

q1

ε ↓
X2

1
x2
1 ↓

X2
2

x2
2 ↓

...

x2
k−1 ↓

X2
k

x2
k ↓

q2

...

ε ↓
Xn

1
xn
1 ↓

Xn
2

xn
2 ↓

...

xn
k−1 ↓

Xn
k

xn
k ↓

qn

in M

Fig. 7.3 A derivation of w in G and the corresponding acceptance of w in M

where P0 contains all rules of the form X ! ˇ 2 P, X 6D S, and Nj � N0
j , 1 � j � n.

For each rule S ! X1 	 	 	 Xn 2 P, we add new nonterminals Yj 62 N0
j into N0

j , and
rules include S ! Y1 	 	 	 Yn and Yj ! Xj in P0, 1 � j � n. Clearly,

S )G X1 	 	 	 Xn if and only if S )G0 Y1 	 	 	 Yn )G0 X1 	 	 	 Xn

Thus, L.G/ D L.G0/. ut

Lemma 7.1.9. Let G be an n-PRLG. Then, there is an .n�1/-first-SFA M such that
L.G/ D L.M/.

Proof. Informally, M is divided into n parts (see Fig. 7.3). The ith part represents
a finite automaton accepting the language of the ith component of G, and R also
connects the ith part to the .i C 1/st part as depicted in Fig. 7.3.

Formally, without loss of generality, we assume G D .N1; : : : ;Nn;T; S;P/ to be
in the form from Lemma 7.1.8. We construct an .n � 1/-first-SFA

M D
�
Q;T; ı; q0; qt;F;R

�

where

Q D fq0; : : : ; qng [ N;N D N1 [ 	 	 	 [ Nn; fq0; q1; : : : ; qng \ N D ;;F D fqng

ı D fqi ! XiC1 j S ! X1 	 	 	 Xn 2 P; 0 � i < ng [

fXw ! Y j X ! wY 2 Pg [

fXw ! qi j X ! w 2 P; w 2 T�; X 2 Ni; i 2 f1; : : : ; ngg

qt D q1
� D ı

R D f.qi ! XiC1; qiC1 ! XiC2/ j S ! X1 	 	 	 Xn 2 P; 0 � i � n � 2g
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Next, we prove that L.G/ D L.M/. To prove that L.G/ � L.M/, consider any
derivation of w in G and construct an acceptance of w in M depicted in Fig. 7.3.
This figure clearly demonstrates the fundamental idea behind this part of the proof;
its complete and rigorous version is left to the reader. Thus, M accepts every w 2 T�

such that S )�
G w.

To prove that L.M/ � L.G/, consider any w 2 L.M/ and any acceptance of w
in M. Observe that the acceptance is of the form depicted on the right-hand side
of Fig. 7.3. It means that the number of steps M made from qi�1 to qi is the same
as from qi to qiC1 since the only rule in the relation with qi�1 ! Xi

1 is the rule
qi ! XiC1

1 . Moreover, M can never come back to a state corresponding to a previous
component. (By a component of M, we mean the finite automaton

Mi D
�
Q; ˙; ı; qi�1; fqig

�

for 1 � i � n.) Next, construct a derivation of w in G. By Lemma 7.1.8, we have

card
�
fX j .qi ! XiC1

1 ; qiC1 ! X/ 2 Rg
�

D 1

for all 0 � i < n � 1. Thus, S ! X11X
2
1 	 	 	 Xn

1 2 P. Moreover, if Xi
jx

i
j ! Xi

jC1, we
apply Xi

j ! xi
jX

i
jC1 2 P, and if Xi

kxi
k ! qi, we apply Xi

k ! xi
k 2 P, 1 � i � n,

1 � j < k.
Hence, Lemma 7.1.9 holds. ut

Lemma 7.1.10. Let M be an n-first-SFA. Then, there is an .n C 1/-PRLG G such
that L.G/ D L.M/.

Proof. Let M D .Q; ˙; ı; q0; qt;F;R/. Consider

G D
�
N0; : : : ;Nn; ˙; S;P

�

where

Ni D .Q˙ l � Q � fig � Q/[ .Q � fig � Q/
l D max.fjwj j qw ! p 2 ıg/; 0 � i � n
P D fS ! Œq0x0; q0; 0; qt�Œqtx1; q1; 1; qi1 �Œqi1x2; q

2; 2; qi2 � 	 	 	 Œqin�1xn; qn; n; qin � j

r0W q0x0 ! q0; r1W qtx1 ! q1; r2W qi1x2 ! q2; : : : ; rnW qin�1xn ! qn 2 ı;

.r0; r1/; .r1; r2/; : : : ; .rn�1; rn/ 2 R; qin 2 Fg [

fŒpx; q; i; r� ! xŒq; i; r�g [

fŒq; i; q� ! " j q 2 Qg [

fŒq; i; p� ! wŒq0; i; p� j qw ! q0 2 ıg

Next, we prove that L.G/ D L.M/. To prove that L.G/ � L.M/, observe that
we make n C 1 copies of M and go through them similarly to Fig. 7.3. Consider a
derivation of w in G. Then, in a greater detail, this derivation is of the form
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S )G Œq0x
0
0; q

0
1; 0; qt�Œqtx

1
0; q

1
1; 1; qi1 � 	 	 	 Œqin�1x

n
0; q

n
1; n; qin �

)G x00Œq
0
1; 0; qt�x

1
0Œq

1
1; 1; qi1 � 	 	 	 xn

0Œq
n
1; n; qin �

)G x00x
0
1Œq

0
2; 0; qt�x

1
0x
1
1Œq

1
2; 1; qi1 � 	 	 	 xn

0x
n
1Œq

n
2; n; qin � (7.1)

:::

)G x00x
0
1 	 	 	 x0k Œqt; 0; qt�x

1
0x
1
1 	 	 	 x1k Œqi1 ; 1; qi1 � 	 	 	 xn

0x
n
1 	 	 	 xn

k Œqin ; n; qin �

)G x00x
0
1 	 	 	 x0kx10x

1
1 	 	 	 x1k 	 	 	 xn

0x
n
1 	 	 	 xn

k

and

r0W q0x
0
0 ! q01; r1W qtx

1
0 ! q11; r2W qi1x

2
0 ! q21; : : : ; rnW qin�1x

n
0 ! qn

1 2 ı

.r0; r1/; .r1; r2/; : : : ; .rn�1; rn/ 2 R

and qin 2 F.
Thus, the sequence of rules used in the acceptance of w in M is

� D .q0x
0
0 ! q01/.q

0
1x
0
1 ! q02/ 	 	 	 .q0kx0k ! qt/

.qtx
1
0 ! q11/.q

1
1x
1
1 ! q12/ 	 	 	 .q1kx1k ! qi1/

.qi1x
2
0 ! q21/.q

2
1x
2
1 ! q22/ 	 	 	 .q2kx2k ! qi2/ (7.2)

:::

.qin�1x
n
0 ! qn

1/.q
n
1x

n
1 ! qn

2/ 	 	 	 .qn
kxn

k ! qin/:

Next, we prove that L.M/ � L.G/. Informally, the acceptance is divided into nC1

parts of the same length. Grammar G generates the ith part by the ith component and
records the state from which the next component starts.

Let � be a sequence of rules used in an acceptance of

w D x00x
0
1 	 	 	 x0kx10x

1
1 	 	 	 x1k 	 	 	 xn

0x
n
1 	 	 	 xn

k

in M of the form (7.2). Then, the derivation of the form (7.1) is the corresponding
derivation of w in G since Œqi

j; i; p� ! xi
jŒq

i
jC1; i; p� 2 P and Œq; i; q� ! ", for all

0 � i � n, 1 � j < k.
Hence, Lemma 7.1.10 holds. ut

The first main result of this chapter follows next.

Theorem 7.1.11. For all n � 0, FSFAn D PRLnC1.

Proof. This proof follows from Lemmas 7.1.9 and 7.1.10. ut



328 7 Regulated Automata and Computation

Corollary 7.1.12. The following statements hold true.

(i) REG D FSFA0 � FSFA1 � FSFA2 � 	 	 	 � CS
(ii) FSFA1 � CF

(iii) FSFA2 6� CF
(iv) CF 6� FSFAn for any n � 0.
(v) For all n � 0, FSFAn is closed under union, finite substitution, homomor-

phism, intersection with a regular language, and right quotient with a regular
language.

(vi) For all n � 1, FSFAn is not closed under intersection and complement.

Proof. Recall the following statements that are proved in [RW75].

• REG D PRL1 � PRL2 � PRL3 � 	 	 	 � CS
• PRL2 � CF
• CF 6� PRLn, n � 1.
• For all n � 1, PRLn is closed under union, finite substitution, homomorphism,

intersection with a regular language, and right quotient with a regular language.
• For all n � 2, PRLn is not closed under intersection and complement.

These statements and Theorem 7.1.11 imply statements (i), (ii), (iv), (v), and (vi) in
Corollary 7.1.12. Moreover, observe that

˚
anbnc2n j n � 0

�
2 FSFA2 � CF

which proves (iii). ut

Theorem 7.1.13. For all n � 1, FSFAn is not closed under inverse homomorphism.

Proof. For n D 1, let L D fakbk j k � 1g, and let the homomorphism h W

fa; b; cg� ! fa; bg� be defined as h.a/ D a, h.b/ D b, and h.c/ D ". Then,
L 2 FSFA1, but

L0 D h�1.L/ \ c�a�b� D
˚
c�akbk j k � 1

�
62 FSFA1

Assume that L0 is in FSFA1. Then, by Theorem 7.1.11, there is a 2-PRLG

G D
�
N1;N2;T; S;P

�

such that L.G/ D L0. Let

k > card.P/ 	 max
�
fjwj j X ! wY 2 Pg

�

Consider a derivation of ckakbk 2 L0. The second component can generate only
finitely many as; otherwise, it derives fakbn j k < ng, which is not regular.
Analogously, the first component generates only finitely many bs. Therefore, the
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first component generates any number of as, and the second component generates
any number of bs. Moreover, there is a derivation of the form X )m

G X, for some
X 2 N2, and m � 1, used in the derivation in the second component. In the first
component, there is a derivation A )l

G asA, for some A 2 N1, and s; l � 1. Then,
we can modify the derivation of ckakbk so that in the first component, we repeat
the cycle A )l

G asA .m C 1/-times, and in the second component, we repeat the
cycle X )m

G X .l C 1/-times. The derivations of both components have the same
length—the added cycles are of length ml, and the rest is of the same length as in
the derivation of ckakbk. Therefore, we have derived ckarbk, where r > k, which is
not in L0—a contradiction.

For n > 1, the proof is analogous and left to the reader. ut

Corollary 7.1.14. For all n � 1, FSFAn is not closed under concatenation.
Therefore, it is not closed under Kleene closure either.

Proof. For n D 1, let L1 D fcg� and L2 D fakbk j k � 1g. Then,

L1L2 D
˚
cjakbk j k � 1; j � 0

�

Analogously, prove this corollary for n > 1. ut

n-Turn All-Move Self-Regulating Finite Automata

We next turn our attention to n-all-SFAs. We prove that the family of languages
accepted by n-all-SFAs coincides with the family of languages generated by so-
called n-right-linear simple matrix grammars (see [DP89, Iba70, Woo75]). First,
however, we define these grammars formally.

Definition 7.1.15. For n � 1, an n-right-linear simple matrix grammar (see [DP89,
Iba70, Woo75]), an n-RLSMG for short, is an .n C 3/-tuple

G D
�
N1; : : : ;Nn;T; S;P

�

where Ni, 1 � i � n, are pairwise disjoint nonterminal alphabets, T is a terminal
alphabet, S 62 N is an initial symbol, where N D N1 [ 	 	 	 [ Nn, and P is a finite set
of matrix rules. A matrix rule can be in one of the following three forms

1. .S ! X1 	 	 	 Xn/, Xi 2 Ni, 1 � i � n;
2. .X1 ! w1Y1; 	 	 	 ;Xn ! wnYn/, wi 2 T�, Xi;Yi 2 Ni, 1 � i � n;
3. .X1 ! w1; 	 	 	 ;Xn ! wn/, Xi 2 Ni, wi 2 T�, 1 � i � n.

Let m be a matrix. Then, mŒi� denotes the ith rule of m. For x; y 2 .N [ T [ fSg/�,

x )G y



330 7 Regulated Automata and Computation

if and only if

1. either x D S and .S ! y/ 2 P,
2. or x D y1X1 	 	 	 ynXn, y D y1x1 	 	 	 ynxn, where yi 2 T�, xi 2 T�N [ T�, Xi 2 Ni,
1 � i � n, and .X1 ! x1; 	 	 	 ;Xn ! xn/ 2 P.

We define x )C
G y and x )�

G y as in Definition 7.1.6.
The language of G is defined as

L.G/ D
˚
w 2 T� j S )�

G w
�

A language K � T� is an n-right linear simple matrix language (an n-RLSML for
short) if there is an n-RLSMG G such that K D L.G/. ut

The family of n-RLSMLs is denoted by RLSMn. Furthermore, the ith component
of an n-RLSMG is defined analogously to the ith component of an n-PRLG (see
Definition 7.1.7).

To prove that the family of languages accepted by n-all-SFAs coincides with the
family of languages generated by n-RLSMGs, the following lemma is needed.

Lemma 7.1.16. For every n-RLSMG, G D .N1; : : : ;Nn;T; S;P/, there is an
equivalent n-RLSMG G0 that satisfies (i) through (iii), given next.

(i) If .S ! X1 	 	 	 Xn/, then Xi does not occur on the right-hand side of any rule,
1 � i � n.

(ii) If .S ! ˛/, .S ! ˇ/ 2 P and ˛ 6D ˇ, then alph.˛/ \ alph.ˇ/ D ;.
(iii) For any two matrices m1;m2 2 P, if m1Œi� D m2Œi�, for some 1 � i � n, then

m1 D m2.

Proof. The first two conditions can be proved analogously to Lemma 7.1.8. Suppose
that there are matrices m and m0 such that mŒi� D m0Œi�, for some 1 � i � n. Let

m D .X1 ! x1; : : : ;Xn ! xn/

m0 D .Y1 ! y1; : : : ;Yn ! yn/

Replace these matrices with matrices

m1 D .X1 ! X0
1; : : : ;Xn ! X0

n/

m2 D .X0
1 ! x1; : : : ;X0

n ! xn/

m0
1 D .Y1 ! Y 00

1 ; : : : ;Yn ! Y 00
n /

m0
2 D .Y 00

1 ! y1; : : : ;Y 00
n ! yn/

where X0
i , Y 00

i are new nonterminals for all i. These new matrices satisfy condi-
tion (iii). Repeat this replacement until the resulting grammar satisfies the properties
of G0 given in this lemma. ut

Lemma 7.1.17. Let G be an n-RLSMG. There is an .n � 1/-all-SFA M such that
L.G/ D L.M/.
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Proof. Without loss of generality, we assume that G D .N1; : : : ;Nn;T; S;P/ is in
the form described in Lemma 7.1.16. We construct an .n � 1/-all-SFA

M D
�
Q;T; ı; q0; qt;F;R

�

where

Q D fq0; : : : ; qng [ N;N D N1 [ 	 	 	 [ Nn; fq0; q1; : : : ; qng \ N D ;

F D fqng

ı D fqi ! XiC1 j .S ! X1 	 	 	 Xn/ 2 P; 0 � i < ng [

fXiwi ! Yi j .X1 ! w1Y1; : : : ;Xn ! wnYn/ 2 P; 1 � i � ng [

fXiwi ! qi j .X1 ! w1; : : : ;Xn ! wn/ 2 P; wi 2 T�; 1 � i � ng

qt D q1
� D ı

R D f.qi ! XiC1; qiC1 ! XiC2/ j

.S ! X1 	 	 	 Xn/ 2 P; 0 � i � n � 2g [

f.Xiwi ! Yi;XiC1wiC1 ! YiC1/ j

.X1 ! w1Y1; : : : ;Xn ! wnYn/ 2 P; 1 � i < ng [

f.Xiwi ! qi;XiC1wiC1 ! qiC1/ j

.X1 ! w1; : : : ;Xn ! wn/ 2 P; wi 2 T�; 1 � i < ng

Next, we prove that L.G/ D L.M/. A proof of L.G/ � L.M/ can be made by
analogy with the proof of the same inclusion of Lemma 7.1.9, which is left to the
reader.

To prove that L.M/ � L.G/, consider w 2 L.M/ and an acceptance of w in M.
As in Lemma 7.1.9, the derivation looks like the one depicted on the right-hand side
of Fig. 7.3. Next, we describe how G generates w. By Lemma 7.1.16, there is matrix

.S ! X11X21 	 	 	 Xn
1/ 2 P

Moreover, if Xi
jx

i
j ! Xi

jC1, 1 � i � n, then

.Xi
j ! xi

jX
i
jC1;X

iC1
j ! xiC1

j XiC1
jC1/ 2 R

for 1 � i < n, 1 � j < k. We apply

.X1j ! x1j X1jC1; : : : ;X
n
j ! xn

j Xn
jC1/ 2 P

If Xi
kxi

k ! qi, 1 � i � n, then

.Xi
k ! xi

k;X
iC1
k ! xiC1

k / 2 R
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for 1 � i < n, and we apply

.X1k ! x1k ; : : : ;X
n
k ! xn

k/ 2 P

Thus, w 2 L.G/.
Hence, Lemma 7.1.17 holds. ut

Lemma 7.1.18. Let M be an n-all-SFA. There is an .n C 1/-RLSMG G such that
L.G/ D L.M/.

Proof. Let M D .Q; ˙; ı; q0; qt;F;R/. Consider

G D
�
N0; : : : ;Nn; ˙; S;P

�

where

Ni D .Q˙ l � Q � fig � Q/[ .Q � fig � Q/
l D max.fjwj j qw ! p 2 ıg/; 0 � i � n
P D f.S ! Œq0x0; q0; 0; qt�Œqtx1; q1; 1; qi1 � 	 	 	 Œqin�1xn; qn; n; qin �/ j

r0W q0x0 ! q0; r1W qtx1 ! q1; : : : ; rnW qin�1xn ! qn 2 ı

.r0; r1/; : : : ; .rn�1; rn/ 2 R; qin 2 Fg [

f.Œp0x0; q0; 0; r0� ! x0Œq0; 0; r0�; : : : ; Œpnxn; qn; n; rn� ! xnŒqn; n; rn�/g [

f.Œq0; 0; q0� ! "; : : : ; Œqn; n; qn� ! "/ W qi 2 Q; 0 � i � ng [

f.Œq0; 0; p0� ! w0Œq0
0; 0; p0�; : : : ; Œqn; n; pn� ! wnŒq0

n; n; pn�/ j

rjW qjwj ! q0
j 2 ı; 0 � j � n; .ri; riC1/ 2 R; 0 � i < ng

Next, we prove that L.G/ D L.M/. To prove that L.G/ � L.M/, consider a
derivation of w in G. Then, the derivation is of the form (7.1) and there are rules

r0W q0x
0
0 ! q01; r1W qtx

1
0 ! q11; : : : ; rnW qin�1x

n
0 ! qn

1 2 ı

such that .r0; r1/, : : : ; .rn�1; rn/ 2 R. Moreover, .rl
j; r

lC1
j / 2 R, where rl

j W ql
jx

l
j !

ql
jC1 2 ı, and .rl

k; r
lC1
k / 2 R, where rl

kW ql
kxl

k ! qil 2 ı, 0 � l < n, 1 � j < k,
qi0 denotes qt, and qin 2 F. Thus, M accepts w with the sequence of rules � of the
form (7.2).

To prove that L.M/ � L.G/, let � be a sequence of rules used in an acceptance
of

w D x00x
0
1 	 	 	 x0kx10x

1
1 	 	 	 x1k 	 	 	 xn

0x
n
1 	 	 	 xn

k

in M of the form (7.2). Then, the derivation is of the form (7.1) because

.Œq0j ; 0; qt� ! x0j Œq
0
jC1; 0; qt�; : : : ; Œq

n
j ; n; qin � ! xn

j Œq
n
jC1; n; qin �/ 2 P

for all qi
j 2 Q, 1 � i � n, 1 � j < k, and .Œqt; 0; qt� ! "; : : : ; Œqin ; n; qin � ! "/ 2 P.
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Hence, Lemma 7.1.18 holds. ut

Next, we establish another important result of this chapter.

Theorem 7.1.19. For all n � 0, ASFAn D RLSMnC1.

Proof. This proof follows from Lemmas 7.1.17 and 7.1.18. ut

Corollary 7.1.20. The following statements hold true.

(i) REG D ASFA0 � ASFA1 � ASFA2 � 	 	 	 � CS
(ii) ASFA1 6� CF

(iii) CF 6� ASFAn, for every n � 0.
(iv) For all n � 0, ASFAn is closed under union, concatenation, finite substitution,

homomorphism, intersection with a regular language, and right quotient with
a regular language.

(v) For all n � 1, ASFAn is not closed under intersection, complement, and Kleene
closure.

Proof. Recall the following statements that are proved in [Woo75].

• REG D RLSM1 � RLSM2 � RLSM3 � 	 	 	 � CS
• For all n � 1, RLSMn is closed under union, finite substitution, homomor-

phism, intersection with a regular language, and right quotient with a regular
language.

• For all n � 2, RLSMn is not closed under intersection and complement.

Furthermore, recall these statements proved in [Sir69] and [Sir71].

• For all n � 1, RLSMn is closed under concatenation.
• For all n � 2, RLSMn is not closed under Kleene closure.

These statements and Theorem 7.1.19 imply statements (i), (iv), and (v) of
Corollary 7.1.20. Moreover, observe that

˚
ww j w 2 fa; bg�

�
2 ASFA1 � CF

(see Example 7.1.5), which proves (ii). Finally, let

L D
˚
wcwR j w 2 fa; bg�

�

By Theorem 1.5.2 in [DP89], L 62 RLSMn, for any n � 1. Thus, (iii) follows from
Theorem 7.1.19. ut

Theorem 7.1.21, given next, follows from Theorem 7.1.19 and from Corol-
lary 3.3.3 in [Sir71]. However, Corollary 3.3.3 in [Sir71] is not proved effectively.
We next prove Theorem 7.1.21 effectively.

Theorem 7.1.21. ASFAn is closed under inverse homomorphism, for all n � 0.



334 7 Regulated Automata and Computation

Proof. For n D 1, let M D .Q; ˙; ı; q0; qt;F;R/ be a 1-all-SFA, and let h W �� !

˙� be a homomorphism. Next, we construct a 1-all-SFA

M0 D
�
Q0; �; ı0; q0

0; q
0
t; fq0

f g;R
0
�

accepting h�1.L.M// as follows. Set

k D max
�
fjwj j qw ! p 2 ıg

�
C max

�
fjh.a/j j a 2 �g

�

and

Q0 D
˚
q0
0

�
[
˚
Œx; q; y� j x; y 2 ˙�; jxj; jyj � k; q 2 Q

�

Initially, set ı0 and R0 to ;. Then, extend ı0 and R0 by performing (1) through (5),
given next.

(1) For y 2 ˙�, jyj � k, add
.q0
0 ! Œ"; q0; y�; q0

t ! Œy; qt; "�/ to R0.
(2) For A 2 Q0, q 6D qt, add

.Œx; q; y�a ! Œxh.a/; q; y�;A ! A/ to R0.
(3) For A 2 Q0, add

.A ! A; Œx; q; "�a ! Œxh.a/; q; "�/ to R0.
(4) For .qx ! p; q0x0 ! p0/ 2 R, q 6D qt, add

.Œxw; q; y� ! Œw; p; y�; Œx0w0; q0; "� ! Œw0; p0; "�/ to R0.
(5) For qf 2 F, add

.Œy; qt; y� ! q0
t; Œ"; qf ; "� ! q0

f / to R0.

In essence, M0 simulates M in the following way. In a state of the form Œx; q; y�, the
three components have the following meaning

• x D h.a1 	 	 	 an/, where a1 	 	 	 an is the input string that M0 has already read;
• q is the current state of M;
• y is the suffix remaining as the first component of the state that M0 enters during

a turn; y is thus obtained when M0 reads the last symbol right before the turn
occurs in M; M reads y after the turn.

More precisely, h.w/ D w1yw2, where w is an input string, w1 is accepted by M
before making the turn—that is, from q0 to qt, and yw2 is accepted by M after
making the turn—that is, from qt to qf 2 F. A rigorous version of this proof is
left to the reader.

For n > 1, the proof is analogous and left to the reader. ut

Language Families Accepted by n-First-SFAs and n-All-SFAs

Next, we compare the family of languages accepted by n-first-SFAs with the family
of languages accepted by n-all-SFAs.
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Theorem 7.1.22. For all n � 1, FSFAn � ASFAn.

Proof. In [RW75] and [Woo75], it is proved that for all n > 1, PRLn � RLSMn.
The proof of Theorem 7.1.22 thus follows from Theorems 7.1.11 and 7.1.19. ut

Theorem 7.1.23. FSFAn 6� ASFAn�1, n � 1.

Proof. Recall that FSFAn D PRLnC1 (see Theorem 7.1.11) and ASFAn�1 D

RLSMn (see Theorem 7.1.19). It is easy to see that

L D
˚
ak
1a

k
2 	 	 	 ak

nC1 j k � 1
�

2 PRLnC1

However, Lemma 1.5.6 in [DP89] implies that

L 62 RLSMn

Hence, the theorem holds. ut

Lemma 7.1.24. For each regular language L, fwn j w 2 Lg 2 ASFAn�1.

Proof. Let L D L.M/, where M is a finite automaton. Make n copies of M. Rename
their states so all the sets of states are pairwise disjoint. In this way, also rename
the states in the rules of each of these n automata; however, keep the labels of the
rules unchanged. For each rule label r, include .r; r/ into R. As a result, we obtain
an n-all-SFA that accepts fwn j w 2 Lg. A rigorous version of this proof is left to
the reader. ut

Theorem 7.1.25. ASFAn � FSFA 6D ;, for all n � 1, where FSFA DS1
mD1 FSFAm.

Proof. By induction on n � 1, we prove that

L D
˚
.cw/nC1 j w 2 fa; bg�

�
62 FSFA

From Lemma 7.1.24, it follows that L 2 ASFAn.

Basis. For n D 1, let G be an m-PRLG generating L, for some positive integer
m. Consider a sufficiently large string cw1cw2 2 L such that w1 D w2 D an1bn2 ,
n2 > n1 > 1. Then, there is a derivation of the form

S )
p
G x1A1x2A2 	 	 	 xmAm

)k
G x1y1A1x2y2A2 	 	 	 xmymAm (7.3)

in G, where cycle (7.3) generates more than one a in w1. The derivation continues
as

x1y1A1 	 	 	 xmymAm )r
G

x1y1z1B1 	 	 	 xmymzmBm )l
G x1y1z1u1B1 	 	 	 xmymzmumBm (7.4)

(cycle (7.4) generates no as) )s
G cw1cw2
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Next, modify the left derivation, the derivation in components generating cw1, so
that the a-generating cycle (7.3) is repeated .l C 1/-times. Similarly, modify the
right derivation, the derivation in the other components, so that the no-a-generating
cycle (7.4) is repeated .k C 1/-times. Thus, the modified left derivation is of length

p C k.l C 1/C r C l C s D p C k C r C l.k C 1/C s

which is the length of the modified right derivation. Moreover, the modified left
derivation generates more as in w1 than the right derivation in w2—a contradiction.

Induction Hypothesis. Suppose that the theorem holds for all k � n, for some n � 1.

Induction Step. Consider n C 1 and let

˚
.cw/nC1 j w 2 fa; bg�

�
2 FSFAl

for some l � 1. As FSFAl is closed under the right quotient with a regular language,
and language fcw j w 2 fa; bg�g is regular, we obtain

˚
.cw/n j w 2 fa; bg�

�
2 FSFAl � FSFA

which is a contradiction. ut

7.1.2 Self-Regulating Pushdown Automata

The present section consists of two subsections. Section Definitions defines n-turn
first-move self-regulating pushdown automata and n-turn all-move self-regulating
pushdown automata. Section Accepting Power determines the accepting power of n-
turn all-move self-regulating pushdown automata.

Definitions

Before defining self-regulating pushdown automata, recall the formalization of rule
labels from Definition 2.4.10 because this formalization is often used throughout
this section.

Definition 7.1.26. A self-regulating pushdown automaton (an SPDA for short) M
is a 9-tuple

M D
�
Q; ˙; �; ı; q0; qt;Z0;F;R

�
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where

1. .Q; ˙; �; ı, q0;Z0;F/ is a pushdown automaton entering a final state and
emptying its pushdown,

2. qt 2 Q is a turn state, and
3. R � � � � is a finite relation, where � is an alphabet of rule labels. ut

Definition 7.1.27. Let n � 0 and

M D
�
Q; ˙; �; ı; q0; qt;Z0;F;R

�

be a self-regulating pushdown automaton. M is said to be an n-turn first-move self-
regulating pushdown automaton, n-first-SPDA, if every w 2 L.M/ is accepted by M
in the following way

Z0q0w `�
M f Œ��

such that

� D r01 	 	 	 r0k r11 	 	 	 r1k 	 	 	 rn
1 	 	 	 rn

k

where k � 1, r0k is the first rule of the form Zqx ! �qt, for some Z 2 � , q 2 Q,
x 2 ˙�, � 2 � �, and

.rj
1; r

jC1
1 / 2 R

for all 0 � j < n. ut

The family of languages accepted by n-first-SPDAs is denoted by FSPDAn.

Definition 7.1.28. Let n � 0 and

M D
�
Q; ˙; �; ı; q0; qt;Z0;F;R

�

be a self-regulating pushdown automaton. M is said to be an n-turn all-move self-
regulating pushdown automaton (an n-all-SPDA for short) if every w 2 L.M/ is
accepted by M in the following way

Z0q0w `�
M f Œ��

such that

� D r01 	 	 	 r0k r11 	 	 	 r1k 	 	 	 rn
1 	 	 	 rn

k
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where k � 1, r0k is the first rule of the form Zqx ! �qt, for some Z 2 � , q 2 Q,
x 2 ˙�, � 2 � �, and

.rj
i; r

jC1
i / 2 R

for all 1 � i � k, 0 � j < n. ut

The family of languages accepted by n-all-SPDAs is denoted by ASPDAn.

Accepting Power

In this section, we investigate the accepting power of self-regulating pushdown
automata.

As every n-first-SPDA and every n-all-SPDA without any turn state represents,
in effect, an ordinary pushdown automaton, we obtain the following theorem.

Theorem 7.1.29. FSPDA0 D ASPDA0 D CF ut

However, if we consider 1-all-SPDAs, their power is that of phrase-structure
grammars.

Theorem 7.1.30. ASPDA1 D RE

Proof. For any L 2 RE, L � ��, there are context-free languages L.G/ and L.H/
and a homomorphism h W ˙� ! �� such that

L D h
�
L.G/ \ L.H/

�

(see Theorem 2.3.18). Suppose that G D .NG; ˙;PG; SG/ and H D .NH ; ˙;PH ; SH/

are in the Greibach normal form (see Definition 3.1.21)—that is, all rules are of the
form A ! a˛, where A is a nonterminal, a is a terminal, and ˛ is a (possibly empty)
string of nonterminals. Let us construct a 1-all-SPDA

M D
�
fq0; q; qt; p; f g; �;˙ [ NG [ NH [ fZg; ı; q0;Z; ff g;R

�

where Z 62 ˙ [ NG [ NH , with R constructed by performing (1) through (4), stated
next.

(1) Add .Zq0 ! ZSGq;Zqt ! ZSHp/ to R.
(2) Add .Aq ! Bn 	 	 	 B1aq;Cp ! Dm 	 	 	 D1ap/ to R if

A ! aB1 	 	 	 Bn 2 PG and
C ! aD1 	 	 	 Dm 2 PH.

(3) Add .aqh.a/ ! q; ap ! p/ to R.
(4) Add .Zq ! Zqt;Zp ! f / to R.

Moreover, ı contains only the rules from the definition of R.
Next, we prove that w 2 h.L.G/\ L.H// if and only if w 2 L.M/.

Only If. Let w 2 h.L.G/\ L.H//. There are a1; a2; : : : ; an 2 ˙ such that

a1a2 	 	 	 an 2 L.G/ \ L.H/
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and w D h.a1a2 	 	 	 an/, for some n � 0. There are leftmost derivations

SG )n
G a1a2 	 	 	 an

and

SH )n
H a1a2 	 	 	 an

of length n in G and H, respectively, because in every derivation step exactly one
terminal element is derived. Thus, M accepts h.a1/h.a2/ 	 	 	 h.an/ as

Zq0h.a1/h.a2/ 	 	 	 h.an/

`M ZSGqh.a1/h.a2/ 	 	 	 h.an/
:::

`M Zanqh.an/

`M Zq
`M Zqt

`M ZSHp
:::

`M Zanp
`M Zp
`M f

In state q, by using its pushdown, M simulates a derivation of a1 	 	 	 an in G but reads
h.a1/ 	 	 	 h.an/ as the input. In p, M simulates a derivation of a1a2 	 	 	 an in H but
reads no input. As a1a2 	 	 	 an can be derived in both G and H by making the same
number of steps, the automaton can successfully complete the acceptance of w.

If. Notice that in one step, M can read only h.a/ 2 ��, for some a 2 ˙ . Let
w 2 L.M/, then w D h.a1/h.a2/ 	 	 	 h.an/, for some a1; a2; : : : ; an 2 ˙ . Consider
the following acceptance of w in M

Zq0h.a1/h.a2/ 	 	 	 h.an/

`M ZSGqh.a1/h.a2/ 	 	 	 h.an/
:::

`M Zanqh.an/

`M Zq
`M Zqt

`M ZSHp
:::

`M Zanp
`M Zp
`M f
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As stated above, in q, M simulates a derivation of a1a2 	 	 	 an in G, and then in p, M
simulates a derivation of a1a2 	 	 	 an in H. It successfully completes the acceptance
of w only if a1a2 	 	 	 an can be derived in both G and H. Hence, the if part holds,
too. ut

7.1.3 Open Problems

Although the fundamental results about self-regulating automata have been achieved
in this chapter, there still remain several open problems concerning them.

Open Problem 7.1.31. What is the language family accepted by n-turn first-move
self-regulating pushdown automata, when n � 1 (see Definition 7.1.27)? ut

Open Problem 7.1.32. By analogy with the standard deterministic finite and
pushdown automata (see Sect. 2.4), introduce the deterministic versions of self-
regulating automata. What is their power? ut

Open Problem 7.1.33. Discuss the closure properties of other language opera-
tions, such as the reversal. ut

7.2 Regulated Acceptance with Control Languages

This section discusses automata in which the application of rules is regulated by
control languages by analogy with context-free grammars regulated by control
languages (see Sect. 3.3). Section 7.2.1 studies this topic in terms of finite
automata while Sect. 7.2.2 investigates pushdown automata regulated in this way.
More precisely, Sect. 7.2.1 discusses finite automata working under two kinds
of regulation—state-controlled regulation and transition-controlled regulation. It
establishes conditions under which any state-controlled finite automaton can be
turned to an equivalent transition-controlled finite automaton and vice versa. Then,
it proves that under either of the two regulations, finite automata controlled by
regular languages characterize the family of regular languages, and an analog-
ical result is then reformulated in terms of context-free languages. However,
Sect. 7.2.1 also demonstrates that finite automata controlled by languages generated
by propagating programmed grammars with appearance checking increase their
power significantly; in fact, they are computationally complete. Section 7.2.2 first
shows that pushdown automata regulated by regular languages are as powerful as
ordinary pushdown automata. Then, however, it proves that pushdown automata
regulated by linear languages characterize the family of recursively enumerable
languages; in fact, this characterization holds even in terms of one-turn pushdown
automata.
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7.2.1 Finite Automata Regulated by Control Languages

The present section studies finite automata regulated by control languages. In fact,
it studies two kinds of this regulation—state-controlled regulation and transition-
controlled regulation. To give an insight into these two types of regulation, consider
a finite automaton M controlled by a language C, and a sequence � 2 C that resulted
into the acceptance of an input word w. Working under the former regulation, M has
C defined over the set of states, and it accepts w by going through all the states
in � and ending up in a final state. Working under the latter regulation, M has C
defined over the set of transitions, and it accepts w by using all the transitions in �
and ending up in a final state.

First, we define these two types of controlled finite automata formally. After
that, we establish conditions under which it is possible to convert any state-
controlled finite automaton to an equivalent transition-controlled finite automaton
and vice versa (Theorem 7.2.5). Then, we prove that under both regulations,
finite automata controlled by regular languages characterize the family of regular
languages (Theorem 7.2.7 and Corollary 7.2.8). Finally, we show that finite
automata controlled by context-free languages characterize the family of context-
free languages (Theorem 7.2.10 and Corollary 7.2.11).

After that, we demonstrate a close relation of controlled finite automata
to programmed grammars with appearance checking (see Sect. 3.5). Recall
that programmed grammars with appearance checking are computationally
complete—that is, they are as powerful as phrase-structure grammars; the
language family generated by propagating programmed grammars with appearance
checking is properly included in the family of context-sensitive languages (see
Theorems 3.3.6, 3.4.5, and 3.5.4). This section proves that finite automata that
are controlled by languages generated by propagating programmed grammars
with appearance checking are computationally complete (Theorem 7.2.17
and Corollary 7.2.18). More precisely, state-controlled finite automata are
computationally complete with n C 1 states, where n is the number of symbols
in the accepted language (Corollary 7.2.19). Transition-controlled finite automata
are computationally complete with a single state (Theorem 7.2.20).

Definitions

We begin by defining state-controlled and transition-controlled finite automata
formally.

Definition 7.2.1. Let M D .Q, ˙ , R, s, F/ be a finite automaton. Based on `M , we
define a relation FM over Q˙� � Q� as follows: if ˛ 2 Q� and pax `M qx, where
p; q 2 Q, x 2 ˙�, and a 2 ˙ [ f"g, then

.pax; ˛/ FM .qx; ˛p/

Let Fn
M , F�

M , and FC
M denote the nth power of FM , for some n � 0, the reflexive-

transitive closure of FM , and the transitive closure of FM , respectively.
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Let C � Q� be a control language. The state-controlled language of M with
respect to C is denoted by FL.M;C/ and defined as

FL.M;C/ D
˚
w 2 ˙� j .sw; "/ F�

M .f ; ˛/; f 2 F; ˛ 2 C
�

The pair .M;C/ is called a state-controlled finite automaton. ut

Before defining transition-controlled finite automata, recall the formalization of
rule labels from Definition 2.4.3.

Definition 7.2.2. Let M D .Q, ˙ , � , R, s, F/ be a finite automaton. Based on `M ,
we define a relation IM over Q˙� � �� as follows: if ˇ 2 �� and pax `M qx Œr�,
where rW pa ! q 2 R and x 2 ˙�, then

.pax; ˇ/ IM .qx; ˇr/

Let In
M, I�

M , and IC
M denote the nth power of IM , for some n � 0, the reflexive-

transitive closure ofIM, and the transitive closure ofIM , respectively.
Let C � �� be a control language. The transition-controlled language of M

with respect to C is denoted by IL.M;C/ and defined as

IL.M;C/ D fw 2 ˙� j .sw; "/ I�
M .f ; ˇ/; f 2 F; ˇ 2 Cg

The pair .M;C/ is called a transition-controlled finite automaton. ut

For any family of languages L , SCFA.L / and TCFA.L / denote the language
families defined by state-controlled finite automata controlled by languages from L
and transition-controlled finite automata controlled by languages from L , respec-
tively.

Conversions

First, we show that under certain circumstances, it is possible to convert any state-
controlled finite automaton to an equivalent transition-controlled finite automaton
and vice versa. These conversions will be helpful to prove that SCFA.L / D

TCFA.L / D J , where L satisfies the required conditions, we only have to prove
that either SCFA.L / D J or TCFA.L / D J .

Lemma 7.2.3. Let L be a language family that is closed under finite "-free
substitution. Then, SCFA.L / � TCFA.L /.

Proof. Let L be a language family that is closed under finite "-free substitution,
M D .Q, ˙ , R, s, F/ be a finite automaton, and C 2 L be a control language.
Without any loss of generality, assume that C � Q�. We next construct a finite
automaton M0 and a language C0 2 L such that FL.M;C/ D IL.M0;C0/. Define
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M0 D
�
Q; ˙; �;R0; s;F

�

where

� D fhp; a; qi j pa ! q 2 Rg

R0 D fhp; a; qiW pa ! q j pa ! q 2 Rg

Define the finite "-free substitution � from Q� to �� as

�.p/ D
˚
hp; a; qi j pa ! q 2 R

�

Let C0 D �.C/. Since L is closed under finite "-free substitution, C0 2 L . Observe
that .sw; "/ Fn

M .f ; ˛/, where w 2 ˙�, f 2 F, ˛ 2 C, and n � 0, if and only if
.sw; "/ In

M0 .f ; ˇ/, where ˇ 2 �.˛/. Hence, FL.M;C/ D IL.M0;C0/, so the lemma
holds. ut

Lemma 7.2.4. Let L be a language family that contains all finite languages and
is closed under concatenation. Then, TCFA.L / � SCFA.L /.

Proof. Let L be a language family that contains all finite languages and is closed
under concatenation, M D .Q, ˙ , � , R, s, F/ be a finite automaton, and C 2 L
be a control language. Without any loss of generality, assume that C � ��. We
next construct a finite automaton M0 and a language C0 2 L such that IL.M;C/ D

FL.M0;C0/. Define

M0 D
�
Q0; ˙;R0; s0;F0

�

where

Q0 D � [ fs0; `g .s0; ` … �/

R0 D fs0 ! r j rW sa ! q 2 Rg [

fra ! t j rW pa ! q; tW qb ! m 2 Rg [

fra ! ` j rW pa ! q 2 R; q 2 Fg

F0 D fr j rW pa ! q 2 R; p 2 Fg [ f`g

Finally, if s 2 F, then add s0 to F0. Set C0 D fs0; "gC. Since L is closed under
concatenation and contains all finite languages, C0 2 L . Next, we prove that
IL.M;C/ D FL.M0;C0/. First, notice that s 2 F if and only if s0 2 F. Hence,
by the definition of C0, it is sufficient to consider nonempty sequences of moves
of both M and M0. Indeed, .s; "/ I0M .s; "/ with s 2 F and " 2 C if and only if
.s0; "/ F0M0 .s0; "/ with s0 2 F and " 2 C0. Observe that

.sw; "/ IM .p1w1; r1/ IM .p2w2; r1r2/ IM 	 	 	 IM .pnwn; r1r2 	 	 	 rn/
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by

r1W p0a1 ! p1
r2W p1a2 ! p2

:::

rnW pn�1an ! pn

where w 2 ˙�, pi 2 Q for i D 1; 2; : : : ; n, pn 2 F, wi 2 ˙� for i D 1; 2; : : : ; n,
ai 2 ˙ [ f"g for i D 1; 2; : : : n, and n � 1 if and only if

.s0w; "/ FM0 .r1w; s
0/ FM0 .r2w1; s

0r1/ FM0 	 	 	 FM0 .rnC1wn; s
0r1r2 	 	 	 rn/

by

s0 ! r1
r1a1 ! r2
r2a2 ! r3

:::

rnan ! rnC1

with rnC1 2 F0 (recall that pn 2 F). Hence, IL.M;C/ D FL.M0;C0/ and the lemma
holds. ut

Theorem 7.2.5. Let L be a language family that is closed under finite "-free
substitution, contains all finite languages, and is closed under concatenation. Then,
SCFA.L / D TCFA.L /.

Proof. This theorem follows directly from Lemmas 7.2.3 and 7.2.4. ut

Regular-Controlled Finite Automata

Initially, we consider finite automata controlled by regular control languages.

Lemma 7.2.6. SCFA.REG/ � REG

Proof. Let M D .Q, ˙ , R, s, F/ be a finite automaton and C � Q� be a regular
control language. Since C is regular, there is a complete finite automaton H D . OQ,
Q, OR, Os, OF/ such that L.H/ D C. We next construct a finite automaton M0 such that
L.M0/ D FL.M;L.H//. Define

M0 D
�
Q0; ˙;R0; s0;F0

�
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where

Q0 D fhp; qi j p 2 Q; q 2 OQg

R0 D fhp; ria ! hq; ti j pa ! q 2 R; rp ! t 2 ORg

s0 D hs; Osi
F0 D fhp; qi j p 2 F; q 2 OFg

Observe that a move in M0 by hp; ria ! hq; ti 2 R0 simultaneously simulates a move
in M by pa ! q 2 R and a move in H by rp ! t 2 OR. Based on this observation, it is
rather easy to see that M0 accepts an input string w 2 ˙� if and only if M reads w and
enters a final state after going through a sequence of states from L.H/. Therefore,
L.M0/ D FL.M;L.H//. A rigorous proof of the identity L.M0/ D FL.M;L.H// is
left to the reader. ut

The following theorem shows that finite automata controlled by regular lan-
guages are of little or no interest because they are as powerful as ordinary finite
automata.

Theorem 7.2.7. SCFA.REG/ D REG

Proof. The inclusion REG � SCFA.REG/ is obvious. The converse inclusion
follows from Lemma 7.2.6. ut

Combining Theorems 7.2.5 and 7.2.7, we obtain the following corollary (recall
that REG satisfies all the conditions from Theorem 7.2.5).

Corollary 7.2.8. TCFA.REG/ D REG ut

Context-Free-Controlled Finite Automata

Next, we consider finite automata controlled by context-free control languages.

Lemma 7.2.9. SCFA.CF/ � CF

Proof. Let M D .Q,˙ , R, s, F/ be a finite automaton and C � Q� be a context-free
control language. Since C is context-free, there is a pushdown automaton H D . OQ,
Q, � , OR, Os, OZ, OF/ such that L.H/ D C. Without any loss of generality, we assume
that bpa ! wq 2 OR implies that a ¤ " (see Lemma 5.2.1 in [Woo87]). We next
construct a pushdown automaton M0 such that L.M0/ D FL.M;L.H//. Define

M0 D
�
Q0; ˙; �;R0; s0;Z;F0

�

where

Q0 D fhp; qi j p 2 Q; q 2 OQg

R0 D fbhp; ria ! whq; ti j pa ! q 2 R; bpr ! wt 2 ORg

s0 D hs; Osi
F0 D fhp; qi j p 2 F; q 2 OFg
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By a similar reasoning as in Lemma 7.2.6, we can prove that L.M0/ D FL.M;L.H//.
A rigorous proof of the identity L.M0/ D FL.M;L.H// is left to the reader. ut

The following theorem says that even though finite automata controlled by
context-free languages are more powerful than finite automata, they cannot accept
any non-context-free language.

Theorem 7.2.10. SCFA.CF/ D CF

Proof. The inclusion CF � SCFA.CF/ is obvious. The converse inclusion follows
from Lemma 7.2.9. ut

Combining Theorems 7.2.5 and 7.2.10, we obtain the following corollary (recall
that CF satisfies all the conditions from Theorem 7.2.5).

Corollary 7.2.11. TCFA.CF/ D CF ut

Program-Controlled Finite Automata

In this section, we show that there is a language family, strictly included in
the family of context-sensitive languages, which significantly increases the power
of finite automata. Indeed, finite automata controlled by languages generated by
propagating programmed grammars with appearance checking have the same power
as phrase-structure grammars. This result is of some interest because P�"

ac � CS (see
Theorem 3.5.4).

More specifically, we show how to algorithmically convert any programmed
grammar with appearance checking G to a finite automaton M and a propagating
programmed grammar with appearance checking G0 such that FL.M;L.G0// D

L.G/. First, we give an insight into the algorithm. Then, we describe it formally
and after that, we verify its correctness.

Let T D alph.L.G// and let s … T be a new symbol. From G, we construct the
propagating programmed grammar with appearance checking G0 such that w 2 L.G/
if and only if swsk 2 L.G0/, where k � 1. Then, the set of states of M will be T [fsg,
where s is the starting and also the only final state. For every a; b 2 T, we introduce
aa ! b to M. For every a 2 T, we introduce s ! a and aa ! s. Finally, we add
s ! s. An example of such a finite automaton when T D fa; b; cg can be seen in
Fig. 7.4. The key idea is that when M is in a state a 2 T, in the next move, it has to
read a. Hence, with swsk 2 L.G0/, M moves from s to a state in T, then reads every
symbol in w, ends up in s, and uses k times the rule s ! s.

G0 works in the following way. Every intermediate sentential form is of the
form xvZ, where x is a string of symbols that are not erased in the rest of the
derivation, v is a string of nonterminals that are erased in the rest of the derivation,
and Z is a nonterminal. When simulating a rule of G, G0 non-deterministically
selects symbols that are erased, appends them using Z to the end of the currently
generated string, and replaces an occurrence of the left-hand side of the original
rule with the not-to-be-erased symbols from the right-hand side. To differentiate the
symbols in x and v, v contains barred versions of the nonterminals. If G0 makes an
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Fig. 7.4 Example of a finite automaton constructed by Algorithm 7.2.12

improper non-deterministic selection—that is, the selection does not correspond to
a derivation in G—then G0 is not able to generate a terminal string as explained in
the notes following the algorithm.

Next, we describe the algorithm formally.

Algorithm 7.2.12.

Input: A programmed grammar with appearance checking G D .N, T, � , P, S/.
Output: A finite automaton M D .Q, T, R, s, F/ and a propagating programmed

grammar with appearance checking G0 D .N0, Q, � 0, P0, S0/ such that FL.M,
L.G0// D L.G/.

Note: Without any loss of generality, we assume that s; S0;Z; # … .Q [ N [ T/ and
`0; Ǹ

0; `s … � .
Method: Set V D N [ T and NN D f NA j A 2 Ng. Define the function � from N�

to NN� [ f`sg as �."/ D `s and �.A1A2 	 	 	 Am/ D NA1 NA2 	 	 	 NAm, where Ai 2 N
for i D 1; 2; : : : ;m, for some m � 1. Initially, set

Q D T [ fsg
R D fs ! sg [ fs ! a j a 2 Tg [ faa ! b j a 2 T; b 2 T [ fsgg
F D fsg
N0 D N [ NN [ fS0;Zg

� 0 D f`0; Ǹ
0; `sg

P0 D f.`0W S0 ! sSZ; fr j .rW S ! x; �r; �r/ 2 P; x 2 V�g;;/g [

f. Ǹ
0W S0 ! sNSZ; fr j .rW S ! x; �r; �r/ 2 P; x 2 V�g;;/g [

f.`sW Z ! s; f`sg;;/g
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Repeat 1 through 3, given next, until none of the sets � 0 and P0 can be extended
in this way.

1. If .rW A ! y0Y1y1Y2y2 	 	 	 Ymym; �r; �r/ 2 P, where yi 2 V�, Yj 2 N, for i D

0; 1; : : : ;m and j D 1; 2; : : : ;m, for some m � 1

then

(1.1) add ` D hr; y0;Y1y1;Y2y2; : : : ;Ymymi to � 0;
(1.2) add `0 to � 0, where `0 is a new unique label;
(1.3) add .`W A ! y0y1 	 	 	 ym; f`

0g;;/ to P0;
(1.4) add .`0W Z ! NyZ; �r;;/, where Ny D �.Y1Y2 	 	 	 Ym/ to P0.

2. If .rW A ! y; �r; �r/ 2 P, where y 2 N�

then

(2.1) add Nr to � 0, where Nr is a new unique label;
(2.2) add .NrW NA ! Ny; �r;;/ to P0, where Ny D �.y/.

3. If .rW A ! y; �r; �r/ 2 P, where y 2 V�,
then

(3.1) add Or to � 0, where Or is a new unique label;
(3.2) add Or0 to � 0, where Or0 is a new unique label;
(3.3) add .OrW A ! #y;;; fOr0g/ to P0;
(3.4) add .Or0W NA ! #y;;; �r/ to P0.

Finally, for every t 2 � , let � 0
t denote the set of rule labels introduced in

steps (1.1), (2.1), and (3.1) from a rule labeled with t.
Replace every .`0W Z ! NyZ; �r;;/ from (1.4) satisfying �r ¤ ; with

.`0W Z ! NyZ; � 0
r [ f`sg;;/ where � 0

r D
S

t2�r
� 0

t

Replace every .NrW NA ! Ny; �r;;/ from (2.2) satisfying �r ¤ ; with

.NrW NA ! Ny; � 0
r [ f`sg;;/ where � 0

r D
S

t2�r
� 0

t

Replace every .Or0W NA ! #y;;; �r/ from (3.4) satisfying �r ¤ ; with

.Or0W NA ! #y;;; �0
r [ f`sg/ where �0

r D
S

t2�r
� 0

t ut

Before proving that this algorithm is correct, we make some informal comments
concerning the purpose of the rules of G0. The rules introduced in 1 are used to
simulate an application of a rule where some of the symbols on its right-hand
side are erased in the rest of the derivation while some others are not erased. The
rules introduced in 2 are used to simulate an application of a rule which erases a
nonterminal by making one or more derivation steps. The rules introduced in 3 are
used to simulate an application of a rule in the appearance checking mode. Observe
that when simulating .rW A ! y; �r; �r/ 2 P in the appearance checking mode,
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we have to check the absence of both A and NA. If some of these two nonterminals
appear in the current configuration, the derivation is blocked because rules from 3
have empty success fields. Finally, notice that the final part of the algorithm ensures
that after a rule t 2 P is applied, `s or any of the rules introduced in (1.3), (2.2),
or (3.3) from rules in �t or �t can be applied.

Reconsider 1. Notice that the algorithm works correctly although it makes no
predetermination of nonterminals from which " can be derived. Indeed, if the output
grammar improperly selects a nonterminal that is not erased throughout the rest of
the derivation, then this occurrence of the nonterminal never disappears so a terminal
string cannot be generated under this improper selection.

We next prove that Algorithm 7.2.12 is correct.

Lemma 7.2.13. Algorithm 7.2.12 converts any programmed grammar with appear-
ance checking G D .N, T, � , P, S/ to a finite automaton M D .Q, T, R, s, F/ and a
propagating programmed grammar with appearance checking G0 D .N0, Q, � 0, P0,
S0/ such that FL.M;L.G0// D L.G/.

Proof. Clearly, the algorithm always halts. Consider the construction of G0. Observe
that every string in L.G0/ is of the form swsk, where k � 1. From the construction
of M, it is easy to see that w 2 FL.M;L.G0// for w 2 T� if and only if swsk 2 L.G0/

for some k � 1. Therefore, to prove that FL.M;L.G0// D L.G/, it is sufficient to
prove that w 2 L.G/ for w 2 T� if and only if swsk 2 L.G0/ for some k � 1.

We establish this equivalence by proving two claims. First, we prove that w 2

L.G/ for w 2 TC if and only if swsk 2 L.G0/ for some k � 1. Then, we show that
" 2 L.G/ if and only if " 2 L.G0/.

In what follows, we denote a string w which is to be erased as "w; otherwise, to
denote that w is not to be erased we write 6"w.

The next claim shows how G0 simulates G.

Claim 7.2.14. If .S; t1/ )m
G . 6"x0"X1 6"x1"X2 6"x2 	 	 	 "Xh

6"xh; t2/ )�
G .z; t3/, where z 2

TC, t1, t2, t3 2 � , xi 2 V� for i D 0; 1; : : : ; h, Xj 2 N for j D 1; 2; : : : ; h,
for some h � 0 and m � 0, then .S0; `0/ )�

G0 .sx0x1x2 	 	 	 xhvZ; t02/, where
v 2 perm.�.X1X2 	 	 	 Xh/�/, � 2 fsg�, and t02 can be `s or any rule constructed
from t2 in (1.3), (2.2), or (3.3).

Proof. This claim is established by induction on m � 0.

Basis. Let m D 0. Then, for .S; t1/ )0
G .S; t1/ )�

G .z; t2/, there is .S0; `0/ )G0

.sSZ; t01/, where t01 can be `s or any rule constructed from t1 in (1.3), (2.2), or (3.3).
Hence, the basis holds.

Induction Hypothesis. Suppose that there exists n � 0 such that the claim holds for
all derivations of length m, where 0 � m � n.

Induction Step. Consider any derivation of the form

.S; t1/ )nC1
G .w; t3/ )�

G .z; t4/



350 7 Regulated Automata and Computation

where w 2 VC and z 2 TC. Since n C 1 � 1, this derivation can be expressed as

.S; t1/ )n
G .

6"x0
"X1

6"x1
"X2

6"x2 	 	 	 "Xh
6"xh; t2/ )G .w; t3/ )�

G .z; t4/

where xi 2 V� for i D 0; 1; : : : ; h, Xj 2 V for j D 1; 2; : : : ; h, for some h � 0. By
the induction hypothesis,

.S0; `0/ )�
G0 .sx0x1x2 	 	 	 xhvZ; t02/

where v 2 perm.�.X1X2 	 	 	 Xh/�/, � 2 fsg�, and t02 can be `s or any rule constructed
from t2 in (1.3), (2.2), or (3.3).

Let x D 6"x0"X1 6"x1"X2 6"x2 	 	 	 "Xh
6"xh. Next, we consider all possible forms of the

derivation .x; t2/ )G .w; t3/, covered by the following three cases—(i) through (iii).

(i) Application of a rule that rewrites a symbol in some xj. Let xj D x0
jAx00

j and
.t2W A ! y0Y1y1Y2y2 	 	 	 Ymym; �t2 ; �t2 / 2 P for some j 2 f0; 1; : : : ; hg and
m � 0, where yi 2 V� for i D 0; 1; : : : ;m, Yi 2 N for i D 1; : : : ;m, and
t3 2 �t2 so that

. 6"x0"X1 6"x1"X2 6"x2 	 	 	 "Xj
6"x0

j
6"A 6"x00

j 	 	 	 "Xh
6"xh; t2/)G

. 6"x0"X1 6"x1"X2 6"x2 	 	 	 "Xj
6"y0"Y1 6"y1"Y2 6"y2 	 	 	 "Ym

6"ym 	 	 	 "Xh
6"xh; t3/

By 1 and by the final step of the algorithm, P0 contains

.`W A ! y0y1 	 	 	 ym; f`
0g;;/

.`0W Z ! NyZ; �`0 ;;/, where Ny D �.Y1Y2 	 	 	 Ym/

By the induction hypothesis, we assume that t02 D `. Then,

.sx0x1x2 	 	 	 x0
jAx00

j 	 	 	 xhvZ; `/ )G0

.sx0x1x2 	 	 	 x0
jy0y1y2 	 	 	 ymx00

j 	 	 	 xhvZ; `0/ )G0

.sx0x1x2 	 	 	 x0
jy0y1y2 	 	 	 ymx00

j 	 	 	 xhvNyZ; t03/

with t03 2 �`0 . By the final step of the algorithm, t03 can be `s or any rule con-
structed from t3 in (1.3), (2.2), or (3.3). As x0x1x2 	 	 	 x0

jy0y1y2 	 	 	 ymx00
j 	 	 	 xhvNyZ

is of the required form, the induction step for (i) is completed.
(ii) Application of a rule that rewrites some Xj. Let .t2W Xj ! y; �t2 ; �t2 / 2 P for

some j 2 f1; 2; : : : ; hg, where y 2 N� and t3 2 �t2 so that

. 6"x0"X1 6"x1"X2 6"x2 	 	 	 "Xj
6"xj 	 	 	 "Xh

6"xh; t2/ )G

. 6"x0"X1 6"x1"X2 6"x2 	 	 	 "y 6"xj 	 	 	 "Xh
6"xh; t3/

By the induction hypothesis, v D v1 NXjv2 for some v1; v2 2 NN�. By 2 and by
the final step of the algorithm,
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.Nt2W NXj ! Ny; �Nt2 ;;/ 2 P0 where Ny D �.y/

By the induction hypothesis, we assume that t02 D Nt2. Then,

.sx0x1x2 	 	 	 xhv1 NXjv2Z; Nt2/ )G0 .sx0x1x2 	 	 	 xhv1 Nyv2Z; t
0
3/

with t03 2 �Nt2 . By the final step of the algorithm, t03 can be `s or any rule that
was constructed from t3 in (1.3), (2.2), or (3.3). Since x0x1x2 	 	 	 xhv1 Nyjv2Z is of
the required form, the induction step for (ii) is completed.

(iii) Application of a rule in the appearance checking mode. Let .t2W A !

y; �t2 ; �t2 / 2 P, where A … alph.x/, y 2 V� and t3 2 �t2 so that

.x; t2/ )G .x; t3/

By the induction hypothesis, we assume that t02 was constructed from t2 in (3.3).
By 3 and by the final step of the algorithm, P0 contains

.OrW A ! #y;;; fOr0g/

.Or0W NA ! #y;;; �Or0/

Since A … alph.x/, NA … alph.x0x1x2 	 	 	 xhvZ/. Then,

.sx0x1x2 	 	 	 xhvZ; Or/ )G0

.sx0x1x2 	 	 	 xhvZ; Or0/ )G0

.sx0x1x2 	 	 	 xhvZ; t03/

where t03 can be `s or any rule that was constructed from t3 in (1.3), (2.2),
or (3.3). Since x0x1x2 	 	 	 xhvZ is of the required form, the induction step for (iii)
is completed.

Observe that cases (i) through (iii) cover all possible forms of .x; t2/ )G .w; t3/.
Thus, the claim holds. ut

To simplify the second claim and its proof, we define a generalization of )G0 . In
this generalization, we use the property that whenever a rule introduced in (1.3)
or (3.3) is applied during a successful derivation, it has to be followed by its
corresponding rule from (1.4) or (3.4), respectively. Let V 0 D N0 [ T. Define the
binary relationVG0 over V 0� � � 0 as

.x; r/VG0 .w; t/

if and only if either

.x; r/ )G0 .w; t/
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where r; t 2 � 0 such that t is not introduced in (1.4) and (3.4), or

.x; r/ )G0 .y; r0/ )G0 .w; t/

where r is a rule introduced in (1.3) or (3.3) and r0 is its corresponding second rule
introduced in (1.4) or (3.4), respectively. Define Vn

G0 for n � 0 and V�
G0 in the

usual way.
The next claim shows how G simulates G0. Define the homomorphism � from V 0�

to V� as �.X/ D X for X 2 V , �. NX/ D X for X 2 N, and �.s/ D �.S0/ D �.Z/ D ".

Claim 7.2.15. If .S0; `0/ Vm
G0 .sxu; t/ V�

G0 .z; g/, where x 2 VC, u 2 . NN [

fsg/�fZ; "g, z 2 QC, t; g 2 � 0, and m � 1, then .S; t1/ )�
G .x0X1x1X2x2 	 	 	 Xhxh; t0/,

where x D x0x1 	 	 	 xh, X1X2 	 	 	 Xh 2 perm.�.u//, h � 0, and t0 is the rule from which
t was constructed or any rule in P if t was not constructed from any rule in P.

Proof. This claim is established by induction on m � 1.

Basis. Let m D 1. Then, for .S0; `0/ Vm
G0 .sSZ; t/ V�

G0 .z; g/, where t; g 2 � 0 and
z 2 QC, there is .S; t0/ )0

G .S; t
0/, where t0 is the rule from which t was constructed.

Hence, the basis holds.

Induction Hypothesis. Suppose that there exists n � 1 such that the claim holds for
all derivations of length m, where 0 � m � n.

Induction Step. Consider any derivation of the form

.S0; `0/VnC1
G0 .swv; p/V�

G0 .z; g/

where n � 1, w 2 VC, v 2 . NN[fsg/�fZ; "g, z 2 QC, and p; g 2 � 0. Since nC1 � 1,
this derivation can be expressed as

.S0; `0/Vn
G0 .sxu; t/VG0 .swv; p/V�

G0 .z; g/

where x 2 VC, u 2 . NN [ fsg/�fZ; "g, and t 2 � 0. By the induction hypothesis,

.S; t1/ )�
G .x0X1x1X2x2 	 	 	 Xhxh; t

0/

where x D x0x1 	 	 	 xh, X1X2 	 	 	 Xh 2 perm.�.u//, h � 0, and t0 is the rule from which
t was constructed or any rule in P if t was not constructed from any rule in P.

Next, we consider all possible forms of .sxu; t/ VG0 .swv; p/, covered by the
following four cases—(i) through (iv).

(i) Application of .`sW Z ! s; f`sg;;/. Let t D `s, so

.swu0Z; `s/VG0 .swu0s; `s/

where u D u0Z. Then, the induction step for (i) follows directly from the
induction hypothesis (recall that �.Z/ D �.s/ D ").
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(ii) Application of two rules introduced in 1. Let x D x0Ax00 and .`W A ! y0y1 	 	 	 ym,
f`0g, ;/, .`0W Z ! NyZ; �`0 ;;/ 2 P0 be two rules introduced in 1 from .rW A !

y0Y1y1Y2y2 	 	 	 Ymym; �r; �r/ 2 P, where yi 2 V�, Yj 2 N, for i D 0; 1; : : : ;m
and j D 1; 2; : : : ;m, for some m � 1, and Ny D �.Y1Y2 	 	 	 Ym/. Then,

.sx0Ax00uZ; `/VG0 .sx0y0y1 	 	 	 ymx00uNyZ; p/

by applying ` and `0 (p 2 �`0 ). By the induction hypothesis, t0 D r and xi D

x0
iAx00

i for some i 2 f0; 1; : : : ; hg. Then,

.x0X1x1X2x2 	 	 	 Xix0
iAx00

i 	 	 	 Xhxh; r/ )G

.x0X1x1X2x2 	 	 	 Xix0
iy0Y1y1Y2y2 	 	 	 Ymymx00

i 	 	 	 Xhxh; t00/

Clearly, both configurations are of the required forms, so the induction step is
completed for (ii).

(iii) Application of a rule introduced in 2. Let u D u0 NAu00 and .NrW NA ! Ny; �Nr;;/ 2 P0

be a rule introduced in 2 from .rW A ! y; �r; �r/ 2 P, where y 2 N� and
Ny D �.y/. Then,

.sxu0 NAu00Z; Nr/VG0 .sxu0Nyu00Z; p/

where p 2 �Nr . By the induction hypothesis, t0 D r and Xi D A for some
i 2 f1; : : : ; hg. Then,

.x0X1x1X2x2 	 	 	 Xixi 	 	 	 Xhxh; r/ )G

.x0X1x1X2x2 	 	 	 yxi 	 	 	 Xhxh; t00/

Clearly, both configurations are of the required forms, so the induction step is
completed for (iii).

(iv) Application of two rules introduced in 3. Let .OrW A ! #y;;; fOr0g/, .Or0W NA !

#y;;; �Or0/ 2 P0 be two rules introduced in 3 from .rW A ! y; �r; �r/ 2 P, where
y 2 V�, such that fA; NAg \ alph.sxuZ/ D ;. Then,

.sxu; Or/VG0 .sxu; p/

by applying Or and Or0 in the appearance checking mode (p 2 �Or0). By the
induction hypothesis, t0 D r and A … alph.x0X1x1X2x2 	 	 	 Xhxh/, so

.x0X1x1X2x2 	 	 	 Xhxh; r/ )G .x0X1x1X2x2 	 	 	 Xhxh; t
00/

Clearly, both configurations are of the required forms, so the induction step is
completed for (iv).

Observe that cases (i) through (iv) cover all possible forms of .sxu; t/ VG0

.swv; p/. Thus, the claim holds. ut
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Consider Claim 7.2.14 with h D 0. Then,

.S; t1/ )�
G .z; r/

implies that

.S0; `0/ )G0 .szsk; r0/

where k � 1, t1; r 2 � , and r0 2 � 0. Consider Claim 7.2.15 with x 2 TC and
u 2 fsgC. Then,

.S0; `0/V�
G0 .sxu; t/

implies that

.S; t1/ )�
G .x; t

0/

Hence, we have w 2 L.G/ for w 2 TC if and only if swsk 2 L.G0/ for some k � 1.
It remains to be shown that " 2 L.G/ if and only if " 2 L.G0/. This can be proved

by analogy with proving Claims 7.2.14 and 7.2.15, where G0 uses Ǹ
0 instead of `0

(see the initialization part of the algorithm). We leave this part of the proof to the
reader. Hence, FL.M;L.G0// D L.G/, and the lemma holds. ut

Lemma 7.2.16. RE � SCFA.P�"
ac /

Proof. Let I 2 RE and T D alph.I/. By Theorem 3.5.4, there is a programmed
grammar with appearance checking G D .V , T, � , P, S/ such that L.G/ D I.
Let M D .Q, T, R, s, F/ and G0 D .V 0, Q, � 0, P0, S0/ be the finite automaton
and the propagating programmed grammar with appearance checking, respectively,
constructed by Algorithm 7.2.12 from G. By Lemma 7.2.13, FL.M;L.G0// D

L.G/ D I, so the lemma holds. ut

Theorem 7.2.17. SCFA.P�"
ac / D RE

Proof. The inclusion SCFA.P�"
ac / � RE follows from Turing-Church thesis. The

converse inclusion RE � SCFA.P�"
ac / follows from Lemma 7.2.16. ut

Combining Theorems 7.2.5 and 7.2.17, we obtain the following corollary (recall
that P�"

ac satisfies all the conditions from Theorem 7.2.5, see [DP89]).

Corollary 7.2.18. TCFA.P�"
ac / D RE ut

Finally, we briefly investigate a reduction of the number of states in controlled
finite automata. First, observe that the finite automaton M D .Q, T, R, s, F/
from Algorithm 7.2.12 has card.T/ C 1 states. Therefore, we obtain the following
corollary.

Corollary 7.2.19. Let I be a recursively enumerable language, and let T D alph.I/.
Then, there is a finite automaton M D .Q, T, R, s, F/ such that card.Q/ D card.T/C
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1, and a propagating programmed grammar with appearance checking G such that
FL.M;L.G// D I. ut

In a comparison to Corollary 7.2.19, a more powerful result holds in terms
of transition-controlled finite automata. In this case, the number of states can be
decreased to a single state as stated in the following theorem.

Theorem 7.2.20. Let I be a recursively enumerable language. Then, there is a
finite automaton M D .Q, T, R, s, F/ such that card.Q/ D 1, and a propagating
programmed grammar with appearance checking G such that IL.M;L.G// D I.

Proof. Reconsider Algorithm 7.2.12. We modify the construction of M D .Q, T,
R, s, F/ in the following way. Let G D .N, T, � , P, S/ be the input programmed
grammar with appearance checking. Construct the finite automaton

M D
�
Q; ˚;R; s;F

�

where

Q D fsg
˚ D fsg [ T
R D fsW s ! sg [ faW sa ! s j a 2 Tg

F D fsg

Observe that card.Q/ D 1 and that this modified algorithm always halts. The
correctness of the modified algorithm—that is, the identity IL.M, L.G0// D

L.G/, where G0 is the propagating programmed grammar constructed by Algo-
rithm 7.2.12—can be established by analogy with the proof of Lemma 7.2.13, so
we leave the proof to the reader. The rest of the proof of this theorem parallels the
proof of Lemma 7.2.16, so we omit it. ut

We close this section by presenting three open problem areas that are related to
the achieved results.

Open Problem 7.2.21. In general, the state-controlled and transition-controlled
finite automata in Theorem 7.2.17 and Corollary 7.2.18 are non-deterministic. Do
these results hold in terms of deterministic versions of these automata?

Open Problem 7.2.22. By using control languages from CF, we characterize CF.
By using control languages from P�"

ac , we characterize RE. Is there a language
family L such that CF � L � P�"

ac by which we can characterize CS?

Open Problem 7.2.23. Theorem 7.2.5 requires L to contain all finite languages
and to be closed under finite "-free substitution and concatenation. Does the same
result hold if there are fewer requirements placed on L ?
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7.2.2 Pushdown Automata Regulated by Control Languages

Section 7.2.2 consists of four subsections. First, we define pushdown automata that
regulate the application of their rules by control languages by analogy with context-
free grammars regulated in this way (see Sect. 3.3). Then, we demonstrate that this
regulation has no effect on the power of pushdown automata if the control languages
are regular. Considering this result, we point out that pushdown automata regulated
by regular languages are of little interest because their power coincides with the
power of ordinary pushdown automata. Next, however, we prove that pushdown
automata increase their power remarkably if they are regulated by linear languages;
indeed, they characterize the family of recursively enumerable languages. Finally,
we continue with the discussion of regulated pushdown automata, but we narrow
our attention to their special cases, such as one-turn pushdown automata.

Definitions

Without further ado, we next define pushdown automata regulated by control
languages. Recall the formalization of rule labels from Definition 2.4.10 because
this formalization is often used throughout the present section.

Definition 7.2.24. Let M D .Q, ˙ , � , R, s, S, F/ be a pushdown automaton, and
let � be an alphabet of its rule labels. Let 	 be a control language over � ; that is,
	 � ��. With 	 , M defines the following three types of accepted languages

• L.M, 	 , 1/—the language accepted by final state
• L.M, 	 , 2/—the language accepted by empty pushdown
• L.M, 	 , 3/—the language accepted by final state and empty pushdown

defined as follows. Let � 2 � �Q˙�. If � 2 � �F, � 2 Q, � 2 F, then � is a 1-
final configuration, 2-final configuration, 3-final configuration, respectively. For i D

1; 2; 3, we define L.M, 	 , i/ as

L.M; 	; i/ D
˚
w j w 2 ˙� and Ssw `�

M � Œ��

for an i-final configuration � and � 2 	
�

The pair .M; 	/ is called a controlled pushdown automaton. ut

For any family of languages L and i 2 f1; 2; 3g, define

RPDA.L ; i/ D
˚
L j L D L.M; 	; i/, where M is a pushdown
automaton and 	 2 L

�

We demonstrate that

CF D RPDA.REG; 1/ D RPDA.REG; 2/ D RPDA.REG; 3/
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and

RE D RPDA.LIN; 1/ D RPDA.LIN; 2/ D RPDA.LIN; 3/

Some of the following proofs involve several grammars and automata. To avoid
any confusion, these proofs sometimes specify a regular grammar G as G D .NG,
TG, PG, SG/ because this specification clearly expresses that NG, TG;PG, and
SG represent the components of G. Other grammars and automata are specified
analogously whenever any confusion may exist.

Regular-Controlled Pushdown Automata

This section proves that if the control languages are regular, then the regulation of
pushdown automata has no effect on their power. The proof of the following lemma
presents a transformation that converts any regular grammar G and any pushdown
automaton K to an ordinary pushdown automaton M such that L.M/ D L.K,
L.G/, 1/.

Lemma 7.2.25. For every regular grammar G and every pushdown automaton K,
there exists a pushdown automaton M such that L.M/ D L.K, L.G/, 1/.

Proof. Let G D .NG, TG, PG, SG/ be any regular grammar, and let K D .QK , ˙K ,
�K , RK , sK , SK , FK/ be any pushdown automaton. Next, we construct a pushdown
automaton M that simultaneously simulates G and K so that L.M/ D L.K, L.G/, 1/.

Let f be a new symbol. Define M as

M D
�
QM; ˙M; �M;RM; sM; SM;FM

�

where

QM D fhqBi j q 2 QK ;B 2 NG [ ff gg

˙M D ˙K

�M D �K

sM D hsKSGi

SM D SK

FM D fhqf i j q 2 FKg

RM D fChqAib ! xhpBi j aW Cqb ! xp 2 RK ;A ! aB 2 PGg

[ fChqAib ! xhpf i j aW Cqb ! xp 2 RK ;A ! a 2 PGg

Observe that a move in M according to ChqAib ! xhpBi 2 RM simulates a
move in K according aW Cqb ! xp 2 RK , where a is generated in G by using
A ! aB 2 PG. Based on this observation, it is rather easy to see that M accepts
an input string w if and only if K reads w and enters a final state after using a
complete string of L.G/; therefore, L.M/ D L.K, L.G/, 1/. A rigorous proof that
L.M/ D L.K, L.G/, 1/ is left to the reader. ut
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Theorem 7.2.26. For i 2 f1; 2; 3g, CF D RPDA.REG; i/.

Proof. To prove that CF D RPDA.REG, 1/, notice that RPDA.REG, 1/ � CF
follows from Lemma 7.2.25. Clearly, CF � RPDA.REG, 1/, so RPDA.REG,
1/ D CF. By analogy with the demonstration of RPDA.REG, 1/ D CF, we can
prove that CF D RPDA.REG, 2/ and CF D RPDA.REG, 3/. ut

Let us point out that most fundamental regulated grammars use control mech-
anisms that can be expressed in terms of regular control languages (see Chap. 3)
to regular control languages. However, pushdown automata introduced by analogy
with these grammars are of little or no interest because they are as powerful as
ordinary pushdown automata (see Theorem 7.2.26 above).

Linear-Controlled Pushdown Automata

This section demonstrates that pushdown automata regulated by linear control lan-
guages are more powerful than ordinary pushdown automata. In fact, it proves that

RE D RPDA.LIN; 1/ D RPDA.LIN; 2/ D RPDA.LIN; 3/

Recall the normal form for left-extended queue grammars from Definition 3.1.25,
which is needed to prove the following.

Lemma 7.2.27. Let Q be a left-extended queue grammar that satisfies the normal
form of Definition 3.1.25. Then, there exist a linear grammar G and a pushdown
automaton M such that L.Q/ D L.M, L.G/, 3/.

Proof. Let Q D .VQ, TQ, WQ, FQ, RQ, gQ/ be a left-extended queue grammar
satisfying the normal form of Definition 3.1.25. Without any loss of generality,
assume that f@; ‘; �; $; b; eg \ .VQ [ WQ/ D ;. Define the coding � from V�

Q
to fhasi

�
j a 2 VQg� as �.a/ D hasi

�
(s is used as the start state of the pushdown

automaton M defined later in this proof).
Construct the linear grammar G D .NG, TG, PG, SG/ in the following way.

Initially, set

NG D fSG; hŠi; hŠ; 1ig [ fhf i j f 2 FQg

TG D �.VQ/ [ fh�si� ; h@i� g [ fh�f i� j f 2 FQg

PG D fSG ! h�si� hf i j f 2 FQg [ fhŠi ! hŠ; 1ih@i� g

Extend NG, TG, and PG by performing (1) through (3), given next.

(1) For every .a; p; x; q/ 2 RQ, where p; q 2 WQ, a 2 Z, and x 2 T�,

NG D NG

NG D NG [ fhapxqki j k D 0; : : : ; jxjg [ fhpi; hqig

TG D TG [ fhsym.x; k/i� j k D 1; : : : ; jxjg [ fhapxqi� g

PG D PG [ fhqi ! hapxqjxjihapxqi
�
; hapxq0i ! hpig

[ fhapxqki ! hapxq.k � 1/ihsym.x; k/i� j k D 1; : : : ; jxjg
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(2) For every .a; p; x; q/ 2 RQ with p; q 2 WQ, a 2 U, and x 2 V�
Q,

NG D NG

NG D NG [ fhp; 1i; hq; 1ig
PG D PG [ fhq; 1i ! reversal.�.x//hp; 1i�.a/g

(3) For every .a; p; x; q/ 2 RQ with ap D qQ, p; q 2 WQ, and x 2 V�
Q,

NG D NG

NG D NG [ fhq; 1ig
PG D PG [ fhq; 1i ! reversal.x/h$si

�
g

The construction of G is completed. Set � D TG. � represents the alpha-
bet of rule labels corresponding to the rules of the pushdown automaton M,
defined as

M D
�
QM; ˙M ; �M;RM; sM; SM; feg

�

Throughout the rest of this proof, sM is abbreviated to s. Initially, set

QM D fs; h‘Ši; b; eg

˙M D TQ

�M D fSM; �g [ VQ

RM D fh�si
�
W SMs ! �sg [ fh�f i

�
W �h‘f i !e j f 2 FMg

Extend QM and RM by performing (A) through (D), given next.

(A) Set RM D RM [ fhbsi� W as ! abs j a 2 �M � fSMg; b 2 �Mg.
(B) Set RM D RM [ fh$si� W as ! abj a 2 VQg [ fhai� W ab! bj a 2 VQg.
(C) Set RM D RM [ fh@i� W ab! ah‘Ši j a 2 Zg.
(D) For every .a; p; x; q/ 2 RQ, where p; q 2 WQ, a 2 Z, x 2 T�

Q, set

QM D QM [ fh‘pig [ fh‘qui j u 2 prefix.x/g
RM D RM [ fhbi

�
W ah‘qyib ! ah‘qybi j b 2 TQ; y 2 T�

Q; yb 2 prefix.x/g
[ fhapxqi� W ah‘qxi ! h‘pig

The construction of M is completed. Notice that several components of G and M
have this form: hxiy. Intuitively, if y D � , then hxiy 2 � ; or TG, respectively. If x
begins with ‘, then hxiy 2 QM . Otherwise, hxiy 2 NG.
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First, we only sketch the reason why L.Q/ contains L.M, L.G/, 3/. According to
a string from L.G/, M accepts every string w as

�sw1 	 	 	 wm�1wm `C
M �bm 	 	 	 b1an 	 	 	 a1sw1 	 	 	 wm�1wm

`M �bm 	 	 	 b1an 	 	 	 a1bw1 	 	 	 wm�1wm

`n
M �bm 	 	 	 b1bw1 	 	 	 wm�1wm

`M �bm 	 	 	 b1h‘q1iw1 	 	 	 wm�1wm

`
jw1j
M �bm 	 	 	 b1h‘q1w1iw2 	 	 	 wm�1wm

`M �bm 	 	 	 b2h‘q2iw2 	 	 	 wm�1wm

`
jw2j
M �bm 	 	 	 b2h‘q2w2iw3 	 	 	 wm�1wm

`M �bm 	 	 	 b3h‘q3iw3 	 	 	 wm�1wm
:::

`M �bmh‘qmiwm

`
jwmj
M �bmh‘qmwmi

`M �h‘qmC1i

`M e

where w D w1 	 	 	 wm�1wm, a1 	 	 	 anb1 	 	 	 bm D x1 	 	 	 xnC1, and RQ contains .a0, p0,
x1, p1/, .a1, p1, x2, p2/, : : : , .an, pn, xnC1, q1/, .b1, q1, w1, q2/, .b2, q2, w2, q3/, : : : ,
.bm, qm, wm, qmC1/. According to these members of RQ, Q makes

#a0p0 )Q a0#y0x1p1 Œ.a0; p0; x1; p1/�
)Q a0a1#y1x2p2 Œ.a1; p1; x2; p2/�
)Q a0a1a2#y2x3p3 Œ.a2; p2; x3; p3/�
:::

)Q a0a1a2 	 	 	 an�1#yn�1xnpn Œ.an�1; pn�1; xn; pn/�

)Q a0a1a2 	 	 	 an#ynxnC1q1 Œ.an; pn; xnC1; q1/�
)Q a0 	 	 	 anb1#b2 	 	 	 bmw1q2 Œ.b1; q1;w1; q2/�
)Q a0 	 	 	 anb1b2#b3 	 	 	 bmw1w2q3 Œ.b2; q2;w2; q3/�
:::

)Q a0 	 	 	 anb1 	 	 	 bm�1#bmw1w2 	 	 	 wm�1qm Œ.bm�1; qm�1;wm�1; qm/�

)Q a0 	 	 	 anb1 	 	 	 bm#w1w2 	 	 	 wmqmC1 Œ.bm; qm;wm; qmC1/�

Therefore, L.M, L.G/, 3/ � L.Q/.
More formally, to demonstrate that L.Q/ contains L.M, L.G/, 3/, consider any

h 2 L.G/. G generates h as

SG )G h�si
�
hqmC1i

)
jwmjC1
G h�si� hqmitmhbmqmwmqmC1i�

)
jwm�1jC1
G h�si� hqm�1itm�1hbm�1qm�1wm�1qmi� tmhbmqmwmqmC1i�

:::
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)
jw1jC1
G h�si� hq1io

)
jw1jC1
G h�si

�
hq1; 1ih@i

�
o

Œhq1i ! hq1; 1ih@i
�
�

)G h�si
�
�.reversal.xnC1//hpn; 1ihani� h@i

�
o

Œhq1; 1i ! reversal.�.xnC1//hpn; 1ihani� h@i
�
�

)G h�si
�
�.reversal.xnxnC1//hpn�1; 1ihan�1i� hani� h@i

�
o

Œhpn; 1i ! reversal.�.xn//hpn�1; 1ihan�1i� �

:::

)G h�si� �.reversal.x2 	 	 	 xnxnC1//hp1; 1iha1i� ha2i� 	 	 	 hani� h@i� o
Œhp2; 1i ! reversal.�.x2//hp1; 1iha1i� �

)G h�si� �.reversal.x1 	 	 	 xnxnC1//h$si� ha1i� ha2i� 	 	 	 hani� h@i� o
Œhp1; 1i ! reversal.�.x1//h$si� �

where

n;m � 1

ai 2 U for i D 1; : : : ; n
bk 2 Z for k D 1; : : : ;m
xl 2 V� for l D 1; : : : ; n C 1

pi 2 W for i D 1; : : : ; n
ql 2 W for l D 1; : : : ;m C 1 with q1 D Š and qmC1 2 F

and

tk D hsym.wk; 1/i� 	 	 	 hsym.wk; jwkj � 1/i� hsym.wk; jwkj/i�
for k D 1; : : : ;mI

o D t1hb1q1w1q2i� 	 	 	 tm�1hbm�1qm�1wm�1qmi� tmhbmqmwmqmC1i� I

h D h�si� �.reversal.x1 	 	 	 xnxnC1//h$i� ha1i� ha2i� 	 	 	 hani� h@i� o

We describe this derivation in a greater detail. Initially, G makes SG )G

h�si� hqmC1i according to SG ! h�si� hqmC1i. Then, G makes

h�si
�
hqmC1i

)
jwmjC1
G h�si� hqmitmhbmqmwmqmC1i�

)
jwm�1jC1
G h�si� hqm�1itm�1hbm�1qm�1wm�1qmi� tmhbmqmwmqmC1i�

:::

)
jw1jC1
G h�si� hq1io
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according to rules introduced in (1). Then, G makes

h�si� hq1io )G h�si� hq1; 1ih@i� o

according to hŠi ! hŠ; 1ih@i� (recall that q1 D Š). After this step, G makes

h�si� hq1; 1ih@i� o
)G h�si� �.reversal.xnC1//hpn; 1ihani� h@i� o
)G h�si� �.reversal.xnxnC1//hpn�1; 1ihan�1i� hani� h@i� o
:::

)G h�si� �.reversal.x2 	 	 	 xnxnC1//hp1; 1iha1i� ha2i� 	 	 	 hani� h@i� o

according to rules introduced in (2). Finally, according to hp1; 1i ! reversal.�.x1//
h$i� , which is introduced in (3), G makes

h�si� �.reversal.x2 	 	 	 xnxnC1//hp1; 1iha1i� ha2i� 	 	 	 hani� h@i� o
)G h�si

�
�.reversal.x1 	 	 	 xnxnC1//h$i

�
ha1i� ha2i� 	 	 	 hani� h@i

�
o

If a1 	 	 	 anb1 	 	 	 bm differs from x1 	 	 	 xnC1, then M does not accept according to h.
Assume that a1 	 	 	 anb1 	 	 	 bm D x1 	 	 	 xnC1. At this point, according to h, M makes
this sequence of moves

�sw1 	 	 	 wm�1wm `C
M �bm 	 	 	 b1an 	 	 	 a1sw1 	 	 	 wm�1wm

`M �bm 	 	 	 b1an 	 	 	 a1bw1 	 	 	 wm�1wm

`n
M �bm 	 	 	 b1bw1 	 	 	 wm�1wm

`M �bm 	 	 	 b1h‘q1iw1 	 	 	 wm�1wm

`
jw1j
M �bm 	 	 	 b1h‘q1w1iw2 	 	 	 wm�1wm

`M �bm 	 	 	 b2h‘q2iw2 	 	 	 wm�1wm

`
jw2j
M �bm 	 	 	 b2h‘q2w2iw3 	 	 	 wm�1wm

`M �bm 	 	 	 b3h‘q3iw3 	 	 	 wm�1wm
:::

`M �bmh‘qmiwm

`
jwmj
M �bmh‘qmwmi

`M �h‘qmC1i

`M e

In other words, according to h, M accepts w1 	 	 	 wm�1wm. Return to the generation
of h in G. By the construction of PG, this generation implies that RQ con-
tains .a0; p0; x1; p1/, .a1; p1; x2; p2/, : : : , .aj�1; pj�1; xj; pj/, : : : , .an; pn; xnC1; q1/,
.b1; q1;w1; q2/, .b2; q2;w2; q3/, : : : , .bm; qm;wm; qmC1/.
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Thus, in Q,

#a0p0 )Q a0#y0x1p1 Œ.a0; p0; x1; p1/�
)Q a0a1#y1x2p2 Œ.a1; p1; x2; p2/�
)Q a0a1a2#y2x3p3 Œ.a2; p2; x3; p3/�
:::

)Q a0a1a2 	 	 	 an�1#yn�1xnpn Œ.an�1; pn�1; xn; pn/�

)Q a0a1a2 	 	 	 an#ynxnC1q1 Œ.an; pn; xnC1; q1/�
)Q a0 	 	 	 anb1#b2 	 	 	 bmw1q2 Œ.b1; q1;w1; q2/�
)Q a0 	 	 	 anb1b2#b3 	 	 	 bmw1w2q3 Œ.b2; q2;w2; q3/�
:::

)Q a0 	 	 	 anb1 	 	 	 bm�1#bmw1w2 	 	 	 wm�1qm Œ.bm�1; qm�1;wm�1; qm/�

)Q a0 	 	 	 anb1 	 	 	 bm#w1w2 	 	 	 wmqmC1 Œ.bm; qm;wm; qmC1/�

Therefore, w1w2 	 	 	 wm 2 L.Q/. Consequently, L.M, L.G/, 3/ � L.Q/. A proof
that L.Q/ � L.M, L.G/, 3/ is left to the reader. As L.Q/ � L.M, L.G/, 3/ and L.M,
L.G/, 3/ � L.Q/, L.Q/ D L.M, L.G/, 3/. Therefore, Lemma 7.2.27 holds. ut

Theorem 7.2.28. For i 2 f1; 2; 3g, RE D RPDA.LIN; i/.

Proof. Obviously, RPDA.LIN; 3/ � RE. To prove that RE � RPDA.LIN; 3/,
consider any recursively enumerable language L 2 RE. By Theorem 2.3.46,
L.Q/ D L, for a left-extended queue grammar Q. Furthermore, by Theorem 3.1.26
and Lemma 7.2.27, L.Q/ D L.M, L.G/, 3/, for a linear grammar G and a pushdown
automaton M. Thus, L D L.M, L.G/, 3/. Hence, RE � RPDA.LIN; 3/. As
RPDA.LIN; 3/ � RE and RE � RPDA.LIN; 3/, RE D RPDA.LIN; 3/.

By analogy with the demonstration of RE D RPDA.LIN; 3/, we can prove that
RE D RPDA.LIN; i/ for i D 1; 2. ut

One-Turn Linear-Controlled Pushdown Automata

In the present section, we continue with the discussion of regulated pushdown
automata, but we narrow our attention to their special cases—one-turn regulated
pushdown automata. To give an insight into one-turn pushdown automata, consider
two consecutive moves made by an ordinary pushdown automaton M. If during the
first move M does not shorten its pushdown and during the second move it does,
then M makes a turn during the second move. A pushdown automaton is one-turn if
it makes no more than one turn with its pushdown during any computation starting
from a start configuration. Recall that one-turn pushdown automata characterize
the family of linear languages (see [Har78]) while their unrestricted versions
characterize the family of context-free languages (see Theorem 2.4.12). As a result,
one-turn pushdown automata are less powerful than the pushdown automata.



364 7 Regulated Automata and Computation

As the most surprising result, we demonstrate that linear-regulated versions of
one-turn pushdown automata characterize the family of recursively enumerable
languages. Thus, as opposed to the ordinary one-turn pushdown automata, one-turn
linear-regulated pushdown automata are as powerful as linear-regulated pushdown
automata that can make any number of turns.

In fact, this characterization holds even for some restricted versions of one-turn
regulated pushdown automata, including their atomic and reduced versions, which
are sketched next.

(I) During a move, an atomic one-turn regulated pushdown automaton changes a
state and, in addition, performs exactly one of the following three actions:

• it pushes a symbol onto the pushdown;
• it pops a symbol from the pushdown;
• it reads an input symbol.

(II) A reduced one-turn regulated pushdown automaton has a limited number
of some components, such as the number of states, pushdown symbols, or
transition rules.

We establish the above-mentioned characterization in a formal way.

Definition 7.2.29. An atomic pushdown automaton is a pushdown automaton (see
Definition 2.4.13) M D .Q; ˙; �;R; s; S;F/, where for every rule Apa ! wq 2 R,
jAawj D 1. That is, each of the rules from R has one of the following forms.

(1) Ap ! q (popping rule)
(2) p ! wq (pushing rule)
(3) pa ! q (reading rule) ut

Definition 7.2.30. Let M D .Q; ˙; �;R; s; S;F/ be a pushdown automaton. Let
x; x0; x00 2 � �, y; y0; y00 2 ˙�, q; q0; q00 2 Q, and xqy `M x0q0y0 `M x00q00y00. If
jxj � jx0j and jx0j > jx00j, then x0q0y0 `M x00q00y00 is a turn. If M makes no more than
one turn during any sequence of moves starting from a start configuration, then M
is said to be one-turn. ut

One-turn pushdown automata represent an important restricted version of
automata, and the formal language theory has studied their properties in detail
(see Section 5.7 in [Har78] and Section 6.1 in [ABB97]).

Definition 7.2.31. Let M be a pushdown automaton. If M satisfies the conditions
from Definitions 7.2.29 and 7.2.30, it is said to be one-turn atomic pushdown
automaton. Additionally, if M is regulated (see Definition 7.2.24), it is a one-turn
atomic regulated pushdown automaton (OA-RPDA for short).

For any family of language L and i 2 f1; 2; 3g, define

OA - RPDA.L ; i/ D
˚
L j L D L.M; 	; i/, where M is a one-turn
atomic pushdown automaton and 	 2 L

�
ut



7.2 Regulated Acceptance with Control Languages 365

We next prove that one-turn atomic pushdown automata regulated by linear
languages characterize the family of recursively enumerable languages. In fact,
these automata need no more than one state and two pushdown symbols to achieve
this characterization.

Lemma 7.2.32. Let Q be a left-extended queue grammar satisfying the normal
form of Definition 3.1.25. Then, there is a linear grammar G and a one-turn atomic
pushdown automaton M D .fbg, � , f0, 1g, H, b, 0, fbg/ such that card.H/ D

card.�/C 4 and L.Q/ D L.M, L.G/, 3/.

Proof. Let Q D .V , � , W, F, R, g/ be a queue grammar satisfying the normal form
of Definition 3.1.25. For some n � 1, introduce a homomorphism f from R to X,
where

X D f1g�f0gf1g�f1gn \ f0; 1g2n

Extend f so it is defined from R� to X�. Define the substitution h from V� to X� as

h.a/ D
˚
f .r/ j r D .a; p; x; q/ 2 R for some p; q 2 W; x 2 V�

�

Define the coding d from f0; 1g� to f2; 3g� as d.0/ D 2, d.1/ D 3. Construct the
linear grammar

G D
�
N;T;P; S

�

as follows. Initially, set

T D f0; 1; 2; 3g [ �

N D fSg [ fQq j q 2 Wg [ fOq j q 2 Wg

P D fS ! Qf2 j f 2 Fg [ fQŠ ! OŠg

Extend P by performing (1) through (3), given next.

(1) For every r D .a; p; x; q/ 2 R, p; q 2 w, x 2 T�

P D P [
˚
Qq ! Qpd.f .r//x

�

(2) For every .a; p; x; q/ 2 R,

P D P [
˚
Oq ! yOpb j y 2 reversal.h.x//; b 2 h.a/

�

(3) For every .a; p; x; q/ 2 R, ap D S, p; q 2 W, x 2 V�,

P D P [
˚
Oq ! y j y 2 reversal.h.x//

�
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Define the atomic pushdown automaton

M D
�
fbg; �; f0; 1g;H; b; 0; fbg

�

where H contains the following transition rules

0W b! 0b

1W b! 1b

2W 0b! b

3W 1b! b

aW ba ! b for every a 2 �

We next demonstrate that L.M, L.G/, 3/ D L.Q/. Observe that M accepts every
string w D w1 	 	 	 wm�1wm as

0bw1 	 	 	 wm�1wm `C
M 0Nbm 	 	 	 Nb1 Nan 	 	 	 Na1bw1 	 	 	 wm�1wm

`
jNan ���Na1j
M 0Nbm 	 	 	 Nb1bw1 	 	 	 wm�1wm

`
jw1j
M 0Nbm 	 	 	 Nb1bw2 	 	 	 wm�1wm

`
jNb1j
M 0Nbm 	 	 	 Nb2bw2 	 	 	 wm�1wm

`
jw2j
M 0Nbm 	 	 	 Nb2bw3 	 	 	 wm�1wm

`
jNb2j
M 0Nbm 	 	 	 Nb3bw3 	 	 	 wm�1wm
:::

`M 0Nbmbwm

`
jwmj
M 0Nbmb

`
jNbmj
M 0b

`M b

according to a string of the form ˇ˛˛0ˇ0 2 L.G/, where

ˇ D reversal.f .rm// reversal.f .rm�1// 	 	 	 reversal.f .r1//
˛ D reversal.f .tn// reversal.f .tn�1// 	 	 	 reversal.f .t1//
˛0 D f .t0/f .t1/ 	 	 	 f .tn/
ˇ0 D d.f .r1//w1d.f .r2//w2 	 	 	 d.f .rm//wm

for some m; n � 1 so that for i D 1; : : : ;m,

ti D .bi; qi;wi; qiC1/ 2 R; bi 2 V � �; qi; qiC1 2 Q; Nbi D f .ti/

and for j D 1; : : : ; n C 1, rj D .aj�1; pj�1; xj; pj/, aj�1 2 V � � , pj�1; pj 2 Q � F,
xj 2 .V � �/�, Naj D f .rj/, qmC1 2 F, Na0p0 D g. Thus, in Q,
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#a0p0 )Q a0#y0x1p1 Œ.a0; p0; x1; p1/�

)Q a0a1#y1x2p2 Œ.a1; p1; x2; p2/�

)Q a0a1a2#y2x3p3 Œ.a2; p2; x3; p3/�
:
:
:

)Q a0a1a2 � � � an�1#yn�1xnpn Œ.an�1; pn�1; xn; pn/�

)Q a0a1a2 � � � an#ynxnC1q1 Œ.an; pn; xnC1; q1/�

)Q a0 � � � anb1#b2 � � � bmw1q2 Œ.b1; q1;w1; q2/�

)Q a0 � � � anb1b2#b3 � � � bmw1w2q3 Œ.b2; q2;w2; q3/�
:
:
:

)Q a0 � � � anb1 � � � bm�1#bmw1 � � � wm�1qm Œ.bm�1; qm�1;wm�1; qm/�

)Q a0 � � � anb1 � � � bm#w1 � � � wmqmC1 Œ.bm; qm;wm; qmC1/�

Therefore, w1w2 	 	 	 wm 2 L.Q/. Consequently, L.M, L.G/, 3/ � L.Q/. A proof
of L.Q/ � L.M, L.G/, 3/ is left to the reader.

As L.Q/ � L.M, L.G/, 3/ and L.M, L.G/, 3/ � L.Q/, L.Q/ D L.M, L.G/,
3/. Observe that M is one-turn atomic. Furthermore, card.H/ D card.�/C 4. Thus,
Lemma 7.2.32 holds. ut

Theorem 7.2.33. For every L 2 RE, there is a linear language 	 and a one-turn
atomic pushdown automaton M D .Q, ˙ , � , R, s, $, F/ such that card.Q/ � 1,
card.� / � 2, card.R/ � card.˙/C 4, and L.M, 	 , 3/ D L.

Proof. By Theorem 2.3.46, for every L 2 RE, there is a left-extended queue
grammar Q such that L D L.Q/. Thus, this theorem follows from Theorem 3.1.26
and Lemma 7.2.32. ut

Theorem 7.2.34. For every L 2 RE, there is a linear language 	 and a one-turn
atomic pushdown automaton M D .Q, ˙ , � , R, s, $, F/ such that card.Q/ � 1,
card.� / � 2, card.R/ � card.˙/C 4, and L.M, 	 , 1/ D L.

Proof. This theorem can be proved by analogy with the proof of Theorem 7.2.33.
ut

Theorem 7.2.35. For every L 2 RE, there is a linear language 	 and a one-turn
atomic pushdown automaton M D .Q, ˙ , � , R, s, $, F/ such that card.Q/ � 1,
card.� / � 2, card.R/ � card.˙/C 4, and L.M, 	 , 2/ D L.

Proof. This theorem can be proved by analogy with the proof of Theorem 7.2.33.
ut

From the previous three theorems, we obtain the following corollary.

Corollary 7.2.36. For i 2 f1; 2; 3g, RE D OA - RPDA.LIN; i/. ut

We close this section by suggesting some open problem areas concerning
regulated automata.
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Open Problem 7.2.37. For i D 1; : : : ; 3, consider RPDA.L ; i/, where L is a
language family satisfying REG � L � LIN. For instance, consider L as the
family of minimal linear languages (see page 76 in [Sal73]). Compare RE with
RPDA.L ; i/.

Open Problem 7.2.38. Investigate special cases of regulated pushdown automata,
such as their deterministic versions.

Open Problem 7.2.39. By analogy with regulated pushdown automata, introduce
and study some other types of regulated automata.

7.3 Self-Reproducing Pushdown Transducers

Throughout this entire book, we cover modern language-defining models. In this
final section of Chap. 7, however, we make a single exception. Indeed, we explain
how to modify these models in a very natural way so that they define translations
(see Sect. 2.1) rather than languages. Consider the notion of a pushdown automaton
(see Sect. 2.4). Based upon this notion, we next introduce and discuss the notion of a
self-reproducing pushdown transducer, which defines a translation, not a language.
In essence, the transducer makes its translation as follows. After a translation of
an input string, x, to an output string, y, a self-reproducing pushdown transducer
can make a self-reproducing step during which it moves y to its input tape and
translates it again. In this self-reproducing way, it can repeat the translation n-times,
for n � 1. This section demonstrates that every recursively enumerable language can
be characterized by the domain of the translation obtained from a self-reproducing
pushdown transducer that repeats its translation no more than three times. This
characterization is of some interest because it does not hold in terms of ordinary
pushdown transducers. Indeed, the domain obtained from any ordinary pushdown
transducer is a context-free language (see [Har78]).

7.3.1 Definitions

Definition 7.3.1. A self-reproducing pushdown transducer is an 8-tuple

M D .Q; �;˙;˝;R; s; S;O/

where Q is a finite set of states, � is a total alphabet such that Q\� D ;,˙ � � is
an input alphabet,˝ � � is an output alphabet, R is a finite set of translation rules
of the form u1qw ! u2pv with u1; u2;w; v 2 � � and q; p 2 Q, s 2 Q is the start
state, S 2 � is the start pushdown symbol, O � Q is the set of self-reproducing
states.
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A configuration of M is any string of the form $zqy$x, where x; y; z 2 � �; q 2 Q,
and $ is a special bounding symbol .$ … Q [ � /. If u1qw ! u2pv 2 R; y D

$hu1qwz$t, and x D $hu2pz$tv, where h; u1; u2;w; t; v; z 2 � �; q; p 2 Q, then M
makes a translation step from y to x in M, symbolically written as y t) x Œu1qw !

u2pv� or, simply y t) x in M. If y D $hq$t, and x D $hqt$, where t; h 2 � �; q 2 O,
then M makes a self-reproducing step from y to x in M, symbolically written as
y r) x. Write y ) x if y t) x or y r) x. In the standard manner, extend ) to )n,
where n � 0; then, based on )n, define )C and )�.

Let w; v 2 � �; M translates w to v if $Ssw$ )� $q$v in M. The translation
obtained from M, T.M/, is defined as T.M/ D f.w; v/ W $Ssw$ )� $q$v with
w 2 ˙�; v 2 ˝�; q 2 Qg. Set domain.T.M// D fw W .w; x/ 2 T.M/g and
range.T.M// D fx W .w; x/ 2 T.M/g.

Let n be a nonnegative integer; if during every translation M makes no more than
n self-reproducing steps, then M is an n-self-reproducing pushdown transducer.
Two self-reproducing transducers are equivalent if they both define the same
translation. ut

In the literature, there often exists a requirement that a pushdown transducer,
M D .Q; �;˙;˝;R; s; S;O/, replaces no more than one symbol on its pushdown
and reads no more than one symbol during every move. As stated next, we
can always turn any self-reproducing pushdown transducer to an equivalent self-
reproducing pushdown transducer that satisfies this requirement.

Theorem 7.3.2. Let M be a self-reproducing pushdown transducer. Then, there is
an equivalent self-reproducing pushdown transducer

N D .Q; �;˙;˝;R; s; S;O/

in which every translation rule, u1qw ! u2pv 2 R, where u1; u2;w; v 2 � � and
q; p 2 Q, satisfies ju1j � 1 and jwj � 1.

Proof. Basic Idea. Consider every rule u1qw ! u2pv in M with ju1j � 2 or jwj � 2.
N simulates a move made according to this rule as follows. First, N leaves q for a
new state and makes jwj consecutive moves during which it reads w symbol by
symbol so that after these moves, it has w recorded in a new state, hqwi. From
this new state, it makes ju1j consecutive moves during which it pops u1 symbol
by symbol from the pushdown so that after these moves, it has both u1 and w
recorded in another new state, hu1qwi. To complete this simulation, it performs a
move according to hu1qwi ! u2pv. Otherwise, N works as M. A detailed version
of this proof is left to the reader. ut

7.3.2 Results

Recall that every recursively enumerable language is generated by left-extended
queue grammar (see Theorem 2.3.46).
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Lemma 7.3.3. Let Q be a left-extended queue grammar satisfying the normal form
introduced in Definition 3.1.25. Then, there exists a 2-self-reproducing pushdown
transducer, M, such that domain.T.M// D L.Q/ and range.T.M// D f"g.

Proof. Let G D .V;T;W;F; s;P/ be a left-extended queue grammar satisfying
the normal form introduced in Definition 3.1.25. Without any loss of generality,
assume that f0; 1g \ .V [ W/ D ;. For some positive integer, n, define an injection,
�, from P to .f0; 1gn � f1gn/ so that � is an injective homomorphism when its
domain is extended to .VW/�; after this extension, � thus represents an injective
homomorphism from .VW/� to .f0; 1gn � f1gn/�; a proof that such an injection
necessarily exists is simple and left to the reader. Based on �, define the substitution,

, from V to .f0; 1gn � f1gn/ so that for every a 2 V; 
.a/ D f�.p/ W p 2

P; p D .a; b; x; c/ for some x 2 V�I b; c 2 Wg. Extend the domain of 
 to V�.
Furthermore, define the substitution, �, from W to .f0; 1gn � f1gn/ so that for every
q 2 W; �.q/ D f�.p/ W p 2 P; p D .a; b; x; c/ for some a 2 V; x 2 V�I b; c 2 Wg.
Extend the domain of � to W�.

Construction. Introduce the self-reproducing pushdown transducer

M D .Q;T [ f0; 1; Sg;T;;;R; z; S;O/

where Q D fo; c; f ; zg [ fhp; ii W p 2 W and i 2 f1; 2gg; O D fo; f g, and R is
constructed by performing the following steps (1) through (6).

(1) if a0q0 D s, where a 2 V � T and q 2 W � F,
then add Sz ! uShq0; 1iw to R, for all w 2 �.q0/ and all u 2 
.a0/;

(2) if .a; q; y; p/ 2 P, where a 2 V � T; p; q 2 W � F, and y 2 .V � T/�,
then add Shq; 1i ! uShp; 1iw to R, for all w 2 �.p/ and u 2 
.y/;

(3) for every q 2 W � F, add Shq; 1i ! Shq; 2i to R;
(4) if .a; q; y; p/ 2 P, where a 2 V � T; p; q 2 W � F, and y 2 T�,

then add Shq; 2iy ! Shp; 2iw to R, for all w 2 �.p/;
(5) if .a; q; y; p/ 2 P, where a 2 V � T; q 2 W � F; y 2 T�, and p 2 F,

then add Shq; 2iy ! SoS to R;
(6) add o0 ! 0o; o1 ! 1o; oS ! c; 0c ! c0; 1c ! c1; Sc ! f ; 0f0 !

f ; 1f1 ! f to R.

For brevity, the following proofs omits some obvious details, which the reader
can easily fill in. The next claim describes how M accepts each string from L.M/.

Claim. M accepts every h 2 L.M/ in this way

$Szy1y2 : : : ym�1ym$
) $g0hq0; 1iy1y2 : : : ym�1ym$t0
) $g1hq1; 1iy1y2 : : : ym�1ym$t1

:::

) $gkhqk; 1iy1y2 : : : ym�1ym$tk
) $gkhqk; 2iy1y2 : : : ym�1ym$tk
) $gkhqkC1; 2iy1y2 : : : ym�1ym$tkC1

) $gkhqkC2; 2iy2 : : : ym�1ym$tkC2
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:::

t) $gkhqkCm; 2iym$tkCm

t) $gkSo$tkCmS
r) $gkSotkCmS$
t)

� $gkStkCmoS$
t) $gkStkCmc$
t)

� $u1Sc$v1
t) $u1f $v1
r) $u1fv1$
) $u2fv2$

:::

) $ulfvl$
) $f $

in M, where k;m � 1; q0; q1; : : : ; qkCm 2 W�F; y1; : : : ; ym 2 T�; ti 2 �.q0q1 : : : qi/

for i D 0; 1; : : : ; k C m; gj 2 
.d0d1 : : : dj/ with d1; : : : ; dj 2 .V � T/� for
j D 0; 1; : : : ; k; d0d1 : : : dk D a0a1 : : : akCm where a1; : : : ; akCm 2 V � T, d0 D a0,
and s D a0q0; gk D tkCm (notice that 
.a0a1 : : : akCm/ D �.q0q1 : : : qkCm/);
vi 2 prefix.�.q0q1 : : : qkCm/; j�.q0q1 : : : qkCm/j � i/ for i D 1; : : : ; � with � D

j�.q0q1 : : : qkCm/j; uj 2 suffix.
.a0a1 : : : akCm/; j
.a0a1 : : : akCm/j � j/ for j D

1; : : : ; l with l D j
.a0a1 : : : akCm/j; h D y1y2 : : : ym�1ym.

Proof. Examine steps (1) through (6) of the construction of R. Notice that during
every successful computation, M uses the rules introduced in step i before it uses
the rules introduced in step i C 1, for i D 1; : : : ; 5. Thus, in greater detail, every
successful computation $Szh$ )� $f $ can be expressed as

$Szy1y2 : : : ym�1ym$
) $g0hq0; 1iy1y2 : : : ym�1ym$t0
) $g1hq1; 1iy1y2 : : : ym�1ym$t1

:::

) $gkhqk; 1iy1y2 : : : ym�1ym$tk
) $gkhqk; 2iy1y2 : : : ym�1ym$tk
) $gkhqkC1; 2iy1y2 : : : ym�1ym$tkC1

) $gkhqkC2; 2iy2y3 : : : ym�1ym$tkC2

) $gkhqkC3; 2iy3y4 : : : ym�1ym$tkC3

:::

t) $gkhqkCm; 2iym$tkCm

t) $gkSo$tkCmS
)� $f $

where k;m � 1I h D y1y2 : : : ym�1ymI q0; q1; : : : ; qkCm 2 W � FI y1; : : : ; ym 2

T�I ti 2 �.q0q1 : : : qi/ for i D 0; 1; : : : ; k C mI gj 2 
.d0d1 : : : dj/ with
d1; : : : ; dj 2 .V � T/� for j D 0; 1; : : : ; kI d0d1 : : : dk D a0a1 : : : akCm where
a1; : : : ; akCm 2 V � T; d0 D a0, and s D a0q0.
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During $gkSo$tkCmS )� $f $ only the rules of (6) are used. Recall these rules:
o0 ! 0o; o1 ! 1o; oS ! c; 0c ! c0; 1c ! c1; Sc ! f ; 0f0 ! f ; 1f1 ! f .
Observe that to obtain $f $ from $gkSo$tkCmS by using these rules, M performs
$gkSo$tkCmS )� $f $ as follows

$gkSo$tkCmS
r) $gkSotkCmS$
t)

� $gkStkCmoS$
t) $gkStkCmc$
t)

� $u1Sc$v1
t) $u1f $v1
r) $u1fv1$
) $u2fv2$

:::

) $ulfvl$
) $f $

in M, where gk D tkCm; vi 2 prefix.�.q0q1 : : : qkCm/; j�.q0q1 : : : qkCm/j � i/ for
i D 1; : : : ; � with � D j�.q0q1 : : : qkCm/j; uj 2 suffix.
.a0a1 : : : akCm/; j
.a0a1 : : :
akCm/j � j/ for j D 1; : : : ; l with l D j
.a0a1 : : : akCm/j. This computation implies
gk D tkCm. As a result, the claim holds.

Let M accepts h 2 L.M/ in the way described in the above claim. Examine the
construction of R to see that at this point P contains

.a0; q0; z0; q1/; : : : ; .ak; qk; zk; qkC1/; .akC1; qkC1; y1; qkC2/; : : :

: : : ; .akCm�1; qkCm�1; ym�1; qkCm/; .akCm; qkCm; ym; qkCmC1/

where z1; : : : ; zk 2 .V � T/�, so G makes the generation of h in the way described
in Definition 3.1.25. Thus h 2 L.G/. Consequently, L.M/ � L.G/.

Let G generates h 2 L.G/ in the way described in Definition 3.1.25. Then, M
accepts h in the way described in the above claim, so L.G/ � L.M/; a detailed
proof of this inclusion is left to the reader.

As L.M/ � L.G/ and L.G/ � L.M/; L.G/ D L.M/.
From the above Claim, it follows that M is a 2-self-reproducing pushdown

transducer. Thus, Lemma 7.3.3 holds.

Theorem 7.3.4. For every recursively enumerable language, L, there exists a 2-
self-reproducing pushdown transducer, M, such that domain.T.M// D L and
range.T.M// D f"g.

Proof. This theorem follows from Theorems 2.3.46 and 3.1.26 and Lemma 7.3.3.



Chapter 8
Jumping Automata and Discontinuous
Computation

Recall that jumping grammars (see Chap. 5) represent language-generating models
for discontinuous computation. The present chapter explores their automata-based
counterparts, called jumping automata. As their name suggests, they jump across
their input words discontinuously, and in this way, they also formalize computation
performed in a discontinuous way.

To give an insight into the notion of a jumping automaton, reconsider the basic
notion of a classical finite automaton M (see Sect. 2.4). Recall that M consists of an
input tape, a read head, and a finite state control. The input tape is divided into cells.
Each cell contains one symbol of an input string. The symbol under the read head, a,
is the current input symbol. The finite control is represented by a finite set of states
together with a control relation, which is usually specified as a set of computational
rules. M computes by making a sequence of moves. Each move is made according
to a computational rule that describes how the current state is changed and whether
the current input symbol is read. If the symbol is read, the read head is shifted
precisely one cell to the right. M has one state defined as the start state and some
states designated as final states. If M can read w by making a sequence of moves
from the start state to a final state, M accepts w; otherwise, M rejects w.

Unfortunately, the classical versions of finite automata work so they often fail
to reflect the real needs of today’s informatics. Perhaps most significantly, they
fail to formalize discontinuous information processing, which is central to today’s
computation while it was virtually unneeded and, therefore, unknown in the past.
Indeed, in the previous century, most classical computer science methods were
developed for continuous information processing. Accordingly, their formal models,
including finite automata, work on strings, representing information, in a strictly
continuous left-to-right symbol-by-symbol way. Modern information methods,
however, frequently process information in a discontinuous way [GF04, BMCY06,
BCC10, MRS08, BYRN11, NS05]. Within a particular running process, a typical
computational step may be performed somewhere in the middle of information
while the very next computational step is executed far away from it; therefore,
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before the next step is carried out, the process has to jump over a large portion of the
information to the desired position of execution. Of course, classical finite automata,
which work on strings strictly continuously, inadequately and inappropriately reflect
discontinuous information processing of this kind.

Formalizing discontinuous information processing adequately gives rise to the
idea of adapting classical finite automata in a discontinuous way. In this way, the
present chapter introduces and studies the notion of a jumping finite automaton, H.
In essence, H works just like a classical finite automaton except it does not read
the input string in a symbol-by-symbol left-to-right way. That is, after reading a
symbol, H can jump over a portion of the tape in either direction and continue
making moves from there. Once an occurrence of a symbol is read on the tape, it
cannot be re-read again later during computation of H. Otherwise, it coincides with
the standard notion of a finite automaton, and as such, it is based upon a regulated
mechanism consisting in its finite state control. Therefore, we study them in detail
in this book.

More precisely, concerning jumping finite automata, this chapter considers
commonly studied areas of the formal language theory, such as decidability and clo-
sure properties, and establishes several results concerning jumping finite automata
regarding these areas. It concentrates its attentions on results that demonstrate
differences between jumping finite automata and their classical versions. As a
whole, this chapter gives a systematic body of knowledge concerning jumping finite
automata. At the same time, however, it points out several open questions regarding
these automata, which may represent a new, attractive, significant investigation area
of automata theory in the future.

This chapter is divided into two sections. First, as its title suggests, Sect. 8.1
formalizes and illustrates jumping finite automata. Then, Sect. 8.2 demonstrates
their fundamental properties, including a comparison of their power with the power
of well-known language-defining formal devices, closure properties, decidability. In
addition, this section establishes an infinite hierarchy of language families resulting
from these automata, one-directional jumps and various start configurations.

8.1 Definitions and Examples

In this section, we define a variety of jumping finite automata discussed in this
chapter and illustrate them by examples.

Definition 8.1.1. A general jumping finite automaton, a GJFA for short, is general
finite automaton (see Definition 2.4.1), where the binary jumping relation, symbol-
ically denoted by Õ, over ˙�Q˙�, is defined as follows. Let x, z, x0, z0 2 ˙�

such that xz D x0z0 and py ! q 2 R; then, M makes a jump from xpyz to x0qz0,
symbolically written as xpyz Õ x0qz0. In the standard manner, we extentÕ toÕm,
where m � 0,ÕC, andÕ�.
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The language accepted by M with Õ, denoted by L.M;Õ/, is defined as
L.M;Õ/ D fuv j u; v 2 ˙�, usv Õ� f , f 2 Fg. Let w 2 ˙�. We say that M
accepts w if and only if w 2 L.M;Õ/; M rejects w otherwise. Two GJFAs M and
M0 are said to be equivalent if and only if L.M;Õ/ D L.M0;Õ/. ut

Definition 8.1.2. Let M D .Q, ˙ , R, s, F/ be a GJFA. M is an "-free GJFA if
py ! q 2 R implies that jyj � 1. M is of degree n, where n � 0, if py ! q 2 R
implies that jyj � n. M is a jumping finite automaton (a JFA for short) if its degree
is 1. ut

Definition 8.1.3. Let M D .Q, ˙ , R, s, F/ be a JFA. Analogously to a GJFA, M is
an "-free JFA if py ! q 2 R implies that jyj D 1. M is a deterministic JFA (a DJFA
for short) if (1) it is an "-free JFA and (2) for each p 2 Q and each a 2 ˙ , there is
no more than one q 2 Q such that pa ! q 2 R. M is a complete JFA (a CJFA for
short) if (1) it is a DJFA and (2) for each p 2 Q and each a 2 ˙ , there is precisely
one q 2 Q such that pa ! q 2 R. ut

Definition 8.1.4. Let M D .Q, ˙ , R, s, F/ be a GJFA. The transition graph of M,
denoted by �.M/, is a multigraph, where nodes are states from Q, and there is an
edge from p to q labeled with y if and only if py ! q 2 R. A state q 2 Q is reachable
if there is a walk from s to q in �.M/; q is terminating if there is a walk from q to
some f 2 F. If there is a walk from p to q, p D q1; q2; : : : ; qn D q, for some n � 2,
where qiyi ! qiC1 2 R for all i D 1; : : : ; n � 1, then we write

py1y2 	 	 	 yn  q ut

Next, we illustrate the previous definitions by two examples.

Example 8.1.5. Consider the DJFA

M D
�
fs; r; tg; ˙;R; s; fsg

�

where˙ D fa; b; cg and

R D
˚
sa ! r; rb ! t; tc ! s

�

Starting from s, M has to read some a, some b, and some c, entering again the start
(and also the final) state s. All these occurrences of a, b, and c can appear anywhere
in the input string. Therefore, the accepted language is clearly

L.M;Õ/ D
˚
w 2 ˙� j #a.w/ D #b.w/ D #c.w/

�
ut

Recall that L.M;Õ/ in Example 8.1.5 is a well-known non-context-free context-
sensitive language.
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Example 8.1.6. Consider the GJFA

M D
�
fs; t; f g; fa; bg;R; s; ff g

�

where

R D
˚
sba ! f ; fa ! f ; fb ! f

�

Starting from s, M has to read string ba, which can appear anywhere in the input
string. Then, it can read an arbitrary number of symbols a and b, including no
symbols. Therefore, the accepted language is L.M;Õ/ D fa; bg�fbagfa; bg�. ut

8.1.1 Denotation of Language Families

Throughout the rest of this chapter, GJFA, GJFA�", JFA, JFA�", and DJFA denote
the families of languages accepted by GJFAs, "-free GJFAs, JFAs, "-free JFAs, and
DJFAs, respectively.

8.2 Properties

In this section, we discuss the generative power of GJFAs and JFAs and some other
basic properties of these automata.

Theorem 8.2.1. For every DJFA M, there is a CJFA M0 such that L.M;Õ/ D

L.M0;Õ/.
Proof. Let M D .Q, ˙ , R, s, F/ be a DJFA. We next construct a CJFA M0 such
that L.M;Õ/ D L.M0;Õ/. Without any loss of generality, we assume that ? … Q.
Initially, set

M0 D
�
Q [ f?g; ˙;R0; s;F

�

where R0 D R. Next, for each a 2 ˙ and each p 2 Q such that pa ! q … R for all
q 2 Q, add pa ! ? to R0. For each a 2 ˙ , add ?a ! ? to R0. Clearly, M0 is a
CJFA and L.M;Õ/ D L.M0;Õ/. ut

Lemma 8.2.2. For every GJFA M of degree n � 0, there is an "-free GJFA M0 of
degree n such that L.M0;Õ/ D L.M;Õ/.

Proof. This lemma can be demonstrated by using the standard conversion of finite
automata to "-free finite automata (see Algorithm 3.2.2.3 in [Med00a]). ut

Theorem 8.2.3. GJFA D GJFA�"
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Proof. GJFA�" � GJFA follows from the definition of a GJFA. GJFA � GJFA�"

follows from Lemma 8.2.2. ut

Theorem 8.2.4. JFA D JFA�" D DJFA

Proof. JFA D JFA�" can be proved by analogy with the proof of Theorem 8.2.3,
so we only prove that JFA�" D DJFA. DJFA � JFA�" follows from the
definition of a DJFA. The converse inclusion can be proved by using the standard
technique of converting "-free finite automata to deterministic finite automata (see
Algorithm 3.2.3.1 in [Med00a]). ut

The next theorem shows a property of languages accepted by GJFAs with unary
input alphabets.

Theorem 8.2.5. Let M D .Q, ˙ , R, s, F/ be a GJFA such that card.˙/ D 1. Then,
L.M;Õ/ is regular.

Proof. Let M D .Q, ˙ , R, s, F/ be a GJFA such that card.˙/ D 1. Since
card.˙/ D 1, without any loss of generality, we can assume that the acceptance
process for w 2 ˙� starts from the configuration sw and M does not jump over
any symbols. Therefore, we can threat M as an equivalent general finite automaton
(see Definition 2.4.1). As general finite automata accept only regular languages (see
Theorems 2.4.4 and 2.4.5), L.M;Õ/ is regular. ut

As a consequence of Theorem 8.2.5, we obtain the following corollary (recall
that K below is not regular).

Corollary 8.2.6. The language K D fap j p is a prime numberg cannot be accepted
by any GJFA. ut

The following theorem gives a necessary condition for a language to be in JFA.

Theorem 8.2.7. Let K be an arbitrary language. Then, K 2 JFA only if K D

perm.K/.

Proof. Let M D .Q,˙ , R, s, F/ be a JFA. Without any loss of generality, we assume
that M is a DJFA (recall that JFA D DJFA by Theorem 8.2.4). Let w 2 L.M;Õ/.
We next prove that perm.w/ � L.M;Õ/. If w D ", then perm."/ D " 2 L.M;Õ/,
so we assume that w ¤ ". Then, w D a1a2 	 	 	 an, where ai 2 ˙ for all i D 1; : : : ; n,
for some n � 1. Since w 2 L.M;Õ/, R contains

sai1 ! si1

si1ai2 ! si2
:::

sin�1ain ! sin

where sj 2 Q for all j 2 fi1, i2, : : : , ing, .i1, i2, : : : , in/ is a permutation of .1, 2, : : : ,
n/, and sin 2 F. However, this implies that ak1ak2 	 	 	 akn 2 L.M;Õ/, where .k1, k2,
: : : , kn/ is a permutation of .1, 2, : : : , n/, so perm.w/ � L.M;Õ/. ut
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From Theorem 8.2.7, we obtain the following two corollaries, which are used in
subsequent proofs.

Corollary 8.2.8. There is no JFA that accepts fabg�. ut

Corollary 8.2.9. There is no JFA that accepts fa; bg�fbagfa; bg�. ut

Consider the language of primes K from Corollary 8.2.6. Since K D perm.K/,
the condition from Theorem 8.2.7 is not sufficient for a language to be in JFA. This
is stated in the following corollary.

Corollary 8.2.10. There is a language K satisfying K D perm.K/ that cannot be
accepted by any JFA. ut

The next theorem gives both a necessary and sufficient condition for a language
to be accepted by a JFA.

Theorem 8.2.11. Let L be an arbitrary language. L 2 JFA if and only if L D

perm.K/, where K is a regular language.

Proof. The proof is divided into the only-if part and the if part.
Only If. Let M be a JFA. Consider M as a finite automaton M0. Set K D L.M0/. K is
regular, and L.M;Õ/ D perm.K/. Hence, the only-if part holds.
If. Take perm.K/, where K is any regular language. Let K D L.M/, where M is
a finite automaton. Consider M as a JFA M0. Observe that L.M0;Õ/ D perm.K/,
which proves the if part of the proof. ut

Finally, we show that GJFAs are stronger than JFAs.

Theorem 8.2.12. JFA � GJFA

Proof. JFA � GJFA follows from the definition of a JFA. From Corollary 8.2.9,
GJFA � JFA ¤ ;, because fa; bg�fbagfa; bg� is accepted by the GJFA from
Example 8.1.6. ut

Open Problem 8.2.13. Is there a necessary and sufficient condition for a language
to be in GJFA?

8.2.1 Relations with Well-Known Language Families

In this section, we establish relations between GJFA, JFA, and some well-known
language families, including FIN, REG, CF, and CS.

Theorem 8.2.14. FIN � GJFA

Proof. Let K 2 FIN. Since K is a finite, there exists n � 0 such that card.K/ D n.
Therefore, we can express K as K D fw1;w2; : : : ;wng. Define the GJFA

M D
�
fs; f g; ˙;R; s; ff g

�
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where ˙ D alph.K/ and R D fsw1 ! f ; sw2 ! f ; : : : ; swn ! f g. Clearly,
L.M;Õ/ D K. Therefore, FIN � GJFA. From Example 8.1.5, GJFA � FIN ¤ ;,
which proves the theorem. ut

Lemma 8.2.15. There is no GJFA that accepts fag�fbg�.

Proof. By contradiction. Let K D fag�fbg�. Assume that there is a GJFA, M D .Q,
˙ , R, s, F/, such that L.M;Õ/ D K. Let w D anb, where n is the degree of M. Since
w 2 K, during an acceptance of w, a rule, paib ! q 2 R, where p; q 2 Q and 0 �

i < n, has to be used. However, then M also accepts from the configuration aibsan�i.
Indeed, as aib is read in a single step and all the other symbols in w are just as,
aiban�i may be accepted by using the same rules as during an acceptance of w. This
implies that aiban�i 2 K—a contradiction with the assumption that L.M;Õ/ D K.
Therefore, there is no GJFA that accepts fag�fbg�. ut

Theorem 8.2.16. REG and GJFA are incomparable.

Proof. GJFA ª REG follows from Example 8.1.5. REG ª GJFA follows from
Lemma 8.2.15. ut

Theorem 8.2.17. CF and GJFA are incomparable.

Proof. GJFA ª CF follows from Example 8.1.5, and CF ª GJFA follows from
Lemma 8.2.15. ut

Theorem 8.2.18. GJFA � CS

Proof. Clearly, jumps of GJFAs can be simulated by context-sensitive grammars,
so GJFA � CS. From Lemma 8.2.15, it follows that CS � GJFA ¤ ;. ut

Theorem 8.2.19. FIN and JFA are incomparable.

Proof. JFA ª FIN follows from Example 8.1.5. Consider the finite language K D

fabg. By Theorem 8.2.7, K … JFA, so FIN ª JFA. ut

8.2.2 Closure Properties

In this section, we show the closure properties of the families GJFA and JFA under
various operations.

Theorem 8.2.20. Both GJFA and JFA are not closed under endmarking.

Proof. Consider the language K D fag�. Clearly, K 2 JFA. A proof that no GJFA
accepts Kf#g, where # is a symbol such that # ¤ a, can be made by analogy with
the proof of Lemma 8.2.15. ut
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Theorem 8.2.20 implies that both families are not closed under concatenation.
Indeed, observe that the JFA

M D
�
fs; f g; f#g; fs# ! f g; s; ff g

�

accepts f#g.

Corollary 8.2.21. Both GJFA and JFA are not closed under concatenation. ut

Theorem 8.2.22. JFA is closed under shuffle.

Proof. Let M1 D .Q1;˙1;R1; s1;F1/ and M2 D .Q2;˙2;R2; s2;F2/ be two JFAs.
Without any loss of generality, we assume that Q1 \ Q2 D ;. Define the JFA

H D
�
Q1 [ Q2;˙1 [˙2;R1 [ R2 [ ff ! s2 j f 2 F1g; s1;F2

�

To see that L.H/ D shuffle.L.M1;Õ/;L.M2;Õ//, observe how H works. On an
input string, w 2 .˙1 [ ˙2/

�, H first runs M1 on w, and if it ends in a final state,
then it runs M2 on the rest of the input. If M2 ends in a final state, H accepts w.
Otherwise, it rejects w. By Theorem 8.2.7, L.Mi;Õ/ D perm.L.Mi;Õ// for all
i 2 f1, 2g. Based on these observations, since H can jump anywhere after a symbol
is read, we see that L.H/ D shuffle.L.M1;Õ/;L.M2;Õ//. ut

Notice that the construction used in the previous proof coincides with the
standard construction of a concatenation of two finite automata (see [Med00a]).

Theorem 8.2.23. Both GJFA and JFA are closed under union.

Proof. Let M1 D .Q1;˙1;R1; s1;F1/ and M2 D .Q2;˙2;R2; s2;F2/ be two GJFAs.
Without any loss of generality, we assume that Q1 \ Q2 D ; and s … .Q1 [ Q2/.
Define the GJFA

H D
�
Q1 [ Q2 [ fsg; ˙1 [˙2;R1 [ R2 [ fs ! s1; s ! s2g; s;F1 [ F2

�

Clearly, L.H/ D L.M1;Õ/[ L.M2;Õ/, and if both M1 and M2 are JFAs, then H is
also a JFA. ut

Theorem 8.2.24. GJFA is not closed under complement.

Proof. Consider the GJFA M from Example 8.1.6. Observe that the complement
of L.M;Õ/ (with respect to fa; bg�) is fag�fbg�, which cannot be accepted by any
GJFA (see Lemma 8.2.15). ut

Theorem 8.2.25. JFA is closed under complement.

Proof. Let M D .Q,˙ , R, s, F/ be a JFA. Without any loss of generality, we assume
that M is a CJFA (JFA D DJFA by Theorem 8.2.4 and every DJFA can be converted
to an equivalent CJFA by Theorem 8.2.1). Then, the JFA

M0 D
�
Q; ˙;R; s;Q � F

�

accepts L.M;Õ/. ut
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By using De Morgan’s laws, we obtain the following two corollaries of Theo-
rems 8.2.23, 8.2.24, and 8.2.25.

Corollary 8.2.26. GJFA is not closed under intersection. ut

Corollary 8.2.27. JFA is closed under intersection. ut

Theorem 8.2.28. Both GJFA and JFA are not closed under intersection with
regular languages.

Proof. Consider the language J D fa; bg�, which can be accepted by both GJFAs
and JFAs. Consider the regular language K D fag�fbg�. Since J \ K D K, this
theorem follows from Lemma 8.2.15. ut

Theorem 8.2.29. JFA is closed under reversal.

Proof. Let K 2 JFA. Since perm.w/ � K by Theorem 8.2.7 for all w 2 K, also
reversal.w/ 2 K for all w 2 K, so the theorem holds. ut

Theorem 8.2.30. JFA is not closed under Kleene star or under Kleene plus.

Proof. Consider the language K D fab; bag, which is accepted by the JFA

M D
�
fs; r; f g; fa; bg; fsa ! r; rb ! f g; s; ff g

�

However, by Theorem 8.2.7, there is no JFA that accepts K� or KC (notice that, for
example, abab 2 KC, but aabb … KC). ut

Lemma 8.2.31. There is no GJFA that accepts fag�fbg� [ fbg�fag�.

Proof. This lemma can be proved by analogy with the proof of Lemma 8.2.15. ut

Theorem 8.2.32. Both GJFA and JFA are not closed under substitution.

Proof. Consider the language K D fab; bag, which is accepted by the JFA M from
the proof of Theorem 8.2.30. Define the substitution � from fa; bg� to 2fa;bg�

as
�.a/ D fag� and �.b/ D fbg�. Clearly, both �.a/ and �.b/ can be accepted by
JFAs. However, �.K/ cannot be accepted by any GJFA (see Lemma 8.2.31). ut

Since the substitution � in the proof of Theorem 8.2.32 is regular, we obtain the
following corollary.

Corollary 8.2.33. Both GJFA and JFA are not closed under regular substitution.
ut

Theorem 8.2.34. JFA is not closed under "-free homomorphism.

Proof. Define the "-free homomorphism ' from fag to fa; bgC as '.a/ D ab, and
consider the language fag�, which is accepted by the JFA

M D
�
fsg; fag; fsa ! sg; fsg

�

Notice that '.L.M;Õ// D fabg�, which cannot be accepted by any JFA (see
Corollary 8.2.8). ut
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The analogous result was recently proved for GJFAs in [Vor15].

Theorem 8.2.35 (See Theorem 2 in [Vor15]). GJFA is not closed under "-free
homomorphism.

Since "-free homomorphism is a special case of homomorphism and since
homomorphism is a special case of finite substitution, we obtain the following
corollary of Theorems 8.2.34 and 8.2.35.

Corollary 8.2.36. GJFA and JFA are not closed under homomorphism. ut

Corollary 8.2.37. GJFA and JFA are not closed under finite substitution. ut

Theorem 8.2.38. JFA is closed under inverse homomorphism.

Proof. Let M D .Q, � , R, s, F/ be a JFA, ˙ be an alphabet, and ' be a
homomorphism from ˙� to � �. We next construct a JFA M0 such that L.M0;Õ/
D '�1.L.M;Õ//. Define

M0 D
�
Q; ˙;R0; s;F

�

where

R0 D
˚
pa ! q j a 2 ˙; p'.a/ q in �.M/

�

Observe that w1sw2 Õ� q in M if and only if w0
1sw0

2 Õ� q in M0, where w1w2 D

'.w0
1w

0
2/ and q 2 Q, so L.M0;Õ/ D '�1.L.M;Õ//. A fully rigorous proof is left

to the reader. ut

However, the same does not hold for GJFAs.

Theorem 8.2.39 (See Theorem 3 in [Vor15]). GJFA is not closed under inverse
homomorphism.

Moreover, in [Vor15] it was shown that GJFA is not close under shuffle, Kleene
star, and Kleene plus, while it is closed under reversal.

Theorem 8.2.40 (See Theorems 2 and 4 in [Vor15]). GJFA is not closed under
shuffle, Kleene star, and Kleene plus.

Theorem 8.2.41 (See Theorem 5 in [Vor15]). GJFA is closed under reversal.

The summary of closure properties of the families GJFA and JFA is given in
Fig. 8.1, where C marks closure and � marks non-closure. It is worth noting that
REG, characterized by finite automata, is closed under all of these operations.

8.2.3 Decidability

In this section, we prove the decidability of some decision problems with regard
to GJFA and JFA.
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GJFA JFA
endmarking − −
concatenation − −
shuffle − +
union + +
complement − +
intersection − +
int. with regular languages − −
Kleene star − −
Kleene plus − −
mirror image + +
substitution − −
regular substitution − −
finite substitution − −
homomorphism − −
ε-free homomorphism − −
inverse homomorphism − +

Fig. 8.1 Summary of closure properties

Lemma 8.2.42. Let M D .Q, ˙ , R, s, F/ be a GJFA. Then, L.M;Õ/ is infinite if
and only if py  p in �.M/, for some y 2 ˙C and p 2 Q such that p is both
reachable and terminating in �.M/.

Proof. If. Let M D .Q, ˙ , R, s, F/ be a GJFA such that py p in �.M/, for some
y 2 ˙C and p 2 Q such that p is both reachable and terminating in �.M/. Then,

w1sw2 Õ� upv ÕC xpzÕ� f

where w1w2 2 L.M;Õ/, u; v; x; z 2 ˙�, p 2 Q, and f 2 F. Consequently,

w1sw2 Õ� upvy0 ÕC xpzÕ� f

where y0 D yn for all n � 0. Therefore, L.M;Õ/ is infinite, so the if part holds.
Only If. Let M D .Q, ˙ , R, s, F/ be a GJFA such that L.M;Õ/ is infinite. Without
any loss of generality, we assume that M is "-free (see Lemma 8.2.2). Then,

w1sw2 Õ� upv ÕC xpzÕ� f

for some w1w2 2 L.M;Õ/, u; v; x; z 2 ˙�, p 2 Q, and f 2 F. This implies that p is
both terminating and reachable in �.M/. Let y 2 ˙C be a string read by M during
upv ÕC xpz. Then, py p in �.M/, so the only-if part holds. ut
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Theorem 8.2.43. Both finiteness and infiniteness are decidable for GJFA.

Proof. Let M D .Q, ˙ , R, s, F/ be a GJFA. By Lemma 8.2.42, L.M;Õ/ is infinite
if and only if py  p in �.M/, for some y 2 ˙C and p 2 Q such that p is
both reachable and terminating in �.M/. This condition can be checked by any
graph searching algorithm, such as breadth-first search (see page 73 in [RN02]).
Therefore, the theorem holds. ut

Corollary 8.2.44. Both finiteness and infiniteness are decidable for JFA. ut

Observe that since there is no deterministic version of a GJFA, the following
proof of Theorem 8.2.45 is not as straightforward as in terms of regular languages
and classical deterministic finite automata.

Theorem 8.2.45. The membership problem is decidable for GJFA.

Proof. Let M D .Q, ˙ , R, s, F/ be a GJFA, and let x 2 ˙�. Without any loss
of generality, we assume that M is "-free (see Theorem 8.2.3). If x D ", then x 2

L.M;Õ/ if and only if s 2 F, so assume that x ¤ ". Set

� D
˚
.x1; x2; : : : ; xn/ j xi 2 ˙C; 1 � i � n; x1x2 	 	 	 xn D x; n � 1

�

and

�p D
˚
.y1; y2; : : : ; yn/ j .x1; x2; : : : ; xn/ 2 �; n � 1; .y1; y2; : : : ; yn/ is
a permutation of .x1; x2; : : : ; xn/

�

If there exist .y1; y2; : : : ; yn/ 2 �p and q1, q2, : : : , qnC1 2 Q, for some n, 1 � n � jxj,
such that s D q1, qnC1 2 F, and qiyi ! qiC1 2 R for all i D 1; 2; : : : ; n, then
x 2 L.M;Õ/; otherwise, x … L.M;Õ/. Since both Q and �p are finite, this check
can be performed in finite time. ut

Corollary 8.2.46. The membership problem is decidable for JFA. ut

Theorem 8.2.47. The emptiness problem is decidable for GJFA.

Proof. Let M D .Q, ˙ , R, s, F/ be a GJFA. Then, L.M;Õ/ is empty if and only
if no f 2 F is reachable in �.M/. This check can be done by any graph searching
algorithm, such as breadth-first search (see page 73 in [RN02]). ut

Corollary 8.2.48. The emptiness problem is decidable for JFA. ut

The summary of decidability properties of the families GJFA and JFA is given
in Fig. 8.2, where C marks decidability.
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GJFA JFA

membership + +

emptiness + +

finiteness + +

infiniteness + +

Fig. 8.2 Summary of Decidability Properties

8.2.4 An Infinite Hierarchy of Language Families

In this section, we establish an infinite hierarchy of language families resulting from
GJFAs of degree n, where n � 0. Let GJFAn and GJFA�"

n denote the families
of languages accepted by GJFAs of degree n and by "-free GJFAs of degree n,
respectively. Observe that GJFAn D GJFA�"

n by the definition of a GJFA and by
Lemma 8.2.2, for all n � 0.

Lemma 8.2.49. Let˙ be an alphabet such that card.˙/ � 2. Then, for any n � 1,
there is a GJFA of degree n, Mn D .Q, ˙ , R, s, F/, such that L.Mn/ cannot be
accepted by any GJFA of degree n � 1.

Proof. Let ˙ be an alphabet such that card.˙/ � 2, and let a; b 2 ˙ such that
a ¤ b. The case when n D 1 follows immediately from the definition of a JFA, so
we assume that n � 2. Define the GJFA of degree n

Mn D
�
fs; f g; ˙; fsw ! f g; s; ff g

�

where w D ab.a/n�2. Clearly, L.Mn;Õ/ D fwg. We next prove that L.Mn;Õ/
cannot be accepted by any GJFA of degree n � 1.

Suppose, for the sake of contradiction, that there is a GJFA of degree n � 1,
H D .Q, ˙ , R, s0, F/, such that L.H/ D L.Mn;Õ/. Without any loss of generality,
we assume that H is "-free (see Lemma 8.2.2). Since L.H/ D L.Mn;Õ/ D fwg and
jwj > n � 1, there has to be

us0xv Õm f

in H, where w D uxv, u; v 2 ˙�, x 2 ˙C, f 2 F, and m � 2. Thus,

s0xuv Õm f

and

uvs0xÕm f

in H, which contradicts the assumption that L.H/ D fwg. Therefore, L.Mn;Õ/
cannot be accepted by any GJFA of degree n � 1. ut
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Theorem 8.2.50. GJFAn � GJFAnC1 for all n � 0.

Proof. GJFAn � GJFAnC1 follows from the definition of a GJFA of degree n,
for all n � 0. From Lemma 8.2.49, GJFAnC1 � GJFAn ¤ ;, which proves the
theorem. ut

Taking Lemma 8.2.2 into account, we obtain the following corollary of Theo-
rem 8.2.50.

Corollary 8.2.51. GJFA�"
n � GJFA�"

nC1 for all n � 0. ut

8.2.5 Left and Right Jumps

We define two special cases of the jumping relation.

Definition 8.2.52. Let M D .Q, ˙ , R, s, F/ be a GJFA. Let w; x; y; z 2 ˙�, and
py ! q 2 R; then, (1) M makes a left jump from wxpyz to wqxz, symbolically
written as

wxpyz lÕ wqxz

and (2) M makes a right jump from wpyxz to wxqz, written as

wpyxz rÕ wxqz

Let u; v 2 ˙�Q˙�; then, u Õ v if and only if u lÕ v or u rÕ v. Extend lÕ
and rÕ to lÕm, lÕ�, lÕC, rÕm, rÕ�, and rÕC, where m � 0, by analogy with
extendingÕ. Set

lL.M;Õ/ D
˚
uv j u; v 2 ˙�; usv lÕ� f with f 2 F

�

and

rL.M;Õ/ D
˚
uv j u; v 2 ˙�; usv rÕ� f with f 2 F

�
ut

Let lGJFA, lJFA, rGJFA, and rJFA denote the families of languages accepted
by GJFAs using only left jumps, JFAs using only left jumps, GJFAs using only right
jumps, and JFAs using only right jumps, respectively.

Theorem 8.2.53. rGJFA D rJFA D REG

Proof. We first prove that rJFA D REG. Consider any JFA, M D .Q, ˙ , R, s,
F/. Observe that if M occurs in a configuration of the form xpy, where x 2 ˙�,
p 2 Q, and y 2 ˙�, then it cannot read the symbols in x anymore because M can
make only right jumps. Also, observe that this covers the situation when M starts to
accept w 2 ˙� from a different configuration than sw. Therefore, to read the whole
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input, M has to start in configuration sw, and it cannot jump to skips some symbols.
Consequently, M behaves like an ordinary finite automaton, reading the input from
the left to the right, so L.M;Õ/ is regular and, therefore, rJFA � REG. Conversely,
any finite automaton can be viewed as a JFA that starts from configuration sw and
does not jump to skip some symbols. Therefore, REG � rJFA, which proves that
rJFA D REG. rGJFA D REG can be proved by the same reasoning using general
finite automata instead of finite automata. ut

Next, we show that JFAs using only left jumps accept some non-regular
languages.

Theorem 8.2.54. lJFA � REG ¤ ;

Proof. Consider the JFA

M D
�
fs; p; qg; fa; bg;R; s; fsg

�

where

R D
˚
sa ! p; pb ! s; sb ! q; qa ! s

�

We argue that

lL.M;Õ/ D
˚
w j #a.w/ D #b.w/

�

With w 2 fa; bg� on its input, M starts over the last symbol. M reads this symbol by
using sa ! p or sb ! q, and jumps to the left in front of the rightmost occurrence
of b or a, respectively. Then, it consumes it by using pb ! s or qa ! s, respectively.
If this read symbol was the rightmost one, it jumps one symbol to the left and repeats
the process. Otherwise, it makes no jumps at all. Observe that in this way, every
configuration is of the form urv, where r 2 fs; p; qg, u 2 fa; bg�, and either v 2

fa; "gfbg� or v 2 fb; "gfag�.
Based on the previous observations, we see that

lL.M;Õ/ D
˚
w j #a.w/ D #b.w/

�

Since L.M;Õ/ is not regular, lJFA � REG ¤ ;, so the theorem holds. ut

Open Problem 8.2.55. Study the effect of left jumps to the acceptance power of
JFAs and GJFAs.

8.2.6 A Variety of Start Configurations

In general, a GJFA can start its computation anywhere in the input string (see Def-
inition 8.1.1). In this section, we consider the impact of various start configurations
on the acceptance power of GJFAs and JFAs.
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Definition 8.2.56. Let M D .Q, ˙ , R, s, F/ be a GJFA. Set
bL.M;Õ/ D fw 2 ˙� j swÕ� f with f 2 Fg,
aL.M;Õ/ D fuv j u; v 2 ˙�; usv Õ� f with f 2 Fg,
eL.M;Õ/ D fw 2 ˙� j wsÕ� f with f 2 Fg. ut

Intuitively, b, a, and e stand for beginning, anywhere, and end, respectively; in
this way, we express where the acceptance process starts. Observe that we simplify
aL.M;Õ/ to L.M;Õ/ because we pay a principal attention to the languages
accepted in this way in this chapter. Let bGJFA, aGJFA, eGJFA, bJFA, aJFA, and
eJFA denote the families of languages accepted by GJFAs starting at the beginning,
GJFAs starting anywhere, GJFAs starting at the end, JFAs starting at the beginning,
JFAs starting anywhere, and JFAs starting at the end, respectively.

We show that

(1) starting at the beginning increases the acceptance power of GJFAs and JFAs,
and

(2) starting at the end does not increase the acceptance power of GJFAs and JFAs.

Theorem 8.2.57. aJFA � bJFA

Proof. Let M D .Q, ˙ , R, s, F/ be a JFA. The JFA

M0 D
�
Q; ˙;R [ fs ! sg; s;F

�

clearly satisfies aL.M;Õ/ D
bL.M0;Õ/, so aJFA � bJFA. We prove that this

inclusion is, in fact, proper. Consider the language K D fagfbg�. The JFA

H D
�
fs; f g; fa; bg; fsa ! f ; fb ! f g; s; ff g

�

satisfies bL.H/ D K. However, observe that aL.H/ D fbg�fagfbg�, which differs
from K. By Theorem 8.2.7, for every JFA N, it holds that aL.N/ ¤ K. Hence,
aJFA � bJFA. ut

Theorem 8.2.58. aGJFA � bGJFA

Proof. This theorem can be proved by analogy with the proof of Theorem 8.2.57.
ut

Lemma 8.2.59. Let M be a GJFA of degree n � 0. Then, there is a GJFA M0 of
degree n such that aL.M;Õ/ D

eL.M0;Õ/.

Proof. Let M D .Q, ˙ , R, s, F/ be a GJFA of degree n. Then, the GJFA

M0 D
�
Q; ˙;R [ fs ! sg; s;F

�

is of degree n and satisfies aL.M;Õ/ D
eL.M0;Õ/. ut
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Lemma 8.2.60. Let M be a GJFA of degree n � 0. Then, there is a GJFA OM of
degree n such that eL.M;Õ/ D

a
L. OM/.

Proof. Let M D .Q, ˙ , R, s, F/ be a GJFA of degree n. If eL.M;Õ/ D ;, then the
GJFA

M0 D
�
fsg; ˙;;; s;;

�

is of degree n and satisfies aL.M0;Õ/ D ;. If eL.M;Õ/ D f"g, then the GJFA

M00 D
�
fsg; ˙;;; s; fsg

�

is of degree n and satisfies aL.M00;Õ/ D f"g. Therefore, assume that w 2 eL.M;Õ/,
where w 2 ˙C. Then, s ! p 2 R, for some p 2 Q. Indeed, observe that either
eL.M;Õ/ D ; or eL.M;Õ/ D f"g, which follows from the observation that if M
starts at the end of an input string, then it first has to jump to the left to be able to
read some symbols.

Define the GJFA OM D .Q, ˙ , OR, s, F/, where

OR D R �
˚
su ! q j u 2 ˙C; q 2 Q, and there is no x 2 ˙C

such that sx s in �.M/
�

The reason for excluding such su ! q from OR is that M first has to use a rule of the
form s ! p, where p 2 Q (see the argumentation above). However, since OM starts
anywhere in the input string, we need to force it to use s ! p as the first rule, thus
changing the state from s to p, just like M does.

Clearly, OM is of degree n and satisfies eL.M;Õ/ D
a
L. OM/, so the lemma

holds. ut

Theorem 8.2.61. eGJFA D aGJFA and eJFA D aJFA

Proof. This theorem follows from Lemmas 8.2.59 and 8.2.60. ut

We also consider combinations of left jumps, right jumps, and various start
configurations. For this purpose, by analogy with the previous denotations, we
define b

l GJFA, a
l GJFA, e

l GJFA, b
r GJFA, a

r GJFA, e
rGJFA, b

l JFA, a
l JFA, e

l JFA, b
r JFA,

a
r JFA, and e

rJFA. For example, b
r GJFA denotes the family of languages accepted by

GJFAs that perform only right jumps and starts at the beginning.

Theorem 8.2.62. a
r GJFA D a

r JFA D b
r GJFA D b

r JFA D b
l GJFA D b

l JFA D REG

Proof. Theorem 8.2.53, in fact, states that a
r GJFA D a

r JFA D REG. Furthermore,
b
r GJFA D b

r JFA D REG follows from the proof of Theorem 8.2.53 because
M has to start the acceptance process of a string w from the configuration sw—
that is, it starts at the beginning of w. b

l GJFA D b
l JFA D REG can be proved

analogously. ut
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Theorem 8.2.63. e
rGJFA D e

rJFA D f;; f"gg

Proof. Consider JFAs M D .fsg, fag, ;, s, ;/ and M0 D .fsg; fag;;; s; fsg/ to see
that f;; f"gg � e

rGJFA and f;; f"gg � e
rJFA. The converse inclusion also holds.

Indeed, any GJFA that starts the acceptance process of a string w from ws and that
can make only right jumps accepts either ; or f"g. ut

Open Problem 8.2.64. What are the properties of e
l GJFA and e

l JFA?

Notice that Open Problem 8.2.55, in fact, suggests an investigation of the
properties of a

l GJFA and a
l JFA.

8.2.7 Relations Between Jumping Automata and Jumping
Grammars

Next, we demonstrate that the generative power of regular and right-linear jumping
grammars (see Sect. 5.1) is the same as accepting power of jumping finite automata
and general jumping finite automata, respectively. Consequently, the following
equivalence and the previous results in this chapter imply several additional
properties of languages that are generated by regular and right-linear jumping
grammars such as closure properties and decidability.

Lemma 8.2.65. GJFA � JRLIN.

Proof. Construction. For every GJFA M D .Q, ˙ , R, s, F/, we construct a RLG
G D .Q [˙ [ fSg,˙ , P, S/, where S is a new nonterminal, S … Q [˙ , such that
L.M;Õ/ D L.G; j)/. Set P D fS ! f j f 2 Fg [ fq ! xp j px ! q 2 Rg [ fq !

x j sx ! q 2 Rg.
Basic Idea. The principle of the conversion is analogical to the conversion from
classical lazy finite automata to equivalent RLGs with sequential derivation mode
(see Section 2.6.2 in [Woo87] and Theorem 4.1 in [Sal73]).

The states of M are used as nonterminals in G. In addition, we introduce new
start nonterminal S in G. The input symbols˙ are terminal symbols in G.

During the simulation of M in G there is always exactly one nonterminal
symbol in the sentential form until the last jumping derivation step that pro-
duces the string of terminal symbols. If there is a sequence of jumping moves
usv Õ� ypxy0 Õ zqz0z00 Õ� f in M, then G simulates it by jumping derivation
S j) f j)

� zz0qz00
j) yxpy0

j)
� w, where yy0 D zz0z00 and w D uv. Firstly,

S is nondeterministically rewritten to some f in G to simulate the entrance to the
corresponding accepting final state of M. Then, for each rule px ! q in M that
processes substring x in the input string, there is x generated by the corresponding
rule of the form q ! xp in G. As the last jumping derivation step in G, we simulate
the first jumping move of M from the start state s by rewriting the only nonterminal
in the sentential form of G to a string of terminals and the simulation of M by G is
completed. ut
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Lemma 8.2.66. JRLIN � GJFA.

Proof. Construction. For every RLG G D .V , T, P, S/, we construct a GJFA M D

.N [ f�g, T, R, � , fSg/, where � is a new start state, � … V and N D V � T, such
that L.G; j)/ D L.M;Õ/. Set R D fBx ! A j A ! xB 2 P, A;B 2 N, x 2 T�g [

f�x ! A j A ! x 2 P, x 2 T�g.

Basic Idea. In the simulation of G in M we use nonterminals N as states, new state �
as the start state, and terminals T corresponds to input symbols of M. In addition, the
start nonterminal of G corresponds to the only final state of M. Every application of
a rule from P in G is simulated by a move according to the corresponding rule from
R constructed above. If there is a jumping derivation S j)

� yy0Ay00
j) zxBz0

j)
� w

in G, then M simulates it by jumping moves u�v Õ� zBxz0 Õ yAy0y00 Õ� S, where
yy0y00 D zz0 and w D uv. ut

Theorem 8.2.67. GJFA D JRLIN.

Proof. This theorem holds by Lemmas 8.2.65 and 8.2.66. ut

In the following theorem, consider jumping finite automata that processes only
one input symbol in one move. We state their equivalence with jumping RGs.

Theorem 8.2.68. JFA D JREG.

Proof. Prove this statement by analogy with the proof of Theorem 8.2.67. ut

Figure 8.3 summarizes the achieved results on the descriptional complexity of
jumping grammars and automata.

8.2.8 A Summary of Open Problems

Within the previous sections, we have already pointed out several specific open
problems concerning them. We close the present chapter by pointing out some
crucially important open problem areas as suggested topics of future investigations.

(I) Regarding decision problems, investigate other decision properties of GJFA
and JFA, like equivalence, universality, inclusion, or regularity. Furthermore,
study their computational complexity. Do there exist undecidable problems
for GJFA or JFA?

(II) Section 8.2.5 has demonstrated that GJFAs and JFAs using only right jumps
define the family of regular languages. How precisely do left jumps affect the
acceptance power of JFAs and GJFAs?

(III) Broaden the results of Sect. 8.2.6 concerning various start configurations by
investigating the properties of e

l GJFA and e
l JFA.

(IV) Determinism represents a crucially important investigation area in terms of
all types of automata. In essence, the non-deterministic versions of automata
can make several different moves from the same configuration while their
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CS

JMON

JCS

CFCF−ε

JCF JCF−ε

LIN

REG

FIN

JRLIN JCFfin

JREG
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JFA

Fig. 8.3 A hierarchy of language families closely related to the language families resulting from
jumping grammars and automata is shown. If there is a line or an arrow from family X to family
Y in the figure, then X D Y or X � Y, respectively. If there is a dashed arrow from X to Y, then
X � Y, but X � Y represents an open problem. A crossed line represents the incomparability
between connected families. (It is noteworthy that the figure describes only some of the language-
family relations that are crucially important in terms of the present section; however, by no means,
it gives an exhaustive description of these relations)

deterministic counterparts cannot—that is, they make no more than one
move from any configuration. More specifically, the deterministic version of
classical finite automata require that for any state q and any input symbol
a, there exists no more than one rule with qa on its left-hand side; in this
way, they make no more than one move from any configuration. As a result,
with any input string w, they make a unique sequence of moves. As should
be obvious, in terms of jumping finite automata, this requirement does not
guarantee their determinism in the above sense. Modify the requirement so it
guarantees the determinism.



Chapter 9
Deep Pushdown Automata and New Stack
Structures

Deep pushdown automata, explored in this chapter, represent language-accepting
models based upon new stack structures, which can be modified deeper than on
their top. As a result, these automata can make expansions deeper in their pushdown
lists while ordinary pushdown automata (see Sect. 2.4) can expand only the very
pushdown top.

This chapter proves that the power of deep pushdown automata is similar to
the generative power of regulated context-free grammars without erasing rules
(see Chap. 3). Indeed, just like these grammars, deep pushdown automata are
stronger than ordinary pushdown automata but less powerful than context-sensitive
grammars. More precisely, they give rise to an infinite hierarchy of language
families coinciding with the hierarchy resulting from n-limited state grammars (see
Sect. 3.2).

To give a more detailed insight into the concept of deep pushdown automata,
consider the well-known conversion of a context-free grammar to an equivalent
pushdown automaton M frequently referred to as the general top-down parser for
the grammar (see, for instance, page 176 in [RS97a], page 148 in [Har78], page
113 in [LP81], and page 444 in [Med00a]). Recall that during every move, M either
pops or expands its pushdown depending on the symbol occurring on the pushdown
top. If an input symbol a occurs on the pushdown top, M compares the pushdown
top symbol with the current input symbol, and if they coincide, M pops the topmost
symbol from the pushdown and proceeds to the next input symbol on the input
tape. If a nonterminal occurs on the pushdown top, the parser expands its pushdown
so it replaces the top nonterminal with a string. M accepts an input string x if it
makes a sequence of moves so it completely reads x, empties its pushdown, and
enters a final state; the latter requirement of entering a final state is dropped in
some books (see, for instance, Algorithm 5.3.1.1.1 in [Med00a] or Theorem 5.1
in [AU72]). In essence, a deep pushdown automaton, deepM, represents a slight
generalization of M. Indeed, deepM works exactly as M except that it can make
expansions of depth m so deepM replaces the mth topmost pushdown symbol with
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a string, for some m � 1. We demonstrate that the deep pushdown automata that
make expansions of depth m or less, where m � 1, are equivalent to m-limited state
grammars, so these automata accept a proper language subfamily of the language
family accepted by deep pushdown automata that make expansions of depth m C 1

or less. The resulting infinite hierarchy of language families obtained in this way
occurs between the families of context-free and context-sensitive languages. For
every positive integer n, however, there exist some context-sensitive languages that
cannot be accepted by any deep pushdown automata that make expansions of depth n
or less.

The present chapter is divided into two sections—Sects. 9.1 and 9.2. The
former defines and illustrates deep pushdown automata. The latter establishes
their accepting power, formulates some open problem areas concerning them, and
suggests introducing new deterministic and generalized versions of these automata.

9.1 Definitions and Examples

Without further ado, we define the notion of a deep pushdown automata, after which
we illustrate it by an example.

Definition 9.1.1. A deep pushdown automaton is a septuple

M D
�
Q; ˙; �;R; s; S;F

�

where

• Q is a finite set of states;
• ˙ is an input alphabet;
• � is a pushdown alphabet,N, Q, and � are pairwise disjoint,˙ � � , and � �˙

contains a special bottom symbol, denoted by #;
• R � .N � Q � .� � .˙ [ f#g//� Q � .� � f#g/C/

[ .N � Q � f#g � Q � .� � f#g/�f#g/ is a finite relation;
• s 2 Q is the start state;
• S 2 � is the start pushdown symbol;
• F � Q is the set of final states.

Instead of .m; q;A; p; v/ 2 R, we write mqA ! pv 2 R and call mqA ! pv a
rule; accordingly, R is referred to as the set of rules of M. A configuration of M is a
triple in Q � T� � .� � f#g/�f#g. Let � denote the set of all configurations of M.
Let x; y 2 � be two configurations. M pops its pushdown from x to y, symbolically
written as

xp`y
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if x D .q; au; az/, y D .q; u; z/, where a 2 ˙ , u 2 ˙�, z 2 � �. M expands its
pushdown from x to y, symbolically written as

xe `y

if x D .q;w; uAz/, y D .p;w; uvz/, mqA ! pv 2 R, where q; p 2 Q, w 2 ˙�,
A 2 � , u; v; z 2 � �, and #��˙.u/ D m � 1. To express that M makes xe`y
according to mqA ! pv, we write

xe`y ŒmqA ! pv�

We say that mqA ! pv is a rule of depth m; accordingly, xe`y ŒmqA ! pv� is an
expansion of depth m. M makes a move from x to y, symbolically written as

x ` y

if M makes either xe`y or xp`y. If n 2 N is the minimal positive integer such that
each rule of M is of depth n or less, we say that M is of depth n, symbolically
written as nM. In the standard manner, we extend p`, e`, and ` to p`m, e`

m, and
`m, respectively, for m � 0; then, based on p`m, e`

m, and `m, we define p`C, p`�,
e`

C, e`
�, `C, and `�.

Let M be of depth n, for some n 2 N. We define the language accepted by nM,
L.nM/, as

L.nM/ D
˚
w 2 ˙� j .s;w; S#/`�.f ; "; #/ in nM with f 2 F

�

In addition, we define the language that nM accepts by empty pushdown, E.nM/, as

E.nM/ D
˚
w 2 ˙� j .s;w; S#/`�.q; "; #/ in nM with q 2 Q

�
ut

For every k � 1,
deep

PDAk denotes the family of languages defined by deep

pushdown automata of depth i, where 1 � i � k. Analogously,
deep

emptyPDAk denotes
the family of languages defined by deep pushdown automata of depth i by empty
pushdown, where 1 � i � k.

The following example gives a deep pushdown automaton accepting a language
from

�

deep
PDA2 \

deep

empty
PDA2 \ CS

�
� CF

Example 9.1.2. Consider the deep pushdown automaton

2M D
�
fs; q; pg; fa; b; cg; fA; S; #g;R; s; S; ff g

�



396 9 Deep Pushdown Automata and New Stack Structures

with R containing the following five rules

1sS ! qAA
1qA ! paAb

1qA ! fab
2pA ! qAc

1fA ! fc

On aabbcc, M makes

.s; aabbcc; S#/ e` .q; aabbcc;AA#/ Œ1sS ! qAA�

e` .p; aabbcc; aAbA#/ Œ1qA ! paAb�

p` .p; abbcc;AbA#/

e` .q; abbcc;AbAc#/ Œ2pA ! qAc�

e` .q; abbcc; abbAc#/ Œ1qA ! fab�

p` .f ; bbcc; bbAc#/

p` .f ; bcc; bAc#/

p` .f ; cc;Ac#/

e` .f ; cc; cc#/ Œ1fA ! fc�

p` .f ; c; c#/

p` .f ; "; #/

In brief, .s; aabbcc; S#/`�.f ; "; #/. Observe that L.2M/ D E.2M/ D fanbncn j n �

1g, which belongs to CS � CF. ut

9.2 Accepting Power

In the present section, we establish the main results of this chapter. That is, we
demonstrate that deep pushdown automata that make expansions of depth m or less,
where m � 1, are equivalent to m-limited state grammars, so these automata accept
a proper subfamily of the language family accepted by deep pushdown automata
that make expansions of depth m C 1 or less. Then, we point out that the resulting
infinite hierarchy of language families obtained in this way occurs between the
families of context-free and context-sensitive languages. However, we also show
that there always exist some context-sensitive languages that cannot be accepted by
any deep pushdown automata that make expansions of depth n or less, for every
positive integer n.

To rephrase these results briefly and formally, we prove that

deep
PDA1 D

deep

empty
PDA1 D CF

and for every n � 1,

deep

emptyPDAn D
deep

PDAn �
deep

emptyPDAnC1 D
deep

PDAnC1 � CS
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After proving all these results, we formulate several open problem areas, including
some suggestions concerning new deterministic and generalized versions of deep
pushdown automata.

Lemma 9.2.1. For every state grammar G and for every n � 1, there exists a deep
pushdown automaton of depth n, nM, such that L.G; n/ D L.nM/.

Proof. Let G D .V , W, T, P, S/ be a state grammar and let n � 1. Set N D V � T.
Define the homomorphism f over .f#g [ V/� as f .A/ D A, for every A 2 f#g [ N,
and f .a/ D ", for every a 2 T. Introduce the deep pushdown automaton of depth n

nM D
�
Q;T; f#g [ V;R; s; S; f$g

�

where

Q D
˚
S; $

�
[
˚
hp; ui j p 2 W; u 2 N�f#g�; juj � n

�

and R is constructed by performing the following four steps

(1) for each .p; S/ ! .q; x/ 2 P, p; q 2 W, x 2 VC, add

1sS ! hp; SiS to R;

(2) if .p;A/ ! .q; x/ 2 P, hp; uAvi 2 Q, p; q 2 W, A 2 N, x 2 VC, u 2 N�,
v 2 N�f#g�, juAvj D n, p … G states.u/, add

juAjhp; uAviA ! hq; prefix.uf .x/v; n/ix to R;

(3) if A 2 N, p 2 W, u 2 N�, v 2 f#g�, juvj � n � 1, p … G states.u/, add

juAjhp; uviA ! hp; uAviA and
juAjhp; uvi# ! hp; uv#i# to R;

(4) for each q 2 W, add

1hq; #ni# ! $# to R.

nM simulates n-limited derivations of G so it always records the first n non-
terminals occurring in the current sentential form in its state (if there appear
fewer than n nonterminals in the sentential form, it completes them to n in the
state by #s from behind). nM simulates a derivation step in the pushdown and,
simultaneously, records the newly generated nonterminals in the state. When G
successfully completes the generation of a terminal string, nM completes reading
the string, empties its pushdown, and enters the final state $.

To establish L.G; n/ D L.nM/, we first prove two claims.

Claim 9.2.2. Let .p; S/n)m.q; dy/ in G, where d 2 T�; y 2 .NT�/�; p; q 2 W;m �

0. Then, .hp; Si; d; S#/`�.hq; prefix.f .y#n/; n/i; "; y#/ in nM.

Proof. This claim is proved by induction on m � 0.
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Basis. Let m D 0, so .p; S/n)0.p; S/ in G; d D " and y D S. By using rules
introduced in steps (1) and (4),

.hp; Si; "; S#/`�.hp; prefix.f .S#n/; n/i; "; S#/ in nM

so the basis holds.

Induction Hypothesis. Assume that the claim holds for all m, 0 � m � k, where k is
a non-negative integer.

Induction Step. Let .p; S/n)kC1.q; dy/ in G, where d 2 T�, y 2 .NT�/�, p; q 2 W.
Since k C 1 � 1, express .p; S/n)kC1.q; dy/ as

.p; S/n)
k.h; buAo/n).q; buxo/ Œ.h;A/ ! .q; x/�

where b 2 T�, u 2 .NT�/�, A 2 N, h; q 2 W, .h;A/ ! .q; x/ 2 P, max-suffix.buxo,
.NT�/�/ D y, and max-prefix.buxo, T�/ D d. By the induction hypothesis,

.hp; Si;w; S#/`�.hh; prefix.f .uAo#n/; n/i; "; uAo#/ in M

where w D max-prefix.buAo, T�/. As .h;A/ ! .q; x/ 2 P, step (2) of the
construction introduces rule

juAjhh; prefix.f .uAo#n/; n/iA ! hq; prefix.f .uxo#n/; n/ix to R

By using this rule, nM simulates .buAo; h/n).buxo; q/ by making

.hh; prefix.f .uAo#n/; n/i; "; uAo#/ ` .hq; zi; "; uxo#/

where z D prefix.f .uxo#n/; n/ if x 2 VC � TC and z D prefix.f .uxo#n/; n � 1/ D

prefix.f .uo#n/; n � 1/ if x 2 TC. In the latter case .z D prefix.f .uo#n/; n � 1/, so
jzj D n � 1/, nM makes

.hq; prefix.f .uo#n/; n � 1/i; "; uxo#/ ` .hq; prefix.f .uo#n/; n/i; "; uxo#/

by a rule introduced in (3). If uxo 2 .NT�/�, uxo D y and the induction step is
completed. Therefore, assume that uxo ¤ y, so uxo D ty and d D wt, for some
t 2 TC. Observe that prefix.f .uxo#n/; n/ D prefix.f .y#n/; n/ at this point. Then, nM
removes t by making jtj popping moves so that

.hq; prefix.f .uxo#n/; n/i; t; ty#/p`jtj.hq; prefix.f .y#n/; n/i; "; y#n/

Thus, putting the previous sequences of moves together, we obtain

.p;wt; S#n/ `� .hq; prefix.f .uxo#n/; n/i; t; ty#/ Œ1sS ! qAA�

p`jtj .hq; prefix.f .y#n/; n/i; "; y#/

which completes the induction step. ut
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By the previous claim for y D ", if .p; S/n)�.q; d/ in G, where d 2 T�, p; q 2

W, then

.hp; Si; d; S#/`�.hq; prefix.f .#n/; n/i; "; #/ in nM

As prefix.f .#n/; n/ D # and R contains rules introduced in (1) and (4), we also have

.s; d; S#/ ` .hp; Si; d; S#/
`� .hq; #n; n/i; "; #/
`� .$; "; #/ in nM

Thus, d 2 L.G/ implies that d 2 L.nM/, so L.G; n/ � L.nM/.

Claim 9.2.3. Let .hp; S#n�1i; c; S#/`m.hq; prefix.f .y#n/; n/i; "; by#/ in nM with
c; b 2 T�, y 2 .NT�/�, p; q 2 W, and m � 0. Then, .p; S/n)�.q; cby/ in G.

Proof. This claim is proved by induction on m � 0.

Basis. Let m D 0. Then, c D b D ", y D S, and

.hp; S#n�1i; "; S#/`0.hq; prefix.f .S#n/; n/i; "; S#/ in nM

As .p; S/n)0.p; S/ in G, the basis holds.

Induction Hypothesis. Assume that the claim holds for all m, 0 � m � k, where k is
a non-negative integer.

Induction Step. Let

.hp; S#n�1i; c; S#/ `kC1 .hq; prefix.f .y#n/; n/i; "; by#/ in nM

where c; b 2 T�; y 2 .NT�/�; p; q 2 W in nM. Since k C 1 � 1, we can express

.hp; S#n�1i; c; S#/ `kC1 .hq; prefix.f .y#n/; n/i; "; by#/

as

.hp; S#n�1i; c; S#/ `k ˛

` .hq; prefix.f .y#n/; n/i; "; by#/ in nM

where ˛ is a configuration of nM whose form depends on whether the last move is
(i) a popping move or (ii) an expansion, described next.

(i) Assume that ˛p`.hq; prefix.f .y#n/; n/i; "; by#/ in nM. In a greater detail, let
˛ D .hq; prefix.f .y#n/; n/i; a; aby#/with a 2 T such that c D prefix.c; jcj�1/a.
Thus,
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.hp; S#n�1i; c; S#/ `k .hq; prefix.f .y#n/; n/i; a; aby#/

p` .hq; prefix.f .y#n/; n/i; "; by#/

Since .hp; S#n�1i; c; S#/`k.hq; prefix.f .y#n/; n/i; a; aby#/, we have

.hp; S#n�1i; prefix.c; jcj � 1/; S#/`k.hq; prefix.f .y#n/; n/i; "; aby#/

By the induction hypothesis, .p; S/n)�.q; prefix.c; jcj � 1/aby/ in G. As c D

prefix.c; jcj � 1/a, .p; S/n)�.q; cby/ in G.
(ii) Assume that ˛e`.hq; prefix.f .y#n/; n/i; "; by#/ in nM. Observe that this expan-

sion cannot be made by rules introduced in steps (1) or (4). If this expansion is
made by a rule introduced in (3), which does not change the pushdown contents
at all, the induction step follows from the induction hypothesis. Finally, suppose
that this expansion is made by a rule introduced in step (2). In a greater detail,
suppose that

˛ D .ho; prefix.f .uAv#n; n/i; "; uAv#/

and nM makes

.ho; prefix.f .uAv#n/; n/i; "; uAv#/e`.hq; prefix.f .uxv#n/; n/i; "; uxv#/

by using

jf .uA/jho; prefix.f .uAv#n/; n/iA ! hq; prefix.f .uxv#n/; n/ix 2 R

introduced in step (2) of the construction, where A 2 N, u 2 .NT�/�, v 2

.N [ T/�, o 2 W, jf .uA/j � n, by# D uxv#. By the induction hypothesis,

.hp; S#n�1i; c; S#/`k.ho; prefix.f .uAv#n/; n/i; "; uAv#/ in nM

implies that .p; S/n)�.o; cuAv/ in G. From

jf .uA/jho; prefix.f .uAv#n/; n/iA ! hq; prefix.f .uxv#n/; n/ix 2 R

it follows that .o;A/ ! .q; x/ 2 P and A … G states.f .u//. Thus,

.p; S/ n)� .o; cuAv/

n) .q; cuxv/ in G

Therefore, .p; S/n)�.q; cby/ in G because by# D uxv#. ut

Consider the previous claim for b D y D " to see that

.hp; S#n�1i; c; S#/`�.hq; prefix.f .#n/; n/i; "; #n/ in nM
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implies that .p; S/n)�.q; c/ in G. Let c 2 L.nM/. Then,

.s; c; S#/`�.$; "; #/ in nM

Examine the construction of nM to see that .s; c; S/`�.$; "; #/ starts by using a
rule introduced in (1), so .s; c; S/`�.hp; S#n�1i; c; S#/. Furthermore, notice that this
sequence of moves ends .s; c; S/`�.$; "; "/ by using a rule introduced in step (4).
Thus, we can express

.s; c; #/`�.$; "; #/

as

.s; c; #/ `� .hp; S#n�1i; c; S#/
`� .hq; prefix.f .#n/; n/i; "; #/
` .$; "; #/ in nM

Therefore, c 2 L.nM/ implies that c 2 L.G; n/, so L.nM/ � L.G; n/.
As L.nM/ � L.G; n/ and L.G; n/ � L.nM/, L.G; n/ D L.nM/. Thus,

Lemma 9.2.1 holds. ut

Lemma 9.2.4. For every n � 1 and every deep pushdown automaton nM, there
exists a state grammar G such that L.G; n/ D L.nM/.

Proof. Let n � 1 and nM D .Q, T, V , R, s, S, F/ be a deep pushdown automaton.
Let Z and $ be two new symbols that occur in no component of nM. Set N D V � T.
Introduce sets

C D
˚
hq; i;Fi j q 2 Q; 1 � i � n � 1

�

and

D D
˚
hq; i;Gi j q 2 Q; 0 � i � n � 1

�

Moreover, introduce an alphabet W such that card.V/ D card.W/, and for all i, 1 �

i � n, an alphabet Ui such that card.Ui/ D card.N/. Without any loss of generality,
assume that V , Q, and all these newly introduced sets and alphabets are pairwise
disjoint. Set U D

Sn
iD1 Ui. For each i, 1 � i � n � 1, set Ci D fhq; i;Fi j q 2 Qg

and for each i, 0 � i � n � 1, set Di D fhq; i;Gi j q 2 Qg. Introduce a bijection h
from V to W. For each i, 1 � i � n, introduce a bijection ig from N to Ui. Define
the state grammar

G D
�
V [ W [ U [ fZg;Q [ C [ D [ f$g;T;P;Z

�

where P is constructed by performing the following steps
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(1) add .s;Z/ ! .hs; 1;Fi; h.S// to P;
(2) for each q 2 Q, A 2 N, 1 � i � n � 1, x 2 VC, add

(2.1) .hq; i;Fi;A/ ! .hq; i C 1;Fi; ig.A// and
(2.2) .hq; i;Gi; ig.A// ! .hp; i � 1;Gi;A/ to P;

(3) if ipA ! qxY 2 R, for some p; q 2 Q, A 2 N, x 2 V�, Y 2 V , i D 1; : : : ; n, add

.hp; i;Fi;A/ ! .hq; i � 1;Gi; xY/ and

.hp; i;Fi; h.A// ! .hq; i � 1;Gi; xh.Y// to P;

(4) for each q 2 Q, A 2 N, add

.hq; 0;Gi;A/ ! .hq; 1;Fi;A/ and

.hq; 0;Gi; h.Y// ! .hq; 1;Fi; h.Y// to P;

(5) for each q 2 F, a 2 T, add

.hq; 0;Gi; h.a// ! .$; a/ to P.

G simulates the application of ipA ! qy 2 R so it makes a left-to-right scan of
the sentential form, counting the occurrences of nonterminals until it reaches the ith
occurrence of a nonterminal. If this occurrence equals A, it replaces this A with y
and returns to the beginning of the sentential form in order to analogously simulate a
move from q. Throughout the simulation of moves of nM by G, the rightmost symbol
of every sentential form is from W. G completes the simulation of an acceptance of
a string x by nM so it uses a rule introduced in step (5) of the construction of P to
change the rightmost symbol of x, h.a/, to a and, thereby, to generate x.

We next establish L.G; n/ D L.nM/. To keep the rest of the proof as readable as
possible, we omit some details in what follows. The reader can easily fill them in.

Claim 9.2.5. L.G; n/ � L.nM/

Proof. Consider any w 2 L.G; n/. Observe that G generates w as

.s;Z/ n) .hs; 1;Fi; h.S// Œ.s;Z/ ! .hs; 1;Fi; h.S//�

n)� .f ; yh.a// Œ.hf ; 0;Gi; h.a// ! .$; a/�

n) .$;w/

where f 2 F, a 2 T, y 2 T�, ya D w, .s;Z/ ! .hs; 1;Fi; h.S// in step (1) of the
construction of P, .hf ; 0;Gi; h.a// ! .$; a/ in (5), every

u 2 strings
�
.hs; 1;Fi; h.S//n)

�.f ; yh.a//
�

satisfies u 2 .V [ U/�W, and every step in

.hs; 1;Fi; h.S//n)
�.f ; yh.a//

is made by a rule introduced in (2) through (4). Indeed, the rule constructed in (1) is
always used in the first step and a rule constructed in (5) is always used in the very
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last step of any successful generation in G; during any other step, neither of them
can be applied. Notice that the rule of (1) generates h.S/. Furthermore, examine the
rules of (2) through (4) to see that by their use, G always produces a string that
has exactly one occurrence of a symbol from W in any string and this occurrence
appears as the rightmost symbol of the string; formally,

u 2 strings
�
.hs; 1;Fi; h.S//n)

�.f ; yh.a//
�

implies that u 2 .V [ U/�W. In a greater detail,

.hs; 1;Fi; h.S//n)
�.f ; yh.a//

can be expressed as

.q0; z0/ n)� .c0; y0/ n) .d0; u0/ n)� .p0; v0/ n)

.q1; z1/ n)� .c1; y1/ n) .d1; u1/ n)� .p1; v1/ n)
:::

:::
:::

:::

.qm; zm/ n)� .cm; ym/ n) .dm; um/ n)� .pm; vm/ n)

.qmC1; zmC1/

for some m � 1, where z0 D h.S/, zmC1 D yh.a/, f D qmC1, and for each j,
0 � j � m, qj 2 C1, pj 2 D0, zj 2 V�W, and there exists ij 2 f1; : : : ; ng so cj 2 Cij ,
yj 2 T�C1T�C2 	 	 	 T�Cij�1V

�W, dj 2 Dij�1, uj 2 T�C1T�C2 	 	 	 T�Dij�1V
�W, and

.qj; zj/n)�.cj; yj/n).dj; uj/n)�.pj; vj/n).qjC1; zjC1/

satisfies (i)–(iv), given next.
For brevity, we first introduce the following notation. Let w be any string. For i D

1; : : : ; jwj, bw; i;Nc denotes the ith occurrence of a nonterminal from N in w, and if
such a nonterminal does not exist, bw; i;Nc D 0; for instance, bABABC; 2; fA;Cgc

denotes the underlined A in ABABC.

(i) .qj; zj/n)�.ci; yi/ consists of ij � 1 steps during which G changes bzj; 1;Nc,
: : : , bzj; ij � 1;Nc to 1g.hbzj; 1;Nc; 2i/, : : : , ij g.hbzj; ij � 1;Nc, ij � 1i/,
respectively, by using rules of (2.1) in the construction of P;

(ii) if ij � #N.zj/, then .cj; yj/n).dj; uj/ have to consist of a step according
to .hq; i;Fi;Aj/ ! .hq; i � 1;Gi; xjXj/, where bzj; ij;Nc is an occurrence
of Aj; xj 2 V�;Xj 2 V , and if ij D #N[W.zj/, then .cj; yj/n).dj; uj/ consists
of a step according to .hp; i;Fi; h.Aj// ! .hq; i � 1;Gi; xjh.Xj// constructed
in (3), where bzj; ij;N [ Wc is an occurrence of h.Aj/; xj 2 V�;Xj 2 V;

(iii) .dj; uj/n)�.pj; vj/ consists of ij � 1 steps during which G changes ij g.hbzj; ij �

1;Nc; ij � 1i/, : : : , 1g.hbzj; 1;Nc; 1i/ back to bzj; ij � 1;Nc, : : : , bzj; 1;Nc,
respectively, in a right-to-left way by using rules constructed in (2.2);

(iv) .pj; vj/n).qjC1; zjC1/ is made by a rule constructed in (4).
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For every

.qj; zj/ n)� .cj; yj/

n) .dj; uj/

n)� .pj; vj/

n) .qjC1; zjC1/ in G

where 0 � j � m, nM makes

.qj; oj; suffix.zj/tj/`
�.qjC1; ojC1; suffix.zjC1/tjC1/

with o0 D w, z0 D S#, tjC1 D j max-prefix.zjC1, T�/j, ojC1 D suffix.oj/jojj C tjC1,
where o0 D w, z0 D S#, and t0 D jz0j. In this sequence of moves, the first move
is an expansion made according to ijqjAj ! qjC1xjXj (see steps (2) and (3) of the
construction) followed by tjC1 popping moves (notice that ij � 2 implies that tjC1 D

0). As f 2 F and ya D w, w 2 L.nM/. Therefore, L.G; n/ � L.nM/. ut

Claim 9.2.6. L.nM/ � L.G; n/

Proof. This proof is simple and left to the reader. ut

As L.nM/ � L.G; n/ and L.G; n/ � L.nM/, we have L.G; n/ D L.nM/, so this
lemma holds true. ut

Theorem 9.2.7. For every n � 1 and for every language L;L D L.G; n/ for a state
grammar G if and only if L D L.nM/ for a deep pushdown automaton nM.

Proof. This theorem follows from Lemmas 9.2.1 and 9.2.4. ut

By analogy with the demonstration of Theorem 9.2.7, we can establish the next
theorem.

Theorem 9.2.8. For every n � 1 and for every language L;L D L.G; n/ for a state
grammar G if and only if L D E.nM/ for a deep pushdown automaton nM. ut

The main result of this chapter follows next.

Corollary 9.2.9. For every n � 1,

deep

emptyPDAn D
deep

PDAn �
deep

PDAnC1 D
deep

emptyPDAnC1

Proof. This corollary follows from Theorems 9.2.7 and 9.2.8 above and from
Theorem 3.2.3, which says that the m-limited state grammars generate a proper
subfamily of the family generated by .m C 1/-limited state grammars, for every
m � 1. ut

Finally, we state two results concerning CF and CS.

Corollary 9.2.10.
deep

PDA1 D
deep

empty
PDA1 D CF
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Proof. This corollary follows from Lemmas 9.2.1 and 9.2.4 for n D 1, and from
Theorem 3.2.3, which says that one-limited state grammars characterize CF. ut

Corollary 9.2.11. For every n � 1,
deep

PDAn D
deep

empty
PDAn � CS.

Proof. This corollary follows from Lemmas 9.2.1 and 9.2.4, Theorems 9.2.7
and 9.2.8, and from Theorem 3.2.3, which says that STm, for every m � 1, is
properly included in CS. ut

9.3 Open Problems

Finally, we suggest two open problem areas concerning deep pushdown automata.

9.3.1 Determinism

This chapter has discussed a general versions of deep pushdown automata, which
work non-deterministically. Undoubtedly, the future investigation of these automata
should pay a special attention to their deterministic versions, which fulfill a crucial
role in practice. In fact, we can introduce a variety of deterministic versions,
including the following two types. First, we consider the fundamental strict form
of determinism.

Definition 9.3.1. Let M D .Q, ˙ , � , R, s, S, F/ be a deep pushdown automaton.
We say that M is deterministic if for every mqA ! pv 2 R,

card
�
fmqA ! ow j mqA ! ow 2 R; o 2 Q;w 2 � Cg � fmqA ! pvg

�
D 0 ut

As a weaker form of determinism, we obtain the following definition.

Definition 9.3.2. Let M D .Q, ˙ , � , R, s, S, F/ be a deep pushdown automaton.
We say that M is deterministic with respect to the depth of its expansions if for every
q 2 Q

card
�
fm j mqA ! pv 2 R;A 2 �; p 2 Q; v 2 � Cg

�
� 1

because at this point from the same state, all expansions that M can make are of the
same depth. ut

To illustrate, consider, for instance, the deep pushdown automaton 2M from
Example 9.1.2. This automaton is deterministic with respect to the depth of its
expansions; however, it does not satisfy the strict determinism. Notice that nM
constructed in the proof of Lemma 9.2.1 is deterministic with respect to the depth
of its expansions, so we obtain this corollary.
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Corollary 9.3.3. For every state grammar G and for every n � 1, there exists a
deep pushdown automaton nM such that L.G; n/ D L.nM/ and nM is deterministic
with respect to the depth of its expansions. ut

Open Problem 9.3.4. Can an analogical statement to Corollary 9.3.3 be estab-
lished in terms of the strict determinism? ut

9.3.2 Generalization

Let us note that throughout this chapter, we have considered only true pushdown
expansions in the sense that the pushdown symbol is replaced with a nonempty
string rather than with the empty string; at this point, no pushdown expansion can
result in shortening the pushdown length. Nevertheless, the discussion of moves that
allow deep pushdown automata to replace a pushdown symbol with " and, thereby,
shorten its pushdown represent a natural generalization of deep pushdown automata
discussed in this chapter.

Open Problem 9.3.5. What is the language family defined by deep pushdown
automata generalized in this way? ut



Chapter 10
Algebra, Automata, and Computation

Traditionally, from an algebraic viewpoint, automata work over free monoids. The
present chapter, however, modifies this standard approach so they work over other
algebraic structures. More specifically, this chapter discusses a modification of
pushdown automata that is based on two-sided pushdowns into which symbols
are pushed from both ends. These pushdowns are defined over free groups, not
free monoids, and they can be shortened only by the standard group reduction.
We demonstrate that these automata are computational complete—that is, they
characterize the family of recursively enumerable languages—even if the free
groups are generated by no more than four symbols.

10.1 Two-Sided Pushdown Acceptance over Free Groups:
Conceptualization

Undoubtedly, the pushdown automata fulfill a crucial role in the automata theory.
Viewed as a language acceptor, pushdown automaton consists of an input tape, a
read head, a pushdown and a finite state control. The input tape is divided into
squares, each of which contains one symbol of an input string. The finite control
is represented by a finite set of states together with a finite set of computational
rules. According to these rules, pushdown automaton changes states, moves the read
head on the tape to the right and replaces the top symbol on the pushdown by an
arbitrary sequence of another symbols contained in the pushdown alphabet. Every
next computational step is performed with respect to the current symbol under the
read head on the input tape, the current state and the current symbol on the top
of the pushdown. The input string is accepted by the pushdown automaton, if its
last symbol is read from the input tape and (1) a state marked as final is reached,
or, (2) the pushdown is empty, or, (3) a state marked as final is reached and the
pushdown is empty. Note that the acceptance method is defined for every pushdown
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automaton and these three methods are equivalent. In other words, every pushdown
automaton with one of the three acceptance method can be transformed to another
two pushdown automata which accept every string with the other two acceptance
methods and define the same language as the original automaton.

The automata theory has modified pushdown automata in many different ways
including various modifications concerning their pushdown stores. To give an exam-
ple, recall the pushdown turn (see Definition 7.2.30). Let us introduce another modi-
fication of pushdown automata. By attaching an additional pushdown, the pushdown
automaton is extended to the two-pushdown automaton. A two-pushdown automa-
ton consists of a finite state control, an input tape with its read head, and two
pushdowns. During a move, two-pushdown automaton rewrites the top symbols of
both pushdowns; otherwise, it works by analogy with a pushdown automaton. It is
proved that two-pushdown automata are more powerful than pushdown automata
(see [Med00a]).

By putting together the previously mentioned variations of pushdown automata
(i.e. one-turn pushdown automata and two-pushdown automata), the simultaneously
one-turn two pushdown automata can be introduced (see [Med03c]). If the two-
pushdown automaton makes a turn in both its pushdowns in one computational
step, this turn is simultaneous. A two-pushdown automaton is simultaneously one-
turn if it makes either no turn or one simultaneous turn in its pushdowns during
any computation. As expected, this modification changes the power of pushdown
automata.

There are another modifications of pushdown automata in the automata theory.
Some of them can be found in [Cou77, Gre69, GGH67, GS68, Med03c, KM00,
Sar01].

The present chapter continues with this vivid topic and introduces automata with
two-sided pushdowns. As their name indicates, we can insert symbol into these
pushdowns from both ends. The two-sided pushdown automaton thus consists of an
input tape with read head, a finite state control, and a two-sided pushdown. Every
computational step is performed according to the current symbol under the read
head on the input tape, the current state and the current symbols on both tops of the
two-sided pushdown.

Pushdowns are usually defined over free monoids generated by the pushdown
alphabets of the pushdown automata under the operation of concatenation. However,
in this chapter, we leave this concept and define these two-sided pushdowns over
free groups rather than free monoids. To put it more precisely, we require that during
every move, the string representing the current pushdown is over the free group
generated by the pushdown alphabet under the operation of concatenation, and the
standard group reduction is the only way by which the pushdown string can be
shorten. We demonstrate that the pushdown automata modified in this way are as
powerful as the Turing machines. In fact, they characterize the family of recursively
enumerable languages. Moreover, the free groups are generated by no more than
four symbols.
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10.1.1 Definitions

Let us recall the notion of languages over free monoids (see Sect. 2.1) and
free groups (see Sect. 6.1) and the notion of left-extended queue grammars (see
Definition 2.3.44).

Definition 10.1.1. A string-reading two-sided pushdown automaton over a free
group is an eight-tuple, M D .Q; ˙; �;R; z;Z1;Z2;F/, where Q is a finite set of
states, ˙ is an input alphabet, � is a pushdown alphabet, Q \ .˙ [ � / D ;, R is
a finite set of rules of the form u1ju2qw ! v1jv2p with u1; u2 2 � , v1; v2 2 � ı,
p; q 2 Q, and w 2 ˙�, z 2 Q is the start state, Z1 2 � is the start symbol of the
left-hand side of the pushdown, Z2 2 � is the start symbol of the right-hand side of
the pushdown, and F � Q is a set of final states. A configuration of M is any string
of the form vqy, where v 2 � ı, y 2 ˙�, and q 2 Q. If u1ju2qw ! v1jv2p 2 R,
y D u1hu2qwz, and x D v1hv2pz, where u1; u2 2 � , h; v1; v2 2 � ı, q; p 2 Q,
and w; z 2 ˙�, then M makes a move from y to x in M, symbolically written as
y ` xŒu1ju2qw ! v1jv2q�, or, simply, y ` x. In the standard manner, extend `

to `n, where n � 0; based on `n, define `C and `�. We call Z1Z2zw `� vqx
a computation, where v 2 � ı, q 2 Q, w; x 2 ˙�; a computation of the form
Z1Z2zw `� "f with f 2 F is a successful computation. The language of M, L.M/, is
defined as L.M/ D fw W Z1Z2zw `� "f ; where f 2 F;w 2 ˙�g.

A two-sided pushdown automaton over a free group is a string-reading two-sided
pushdown automaton over a free group, M D .Q; ˙; �;R; z;Z1;Z2;F/, in which
every u1ju2qw ! v1jv2p 2 R satisfies 0 � jwj � 1, where u1; u2 2 � , v1v2 2 � ı,
q; p 2 Q, and w 2 ˙�. ut

10.2 Results: Computational Completeness

In this section, we study the power of the modified versions of pushdown automata
defined in the previous section. We demonstrate that they are as powerful as the
Turing machines. In fact, they characterize the family of recursively enumerable
languages even if the free groups over which their pushdowns are defined are
generated by no more than four symbols.

For the proof of the main result in this chapter presented later, we use a
left-extended queue grammar, since the derivation method of these grammars is
closer to the behaviour of our two-sided pushdowns. Recall that left-extended
queue grammars characterize the family of recursively enumerable languages (see
Theorem 2.3.46). Observe that according to the definition of left-extended queue
grammars, every symbol A 2 .V � T/ which appears in the first component of any
rule used in the derivation will be moved from the place right from # to the place left
from #. Every string generated right from # in the queue grammar will be inserted
into the two-sided pushdown from the right-hand side. Moreover, every symbol
moved to the place left from # in the queue grammar is then inserted as inverse
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from the left-hand side on the two-sided pushdown. At the end of every successful
computation, the left half of the two-sided pushdown is equal to the inverted right
half, so it can be discharged by the group reduction.

Theorem 10.2.1. For every left-extended queue grammar, G D .V;T;W;F; Sq0;P/,
satisfying the properties of normal form described in Definition 3.1.25, there exists
a string-reading two-sided pushdown automaton over a free group with the reduced
pushdown alphabet, M D .Q;T;Z;R; z; 1; 1;FM/, such that L.G/ D L.M/.

Proof. We construct a string-reading two-sided pushdown automaton over a free
group with the reduced pushdown alphabet as follows.
Construction. Define the injections, h W .V � T/ ! f0; 1gnC2 and h W .V � T/ !

f0; 1gnC2, where n D dlog2.card.V � T//e, such that for every A 2 .V � T/, h.A/ D

f0gf0; 1gnf0g and h.A/ D h.A/. Extend the domain of h to .V � T/�. After this
extension, h is now an injective homomorphism from .V � T/� to .f0gf0; 1gnf0g/�.
Note that the inverses to 0 and 1 2 V � T are 0 and 1 2 V � T, respectively.

Construct the set of states, Q, the pushdown alphabet, Z, and the set of final
states, FM , as Q D ff ; zg [ fhq; 1i; hq; 2ijq 2 Wg, Z D f0; 0; 1; 1g, and FM D ff g,
respectively.

The set of rules, R, is constructed in the following way.

(1) for the start axiom of G, Sq0, where S 2 .V � T/, q0 2 .W � F/,
add 1j1z ! 1jh.S/1hq0; 1i to R

(2) for every .A; q; x; p/ 2 P, where A 2 .V � T/, p; q 2 .W � F/, x 2 .V � T/�,
add 1j1hq; 1i ! 1h.A/jh.x/1hp; 1i to R

(3) for every q 2 W
add 1j1hq; 1i ! 1j1hq; 2i to R

(4) for every .A; q; y; p/ 2 P, where A 2 .V � T/, p; q 2 .W � F/, y 2 T�,
add 1j1hq; 2iy ! 1h.A/j1hp; 2i to R

(5) for every .A; q; y; t/ 2 P, where A 2 .V � T/, q 2 .W � F/, y 2 T�, t 2 F,
add 1j1hq; 2iy ! h.A/j"f to R

The construction of M is completed. For the next parts of this proof, we introduce
the following notation. If hq; 1i is the actual state of M, we say that M is in
nonterminal-generating mode. Similarly, if hq; 2i is the actual state of M, we say
that M is in terminal-reading mode, where q 2 W.

Basic Idea. M simulates derivations in the left-extended queue grammar, G, and
encodes the symbols from V � T on its pushdown in a binary way. First, consider
that in G, w#Avp is the actual sentential form, where w, v 2 .V � T/�, A 2

.V � T/, and p 2 .W � F/. Then, the corresponding configuration of M is
1h.w/h.w/h.A/h.v/1hp; 1i!, where ! 2 T�. Let .A; p; x; q/ 2 P, where x 2

.V �T/� Then, w#Avp ) wA#vxq in G. In this case, M must be in the nonterminal-
generating mode and the corresponding M’s rule is by construction 1j1hp; 1i !

1h.A/jh.x/1hq; 1i 2 R. By using this rule, M moves to a new configuration of
the form 1h.A/h.w/h.w/h.A/h.v/h.x/1hq; 1i!. Observe that A is encoded by h and
the resulting binary string is inserted to the left-hand side of pushdown. Next, x is
encoded by h and the result is inserted into the pushdown from the right-hand side.
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Second, let w#Avup is the actual sentential form, where u 2 T�, and .A; p; y; q/ 2

P, y 2 T�. Then, w#Avup ) wA#vuyq in G. By construction, the correspond-
ing M’s rule is 1j1hp; 2iy ! 1h.A/j1hq; 2i 2 R and M makes a transition
1h.w/h.w/h.A/h.v/1hp; 2iy!0 ` 1h.A/h.w/h.w/h.A/h.v/1hq; 2i!0, where !0 2

T�. Note that in this case, M must be in terminal-reading mode. In this mode, only
the encoded A, h.A/, is inserted into the left-hand side of the pushdown.

In other words, every A 2 .V �T/, that is generated behind the # in G, is inserted
as h.A/ into the right-hand side of the pushdown. Note that all these symbols in the
left-extended queue grammar G satisfying the normal form from Definition 3.1.25
are moved in front of # during every successful derivation. The reason why M
inserts their encoded inverses into the left-hand side of the pushdown is to correctly
simulate the derivation in G. To make the pushdown empty, M uses the inverses
from the free group.

Let us present an example of automaton construction to clarify the proof.

Example 10.2.2. Consider a left-extended queue grammar, G D .V;T;W;F; s;P/,
where V D fS;A;B; a; bg, T D fa; bg, W D fQ; f g, F D ff g, s D SQ and
P D fp1; p2; p3g, p1 D .S;Q;AB;Q/, p2 D .A;Q; aa;Q/ and p3 D .B;Q; bb; f /.
G generates sentence aabb by the following derivation.

#s D #SQ ) S#ABQŒp1� ) SA#BaaQŒp2� ) SAB#aabbf Œp3�

We construct a string-reading two-sided pushdown automaton over a free group with
the reduced pushdown alphabet, M D .Q;T;Z;R; z; 1; 1;FM/, as follows:

• Q D fz; f ; hQ; 1i hQ; 2ig,
• T D fa; bg,
• Z D f0; 0; 1; 1g,
• R D f

p1: 1j1z ! 1jh.S/1hQ; 1i for the start axiom SQ,

p2: 1j1hQ; 1i ! 1h.S/jh.AB/1hQ; 1i for .S;Q;AB;Q/ 2 P,

p3: 1j1hQ; 1i ! 1j1hQ; 2i for Q 2 W,

p4: 1j1hQ; 2iaa ! 1h.A/j1hQ; 2i for .A;Q; aa;Q/ 2 P,

p5: 1j1hQ; 2ibb ! h.B/j"f for .B;Q; bb; f / 2 Pg,

• FM D ff g

Encoding h of symbols from .V � T/:

h.S/ D 00010 h.S/ D 01000

h.A/ D 00110 h.A/ D 01100

h.B/ D 01000 h.B/ D 00010
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Now, observe the acceptance progress of the string aabb by M.

two-sided pushdown state input rule

11 z aabb

1h.S/1 hQ; 1i aabb p1
1h.S/h.S/h.AB/1 hQ; 1i aabb p2
1h.A/h.B/1 hQ; 1i aabb free group reduction

1h.A/h.B/1 hQ; 2i aabb p3
1h.A/h.A/h.B/1 hQ; 2i bb p4
1h.B/1 hQ; 2i bb free group reduction

h.B/h.B/ f " p5
" f " free group reduction

Since the two-sided pushdown is empty and the current state f is the final state, aabb
is accepted by M. ut

Next, we prove L.G/ D L.M/, since L.G/ � L.M/ and L.M/ � L.G/. First, we
demonstrate Claims 10.2.3, 10.2.4 and 10.2.5 to prove L.G/ � L.M/.

Claim 10.2.3. If

A1 : : :An#B1 : : :Bmu )i A1 : : :AnB1 : : :Bi#BiC1 : : :Bmx1 : : : xip

in G, then

1h.An/ : : : h.A1/h.A1/ : : : h.An/h.B1/ : : : h.Bm/1hu; 1i! `i

1h.Bi/ : : : h.B1/h.An/ : : : h.A1/h.A1/ : : : h.An/h.B1/ : : :

: : : h.Bm/h.x1/ : : : h.xi/1hp; 1i!

in M, where A1; : : : ;An;B1; : : : ;Bm 2 .V�T/, x1; : : : ; xi 2 .V�T/�, u; p 2 .W�F/,
n � 0, ! 2 T�, 0 � i � m.

Proof. Basis. Let i D 0. Then,

A1 : : :An#B1 : : :Bmu )0 A1 : : :An#B1 : : :Bmu

in G. Clearly,

1h.An/ : : : h.A1/h.A1/ : : : h.An/h.B1/ : : : h.Bm/1hu; 1i! `0

1h.An/ : : : h.A1/h.A1/ : : : h.An/h.B1/ : : : h.Bm/1hu; 1i!

in M.

Induction Hypothesis. Assume that Claim 10.2.3 holds for every i � l, where l is a
positive integer.
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Induction Step. Consider any derivation of the form

A1 : : :An#B1 : : :Bmu )lC1

A1 : : :AnB1 : : :BlBlC1#BlC2 : : :Bmx1 : : : xlxlC1q

Express this derivation as

A1 : : :An#B1 : : :Bmu )l

A1 : : :AnB1 : : :Bl#BlC1 : : :Bmx1 : : : xlp )

A1 : : :AnB1 : : :BlBlC1#BlC2 : : :Bmx1 : : : xlxlC1q

in G, where 0 � l � m, q 2 .W � F/. By the induction hypothesis,

1h.An/ : : : h.A1/h.A1/ : : : h.An/h.B1/ : : : h.Bm/1hu; 1i! `l

1h.Bl/ : : : h.B1/h.An/ : : : h.A1/h.A1/ : : :

: : : h.An/h.B1/ : : : h.Bm/h.x1/ : : : h.xl/1hp; 1i! `

1h.BlC1/h.Bl/ : : : h.B1/h.An/ : : : h.A1/h.A1/ : : :

: : : h.An/h.B1/ : : : h.Bm/h.x1/ : : : h.xl/h.xlC1/1hq; 1i!

in M. There is only one type of rules in P able to perform the derivation

A1 : : :AnB1 : : :Bl#BlC1 : : :Bmx1 : : : xlp )

A1 : : :AnB1 : : :BlBlC1#BlC2 : : :Bmx1 : : : xlxlC1q

in G, namely rules of the form .BlC1; p; xlC1; q/ 2 P, where BlC1 2 .V � T/, p; q 2

.W � F/ and xlC1 2 .V � T/�. Observe that by step (2) in construction, there is a
rule 1j1hp; 1i ! 1h.BlC1/jh.xlC1/1hq; 1i in R, so

1h.Bl/ : : : h.B1/h.An/ : : : h.A1/h.A1/ : : :

: : : h.An/h.B1/ : : : h.Bm/h.x1/ : : : h.xl/1hp; 1i! `

1h.BlC1/h.Bl/ : : : h.B1/h.An/ : : : h.A1/h.A1/ : : :

: : : h.An/h.B1/ : : : h.Bm/h.x1/ : : : h.xl/h.xlC1/1hq; 1i!

in M and Claim 10.2.3 holds. ut

Claim 10.2.4. If

A1 : : :An#B1 : : :Bma1 : : : aku )i

A1 : : :AnB1 : : :Bi#BiC1 : : :Bma1 : : : akb1 : : : bip
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in G, then

1h.An/ : : : h.A1/h.A1/ : : : h.An/h.B1/ : : : h.Bm/1hu; 2ib1 : : : bj `i

1h.Bi/ : : : h.B1/h.An/ : : : h.A1/h.A1/ : : :

: : : h.An/h.B1/ : : : h.Bi/h.BiC1/ : : : h.Bm/1hp; 2ibiC1 : : : bj

in M, where A1; : : : ;An;B1; : : : ;Bm 2 .V � T/, a1; : : : ; ak; b1; : : : ; bj 2 T�, u; p 2

.W � F/, 0 � k, 0 � i � j � m.

Proof. Basis. Let i D 0. Then,

A1 : : :An#B1 : : :Bma1 : : : aku )0 A1 : : :An#B1 : : :Bma1 : : : aku

in G. Clearly,

1h.An/ : : : h.A1/h.A1/ : : : h.An/h.B1/ : : : h.Bm/1hu; 2ib1 : : : bj `0

1h.An/ : : : h.A1/h.A1/ : : : h.An/h.B1/ : : : h.Bm/1hu; 2ib1 : : : bj

in M.

Induction Hypothesis. Assume that Claim 10.2.4 holds for every i � l, where l is a
positive integer.

Induction Step. Consider any derivation of the form

A1 : : :An#B1 : : :Bma1 : : : aku )lC1

A1 : : :AnB1 : : :BlBlC1#BlC2 : : :Bma1 : : : akb1 : : : blblC1q

and express this derivation as

A1 : : :An#B1 : : :Bma1 : : : aku )l

A1 : : :AnB1 : : :Bl#BlC1 : : :Bma1 : : : akb1 : : : blp )

A1 : : :AnB1 : : :BlBlC1#BlC2 : : :Bma1 : : : akb1 : : : blblC1q

in G, where 0 � k, 0 � l � m, q 2 .W � F/. By the induction hypothesis,

1h.An/ : : : h.A1/h.A1/ : : : h.An/h.B1/ : : : h.Bm/1hu; 2ib1 : : : bj `l

1h.Bl/ : : : h.B1/h.An/ : : : h.A1/h.A1/ : : :

: : : h.An/h.B1/ : : : h.Bm/1hp; 2iblC1 : : : bj `

1h.BlC1/h.Bl/ : : : h.B1/h.An/ : : : h.A1/h.A1/ : : :

: : : h.An/h.B1/ : : : h.Bm/1hq; 2iblC2 : : : bj
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in M. In this case, there is only one possibility how G can make the derivation

A1 : : :AnB1 : : :Bl#BlC1 : : :Bma1 : : : akb1 : : : blp )

A1 : : :AnB1 : : :BlBlC1#BlC2 : : :Bma1 : : : akb1 : : : blblC1q

Observe that it is done by a rule of the form .BlC1; p; blC1; q/ 2 P, where BlC1 2

.V � T/, p; q 2 .W � F/, blC1 2 T�. By step (4) in construction, there is a rule
1j1hp; 2iblC1 ! 1h.BlC1/j1hq; 2i in R, so

1h.Bl/ : : : h.B1/h.An/ : : : h.A1/h.A1/ : : :

: : : h.An/h.B1/ : : : h.Bm/1hp; 2iblC1 : : : bj `

1h.BlC1/h.Bl/ : : : h.B1/h.An/ : : : h.A1/h.A1/ : : :

: : : h.An/h.B1/ : : : h.Bm/1hq; 2iblC2 : : : bj

in M and Claim 10.2.4 holds. ut

Claim 10.2.5. If

A1 : : :An�1#Anyq ) A1 : : :An�1An#yzt

in G, where A1; : : : ;An 2 .V � T/, y; z 2 T�, q 2 .W � F/, t 2 F, then

1h.An�1/ : : : h.A1/h.A1/ : : : h.An/1hq; 2iz `

h.An/ : : : h.A1/h.A1/ : : : h.An/f D "f

in M, where f 2 FM .

Proof. Grammar G performs the described derivation by a rule of the form
.An; q; z; t/ 2 P, where An 2 .V � T/, z 2 T�, q 2 .W � F/, t 2 F. By step (5)
of the construction, there is a rule 1j1hq; 2iz ! h.An/j"f in R, so the corresponding
computational step described in Claim 10.2.5 indeed occurs in M, so Claim 10.2.5
holds. ut

Claims 10.2.3, 10.2.4, and 10.2.5 prove that L.G/ � L.M/. Next, we establish
Claims 10.2.6, 10.2.7, and 10.2.8 to prove L.M/ � L.G/.

Claim 10.2.6. Automaton M accepts every w 2 L.M/ in this way

11zw1w2 : : :wr `

1h.S/1hq0; 1iw1w2 : : :wr `

1h.S/h.S/h.X11/h.X
1
2/ : : : h.X

1
n1/1hq1; 1iw1w2 : : :wr `

1h.X11/h.S/h.S/h.X
1
1/h.X

1
2/ : : : h.X

1
n1
/h.X21/h.X

2
2/ : : :
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: : : h.X2n2/1hq2; 1iw1w2 : : :wr `

1h.X12/h.X
1
1/h.S/h.S/h.X

1
1/h.X

1
2/ : : : h.X

1
n1 /h.X

2
1/h.X

2
2/ : : :

: : : h.X2n2/h.X
3
1/h.X

3
2/ : : : h.X

3
n3/1hq3; 1iw1w2 : : :wr `

:::

1h.Xk
j / : : : h.X

1
2/h.X

1
1/h.S/h.S/h.X

1
1/h.X

1
2/ : : :

: : : h.X1n1/h.X
2
1/h.X

2
2/ : : : h.X

2
n2
/h.X31/h.X

3
2/ : : :

: : : h.X3n3/ : : : h.X
m
1 /h.X

m
2 / : : : h.X

m
nm
/1hqm; 1iw1w2 : : :wr `

1h.Xk
j / : : : h.X

1
2/h.X

1
1/h.S/h.S/h.X

1
1/h.X

1
2/ : : :

: : : h.X1n1/h.X
2
1/h.X

2
2/ : : : h.X

2
n2
/h.X31/h.X

3
2/ : : :

: : : h.X3n3/ : : : h.X
m
1 /h.X

m
2 / : : : h.X

m
nm
/1hqm; 2iw1w2 : : :wr `

1h.Xk
jC1/h.X

k
j / : : : h.X

1
2/h.X

1
1/h.S/h.S/h.X

1
1/h.X

1
2/ : : :

: : : h.X1n1/h.X
2
1/h.X

2
2/ : : : h.X

2
n2 /h.X

3
1/h.X

3
2/ : : :

: : : h.X3n3/ : : : h.X
m
1 /h.X

m
2 / : : : h.X

m
nm
/1hqmC1; 2iw2 : : :wr `

1h.Xk
jC2/h.X

k
jC1/h.X

k
j / : : : h.X

1
2/h.X

1
1/h.S/h.S/h.X

1
1/h.X

1
2/ : : :

: : : h.X1n1/h.X
2
1/h.X

2
2/ : : : h.X

2
n2 /h.X

3
1/h.X

3
2/ : : :

: : : h.X3n3/ : : : h.X
m
1 /h.X

m
2 / : : : h.X

m
nm
/1hqmC2; 2iw3 : : :wr `

:::

1h.Xm
nm�1/ : : : h.X

k
jC2/h.X

k
jC1/h.X

k
j / : : :

: : : h.X12/h.X
1
1/h.S/h.S/h.X

1
1/h.X

1
2/ : : :

: : : h.X1n1/h.X
2
1/h.X

2
2/ : : : h.X

2
n2
/h.X31/h.X

3
2/ : : :

: : : h.X3n3/ : : : h.X
m
1 /h.X

m
2 / : : : h.X

m
nm
/1hqmCr�1; 2iwr `

h.Xm
nm
/h.Xm

nm�1/ : : : h.X
k
jC2/h.X

k
jC1/h.X

k
j / : : :
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: : : h.X12/h.X
1
1/h.S/h.S/h.X

1
1/h.X

1
2/ : : :

: : : h.X1n1/h.X
2
1/h.X

2
2/ : : : h.X

2
n2 /h.X

3
1/h.X

3
2/ : : :

: : : h.X3n3/ : : : h.X
m
1 /h.X

m
2 / : : : h.X

m
nm
/f D "f

where w D w1w2 : : :wr , r � 1, w1; : : : ;wr 2 T�, q0; q1; : : : ; qmCr�1 2 .W �

F/, X11 ; : : : ;X
1
n1
;X21 ; : : : ;X

2
n2
; : : : ;Xm

1 ; : : : ;X
m
nm

2 .V � T/, n1; n2; : : : ; nm � 0,
0 � k � m.

Proof. We examine steps (1) through (5) of the construction of R. Note that in every
successful computation, M uses rules created in step b before it uses rules created
in step b C 1, for b D 1; : : : ; 4.

In the first computational step, the rule 1j1z ! 1jh.S/1hq0; 1i introduced in (1)
is applied, where Sq0 is the axiom of G. This is the only way by which M can make
the transition

11zw1w2 : : :wr ` 1h.S/1hq0; 1iw1w2 : : :wr

Observe that this rule is used exactly once during one successful computation. By
this step, automaton is switched to the nonterminal-generating mode.

In the next part of computation, namely

1h.S/1hq0; 1iw1w2 : : :wr `�

1h.Xk
j / : : : h.X

1
2/h.X

1
1/h.S/h.S/h.X

1
1/h.X

1
2/ : : :

: : : h.X1n1 /h.X
2
1/h.X

2
2/ : : : h.X

2
n2
/h.X31/h.X

3
2/ : : :

: : : h.X3n3 / : : : h.X
m
1 /h.X

m
2 / : : : h.X

m
nm
/1hqm; 1iw1w2 : : :wr

M uses rules of the form 1j1hq; 1i ! 1h.A/jh.x/1hp; 1i constructed in (2), where
A 2 .V �T/, x 2 .V �T/�, p; q 2 .W �F/. This part of computation is characterized
by M’s states of the form hq; 1i, q 2 .W � F/. For the more detailed proof of this
part, see Claim 10.2.7.

By the next computational step,

1h.Xk
j / : : : h.X

1
2/h.X

1
1/h.S/h.S/h.X

1
1/h.X

1
2/ : : :

: : : h.X1n1/h.X
2
1/h.X

2
2/ : : : h.X

2
n2
/h.X31/h.X

3
2/ : : :

: : : h.X3n3/ : : : h.X
m
1 /h.X

m
2 / : : : h.X

m
nm
/1hqm; 1iw1w2 : : :wr `

1h.Xk
j / : : : h.X

1
2/h.X

1
1/h.S/h.S/h.X

1
1/h.X

1
2/ : : :

: : : h.X1n1/h.X
2
1/h.X

2
2/ : : : h.X

2
n2
/h.X31/h.X

3
2/ : : :
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: : : h.X3n3/ : : : h.X
m
1 /h.X

m
2 / : : : h.X

m
nm
/1hqm; 2iw1w2 : : :wr

M switches to the terminal-reading mode by a rule of the form 1j1hq; 1i ! 1j1hq; 2i
constructed in (2). Observe that this rule is used exactly once during one successful
computation. Since this rule changes an actual state of automaton of the form hq; 1i
to the state of the form hq; 2i, q 2 .W � F/, there is no further possibility of using
any rules constructed in parts (1) through (3).

In the next part of computation, namely

1h.Xk
j / : : : h.X

1
2/h.X

1
1/h.S/h.S/h.X

1
1/h.X

1
2/ : : :

: : : h.X1n1 /h.X
2
1/h.X

2
2/ : : : h.X

2
n2/h.X

3
1/h.X

3
2/ : : :

: : : h.X3n3 / : : : h.X
m
1 /h.X

m
2 / : : : h.X

m
nm
/1hqm; 2iw1w2 : : :wr `�

1h.Xm
nm�1/ : : : h.X

k
jC2/h.X

k
jC1/h.X

k
j / : : :

: : : h.X12/h.X
1
1/h.S/h.S/h.X

1
1/h.X

1
2/ : : :

: : : h.X1n1 /h.X
2
1/h.X

2
2/ : : : h.X

2
n2/h.X

3
1/h.X

3
2/ : : :

: : : h.X3n3 / : : : h.X
m
1 /h.X

m
2 / : : : h.X

m
nm
/1hqmCr�1; 2iwr

M uses rules constructed in 4 and reads input strings of terminals. The detailed proof
of this part of computation is described in Claim 10.2.8.

The last computational step switches M to the final state. It is done by a rule of
the form 1j1hq; 2iy ! h.A/j"f constructed in (5), where q 2 .W � T/, y 2 T�,
A 2 .V � T/ and f 2 FM . After that, if the two-sided pushdown is empty by a group
reduction and the input string is read, then M accepts the input string. Otherwise,
the input string is not accepted, since there is no rule with the left-hand side of the
form 1j1fy, where f 2 FM , y 2 T�, so Claim 10.2.6 holds. ut

Claim 10.2.7. If

1h.An/ : : : h.A1/h.A1/ : : : h.An/h.B1/ : : : h.Bm/1hu; 1i! `i

1h.Bi/ : : : h.B1/h.An/ : : : h.A1/h.A1/ : : :

: : : h.An/h.B1/ : : : h.Bm/h.x1/ : : : h.xi/1hp; 1i!

in M, then

A1 : : :An#B1 : : :Bmu )i A1 : : :AnB1 : : :Bi#BiC1 : : :Bmx1 : : : xip

in G, where A1; : : : ;An;B1; : : : ;Bm 2 .V �T/, x1; : : : ; xi 2 .V �T/�, u; p 2 .W �F/,
0 � i � m.
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Proof. Basis. Let i D 0. Then,

1h.An/ : : : h.A1/h.A1/ : : : h.An/h.B1/ : : : h.Bm/1hu; 1i! `0

1h.An/ : : : h.A1/h.A1/ : : : h.An/h.B1/ : : : h.Bm/1hu; 1i!

in M. Clearly,

A1 : : :An#B1 : : :Bmu )0 A1 : : :An#B1 : : :Bmu

in G.

Induction Hypothesis. Assume that Claim 10.2.7 holds for every i � l, where l is a
positive integer.

Induction Step. Consider any computation of the form

1h.An/ : : : h.A1/h.A1/ : : : h.An/h.B1/ : : : h.Bm/1hu; 1i! `lC1

1h.BlC1/h.Bl/ : : : h.B1/h.An/ : : : h.A1/h.A1/ : : :

: : : h.An/h.B1/ : : : h.Bm/h.x1/ : : : h.xl/h.xlC1/1hq; 1i!

and express this derivation as

1h.An/ : : : h.A1/h.A1/ : : : h.An/h.B1/ : : : h.Bm/1hu; 1i! `l

1h.Bl/ : : : h.B1/h.An/ : : : h.A1/h.A1/ : : :

: : : h.An/h.B1/ : : : h.Bm/h.x1/ : : : h.xl/1hp; 1i! `

1h.BlC1/h.Bl/ : : : h.B1/h.An/ : : : h.A1/h.A1/ : : :

: : : h.An/h.B1/ : : : h.Bm/h.x1/ : : : h.xl/h.xlC1/1hq; 1i!

in M, where q 2 .W � F/, 0 � l � m. By the induction hypothesis,

A1 : : :An#B1 : : :Bmu )l

A1 : : :AnB1 : : :Bl#BlC1 : : :Bmx1 : : : xlp )

A1 : : :AnB1 : : :BlBlC1#BlC2 : : :Bmx1 : : : xlxlC1q

in G. There is only one type of rules in R able to perform the computation

1h.Bl/ : : : h.B1/h.An/ : : : h.A1/h.A1/ : : :

: : : h.An/h.B1/ : : : h.Bm/h.x1/ : : : h.xl/1hp; 1i! `

1h.BlC1/h.Bl/ : : : h.B1/h.An/ : : : h.A1/h.A1/ : : :

: : : h.An/h.B1/ : : : h.Bm/h.x1/ : : : h.xl/h.xlC1/1hq; 1i!
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in M, namely rules of the form

1j1hp; 1i ! 1h.BlC1/jh.xlC1/1hq; 1i 2 R

Observe that by construction, there is a rule .BlC1; p; xlC1; q/ in P, so

A1 : : :An#B1 : : :Bmu )l

A1 : : :AnB1 : : :Bl#BlC1 : : :Bmx1 : : : xlp )

A1 : : :AnB1 : : :BlBlC1#BlC2 : : :Bmx1 : : : xlxlC1q

in G and Claim 10.2.7 holds. ut

Claim 10.2.8. If

1h.An/ : : : h.A1/h.A1/ : : : h.An/h.B1/ : : : h.Bm/1hu; 2ib1 : : : bj `i

1h.Bi/ : : : h.B1/h.An/ : : : h.A1/h.A1/ : : :

: : : h.An/h.B1/ : : : h.Bi/h.BiC1/ : : : h.Bm/1hp; 2ibiC1 : : : bj

in M, then

A1 : : :An#B1 : : :Bma1 : : : aku )i

A1 : : :AnB1 : : :Bi#BiC1 : : :Bma1 : : : akb1 : : : bip

in G, where A1; : : : ;An;B1; : : : ;Bm 2 V � T, a1; : : : ; ak, b1; : : : ; bj 2 T� and p; u 2

W � F, 0 � i � m.

Proof. Basis. Let i D 0. Then,

1h.An/ : : : h.A1/h.A1/ : : : h.An/h.B1/ : : : h.Bm/1hu; 2ib1 : : : bj `0

1h.An/ : : : h.A1/h.A1/ : : : h.An/h.B1/ : : : h.Bm/1hu; 2ib1 : : : bj

in M. Clearly,

A1 : : :An#B1 : : :Bma1 : : : aku )0 A1 : : :An#B1 : : :Bma1 : : : aku

in G.

Induction Hypothesis. Assume that Claim 10.2.8 holds for every i � l, where l is a
positive integer.

Induction Step. Consider any computation of the form

1h.An/ : : : h.A1/h.A1/ : : : h.An/h.B1/ : : : h.Bm/1hu; 2ib1 : : : bj `lC1

1h.BlC1/h.Bl/ : : : h.B1/h.An/ : : : h.A1/h.A1/ : : :

: : : h.An/h.B1/ : : : h.Bm/1hq; 2iblC2 : : : bj
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and express this derivation as

1h.An/ : : : h.A1/h.A1/ : : : h.An/h.B1/ : : : h.Bm/1hu; 2ib1 : : : bj `l

1h.Bl/ : : : h.B1/h.An/ : : : h.A1/h.A1/ : : :

: : : h.An/h.B1/ : : : h.Bm/1hp; 2iblC1 : : : bj `

1h.BlC1/h.Bl/ : : : h.B1/h.An/ : : : h.A1/h.A1/ : : :

: : : h.An/h.B1/ : : : h.Bm/1hq; 2iblC2 : : : bj

in M, where 0 � l � j � m, q 2 .W � F/. By the induction hypothesis,

A1 : : :An#B1 : : :Bma1 : : : aku )l

A1 : : :AnB1 : : :Bl#BlC1 : : :Bma1 : : : akb1 : : : blp )

A1 : : :AnB1 : : :BlBlC1#BlC2 : : :Bma1 : : : akb1 : : : blblC1q

in G, where 0 � l � m. In this case, there is the only way by which M can make the
computational step

1h.Bl/ : : : h.B1/h.An/ : : : h.A1/h.A1/ : : :

: : : h.An/h.B1/ : : : h.Bm/1hp; 2iblC1 : : : bj `

1h.BlC1/h.Bl/ : : : h.B1/h.An/ : : : h.A1/h.A1/ : : :

: : : h.An/h.B1/ : : : h.Bm/1hq; 2iblC2 : : : bj

Observe that it is done by a rule of the form

1j1hp; 2iblC1 ! 1h.BlC1/j1hq; 2i 2 R

By step (4) of the construction, there is a rule .BlC1; p; blC1; q/ 2 P where BlC1 2

.V � T/, p; q 2 .W � F/, blC1 2 T�, so

A1 : : :AnB1 : : :Bl#BlC1 : : :Bma1 : : : akb1 : : : blp )

A1 : : :AnB1 : : :BlBlC1#BlC2 : : :Bma1 : : : akb1 : : : blblC1q

in G and Claim 10.2.8 holds. ut

By Claims 10.2.6, 10.2.7 and 10.2.8, we proved that L.M/ � L.G/. As a result,
L.G/ D L.M/, so Theorem 10.2.1 is proved. ut
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Theorem 10.2.9. For every string-reading two-sided pushdown automaton over
a free group with the reduced pushdown alphabet, Q0, there exists a two-sided
pushdown automaton over a free group with the reduced pushdown alphabet, Q,
such that L.Q0/ D L.Q/.

Proof. The formal proof of this theorem is simple and left to the reader. ut

10.3 Conclusion

In this chapter, we proved that the power of two-sided pushdown automata with
pushdowns defined over free groups is equal to the power of Turing machines,
so these automata generate the whole family of recursively enumerable languages.
Moreover, the pushdown alphabet contains no more than four symbols. Note that
the same result can be also reached with two-sided pushdowns defined over free
monoids. This modification affects only the set of rules with their construction, and
it is left to the reader.

Another modifications of pushdown automata have been studied in theory
of automata and formal languages. We can mention simultaneously one-turn
two-pushdown automata introduced in [Med03c], regulated pushdown automata
described in [KM00], or finite-turn pushdown automata (see [GS68]). Very simple
and natural modification of pushdown automata is also presented in [Cou77] and
[ABB97], where there is the ability for pushdown reversal added. The main goal
of all these modifications is to increase the generative power of ordinary pushdown
automata. In our chapter, we significantly increased the power and moreover, the
number of transition rules was reduced by defining of the two-sided pushdowns
over free groups.



Part IV
Languages Defined in Combined Ways

This part, consisting of Chaps. 11 and 12, covers important language-defining
devices that are based on combinations of other language models as well as the
ways they work. As a result, these devices actually reflect and formalize a coop-
erating way of computation. More specifically, Chap. 11 untraditionally combines
grammars and automata in terms of the way they operate. Indeed, it studies how
to generate languages by automata although languages are traditionally generated
by grammars. Chapter 12 studies the generation of languages by several grammars
that work in a simultaneously cooperative way, thus formalizing computational
cooperation in a quite straightforward way.



Chapter 11
Language-Generating Automata and
State-Controlled Computation

Traditionally, computation controlled by finitely many states is formalized by
finite state automata, which accept their languages (see Sect. 2.4). Untraditionally,
however, the present chapter explains how to adapt these automata in a very
natural way so they act as language generators just like grammars. Consequently,
the formalization of state-controlled computation can be based on the language-
generating automata resulting from this adaptation.

We first give a conceptual insight into adapting automata so they generate
languages. Consider, for instance, the notion of a context-free grammar G (see
Sect. 2.3). Recall that G contains an alphabet of terminal symbols and an alphabet of
nonterminal symbols, one of which represents the start symbol. Starting from this
symbol, G rewrites nonterminal symbols in the sentential forms by its rules until
it generates a string of terminals. The set of all terminal strings generated in this
way is the language that G defines. To illustrate automata, the notion of a finite-
state automaton M (see Definition 2.4.1). M has a finite set of states, one of which
is defined as the start state. In addition, some states are specified as final states. M
works by making moves. During a move, it changes its current state and reads an
input symbol. If with an input string, M makes a sequence of moves according to its
rules so it starts from the start state, reads the input string, and reaches a final state,
then M accepts the input string. The set of all strings accepted in this way represents
the language that M defines.

Although it is obviously quite natural to design language-defining models
based on a combination of grammars and automata and, thereby, make their scale
much broader, only a tiny minority of these devices is designed in this combined
way (see [BF94, BF95, Kas70, MHHO05]). To support this combined design,
the present chapter introduces new rewriting systems, called #-rewriting systems,
having features of both grammars and automata. Indeed, like grammars, they are
generative devices. However, like automata, they use finitely many states without
any nonterminals. As its main result, this chapter characterizes the well-known
infinite hierarchy of language families resulting from programmed grammars of
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finite index by the #-rewriting systems (see Theorems 3.1.2i and 3.1.7 in [DP89]).
From a broader perspective, this result thus demonstrates that rewriting systems
based on a combination of grammars and automata are naturally related to some
classical topics and results concerning formal languages, on which they can shed
light in an alternative way.

11.1 Definitions and Examples

Definition 11.1.1. A #-rewriting system is a quadruple M D .Q; ˙; s;R/, where Q
is a finite set of states, ˙ is an alphabet containing # called a bounder, Q \˙ D ;,
s 2 Q is a start state and R � Q � N � f#g � Q � ˙� is a finite relation whose
members are called rules. A rule .p; n; #; q; x/ 2 R, where n 2 N, q; p 2 Q and
x 2 ˙�, is usually written as rW p n# ! q x hereafter, where r is its unique label.

A configuration of M is a pair from Q � ˙�. Let � denote the set of all
configurations of M. Let pu#v; quxv 2 � be two configurations, p; q 2 Q, u; v 2

˙�, n 2 N and ##.u/ D n � 1. Then, M makes a derivation step from pu#v to
quxv by using rW p n# ! q x, symbolically written pu#v ) quxv Œr� in M or simply
pu#v ) quxv.

In the standard manner, we extend ) to )m, for m � 0; then, based on )m, we
define )C and )� in the standard way. The language generated by M, L.M/, is
defined as

L.M/ D fw j s# )� qw; q 2 Q;w 2 .˙ � f#g/�g

Let k be a positive integer. A #-rewriting system M is of index k if for every
configuration x 2 �, s# )� qy D x implies ##.y/ � k. k#RS denote the families of
languages derived by #-rewriting systems of index k. ut

Notice that M of index k cannot derive a string containing more than k
#s; in this sense, this notion differs from the corresponding notion in terms of
programmed grammars (see Sect. 3.5), which can derive strings containing more
than k nonterminals. Remark that for a positive integer k, kP denote the families of
programmed languages of index k (see definition 3.5.2).

Example 11.1.2. M D .fs; p; q; f g; fa; b; c; #g; s;R/, where R contains

1: s 1# ! p ##
2: p 1# ! q a#b
3: q 2# ! p #c
4: p 1# ! f ab
5: f 1# ! f c ut
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Obviously, M is of index 2, and L.M/ D fanbncn j n � 1g. For instance, M
generates aaabbbccc as

s# ) p## Œ1�

) qa#b# Œ2�

) pa#b#c Œ3�

) qaa#bb#c Œ2�

) paa#bb#cc Œ3�

) faaabbb#cc Œ4�

) faaabbbccc Œ5�

11.2 Results

This section establishes an infinite hierarchy of language families resulting from the
#-rewriting systems defined in the previous section.

In what follows, for a programmed grammar G D .V;T;P; S/ and a rule .pW S !

˛; '/ 2 P, g.p/ D ' denotes the set of all rules applicable after the rule p.

Lemma 11.2.1. For every k � 1, kP � k#RS.

Proof. Construction. Let k � 1 be a positive integer. Let G D .V;T;P; S/ be a
programmed grammar of index k, where N D V � T. We construct a #-rewriting
system of index k, H D .Q;T [f#g; s;R/, where # … T, s D h�i, � is a new symbol,
and R and Q are constructed by performing the following steps:

(1) For each .pW S ! ˛; g.p// 2 P, ˛ 2 V�, add h�i1# ! hŒp�i# to R, where hŒp�i
is new state in Q.

(2) If A1A2 : : :Aj : : :Ah 2 N�, h 2 f1; 2; : : : ; kg,

.pW Aj !x0B1x1B2x2 : : : xn�1Bnxn; g.p// 2 P

j 2 f1; 2; : : : ; hg for n � 0, x0; xt 2 T�, Bt 2 N, 1 � t � n and n C h � 1 � k,
then

(2.1) if g.p/ D ;, then hA1A2 : : :Aj�1Œp�AjC1 : : :Ahi, hA1A2 : : :B1 : : :Bn : : :Ahi

are new states in Q and the rule

hA1A2 : : :Aj�1Œp�AjC1 : : :Ahij# !

hA1A2 : : :B1 : : :Bn : : :Ahix0#x1 : : : xn�1#xn

is added to R;
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(2.2) for every q 2 g.p/, .qW Dd!˛; g.q// 2 P, ˛ 2 V� add new states
hA1A2 : : :Aj�1Œp� AjC1 : : :Ahi and hD1D2 : : : Œq� : : :DnCh�1i to Q and add
the following rule to R:

hA1A2 : : :Aj�1Œp�AjC1 : : :Ahij# !

hD1D2 : : : Œq� : : :DnCh�1i x0#x1 : : : xn

where A1 : : :Aj�1B1 : : :BnAjC1 : : :Ah D D1 : : :DhCn�1, B1 : : :Bn D

Dj : : : DjCn�1 for some d 2 f1; 2; : : : ; n C h � 1g.

Basic Idea. H simulates G’s derivations. The information necessary for this
simulation is recorded inside of states. Each state in Q carries string of nonterminals
from N�, where one symbol of this string is replaced with the label of a rule in P.

Let x0A1x1 : : : xh�1Ahxh be a sentential form derived by G, where xi 2 T� for 0 �

i � h and Al 2 V�T for 1 � l � h, and let .pW Aj ! ˛; g.p// be a rule in P applicable
in the next step to Aj, 1 � j � h. Then, H’s new configuration is of the form
hA1A2 : : :Aj�1Œp�AjC1 : : :Ahix0#x1 : : : xh�1#xh, which encodes the nonterminals in
G’s sentential form and the next applicable rule label.

We establish the proof of Lemma 11.2.1 by proving the following two claims.
Remark, that we give a simplified proof; the fully rigorous proof is left to the reader.

Claim 11.2.2. If S )m x0A1x1A2x2 : : : xh�1Ahxh in G, then h�i# )r hA1A2 : : :Ahi

x0#x1 : : : xh Œq1q2 : : : qr� in H, for m � 0. If g.qr/ ¤ ;, then there exists a rule
.qrC1W Aj ! y0B1y1 : : : yh�1Bnyn; g.qrC1//, n C h � 1 � k, qrC1 2 g.qr/ and Aj D

ŒqrC1�, q1; : : : ; qr; qrC1 2 lab.R/.

We prove Claim 11.2.2 by induction on m � 0.

Proof. We omit the basis of the induction. Supposing that Claim 11.2.2 holds
for all derivations of length m or less for some m � 0, we consider S )mC1

x, where x 2 V�. Express S )mC1 x as S )m y Œp1p2 : : : pm�, where
y D x0A1x1 : : : xh�1Ahxh and p1; : : : ; pm; pmC1 2 lab.P/, y ) x ŒpmC1�. If
m D 0, then pmC1 2 fp j lhs.p/ D S; p 2 lab.P/g; otherwise, pmC1 2

g.pm/. For .pmC1W Aj ! y0B1y1 : : : yn�1Bnyn; g.pmC1//, x is of the form x D

x0A1x1 : : :Aj�1xj�1y0B1y1 : : : yn�1BnynxjAjC1 : : : xh�1Ahxh, where x0; : : : ; xh 2 T�

and y0; : : : ; yn 2 T�. By the induction hypothesis, there exists

h�i# )r

hA1A2 : : :Aj�1ŒpmC1�AjC1 : : :Ahix0#x1 : : : xh�1#xh Œq1q2 : : : qr� )

hA1A2 : : :Aj�1B1 : : :BnAjC1 : : :Ahix0# : : : #xj�1y0# : : :

: : : #ynxj# : : : #xh ŒqrC1�
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r � 1, qi 2 lab.R/, 1 � i � r C 1. If g.pmC1/ ¤ ;, then there exists a rule
pmC2 2 g.pmC1/ and a sequence D1 : : :DnCh�1 so that

A1A2 : : :Aj�1B1 : : :BnAjC1 : : :Ah D D1D2 : : :DnCh�1

where for at most one d 2 f1; 2; : : : ; n C h � 1g is Dd D ŒqrC2�, qrC2 2 g.qrC1/. ut

Claim 11.2.3. If S )z x in G, then h�i# )� hix in H, where z � 0, x 2 T�.

Proof. Consider the claim for h D 0; then, x0A1x1A2 : : :Ahxh D x0 and
A1A2 : : :Ah D ". At this point, if S )z x0, then h�i# )� hix0, so x0 D x. ut

Thus, Lemma 11.2.1 holds true. ut

Lemma 11.2.4. For every k � 1, k#RS � kP.

Proof. Construction. Let k � 1 be a positive integer. Let H D .Q;T [ f#g; s;R/ be
a #-rewriting system of index k, where˙ D T [ f#g. We construct the programmed
grammar of index k, G D .V;T;P; S/, where the sets of nonterminals N D V � T
and the rules of P are constructed as follows:

(1) S D hs; 1; 1i;
(2) N D fhp; i; hi j p 2 Q, 1 � i � h, i � h � kg [ fhq0; i; hi j q 2 Q, 1 � i � h,

i � h � kg [ fhq00; i; hi j q 2 Q, 1 � i � h, i � h � kg [ fhq00; 1; 0i j q 2 Qg;
(3) For every rule rW p i# ! qy 2 R, y D y0#y1 : : : ym�1#ym, y0; y1; y2 : : : ym 2 T�,

add the following set to P:

(i) fhp; j; hi ! hq0; j; h C m � 1i;

fr0 j if j C 1 D i then r0W hp; i; hi ! hq00; i; h C m � 1i

else r0W hp; j C 1; hi ! hq0; j C 1; h C m � 1i g

j 1 � j < i, i � h � hmaxg

[

(ii) fhp; i; hi ! hq00; i; h C m � 1i;

fr0 j if i D h, then r0W hq00; i; h C m � 1i !

y0hq0; i; h C m � 1iy1hq0; i C 1; h C m � 1iy2 : : :
: : : ym�1hq0; i C m � 1; h C m � 1iym

else r0W hp; i C 1; hi !

hq0; i C 1C m � 1; h C m � 1ig

j i � h � hmaxg

[

(iii) fhp; j; hi ! hq0; j C m � 1; h C m � 1i;

fr0 j if j D h, then r0W hq00; i; h C m � 1i !

y0hq0; i; h C m � 1iy1hq0; i C 1; h C m � 1iy2 : : :
: : : ym�1hq0; i C m � 1; h C m � 1iym

else r0W hp; j C 1; hi ! hq0; j C 1C m � 1; h C m � 1ig

j i < j � h, i � h � hmaxg

[
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(iv) fhq00; i; h C m � 1i !

y0hq0; i; h C m � 1iy1hq0; i C 1; h C m � 1iy2 : : :
: : : ym�1hq0; i C m � 1; h C m � 1iym;

fr0 j r0W hq0; 1; h C m � 1i ! hq; 1; h C m � 1ig

j i � h � hmaxg

[

(v) fhq0; j; h C m � 1i ! hq; j; h C m � 1i;

fr0 j if j < h C m � 1, then r0W hq0; j C 1; h C m � 1i !

hq; j C 1; h C m � 1i

else r0W hQp; 1; h C m � 1i !

hQq0; 1; hCm�1C Qm�1i,
where

Qp Qi# ! QqQy0#Qy1 : : : Qy Qm�1#Qy Qm 2 R, Qy0; Qy1; : : : ; Qy Qm 2 T�,
if Qi D 1, then Qq0 WD Qq00g

j 1 � j � h C m � 1, i � h � hmaxg,

where hmax D k if m D 0; otherwise hmax D k � m C 1.

Basic Idea. By several derivation steps, G simulates a single step in H. Inside of
every nonterminal of the form hp; i; hi occurring in a sentential form of G, we record

(a) p—the current state of H;
(b) i—the position of the occurrence of # in H’s current configuration;
(c) h—the total number of all #s in the current configuration.

From these three pieces of information and the set g.p/ associated with p, we find
out whether p is applicable in the next step and if so, we simulate the step by rules
introduced in the third step of the above construction as follows:

1. inside of all nonterminals in the sentential form, change h to hCm�1, where m
is the number of nonterminals occurring on the right-hand side of p, so hCm�1

is the number of nonterminals after the application of p (see (i) through (iii));
2. in the nonterminals that follow the rewritten nonterminal, change their position

so it corresponds to the position after the application of p (see (iii));
3. apply p and select a rule label q from g.p/ to be applied in the next step

(see (iv));
4. complete the simulated derivation step in H by rules introduced in (v).

We leave a rigorous version of this proof to the reader. ut

Theorem 11.2.5. For every k � 1, k#RS � kC1#RS.

Proof. kP D k#RS follows from Lemmas 11.2.1 and 11.2.4. Thus, from Theo-
rems 3.5.5, 11.2.5 holds. ut

Before closing this chapter, we suggest some open problem areas related to its
subject.

Open Problem 11.2.6. The present chapter has concentrated its attention on the
#-rewriting systems of index k, where k � 1. Consider these systems without this
index-based restriction. What is their generative power?
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Finally, we suggest three variants of the #-rewriting systems to be discussed in
the future. Let M D .Q; ˙; s;R/ be a #-rewriting system.

(1) M is deterministic if for every p 2 Q and every positive integer i, p i# is the
left-hand side of no more than one rule in M.

(2) Let ˛; ˇ 2 �. If ˛ ) ˇ in M, then M directly reduces ˇ to ˛, denoted by ˇ ` ˛.
The language reduced by M, rL.M/, is defined as

rL.M/ D fw j qw `� s#; q 2 Q;w 2 .˙ � f#g/�g

where `� is the transitive and reflexive closure of `.
(3) M works in a parallel way if it simultaneously rewrites all #s in the current

configuration during a single derivation step.



Chapter 12
Multigenerative Grammar Systems and Parallel
Computation

Today’s environment of cooperating multiprocessor computers allows us to base
modern information technologies on a large combination of simultaneously running
processes, which make use of this powerful environment as much as possible.
Consequently, parallel computation plays a crucially important role in computer
science at present as already pointed out in the beginning of Chap. 4.

Recall that parallel computation is conceptually accomplished by breaking a
large computational task into many independent subtasks, which are simultaneously
executed. Once they are completed, their results are combined together. Of course, to
obtain solid knowledge about this way of computation, we need formal models that
adequately formalize computational parallelism, including the final combination
of the achieved results. The present section describes multigenerative grammar
systems, which can serve for this purpose very well. Indeed, they consist of several
simultaneously working components represented by context-free grammars, so they
reflect and formalize concurrent computation in a natural and proper way.

The chapter consists of two sections. The first section introduces the basic ver-
sions of multigenerative grammar systems. During one generation step, each of their
grammatical components rewrites a nonterminal in its sentential form. After this
simultaneous generation is completed, all the generated strings are composed into
a single string by some common string operation, such as union and concatenation.
More precisely, for a positive integer n, an n-generative grammar system works
with n context-free grammatical components, each of which makes a derivation, and
these n derivations are simultaneously controlled by a finite set of n-tuples consisting
of rules. In this way, the grammar system generates n terminal strings, which are
combined together by operation union, concatenation or the selection of the first
generated string. We show that these systems characterize the family of matrix
languages. In addition, we demonstrate that multigenerative grammar systems with
any number of grammatical components can be transformed to equivalent two-
component versions of these systems. Section 12.2 discusses leftmost versions of
multigenerative grammar systems in which each generation step is performed in the

© Springer International Publishing AG 2017
A. Meduna, O. Soukup, Modern Language Models and Computation,
DOI 10.1007/978-3-319-63100-4_12

433



434 12 Multigenerative Grammar Systems and Parallel Computation

leftmost manner. That is, all the grammatical components of these versions rewrite
the leftmost nonterminal occurrence in their sentential forms; otherwise, they work
as the basic versions. We prove that leftmost multigenerative grammar systems
are more powerful than their basic versions. Indeed, they generate the family of
recursively enumerable languages, which properly contains the family of matrix
languages (see Theorems 3.3.6 and 3.4.5). We also consider regulation by n-tuples
of nonterminals, rather than rules, and prove that leftmost multigenerative grammar
systems regulated by rules or nonterminals have the same generative power. In
addition, like for the basic versions, we demonstrate that leftmost multigenerative
grammar systems with any number of grammatical components can be transformed
to equivalent two-component versions of these systems.

12.1 Multigenerative Grammar Systems

In this section, we define multigenerative grammar systems and demonstrate that
they are as powerful as matrix grammars. We also show that any multigenerative
grammar system can be transformed to an equivalent two-component multigenera-
tive grammar system.

Definition 12.1.1. An n-generative rule-synchronized grammar system (an n-MGR
for short) is an n C 1 tuple

� D
�
G1;G2; : : : ;Gn;Q

�

where

• Gi D .Vi, Ti, Pi, Si/ is a context-free grammar, for each i D 1; : : : ; n;
• Q is a finite set of n-tuples of the form .p1, p2, : : : , pn/, where pi 2 Pi, for all

i D 1; : : : ; n.

A sentential n-form is an n-tuple of the form � D .x1, x2, : : : , xn/, where xi 2 V�
i ,

for all i D 1; : : : ; n. Let � D .u1A1v1, u2A2v2, : : : , unAnvn/ and N� D .u1x1v1,
u2x2v2, : : : , unxnvn/ be two sentential n-forms, where Ai 2 Ni and ui; vi; xi 2 V�

i ,
for all i D 1; : : : ; n. Let .piW Ai ! xi/ 2 Pi, for all i D 1; : : : ; n and .p1, p2, : : : ,
pn/ 2 Q. Then, � directly derives N� in � , denoted by

� )� N�

In the standard way, we generalize )� to )k
� , for all k � 0, )�

� , and )C
� .

The n-language of � , denoted by n-L.� /, is defined as

n-L.� / D
˚
.w1;w2; : : : ;wn/ j .S1; S2; : : : ; Sn/ )�

� .w1;w2; : : : ;wn/;

wi 2 T�
i , for all i D 1; : : : ; n

�
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The language generated by � in the union mode, Lunion.� /, is defined as

Lunion.� / D

n[

iD1

˚
wi j .w1;w2; : : : ;wn/ 2 n-L.� /

�

The language generated by � in the concatenation mode, Lconc.� /, is defined as

Lconc.� / D
˚
w1w2 : : :wn j .w1;w2; : : : ;wn/ 2 n-L.� /

�

The language generated by � in the first mode, Lfirst.� /, is defined as

Lfirst.� / D
˚
w1 j .w1;w2; : : : ;wn/ 2 n-L.� /

�
ut

We illustrate the above definition by an example.

Example 12.1.2. Consider the 2-MGR � D .G1, G2, Q/, where

• G1 D .fS1, A1, a, b, cg, fa, b, cg, f1W S1 ! aS1, 2W S1 ! aA1, 3W A1 ! bA1c,
4W A1 ! bcg, S1/,

• G2 D .fS2, A2, dg, fdg, f1W S2 ! S2A2, 2W S2 ! A2, 3W A2 ! dg, S2/,
• Q D f.1; 1/, .2; 2/, .3; 3/, .4; 3/g.

Observe that

• 2-L.� / D f.anbncn, dn/ j n � 1g,
• Lunion.� / D fanbncn j n � 1g [ fdn j n � 1g,
• Lconc.� / D fanbncndn j n � 1g, and
• Lfirst.� / D fanbncn j n � 1g. ut

Next, we prove that multigenerative grammar systems under all of the defined
modes are equivalent to matrix grammars. Throughout the rest of this section, as
indicated in Sect. 2.3.1, for brevity, we use rules and rule labels interchangeably.

Algorithm 12.1.3. Conversion of an n-MGR in the union mode to an equivalent
matrix grammar.

Input: An n-MGR, � D .G1, G2, : : : , Gn, Q/.
Output: A matrix grammar, H D .G, M/, satisfying Lunion.� / D L.H/.
Method: Let Gi D .Vi, Ti, Pi, Si/, for all i D 1; : : : ; n, and without any loss of

generality, we assume that N1 through Nn are pairwise disjoint. Let us choose
arbitrary S satisfying S …

Sn
jD1 Nj. Then, construct

G D
�
V;T;P; S

�

where

• N D fSg [ .
Sn

iD1 Ni/ [ .
Sn

iD1f
NA j A 2 Nig/;

• T D
Sn

iD1 Ti;
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• P D f.s1W S ! S1h.S2/ : : : h.Sn//,
.s2W S ! h.S1/S2 : : : h.Sn//,

:::

.snW S ! h.S1/h.S2/ : : : Sn/g

[ .
Sn

iD1 Pi/

[ .
Sn

iD1fh.A/ ! h.x/ j A ! x 2 Pig/,
where h is a homomorphism from ..

Sn
iD1 Vi//

� to .
Sn

iD1f
NA j A 2 Nig/

�,
defined as h.a/ D ", for all a 2

Sn
iD1 Ti, and h.A/ D NA, for all A 2

Sn
iD1 Ni.

• M D fs1; s2; : : : ; sng

[ fp1 Np2 : : : Npn j .p1; p2; : : : ; pn/ 2 Qg

[ f Np1p2 : : : Npn j .p1; p2; : : : ; pn/ 2 Qg
:::

[ f Np1 Np2 : : : pn j .p1; p2; : : : ; pn/ 2 Qg. ut

Theorem 12.1.4. Let � D .G1, G2, : : : , Gn, Q/ be an n-MGR. With � as its input,
Algorithm 12.1.3 halts and correctly constructs a matrix grammar, H D .G, M/,
such that Lunion.� / D L.H/.

Proof. Let .pW A ! x/ be a rule. Then, for simplicity and brevity, Np denotes the rule
h.A/ ! h.x/. To prove this theorem, we first establish Claims 12.1.5 and 12.1.6.

Claim 12.1.5. Let .S1, S2, : : : , Sn/ )m
� .y1, y2, : : : , yn/, where m � 0; yi 2 V�

i ,
for all i D 1; : : : ; n. Then, S )mC1

H h.y1/h.y2/ : : : h.yj�1/yjh.yjC1/ : : : h.yn/, for any
j D 1; : : : ; n.

Proof. This claim is proved by induction on m � 0.

Basis. Let m D 0. Then, .S1, S2, : : : , Sn/ )0
� .S1, S2, : : : , Sn/. Notice that

S )H h.S1/h.S2/ : : : h.Sj�1/Sjh.SjC1/ : : : h.Sn/

for any j D 1; : : : ; n, because

�
sjW S ! h.S1/h.S2/ : : : h.Sj�1/Sjh.SjC1/ : : : h.Sn/

�
2 M

Induction Hypothesis. Assume that the claim holds for all m-step derivations, where
m D 0; : : : ; k, for some k � 0.

Induction Step. Consider any derivation of the form

.S1; S2; : : : ; Sn/ )kC1
� .y1; y2; : : : ; yn/

Then, there exists a sentential n-form .u1A1v1, u2A2v2, : : : , unAnvn/, where ui; vi 2

V�
i ;Ai 2 Ni such that

.S1; S2; : : : ; Sn/ )k
� .u1A1v1; u2A2v2; : : : ; unAnvn/

)� .u1x1v1; u2x2v2; : : : ; unxnvn/
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where uixivi D yi, for all i D 1; : : : ; n. First, observe that

.S1; S2; : : : ; Sn/ )k
� .u1A1v1; u2A2v2; : : : ; unAnvn/

implies that

S )kC1
H h.u1A1v1/h.u2A2v2/ : : : h.uj�1Aj�1vj�1/

ujAjvjh.ujC1AjC1vjC1/ : : : h.unAnvn/

for any j D 1; : : : ; n by the induction hypothesis. Furthermore, let

.u1A1v1; u2A2v2; : : : ; unAnvn/ )�

.u1x1v1; u2x2v2; : : : ; unxnvn/

Then, ..p1W A1 ! x1/; .p2W A2 ! x2/; : : : ; .pnW An ! xn// 2 Q. Algorithm 12.1.3
implies that Np1 Np2 : : : Npj�1pj NpjC1 : : : Npn 2 M, for any j D 1; : : : ; n. Hence,

h.u1A1v1/h.u2A2v2/ : : : h.uj�1Aj�1vj�1/ujAjvjh.ujC1AjC1vjC1/ : : : h.unAnvn/ )H

h.u1x1v1/h.u2x2v2/ : : : h.uj�1xj�1vj�1/ujxjvjh.ujC1xjC1vjC1/ : : : h.unxnvn/

by matrix Np1 Np2 : : : Npj�1pj NpjC1 : : : Npn, for any j D 1; : : : ; n. As a result, we obtain

S )kC2
H h.u1x1v1/h.u2x2v2/ : : : h.uj�1xj�1vj�1/

ujxjvjh.ujC1xjC1vjC1/ : : : h.unxnvn/

for any j D 1; : : : ; n. ut

Claim 12.1.6. Let S )m
H y, where m � 1; y 2 V�. Then, there exist j 2 f1; : : : ; ng

and yi 2 V�
i , for i D 1; : : : ; n, such that .S1; : : : ; Sn/ )m�1

� .y1; : : : ; yn/ and y D

h.y1/ : : : h.yj�1/yjh.yjC1/ : : : h.yn/.

Proof. This claim is proved by induction on m � 1.

Basis. Let m D 1. Then, there exists exactly one of the following one-step
derivations in H:

S )H S1h.S2/ : : : h.Sn/ by matrix s1, or

S )H h.S1/S2 : : : h.Sn/ by matrix s2, or

: : : , or

S )H h.S1/h.S2/ : : : Sn by matrix sn

Notice that trivially .S1, S2, : : : , Sn/ )0
� .S1, S2, : : : , Sn/.

Induction Hypothesis. Assume that the claim holds for all m-step derivations, where
m D 1; : : : ; k, for some k � 1.
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Induction Step. Consider any derivation of the form

S )kC1
H y

Then, there exists a sentential form w such that

S )k
H w )H y

where w; y 2 .N [ T/�. As w )H y, this derivation step can use only a matrix of
the form p1p2 : : : pj�1pjpjC1 : : : pn 2 Q, where pj is a rule from Pj and Npi 2 h.Pi/,
for i D 1; : : : ; j � 1; j C 1; : : : ; n. Hence, w )H y can be written as

h.wi/ : : : h.wj�1/wjh.wjC1/ : : : h.wn/ )H z1 : : : zn

where wj )H zj by the rule pj and h.wi/ )H zi by Npi, for i D 1; : : : ; j � 1; j C

1; : : : ; n. Each rule Npi rewrites a barred nonterminal NAi 2 h.Ni/. Of course, then each
rule pi can be used to rewrite the respective occurrence of a non-barred nonterminal
Ai in wi in such a way that wi )H yi and h.yi/ D zi, for all i D 1; : : : ; j � 1; j C

1; : : : ; n. By setting yj D zj, we obtain

.w1; : : : ;wn/ )� .y1; : : : ; yn/

and y D h.y1/ : : : h.yj�1/yjh.yjC1/ : : : h.yn/. As a result, we obtain

.S1; S2; : : : ; Sj�1; Sj; SjC1; : : : ; Sn/ )k
�

.u1x1v1; u2x2v2; : : : ; uj�1xj�1vj�1; ujxjvj; ujC1xjC1vjC1; : : : ; unxnvn/

so y D u1x1v1u2x2v2 : : : uj�1xj�1vj�1ujxjvjujC1xjC1vjC1 : : : unxnvn. ut

Consider Claim 12.1.5 for yi 2 T�
i , for all i D 1; : : : ; n. Notice that h.a/ D ", for

all a 2 Ti. We obtain an implication of the form

if .S1; S2; : : : ; Sn/ )�
� .y1; y2; : : : ; yn/

then S )�
H yj, for any j D 1; : : : ; n

Hence, Lunion.� / � L.H/. Consider Claim 12.1.5 for y 2 T�. Notice that h.a/ D ",
for all a 2 Ti. We obtain an implication of the form

if S )�
H y

then .S1; S2; : : : ; Sn/ )�
� .y1; y2; : : : ; yn/

and there exist an index j D 1; : : : ; n such that y D yj. Hence, L.H/ � Lunion.� /. ut
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Algorithm 12.1.7. Conversion of an n-MGR in the concatenation mode to an
equivalent matrix grammar.

Input: An n-MGR, � D .G1, G2, : : : , Gn, Q/.
Output: A matrix grammar, H D .G, M/, satisfying Lconc.� / D L.H/.
Method: Let Gi D .Vi, Ti, Pi, Si/, for all i D 1; : : : ; n, and without any loss of

generality, we assume that N1 through Nn are pairwise disjoint. Let us choose
arbitrary S satisfying S …

Sn
jD1 Nj. Construct

G D
�
V;T;P; S

�

where

• N D fSg [ .
Sn

iD1 Ni/;
• T D

Sn
iD1 Ti;

• P D f.sW S ! S1S2 : : : Sn/g [ .
Sn

iD1 Pi/.

Finally, set M D fsg [ fp1p2 : : : pn j .p1, p2, : : : , pn/ 2 Qg. ut

Theorem 12.1.8. Let � D .G1, G2, : : : , Gn, Q/ be an n-MGR. On input � ,
Algorithm 12.1.7 halts and correctly constructs a matrix grammar, H D .G, M/,
such that Lconc.� / D L.H/.

Proof. To prove this theorem, we first establish Claims 12.1.9 and 12.1.10.

Claim 12.1.9. Let .S1, S2, : : : , Sn/ )m
� .y1, y2, : : : , yn/, where m � 0; yi 2 V�

i , for
all i D 1; : : : ; n. Then, S )mC1

H y1y2 : : : yn.

Proof. This claim is proved by induction on m � 0.

Basis. Let m D 0. Then, .S1, S2, : : : , Sn/ )0
� .S1, S2, : : : , Sn/. Notice that S )H

S1S2 : : : Sn, because .sW S ! S1S2 : : : Sn/ 2 M.

Induction Hypothesis. Assume that the claim holds for all m-step derivations, where
m D 0; : : : ; k, for some k � 0.

Induction Step. Consider any derivation of the form

.S1; S2; : : : ; Sn/ )kC1
� .y1; y2; : : : ; yn/

Then, there exists a sentential n-form .u1A1v1, u2A2v2, : : : , unAnvn/, where ui; vi 2

V�
i ;Ai 2 Ni such that

.S1; S2; : : : ; Sn/ )k
� .u1A1v1; u2A2v2; : : : ; unAnvn/

)� .u1x1v1; u2x2v2; : : : ; unxnvn/

where uixivi D yi, for all i D 1; : : : ; n. First, observe that

.S1; S2; : : : ; Sn/ )k
� .u1A1v1; u2A2v2; : : : ; unAnvn/
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implies that

S )kC1
H u1A1v1u2A2v2 : : : unAnvn

by the induction hypothesis. Furthermore, let

.u1A1v1; u2A2v2; : : : ; unAnvn/ )�

.u1x1v1; u2x2v2; : : : ; unxnvn/

Then, it holds that ..p1W A1 ! x1/; .p2W A2 ! x2/; : : : ; .pnW An ! xn// 2 Q.
Algorithm 12.1.7 implies that p1p2 : : : pn 2 M. Hence,

u1A1v1u2A2v2 : : : unAnvn )H

u1x1v1u2x2v2 : : : unxnvn

by matrix p1p2 : : : pn. As a result, we obtain

S )kC2
H u1x1v1u2x2v2 : : : unxnvn ut

Claim 12.1.10. Let S )m
H y, where m � 1; y 2 V�. Then, .S1, S2, : : : , Sn/ )m�1

�

.y1, y2, : : : , yn/ such that y D y1y2 : : : yn, where yi 2 V�
i , for all i D 1; : : : ; n.

Proof. This claim is proved by induction on m � 1.

Basis. Let m D 1. Then, there exists exactly one one-step derivation in H: S )H

S1S2 : : : ; Sn by matrix s. Notice that .S1, S2, : : : , Sn/ )0
� .S1, S2, : : : , Sn/ trivially.

Induction Hypothesis. Assume that the claim holds for all m-step derivations, where
m D 1; : : : ; k, for some k � 1.

Induction Step. Consider any derivation of the form

S )kC1
H y

Then, there exists a sentential form w such that

S )k
H w )H y

where w; y 2 V�. First, observe that S )k
H w implies that

.S1; S2; : : : ; Sn/ )k�1
� .w1;w2; : : : ;wn/

so that w D w1w2 : : :wn, where wi 2 V�
i , for all i D 1; : : : ; n, by the induction

hypothesis. Furthermore, let w )H y by matrix p1p2 : : : pn 2 M, where w D

w1w2 : : :wn. Let pi be a rule of the form Ai ! xi. The rule pi can be applied
only inside substring wi, for all i D 1; : : : ; n. Assume that wi D uiAivi, where
ui; vi 2 V�;Ai 2 Ni, for all i D 1; : : : ; n. There exist a derivation step
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u1A1v1u2A2v2 : : : unAnvn )H

u1x1v1u2x2v2 : : : unxnvn

by matrix p1p2 : : : pn 2 M. Algorithm 12.1.7 implies that

�
.p1W A1 ! x1/; .p2W A2 ! x2/; : : : ; .pnW An ! xn/

�
2 Q

because p1p2 : : : pn 2 M. Hence,

.u1A1v1; u2A2v2; : : : ; unAnvn )�

.u1x1v1; u2x2v2; : : : ; unxnvn/

As a result, we obtain

.S1; S2; : : : ; Sn/ )k
� .u1x1v1; u2x2v2; : : : ; unxnvn/

so that y D u1x1v1u2x2v2 : : : unxnvn. ut

Consider Claim 12.1.9 for yi 2 T�
i , for all i D 1; : : : ; n. We obtain an implication

of this form

if .S1; S2; : : : ; Sn/ )�
� .y1; y2; : : : ; yn/

then S )�
H y1y2 : : : yn

Hence, Lconc.� / � L.H/. Consider Claim 12.1.10 for y 2 T�. We obtain an
implication of the form

if S )�
H y then .S1; S2; : : : ; Sn/ )�

� .y1; y2; : : : ; yn/, such that y D y1y2 : : : yn

Hence, L.H/ � Lconc.� /. ut

Algorithm 12.1.11. Conversion of an n-MGR in the first mode to an equivalent
matrix grammar.

Input: An n-MGR, � D .G1, G2, : : : , Gn, Q/.
Output: A matrix grammar, H D .G, M/, satisfying Lfirst.� / D L.H/.
Method: Let Gi D .Vi, Ti, Pi, Si/, for all i D 1; : : : ; n, and without any loss of

generality, we assume that N1 through Nn are pairwise disjoint. Let us choose
arbitrary S satisfying S …

Sn
jD1 Nj. Construct

G D
�
V;T;P; S

�

where

• N D fSg [ N1 [ .
Sn

iD2f
NAW A 2 Nig/;

• T D T1;
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• P D f.sW S ! S1h.S2/ : : : h.Sn//g [ P1
[ .
Sn

iD2fh.A/ ! h.x/ j A ! x 2 Pig/;

where h is a homomorphism from ..
Sn

iD2 Vi//
� to .

Sn
iD2f

NA j A 2 Nig/
�

defined as h.a/ D ", for all a 2
Sn

iD2 Ti and h.A/ D NA, for all A 2
Sn

iD2 Ni.

Finally, set M D fsg [ fp1 Np2 : : : Npn j .p1, p2, : : : , pn/ 2 Qg. ut

Theorem 12.1.12. Let � D .G1, G2, : : : , Gn, Q/ be an n-MGR. With � as its input,
Algorithm 12.1.11 halts and correctly constructs a matrix grammar, H D .G, M/,
such that Lfirst.� / D L.H/.

Proof. Let .pW A ! x/ be a rule. Then, for simplicity and brevity, Np denotes the rule
h.A/ ! h.x/. To prove this theorem, we first establish Claims 12.1.13 and 12.1.14.

Claim 12.1.13. Let .S1, S2, : : : , Sn/ )m
� .y1, y2, : : : , yn/, where m � 0, yi 2 V�

i ,
for all i D 1; : : : ; n. Then, S )mC1

H y1h.y2/ : : : h.yn/.

Proof. This claim is proved by induction on m � 0.

Basis. Let m D 0. Then, .S1, S2, : : : , Sn/ )0
� .S1, S2, : : : , Sn/. Notice that S )H

S1h.S2/ : : : h.Sn/, because .sW S ! S1h.S2/ : : : h.Sn// 2 M.

Induction Hypothesis. Assume that the claim holds for all m-step derivations, where
m D 0; : : : ; k, for some k � 0.

Induction Step. Consider any derivation of the form

.S1; S2; : : : ; Sn/ )kC1
� .y1; y2; : : : ; yn/

Then, there exists a sentential n-form .u1A1v1, u2A2v2, : : : , unAnvn/, where ui; vi 2

V�
i ;Ai 2 Ni such that

.S1; S2; : : : ; Sn/ )k
� .u1A1v1; u2A2v2; : : : ; unAnvn/

)� .u1x1v1; u2x2v2; : : : ; unxnvn/

where uixivi D yi, for all i D 1; : : : ; n. First, observe that

.S1; S2; : : : ; Sn/ )k
� .u1A1v1; u2A2v2; : : : ; unAnvn/

implies that

S )kC1
H u1A1v1h.u2A2v2/ : : : h.unAnvn/

by the induction hypothesis. Furthermore, let

.u1A1v1; u2A2v2; : : : ; unAnvn/ )�

.u1x1v1; u2x2v2; : : : ; unxnvn/

Then, it holds ..p1W A1 ! x1/; .p2W A2 ! x2/, : : : , (pnW An ! xn// 2 Q.
Algorithm 12.1.11 implies that p1 Np2 : : : : : : Npn 2 M. Hence,
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u1A1v1h.u2A2v2/ : : : h.unAnvn/ )H

u1x1v1h.u2x2v2/ : : : h.unxnvn/

by matrix p1 Np2 : : : Npn. As a result, we obtain

S )kC2
H u1x1v1h.u2x2v2/ : : : h.unxnvn/ ut

Claim 12.1.14. Let S )m
H y, where m � 1; y 2 V�. Then, .S1, S2, : : : , Sn/ )m�1

�

.y1, y2, : : : , yn/, where yi 2 V�
i , for all i D 1; : : : ; n so that y D y1h.y2/ : : : h.yn/.

Proof. This claim is proved by induction on m � 1.

Basis. Let m D 1. Then, there exists exactly one one-step derivation in H: S )H

S1h.S2/ : : : h.Sn/ by matrix s. Notice that .S1, S2, : : : , Sn/ )0
� .S1, S2, : : : , Sn/

trivially.

Induction Hypothesis. Assume that the claim holds for all m-step derivations, where
m D 1; : : : ; k, for some k � 1.

Induction Step. Consider any derivation of the form

S )kC1
H y

Then, there is w such that

S )k
H w )H y

where w; y 2 V�. First, observe that S )k
H w implies that

.S1; S2; : : : ; Sn/ )k�1
� .w1;w2; : : : ;wn/

so that w D w1h.w2/ : : : h.wn/, where wi 2 V�
i , for all i D 1; : : : ; n, by the induction

hypothesis. Furthermore, let w )H y, where w D w1h.w2/ : : : h.wn/. Let p1 be
a rule of the form A1 ! x1. Let Npi be a rule of the form h.Ai/ ! h.x/, for all
i D 2; : : : ; n. The rule p1 can be applied only inside substring w1, the rule Npi can
be applied only inside substring wi, for all i D 2; : : : ; n: Assume that wi D uiAivi,
where ui; vi 2 V�

i ;Ai 2 Ni, for all i D 1; : : : ; n. There exists a derivation step

u1A1v1h.u2A2v2/ : : : h.unAnvn/ )H

u1x1v1h.u2x2v2/ : : : h.unxnvn/

by matrix p1 Np2 : : : Npn 2 M. Algorithm 12.1.11 implies that

�
.p1W A1 ! x1/; .p2W A2 ! x2/; : : : ; .pnW An ! xn/

�
2 Q
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because p1 Np2 : : : Npn 2 M. Hence,

.u1A1v1; u2A2v2; : : : ; unAnvn/ )�

.u1x1v1; u2x2v2; : : : ; unxnvn/

As a result, we obtain

.S1; S2; : : : ; Sn/ )k
� .u1x1v1; u2x2v2; : : : ; unxnvn/

so that y D u1x1v1h.u2x2v2/ : : : h.unxnvn/. ut

Consider Claim 12.1.13 for yi 2 T�
i , for all i D 1; : : : ; n. Notice that h.a/ D ",

for all a 2 Ti. We obtain an implication of the form

if .S1; S2; : : : ; Sn/ )�
� .y1; y2; : : : ; yn/

then S )�
H y1

Hence, Lfirst.� / � L.H/. Consider Claim 12.1.14 for y 2 T�. Notice that h.a/ D ",
for all a 2 Ti. We obtain an implication of the form

if S )�
H y

then .S1; S2; : : : ; Sn/ )�
� .y1; y2; : : : ; yn/, such that y D y1

Hence, L.H/ � Lfirst.� /. Therefore, L.H/ D Lfirst.� /. ut

Algorithm 12.1.15. Conversion of a matrix grammar to an equivalent 2-MGR.

Input: A matrix grammar, H D .G, M/, and a string, Nw 2 NT�, where NT is any
alphabet.

Output: A 2-MGR, � D .G1, G2, Q/, satisfying fw1 j .w1; Nw/ 2 2-L.� /g D

L.H/.
Method: Let G D .V , T, P, S/. Then, set G1 D G and construct

G2 D
�
V2;T2;P2; S2

�

where

• N2 D fhp1p2 : : : pk; ji j p1; : : : ; pk 2 P; p1p2 : : : pk 2 M,
1 � j � k � 1g [ fS2g;

• T2 D NT;
• P2 D fS2 ! hp1p2 : : : pk; 1i j p1; : : : ; pk 2 P; p1p2 : : : pk 2 M; k � 2g

[ fhp1p2 : : : pk; ji ! hp1p2 : : : pk; j C 1i j p1p2 : : : pk 2 M; k � 2,
1 � j � k � 2g

[ fhp1p2 : : : pk; k � 1i ! S2 j p1; : : : ; pk 2 P; p1p2 : : : pk 2 M; k � 2g

[ fS2 ! S2 j p1 2 M; jp1j D 1g
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[ fhp1p2 : : : pk; k � 1i ! Nw j p1; : : : ; pk 2 P; p1p2 : : : pk 2 M; k � 2g

[ fS2 ! Nw j p1 2 M; jp1j D 1g;
• Q D f.p1; S2 ! hp1p2 : : : pk; 1i/ j p1; : : : ; pk 2 P; p1p2 : : : pk 2 M,

k � 2g

[ f.pjC1; hp1p2 : : : pk; ji ! hp1p2 : : : pk; j C 1i/ j p1p2 : : : pk 2 M,
k � 2; 1 � j � k � 2g

[ f.pk; hp1p2 : : : pk; k � 1i ! S2/ j p1; : : : ; pk 2 P; p1p2 : : : pk 2 M,
k � 2g

[ f.p1; S2 ! S2/ j p1 2 M; jp1j D 1g

[ f.pk; hp1p2 : : : pk; k � 1i ! Nw/ j p1; : : : ; pk 2 P; p1p2 : : : pk 2 M,
k � 2g

[ f.p1; S2 ! Nw/ j p1 2 M; jp1j D 1g. ut

Theorem 12.1.16. Let H be a matrix grammar and Nw be a string. With H and Nw as
its input, Algorithm 12.1.15 halts and correctly constructs a 2-MGR, � D .G1, G2,
Q/, such that fw1 j .w1; Nw/ 2 2-L.� /g D L.H/.

Proof. To prove this theorem, we first establish Claims 12.1.17 through 12.1.20.

Claim 12.1.17. Let x )H y, where x; y 2 V�. Then, .x; S2/ )�
� .y; S2/ and

.x; S2/ )�
� .y; Nw/.

Proof. In this proof, we distinguish two cases—I. and II. In I., we consider any
derivation step of the form x )H y by a matrix consisting of a single rule. In II., we
consider x )H y by a matrix consisting of several rules.

I. Consider any derivation step of the form x )H y by a matrix which contains
only one rule .p1W A1 ! x1/. It implies that uA1v )G ux1v Œp1�, where uA1v D

x; ux1v D y. Algorithm 12.1.15 implies that .A1 ! x1; S2 ! S2/ 2 Q and
.A1 ! x1; S2 ! Nw/ 2 Q. Hence, .uA1v; S2/ )� .ux1v; S2/ and .uA1v; S2/ )�

.ux1v; Nw/.
II. Let x )H y by a matrix of the form p1p2 : : : pk, where pi; : : : ; pk 2 P; k � 2. It

implies that

x )H y1 Œp1�
)H y2 Œp2�
:::

)H yk�1 Œpk�1�

)H yk Œpk�

where yk D y. Algorithm 12.1.15 implies that .p1; S2 ! hp1p2 : : : pk; 1i/ 2 Q,
.pjC1, hp1p2 : : : pk; ji ! hp1p2 : : : pk; j C 1i/ 2 Q, where j D 1; : : : ; k � 2,
.pk; hp1p2 : : : pk, k � 1i ! S2/ 2 Q, .pk; hp1p2 : : : pk; k � 1i ! Nw/ 2 Q. Hence,
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.x; S2/ )� .y1; hp1p2 : : : pk; 1i/

)� .y2; hp1p2 : : : pk; 2i/
:::

)� .yk�1; hp1p2 : : : pk; k � 1i/

)� .yk; S2/

and

.x; S2/ )� .y1; hp1p2 : : : pk; 1i/

)� .y2; hp1p2 : : : pk; 2i/
:::

)� .yk�1; hp1p2 : : : pk; k � 1i/

)� .yk; Nw/

where yk D y. ut

Claim 12.1.18. Let x )m
H y, where m � 1; y 2 V�. Then, .x; S2/ )�

� .y; Nw/.

Proof. This claim is proved by induction on m � 1.

Basis. Let m D 1 and let x )H y. Claim 12.1.17 implies that .x; S2/ )�
� .y; Nw/.

Induction Hypothesis. Assume that the claim holds for all m-step derivations, where
m D 1; : : : ; k, for some k � 1.

Induction Step. Consider any derivation of the form

S )kC1
H y

Then, there exists w such that

S )H w )k
H y

where w; y 2 V�. First, observe that w )k
H y implies that

.w; S2/ )�
� .y; Nw/

by the induction hypothesis. Furthermore, let x )H w. Claim 12.1.17 implies that

.x; S2/ )�
� .w; S2/

As a result, we obtain

.x; S2/ )�
� .y; Nw/ ut
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Claim 12.1.19. Let

.y0; S2/ )� .y1; z1/ or .y0; S2/ )� .y1; z1/
)� .y2; z2/ )� .y2; z2/
:::

:::

)� .yk�1; zk�1/ )� .yk�1; zk�1/

)� .yk; S2/ )� .yk; Nw/

where zi ¤ S2, for all i D 1; : : : ; k � 1. Then, there exists a direct derivation step
y0 )H yk.

Proof. In this proof, we distinguish two cases—I. and II. In I., we consider any
derivation step of the form x )H y by a matrix consisting of a single rule. In II., we
consider x )H y by a matrix consisting of several rules.

I. Consider any derivation step of the form

.uA1v; S2/ )� .ux1v; S2/

or

.uA1v; S2/ )� .ux1v; Nw/

where uA1v D y0; ux1v D y1. Then, .A1 ! x1; S2 ! S2/ 2 Q or .A1 !

x1; S2 ! Nw/ 2 Q. Algorithm 12.1.15 implies that there exists a matrix of the
form .p1W A1 ! x1/ 2 M. Hence,

uA1v )H ux1v

II. Let

.y0; S2/ )� .y1; z1/ or .y0; S2/ )� .y1; z1/
)� .y2; z2/ )� .y2; z2/
:::

:::

)� .yk�1; zk�1/ )� .yk�1; zk�1/

)� .yk; S2/ )� .yk; Nw/

where zi ¤ S2, for all i D 1; : : : ; k � 1 and k � 2. Algorithm 12.1.15 implies
that there exists a matrix p1p2 : : : pk 2 M and that zi D hp1p2 : : : pk; ii, for all
i D 1; : : : k � 1. Hence,

y0 )H yk ut
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Claim 12.1.20. Let

.y0; S2/ )� .y1; z1/

)� .y2; z2/

:::

)� .yr�1; zr�1/

)� .yr; Nw/

Set m D card.fi j 1 � i � r � 1; zi D S2g/. Then, y0 )mC1
H yr.

Proof. This claim is proved by induction on m � 0.

Basis. Let m D 0. Then, zi ¤ S2, for all i D 1; : : : ; k �1. Claim 12.1.19 implies that
there exists a derivation step y0 )H yr.

Induction Hypothesis. Assume that the claim holds for all m-step derivations, where
m D 0; : : : ; k, for some k � 0.

Induction Step. Consider any derivation of the form

.y0; S2/ )� .y1; z1/
)� .y2; z2/
:::

)� .yr�1; zr�1/

)� .yr; Nw/

where card.fi j 1 � i � r�1; zi D S2g/ D kC1. Then, there exists p 2 f1; : : : ; r�1g

such that zp D S2, card.fi j 1 � i � p � 1; zi D S2g/ D 0, card.fi j p C 1 � i �

r � 1; zi D S2g/ D k, and

.y0; z0/ )� .y1; z1/
:::

)� .yp; zp/
:::

)� .yr�1; zr�1/

)� .yr; Nw/

First, observe that from
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.yp; zp/ )� .ypC1; zpC1/
:::

)� .yr�1; zr�1/

)� .yr; Nw/

where zp D S2 and card.fi j p C 1 � i � r � 1; zi D S2g/ D k, it follows

yp )kC1
H yr

by the induction hypothesis. Furthermore, let

.y0; z0/ )� .y1; z1/
:::

)� .yp; zp/

card.fi j 1 � i � p � 1; zi D S2g/ D 0 implies that zi ¤ S2, for all i D 1; : : : ; p � 1.
Claim 12.1.19 implies that there exists a derivation step y0 )H yp. As a result, we
obtain

y0 )kC2
H yr ut

We next prove the following two identities, (1) and (2).

(1) fw1 j .w1; Nw/ 2 2-L.� /g D L.H/. Consider Claim 12.1.18 for x D S and
y 2 T�. We obtain an implication of the form

if S )�
H y

then .S; S2/ )�
� .y; Nw/

Hence, L.H/ � fw1 j .w1; Nw/ 2 2-L.� /g. Consider Claim 12.1.20 for y0 D S
and yr 2 T�. We see that

if .S; S2/ )�
� .yr; Nw/

then S )�
H yr

Hence, fw1 j .w1; Nw/ 2 2-L.� /g � L.H/.
(2) f.w1;w2/ j .w1;w2/ 2 2-L.� /;w2 ¤ Nwg D ;. Notice that Algorithm 12.1.15

implies that G2 D .N2, T2, P2, S2/ contains only rules of the form A ! B and
A ! Nw, where A;B 2 N2. Hence, G2 generates ; or f Nwg. � contains G2 as a
second component; hence, f.w1;w2/ j .w1;w2/ 2 2-L.� /;w2 ¤ Nwg D ;. ut

Theorem 12.1.21. For every matrix grammar H, there is a 2-MGR � such that
L.H/ D Lunion.� /.
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Proof. To prove this theorem, we make use of Algorithm 12.1.15 with matrix
grammar H and Nw as input, where Nw is any string in L.H/, provided that L.H/
is nonempty. Otherwise, if L.H/ is empty, let Nw be any string. We prove that
L.H/ D Lunion.� /.

1. If L.H/ D ;, take any string Nw and use Algorithm 12.1.15 to construct � .
Observe that Lunion.� / D ; D L.H/.

2. If L.H/ ¤ ;, take any Nw 2 L.H/ and use Algorithm 12.1.15 to construct � . As
obvious, Lunion.� / D L.H/ [ Nw D L.H/. ut

Theorem 12.1.22. For every matrix grammar H, there is a 2-MGR � such that
L.H/ D Lconc.� /.

Proof. To prove this theorem, we make use of Algorithm 12.1.15 with matrix
grammar H and Nw D " as input. We prove that L.H/ D Lconc.� /. Theorem 12.1.16
says that

˚
w1 j .w1; Nw/ 2 2-L.� /

�
D L.H/

and

˚
.w1;w2/ j .w1;w2/ 2 2-L.� /;w2 ¤ Nw

�
D ;

Then,

Lconc.� / D fw1w2 j .w1;w2/ 2 2-L.� /g
D fw1w2 j .w1;w2/ 2 2-L.� /;w2 D Nwg

[ fw1w2 j .w1;w2/ 2 2-L.� /;w2 ¤ Nwg

D fw1 Nw j .w1; Nw/ 2 2-L.� /g [ ;

D fw1 Nw j .w1; Nw/ 2 2-L.� /g
D L.H/

because Nw D ". ut

Theorem 12.1.23. For every matrix grammar H, there is a 2-MGR � such that
L.H/ D Lfirst.� /.

Proof. To prove this theorem, we make use of Algorithm 12.1.15 with matrix
grammar H and any Nw as input. We prove that L.H/ D Lfirst.� /. Theorem 12.1.16
says that

˚
w1 j .w1; Nw/ 2 2-L.� /

�
D L.H/

and

˚
.w1;w2/ j .w1;w2/ 2 2-L.� /;w2 ¤ Nw

�
D ;
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Then,

Lfirst.� / D fw1 j .w1;w2/ 2 2-L.� /g
D fw1 j .w1;w2/ 2 2-L.� /;w2 D Nwg

[ fw1 j .w1;w2/ 2 2-L.� /;w2 ¤ Nwg

D fw1 j .w1; Nw/ 2 2-L.� /g [ ;

D fw1 j .w1; Nw/ 2 2-L.� /g
D L.H/

Hence, the theorem holds. ut

Let MGRn;X denote the language families defined by n-MGRs in the X mode,
where X 2 funion; conc; firstg. From the previous results, we obtain the following
corollary.

Corollary 12.1.24. M D MGRn;X, where n � 2, X 2 funion; conc; firstg. ut

To summarize all the results, multigenerative grammar systems with any number
of grammatical components are equivalent with two-component versions of these
systems. Perhaps even more importantly, these systems are equivalent with matrix
grammars, which generate a proper subfamily of the family of recursively enumer-
able languages (see Theorem 3.4.5).

We close this section by suggesting two open problem areas.

Open Problem 12.1.25. Consider other operations, like intersection, and study
languages generated in this way by multigenerative grammar systems.

Open Problem 12.1.26. Study multigenerative grammar systems that are based on
other grammars than context-free grammars. Specifically, determine the generative
power of multigenerative grammar systems with regular or right-linear grammars as
components.

12.2 Leftmost Multigenerative Grammar Systems

In this section, we study leftmost versions of multigenerative grammar systems,
whose basic versions were defined and investigated in the previous section of this
chapter. We prove that they characterize the family of recursively enumerable lan-
guages, which properly contains the family of matrix languages (see Theorems 3.3.6
and 3.4.5). We also consider regulation by n-tuples of nonterminals rather than
rules, and we prove that leftmost multigenerative grammar systems regulated by
rules or nonterminals have the same generative power. Just like for multigenerative
grammar systems in the previous section, we explain how to reduce the number of
grammatical components in leftmost multigenerative grammar systems to two.
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Definition 12.2.1. A leftmost n-generative rule-synchronized grammar system (an
n-LMGR for short) is an n-MGR (see Definition 12.1.1), where for two sentential
n-forms � D .u1A1v1, u2A2v2, : : : , unAnvn/ and N� D .u1x1v1, u2x2v2, : : : , unxnvn/,
where Ai 2 Ni, ui; vi; xi 2 V�

i , and an n-tuple .p1; p2; : : : ; pn/ 2 Q, where .piW Ai !

xi/ 2 Pi,

� )� N�

if and only if ui 2 T�
i , for all i D 1; : : : ; n. ut

Next, we introduce regulation by n-tuples of nonterminals rather than rules.

Definition 12.2.2. A leftmost n-generative nonterminal-synchronized grammar
system (an n-LMGN for short) is an n C 1 tuple

� D
�
G1;G2; : : : ;Gn;Q

�

where

• Gi D .Vi;Ti;Pi; Si/ is a context-free grammar, for each i D 1; : : : ; n;
• Q is a finite set of n-tuples of the form .A1;A2; : : : ;An/, where Ai 2 Ni, for all

i D 1; : : : ; n.

A sentential n-form is defined as a sentential n-form of an n-LMGR. Let
� D .u1A1v1, u2A2v2, : : : , unAnvn/ and N� D .u1x1v1, u2x2v2, : : : , unxnvn/ be two
sentential n-forms, where Ai 2 Ni, ui 2 T�, and vi; xi 2 V�

i , for all i D 1; : : : ; n. Let
.piW Ai ! xi/ 2 Pi, for all i D 1; : : : ; n and .A1, A2, : : : , An/ 2 Q. Then, � directly
derives N� in � , denoted by

� )� N�

In the standard way, we generalize )� to )k
� , for all k � 0, )�

� , and )C
� .

An n-language for n-LMGN is defined as the n-language for n-LMGR, and a
language generated by n-LMGN in the X mode, for each X 2 funion, conc, firstg, is
defined as the language generated by n-LMGR in the X mode. ut

Example 12.2.3. Consider the 2-LMGN � D .G1, G2, Q/, where

• G1 D .fS1, A1, a, b, cg, fa, b, cg, fS1 ! aS1, S1 ! aA1, A1 ! bA1c, A1 ! bcg,
S1/,

• G2 D .fS2, A2, dg, fdg, fS2 ! S2A2, S2 ! A2, A2 ! dg, S2/,
• Q D f.S1, S2/, .A1, A2/g.

Observe that

• 2-L.� / D f.anbncn, dn/ j n � 1g,
• Lunion.� / D fanbncn j n � 1g [ fdn j n � 1g,
• Lconc.� / D fanbncndn j n � 1g, and
• Lfirst.� / D fanbncn j n � 1g. ut
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Lemma 12.2.4. Let � be an n-LMGN and let N� be an n-LMGR such that n-L.� /
D n-L. N� /. Then, LX.� / D LX. N� /, for each X 2 funion, conc, firstg.

Proof.

I. First, we prove that Lunion.� / D Lunion. N� / as follows:

Lunion.� / D fw j .w1; : : : ;wn/ 2 n-L.� /;w 2 fwi j 1 � i � ngg

D fw j .w1; : : : ;wn/ 2 n-L. N� /;w 2 fwi j 1 � i � ngg

D Lunion. N� /

II. Second, we prove that Lconc.� / D Lconc. N� / as follows:

Lconc.� / D fw1 	 	 	 wn j .w1; : : : ;wn/ 2 n-L.� /g
D fw1 	 	 	 wn j .w1; : : : ;wn/ 2 n-L. N� /g

D Lconc. N� /

III. Finally, we prove that Lfirst.� / D Lfirst. N� / as follows:

Lfirst.� / D fw1 j .w1; : : : ;wn/ 2 n-L.� /g
D fw1 j .w1; : : : ;wn/ 2 n-L. N� /g

D Lfirst. N� / ut

Algorithm 12.2.5. Conversion of an n-LMGN to an equivalent n-LMGR.

Input: An n-LMGN, � D .G1, G2, : : : , Gn, Q/.
Output: An n-LMGR, N� D .G1, G2, : : : , Gn, NQ/, such that n-L.� / D n-L. N� /.
Method: Let Gi D .Vi, Ti, Pi, Si/, for all i D 1; : : : ; n, and set

NQ D f.A1 ! x1, A2 ! x2, : : : , An ! xn/ j Ai ! xi 2 Pi,
for all i D 1; : : : ; n, and .A1, A2, : : : , An/ 2 Qg ut

Theorem 12.2.6. Let � D .G1, G2, : : : , Gn, Q/ be an n-LMGN. With � as its input,
Algorithm 12.2.5 halts and correctly constructs an n-LMGR, N� D .G1, G2, : : : , Gn,
NQ/, such that n-L.� / D n-L. N� /, and LX.� / D LX. N� /, for each X 2 funion, conc,
firstg.

Proof. To prove this theorem, we first establish Claims 12.2.7 and 12.2.8.

Claim 12.2.7. Let .S1, S2, : : : , Sn/ )m
� .y1, y2, : : : , yn/, where m � 0, yi 2 V�

i , for
all i D 1; : : : ; n. Then, .S1, S2, : : : , Sn/ )m

N�
.y1, y2, : : : , yn/.

Proof. This claim is proved by induction on m � 0.

Basis. The basis is clear.

Induction Hypothesis. Assume that Claim 12.2.7 holds for all m-step derivations,
where m D 0; : : : ; k, for some k � 0.
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Induction Step. Consider any derivation of the form

.S1; S2; : : : ; Sn/ )kC1
� .y1; y2; : : : ; yn/

Then, there exists a sentential n-form .u1A1v1, u2A2v2, : : : , unAnvn/, where ui 2 T�
i ,

Ai 2 Ni, and vi 2 V�
i , such that

.S1; S2; : : : ; Sn/ )k
� .u1A1v1; u2A2v2; : : : ; unAnvn/

)� .u1x1v1; u2x2v2; : : : ; unxnvn/

where uixivi D yi, for all i D 1; : : : ; n. Then, by the induction hypothesis, we have

.S1; S2; : : : ; Sn/ )k
N�
.u1A1v1; u2A2v2; : : : ; unAnvn/

Since

.u1A1v1; u2A2v2; : : : ; unAnvn/ )�

.u1x1v1; u2x2v2; : : : ; unxnvn/

.A1, A2, : : : , An/ 2 Q and Ai ! xi 2 Pi, for all i D 1; : : : ; n. Algorithm 12.2.5
implies that .A1 ! x1, A2 ! x2, : : : , An ! xn/ 2 NQ, so

.u1A1v1; u2A2v2; : : : ; unAnvn/ ) N�

.u1x1v1; u2x2v2; : : : ; unxnvn/

which proves the induction step. Therefore, Claim 12.2.7 holds. ut

Claim 12.2.8. Let .S1, S2, : : : , Sn/ )m
N�
.y1, y2, : : : , yn/, where m � 0, yi 2 V�

i , for
all i D 1; : : : ; n. Then, .S1, S2, : : : , Sn/ )m

� .y1, y2, : : : , yn/.

Proof. This claim is proved by induction on m � 0.

Basis. The basis is clear.

Induction Hypothesis. Assume that Claim 12.2.8 holds for all m-step derivations,
where m D 0; : : : ; k, for some k � 0.

Induction Step. Consider any derivation of the form

.S1; S2; : : : ; Sn/ )kC1
N�
.y1; y2; : : : ; yn/

Then, there exists a sentential n-form .u1A1v1, u2A2v2, : : : , unAnvn/, where ui 2 T�
i ,

Ai 2 Ni, vi 2 V�
i , such that

.S1; S2; : : : ; Sn/ )k
N�
.u1A1v1; u2A2v2; : : : ; unAnvn/

) N� .u1x1v1; u2x2v2; : : : ; unxnvn/
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where uixivi D yi, for all i D 1; : : : ; n. Then, by the induction hypothesis, we have

.S1; S2; : : : ; Sn/ )k
� .u1A1v1; u2A2v2; : : : ; unAnvn/

Since

.u1A1v1; u2A2v2; : : : ; unAnvn/ ) N�

.u1x1v1; u2x2v2; : : : ; unxnvn/

.A1 ! x1, A2 ! x2, : : : , An ! xn/ 2 NQ, for all i D 1; : : : ; n. Algorithm 12.2.5
implies that .A1, A2, : : : , An/ 2 Q and Ai ! xi 2 Pi, so

.u1A1v1; u2A2v2; : : : ; unAnvn/ )�

.u1x1v1; u2x2v2; : : : ; unxnvn/

which proves the induction step. Therefore, Claim 12.2.8 holds. ut

Consider Claim 12.2.7 for yi 2 T�
i , for all i D 1; : : : ; n. At this point, if

.S1; S2; : : : ; Sn/ )�
� .y1; y2; : : : ; yn/

then

.S1; S2; : : : ; Sn/ )�
N�
.y1; y2; : : : ; yn/

Hence, n-L.� / � n-L. N� /. Consider Claim 12.2.8 for yi 2 T�
i , for all i D 1; : : : ; n.

At this point, if

.S1; S2; : : : ; Sn/ )�
N�
.y1; y2; : : : ; yn/

then

.S1; S2; : : : ; Sn/ )�
� .y1; y2; : : : ; yn/

Hence, n-L. N� / � n-L.� /. As n-L.� / � n-L. N� / and n-L. N� / � n-L.� /, n-L.� /
D n-L. N� /. By Lemma 12.2.4, this identity implies that LX.� / D LX. N� /, for each
X 2 funion, conc, firstg. Therefore, Theorem 12.2.6 holds. ut

Algorithm 12.2.9. Conversion of an n-LMGR to an equivalent n-LMGN.

Input: An n-LMGR, � D .G1, G2, : : : , Gn, Q/.
Output: An n-LMGN, N� D . NG1, NG2, : : : , NGn, NQ/, such that n-L.� / D n-L. N� /.
Method: Let Gi D .Vi, Ti, Pi, Si/, for all i D 1; : : : ; n, and set

• NGi D . NVi, Ti, NPi, Si/, for all i D 1; : : : ; n, where
NNi D fhA; xi j A ! x 2 Pig [ fSig;
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NPi D fhA; xi ! y j A ! x 2 Pi, y 2 �i.x/g [ fSi ! y j y 2 �i.Si/g, where �i

is a finite substitution from V�
i to NV�

i defined as �i.a/ D fag, for all a 2 T,
and �i.A/ D fhA; xi j A ! x 2 Pig, for all A 2 Ni;

• NQ D f.hA1; x1i, hA2; x2i, : : : , hAn; xni/ j .A1 ! x1, A2 ! x2, : : : , An !

xn/ 2 Qg

[ f.S1, S2, : : : , Sn/g. ut

Theorem 12.2.10. Let � D .G1, G2, : : : , Gn, Q/ be an n-LMGR. With � as its
input, Algorithm 12.2.9 halts and correctly constructs an n-LMGN, N� D . NG1, NG2,
: : : , NGn, NQ/, such that n-L.� /D n-L. N� /, and LX.� / D LX. N� /, for each X 2 funion,
conc, firstg.

Proof. To prove this theorem, we first establish Claims 12.2.11 and 12.2.12.

Claim 12.2.11. Let .S1, S2, : : : , Sn/ )m
� .z1, z2, : : : , zn/, where m � 0, zi 2 V�

i , for
all i D 1; : : : ; n. Then, .S1, S2, : : : , Sn/ )mC1

N�
.Nz1, Nz2, : : : , Nzn/, for any Nzi 2 �i.zi/.

Proof. This claim is proved by induction on m � 0.
Basis. Let m D 0. Then,

.S1; S2; : : : ; Sn/ )0
� .S1; S2; : : : ; Sn/

Observe that

.S1; S2; : : : ; Sn/ )1
N�
.Nz1; Nz2; : : : ; Nzn/

for any Nzi 2 �i.zi/, because Algorithm 12.2.9 implies that .S1, S2, : : : , Sn/ 2 NQ and
Si ! Nzi 2 NPi, for any Nzi 2 �i.zi/, for all i D 1; : : : ; n. Thus, the basis holds.

Induction Hypothesis. Assume that the claim holds for all m-step derivations, where
m D 0; : : : ; k, for some k � 0.

Induction Step. Consider any derivation of the form

.S1; S2; : : : ; Sn/ )kC1
� .y1; y2; : : : ; yn/

Then, there exists a sentential n-form .u1A1v1, u2A2v2, : : : , unAnvn/, where ui 2 T�
i ,

Ai 2 Ni, vi 2 V�
i , such that

.S1; S2; : : : ; Sn/ )k
� .u1A1v1; u2A2v2; : : : ; unAnvn/

)� .u1x1v1; u2x2v2; : : : ; unxnvn/

where uixivi D yi, for all i D 1; : : : ; n. Then, by the induction hypothesis, we have

.S1; S2; : : : ; Sn/ )kC1
N�
. Nw1; Nw2; : : : ; Nwn/

for any Nwi 2 �i.uiAivi/, for all i D 1; : : : ; n. Since

.u1A1v1; u2A2v2; : : : ; unAnvn/ )� .u1x1v1; u2x2v2; : : : ; unxnvn/
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.A1 ! x1, A2 ! x2, : : : , An ! xn/ 2 Q. Algorithm 12.2.9 implies that .hA1; x1i,
hA2; x2i, : : : , hAn; xni/ 2 NQ and hAi; xii ! Nyi 2 NPi, for any Nyi 2 �i.xi/, for all i D

1; : : : ; n. Let Nwi be any sentential form of the form NuihAi; xii Nvi, for all i D 1; : : : ; n,
where Nui 2 �i.ui/ and Nvi 2 �i.vi/. Then,

.Nu1hA1; x1i Nv1; Nu2hA2; x2i Nv2; : : : ; NunhAn; xni Nvn/ ) N�

.Nu1Ny1 Nv1; Nu2Ny2 Nv2; : : : ; NunNyn Nvn/

where NuiNyi Nvi is any sentential form, NuiNyi Nvi 2 �i.uiyivi/, for all i D 1; : : : ; n, which
proves the induction step. Therefore, Claim 12.2.11 holds. ut

Claim 12.2.12. Let .S1, S2, : : : , Sn/ )m
N�
.Nz1, Nz2, : : : , Nzn/, where m � 1, Nzi 2 NV�

i , for

all i D 1; : : : ; n. Then, .S1, S2, : : : , Sn/ )m�1
� .z1, z2, : : : , zn/, where Nzi 2 �i.zi/, for

all i D 1; : : : ; n.

Proof. This claim is proved by induction on m � 1.

Basis. Let m D 1. Then,

.S1; S2; : : : ; Sn/ ) N� .Nz1; Nz2; : : : ; Nzn/

implies that Si ! Nzi 2 NPi, for all i D 1; : : : ; n. Algorithm 12.2.9 implies that
Nzi 2 �i.Si/, for all i D 1; : : : ; n, so

.S1; S2; : : : ; Sn/ )0
N�
.S1; S2; : : : ; Sn/

Since Nzi 2 �i.Si/, for all i D 1; : : : ; n, the basis holds.

Induction Hypothesis. Assume that the claim holds for all m-step derivations, where
m D 1; : : : ; k, for some k � 1.

Induction Step. Consider any derivation of the form

.S1; S2; : : : ; Sn/ )kC1
N�
.Ny1; Ny2; : : : ; Nyn/

Then, there exists a sentential n-form

.Nu1hA1; x1i Nv1; Nu2hA2; x2i Nv2; : : : ; NunhAn; xni Nvn/

where Nui 2 T�
i , hAi; xii 2 NNi, Nvi 2 NV�

i , such that

.S1; S2; : : : ; Sn/ )k
N�
.Nu1hA1; x1i Nv1; Nu2hA2; x2i Nv2; : : : ; NunhAn; xni Nvn/

) N� .Nu1Nx1 Nv1; Nu2Nx2 Nv2; : : : ; NunNxn Nvn/

where Nui Nxi Nvi D Nyi, for all i D 1; : : : ; n. Then, by the induction hypothesis, we have

.S1; S2; : : : ; Sn/ )k�1
� )� .w1;w2; : : : ;wn/
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where NuihAi; xii Nvi 2 �i.wi/, for all i D 1; : : : ; n. Since

.Nu1hA1; x1i Nv1; Nu2hA2; x2i Nv2; : : : ; NunhAn; xni Nvn/ ) N�

.Nu1Nx1 Nv1; Nu2Nx2 Nv2; : : : ; Nun Nxn Nvn/

there are .hA1; x1i, hA2; x2i, : : : , hAn; xni/ 2 NQ and hAi; xii ! Nxi 2 NPi, for all
i D 1; : : : ; n. Algorithm 12.2.9 implies that .A1 ! x1, A2 ! x2, : : : , An ! xn/ 2 Q
and Ai ! xi 2 Pi, where Nxi 2 �i.xi/, for all i D 1; : : : ; n. We can express wi as
wi D uiAivi, where Nui 2 �i.ui/, Nvi 2 �i.vi/, and observe that hAi; xii 2 �i.Ai/ holds
by the definition of �i, for all i D 1; : : : ; n. Then,

.u1A1v1; u2A2v2; : : : ; unAnvn/ )� .u1x1v1; u2x2v2; : : : ; unxnvn/

where Nui 2 �i.ui/, Nvi 2 �i.vi/, and Nxi 2 �i.xi/, for all i D 1; : : : ; n, which means that
NuiNxi Nvi 2 �i.uixivi/, for all i D 1; : : : ; n. Therefore,

.S1; S2; : : : ; Sn/ )kC1
� .u1A1v1; u2A2v2; : : : ; unAnvn/

)� .u1x1v1; u2x2v2; : : : ; unxnvn/

where Nui Nxi Nvi 2 �i.uixivi/, for all i D 1; : : : ; n. Let Nzi D NuiNxi Nvi and zi D uixivi, for all
i D 1; : : : ; n. Then,

.S1; S2; : : : ; Sn/ )kC2
� .z1; z2; : : : ; zn/

for all Nzi 2 �i.zi/, which proves the induction step. Therefore, Claim 12.2.12
holds. ut

Consider Claim 12.2.11 when zi 2 T�
i , for all i D 1; : : : ; n. At this point, if

.S1; S2; : : : ; Sn/ )�
� .z1; z2; : : : ; zn/

then

.S1; S2; : : : ; Sn/ )�
N�
.Nz1; Nz2; : : : ; Nzn/

where Nzi 2 �i.zi/, for all i D 1; : : : ; n. Since �i.ai/ D ai, for all ai 2 Ti, Nzi D

zi. Hence, n-L.� / � n-L. N� /. Consider Claim 12.2.12 when Nzi 2 T�
i , for all i D

1; : : : ; n. At this point, if

.S1; S2; : : : ; Sn/ )m
N�
.Nz1; Nz2; : : : ; Nzn/

then

.S1; S2; : : : ; Sn/ )m�1
� .z1; z2; : : : ; zn/
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where Nzi 2 �i.zi/, for all i D 1; : : : ; n. Since �i.ai/ D ai, for all ai 2 Ti, zi D Nzi.
Hence, n-L. N� / � n-L.� /. As n-L.� / � n-L. N� / and n-L. N� / � n-L.� /, n-L.� /
D n-L. N� /. By Lemma 12.2.4, this identity implies that LX.� / D LX. N� /, for each
X 2 funion, conc, firstg. Therefore, Theorem 12.2.10 holds. ut

From the achieved results, we immediately obtain the following corollary.

Corollary 12.2.13. The family of languages generated by n-LMGN in the X mode
coincides with the family of languages generated by n-LMGR in the X mode, where
X 2 funion, conc, firstg. ut

Theorem 12.2.14. For every recursively enumerable language L over some alpha-
bet T, there exits a 2-LMGR, � D .. NV1, T, NP1, S1/, . NV2, T, NP2, S2/, Q/, such that

(i) fw 2 T� j .S1; S2/ )�
� .w;w/g D L,

(ii) fw1w2 2 T� j .S1; S2/ )�
� .w1;w2/;w1 ¤ w2g D ;.

Proof. Recall that for every recursive enumerable language L over some alphabet T,
there exist two context-free grammars, G1 D .V1, NT , P1, S1/, G2 D .V2, NT, P2, S2/,
and a homomorphism h from NT� to T� such that L D fh.x/ j x 2 L.G1/\L.G2/g (see
Theorem 2.3.18). Furthermore, by Theorem 3.1.22, for every context-free grammar,
there exists an equivalent context-free grammar in the Greibach normal form (see
Definition 3.1.21). Hence, without any lost of generality, we assume that G1 and G2

are in the Greibach normal form. Consider the 2-LMGR

� D
�
G1;G2;Q

�

where

• Gi D . NVi, T, NPi, Si/, where

NNi D Ni [ fNa j a 2 NTg;
NPi D fA ! Nax j A ! ax 2 Pi, a 2 NT, x 2 N�

i g [ fNa ! h.a/ j a 2 NTg,

for i D 1; 2;
• Q D f.A1 ! Nax1, A2 ! Nax2/ j A1 ! Nax1 2 P1, A2 ! Nax2 2 P2, a 2 NTg

[ f.Na ! h.a/, Na ! h.a// j a 2 NTg.

Consider properties (i) and (ii) in Theorem 12.2.14. Next, Claims 12.2.15
and 12.2.16 establish (i) and (ii), respectively.

Claim 12.2.15. fw 2 T� j .S1; S2/ )�
� .w;w/g D L

Proof.

I. We prove that L � fw 2 T� j .S1; S2/ )�
� .w;w/g. Let w be any string. Then,

there exists a string, a1a2 	 	 	 an 2 NT�, such that

• a1a2 	 	 	 an 2 L.G1/,
• a1a2 	 	 	 an 2 L.G2/, and
• h.a1a2 	 	 	 an/ D w.
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This means that there exist the following derivations in G1 and G2

S1 )G1 a1x1 Œp1�
)G1 a1a2x2 Œp2�
:::

)G1 a1a2 	 	 	 an Œpn�

S2 )G2 a1y1 Œr1�
)G2 a1a2y2 Œr2�
:::

)G2 a1a2 	 	 	 an Œrn�

where ai 2 NT , xi 2 N�
i , yi 2 N�

2 , pi 2 P1, ri 2 P2, for all i D 1; : : : ; n.
Observe that that sym.rhs.pi/; 1/ D sym.rhs.ri/; 1/ D ai, for all i D 1; : : : ; n.
The construction of Q implies the following two statements.

• Let piW Ai ! aiui 2 NP1, riW Bi ! aivi 2 NP2. Then, .Ai ! Naiui, Bi ! Naivi/ 2

Q, for all i D 1; : : : ; n.
• Q contains .Nai ! h.ai/, Nai ! h.ai//, for all i D 1; : : : ; n.

Therefore, there exists

.S1; S2/ )� .Na1x1; Na1y1/
)� .h.a1/x1; h.a1/y1/
)� .h.a1/Na2x2; h.a1/Na2y2/
)� .h.a1/h.a2/x2; h.a1/h.a2/y2/
:::

)� .h.a1/h.a2/ 	 	 	 h.an/; h.a1/h.a2/ 	 	 	 h.an//

D .h.a1a2 	 	 	 an/; h.a1a2 	 	 	 an//

D .w;w/

In brief, .S1, S2/ )�
� .w, w/. Hence, L � fw 2 T� j .S1; S2/ )�

� .w;w/g.
II. We prove that fw 2 T� j .S1; S2/ )�

� .w;w/g � L. Let .S1, S2/ )�
� .w, w/.

Then, there exists

.S1; S2/ )� .Na1x1; Na1y1/
)� .h.a1/x1; h.a1/y1/
)� .h.a1/Na2x2; h.a1/Na2y2/
)� .h.a1/h.a2/x2; h.a1/h.a2/y2/
:::

)� .h.a1/h.a2/ 	 	 	 h.an/; h.a1/h.a2/ 	 	 	 h.an//

D .h.a1a2 	 	 	 an/; h.a1a2 	 	 	 an//

D .w;w/
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By analogy with part I., we can prove that there exist derivations in G1 and G2

of the forms

S1 )G1 a1x1 Œp1�
)G1 a1a2x2 Œp2�
:::

)G1 a1a2 	 	 	 an Œpn�

S2 )G2 a1y1 Œr1�
)G2 a1a2y2 Œr2�
:::

)G2 a1a2 	 	 	 an Œrn�

This implies that a1a2 	 	 	 an 2 L.G1/, a1a2 	 	 	 an 2 L.G2/, and h.a1a2 	 	 	 an/ D

w, so w 2 L. Hence, fw 2 T� j .S1; S2/ )�
� .w;w/g � L. Therefore,

Claim 12.2.15 holds. ut

Claim 12.2.16. fw1w2 2 T� j .S1; S2/ )�
� .w1;w2/;w1 ¤ w2g D ;

Proof. By contradiction. Let fw1w2 2 T� j .S1; S2/ )�
� .w1;w2/;w1 ¤ w2g ¤ ;.

Then, there have to exist two different strings, w1 D h.a1/h.a2/ 	 	 	 h.an/ and w2 D

h.b1/h.b2/ 	 	 	 h.bn/, such that .S1; S2/ )�
� .w1;w2/.

I. Assume that ai D bi, for all i D 1; : : : ; n. Then, w1 D h.a1/h.a2/ 	 	 	 h.an/ D

h.b1/h.b2/ 	 	 	 h.bn/ D w2, which contradicts w1 ¤ w2.
II. Assume that there exists some k � n such that ak ¤ bk. Then, there exists a

derivation of the form

.S1; S2/ )� .Na1x1; Na1y1/
)� .h.a1/x1; h.a1/y1/
)� .h.a1/Na2x2; h.a1/Na2y2/
)� .h.a1/h.a2/x2; h.a1/h.a2/y2/
:::

)� .h.a1/h.a2/ 	 	 	 h.ak�1/xk�1; h.a1/h.a2/ 	 	 	 h.ak�1/yk�1/

Then, there has to exist a derivation

.xk�1; yk�1/ )� .Nakxk; Nbkyk/

where Nak ¤ Nbk. By the definition of Q, there has to be .p; r/ 2 Q such that

sym
�

rhs.p/; 1
�

D sym
�

rhs.r/; 1
�
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Therefore, the next derivation has to be of the form

.xk�1; yk�1/ )� .Nakxk; Nbkyk/

where Nak D Nbk, which is a contradiction. Therefore, Claim 12.2.16 holds. ut

Claims 12.2.15 and 12.2.16 imply that Theorem 12.2.14 holds. ut

Theorem 12.2.17. For any recursively enumerable language L over an alphabet T,
there exists a 2-LMGR, � D .G1, G2, Q/, such that Lunion.� / D L.

Proof. By Theorem 12.2.14, for every recursively enumerable language L over an
alphabet T, there exits a 2-LMGR

N� D
�
.V1;T;P1; S1/; .V2;T;P2; S2/;Q

�

such that

˚
w 2 T� j .S1; S2/ )�

� .w;w/
�

D L

and

˚
w1w2 2 T� j .S1; S2/ )�

� .w1;w2/;w1 ¤ w2
�

D ;

Let � D N� . Then,

Lunion.� / D fw j .S1; S2/ )�
� .w1;w2/;wi 2 T�; for i D 1; 2;

w 2 fw1;w2gg
D fw j .S1; S2/ )�

� .w;w/g [ fw j .S1; S2/ )�
� .w1;w2/;

wi 2 T�; for i D 1; 2;w 2 fw1;w2g;w1 ¤ w2g
D fw j .S1; S2/ )�

� .w;w/g [ ;

D fw j .S1; S2/ )�
� .w;w/g

D L

Therefore, Theorem 12.2.17 holds. ut

Theorem 12.2.18. For any recursively enumerable language L over an alphabet T,
there exists a 2-LMGR, � D .G1, G2, Q/, such that Lfirst.� / D L.

Proof. By Theorem 12.2.14, for every recursively enumerable language L over an
alphabet T, there exits a 2-LMGR

N� D
�
.V1;T;P1; S1/; .V2;T;P2; S2/;Q

�

such that

˚
w 2 T� j .S1; S2/ )�

� .w;w/
�

D L
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and

˚
w1w2 2 T� j .S1; S2/ )�

� .w1;w2/;w1 ¤ w2
�

D ;

Let � D N� . Then,

Lfirst.� / D fw1 j .S1; S2/ )�
� .w1;w2/;wi 2 T�; for i D 1; 2g

D fw j .S1; S2/ )�
� .w;w/g [ fw1 j .S1; S2/ )�

� .w1;w2/;
wi 2 T�; for i D 1; 2;w1 ¤ w2g

D fw j .S1; S2/ )�
� .w;w/g [ ;

D fw j .S1; S2/ )�
� .w;w/g

D L

Therefore, Theorem 12.2.18 holds. ut

Theorem 12.2.19. For any recursively enumerable language L over an alphabet T,
there exists a 2-LMGR, � D .G1, G2, Q/, such that Lconc.� / D L.

Proof. By Theorem 12.2.14, we have that for every recursively enumerable lan-
guage L over an alphabet T, there exits a 2-LMGR

N� D
�
.V1;T;P1; S1/; .V2;T;P2; S2/;Q

�

such that
˚
w 2 T� j .S1; S2/ )�

� .w;w/
�

D L

and
˚
w1w2 2 T� j .S1; S2/ )�

� .w1;w2/;w1 ¤ w2
�

D ;

Let G1 D .V1, T, P1, S1/ and G2 D .V2, ;, NP2, S2/, where NP2 D fA ! g.x/ j A !

x 2 P2g, where g is a homomorphism from V�
2 to N�

2 defined as g.X/ D X, for all
X 2 N2, and g.a/ D ", for all a 2 T. We prove that Lconc.� / D L.

I. We prove that L � Lconc.� /. Let w 2 L. Then, there exists a derivation of the
form

.S1; S2/ )�
� .w;w/

Thus, there exist a derivation of the form

.S1; S2/ )�
� .w; g.w//

Since g.a/ D ", for all a 2 T, g.w/ D ", for all w 2 T�. Thus,

.S1; S2/ )�
� .w; "/

Hence, w" D w and w 2 Lconc.� /.
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II. We prove that Lconc.� / � L. Let w 2 L. Then, there exists a derivation of the
form

.S1; S2/ )�
� .w; "/

because L.G2/ D f"g. Since g.x/ D " in � , for all x 2 T�, there is a derivation
of the form

.S1; S2/ )�
� .w; x/

where x is any string. Theorem 12.2.14 implies that x D w. Thus,

.S1; S2/ )�
� .w;w/

Hence, w 2 L.

By I. and II., Theorem 12.2.19 holds. ut

We close this section by suggesting the next open problem area.

Open Problem 12.2.20. By analogy with leftmost n-generative nonterminal-syn-
chronized grammar systems, discussed in this section, introduce n-generative non-
terminal-synchronized grammar systems and study their generative power.



Part V
Modern Language Models Applied

to Computation

This part, consisting of Chaps. 13 through 15, discusses computational applications
of modern language models studied earlier in the book. Chapter 13 covers these
applications and their perspectives in computer science from a rather general
standpoint. Then, more specifically, Chaps. 14 and 15 describe many applications
in computational linguistics and computational biology, respectively. Both chapters
contain several case studies of real-world applications described in detail.



Chapter 13
Applications and Their Perspectives in General

This chapter makes several general remarks about computational applications of
modern language models covered earlier in this book. It also discusses their
application perspectives in computer science in the near future.

As we know by now, however, all these models represent an enormously large
variety of grammars and automata. Therefore, we narrow our attention only to some
of them. Specifically, we choose regulated grammars (see Chap. 3), scattered context
grammars (see Sect. 4.1), grammar systems (see Sect. 12), and regulated pushdown
automata (see Chap. 7) for this purpose. Regarding the computer science application
areas, we focus our principle attention on two areas—computational linguistics and
computational biology.

13.1 General Comments on Applications in Computational
Linguistics

In terms of English syntax, grammatical regulation can specify a number of relations
between individual syntax-related elements of sentences in natural languages. For
instance, relative clauses are introduced by who or which depending on the subject
of the main clause. If the subject in the main clause is a person, the relative clause is
introduced by who; otherwise, it starts by which. We encourage the reader to design
a regulated grammar that describes this dependency (consult [HP05]).

In other natural languages, there exist syntax relations that can be elegantly
handled by regulated grammars, too. To illustrate, in Spanish, all adjectives inflect
according to gender of the noun they characterize. Both the noun and the adjective
may appear at different parts of a sentence, which makes their syntactical depen-
dency difficult to capture by classical grammars; obviously, regulated grammars,
discussed in Chap. 3, can describe this dependency in a more elegant and simple
way. As a result, parsing is expected as their principle application field.
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Ordinary parsers represent crucially important components of translators, and
they are traditionally underlined by ordinary context-free grammars. As their
name indicates, regulated parsers are based upon regulated context-free grammars.
Considering their advantages, including properties (I) through (IV) listed next, it
comes as no surprise that they become increasingly popular in modern design of
language translators.

(I) Regulated parsers work in a faster way than classical parsers do. Indeed,
ordinary parsers control their parsing process so they consult their parsing
tables during every single step. As opposed to this exhaustively busy approach,
in regulated parsers, regulated grammatical mechanisms take control over
the parsing process to a large extent; only during very few pre-determined
steps, they consult their parsing tables to decide how to continue the parsing
process under the guidance of regulating mechanism. Such a reduction of
communication with the parsing tables obviously results into a significant
acceleration of the parsing process as a whole.

(II) Regulated context-free grammars are much stronger than ordinary context-
free grammars. Accordingly, parsers based upon regulated grammars are more
powerful than their ordinary versions. As an important practical consequence,
they can parse syntactical structures that cannot be parsed by ordinary parsers.

(III) Regulated parsers make use of their regulation mechanisms to perform their
parsing process in a deterministic way.

(IV) Compared to ordinary parsers, regulated parsers are often written more
succinctly and, therefore, readably as follows from reduction-related results
concerning the number of their components, such as nonterminals and rules,
achieved earlier in this book (see Sects. 3.1.4, 3.1.6, 4.1.4, 4.2.2, 4.2.3,
and 4.2.4).

From a general point of view, some fundamental parts of translators, such as
syntax-directed translators, run within the translation process under the parser-
based regulation. Furthermore, through their symbol tables, parsers also regulate
exchanging various pieces of information between their components, further divided
into several subcomponents. Indeed, some parts of modern translators may be
further divided into various subparts, which are run in a regulated way, and within
these subparts, a similar regulation can be applied again, and so on. As a matter
of fact, syntax-directed translation is frequently divided into two parts, which work
concurrently. One part is guided by a precedence parser that works with expressions
and conditions while the other part is guided by a predictive parser that processes
the general program flow. In addition, both parts are sometimes further divided
into several subprocesses or threads. Of course, this two-parser design of syntax-
directed translation requires an appropriate regulation of translation as a whole.
Indeed, prior to this syntax-directed translation, a pre-parsing decomposition of
the tokenized source program separates the syntax constructs for both parsers. On
the other hand, after the syntax-directed translation based upon the two parsers
is successfully completed, all the produced fragments of the intermediate code
are carefully composed together so the resulting intermediate code is functionally
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equivalent to the source program. Of course, handling translation like this requires
a proper regulation of all these translation subphases.

To give one more example in terms of modern translator design, various
optimization methods are frequently applied to the generation of the resulting target
code to speed the code up as much as possible. This way of code generation may
result from an explicit requirement in the source program. More often, however,
modern translators themselves recognize that a generation like this is appropriate
within the given computer framework, so they generate the effective target code to
speed up its subsequent execution. Whatever they do, however, they always have
to guarantee that the generated target code is functionally equivalent to the source
program. Clearly, this design of translators necessitates an extremely careful control
over all the optimization routines involved, and this complicated control has to be
based upon a well developed theory of computational regulation. Within formal
language theory, which has always provided translation techniques with their formal
models, this control can be accomplished by regulated grammars, which naturally
and elegantly formalize computational regulation.

Apart from description, specification, and transformation of language syntax,
regulated grammars can be applied to other linguistically oriented fields, such as
morphology (see [Bau03, AF04]).

13.2 General Comments on Applications in Computational
Biology

Because the grammar-based information processing fulfills a crucially important
role in biology as a whole, it is literally impossible to cover all these applications
in this scientific filed. Therefore, we restrict our attention only to microbiology,
which also makes use of the systematically developed knowledge concerning
these grammars significantly. Even more specifically, we narrow our attention to
molecular genetics (see [SR10, WBBC07, Rus09]). A solidly developed control of
information processing is central to this scientific field although it approaches this
processing in a specific way. Indeed, genetically oriented studies usually investigate
how to prescribe the modification of several symbols within strings that represent
a molecular organism. To illustrate a modification like this, consider a typical
molecular organism consisting of several groups of molecules; for instance, take
any organism consisting of several parts that slightly differ in behavior of DNA
molecules made by specific sets of enzymes. During their development, these
groups of molecules communicate with each other, and this communication usually
influences the future behavior of the whole organism. A simulation of such an
organism might be formally based upon regulated grammars, which can control
these changes at various places. Consequently, genetic dependencies of this kind
represent another challenging application area of regulated grammars in the future.



470 13 Applications and Their Perspectives in General

To sketch the applicability of regulated grammars in this scientific area in a
greater detail, consider forbidding grammars, studied earlier in Sect. 3.1.4. These
grammars can formally and elegantly simulate processing information in molecular
genetics, including information concerning macromolecules, such as DNA, RNA,
and polypeptides. For instance, consider an organism consisting of DNA molecules
made by enzymes. It is a common phenomenon that a molecule m made by a specific
enzyme can be modified unless molecules made by some other enzymes occur either
to the left or to the right of m in the organism. Consider a string w that formalizes
this organism so every molecule is represented by a symbol. As obvious, to simulate
a change of the symbol a that represents m requires forbidding occurrences of some
symbols that either precede or follow a in w. As obvious, forbidding grammars can
provide a string-changing formalism that can capture this forbidding requirement
in a very succinct and elegant way. To put it more generally, forbidding grammars
can simulate the behavior of molecular organisms in a rigorous and uniform way.
Application-oriented topics like this obviously represent a future investigation area
concerning forbidding grammars.

In the near future, highly regulated information processing is expected to
intensify rapidly and significantly. Indeed, to take advantage of highly effective
parallel and mutually connected computers as much as possible, a modern software
product simultaneously run several processes, each of which gather, analyze and
modify various elements occurring within information of an enormous size, largely
spread and constantly growing across the virtually endless and limitless computer
environment. During a single computational step, a particular running process
selects a finite set of mutually related information elements, from which it produces
new information as a whole and, thereby, completes the step. In many respects, the
newly created information affects the way the process performs the next computa-
tional step, and from a more broadly perspective, it may also significantly change the
way by which the other processes work as well. Clearly, a product conceptualized
in this modern way requires a very sophisticated regulation of its computation
performed within a single process as well as across all the processes involved.

As already explained in “Preface” section, computer science urgently needs to
express regulated computation by appropriate mathematical models in order to
express its fundamentals rigorously. Traditionally, formal language theory provides
computer science with various automata and grammars as formal models of this
kind. However, classical automata and grammars, such as ordinary finite automata
or context-free grammars, represent unregulated formal models because they were
introduced several decades ago when hardly any highly regulated computation
based upon parallelism and distribution occurred in computer science. As an
inescapable consequence, these automata and grammars fail to adequately formalize
highly regulated computation. Consequently, so far, most theoretically oriented
computer science areas whose investigation involve this computation simplify
their investigation so they reduce their study to quite specific areas in which
they work with various ad-hoc simplified models without any attempt to formally
describe highly regulated computation generally and systematically. In this sense,
theoretical computer science based upon unregulated formal models is endangered
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by approaching computation in an improper way, which does not reflect the expected
regulated computation in the future at all. Simply put, rather than shed some light
on fundamental ideas of this processing, this approach produces little or no relevant
results concerning future computation.

Taking into account this unsatisfactory and dangerous situation occurring in the
very heart of computational theory, the present book has paid an explicit attention
to modifying automata and grammars so they work in a regulated way. As a result
of this modification, the resulting regulated versions of grammars and automata can
properly and adequately underlie a systematized theory concerning general ideas
behind future regulated information processing. Out of all these regulated grammars
and automata, we next select three types and demonstrate the way they can
appropriately act as formal models of regulated computation. Namely, we choose

(1) scattered context grammars (see Sect. 4.1);
(2) grammar systems (see Chap. 12);
(3) regulated pushdown automata (see Sect. 7.2.2).

(1) In general, the heart of every grammar consists of a finite set of rules,
according to which the grammar derives sentences. The collection of all sentences
derived by these rules forms the language generated by the grammar. Most classical
grammars perform their derivation steps in a strictly sequential way. To illustrate,
context-free grammars work in this way because they rewrite a single symbol of
the sentential form during every single derivation step (see [Med00a, Sal73, Har78,
Woo87, RS97a]).

As opposed to strictly sequential grammars, the notion of a scattered context
grammar is based upon finitely many sequences of context-free rules that are simul-
taneously applied during a single derivation step. Beginning from its start symbol,
the derivation process, consisting of a sequence of derivation steps, successfully
ends when the derived strings contain only terminal symbols. A terminal word
derived in this successful way is included into the language of this grammar,
which contains all strings derived in this way. As obvious, this way of rewriting
makes scattered context grammars relevant to regulated information processing as
illustrated next in terms of computational linguistics.

Consider several texts such that (a) they all are written in different natural
languages, but (b) they correspond to the same syntactical structure, such as the
structure of basic clauses. With respect to (b), these texts are obviously closely
related, yet we do not tend to compose them into a single piece of information
because of (a). Suppose that a multilingual processor simultaneously modifies
all these texts in their own languages so all the modified texts again correspond
to the same syntactical structure, such as a modification of basic clauses to the
corresponding interrogative clauses; for instance, I said that would be changed to
Did I say that? in English. At this point, a processor like this needs to regulate
its computation across all these modified texts in mutually different languages. As
obvious, taking advantage of their simultaneous way of rewriting, scattered context
grammars can handle changes of this kind while ordinary unregulated context-free
grammars cannot.



472 13 Applications and Their Perspectives in General

(2) Classical grammar systems combine several grammars (see [CVDKP94]).
All the involved grammars cooperate according to some protocol during their
derivations. Admittedly, compared to isolated grammars, these grammar systems
show several significant advantages, including an increase of the generative power
and, simultaneously, a decrease of their descriptional complexity. In essence, the
classical grammar systems can be classified into cooperating distributed (CD) and
parallel communicating (PC) grammar systems (see [CVDKP94]). CD grammar
systems work in a sequential way. Indeed, all the grammars that form components
of these systems have a common sentential form, and every derivation step is per-
formed by one of these grammars. A cooperation protocol dictates the way by which
the grammars cooperate. For instance, one grammar performs precisely k derivation
steps, then another grammar works in this way, and so on, for a positive integer k. In
addition, some stop conditions are given to determine when the grammar systems
become inactive and produce their sentences. For example, a stop condition of this
kind says that no grammar of the system can make another derivation step. Many
other cooperating protocols and stop conditions are considered in the literature
(see [CVDKP94] and Chapter 4 in [RS97b] for an overview). As opposed to a CD
grammar system, a PC grammar system works in parallel. The PC grammatical
components have their own sentential forms, and every derivation step is performed
by each of the components with its sentential form. A cooperation protocol is
based on a communication between the components through query symbols. More
precisely, by generating these query symbols, a component specifies where to
insert the sentential form produced by another component. Nevertheless, even PC
grammar systems cannot control their computation across all their grammatical
components simultaneously and globally.

Multigenerative grammars, discussed in Chap. 12, are based upon classical
grammar systems, sketched above, because they also involve several grammatical
components. However, these multigenerative versions can control their computation
across all these components by finitely many sequences of nonterminals or rules
while their ordinary counterparts cannot. As illustrated next, since the ordinary
grammar systems cannot control information processing across all the grammatical
components, they may be inapplicable under some circumstances while multigen-
erative grammar systems are applicable.

Consider regulated information processing concerning digital images. Suppose
that the processor composes and transforms several fragments of these images into
a single image according to its translation rules. For instance, from several digital
images that specify various parts of a face, the processor produces a complete digital
image of the face. Alternatively, from a huge collection of files containing various
image data, the translator selects a set of images satisfying some prescribed criteria
and composes them into a single image-data file. Of course, the processor makes
a multi-composition like this according to some compositional rules. As obvious, a
proper composition-producing process like this necessities a careful regulation of all
the simultaneously applied rules, which can be elegantly accomplished by regulated
grammar systems that control their computation by sequences of rules. On the other
hand, a regulation like this is hardly realizable based upon unregulated grammar
systems, which lack any rule-controlling mechanism.
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(3) Classical pushdown automata work by making moves during which they
change states (see [Med00a, Sal73, Har78, Woo87, RS97a]). As a result, this state
mechanism is the only way by which they can control their computation. In practice,
however, their applications may require a more sophisticated regulation, which
cannot be accomplished by state control. Frequently, however, the regulated versions
of pushdown automata (see Sect. 7.2.2) can handle computational tasks like this by
their control languages, so under these circumstance, they can act as appropriate
computational models while their unregulated counterparts cannot as illustrated next
in terms of parsing.

Consider a collection of files, each of which contains a portion of a source
program that should be parsed as a whole by a syntax analyzer, underlined by a
pushdown automaton. By using a simple control language, we can prescribe the
order in which the syntax analyzer should properly compose all these fragmented
pieces of code stored in several different files, after which the entire code composed
in this way is parsed. As obvious, we cannot prescribe any global composition like
this over the collection of files by using any classical pushdown automata, which
does not regulate its computation by any control language.

To summarize this chapter, regulated grammars and automata represent appro-
priate formal models of highly regulated computation, which is likely to fulfill a
central role in computer science as a whole in the near future. As such, from a
theoretical perspective, they will allow us to express the theoretical fundamentals of
this computation rigorously and systematically. From a more pragmatic perspective,
based upon them, computer science can create a well-designed methodology con-
cerning regulated information processing. Simply put, as their main perspective in
near future, regulated grammars and automata allow us to create (a) a systematized
body of knowledge representing an in-depth theory of highly regulated computation
and (b) a sophisticated methodology concerning regulated information processing,
based upon this computation.



Chapter 14
Applications in Computational Linguistics

This chapter gives several specific case studies concerning linguistics. Specifically,
it demonstrates applications of scattered context grammars in this scientific field. It
concentrates its attention to many complicated English syntactical structures and
demonstrates how scattered context grammars allow us to explore them clearly,
elegantly, and precisely.

Clearly, scattered context grammars are useful to every linguistic field that
formalizes its results by strings in which there exist some scattered context
dependencies spread over the strings. Since numerous linguistic areas, ranging
from discourse analysis, through psycholinguistics up to neurolinguistics, formalize
and study their results by using strings involving dependencies of this kind,
describing applications of scattered context grammars in all these areas would
be unbearably sketchy and, therefore, didactically inappropriate. Instead of an
encyclopedic approach like this, we narrow our attention to the investigation of
English syntax (see [Bak95, HP05]), which describes the rules concerning how
words relate to each other in order to form well-formed grammatical English
sentences. We have selected syntax of this language because the reader is surely
familiar with English very well. Nevertheless, analogical ideas can be applied to
members of other language families, including Indo-European, Sino-Tibetan, Niger-
Congo, Afro-Asiatic, Altaic, and Japonic families of languages. We explore several
common linguistic phenomena involving scattered context in English syntax and
explain how to express these phenomena by scattered context grammars.

However, even within the linguistics concerning English syntax, we cannot be
exhaustive in any way. Rather, we consider only selected topics concerning English
syntax and demonstrate how scattered context grammars allow us to explore them
clearly, elegantly, and precisely. Compared to the previous parts of this book,
which are written in a strictly mathematical way, we discuss and describe scattered
context grammars less formally here because we are interested in demonstrating
real applications rather than theoretical properties. Specifically, we primarily use
scattered context grammars to transform and, simultaneously, verify that the English
sentences under discussion are grammatical.
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The present section consists of Sects. 14.1, 14.2, and 14.3. Section 14.1 connects
the theoretically oriented discussion of scattered context grammars given earlier in
this book and the pragmatically oriented discussion of these grammars applied to
English syntax in the present section. Then, Sect. 14.2 modifies scattered context
grammars to their transformational versions, which are easy to apply to syntax-
related modifications of sentences. Most importantly, Sect. 14.3 describes English
syntax and its transformations by methods based upon the transformational versions
of scattered context grammars.

14.1 Syntax and Related Linguistic Terminology

In the linguistic study concerning English syntax, we discuss and describe the
principles and rules according to which we correctly construct and transform
grammatical English sentences. To give an insight into the discussion of English
syntax, we open this section by some simple examples that illustrate how we
connect the theoretically oriented discussion of scattered context grammars with
the application-oriented discussion of English syntax. Then, we introduce the basic
terminology used in syntax-oriented linguistics.

14.1.1 Introduction

Observe that many common English sentences contain expressions and words that
mutually depend on each other although they are not adjacent to each other in the
sentences. For example, consider this sentence

He usually goes to work early:

The subject (he) and the predicator (goes) are related; sentences

�He usually go to work early:

and

�I usually goes to work early:

are ungrammatical because the form of the predicator depends on the form of the
subject, according to which the combinations *he: : : go and *I: : : goes are illegal
(throughout this section, * denotes ungrammatical sentences or their parts). Clearly,
any change of the subject implies the corresponding change of the predicator as
well. Linguistic dependencies of this kind can be easily and elegantly captured
by scattered context grammars. Let us construct a scattered context grammar that
contains this rule
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.He, goes/ ! .We, go/

This rule checks whether the subject is the pronoun he and whether the verb go is in
third person singular. If the sentence satisfies this property, it can be transformed to
the grammatically correct sentence

We usually go to work early:

Observe that the related words may occur far away from each other in the sentence
in question. In the above example, the word usually occurs between the subject and
the predicator. While it is fairly easy to use context-sensitive grammars to model
context dependencies where only one word occurs between the related words, note
that the number of the words appearing between the subject and the predicator can
be virtually unlimited. We can say

He almost regularly goes to work early:

but also

He usually; but not always; goes to work early:

and many more grammatical sentences like this. To model these context depen-
dencies by ordinary context-sensitive grammars, many auxiliary rules have to be
introduced to send the information concerning the form of a word to another word,
which may occur at the opposite end of the sentence. As opposed to this awkward
and tedious description, the single scattered context rule above is needed to perform
the same job regardless of the number of the words appearing between the subject
and the predicator.

We next give another example that illustrates the advantage of scattered context
grammars over classical context-sensitive grammars under some circumstances.
Consider these two sentences

John recommended it:

and

Did John recommend it‹

There exists a relation between the basic clause and its interrogative counterpart.
Indeed, we obtain the second, interrogative clause by adding did in front of John
and by changing recommended to recommend while keeping the rest of the sentence
unchanged. In terms of scattered context grammars, this transformation can be
described by the scattered context rule
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.John, recommended/ ! .Did John; recommend/

Clearly, when applied to the first sentence, this rule performs exactly the same
transformation as we have just described. Although this transformation is possible
by using an ordinary context rule, the inverse transformation is much more difficult
to achieve. The inverse transformation can be performed by a scattered context rule

.Did, recommend/ ! ."; recommended/

Obviously, by erasing did and changing recommend to recommended, we obtain the
first sentence from the second one. Again, instead of John the subject may consist
of a noun phrase containing several words, which makes it difficult to capture this
context dependency by ordinary context-sensitive grammars.

Considering the examples above, the advantage of scattered context grammars
is more than obvious: scattered context grammars allow us to change only some
words during the transformation while keeping the others unchanged. On the other
hand, context-sensitive grammars are inconvenient to perform transformations of
this kind. A typical context-sensitive grammar that performs this job usually needs
many more context-sensitive rules by which it repeatedly traverses the transformed
sentence in question just to change very few context dependent words broadly
spread across the sentence.

14.1.2 Terminology

Taking into account the intuitive insight given above, we see that there are structural
rules and regularities underlying syntactically well-formed English sentences and
their transformations. Although we have already used some common linguistic
notions, such as subject or predicator, we now introduce this elementary linguistic
terminology more systematically so we can express these English sentences in terms
of their syntactic structure in a more exact and general way. However, we restrict
this introduction only to the very basic linguistic notions, most of which are taken
from [HP02, HP05].

Throughout the rest of this section, we narrow our discussion primarily to verbs
and personal pronouns, whose proper use depends on the context in which they
occur. For instance, is, are, was, and been are different forms of the same verb
be, and their proper use depends on the context in which they appear. We say
that words in these categories inflect and call this property inflection. Verbs and
personal pronouns often represent the key elements of a clause—the subject and the
predicate. In simple clauses like

She loves him:
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we can understand the notion of the subject and the predicate so that some
information is “predicated of” the subject (she) by the predicate (loves him). In
more complicated clauses, the best way to determine the subject and the predicate
is the examination of their syntactic properties (see [HP02] for more details). The
predicate is formed by a verb phrase—the most important word of this phrase is the
verb, also known as the predicator. In some verb phrases, there occur several verbs.
For example, in the sentence

He has been working for hours:

the verb phrase contains three verbs—has, been, and working. The predicator is,
however, always the first verb of a verb phrase (has in the above example). In
this study, we focus on the most elementary clauses—canonical clauses. In these
clauses, the subject always precedes the predicate, and these clauses are positive,
declarative, and without subordinate or coordinate clauses.

Next, we describe the basic categorization of verbs and personal pronouns, and
further characterize their inflectional forms in a greater detail.

14.1.3 Verbs

We distinguish several kinds of verbs based upon their grammatical properties. The
set of all verbs is divided into two subsets—the set of auxiliary verbs, and the set
of lexical verbs. Further, the set of auxiliary verbs consists of modal verbs and non-
modal verbs. The set of modal verbs includes the following verbs—can, may, must,
will, shall, ought, need, dare; the verbs be, have, and do are non-modal. All the
remaining verbs are lexical. In reality, the above defined classes overlap in certain
situations; for example, there are sentences, where do appears as an auxiliary verb,
and in different situations, do behaves as a lexical verb. For simplicity, we do not
take into account these special cases in what follows.

Inflectional forms of verbs are called paradigms. In English, every verb, except
for the verb be, may appear in each of the six paradigms described in Table 14.1
(see [HP02]). Verbs in primary form may occur as the only verb in a clause and
form the head of its verb phrase (predicator); on the other hand, verbs in secondary
form have to be accompanied by a verb in primary form.

The verb be has nine paradigms in its neutral form. All primary forms have, in
addition, their negative contracted counterparts. Compared to other verbs, there is
one more verb paradigm called irrealis. The irrealis form were (and weren’t) is used
in sentences of an unrealistic nature, such as

I wish I were rich:

All these paradigms are presented in Table 14.2.
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Table 14.1 Paradigms of English verbs

Form Paradigm Person Example

Primary Present 3rd sg She walks home.

Other They walk home.

Preterite She walked home.

Secondary Plain form They should walk home.

Gerund-participle She is walking home.

Past participle She has walked home.

Table 14.2 Paradigms of the verb be

Form Paradigm Person Neutral Negative

Primary Present 1st sg am aren’t

3rd sg is isn’t

other are aren’t

Preterite 1st sg, 3rd sg was wasn’t

other were weren’t

Irrealis 1st sg, 3rd sg were weren’t

Secondary Plain form be –

Gerund-participle being –

Past participle been –

Table 14.3 Personal pronouns

Non-reflexive

Nominative Accusative Genitive

Plain Dependent Independent Reflexive

I me my mine myself

you you your yours yourself

he him his his himself

she her her hers herself

it it its its itself

we us our ours ourselves

you you your yours yourselves

they them their theirs themselves

14.1.4 Personal Pronouns

Personal pronouns exhibit a great amount of inflectional variation as well. Table 14.3
summarizes all their inflectional forms. The most important for us is the class of
pronouns in nominative because these pronouns often appear as the subject of a
clause.
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14.2 Transformational Scattered Context Grammars

As we have already mentioned, we primarily apply scattered context grammars to
transform grammatical English sentences to other grammatical English sentences.
To do so, we next slightly modify scattered context grammars so they start
their derivations from a language rather than a single start symbol. Even more
importantly, these grammars define transformations of languages, not just their
generation.

Definition 14.2.1. A transformational scattered context grammar is a quadruple

G D
�
V;T;P; I

�

where

• V is the total vocabulary;
• T � V is the set of terminals (or the output vocabulary);
• P is a finite set of scattered context rules;
• I � V is the input vocabulary.

The derivation step is defined as in scattered context grammars (see Defini-
tion 4.1.1). The transformation t that G defines from K � I� is denoted by �.G;K/
and defined as

�.G;K/ D
˚
.x; y/ j x )�

G y; x 2 K; y 2 T�
�

If .x; y/ 2 �.G;K/, we say that x is transformed to y by G; x and y are called the
input and the output sentence, respectively. ut

As already pointed out, while scattered context grammars generate strings,
transformational scattered context grammars translate them. In a sense, however,
the language generated by any scattered context grammar G D .V , T, P, S/ can be
expressed by using a transformational scattered context grammar H D .V , T, P,
fSg/ as well. Observe that

L.G/ D
n
y j .S; y/ 2 t

�
H; fSg

�o

Before we make use of transformational scattered context grammars in terms of
English syntax in the next section, we give two examples to demonstrate a close
relation of these grammars to the theoretically oriented studies given previously in
this book. To link the theoretical discussions given earlier in this book to the present
section, the first example presents a transformational scattered context grammar
that works with purely abstract languages. In the second example, we discuss a
transformational scattered context grammar that is somewhat more linguistically
oriented.



482 14 Applications in Computational Linguistics

Example 14.2.2. Define the transformational scattered context grammar

G D
�
V;T;P; I

�

where V D fA;B;C; a; b; cg, T D fa; b; cg, I D fA;B;Cg, and

P D
˚
.A;B;C/ ! .a; bb; c/

�

For example, for the input sentence AABBCC,

AABBCC )G aABbbcC )G aabbbbcc

Therefore, the input sentence AABBCC 2 I� is transformed to the output sentence
aabbbbcc 2 T�, and

.AABBCC; aabbbbcc/ 2 �.G; I�/

If we restrict the input sentences to the language L D fAnBnCn j n � 1g, we get

�.G;L/ D
˚
.AnBnCn; anb2ncn/ j n � 1

�

so every AnBnCn, where n � 1, is transformed to anb2ncn. ut

In the following example, we modify strings consisting of English letters by
a transformational scattered context grammar, and in this way, we relate these
grammars to lexically oriented linguistics—that is, the area of linguistics that
concentrates its study on vocabulary analysis and dictionary design.

Example 14.2.3. We demonstrate how to lexicographically order alphabetic strings
and, simultaneously, convert them from their uppercase versions to lowercase
versions. More specifically, we describe a transformational scattered context gram-
mar G that takes any alphabetic strings that consist of English uppercase letters
enclosed in angle brackets, lexicographically orders the letters, and converts them
to the corresponding lowercases. For instance, G transforms hXXUYi to uxxy.

More precisely, let J and T be alphabets of English uppercases and English
lowercases, respectively. Let � denote the lexical order over J; that is, A � B �

	 	 	 � Z. Furthermore, let h be the function that maps the uppercases to the
corresponding lowercases; that is, h.A/ D a, h.B/ D b, . . . , h.Z/ D z. Let i denote
the inverse of h, so i.a/ D A, i.b/ D B, . . . , i.z/ D Z. Let N D fOa j a 2 Tg. We
define the transformational scattered context grammar

G D
�
V;T;P; I

�

where T is defined as above, I D J [
˚
h; i
�
, V D I [ N [ T, and P is constructed as

follows:

(1) for each A, B 2 I, where A � B, add .B;A/ ! .A;B/ to P;
(2) for each a 2 T, add

�
h
�

! .Oa/ to P;
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(3) for each a 2 T and A 2 J, where i.a/ D A, add .Oa;A/ ! .a; Oa/ to P;
(4) for each a, b 2 T, where i.a/ � i.b/, add .Oa/ ! .Ob/ to P;
(5) for each a 2 T, add

�
Oa; i
�

! ."; "/ to P.

Set K D
˚
h
�
J�
˚
i
�
. For instance, G transforms hORDERi 2 K to deorr 2 T� as

hORDERi )G hOEDRRi )G hDEORRi

)G
OdDEORRi )G d OdEORRi )G dOeEORRi )G deOeORRi

)G deOoORRi )G deoOoRRi )G deoOrRRi )G deorOrRi

)G deorrOri )G deorr

so
�
hORDERi; deorr

�
2 �.G;K/. Clearly, G can make the same transformation

in many more ways; on the other hand, notice that the set of all transformations
of hORDERi to deorr is finite.

More formally, we claim that G transforms every string hA1 : : :Ani 2 K
to b1 : : : bn 2 T�, for some n � 0, so that i.b1/ : : : i.bn/ represents a permutation
of A1 : : :An, and for all 1 � j � n � 1, i.bj/ � i.bjC1/ (the case when n D 0

means that A1 : : :An D b1 : : : bn D "). To see why this claim holds, notice that
T \ I D ;, so every successful transformation of a string from K to a string
from T� is performed so that all symbols are rewritten during the computation.
By rules introduced in (1), G lexicographically orders the input uppercases. By a
rule of the form

�
h
�

! .Oa/ introduced in (2), G changes the leftmost symbol h to Oa.
By rules introduced in (3) and (4), G verifies that the alphabetic string is properly
ordered and, simultaneously, converts its uppercase symbols into the corresponding
lowercases in a strictly left-to-right one-by-one way. Observe that a rule introduced
in (2) is applied precisely once during every successful transformation because
the left-to-right conversion necessities its application, and on the other hand, no
rule can produce h. By a rule from (5), G completes the transformation; notice
that if this completion is performed prematurely with some uppercases left, the
transformation is necessary unsuccessful because the uppercases cannot be turned to
the corresponding lowercases. Based upon these observations, it should be obvious
that G performs the desired transformation. ut

Having illustrated the lexically oriented application, we devote the next section
solely to the applications of transformational scattered context grammars in English
syntax.

14.3 Scattered Context in English Syntax

In this section, we apply transformational scattered context grammars to English
syntax. Before opening this topic, let us make an assumption regarding the set of
all English words. We assume that this set, denoted by T, is finite and fixed. From
a practical point of view, this is obviously a reasonable assumption because we all
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commonly use a finite and fixed vocabulary of words in everyday English (purely
hypothetically, however, this may not be the case as illustrated by the study that
closes this section). Next, we subdivide this set into subsets with respect to the
classification of verbs and pronouns described in Sect. 14.1:

• T is the set of all words including all their inflectional forms;
• Tvrbs � T is the set of all verbs including all their inflectional forms;
• Tvaux � Tvrbs is the set of all auxiliary verbs including all their inflectional forms;
• Tvplain � Tvrbs is the set of all verbs in plain form;
• Tppron � T is the set of all personal pronouns in nominative.

To describe all possible paradigms of a verb v 2 Tvplain, we use the following
notation

• �vthird.v/ is the verb v in third person singular present;
• �vpres.v/ is the verb v in present (other than third person singular);
• �vpret.v/ is the verb v in preterite.

There are several conventions we use throughout this section in order to simplify
the presented case studies, given next.

• We do not take into account capitalization and punctuation. Therefore, according
to this convention,

He is your best friend:

and

he is your best friend

are equivalent.
• To make the following studies as simple and readable as possible, we expect

every input sentence to be a canonical clause. In some examples, however, we
make slight exceptions to this rule; for instance, sometimes we permit the input
sentence to be negative. The first example and the last example also demonstrate
a simple type of coordinated canonical clauses.

• The input vocabulary is the set I D
˚
hxi j x 2 T

�
, where T is the set of

all English words as stated above. As a result, every transformational scattered
context grammar in this section takes an input sentence over I and transforms
it to an output sentence over T. For instance, in the case of the declarative-to-
interrogative transformation,

hheihisihyourihbestihfriendi

is transformed to

is he your best friend
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As we have already mentioned, we omit punctuation and capitalization, so the
above sentence corresponds to

Is he your best friend‹

Next, we give several studies that describe how to transform various kinds of
grammatical sentences to other grammatical sentences by using transformational
scattered context grammars.

14.3.1 Clauses with neither and nor

The first example shows how to use transformational scattered context grammars to
negate clauses that contain the pair of the words neither and nor, such as

Neither Thomas nor his wife went to the party:

Clearly, the words neither and nor are related, but there is no explicit limit of
the number of the words appearing between them. The following transformational
scattered context grammar G converts the above sentence to

Both Thomas and his wife went to the party:

In fact, the constructed grammar G is general enough to negate every grammatical
clause that contains the pair of the words neither and nor.

Set G D .V , T, P, I/, where V D T [ I, and P is defined as follows:

P D
˚�

hneitheri; hnori
�

! .both; and/
�

[
˚�

hxi
�

! .x/ j x 2 T � fneither, norg
�

For example, for the above sentence, the transformation can proceed in this way

hneitherihthomasihnorihhisihwifeihwentihtoihtheihpartyi

)Gboth hthomasi and hhisihwifeihwentihtoihtheihpartyi

)Gboth thomas and hhisihwifeihwentihtoihtheihpartyi

)Gboth thomas and his hwifeihwentihtoihtheihpartyi

)5
Gboth thomas and his wife went to the party

The rule

�
hneitheri; hnori

�
! .both; and/
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replaces neither and nor with both and and, respectively. Every other word hwi 2 I
is changed to w 2 T. Therefore, if we denote all possible input sentences, described
in the introduction of this example, by K, �.G;K/ represents the set of all negated
sentences from K, and

�
hneitherihthomasihnorihhisihwifeihwentihtoihtheihpartyi;

both thomas and his wife went to the party
�

2 �.G;K/

14.3.2 Existential Clauses

In English, clauses that indicate an existence are called existential. These clauses
are usually formed by the dummy subject there; for example,

There was a nurse present:

However, this dummy subject is not mandatory in all situations. For instance, the
above example can be rephrased as

A nurse was present:

We construct a transformational scattered context grammar G that converts any
canonical existential clause without the dummy subject there to an equivalent
existential clause with there.

Set G D .V , T, P, I/, where V D T [ I [ fXg (X is a new symbol such that
X … T [ I), and P is defined as follows:

P D
˚�

hxi; hisi
�

! .there is xX; "/;�
hxi; harei

�
! .there are xX; "/;�

hxi; hwasi
�

! .there was xX; "/;�
hxi; hwerei

�
! .there were xX; "/ j x 2 T

�

[
˚�

X; hxi
�

! .X; x/ j x 2 T
�

[
˚
.X/ ! ."/

�

For the above sample sentence, we get the following derivation

haihnurseihwasihpresenti
)Gthere was a Xhnurseihpresenti
)Gthere was a X nurse hpresenti
)Gthere was a X nurse present
)Gthere was a nurse present
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A rule from the first set has to be applied first because initially there is no symbol X
in the sentential form and all other rules require X to be present in the sentential
form. In our case, the rule

�
hai; hwasi

�
! .there was a X; "/

is applied; the use of other rules from this set depends on what tense is used in
the input sentence and whether the subject is in singular or plural. The rule non-
deterministically selects the first word of the sentence, puts there was in front of it,
and the symbol X behind it; in addition, it erases was in the middle of the sentence.
Next, all words hwi 2 I are replaced with w 2 T by rules from the second set.
These rules also verify that the previous non-deterministic selection was made at
the beginning of the sentence; if not, there remains a word hwi 2 I in front of X that
cannot be rewritten. Finally, the derivation ends by erasing X from the sentential
form.

This form of the derivation implies that if we denote the input existential clauses
described in the introduction of this example by K, �.G;K/ represents the set of
these clauses with the dummy subject there. As a result,

�
haihnurseihwasihpresenti; there was a nurse present

�
2 �.G;K/

14.3.3 Interrogative Clauses

In English, there are two ways of transforming declarative clauses into interrogative
clauses depending on the predicator. If the predicator is an auxiliary verb, the
interrogative clause is formed simply by swapping the subject and the predicator.
For example, we get the interrogative clause

Is he mowing the lawn‹

by swapping he, which is the subject, and is, which is the predicator, in

He is mowing the lawn:

On the other hand, if the predicator is a lexical verb, the interrogative clause is
formed by adding the dummy do to the beginning of the declarative clause. The
dummy do has to be of the same paradigm as the predicator in the declarative clause
and the predicator itself is converted to its plain form. For instance,

She usually gets up early:

is a declarative clause with the predicator gets, which is in third person singular,
and the subject she. By inserting do in third person singular to the beginning of the
sentence and converting gets to its plain form, we obtain
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Does she usually get up early‹

To simplify the following transformational scattered context grammar G, which
performs this conversion, we assume that the subject is a personal pronoun in
nominative.

Set G D .V , T, P, I/, where V D T [ I [ fXg (X is a new symbol such that
X … T [ I), and P is defined as follows:

P D
˚�

hpi; hvi
�

! .vp;X/ j v 2 Tvaux; p 2 Tppron
�

[
˚�

hpi; h�vpret.v/i
�

! .did p; vX/;�
hpi; h�vthird.v/i

�
! .does p; vX/;�

hpi; h�vpres.v/i
�

! .do p; vX/ j v 2 Tvplain � Tvaux; p 2 Tppron
�

[
˚�

hxi;X
�

! .x;X/;�
X; hyi

�
! .X; y/ j x 2 T � Tvrbs; y 2 T

�

[
˚
.X/ ! ."/

�

For sentences whose predicator is an auxiliary verb, the transformation made by G
proceeds as follows:

hheihisihmowingihtheihlawni

)Gis he Xhmowingihtheihlawni

)Gis he X mowing htheihlawni

)Gis he X mowing the hlawni

)Gis he X mowing the lawn
)Gis he mowing the lawn

The derivation starts by the application of a rule from the first set, which swaps the
subject and the predicator, and puts X behind them. Next, rules from the third set
rewrite every word hwi 2 I to w 2 T. Finally, X is removed from the sentential form.

The transformation of the sentences in which the predicator is a lexical verb is
more complicated:

hsheihusuallyihgetsihupihearlyi

)Gdoes she husuallyi get Xhupihearlyi

)Gdoes she usually get Xhupihearlyi

)Gdoes she usually get X up hearlyi

)Gdoes she usually get X up early
)Gdoes she usually get up early
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As the predicator is in third person singular, a rule from

n�
hpi; h�vthird.v/i

�
! .does p; vX/ j v 2 Tvplain � Tvaux; p 2 Tppron

o

is applied at the beginning of the derivation. It inserts does to the beginning of the
sentence, converts the predicator gets to its plain form get, and puts X behind it.
Next, rules from

n�
hxi;X

�
! .x;X/ j x 2 T � Tvrbs

o

rewrite every word hwi 2 I appearing in front of the predicator to w 2 T. Notice that
they do not rewrite verbs—in this way, the grammar verifies that the first verb in the
sentence was previously selected as the predicator. For instance, in the sentence

He has been working for hours:

has must be selected as the predicator; otherwise, the derivation is unsuccessful.
Finally, the grammar rewrites all words behind X, and erases X in the last step as in
the previous case.

Based on this intuitive explanation, we can see that the set of all input sentences K
described in the introduction of this example is transformed by G to �.G;K/, which
is the set of all interrogative sentences constructed from K. Therefore,

�
hheihisihmowingihtheihlawni; is he mowing the lawn

�
2 �.G;K/;�

hsheihusuallyihgetsihupihearlyi; does she usually get up early
�

2 �.G;K/

14.3.4 Question Tags

Question tags are special constructs that are primarily used in spoken language.
They are used at the end of declarative clauses, and we customarily use them to ask
for agreement or confirmation. For instance, in

Your sister is married; isn0t she‹

isn’t she is a question tag, and we expect an answer stating that she is married. The
polarity of question tags is always opposite to the polarity of the main clause—if the
main clause is positive, the question tag is negative, and vice versa. If the predicator
is an auxiliary verb, the question tag is formed by the same auxiliary verb. For lexical
verbs, the question tag is made by using do as

He plays the violin; doesn0t he‹
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There are some special cases that have to be taken into account. First, the verb be
has to be treated separately because it has more paradigms than other verbs and the
question tag for first person singular is irregular:

I am always right; aren0t I‹

Second, for the verb have, the question tag depends on whether it is used as an
auxiliary verb, or a lexical verb. In the first case, have is used in the question tag as

He has been working hard; hasn0t he‹

in the latter case, the auxiliary do is used as

They have a dog; don0t they‹

To explain the basic concepts as simply as possible, we omit the special cases of
the verb have in the following transformational scattered context grammar G, which
supplements a canonical clause with a question tag. For the same reason, we only
sketch its construction and do not mention all the created rules explicitly. In addition,
we suppose that the subject is represented by a personal pronoun.

Set G D .V , T, P, I/, where V D T [ I [ fX;Yg (X, Y are new symbols such
that X, Y … T [ I), and P is defined as follows:

P D
˚�

hpi; hwilli; hxi
�

! .p;will X;Yx won’t p/;�
hpi; hwon’ti; hxi

�
! .p;won’t X;Yx will p/;

	 	 	 j p 2 Tppron; x 2 T
�

[
˚�

hIi; hami; hxi
�

! .I; am X;Yx aren’t I/;�
hyoui; harei; hxi

�
! .you; are X;Yx aren’t you/;

	 	 	 j x 2 T
�

[
˚�

hpi; hvi; hxi
�

! .p; vX;Yx doesn’t p/;�
hqi; hvi; hxi

�
! .q; vX;Yx don’t q/ j

p 2 fhe, she, itg; q 2 Tppron � fhe, she, itg; v 2 Tvrbs � Tvaux; x 2 T
�

:::

[
˚�

hxi;X
�

! .x;X/;�
X; hyi;Y

�
! .X; y;Y/ j x 2 T � Tvrbs; y 2 T

�

[
˚
.X;Y/ ! ."; "/

�

First, we describe the generation of question tags for clauses whose predicator is an
auxiliary verb:
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hIihamihalwaysihrighti
)GI am XhalwaysiY right aren’t I
)GI am X always Y right aren’t I
)GI am always right aren’t I

Here, the rule

�
hIi; hami; hrighti

�
! .I; am X;Y right aren’t I/

initiates the derivation. When it finds I am at the beginning of the sentence, it
generates the question tag aren’t I at its end. In addition, it adds X behind I am
and Y in front of right aren’t I. Next, it rewrites all words from hwi 2 I to w 2 T. It
makes sure that the predicator was chosen properly by rules from

n�
hxi;X

�
! .x;X/ j x 2 T � Tvrbs

o

similarly to the previous example. In addition, rules from

n�
X; hyi;Y

�
! .X; y;Y/ j y 2 T

o

check whether the question tag was placed at the very end of the sentence. If not,
there remains some symbol from the input vocabulary behind Y that cannot be
rewritten. Finally, the last rule removes X and Y from the sentential form.

When the predicator is a lexical verb in present, the question tag is formed by
does or do depending on person in which the predicator occurs:

hheihplaysihtheihviolini

)Ghe plays XhtheiY violin doesn’t he
)Ghe plays X the violin Y doesn’t he
)Ghe plays the violin doesn’t he

The rest of the derivation is analogous to the first case.
Based on these derivations, we can see that the set of all input sentences K

described in the introduction of this example is transformed by G to �.G;K/, which
is the set of all sentences constructed from K that are supplemented with question
tags. Therefore,

�
hIihamihalwaysihrighti; I am always right aren’t I

�
2 �.G;K/;�

hheihplaysihtheihviolini; he plays the violin doesn’t he
�

2 �.G;K/
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14.3.5 Generation of Grammatical Sentences

The purpose of the next discussion, which closes this section, is six-fold—(1)
through (6), stated below.

(1) We want to demonstrate that ordinary scattered context grammars, discussed
earlier in this book, can be seen as a special case of transformational scattered
context grammars, whose applications are discussed in the present section.

(2) As pointed out in the notes following the general definition of a transformational
scattered context grammar (see Definition 14.2.1), there exists a close relation
between ordinary scattered context grammars and transformational scattered
context grammars. That is, for every scattered context grammar G D .V , T, P,
S/, there is a transformational scattered context grammar H D

�
V , T, P, fSg

�

satisfying

L.G/ D
n
y j .S; y/ 2 t

�
H; fSg

�o

and in this way, L.G/ is defined by H. Next, we illustrate this relation by a
specific example.

(3) From a syntactical point of view, we want to show that scattered context
grammars can generate an infinite non-context-free grammatical subset of
English language in a very succinct way.

(4) In terms of morphology—that is, the area of linguistics that studies the structure
of words and their generation—we demonstrate how to use transformational
scattered context grammars to create complicated English words within English
sentences so that the resulting words and sentences are grammatically correct.

(5) As stated in the beginning of the present section, so far we have assumed that the
set of common English words is finite. Next, we want to demonstrate that from
a strictly theoretical point of view, the set of all possible well-formed English
words, including extremely rare words in everyday English, is infinite. Indeed,
L, given next, includes infinitely many words of the form

.great�/igrandparents
.great�/igrandfathers
.great�/igrandmothers

for all i � 0, and purely theoretically speaking, they all represent well-formed
English words. Of course, most of them, such as

great � great � great � great � great � great
�great � great � great � grandfathers

cannot be considered as common English words because most people never use
them during their lifetime.
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(6) We illustrate that the language generation based upon scattered context gram-
mars may have significant advantages over the generation based upon classical
grammars, such as context-sensitive grammars.

Without further ado, consider the language L consisting of these grammatical
English sentences:

Your grandparents are all your grandfathers and all your grandmothers.
Your great-grandparents are all your great-grandfathers and all your
great-grandmothers.
Your great-great-grandparents are all your great-great-grandfathers
and all your great-great-grandmothers.
:::

In brief,

L D
˚
your fgreat-gigrandparents are all your fgreat-gigrandfathers
and all your fgreat-gigrandmothers j i � 0

�

Introduce the scattered context grammar G D .V , T, P, S/, where

T D fall; and; are; grandfathers; grandmothers; grandparents; great-; yourg

V D T [ fS; #g, and P consists of these three rules

.S/ ! .your #grandparents are all your #grandfathers
and all your #grandmothers/

.#; #; #/ ! .#great-; #great-; #great-/

.#; #; #/ ! ."; "; "/

Obviously, this scattered context grammar generates L; formally, L D L.G/.
Consider the transformational scattered context grammar H D

�
V , T, P, fSg

�
.

Notice that

L.G/ D
n
y j .S; y/ 2 t

�
H; fSg

�o

Clearly, L is not context-free, so its generation is beyond the power of context-
free grammars. It would be possible to construct a context-sensitive grammar that
generates L. However, a context-sensitive grammar like this would have to keep
traversing across its sentential forms to guarantee the same number of occurrences
of great- in the generated sentences. Compared to this awkward way of generating L,
the scattered context grammar G generates L in a more elegant, economical, and
effective way.
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In this section, we have illustrated how to transform and generate grammatical
sentences in English by using transformational scattered context grammars, which
represent a very natural linguistic apparatus straightforwardly based on scattered
context grammars. However, from a more general perspective, we can apply these
grammars basically in any area of science that formalizes its results by strings
containing some scattered context dependencies.



Chapter 15
Applications in Computational Biology

This chapter presents some case studies concerning biology. It consists of
Sects. 15.1, 15.2, and 15.3. Section 15.1 introduces simple case study using
jumping scattered context derivation in DNA processing. Section 15.2 presents
two case studies of biological organisms whose development is affected by some
abnormal conditions, such as a virus infection. From a more practical point
of view, Sect. 15.3 discusses parametric 0L grammars (see [PL90b]), which
represent a powerful and elegant implementation tool in the area of biological
simulation and modeling today. More specifically, we extend parametric 0L
grammars by context conditions and demonstrate their use in models of growing
plants.

15.1 DNA Processing with Jumping Scattered Context
Derivations

In this section, we add some remarks concerning application-related perspectives of
jumping scattered context grammars (see Sect. 5.2) in terms of molecular biology—
namely, DNA processing.

As already sketched, jumping grammars serve as grammatical models that allow
us to explore information processing performed in a discontinuous way adequately
and rigorously. Taking into account the way these grammars are conceptualized,
we see that they are particularly useful and applicable under the circumstances that
primarily concern the number of occurrences of various symbols or substrings rather
than their mutual context.

Case Study 15.1.1. Recall that a DNA is a molecule encoding genetic information
by a repetition of four basic units called nucleotides—namely, guanine, adenine,
thymine, and cytosine, denoted by letters G, A, T, and C, respectively. In terms
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of formal language theory, a DNA is described as a string over fG, A, T, Cg; for
instance,

GGGGAGTGGGATTGGGAGAGGGGTTTGCCCCGCTCCC

Suppose that a DNA-computing-related investigation needs to study all the strings
that contain the same number of As and Cs so all As precede Cs; for instance,
AGGAATCGCGTC is a proper string, but CGCACCGGTA is not. Consider the
jumping scattered context grammar

G D .f1; 2; 3; 4;G;A;T;Cg; fG;A;T;Cg;P; 1/

with P containing rules

.1/ ! .23/ .3/ ! .G3/

.3/ ! .T3/ .3/ ! .4/

.2; 4/ ! .A2; 4C/ .2/j.4/ ! ."/

Assume that the grammar works under 2). It first generates an arbitrary string
of Gs and Ts, in which there are no restrictions, by classical regular rules, since
2) does not change the behaviour of context-free rules. However, then it comes
the essential phase generating As and Cs. Indeed, the only context-sensitive rule
under 2) generates the equal number of As and Cs randomly scattered through
the resulting sentence, but always with As preceding Cs. For instance, previously
mentioned string AGGAATCGCGTC can be generated by the following derivation.

1 2)23 2)2G3
2)2GG3 2)2GGT3
2)2GGTG3 2)2GGTGG3
2)2GGTGGT3 2)2GGTGGT4
2)A2GGTGGT4C 2)AGGA2TG4CGTC
2)AGGAA2T4CGCGTC 2)

2AGGAATCGCGTC ut

As obvious, under 2), the grammar generates the language consisting of all the
strings satisfying the above-stated requirements. Therefore, as we can see, jumping
grammars may fulfill a useful role in studies related to DNA computing.

15.2 Biological Development and Its Grammatical
Simulation

Case Study 15.2.1. Consider a cellular organism in which every cell divides itself
into two cells during every single step of healthy development. However, when a
virus infects some cells, all of the organism stagnates until it is cured again. During
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Fig. 15.1 Healthy development

the stagnation period, all of the cells just reproduce themselves without producing
any new cells. To formalize this development by a suitable simple semi-conditional
L grammar (see Sect. 4.2.3), we denote a healthy cell and a virus-infected cell by A
and B, respectively, and introduce the simple semi-conditional 0L grammar

G D
�
fA;Bg;P;A

�

where P contains the following rules

.A ! AA; 0;B/ .B ! B; 0; 0/

.A ! A;B; 0/ .B ! A; 0; 0/

.A ! B; 0; 0/

Figure 15.1 describes G simulating a healthy development while Fig. 15.2 gives a
development with a stagnation period caused by the virus. ut

In the next case study, we discuss an 0L grammar that simulates the developmen-
tal stages of a red alga (see [Sal73]). Using context conditions, we can modify this
grammar so that it describes some unhealthy development of this alga that leads to
its partial death or degeneration.

Case Study 15.2.2. Consider an 0L grammar

G D
�
V;P; 1

�
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Fig. 15.2 Development with a stagnating period

where

V D
˚
1; 2; 3; 4; 5; 6; 7; 8; Œ; �

�

and the set of rules P contains

1 ! 23 2 ! 2 3 ! 24 4 ! 54 Œ ! Œ

5 ! 6 6 ! 7 7 ! 8Œ1� 8 ! 8 � ! �

From a biological viewpoint, expressions in fences represent branches whose
position is indicated by 8s. These branches are shown as attached at alternate sides
of the branch on which they are born. Figure 15.3 gives a biological interpretation of
the developmental stages formally specified by the next derivation, which contains
13 strings corresponding to stages (a) through (m) in this figure.
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Fig. 15.3 Healthy development

1 )G 23

)G 224

)G 2254

)G 22654

)G 227654

)G 228Œ1�7654

)G 228Œ23�8Œ1�7654

)G 228Œ224�8Œ23�8Œ1�7654

)G 228Œ2254�8Œ224�8Œ23�8Œ1�7654

)G 228Œ22654�8Œ2254�8Œ224�8Œ23�8Œ1�7654

)G 228Œ227654�8Œ22654�8Œ2254�8Œ224�8Œ23�8Œ1�7654

)G 228Œ228Œ1�7654�8Œ227654�8Œ22654�8Œ2254�8Œ224�8Œ23�8Œ1�7654

Death Let us assume that the red alga occurs in some unhealthy conditions under
which only some of its parts survive while the rest dies. This dying process starts
from the newly born, marginal parts of branches, which are too young and weak to
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survive, and proceeds toward the older parts, which are strong enough to live under
these conditions. To be quite specific, all the red alga parts become gradually dead
except for the parts denoted by 2s and 8s. This process is specified by the following
0L grammar G with forbidding conditions. Let W D fa j a 2 Vg. Then,

G D
�
V [ W;P; 1

�

where the set of rules P contains

.1 ! 23;W/ .1 ! 2; f3; 4; 5; 6; 7g/

.2 ! 2;W/ .2 ! 2;;/

.3 ! 24;W/ .3 ! "; f4; 5; 6; 7g/

.4 ! 54;W/ .4 ! ";;/

.5 ! 6;W/ .5 ! "; f4g/

.6 ! 7;W/ .6 ! "; f4; 5g/

.7 ! 8Œ1�;W/ .7 ! "; f4; 5; 6g/

.8 ! 8;W/

.Œ! Œ;;/

.� !�;;/

and for every a 2 V ,

.a ! a;;/ .a ! a;;/

Figure 15.4 pictures the dying process corresponding to the next derivation, whose
last eight strings correspond to stages (a) through (h) in the figure.

1 )�
G228Œ228Œ1�7654�8Œ227654�8Œ22654�8Œ2254�8Œ224�8Œ23�8Œ1�7654

)G228Œ228Œ1�7654�8Œ227654�8Œ22654�8Œ2254�8Œ224�8Œ23�8Œ1�7654

)G228Œ228Œ1�765�8Œ22765�8Œ2265�8Œ225�8Œ22�8Œ23�8Œ1�765

)G228Œ228Œ1�76�8Œ2276�8Œ226�8Œ22�8Œ22�8Œ23�8Œ1�76

)G228Œ228Œ1�7�8Œ227�8Œ22�8Œ22�8Œ22�8Œ23�8Œ1�7

)G228Œ228Œ1��8Œ22�8Œ22�8Œ22�8Œ22�8Œ23�8Œ1�

)G228Œ228Œ1��8Œ22�8Œ22�8Œ22�8Œ22�8Œ2�8Œ1�

)G228Œ228Œ2��8Œ22�8Œ22�8Œ22�8Œ22�8Œ2�8Œ2�

Degeneration Consider circumstances under which the red alga has degenerated.
During this degeneration, only the main stem was able to give a birth to new
branches while all the other branches lengthened themselves without any branching
out. This degeneration is specified by the forbidding 0L grammar G D .V [

fD;Eg;P; 1/, with P containing
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Fig. 15.4 Death of marginal branch parts
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.1 ! 23;;/ .2 ! 2;;/ .3 ! 24;;/ .4 ! 54;;/

.5 ! 6;;/ .6 ! 7;;/ .7 ! 8Œ1�; fDg/ .8 ! 8;;/

.Œ! Œ;;/ .� !�;;/ .7 ! 8ŒD�;;/

.D ! ED;;/ .E ! E;;/

Figure 15.5 pictures the degeneration specified by the following derivation, in which
the last 10 strings correspond to stages (a) through (j) in the figure:

1 )�
G 227654

)G228ŒD�7654

)G228ŒED�8ŒD�7654

)G228ŒE
2D�8ŒED�8ŒD�7654

)G228ŒE
3D�8ŒE2D�8ŒED�8ŒD�7654

)G228ŒE
4D�8ŒE3D�8ŒE2D�8ŒED�8ŒD�7654

)G228ŒE
5D�8ŒE4D�8ŒE3D�8ŒE2D�8ŒED�8ŒD�7654

)G228ŒE
6D�8ŒE5D�8ŒE4D�8ŒE3D�8ŒE2D�8ŒED�8ŒD�7654

)G228ŒE
7D�8ŒE6D�8ŒE5D�8ŒE4D�8ŒE3D�8ŒE2D�8ŒED�8ŒD�7654

)G228ŒE
8D�8ŒE7D�8ŒE6D�8ŒE5D�8ŒE4D�8ŒE3D�8ŒE2D�8ŒED�8ŒD�7654 ut

15.3 Simulation of Biological Development and Its
Implementation

In this section, we describe parametric 0L grammars (see [PL90b]) and their
extension by context conditions. We make this description from a purely practical
point of view to clearly demonstrate how these grammars are implemented and used.

Case Study 15.3.1. Parametric 0L grammars (see [PL90b, PHHM96a]) operate on
strings of modules called parametric words. A module is a symbol from an alphabet
with an associated sequence of parameters belonging to the set of real numbers.
Rules of parametric 0L grammars are of the form

predecessor Œ W logical expression � ! successor

The predecessor is a module having a sequence of formal parameters instead of real
numbers. The logical expression is any expression over predecessor’s parameters
and real numbers. If the logical expression is missing, the logical truth is assumed.
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Fig. 15.5 Degeneration
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The successor is a string of modules containing expressions as parameters; for
example,

A.x/ W x < 7 ! A.x C 1/D.1/B.3� x/

Such a rule matches a module in a parametric word provided that the symbol of the
rewritten module is the same as the symbol of the predecessor module, both modules
have the same number of parameters, and the value for the logical expression is true.
Then, the module can be rewritten by the given rule. For instance, consider A.4/.
This module matches the above rule since A is the symbol of rule’s predecessor,
there is one actual parameter, 4, in A.4/ that corresponds to the formal parameter x
in A.x/, and the value for the logical expression x < 7 with x D 4 is true. Thus, A.4/
can be rewritten to A.5/D.1/B.�1/.

As usual, a parametric 0L grammar can rewrite a parametric word provided that
there exists a matching rule for every module that occurs in it. Then, all modules are
simultaneously rewritten, and we obtain a new parametric word.

Parametric 0L grammars with context conditions. Next, we extend the parametric
0L grammars by permitting context conditions. Each rule of a parametric 0L
grammar with permitting conditions has the form

predecessor Œ ? context conditions� Œ W logical expression� ! successor

where predecessor, logical expression, and successor have the same meaning as
in parametric 0L grammars, and context conditions are some permitting context
conditions separated by commas. Each condition is a string of modules with formal
parameters. For example, consider

A.x/ ? B.y/; C.r; z/ W x < y C r ! D.x/E.y C r/

This rule matches a module in a parametric word w provided that the predecessor
A.x/ matches the rewritten module with respect to the symbol and the number of
parameters and there exist modules matching to B.y/ and C.r; z/ in w such that the
value for logical expression x < y C r is true. For example, this rule matches A.1/
in C.3; 8/D.�1/B.5/H.0; 0/A.1/F.3/ because there are C.3; 8/ and B.5/ such that
1 < 5 C 3 is true. If there are more substrings matching the context condition, any
of them can be used.

Having described the parametric 0L grammars with permitting conditions, we
next show how to use them to simulate the development of some plants.

In nature, developmental processes of multicellular structures are controlled
by the quantity of substances exchanged between modules. In the case of plants,
growth depends on the amount of water and minerals absorbed by the roots and
carried upward to the branches. The model of branching structures making use of
the resource flow was proposed by Borchert and Honda in [BH84]. The model is
controlled by a flux of resources that starts at the base of the plant and propagates
the substances toward the apexes. An apex accepts the substances, and when the
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quantity of accumulated resources exceeds a predefined threshold value, the apex
bifurcates and initiates a new lateral branch. The distribution of the flux depends on
the number of apexes that the given branch supports and on the type of the branch—
plants usually carry greater amount of resources to straight branches than to lateral
branches (see [BH84] and [PHHM96a]).

The following two examples (I) and (II) illustrate the idea of plants simulated by
parametric 0L grammars with permitting conditions.

(I) Consider the model

start W I.1; 1; eroot/A.1/
p1 W A.id/ ? I.idp; c; e/ W id DD idp ^ e � eth

! ŒC.˛/ I.2 � id C 1; �; 0/

A.2 � id C 1/�=.�/ I.2 � id; 1 � �; 0/A.2 � id/
p2 W I.id; c; e/ ? I.idp; cp; ep/ W idp DD bid=2c

! I.id; c; c � ep/

This L grammar describes a simple plant with a constant resource flow from
its roots and with a fixed distribution of the stream between lateral and straight
branches. It operates on the following types of modules.

• I.id; c; e/ represents an internode with a unique identification number id, a
distribution coefficient c, and a flux value e.

• A.id/ is an apex growing from the internode with identification number
equal to id.

• C.'/ and =.'/ rotate the segment orientation by angle ' (for more
information, consult [PHHM96a]).

• Œ and � enclose the sequence of modules describing a lateral branch.

We assume that if no rule matches a given module X.x1; : : : ; xn/, the module is
rewritten by an implicit rule of the form

X.x1; : : : ; xn/ ! X.x1; : : : ; xn/

That is, it remains unchanged.
At the beginning, the plant consists of one internode I.1; 1; eroot/ with apex

A.1/, where eroot is a constant flux value provided by the root. The first rule,
p1, simulates the bifurcation of an apex. If an internode preceding the apex
A.id/ reaches a sufficient flux e � eth, the apex creates two new internodes I
terminated by apexes A. The lateral internode is of the form I.2�idC1; �; 0/ and
the straight internode is of the form I.2� id; 1��; 0/. Clearly, the identification
numbers of these internodes are unique. Moreover, every child internode can
easily calculate the identification number of its parent internode; the parent
internode has idp D bid=2c. The coefficient � is a fraction of the parent flux to
be directed to the lateral internode. The second rule, p2, controls the resource
flow of a given internode. Observe that the permitting condition I.idp; cp; ep/
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with idp D bid=2c matches only the parent internode. Thus, p2 changes the flux
value e of I.id; c; e/ to c � ep, where ep is the flux of the parent internode, and
c is either � for lateral internodes or 1 � � for straight internodes. Therefore,
p2 simulates the transfer of a given amount of parent’s flux into the internode.
Figure 15.6 pictures 12 developmental stages of this plant with eroot, eth, and
� set to 12, 0:9, and 0:4, respectively. The numbers indicate the flow values of
internodes.

It is easy to see that this model is unrealistically simple. Since the model
ignores the number of apexes, its flow distribution does not depend on the
size of branches, and the basal flow is set to a constant value. However,
it sufficiently illustrates the technique of communication between adjacent
internodes. Thus, it can serve as a template for more sophisticated models of
plants, such as the following model.

(II) We discuss a plant development with a resource flow controlled by the number
of apexes. This example is based on Example 17 in [PHHM96a].

start W N.1/ I.1; straight; 0; 1/A.1/
p1 W N.k/ ! N.k C 1/

p2 W I.id; t; e; c/ ? N.k/; A.id/
W id DD 1

! I.id; t; �02.k�1/�k
; 1/

p3 W I.id; t; e; c/ ? N.k/; I.ids; ts; es; cs/; I.idl; tl; el; cl/

W id DD 1 ^ ids DD 2 � id ^ idl DD 2 � id C 1

! I.id; t; �02.k�1/�k
; cs C cl/

p4 W I.id; t; e; c/ ? I.idp; tp; ep; cp/; I.ids; ts; es; cs/; I.idl; tl; el; cl/

W idp DD bid=2c ^ ids DD 2 � id ^ idl DD 2 � id C 1

! I.id; t; ı.t; ep; cp; c/; cs C cl/

p5 W Id.id; t; e; c/ ? I.idp; tp; ep; cp/; A.ida/

W idp DD bid=2c ^ ida DD id
! I.id; t; ı.t; ep; cp; c/; 1/

p6 W A.id/ ? I.idp; tp; ep; cp/

W id DD idp ^ ep � eth

! ŒC.˛/ I.2 � id C 1; lateral; ep � .1 � 
/; 1/A.2 � id C 1/�

=.�/ I.2 � id; straight; ep � 
; 1/A.2 � id/

This L grammar uses the following types of modules.

• I.id; t; e; c/ is an internode with a unique identification number id, where t
is a type of this internode, t 2 fstraight; lateralg, e is a flux value, and c is
a number of apexes the internode supports.

• A.id/ is an apex terminating the internode id.
• N.k/ is an auxiliary module, where k is the number of a developmental

cycle to be done by the next derivation.
• C.'/, =.'/, Œ and � have the same meaning as in the previous example.
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Fig. 15.6 Developmental stages of the plant generated by (I)
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The flux distribution function, ı, is defined as

ı.t; ep; cp; c/ D

(
ep � ep.1 � 
/..cp � c/=c/ if t D straight;

ep.1 � 
/.c=.cp � c// if t D lateral

The development starts from N.1/ I.1; straight; 0; 1/A.1/ containing one
straight internode with one apex. In each derivation step, by application
of p4, every inner internode I.id; t; e; c/ gets the number of apexes of its
straight (I.ids; ts; es; cs/) and lateral (I.idl; tl; el; cl/) descendant. Then, this
number is stored in c. Simultaneously, it accepts a given part of the flux ep

provided by its parent internode I.idp; tp; ep; cp/. The distribution function
ı depends on the number of apexes in the given branch and in the sibling
branch, and on the type of this branch (straight or lateral). The distribution
factor 
 determines the amount of the flux that reaches the straight branch in
case that both branches support the same number of apexes. Otherwise, the
fraction is also affected by the ratio of apex counts. Rules p2 and p3 rewrite
the basal internode, calculating its input flux value. The expression used for
this purpose, �02.k�1/�k

, was introduced by Borchert and Honda to simulate a
sigmoid increase of the input flux; �0 is an initial flux, k is a developmental
cycle, and � is a constant value scaling the flux change. Rule p5 rewrites
internodes terminated by apexes. It keeps the number of apexes set to 1, and
by analogy with p4, it loads a fraction of parent’s flux by using the ı function.
The last rule, p6, controls the addition of new segments. By analogy with p1
in the previous example, it erases the apex and generates two new internodes
terminated by apexes. Figure 15.7 shows 15 developmental stages of a plant
simulation based on this model.

Obviously, there are two concurrent streams of information in this model.
The bottom-up (acropetal) stream carries and distributes the substances
required for the growth. The top-down (basipetal) flow propagates the number
of apexes that is used for the flux distribution. A remarkable feature of this
model is the response of a plant to a pruning. Indeed, after a branch removal,
the model redirects the flux to the remaining branches and accelerates their
growth.

Let us note that this model is a simplified version of the model described
in [PHHM96a], which is very complex. Under this simplification, however,
cp � c may be equal to zero as the denominator in the distribution function
ı. If this happens, we change this zero value to the proper non-zero value so
that the number of apexes supported by the parent internode corresponds to
the number of apexes on the straight and lateral branches growing from the
parent internode. Consult [PHHM96a] for a more appropriate, but also more
complicated solution of this problem.
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Fig. 15.7 Developmental stages of the plant generated by (II)

From the presented examples, we see that with permitting conditions, parametric
0L grammars can describe sophisticated models of plants in a very natural way.
Particularly, compared to the context-sensitive L grammars, they allow one to refer
to modules that are not adjacent to the rewritten module, and this property makes
them more adequate, succinct, and elegant. ut



Part VI
Conclusion

This concluding part closes the entire book by adding several remarks concerning
its coverage. It consists of a single chapter—Chap. 16. This chapter first briefly
summarizes all the material covered in the text. Furthermore, it sketches many brand
new investigation trends and long-time open problems. Finally, it makes several
bibliographical remarks.



Chapter 16
Concluding Remarks

This three-section chapter closes the book by adding several remarks concerning
its coverage. Section 16.1 briefly summarizes all the material covered in the text.
Furthermore, Sect. 16.2 sketches many brand new investigation trends as well as
points out long-time open problems. Finally, it makes several bibliographical and
historical remarks.

16.1 Summary

This book deals with formal language theory, which represents a branch of
mathematics that formalizes languages and devices that define them (see [Med14]).
In other words, this theory represents a mathematically systematized body of
knowledge concerning languages in general. It defines languages as sets of finite
sequences consisting of symbols. As a result, this general definition encompasses
almost all languages, including natural languages as well as artificial languages,
such as programming languages.

The strictly mathematical approach to languages necessitates an introduction
of mathematical systems that define them. Traditionally, these systems are based
upon finitely many rules by which they sequentially rewrite strings, and that is why
they are called language models. They are classified into two basic categories—
grammars and automata. Grammars define strings of their language so their
rewriting process generates them from a special start symbol. Automata define
strings of their language by rewriting process that starts from these strings and ends
in a special set of strings, usually called final configurations. However, apart from
these traditional versions of grammars and automata, language theory have also
developed several systems that rewrite words in a non-traditional way. These non-
traditional versions of rewriting systems used as modern language models represent
the principal subject of this book.

© Springer International Publishing AG 2017
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Many of the modern language models have their great advantages over their
traditional counterparts. From a practical viewpoint, an important advantage of these
modern language models consists in controlling their language-defining process
and, therefore, operating in a more deterministic way than classical language
models, which perform their derivations in a quite traditional way. Indeed, in an
ever-changing environment in which real language processors work, the modern
language models adequately reflect and simulate real communication technologies
applied in such real-world areas as various engineering techniques for language
analysis. Most importantly, the modern versions of language models are stronger
than their traditional counterparts. Considering these significant advantages and
properties, modern language models fulfill a highly beneficial role in many kinds
of language-related work conducted by a broad variety of scientists, ranging from
mathematicians through computer scientists up to linguists and biologists.
This book restricted its principal attention to these crucially important investigation
areas concerning modern language models–their properties, transformations and
applications. Next, we recall their significance, and in general, we sum up their
coverage in the book.

First, concerning properties, the power of the language models under considera-
tion represents perhaps the most important property concerning them, so we always
determined the language family defined by these models. A special attention was
also paid to algorithms that arrange modern language models so they satisfy some
prescribed properties while the generated languages remain unchanged because
many language processors strictly require their satisfaction. From a theoretical
viewpoint, these properties frequently simplified proofs demonstrating results about
the models.

Second, transformations of language models were central to this book, too.
Specifically, transformations that reduce the models represent one of its important
investigation areas because reduced versions of these models define languages
in a succinct and easy-to-follow way. As obvious, this reduction simplifies the
development of language processing technologies, which then work economically
and effectively. Of course, the same languages can be defined by different language
models. We obviously tend to define them by the most appropriate models under
given circumstances. Therefore, whenever discussing different types of equally
powerful language models, we also presented transformations that converted them
to each other. More specifically, given a language model of one type, we explained
how to convert it to a language model of another equally powerful type so both the
original model and the model produced by this conversion define the same language.

Finally, the book demonstrated applications of modern language models. It
narrowed its attention to grammars rather than automata. First, it described these
applications and their perspectives from a general viewpoint. Then, it gave many
case studies to show quite specific real-world applications concerning computational
linguistics and biology.

Part I, consisting of Chaps. 1 through 2, gives an introduction to this book
in order to express all its discussion clearly and make the book completely self-
contained. It places all the coverage of the book into scientific context and reviews
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important mathematical concepts with a focus on formal language theory. Chapter 1
gives the mathematical background of this book. It reviews all the necessary
mathematical concepts to grasp the topics covered in the book. These concepts
primarily include fundamental areas of discrete mathematics. First, this chapter
reviews basic concepts from set theory. Then, it gives the essentials concerning
relations and their crucially important special cases, namely, functions. Finally,
this chapter reviews fundamental concepts from graph theory. Chapter 2 covers
selected areas of formal language theory needed to follow the rest of this book.
It introduces the basic terminology concerning strings, languages, operations, and
closure properties. Furthermore, it overviews a large variety of grammars, automata
and language families resulting from them. Apart from the classical rudiments of
formal language theory, Chap. 2 covers several lesser-known areas of this theory,
such as fundamentals concerning parallel grammars, because these areas are also
needed to grasp some topics of this book.

Part II consists of Chaps. 3 through 6. It deals with the most important modern
versions of grammars. Chapter 3 gives the fundamentals of grammars that regulate
their generation process by additional mechanisms, based upon simple mathematical
concepts, such as finite sets of symbols. Chapter 4 studies grammars that generate
their languages in parallel and, thereby, accelerate this generation significantly. First,
it studies partially parallel generation of languages, after which it investigates the
totally parallel generation of languages. Chapter 5 explores grammars that work on
their words in a discontinues way. Chapter 6 studies the generation of languages
based on algebraic restrictions. In particular, it examines grammatical generation
defined over free groups.

Part III consists of Chaps. 7 through 10. It covers the essential modern versions
of automata. In many respects, it parallels what Part II covers in terms of grammars.
Chapter 7 gives the fundamentals of regulated automata. Similarly to grammars
discussed in Chap. 5, Chap. 8 studies automata that jump across the words they
work on discontinuously. Chapter 9 discusses automata with deep pushdown lists,
which can be modified deeper than on their top. Chapter 10 studies automata that
work over free groups.

Part IV, which consists of Chaps. 11 and 12, covers important language-defining
devices that combine other language models. Chapter 11 untraditionally combines
grammars and automata in terms of the way they operate. Specifically, it studies
how to generate languages by automata although traditionally, languages are always
generated by grammars. Chapter 12 studies the generation of languages by several
grammars that work in a simultaneously cooperative way.

Part V consists of Chaps. 13 through 15. It discusses applications of language
models studied earlier in the book. First, Chap. 13 covers these applications and their
perspectives from a rather general viewpoint. Then, more specifically, Chaps. 14
and 15 describe applications in computational linguistics and molecular biology,
respectively. Both chapters contain several case studies of real-world applications
described in detail.

Part VI consists of a single chapter—Chap. 16, which closes the entire book
by adding several remarks concerning its coverage. It briefly summarizes all the
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material covered in the text. Furthermore, it sketches many brand new investigation
trends and long-time open problems. Finally, it makes several bibliographical and
historical remarks.

16.2 Modern Trends

In this section, we point out three new directions in the investigation of modern
language models. In its conclusion, we make several suggestions regarding their
future investigation. We also point out many open problems.

16.2.1 An Algebraic Approach to Modern Versions
of Grammars and Automata

As demonstrated in Chaps. 6 and 10, from an algebraic viewpoint, various kinds
of modern language models can be viewed as restrictions placed upon relations
by which the language models define their languages. Indeed, several modern
versions of grammars are based on restrictions placed upon derivations while
modern versions of automata restrict the way they make moves. From this point of
view, the investigation of modern grammars is closely related to many algebraically
oriented studies in formal language theory. Investigate how to replace some of the
previous regulating mechanisms by suitable relation-domain restrictions and vice
versa. Furthermore, study how some well-known special cases of these relations
affect the resulting language-defining power. Specifically, perform this study under
the assumptions that these relations represent functions, injections, or surjections.
The algebraic theory of formal languages and their automata is discussed in a
great number of articles and books, some of which are summarized in Chapters 6
through 11 of [RS97a]. Furthermore, [Gin75, vzGG03, GN03, Ito03, Tru98] repre-
sent a systematic introduction to this area of formal language theory.

16.2.2 Combining Grammars and Automata

In formal language theory, the overwhelming majority of language-defining devices
is based on language models that represent either grammars or automata. Although
it is obviously quite natural to design language-defining devices based on a
combination of both grammars and automata and, thereby, make the scale of
language-defining models much richer and broader, only a tiny minority of these
models is designed in this combined way; some of them are covered in Sect. 3.2 and
Chap. 11.
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In terms of modern language-defining models, state grammars and so-called #-
rewriting systems represent language models that have features of both grammars
and automata. Introduced several decades ago, state grammars (see Sect. 3.2)
represent a classical grammatical model of regulation, which has been covered
in this monograph in detail. On the other hand, #-rewriting systems have been
introduced relatively recently (see [Kři08, KMS07, KM07, Kři07, KMS06a]). These
systems generate languages just like any grammars. On the other hand, like
automata, they use simple state-based regulation during their language-generation
process. These systems characterize an infinite hierarchy of language families
resulting from programmed grammars of finite index (see [KMS06a]). As a result, to
put it from a broader perspective, systems of this combined kind are naturally related
to some classical results about formal languages, on which they can shed light in an
modern way. Therefore, it is highly expectable that formal language theory will
introduce and investigate many more language models based upon a combination of
modern versions of grammars and automata.

16.2.3 Modern Translation-Defining Models

Modern versions of grammars and automata discussed in this book generate
languages. As obvious, they can be easily and naturally modified to modern
translation-defining models by analogy with the modification of context-free gram-
mars and pushdown automata to context-free translation grammars and pushdown
transducers, respectively (see [AU72]). Most probably, formal language theory will
open their investigation of modern translation-defining models by studying their
properties from a theoretical point of view by analogy with other well-known studies
of formal translation, including [AU72, ALSU06, Bro89, Cho02, Gri71, LRS76,
Pag81, SSS87]. Simultaneously, however, we can expect a struggle to apply them
to the translation of programming as well as natural languages. As a matter of fact,
to some extent, [ČHM12, HM12, Hor12, HM11] have already sketched applications
concerning the specification and translation of natural languages in this way.

16.2.4 Open Problem Areas

Throughout this book, we have already formulated many open problems. We close
the present section by selecting and repeating the most important questions, which
deserve our special attention. To see their significance completely, however, we
suggest that the reader returns to the referenced parts of the book in order to view
these questions in the full context of their formulation and discussion in detail.

I. Over the last four decades, formal language theory has struggled to determine
the precise impact of erasing rules to the power of modern versions of gram-
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mars. Indeed, it is still an open question whether regular-controlled, matrix,
programmed, and forbidding grammars are equivalent to their propagating
versions (see Chap. 3). Sections 3.3 presents a partial solutions to this problem
in terms of regular-controlled grammars. However, in general, this important
question has not been answered yet. For some very recent results regarding
this topic, see [Zet09, Zet10, Zet11b, Zet11a].

II. By Theorem 4.1.6, we can convert any propagating scattered context grammar
into an equivalent context-sensitive grammar. However, it is a long-standing
open problem whether these two types of grammars are, in fact, equivalent.

III. Consider the results in Sect. 4.1.4 concerning the reduction of scattered con-
text grammars. While one-nonterminal versions of scattered context grammars
do not generate the entire family of recursively enumerable languages (see
Theorem 4.1.13), their two-nonterminal versions do (see Theorem 4.1.20).
Therefore, regarding the number of nonterminals, this open problem area has
been completely solved. By Theorem 4.1.21, the two-context-sensitive rule
versions of scattered context grammars characterize the family of recursively
enumerable languages. On the other hand, the generative power of their one-
context-sensitive rule versions has not been determined yet.

IV. All the uniform rewriting discussed in Chap. 3 is obtained for grammars
with erasing rules. In the proof techniques by which we have achieved this
rewriting, these rules fulfill a crucial role. Indeed, these techniques cannot be
straightforwardly adapted for grammars without erasing rules. Can we achieve
some uniform rewriting for grammars without erasing rules in a different way?

V. Return to LRC-ET0L grammars and their variants, discussed in Sect. 4.2.4.
Recall that ET0L and EPT0L grammars have the same generative power (see
Theorem 2.3.41). Do LF-E0L and LF-EP0L grammars have the same power?
Are LP-E0L and LP-EP0L grammars equally powerful? What is the relation
between the language families generated by ET0L grammars and by LP-E0L
grammars? What is the generative power of LF-E0L grammars?

VI. Chapter 12 gives the basics of multigenerative grammar systems. Recall that
they are based upon a simultaneous generation of several strings, which are
composed together by some basic operation, such as concatenation, after
their generation is completed. Consider other operations, like intersection, and
study languages generated in this way by multigenerative grammar systems.
Furthermore, study multigenerative grammar systems based on special cases
of context-free grammars. Specifically, what is the generative power of
multigenerative grammar systems based upon regular or linear grammars?

VII. In Sect. 7.2.1, we have proved that state-controlled and transition-controlled
finite automata regulated by languages generated by propagating programmed
grammars with appearance checking characterize the family of recursively
enumerable languages (see Theorem 7.2.17 and Corollary 7.2.18). Let us point
out, however, that these automata are, in a general case, non-deterministic.
Does this characterization hold in terms of their deterministic versions, too?
Furthermore, try to achieve an analogical characterization of the family of
context-sensitive languages.
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VIII. Consider jumping finite automata and their general versions, discussed in
Chap. 8. Theorem 8.2.11 gives a necessary and sufficient condition for a
language to belong to the family defined by jumping finite automata. Does
there exist a similar necessary and sufficient condition for general jumping
finite automata as well? Furthermore, how precisely do left jumps affect the
power of these automata? Are there any undecidable problems concerning the
family of languages accepted by these automata?

IX. Reconsider deep pushdown automata, discussed in Chap. 9. In its conclusion,
this section discusses two special types of these automata—deterministic deep
pushdown automata and deep pushdown automata whose expansions can erase
symbols inside of their pushdowns. Determine the language families defined
by these two variants.

16.3 Bibliographical Remarks

This section gives an overview of the crucially important studies published on
the subject of this book from a historical perspective. As this book represents
primarily a theoretically oriented treatment, we concentrate our attention primarily
on theoretical studies.

Although the present treatment of modern versions of grammars and automata
is self-contained, some background in formal language theory is definitely helpful
to grasp the material of this book easily. As an introduction to formal lan-
guage theory, we recommend [Med00a, FB94, Gin75, Har78, HU69, Kel95, LP81,
Mar02, MAK88, Sal73, Sip06]. The three-volume Handbook of Formal Languages
(see [RS97a, RS97b, RS97c]) gives an overview of the recent important trends in
formal language theory.

For a summary of the fundamental knowledge about modern rewriting published
by 1989, consult [DP89]. Furthermore, [MVMP04] and Chapter 3 of [RS97b]
give a brief overview of recent results concerning regulated grammars. Refer-
ence [MZ10] summarizes recent results concerning various transformations of
regulated grammars. More specifically, it concentrates its attention on algorithms
that transform these grammars and some related modern language-defining models
so the resulting transformed models are equivalent and, in addition, satisfy some
prescribed properties.

16.3.1 Context-Based Grammatical Models

The classical normal forms from Sect. 3.1.1 were established in [Pen74, Kur64,
Gef91]. The two new normal forms appearing in this book were recently introduced
in [MZ14]. Consult page 180 in [RS97a] for a summary of normal forms of phrase-
structure grammars.
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The uniform generation of sentences by phrase-structure grammars, discussed in
Sect. 3.1.1, has been investigated in [Med98b].

Conditional grammars were introduced in [Fri68]. Several variants of these gram-
mars were discussed in [CV92, DPS93, EKR85, EPR94, Med91a, Kel84, Kel89,
KR81, Krá73, Nav70, P7̆9, P8̆5, Roz77, RS78, Urb83, Vas03]. The crucial concepts
of these grammars and results concerning them are summarized in [MCV93].

Random context grammars were introduced in [vdW70]. Strictly speaking,
in [vdW70], their definition coincides with the definition of permitting grammars
in this book. Forbidding grammars, also known as N-grammars (see [Pen75]),
together with other variants of random context grammars were originally studied
by Lomkovskaya in [Lom72a, Lom72b, Lom72c]. After these studies, many more
papers discussed these grammars, including [vdWE00, vdWE02, Mas09a, AES06,
EW03, Mv05, Zet10, EW13]. In [DM12, MM09, Mas10b], simplified versions of
random context grammars, called restricted context-free grammars, were studied.
Moreover, [GMM10, CVMV09, Mas09b, KM11] studied grammar systems with
their components represented by random context grammars.

Generalized forbidding grammars were introduced in [Med90b] and further
investigated in [Mv03a, MM07a, Mv05].

Semi-conditional and simple semi-conditional grammars were introduced and
investigated in [P8̆5] and [MG94], respectively. Their descriptional complexity was
studied in [Mv02, Oku09, MM07b, Mv05, Vas03, Vas05, Mas06].

Originally, scattered context grammars were defined in [GH69]. Their original
version disallowed erasing rules, however. Four years later, [Vir73] generalized
them to scattered context grammars with erasing rules (see also [Med95a]). The
following studies represent the most important studies that have discussed these
grammars: [GH69, Vir73, Cre73, Mas07b, Med95a, MR71, P8̆2, MT08a, May72,
Fer96, GW89, Vas05, ER79, Med91b, Med93, FM03b, FM03a, Krá69, Mas09a,
MM08, Med97, Med98a, Med00c, Med00b, Med01, Med02, Med03a, Med03b,
Mv05, MT05, MT07a, KMv05, MT07c, MT07b, MT08b, MMv08, MT09, Tec07,
Tec08, CVV10, Mas10a, Mv11]. Uniform generation of languages by scattered con-
text grammars was investigated in [Med01]. For an in-depth overview of scattered
context grammars and their applications, consult [MT10] and the references given
therein.

Sequential rewriting over word monoids has been studied in [Med90a, Med96].
Moreover, [BBM07a, BBM05, BBM07b] investigate sequential rewriting over free
groups.

16.3.2 Rule-Based Grammatical Regulation

Grammars regulated by regular control languages over the set of rules were
introduced in [GS68]. Their workspace conditions were established in [MZ11] (see
also [Zem10]). Generation of sentences with their parses by these grammars was
investigated in [MZ13b].
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Matrix grammars were first defined and studied in [Abr65]. For some very
recent results regarding the elimination of erasing rules from these grammars,
see [Zet09, Zet10, Zet11b, Zet11a]. This book originally introduces even matrix
grammars; however, they generalize the concept of simple matrix grammars which
were introduced in [Iba70] and simultaneously in [KM70] as tuple grammars. Their
leftmost versions were studied in [Mau73].

Programmed grammars were introduced in [Ros69]. Their non-determinism has
been investigated in [MVZ11, BBDC06, BH06, Vrá11, Vrá12]. Some other recent
papers include [FS97, Fer03, FFOR07].

State grammars were defined by Kasai in [Kas70]. A generalized version of these
grammars with erasing rules was originally studied in [HM88].

16.3.3 Modern Parallel Grammars

In general, modern versions of ET0L grammars have been studied in [Mv03b,
RS78, Sol76, Š03, DP89, Mv05, Das07, BCVHV05, Das07, Sos03, DP89].
Context-conditional ET0L grammars were studied in Section 4.2.1 in [Mv05].
Forbidding ET0L grammars were introduced and investigated in [Mv03b]. Simple
semi-conditional ET0L grammars were introduced in [Š03] and further studied
in [KM04]. Left versions of ET0L grammars were introduced and studied
in [MZ13a]. Their nonterminal complexity was investigated in [Zem11]. Parallel
rewriting over word monoids was studied in [Med92, KMv05].

Let us finally add that there also exist modern versions of (uniformly) limited
ET0L grammars (see [W9̈3, W9̈4, W9̈5, W9̈6, FW98]) and ET0L grammars reg-
ulated by other mechanisms, such as mechanisms based upon control languages
(see [Asv77, GR74, DF84] and Chapter 8 in [DP89]).

16.3.4 Modern Versions of Grammar Systems

Multigenerative grammar systems based upon leftmost derivations (see Sect. 12.2)
were introduced in [LM06]. Their general versions were studied in [LM10b].
Controlled pure grammar systems were introduced and investigated in [MZ12b].
Moreover, [MVZ14] gives a preliminary solution to four open problems raised
in [MZ12b].

16.3.5 Modern Versions of Automata

Self-regulated finite and pushdown automata were introduced in [MM07c]. Finite
automata regulated by control languages were introduced in [MZ14]. For a study of
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finite automata controlled by Petri nets, see [JKZ07]. Regulated pushdown automata
were introduced in [KM00]. Their special versions, referred to as one-turn linear-
regulated pushdown automata, were studied in [KM01] (see also [KM05, Ryc09]).
Blackhole pushdown automata, which are closely related to regulated pushdown
automata, were introduced and investigated in [ECV10, CVMV11]. Deep pushdown
automata were proposed and studied in [Med06]. For more results related to these
automata, consult [KMS06c, KMS06b, LM10a, Sol12, QS09]. Finite automata over
free groups were studied in [DM00, MS01]. Pushdown automata with pushdowns
defined over free groups were introduced and studied in [BB06]. #-rewriting systems
were recently introduced and studied in [Kři08, KMS07, KM07, Kři07, KMS06a].

16.3.6 Discontinuous Rewriting

Jumping grammars, discussed in Chap. 5, were introduced in [KM15]. Jumping
finite automata from Chap. 8 were introduced in [MZ12a]. Several open problems
stated there were solved in [Mad16, Vor15]. Other related models involving
discontinuity include nested word automata [AM09], bag automata [DEM03], and
input-revolving finite automata [BBHK09].
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Index to Models and Language Families
They Define

Used Abbreviations

prop. Propagating

a.c. Appearance checking

0L Zero-sided Lindenmayer

Family Page Formal model

FIN 17 –

RE 26 Phrase-structure grammar

MON 27 Monotone phrase-structure grammar

CS 27 Context-sensitive grammar

CF 27 Context-free grammar

LIN 28 Linear grammar

CF�" 28 Prop. context-free grammar

REG 28 Regular grammar

RLIN 28 Right-linear grammar

CFfin 29 Context-free grammar of finite index

0L 47 0L grammar

E0L 47 Extended 0L grammar

EP0L 47 Extended prop. 0L grammar

ET0L 47 Extended tabled 0L grammar

EPT0L 47 Extended prop. tabled 0L grammar

EPDAf 52 Extended pushdown automaton accepting by final state

EPDAe 52 Extended pushdown automaton accepting by empty pushdown
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Family Page Formal model

EPDAef 52 Extended pushdown automaton accepting by final state
and empty pushdown

DPDA 53 Deterministic pushdown automaton

PDAf 53 Pushdown automata accepting by final state

PDAe 53 Pushdown automata accepting by empty pushdown

PDAef 53 Pushdown automata accepting by final state
and empty pushdown

PSŒ:j� 68 Phrase-structure grammar with j-l-uniform rewriting

PSŒj:� 68 Phrase-structure grammar with j-r-uniform rewriting

CG 77 Conditional grammar

CG�" 77 Prop. conditional grammar

RC 84 Random context grammar

RC�" 84 Prop. random context grammar

For 84 Forbidding grammar

For�" 84 Prop. forbidding grammar

Per 84 Permitting grammar

Per�" 84 Prop. permitting grammar

GF 89 Generalized forbidding grammar

GF�" 89 Prop. generalized forbidding grammar

SSC 107 Simple semi-conditional grammar

SSC�" 107 Prop. simple semi-conditional grammar

ST 140 State grammar

STn 140 n-limited state grammar

rC 145 Regular-controlled grammar

rC�" 145 Prop. regular-controlled grammar

rCac 145 Regular-controlled grammar with a.c.

rC�"
ac 145 Prop. regular-controlled grammar with a.c.

M 147 Matrix grammar

M�" 147 Prop. matrix grammar

Mac 147 Matrix grammar with a.c.

M�"
ac 147 Prop. matrix grammar with a.c.

nEMm 150 Even matrix grammar of mode m and degree n

EMm 150 Even matrix grammar of mode m

P 163 Programmed grammar

P�" 163 Prop. programmed grammar

Pac 163 Programmed grammar with a.c.

P�"
ac 163 Prop. programmed grammar with a.c.

kP 163 Programmed grammar of index k

kP�" 163 Prop. programmed grammar of index k

kPac 163 Programmed grammar of index k with a.c.

(continued)
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Family Page Formal model

kP�"
ac 163 Prop. programmed grammar of index k with a.c.

SC 170 Scattered context grammar

SC�" 170 Prop. scattered context grammar

C - E0L 196 Context-conditional extended 0L grammar

C - EP0L 196 Context-conditional extended prop. 0L grammar

C - ET0L 196 Context-conditional extended tabled 0L grammar

C - EPT0L 196 Context-conditional extended prop. tabled 0L grammar

F - E0L 203 Forbidding extended 0L grammar

F - EP0L 203 Forbidding extended prop. 0L grammar

F - ET0L 203 Forbidding extended tabled 0L grammar

F - EPT0L 203 Forbidding extended prop. tabled 0L grammar

SSC - E0L 224 Simple semi-conditional extended 0L grammar

SSC - EP0L 224 Simple semi-conditional extended prop. 0L grammar

SSC - ET0L 224 Simple semi-conditional extended tabled 0L grammar

SSC - EPT0L 224 Simple semi-conditional extended prop. tabled 0L grammar

LRC - E0L 240 Left random context extended 0L grammar

LRC - EP0L 240 Left random context extended prop. 0L grammar

LRC - ET0L 240 Left random context extended tabled 0L grammar

LRC - EPT0L 240 Left random context extended prop. tabled 0L grammar

LF - E0L 240 Left forbidding extended 0L grammar

LF - EP0L 240 Left forbidding extended prop. 0L grammar

LF - ET0L 240 Left forbidding extended tabled 0L grammar

LF - EPT0L 240 Left forbidding extended prop. tabled 0L grammar

LP - E0L 240 Left permitting extended 0L grammar

LP - EP0L 240 Left permitting extended prop. 0L grammar

LP - ET0L 240 Left permitting extended tabled 0L grammar

LP - EPT0L 240 Left permitting extended prop. tabled 0L grammar

RC - ET0L 253 Random context extended tabled 0L grammar

RC - EPT0L 253 Random context extended prop. tabled 0L grammar

JMON 260 Jumping monotone phrase-structure grammar

JCS 260 Jumping context-sensitive grammar

JREG 260 Jumping regular grammar

JRLIN 262 Jumping right-linear grammar

JLIN 262 Jumping linear grammar

JCFfin 262 Jumping context-free grammar of finite index

JCF�" 263 Prop. jumping context-free grammar

JRE 265 Jumping phrase-structure grammar

JCF 271 Jumping context-free grammar

JSCX 276 X-mode jumping scattered context grammar

FSFA 321 First-move self-regulated finite automaton

ASFA 322 All-move self-regulated finite automaton

(continued)
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Family Page Formal model

PRL 324 Parallel right-linear grammar

RLSM 330 Right-linear simple matrix grammar

FSPDA 337 First-move self-regulated pushdown automaton

ASPDA 338 All-move self-regulated pushdown automaton

SCFA.F/ 342 State-controlled finite automaton controlled
by language of family F

TCFA.F/ 342 Transition-controlled finite automaton controlled
by language of family F

RPDA 356 Regulated pushdown automaton

OA - RPDA 364 One-turn atomic regulated pushdown automaton

JFA 376 Jumping finite automaton

JFA�" 376 "-free jumping finite automaton

DJFA 376 Deterministic jumping finite automaton

GJFA 376 General jumping finite automaton

GJFA�" 376 "-free general jumping finite automaton

deepPDAk 395 Deep pushdown automaton of depth k

deep
emptyPDAk 395 Deep pushdown automaton of depth k accepting

by empty pushdown

k#RS 426 #-rewriting system of index k

MGRn;X 451 n-generative rule-synchronized grammar system
in the X mode, where X 2 funion; conc; firstg



Subject Index

Symbols
#-rewriting system, see bounder-rewriting

system, 426
#, 13
0L grammar

parametric, 502
with context conditions, 504
with permitting conditions, 504

1-final configuration, 356
2-final configuration, 356
2-limited propagating scattered context

grammar, 171
3-final configuration, 356

A
acceptance

by empty pushdown, 356
by final state, 356
by final state and empty pushdown, 356
jumping, 375

accepted language, 21
adjacency matrix, 7
algorithm

Floyd-Warshall, 7
all-move self-regulating

finite automaton, 322
pushdown automaton, 337

almost identity, 17
alph./, 13
alphabet, 13, 18

nonterminal, 23
of language, 14
of string, 13
terminal, 23

total, 18, 195
unary, 13

appearance checking
mode, 142
set, 142, 146

atomic pushdown automaton, 364
automaton, 21

finite, 49, 50
complete, 50
controlled, 342
deterministic, 50
general, 50
jumping, 374, 375

pushdown, 52
atomic, 364
blackhole, 522
controlled, 356
deep, 394, 405
deterministic, 53
extended, 51
one-turn, 364

self-regulating
finite, 321, 322
pushdown, 336, 337

auxiliary verb, 479

B
bag automaton, 522
binary form of phrase-structure grammar, 33
binary tree, 12
blackhole pushdown automaton, 522
bottom symbol, 394
bounder-rewriting system, 425, 426, 517
bounding symbol, 369
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C
C-E0L grammar, 195
C-EP0L grammar, 195
C-EPT0L grammar, 195
C-ET0L grammar, 195
canonical clause, 479
cardinality, 3

countable, 9
enumerable, 9
same, 9
uncountable, 9

Cartesian product, 6
cf-rules./, 78
Chomsky

hierarchy, 29
normal form, 65

CJFA, see complete jumping finite
automaton

closure
of language, 15
reflexive and transitive, 7
transitive, 7
under endmarking, 18
under linear erasing, 18
under restricted homomorphism, 18

coding, 17
coincident language families, 17
complement, 4

of language, 15
complete

finite automaton, 50
jumping finite automaton, 375

computational
completeness, 27
incompleteness, 27

concatenation
of languages, 15
of strings, 14

conditional rule, 77
configuration, 50, 51, 162, 369, 394
congruence, 8
context, 35

left, 35
decendant, 35

right, 35
descendant, 35

context condition, 504
context sensitivity

overall, 174
context-conditional

E0L grammar, 195
grammar, 76

context-dependence, 34

context-free
grammar, 27
language, 27
rule, 167

context-independence, 34
context-sensitive

grammar, 27
language, 27
rule, 167

control language
of regular-controlled grammar, 141
of regulated pushdown automaton, 356
of state-controlled finite automaton, 342
of transition-controlled finite automaton,

342
control word, see parse
controlled

finite automaton, 342
pushdown automaton, 356

core grammar
of matrix grammar, 146
of regular-controlled grammar, 141

D
dcs./, 173, 187
deep pushdown automaton, 394

of depth n, 395
degree

of C-ET0L grammar, 195
of context sensitivity

of phrase-structure grammar, 187
of scattered context grammar, 173

of context-conditional grammar, 77
of general jumping finite automaton, 375

derivation, 23
leftmost, 30, 149
mode, 259

multiset, 266
rightmost, 30
successful, 23
tree, 34
word, see parse

determinism, 23, 431
over language, 23

deterministic
deep pushdown automaton, 405

with respect to depth of expansions, 405
finite automaton, 50
jumping finite automaton, 375
pushdown automaton, 53

difference, 4
of languages, 15
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direct
derivation, 24, 46, 48, 77, 138, 146, 162,

167, 195, 239
leftmost, 29
rightmost, 30

move, 50, 53, 395
reduction, 431

DJFA, see deterministic jumping finite
automaton

E
E0L grammar, 47
empty

language, 14
string, 13

English syntax, 475
EP0L grammar, 47
"-leaf, 34
"-node, 34
"-free

family of languages, 17
general finite automaton, 50
general jumping finite automaton, 375
grammar, see propagating grammar
homomorphism, 17
jumping finite automaton, 375
substitution, 16

EPT0L grammar, 46
equality

of language families, 17
of languages, 15

equivalence classes, 7
equivalence relation, 7
erasing rule, 24
ET0L grammar, 46

context-conditional, 195
exhaustive

left quotient, 16
right quotient, 16

existential clause, 486
expansion

of depth m, 395
of pushdown, 393, 395

extended
pushdown automaton, 51
tabled zero-sided Lindenmayer grammars,

see ET0L grammar

F
F-E0L grammar, 203
F-EP0L grammar, 203

F-EPT0L grammar, 203
F-ET0L grammar, 203
failure field, 162
family of languages, 17
fin./, 14
final

language, 21
state, 50, 394

finite
automaton, 50
substitution, 16

finite automaton, 49
jumping, 374

general, 374
finite language, 14
first Geffert normal form, 60
first-move self-regulating

finite automaton, 321
pushdown automaton, 337

Floyd-Warshall algorithm, 7
flux, 504
forbidding

conditions, 194
grammar, 84

function, 8
argument, 9
bijection, 9
injection, 9
partial, 8
surjection, 9
total, 8
value, 9

G
Geffert normal form, 60, 61
general

finite automaton, 50
jumping finite automaton, 374
top-down parser, 393

generalized forbidding grammar, 89
generated language, 21, 195, 324, 330

in the concatenation mode, 435
in the first mode, 435
in the union mode, 435

gerund-participle, 480
gf-grammar, see generalized forbidding

grammar
grammar, 21, 23

0L
parametric, 502

C-E0L, 195
C-EP0L, 195
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grammar (cont.)
C-ET0L, 195
context-conditional, 76

E0L, 195
context-free, 27
context-sensitive, 27
E0L, 47
EPT0L, 46
ET0L, 46

context-conditional, 195
forbidding, 203
simple semi-conditional, 224

F-E0L, 203
F-EP0L, 203
F-EPT0L, 203
F-ET0L, 203
forbidding, 84
generalized forbidding, 89
generated language, 23
jumping, 258
LF-E0L, 240
LF-EP0L, 240
LF-EPT0L, 240
LF-ET0L, 239
linear, 28
LP-E0L, 240
LP-EP0L, 240
LP-EPT0L, 240
LP-ET0L, 239
LRC-E0L, 240
LRC-EP0L, 240
LRC-EPT0L, 240
LRC-ET0L, 239
matrix, 146

even, 148
with appearance checking, 146

0L, 47
parametric, 504

permitting, 84
phrase-structure, 24

monotone, 27
programmed, 162

with appearance checking, 161
queue, 48
random context, 84
regular, 28
regular-controlled, 141

with appearance checking, 142
right-linear, 28

parallel, 323
scattered context, 166

transformational, 481
semi-conditional, 103

simple, 107

simple semi-conditional ET0L, 224
SSC-E0L, 224
SSC-EP0L, 224
SSC-EPT0L, 224
SSC-ET0L, 224
state, 138
system

multigenerative rule-synchronized, 434,
452

graph, 10
acyclic, 10
ancestor, 10

direct, 10
cycle, 10

length, 10
descendant, 10

direct, 10
directed, 10
edge, 10

enters node, 10
label, 10
leaves node, 10

node, 10
in-degree, 10
out-degree, 10

path, 10
ancestor, 10
descendant, 10
length, 10

sequence, 10
length, 10

transition, 375
tree, see tree

Greibach normal form, 65

H
homomorphism, 16

"-free, 17
inverse, 17

I
i-th component of an n-component parallel

right-linear grammar, 324
index of

derivation of a string in a grammar, 29
grammar, 29
string in a grammar, 29

infinite language, 14
inflection, 478
initial

pushdown symbol, 51
symbol, 323, 329
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input
alphabet, 50, 394
sentence, 481
vocabulary, 481

input-revolving finite automaton, 522
intersection, 4

of languages, 15
inverse

homomorphism, 17
string, 308

irrealis form, 479

J
JFA, see jumping finite automaton
jump, 374
jumping

finite automaton, 375
equivalence, 375
general, 374

grammar, 258
rejection, 375
relation, 374

K
Kleene star, 15
Kuroda normal form, 59

L
language, 14

acceptance, 21
accepted, 21, 50, 52, 375, 395
context-sensitive, 27
empty, 14
family

generated, 276
final, 21
finite, 14
generated, 21, 23, 24, 47–49, 77, 139, 141,

143, 146, 162, 167, 239, 276
by derivation, 29
by leftmost derivation, 30
by rightmost derivation, 30

generation, 21
infinite, 14
linear, 28
recursively enumerable, 26

monotone, 27
reduced, 431
regular, 28
right-linear, 28

start, 21
unary, 14
universal, 14

language-accepting model, 21
language-generating model, 21
leaf

", 34
non-", 34

left
forbidding context, 239
jump, 386
parse, 30
permitting

context, 239
ET0L grammar, 239

random context ET0L grammar, 239
left./, 208
left-extended queue grammar, 48
left-hand side of rule, 18
leftmost

derivation, 30
rule-synchronized grammar system, 452
symbol, 14

len./, 167
length of string, 13
lexical

order, 482
verb, 479

LF-E0L grammar, 240
LF-EP0L grammar, 240
LF-EPT0L grammar, 240
LF-ET0L grammar, 239
lhs./, 25, 167
linear

erasing, 17
grammar, 28
language, 28
order, 8

LMGN, see leftmost nonterminal-synchronized
grammar system

LMGR, see leftmost rule-synchronized
grammar system

lms./, 14
logical expression, 502, 504
LP-E0L grammar, 240
LP-EP0L grammar, 240
LP-EPT0L grammar, 240
LP-ET0L grammar, 239
LRC-E0L grammar, 240
LRC-EP0L grammar, 240
LRC-EPT0L grammar, 240
LRC-ET0L grammar, 239
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M
match, 504
matrix, 146

grammar, 146
with appearance checking, 146

rule, 329
max-len./, 14
max-prefix./, 15
max-suffix./, 15
maximum context sensitivity, 173
mcs./, 173
MGR, see rule-synchronized grammar

system
modal verb, 479
mode

nonterminal-generating, 410
terminal-reading, 410

model
language-accepting, 21
language-generating, 21

module, 502
molecular genetics, 469
monotone

phrase-structure grammar, 27
recursively enumerable language, 27

morphism, see homomorphism
morphology, 19, 469
move, 50, 51, 395

sequence, 51, 53
multigenerative grammar system, 434, 452
multiset derivation mode, 266

N
N, 4
n-self-reproducing pushdown transducer,

369
n-all-SFA, see n-turn all-move self-regulating

finite automaton
n-all-SPA, see n-turn first-move self-regulating

pushdown automaton
n-first-SFA, see n-turn first-move self-

regulating finite automaton
n-first-SPA, see n-turn first-move self-

regulating pushdown automaton
n-generative rule-synchronized grammar

system, 434
N-grammar, 520
n-language, 434, 452
n-limited direct derivation, 139
n-LMGN, see leftmost n-generative

nonterminal-synchronized grammar
system

n-LMGR, see leftmost n-generative
rule-synchronized grammar system

n-MGR, see n-generative rule-synchronized
grammar system

n-parallel right-linear grammar, 323
n-PRLG, see n-parallel right-linear grammar
n-right-linear simple matrix grammar, 329
n-RLSMG, see n-right-linear simple matrix

grammar
n-turn all-move self-regulating finite

automaton, 322
n-turn all-move self-regulating pushdown

automaton, 337
n-turn first-move self-regulating finite

automaton, 321
n-turn first-move self-regulating pushdown

automaton, 337
neighboring paths, 33

left, 33
right, 33

nested word automaton, 522
node

", 34
non-", 34
nonterminal, 34
terminal, 34

nominative, 480
non-"-leaf, 34
non-"-node, 34
non-modal verb, 479
nonterminal

alphabet, 24, 166, 239, 323, 329
node, 34

nonterminal-generating mode, 410
nonterminal-synchronized grammar system,

452

O
ocs./, 174
0L grammar, 47
one-turn

pushdown automaton, 364
atomic, 364
atomic regulated, 364

order
linear, 8
partial, 8

ordered pair, 6
output

sentence, 481
vocabulary, 481

overall context sensitivity, 174
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P
palindrome, 21
paradigm, 479
parallel right-linear grammar, 323
parallelism, 431
parameter, 502
parametric

0L grammar, 502
with context conditions, 504
with permitting conditions, 504

word, 502
Parikh vector, 266
parse, 25
partial order, 8
past participle, 480
Penttonen normal form, 59
perm./, 14
permitting

conditions, 194
grammar, 84

permutation
of language, 14
of string, 14

phrase-structure grammar, 24
binary form, 33

plain form, 480
pop of pushdown, 393, 394
popping rule, 364
positive closure, 15
power

of language, 15
of string, 14
set, 4

predecessor, 502, 504
predicate, 478
predicator, 479
prefix of string, 14
prefix./, 14
present form, 480
preterite, 480
primary form, 480
procedure, 26
production, see rule
programmed grammar, 162

of finite index k, 162
with appearance checking, 161

propagating
context-conditional grammar, 77
ET0L grammar, 46
matrix grammar, 147

with appearance checking, 147
phrase-structure grammar, 24
programmed grammar, 162

with appearance checking, 162

regular-controlled grammar, 144
with appearance checking, 144

scattered context
grammar, 167
language, 167

proper
prefix, 14
suffix, 14

PSC = CS problem, 170
Pumping Lemma for CF, 44
pushdown

alphabet, 51, 394
automaton, 52

atomic, 364
one-turn, 364
two-sided over a free group, 409
two-sided string-reading over a free

group, 409
transducer

self-reproducing, 368
pushing rule, 364

Q
question tag, 489
queue grammar, 48
quotient

left, 16
exhaustive, 16

right, 15
exhaustive, 16

R
random context grammar, 84
reachable state, 375
reading rule, 364
recursively enumerable language, 26
red alga, 497
reduced string, 308
reduction

direct, 431
reflexive and transitive closure, 7
regular

grammar, 28
language, 28

regular-controlled
grammar, 141

with appearance checking, 142
relation, 6

antisymmetric, 7
binary, 6
closure

reflexive and transitive, 7
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relation (cont.)
transitive, 7

composition, 6
congruence, 8

modulo, 8
domain, 6
equivalence, 7

classes, 7
finite, 6
function, see also function
infinite, 6
inverse, 6
jumping, 374
on, 6
product

k-fold, 7
range, 6
reflexive, 7
rewriting, 18
subrelation, 6
symmetric, 7
transitive, 7

restricted
context-free grammar, 520
homomorphism, 17

reversal
of language, 15
of string, 13

reversal./, 13
rewriting relation, 18
rewriting rule, see rule
rewriting system, 18

bounder, 425, 426, 517
equivalence, 22

rhs./, 25, 167
right

jump, 386
linear simple matrix grammar, 329
parse, 30

right-hand side of rule, 18
right-linear

grammar, 28
language, 28

rightmost derivation, 30
rms./, 14
rule, 18, 24, 46, 50, 51, 77, 162, 166, 239, 323,

394
conditional, 77
erasing, 24
label, 25, 50, 52
left-hand side, 18, 25
of depth m, 395
popping, 364

pushing, 364
reading, 364
right-hand side, 18, 25
tree, 34

rule-synchronized grammar system, 434, 452

S
sc-grammar, see semi-conditional grammar
scattered context

grammar, 166
language, 167

SCG, see scattered context grammar
second Geffert normal form, 61
secondary form, 480
self-regulating

finite automaton, 321
pushdown automaton, 336

self-reproducing
pushdown transducer, 368

n, 369
states, 368
step, 369

semi-conditional grammar, 103
semilinearness

of language, 266
of language family, 266
of set of vectors, 266

sentence, 23, 24
sentential

form, 23, 24
n-form, 434, 452

sequence, 5
empty, 5
finite, 5
infinite, 5
length, 5
of moves, 51, 53
of rule labels, 25
of rules, 25

sequential uniform rewriting, 68
set, 3

cardinality, 3
classes, 4
complement, 4
difference, 4
disjoint, 4

pairwise, 4
empty, 3
finite, 3

specified by listing of members, 3
identity, 4
incomparability, 4



Subject Index 547

infinite, 3
defined by a property, 3
defined recursively, 3

intersection, 4
member, 3
of all positive integers, 4
of rules, 18, 49
power set, 4
subset, 4

proper, 4
union, 4

SFA, see self-regulating finite automaton
shuffle, 16
shuffle./, 16
simple semi-conditional

ET0L grammar, 224
grammar, 107

simultaneous turn, 408
SPDA, see self-regulating pushdown

automaton
SSC-E0L grammar, 224
SSC-EP0L grammar, 224
SSC-EPT0L grammar, 224
SSC-ET0L grammar, 224
ssc-grammar, see simple semi-conditional

grammar
start

from anywhere, 388
from the beginning, 388
from the end, 388
language, 21
pushdown symbol, 368, 394
state, 50, 368, 394
string, 46
symbol, 23, 24, 77, 138, 166, 195

state, 50, 138, 394
grammar, 138
reachable, 375
terminating, 375

state-controlled
finite automaton, 342
language, 342

string, 13
inverse, 308
reduced, 308

string-reading two-sided pushdown automaton
over a free group, 409

strings./, 139
sub./, 14
subject, 478
subset of language families, 17
substitution, 16

finite, 16
substring, 14

success field, 162
successful

derivation, 24
n-limited generation, 139

successor, 504
suffix of string, 14
suffix./, 14
sym./, 14
symbol, 13
symbol-exhaustive

left quotient, 16
right quotient, 16

syntax, 476
Szilard word, see parse

T
terminal

alphabet, 24, 46, 77, 138, 166, 195, 323,
329

derivation, 24
node, 34

terminal-reading mode, 410
terminating state, 375
total

alphabet, 18, 24, 46, 77, 138, 166
vocabulary, 481

transducer
pushdown

self-reproducing, 368
transformation, 481
transformational scattered context grammar,

481
transition, 50, 51

graph, 375
transition-controlled

finite automaton, 342
language, 342

transitive closure, 7
translation, 16, 369

rules, 368
step, 369

tree, 10
binary, 12
children, 10
depth, 11
derivation, 34
frontier, 10
interior node, 10
labelled, 32
leaf, 10
ordered, 10
parent, 10
parent-children portion, 10
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tree (cont.)
root, 10
rule, 34
subtree, 11

elementary, 11
Turing-Church thesis, 26
turn, 364

state, 321, 337
two-sided pushdown automaton

over a free group, 409

U
unary

alphabet, 13
language, 14

uniform rewriting, 68
uniformly limited ET0L grammars, 521
union, 4

of languages, 15
universal language, 14
universe, 3

element, 3

V
verb phrase, 479

W
word, see string
workspace theorem for phrase-structure

grammars, 31

Z
zero moves, 51, 53
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