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911 50 Trenčín, Slovakia
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Abstract: It is well-known that cracks are observed around the impression during indentation of
brittle materials. The cracks inception depends on load conditions, material and indenter geometry.
The paper aims to use experimental micro-indentation data, FE simulations with cohesive zone
modelling, and an optimisation procedure to determine the cohesive energy density of silicon single
crystals. While previous studies available in the literature, which use cohesive zone finite element
techniques for simulation of indentation cracks in brittle solids, tried to improve methods for the
evaluation of material toughness from the indentation load, crack size, hardness, elastic constants,
and indenter geometry, this study focuses on the evaluation of the cohesive energy density 2Γ from
which the material toughness can be easily determined using the well-known Griffith-Irwin formula.
There is no need to control the premise of the linear fracture mechanics that the cohesive zone is
much shorter than the crack length. Hence, the developed approach is suitable also for short cracks
for which the linear fracture mechanics premise is violated.

Keywords: micro-indentation; mechanical and fracture properties identification; finite element
analysis; optimisation analysis

1. Introduction

In recent decades, a number of studies devoted to identification of material properties
such as Young’s modulus, yield stress, and work hardening modulus by using experimental
indentation data, finite element (FE) simulations, and optimisation procedures for solving
inverse problems have occurred in the literature. Various optimisation techniques have
been used by researchers, see, e.g., [1–4] to determine material properties from indentation
load–displacement curves tests. Identification of elastic and/or elasto-visco-plastic con-
stitutive laws from indentation tests in terms of general theoretical framework of inverse
problems solution has been described in [5,6]. With respect to brittle materials, cohesive
zone FE simulations of indentation cracking have been performed e.g., in [7–10] to investi-
gate the crack morphology, the change of crack length with indenter shape, a quantitative
evaluation of the threshold load for indentation fracture, and to explore a limitation of
analytical models such as Lawn-Evans-Marshall model [11]. For indentation crack initi-
ation and propagation modelling a cohesive interface consisting of cohesive elements is
placed in the plane of potential cracking and only mode I type crack is considered. The
behaviour of the cohesive elements in this interface is governed by a traction-separation
law which mostly has the bilinear form characterised by three parameters- peak cohesive
traction σmax, corresponding damage-initiating displacement ∆c and failure displacement
∆sep. It was shown in [12] that the cohesive energy density and the peak cohesive traction
play a far more important role than the shape of the cohesive traction—separation curve in
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predicting the final fracture behaviour. In case of the bilinear form of the cohesive traction—
separation law the cohesive energy density (critical fracture energy) 2Γ can be calculated by
2Γ = 1

2 σmax∆c. Critical review of various cohesive zone models is given in [13]. Contrary
to analytical approaches, cohesive interface FE simulations exhibit a natural advantage
consisting in no need to specify the crack front a priori. Namely, the crack front is found
as a result of the solution of the boundary value problem. Moreover, the influence of
residual stresses developing under the indent due to inelastic compressive behaviour of
brittle materials [10,14–17] is more reliably captured. Some care is needed with respect
to the elasticity of the cohesive interface, specifically one should avoid double-counting
the elasticity—once in the cohesive law and a second time as part of the bulk behaviour.
Nevertheless, the effect of this issue is negligible when cohesive surfaces are only specified
along a potential single crack path such as in the case of indentation cracking, or if the
stiffness of cohesive surfaces is infinite [18]. Currently, there is an increasing effort to
combine cohesive zone models with extended finite element method (XFEM) to model
crack growth [19–21]. XFEM can avoid remeshing near the crack tip as the crack grows
and all other difficulties connected with it. With respect to indentation crack modelling,
remeshing is not needed as the indentation cracks extend only over short distances without
kinking and a zone of the potential crack formation is covered with cohesive elements.
Thus, the application of XFEM does not seem to bring any other benefits in this context.
To interpret the results of simulation of the growth of indentation cracks in terms of the
linear fracture mechanics, the cohesive (bridging) zone must be significantly smaller than
the crack. Hence, great care is needed in applying the simulation results to short crack
problems under indentation tests [22,23].

A direct application of the former macroscopic cohesive laws to cleavage fracture,
which entails a simple separation of the atomic planes, is not easily workable. Consider (110)
cleavage planes in Si crystal. Their interplanar spacing d is 1.92 Å. The (110) cracks with
[110] crack front in Si crystal were analysed using ab initio and gradient elasticity theory
in our study [24]. It was shown that the critical crack opening δc (interplanar separation)
leading to the loss of the crystal bearing capacity is 0.2 nm, the corresponding peak stress
is of the order of theoretical strength, and the cohesive energy density 2Γ ∼= 5.2 J/m2.
Moreover, the length of the cohesive zone is very small, approximately 0.6 nm. It means that
macroscopic FE simulation would require extremely fine mesh, which is often unfeasible.
Nguyen and Ortiz [25] suggested a way to the macroscopic form of the cohesive law
by considering the cooperative behaviour of a large number N of interatomic planes
forming a cohesive layer. The thickness of the cohesive layer in FE simulations is given
by the local element size D. Thus, the number of atomic planes in the cohesive layer is
N = 2D/d, where the factor 2 was added due to symmetry. Nguyen and Ortiz showed
that for sufficiently large N the macroscopic critical opening displacement ∆c and the
corresponding macroscopic cohesive stress σmax for the separation of a single atomic plane
asymptotically scale as

∆c = 2

√
ΓN
C

, σmax = 2

√
ΓC
N

, (1)

where the interplanar modulus C depends on a specific material. For the interplanar
cohesive potential suggested in [26]

φ(δ) = 2Γ− Cδc(δ + δc)e−δ/δc , (2)

the interplanar modulus C for (110) planes in Si crystal is

C =
2Γ
δ2

c

∼= 1.3× 1020 J/m4. (3)

For the element size D = 0.25 µm, Equation (1) provides ∆c ∼= 14.4 nm. While the
critical opening displacement ∆c and the corresponding macroscopic cohesive stress σmax
do depend on the element size, the cohesive energy density 2Γ is independent of the
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size element. The aim of this study is to use experimental microindentation data, FE
simulations with cohesive zone modelling, and an optimisation procedure to determine the
cohesive energy density of single crystals without having to check whether the size of the
cohesion zone is considerably less than the crack size and thus to analyse the problems of
short cracks. Obviously, such a procedure is particularly suitable for determining fracture
properties of MEMS/NEMS parts or thin films using micro/nano indentation tests.

2. Materials and Methods

As-received Si crystals (100) with dimensions 50 mm × 50 mm × 3 mm were covered
by poly(methyl methacrylate) PMMA before cutting and were precut to 1 cm × 1 cm
samples by laser dicer. The cover layer PMMA was removed by acetone, isopropanol and
deionised water in an ultrasound cleaner. The final cleaning step was etching of organic
residues by oxygen plasma in Diener Plasma cleaner (Diener electronic GmbH, Ebhausen,
Germany). Substrates were covered by a double layer of optics resists by spin-coating
process. This double layer of resists is important for the lift-off process. The bottom resist
was AR-BR 5460 (Allresist GmbH, Strausberg, Germany) and the top resist was AR-P 3540
(Allresist GmbH, Strausberg, Germany). The bottom resist is more sensitive than top resist
and this combination of resists creates an undercut in resist layer. The exposure of the resist
was done by UV Direct Write Laser system 66+ from Heidelberg Instruments (Heidelberg,
Germany). After exposure, samples were developed by AR 300-47 (mixed with deionised
water in the ratio 1:1, Allresist GmbH, Strausberg) for 60 s. The residues after developing
were removed by oxygen plasma by reactive ion etching in Oxford Instruments Plasma
Technology PlasmaPro NGP 80 (Oxford, UK). Optionally, the native oxide layer could be
removed by buffered hydrofluoric acid (BOE 7:1 − HF:NH4F = 12.5:87.5%).

The indentation tests were load-controlled and performed using Fischerscope H100
XYp equipment (Riley Industries Ltd., Aldridge, UK) with maximal applied force to load
cell of 1000 mN acting on standard Vickers diamond indenter with the centreline-to-face
angle ψ = 68◦ which was aligned along the cleavage plane {101} in the direction <100> of
Si crystal. The minimal applied force, which the equipment can detect, is 0.4 mN with
the force resolution 20 µN and depth resolution ±2nm. In this study, the test forces of
300 mN, 500 mN, 750 mN, and 1000 mN, respectively, were applied. Loading stage lasted
20 s followed by 5 s creep and with 20 s long unloading stage. The unloading stage was
followed by 5-s long period of constant loading of 0.4 mN. For each of applied forces
25 indentation tests were performed to minimise the experimental error. The crack length
was measured by confocal laser microscope Olympus LEXT4000 (Olympus Corporation)
from the centre of indentation. Figure 1 shows details of indentation with radial cracks after
indentation tests. During indentation the crack behaviour is impossible to optically track
because cracks spread under the surface, and they are thus invisible. The first visible radial
cracks on the crystal top surface occur during the unloading stage of indentation tests.
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Figure 1. Photographs of indentation with radial cracks. Figure 1. Photographs of indentation with radial cracks.

FE model for numerical simulation of the indentation test of Si crystal consisted of a
cube with edge length of 200 µm (Si crystal), Vickers diamond indenter and the load cell,
see Figure 2a.
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The discretisation of the FE model was performed by linear solid elements (SOLID185
in ANSYS software (Release 19.2)) and the contact with friction coefficient f = 0.05 between
the Si crystal sample and Vickers indenter was defined. The sample was loaded through
pushing the indenter into the sample and the indentation depth was gradually increased.
As a result, the indenter was deformed, and the loading force was subsequently obtained as
a reaction. Two planes of symmetry (XZ, YZ) and the plane XY with prescribed boundary
condition (UZ = 0) representing the crystal storage were used in numerical simulations.
Non-elastic response of the Si crystal (denoted as SC), that tends to accommodate the
contact stresses under the indenter, was modelled in terms of ideally elastoplastic material
defined by Young’s modulus ESC =129.5 GPa, Poisson’s ratio νSC = 0.278, the shear modulus
GSC =79.6 GPa and the yield stress σy, SC which is initially unknown. In this context it
should be noted that the elastic-perfectly plastic material behaviour according to the von
Mises yield condition accurately describes the compressive behaviour of many brittle
materials [27,28]. Vickers diamond indenter (VDI) was considered as a linear isotropic
body defined by Young´s modulus EVDI = 1220 GPa and Poisson´s ratio νVDI = 0.20.
Elastic properties of individual components (crystal, indenter) were chosen on the basis of
available literature data. Linear isotropic behaviour was also assumed for the load cell (LC)
defined by Poisson´s ratio νLC = 0.3 and Young´s modulus ELC which takes the stiffness of
the test equipment into account and is also initially unknown. Reduced Young´s modulus
Er is then given by

1
Er

=
1− ν2

SC
ESC

+
1− ν2

VDI
EVDI

+
1− ν2

LC
ELC

. (4)

In the first step, the reduced Young´s modulus Er was searched together with the
yield stress σk, SC based on load-depth curves from indentation tests, see Figure 3a. The
indenter tip shape deviation from the ideal shape, see Figure 2a, was also taken into account
when searching for the yield strength. Crack initiation and growth was not considered
in this stage. It should be pointed out that the effect of cracks on the force-depth curve is
negligible for lower loading force values. The nonlinear least-squares routine to get the best
fit between the given indentation data and the optimised indentation data, produced by FE
analysis, was applied to determine the aforementioned parameters. The corresponding
objective functional F (c) is given by, see [29–33]

F (c) = 1
2

N

∑
i=1

[
Pcomp

i (c)− Pexp
i

]2
min, (5)
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where c is the optimisation variable set given above, Pcomp
i (c) and Pexp

i are the predicted
and experimental loading force, respectively and i denotes a position along the force-depth
curve. The yield stress σy, SC was determined from unloading stage of each of the force-
depth curves, where linear behaviour exists (approx. to 10% decrease from maximal value
of the applied force) in accordance with Oliver and Pharr method [34]. The best fit was
obtained with the yield stress σy, SC = 6.4 GPa, the value which is close to the values applied
for silicon in studies [7,8,10]. Further decrease in the applied force cannot be employed
for a correct fitting because the FE model does not include pop-out effect which occurs
approximately at 50% decrease of the applied force. The real shape of the indenter tip,
which is used in numerical simulations, was found on the basis of a calibration curve of
differential hardness, which is performed before the measurement itself. It is therefore
a matter of finding a match between the calculated and measured dependence of load
vs indentation depth. The shape of the indenter tip and at the same time the required
yield strength are calibrated here. The calibration was performed using the universal
hardness HU which takes elastic and plastic deformations into account and is defined by
the following relation

HU =
Pmax

Sc(hmax)
, (6)

where Pmax denotes the maximal force acting on the ideal Vickers indenter during a
particular indentation test, hmax denotes the corresponding maximal depth of indentation
into the Si crystal, and Sc is the contact area between the indenter tip and the Si crystal.
The calibration was solved as an inverse problem by using incremental iteration procedure
where the universal hardness and the loading force are known, and the contact area is
searched. When the contact area is found the shape of indenter tip is modified and the force
is incrementally increased. This procedure runs until the maximal loading (here 1000 mN)
is reached. Then the calibration procedure is finished. The ideal and real indenter tip shape
of Vickers indenter are shown in Figure 2b. The difference between the ideal and the real
shape of indenter tip is irrelevant in terms of the force-depth dependence but essential for
the development of cracks in the near vicinity of the indenter tip.
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For the crack development modelling, a zone of the potential crack formation of the
size A × A with A = 50 µm was defined in both symmetry planes, see Figure 2a. The
macroscopic cohesive potential can be obtained from Equations (2) and (3) in terms of the
macroscopic opening displacement ∆ as

Φ(∆) = 2Γ− 2Γ
(

∆
∆c

+ 1
)

e−∆/∆c , (7)
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or
Φ(∆) = 2Γ− σmax(∆ + ∆c)e1−∆/∆c . (8)

The cohesive traction T(∆) then follows from the derivative of the potential as

T(∆) = Φ′(∆) =
σmax

∆c
∆e1−∆/∆c =

2Γ
∆2

c
∆e−∆/∆c . (9)

Note that the tangential component was neglected due to the character of loading
of potential cracks in Mode I and due to the mechanism of crack formation. It would
be possible to extend the model with this feature, however, in our opinion it would not
bring a desired benefit. The relationship between the normal traction T and crack opening
displacement is illustrated in Figure 4b. However, in Figure 4b due to symmetry, only half
of the crack opening displacement is displayed. Hence, the area under the traction-half
displacement curve is equal to the half of the cohesive energy density 2Γ, that is to Γ. The
cohesive crack zone is realised by means of nonlinear springs in tension. The nonlinear
spring response in compression is considered as rigid and the tangential traction is ignored.
The crack tip is defined as the point where the crack opening displacement is equal to
∆c which corresponds to the maximal normal traction σmax. Numerical simulations were
performed for radial cracks propagating along the (101) cleavage plane in the direction [100]
and along the (011) cleavage plane in the direction [10], see Figure 2a. The complete elastic–
plastic stress field during the unloading stage of the indentation is given by a superposition
of the elastic contact stress field σm and a residual stress field σr generated due to the
permanent deformation εp under the contact. While with decreasing contact force P(t) the
elastic contact stress field decreases, the residual stress field remains largely unchanged
and promotes cracks extension. The boundary value problem to be solved during the
unloading stage is to find the complete stress-strain field σ = σm +σr, ε = εm + εr:

σ·n = p(t) on SC(t), n·σ·n = T(∆) on Scrack(t), (10)

um + ur = u = u0 on Su, (11)

σ = C : (ε− εp), ε = D : σ+ εp and ∇·σ = 0 in Ω, (12)

where ε satisfies compatibility, SC(t) denotes the actual contact surface with actual tractions
p(t), Scrack(t) is the actual crack surface, Su is the part of the boundary where displacements
are prescribed, C and D are the stiffness and compliance tensors respectively, n is a unit
normal to the surface. The actual tractions p(t) are related to the actual resultant contact
force P(t) by

P(t) =
∫

SC(t)
n·p(t)dS. (13)
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The total energy Є can be expressed in terms of mechanical and residual fields and
the cohesive potential Φ(∆) as

Є = 1
2

∫
Ω σ : (ε− εp)dΩ−

∫
SC

p·(um + ur)dS +
∫

Scrack
Φ(∆)dS =

1
2

∫
Ω(ε− εp) : C : (ε− εp)dΩ−

∫
SC

p·(um + ur)dS +
∫

Scrack
Φ(∆)dS.

(14)

Necessary first-order stationarity condition for the minimisation of the total en-
ergy reads∫

Ω
C : (ε− εp) : δεdΩ−

∫
SC

p·δ(um + ur)dS +
∫

Scrack

2Γ
∆2

c
e−∆/∆c δ∆dS + Φ(∆c)δScrack = 0. (15)

In case of full unloading um = εm = p = 0 Equation (15) reduces to:∫
Ω

C : (εr − εp) : δεrdΩ +
∫

Scrack

2Γ
∆2

c
e−∆/∆c δ∆dS + Φ(∆c)δScrack = 0, (16)

where Φ(∆c) = 2Γ
(
1− 2e−1). Here, it should be emphasised again that the crack tip is

defined as the point where the crack opening ∆ is equal to ∆c which corresponds to the
maximal normal traction σmax. The virtual crack area increment δScrack is given by

δScrack =
∫

∂Scrack

υ·δLds, (17)

where ∂Scrack is the crack front, υ is the local unit normal vector to the crack front and
δL denotes the local virtual crack extension. Observe that εp and consequently also the
residual strain field εr depend on the maximal loading force Pmax.

The identification of the material parameters Γ and ∆c is based upon the best fit
between the visible crack length on the top surface and its numerical prediction obtained
by FE analysis under full unloading. The optimisation model is

J(Γ, ∆c) =
M

∑
i=1

[
Lexp

ij − Lpred
j (Γ, ∆c)

]2
·min, (18)

where Lexp
ij is a measured crack length on the top surface at i-th test, Lpred

j (Γ, ∆c) is its
theoretical counterpart, the subscript j denotes j-th value of the maximal loading force
Pmax,j and M = 25 is the number of performed indentation tests for each loading force.
Simultaneously, the minimisation of the total energy is controlled. Observe, that as the
independent cohesive material parameters also σmax and ∆c can be chosen, see Equation (9).

3. Results

This section is devoted to the evolution of crack front during indentation tests and
determination of the cohesive material parameters using the FE analysis, experimental
data and the optimisation model described above. Experimental values of the radial crack
length measured on the top surface are shown in Figure 5 for several values of indentation
depth and the corresponding maximal loading force. Moreover, linear regression of the
experimental data is included revealing that within the applied loading range (up to 1 N)
the crack length linearly depends on the indentation depth which corresponds to the
maximal loading force Pmax. These data are used in the following subsection to find the
cohesive energy density of the silicon crystal.
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3.1. Cohesive Energy Density of Silicon Crystal

The cohesive energy density was obtained from numerical simulations of the inden-
tation cracking and the optimisation model. All the numerical simulations were treated
as a direct problem and the radial crack length was one of output parameters. In all
simulations the same element size of 0.25 µm was used. As already mentioned the crack
length depends significantly on the cohesive energy density 2Γ which corresponds to the
area under the curve representing the traction-displacement relationship and on the critical
opening displacement ∆c. Both, the cohesive energy density 2Γ and the critical opening
displacement ∆c form the output of the inverse problem. The inverse analysis starts with
an initial estimate of Γ. Subsequently ∆c is sought so that the total energy Є reaches a
minimum. In the next step the cohesive energy density 2Γ is adjusted to minimise the
discrepancy between the measured crack length on the top surface, Lexp

ij , and its theoretical

prediction Lpred
j (Γ, ∆c). With a new value of Γ a corrected value of ∆c is sought. This

process is iteratively repeated until convergence criteria are met.
The above procedure was applied for all values of the maximal loading force

Pmax = 300 mN, 500 mN, 750 mN, and 1000 mN, and for each of 25 performed inden-
tation tests corresponding to a particular value of Pmax. Subsequently, by averaging the
iteratively received values of Γ, an estimate for the cohesive energy density of the analysed
silicon crystal was obtained. The reliability of the used numerical model follows from the
comparison of the determined values of Γ with values reported in literature. Figure 6 shows
the dependency of crack length on the indentation depth and the iteratively received values
of Γ for particular loading force. If a particular crack length for an appropriate indentation
depth is selected in Figure 6, a corresponding value of the cohesive energy density 2Γ can
be read off. For tested forces/depths, see Figure 5, we get Γ = 3.06 J/m2 (crack length 7.5 µm
and the indentation depth 1.18 µm), Γ = 2.81 J/m2 (crack length 11.4 µm and indentation
depth 1.57 µm), Γ = 2.63 J/m2 (crack length 15.4 µm and indentation depth 1.97 µm) and
Γ = 2.70 J/m2 (crack length 18.9 µm and indentation depth 2.33 µm). It is seen that with
increasing indentation depth the estimate of the cohesive energy density converges to the
value 2Γ = 5.30 J/m2 which agrees well with the silicon cohesive energy density values
reported in literature. This convergence is due to a decrease in the measurement error with
increasing indentation depth. In general, measurements at a lower indentation depth (a
lower applied force) are subject to a larger error. The critical crack opening displacement is
∆c = 13 nm. Let us however point out again that the critical opening displacement ∆c does
depend on the element size D, c.f. Equation (1), which, as already mentioned, is 0.25 µm.
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3.2. Crack Extension during Indentation Test

With determined parameters Γ, ∆c, crack initiation and growth modelling can be
attempted during loading and unloading phases of the indentation test. It is well-known
that cracks initiate during the loading phase below the plastic zone which develops under
the contact. Further increase of indenter loading leads to crack extension. Figure 7 shows
several stages of crack development during the indentation test modelled for maximal
loading force of 300 mN.
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(b) F = 230 mN, (c) F = 300 mN and (d) F = 0 N.

The instant when this crack occurs can be experimentally captured by monitoring
the differential hardness dependence on indentation depth and/or applied force which
provides an efficient tool to visualise the indentation induced changes in a tested material
such as inception of cracks [35].

From measurements, the value of the acting force was approximately 90 mN, see
Figure 8a, which is in a good accordance with numerical simulation results (F = 105 mN).
Figure 8b presents the same measurements, however the differential hardness is plotted
against the recorded indentation depth. One of the advantages of numerical simulations is
the visualisation of the invisible crack inception and crack extension. During the unloading
stage of indentation test, the originally invisible crack grows to the top surface of the
specimen and becomes visible when the applied force decreases from 300 mN to 230 mN,
see Figure 7. With further force decrease the crack grows in the radial direction and
after complete indenter unloading one can observe cohesive behaviour near the crack tip
manifested by cups-like closure, see Figure 9. It is a matter of interest to display numerically
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predicted distribution of the crack opening along the crack flanks. The results computed
for the indentation test with Pmax = 750 mN are displayed in Figure 10. Figure 10 shows
the distribution of crack opening along the crack flanks within the cohesive area which
allows to identify the crack front. It is clearly seen that crack grows during the unloading
stage of indentation test due to residual stress field.
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(b) state after complete unloading (numerical simulation), (c) state after complete unloading (experimental observation).

3.3. Mesh Density of Cohesive Zone Area

It was already pointed out that the critical opening displacement ∆c depends on the
element size D. As mentioned in Introduction, Nguyen and Ortiz [25] suggested a way
to the macroscopic form of the cohesive law by considering the cooperative behaviour
of a large number N of interatomic planes forming a cohesive layer. This approach then
shows that ∆c scales with

√
D. A distinctively weaker dependency on the element size D

used for discretisation of the cohesive zone area, see Figure 2, was observed for the radial
crack length and for the work of cohesive forces as well. Several loading forces were tested
and for each the size of the cohesive zone area was adjusted, and thus the discretisation
density with respect to the crack surface area. The greater the loading force and, as a
result, the greater the crack surface area, the lower is the discretisation error due to the
size of the element used. For that reason, the sensitivity to the size of the element (ESIZE)
was performed, especially because the ideal size of the element would be at the atomic
level—this would of course correspond to a different traction-separation T(∆) dependence.
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Figure 11 shows a linear regression of the dependency of the crack length on the element
size which was used for prediction of the crack length in case when the element size is
approaching zero. These data were determined for each indentation loading force and then
they were compared with experimental observation and measurement of the radial crack
length, see Equation (18).
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4. Discussion and Conclusions

While previous studies available in the literature, e.g., [7–10], which use cohesive
zone finite element techniques for simulation of indentation cracks in brittle solids, tried
to improve methods for the evaluation of material toughness from the indentation load,
crack size, hardness, elastic constants, and indenter geometry, this study focuses on the



Materials 2021, 14, 6864 12 of 15

evaluation of the cohesive energy density 2Γ from which the material toughness can be
easily determined using the well-known Griffith-Irwin formula

KIC =

√
2ΓE

1− υ2 . (19)

With the cohesive energy density determined as 2Γ = 5.30 J/m2 the Formula (19)
gives KIC = 0.86 MPa·m1/2. In contrast to the previous studies, there is no need to control
the premise of the linear fracture mechanics that the cohesive zone is much shorter than
the crack length. Hence, the developed approach is suitable also for short cracks for
which the linear fracture mechanics premise is violated. Besides, in spite of the previous
improvements of the indentation cracking formulas, they are still relatively inaccurate to
predict the fracture toughness in comparison to the proposed approach based on evaluation
of the cohesive energy density.

An integral part of the analysis is modelling of the permanent deformation under the
contact since it gives rise to a residual stress field which is the primary driving force for
cracks during the unloading process. A reliable model of the permanent deformation and
the related residual stress/strain field requires knowledge of the yield stress, the reduced
Young´s modulus of the whole system consisting of the load cell, Vickers indenter and the
silicon crystal, and also the real shape of the indenter. All these parameters were found
using an optimisation procedure which provides the best fit between the experimental
indentation data and the optimised indentation data, produced by FE analysis. Specifically,
optimal value of the yield strength σy, SC was 6.4 GPa. The computed residual stress/strain
field enters the analysis of the inverse problem for identification of the cohesive energy
density 2Γ and the critical crack opening displacement ∆c. The inverse problem solution
requires to find the best fit between the visible crack length on the top surface of the
silicon crystal and its numerical prediction obtained by FE analysis under full unloading
and simultaneously to ensure minimisation of the total energy. The solution results are
presented in the form of a diagram which links together the cohesive energy density, the
crack length, and the indentation depth, from which the cohesive energy density 2Γ can be
easily read off for particular crack length and indentation depth. Nevertheless, in case of a
lower indentation depth the measurements are subject to a larger error which is reflected
in the estimation error of the cohesive energy density. As the indentation depth increases,
the error decreases and the estimate of the cohesive energy density converges to the value
2Γ = 5.30 J/m2.

There are several conflicts concerning the selection of the cohesive interface param-
eters σmax, ∆c in FE modelling of cleavage fracture including the indentation cracks in
brittle materials using the cohesive interface model. As already mentioned in Introduction,
the ab initio calculations show that the crystal loses its bearing capacity after an interplanar
separation of only a few Angstroms. Simultaneously, the peak stresses within the interpla-
nar separation zone are of the order of theoretical strength of crystal. To reach such values
in macroscopic FE simulation, extremely fine mesh would be required and full atomistic
resolution in the vicinity of the crack would be necessitated, which is however unfeasible
and impractical. Therefore, a suitable transformation of atomistic binding relation leading
to macroscopic cohesive law is needed. A way to the macroscopic form of the cohesive law
was suggested by Nguyen and Ortiz [25] as mentioned in Introduction. As a result, the
cohesive interface parameters σmax, ∆c in any macroscopic cohesive law for the cleavage
fracture differ by orders from their physical atomistic counterparts, however with the
cohesive energy density (critical fracture energy) 2Γ remaining unchanged. There are other
limitations for the choice of the parameter σmax which were thoroughly investigated and
discussed in [7]. It was shown that the parameter σmax should be chosen to be lower than
≈0.2 σy to ensure initiation of crack in a linear fracture mechanics context. Moreover,
care is needed when changing σmax because then the crack bridging zone also changes
which affects the choice of cohesive element size D. In the papers [7,10] σmax was chosen
from the range <0.5, 1> GPa, the typical value of the yield strength was σy = 5 GPa, and
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the typical value of the Young modulus was E = 200 GPa. The fracture toughness KIC
ranged from 0.7 to 1 MPa.m1/2. All these papers used the bilinear form of the cohesive
traction—separation law. In this paper, the parameter σmax, and/or the critical opening
displacement ∆c together with the cohesive energy density 2Γ were selected to provide
best fit between the visible crack length on the top surface and its numerical prediction
according to Equation (18). The optimal values were found as σmax = 150 MPa, ∆c =
13 nm, and 2Γ = 5.30 J/m2. It is interesting to notice that the asymptotic scaling rule in
Equation (1)1 predicts the macroscopic critical opening displacement as ∆c ∼= 14.4 nm, see
the text below Equation (3).

The reliability of the developed model is evidenced by the determined value of
the cohesive energy density, which is in a good accordance with the values reported in
the literature. Furthermore, the reliability of the model follows from the comparison of
numerical simulation results with the measured differential hardness data which provide
an estimate of the loading force for the indentation induced cracks inception during the
loading stage. The proposed approach also seems appropriate for toughness evaluation
of hard coatings bonded to a brittle substrate. Studies along this line will be left for a
future work.
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Nomenclature

c optimisation variable
d interplanar spacing
hmax maximal depth of indentation
f friction coefficient
i position along the force-depth curve
p actual tractions
n unit normal to the surface
A size of cohesive zone
C interplanar modulus
D finite element size
C stiffness tensor
D compliance tensor
F objective functional
HU universal hardness
N number of interatomic planes forming a cohesive layer
ELC Young´s modulus of test equipment load cell
Er Reduced Young´s modulus
ESC Young´s modulus of the Si crystal
EVDI Young´s modulus of Vickers diamond indenter
GSC shear modulus of the Si crystal
KIC material fracture toughness
Lexp

ij measured crack length on the top surface at i-th test

Lpred
j predicted crack length
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P contact force
Pcomp predicted loading force
Pexp experimental loading force
Pmax maximal force acting on the ideal Vickers indenter
Sc contact area between the indenter tip and the Si crystal
Scrack crack surface
Su part of the boundary where displacement are prescribed
T cohesive traction
εp permanent deformation
δ microscopic crack opening
δc critical microscopic crack opening (interplanar separation)
δL local virtual crack extension
υ local unit normal vector to the crack front
νSC Poisson´s ratio of the Si crystal
νVDI Poisson´s ratio of Vickers diamond indenter
νLC Poisson´s ratio of test equipment load cell
ψ centreline-to-face angle
Є total energy
σ complete stress-strain field
σm elastic contact stress field
σr residual stress field
σy, SC yield stress of the Si crystal
σmax peak cohesive traction
2Γ cohesive energy density (critical fracture energy)
∆ macroscopic opening displacement
∆c corresponding damage-initiating displacement
∆sep failure displacement
φ interplanar cohesive potential

References
1. Luo, J.; Lin, J.; Dean, T.A. A study on the determination of mechanical properties of a power law material by its indentation

force–depth curve. Philos. Mag. 2006, 86, 2881–2905. [CrossRef]
2. Luo, J.; Lin, J. A study on the determination of plastic properties of metals by instrumented indentation using two sharp indenters.

Int. J. Solids Struct. 2007, 44, 5803–5817. [CrossRef]
3. Chaiwut, G.; Esteban, P.B. Characterization of elastoplastic properties based on inverse analysis and finite element modeling of

two separate indenters. J. Eng. Mater. Technol. 2007, 129, 603–608.
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