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ABSTRAKT

Disertační práce se zabývá vývojem rychlých a stabilních řídicích systémů
adaptivních antén, založených na analogových neuronových sítích. Její první část
obsahuje úvod do problematiky adaptivních antén a přehled dosavadních přístupů
k řízení adaptivních antén. Ve druhé části jsou diskutovány jednotlivé druhy
analogových neuronových sítí, největší pozornost je věnována tzv. Wangovým a
Kalmanovým neuronovým sítím, které jsou v této části disertační práce
matematicky analyzovány a jsou zde navrženy jejich modifikace, vedoucí
k podstatnému zlepšení konvergenčních vlastností těchto sítí. Třetí část práce se
zabývá aplikací těchto analogových neuronových sítí a jejich modifikací
v řídicích systémech adaptivních antén.

Cílem druhé části disertační práce je vyřešit dva hlavní problémy doposud
používaných analogových neuronových sítí - nízkou rychlost konvergence a její
velkou závislost na poměru vlastních čísel matice vstupního signálu. Za tímto
účelem zde byly podrobně analyzovány konvergenční vlastnosti původních verzí
těchto sítí a vliv jednotlivých obvodových prvků na tyto vlastnosti, zejména vliv
reálných operačních zesilovačů. V případě Wangovy sítě byla provedena
matematická analýza s makromodelem operačního zesilovače, popisujícím jeho
lineární i nelineární vlastnosti. Na základě výsledků těchto analýz byly navrženy
modifikace jednotlivých stavebních prvků diskutovaných analogových
neuronových sítí, vedoucí ke zlepšení jejich konvergenčních vlastností. V případě
Kalmanovy neuronové sítě bylo dosaženo zlepšení rychlosti konvergence cca o tři
řády vůči původní verzi této sítě a velmi malé závislosti rychlosti konvergence na
poměru vlastních čísel matice vstupního signálu. Velký vliv na dosažení těchto
výsledků měla modifikace Kalmanovy sítě, spočívající ve filtraci signálu
Kalmanova zisku. Pozornost byla věnována převážně neuronovým sítím pro
řešení soustavy reálných lineárních rovnic, diskutovány však byly i neuronové
sítě sloužící k řešení problému minimalizace kvadratické funkce, omezené
lineární podmínkou.

Třetí část dizertační práce se zabývá aplikací analogových neuronových sítí
v řídicích systémech adaptivních antén. Na základě výsledků získaných ve druhé
kapitole jsou zde navrženy řídicí systémy adaptivních antén, založené na původní
Wangově a Kalmanově neuronové síti a na modifikované Kalmanově síti.
Konvergenční vlastnosti těchto řídicích systémů byly zkoumány prostřednictvím
počítačových simulací, takto byly zjištěny konvergenční vlastnosti velmi podobné
výchozím obecným neuronovým sítím. Ve srovnání s ostatními diskutovanými
řídicími systémy vykazuje řídicí systém založený na modifikované Kalmanově
síti velmi dobré konvergenční vlastnosti, které vyhovují požadavkům na provoz
adaptivní antény v reálném čase.
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1  INTRODUCTION

1.1 PROBLEM FORMULATION
An adaptive antenna array is an antenna system, which automatically sets minims

of its directivity pattern to directions from which the most powerful interference
signals come. Also, an adaptive antenna can be understood as a spatial filter, which
does not attenuate desired signals arriving from the main lobe direction and which
adaptively suppresses signals arriving from other directions.

From the optimization point of view, adaptive antennas are parallel systems,
which are asked to be very fast in many applications. Since digital processors work
in a sequential way and since parallel multiprocessor systems are extremely
expensive, analog parallel processors seem to be a very suitable alternative for the
control of an optimization process. Unfortunately, most of the so far developed
analog processors suffer from non-stability, low convergence rate and sensitivity to
setting of adaptation parameters.

The discovered problems form the kernel of the presented dissertation thesis.

1.2 TODAY’S STATE OF SOLVING PROBLEM
At the present time, the most adaptive antennas are based on the pilot signal

method [1] and the steering vector method [2].
In the case of the pilot signal, a transmitter transmits a signal, which is known at

the receiving side during the learning period. Therefore, an error signal, which
equals to the difference between the desired pilot signal and the actual signal at the
antenna output, can be defined and the mean squared error can be minimized to
obtain an optimal signal to interference ratio at the antenna output.

In the case of the steering vector, the mean power of the signal at the antenna
output is minimized. If the minimization is constrained in order not to influence
parameters of the antenna system in the main lobe direction (from which a desired
signal come), then the minimization reduces interference signals only and the signal
to interference ratio at the antenna output is optimized again.

Both the methods yield the set of simultaneous linear equations, which has to be
solved in real time in order to synthesize the proper directivity pattern. The matrix of
coefficients is auto- or cross-correlation matrix of signals at the outputs of antenna
elements, unknown column vector contains complex weights of antenna elements,
and zeros and ones form the right-hand side vector. Today, the described matrix
equation is solved by the following methods.

1.2.1 Correlation loop

The correlation loop was the first analog solver for the steering vector system,
which is called the side-lobe canceller [3]. The side-lobe canceller consists of a main
antenna, which is accompanied by an auxiliary omni-directional antenna in order to
to create a null in the side-lobes of the combined pattern of this antenna system. The
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mean power of interference signals is minimized and signal to interference ratio is
optimized at the antenna output [8].
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Fig. 1.1: The standard LMS array in a side-lobe canceller configuration

For suppressing of more as one interference signal only, the mentioned adaptive
antenna was generalized by the superposition of N auxiliary antennas, completed by
N correlation loops [8]. Since N auxiliary elements can produce N independent
beams, the system can generally deal with up to N interference signals.

Unfortunately, the described adaptive control exhibits following main
disadvantages [3], [8]:

Since minimizing output power residue is unconstrained in a fact, the adaptive
process can also minimize desired signals, because the process can distinguish
desired signal from clutter or interference only on the basis of power and energy.

The power level at the antenna element determines loop voltage gain and speed in
canceling the interference signal. Steady-state cancellation of extended clutter or
interference depends on their power. Transient cancellation of short target signals
depends on both power and duration, or on total energy. Adaptive system can work
only when extended clutter and interference signal show considerably more duration
and energy than discrete target signal, which might be screen.

 The gain of the adaptive mode (which is individual loop gain times number of
loops) must be set in order to produce only minor cancellation of the strongest
desired main lobe signal, and to provide reasonable cancellation and settling times
of the undesired sources.
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Due to the above listed disadvantages of the described analog adaptation
processors, more sophisticated adaptation algorithms were worked up as it is going
to be described in the following paragraphs.

1.2.2 LMS algorithm and its improved versions

There is a number of algorithms minimizing the mean squared error. The
minimization is usually reached by gradient-searching techniques, which are based
on changing the weighting vector in the contra-direction of an estimate of the
gradient of the mean squared error with respect to weights [1]

( ) 2
ε∇−=

s
k

dt

tdW
. ( 1.1 )

Here, W(t) is the weighting vector, ks is a positive scalar constant controlling rate
of convergence and stability of the algorithm, and ∇ε 2 is an estimate of the gradient
of the mean squared error with respect to weights.
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Fig. 1.2: The pilot-signal-based adaptive antenna controlled by the LMS

algorithm

Adaptive algorithms differ in the way, how the gradient of the mean squared error
is estimated. Considering Least Mean Square (LMS) algorithm [1], the squared-error
mean value is replaced by the instant one. The main disadvantages of the classical
analog LMS algorithm are especially low convergence rate and its dependency on
the adaptive parameters. Therefore, a lot of various versions of this algorithm have
been worked up, [9] – [11] e.g.

The adaptive antenna, controlled by LMS algorithm, is depicted in Fig. 1.2.
Investigating the time course of the circuit in Fig. 1.1, it can be expressed as [10]

)()()()]()([
1)( *H tst

T

gG
tttgG

Tdt

td
m

XWXXI
W

−+−= . ( 1.2 )

Here, T=RC is the open-loop time constant of the first-order LMS loop, and - gG
is the negative feedback gain. Rearranging the relation (1.2) and replacing the term
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X(t)sm
*(t) by its average value S yields a relation for computing the optimal average

weighting vector Wopt for gG >> 1 [10]
+++−−−=

−

SRIRIIW
1)])(/)(exp[()}({ gGTgGtgGt

)0(]/)(exp[ WRI TgGt +−+ . ( 1.3 )
The closed loop time constants of this algorithm can be obtained from the

diagonalized auto-correlation matrix R = EΛEH, where Λ is the diagonal matrix of
positive real eigenvalues λi of R and E is unitary transform matrix (EH

 = E
-1),

columns of which are the corresponding orthonormal eigenvectors of R [9], [10].
The averaged equation (1.3) is then diagonalized to obtain the uncoupled modes of
W(t) with time constants given by [10]

T T gG i N
i i
= + =/ ( ), , , ...1 1 2λ . ( 1.4 )

Usually (interference sources are partially correlated; sources have widely
different power levels etc.), some eigenvalues λi are much more larger than others.
Large eigenvalues λi make then the weighting coefficients jittery causing large
variations in residual output power [9], [10], while the small eigenvalues λi take
very long time to converge.

Therefore, Compton developed an improvement of the LMS feedback loop for
obtaining convergence rate almost independent on eigenvalues of R [9]. The time-
averaging products of input signals ensure a sufficient estimation of the matrix R in
the derivative feedback term, and therefore, the near-cancellation of its eigenvalues
in the time constants Ti is permitted [9]. The differential equation describing Fig. 1.1
is changed, using Compton improvement, to [10]

SRW
W

RI ktk
dt

td
kc 2)(2

)(
)2( −−=+ , ( 1.5 )

and time constants are given by [10]
NikkcTT

iii
...,2,1,2/)21( =+= λλ . ( 1.6 )

Here, 2k =gG/T, T is the integrator open-loop time constant, c = qT and the time
constants (1.6) can be re-expressed for large values of q, for which gGqλmin>>1, as
[10]

iii
gGgqGTT λλ /)1( += . ( 1.7 )

Obviously, the proper setting of integration constants T and gains of feedback
loops gG is conditioned by the knowledge of the minimal eigenvalue λmin of the
auto-correlation matrix R, which depends on unpredictable signal positions and
powers. Therefore, a modification of the Compton’s circuit, which does not require
the knowledge of λmin, was developed by Klemes [10]. In Klemes circuit, time
constants Ti are independent on λi, and the gain gG plays no role there.

In the Klemes adaptive processor, a perfect integrator is replaced by a single-pole
RC low-pass filter of the time constant T2=C2 R2, and the time averager is replaced
by similar filter of the time constant T1=C1 R1 << T2. A subtractor is incorporated in
the new loop to generate the time-derivative of the weight.

Analysis of the Klemes circuit leads to the second-order differential equation [10]
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++++

dt

d
gGTT

Tdt

d W
XXI

W
])/1[(

1 H

21

1

2

2

*

21

H

21

][
1

D
TT

gG
gG

TT
XWXXI

δ
δ −=++ , ( 1.8 )

where the time arguments of W(t) and X(t) were omitted for clarity and δ = T2/( T2 +
T1). T1 is here assumed being much smaller than T2. As the result of solving (1.8) for
W, the time constants of Klemes modified loop are obtained [10]

NiagGbgGTT
iii

...,2,1),1/()1(
0

=++= λλ . ( 1.9 )

Here, b = 1 ± µ
max

 and a = 1 ± η
max

, respectively (these parameters approach one
in most cases), T0  is a dominant open-loop time constant, and the parameters µ

max

and η
max

 are discussed in [10].
Comparing the standard LMS loop, Compton loop and Klemes loop in terms of

time constants of the closed feedback loop, following conclusions can be done:
Convergence properties of the standard LMS algorithm are crucially influenced

by the spread of eigenvalues of the auto-correlation matrix of input signals. This
influence is reduced by modifications of Compton and Klemes. Unfortunately, their
solutions exhibit higher complexity of the control circuitry, and moreover, new
parameters, values of which have to be properly guessed, are included into the
system. Further, it can be shown that Klemes circuit exhibits relatively high
misadjustment in the case of the high ratio of eigenvalues (also when only ideal
circuit elements are considered). Moreover, in the published papers [9] and [10], no
discussion was devoted to the influence of real parameters of the circuitry to the
proper function and to the stability of the system.

The so far described analog adaptive processors exhibit strong parallelism (each
antenna element has its own feedback loop) and learning ability (the antenna system
learns to maximize signal to interference ratio in the actual electromagnetic
environment). Therefore, the described adaptive processors are very close by their
nature to the artificial neural networks [12]. On the other hand, analog artificial
neural networks seem to be attractive to be used for the control of adaptive antennas.

1.2.3 Aims of the dissertation

On the basis of the above-presented overview of so-far developed analog systems
for the control of adaptive antennas, following general conclusions can be done:

In the open literature, no approach to the control of adaptive antennas, which fully
explores positive features of analog neural networks, has appeared yet.

In the open literature, no discussion has been devoted to a direct way of preparing
input patterns for the analog control neural networks of adaptive antennas (without
the use of complicated resistive arrays).

In the so-far development, the elimination of the influence of statistical
parameters of input signals to the stability of control circuitry has not been
satisfactorily solved yet.
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In the so-far development, no attention has been paid to the role of properties of
real electronic components to the stability and to the convergence properties of the
developed systems yet.

Therefore, the presented dissertation was oriented to reaching of following aims:
Since the control of adaptive antennas can be converted to the solution of the set

of simultaneous linear equations, various types of analog neural networks, which
can be used for this purpose (Wang, Kalman, simplified Kalman and Hopfield) are
going to be introduced here and rigorously analyzed. The analysis is oriented
towards investigating influence of real electronic components and influence of
statistical parameters to the behavior of the system.

Results of the rigorous analysis are going to be used for the development of
original modifications of the above mentioned types of neural networks in order to
ensure the stability of the system in as wide range of situations as possible.

A special analog circuitry for the direct conversion of antenna signals to input
patterns of neural networks is going to be developed. Antenna systems based on the
pilot signal and on the steering vector are going to be considered.

2  ANALOG NEURAL NETWORKS

In Chapter 1, two basic methods for steering adaptive antennas were introduced:
pilot signal method and steering vector method. Both the methods result in the set of
simultaneous linear equations, which have to be solved in real time. In Chapter 1,
we have presented several approaches to the iterative solution of the set of
equations. The set of N LMS loops (for iterative solution of N equations) can be
understood as a recurrent neural network (Wang one), and therefore, we concentrate
on solvers of linear equations, which are based on analog neural networks (ANN).

2.1 WANG ANN

In this section, the analog recurrent neural network with the LMS learning
algorithm (so called Wang ANN) is reviewed and analyzed. On the basis of
discussion of the obtained results, modified versions of Wang ANN are developed.

Wang ANN [13] was designed for the solution of a set of real linear equations
bvA

s
=. , ( 2.1 )

with the matrix of coefficients A, with the column vector of right-hand sides b, and
with the column vector of solutions vs.

For the matrix A of the size N×N (2.1), Wang ANN consists of N identical blocks
(neurons) connected in parallel (Fig. 2.1).

Operation of Wang ANN can be described as follows: in the beginning of the
convergence process, a random vector v(0) is put into (2.1) instead of the searched
solution. If v(0) is replaced by the vector v(t), the vector of errors is obtained:

)(.)( tt vAbe −= . ( 2.2 )
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The squared error vector is minimized by changing v(t) in the contra-direction of
the gradient gradv(e

2) [13]
( )[ ] )()( ttdttd WvAvbAv +=−= θη T , ( 2.3 )

where θ = ηAT
b, W = -ηAT

A, η>0 is the learning constant.
The elements of the matrix W are introduced into the neural network in the form

of resistors, which are given by the relation

jifji wRR
,,

= . ( 2.4 )

Here, Rf denotes the feedback resistor, which is depicted in Fig. 2.1.
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Fig. 2.1: The first neuron of one-dimensional Wang neural network

Elements of the column vector θ are introduced into the network by voltage
sources Ui and resistors Ri (see Fig. 2.1), which are related by the expression

iiif RUR θ= . ( 2.5 )

Then, the neuron consists of the summing amplifier, of the integrator producing
vi, and of the inverter implementing negative elements of the matrix W.

Convergence process of one-dimensional Wang ANN can be described by

( )
intint

f
RpCR

v

pR

U
Rpv

1

11

1

1

1

1 







−= . ( 2.6 )

We can consider (2.6) in a matrix form:

bAEEIv
1

1

11
)( −

−

−









Λ+=

intintintint
RC

p
RpC

p
η

, ( 2.7 )

where E is the transform matrix and Λ is the matrix of eigenvalues, I is a unity
matrix, and the rest of symbols is of unchanged meaning. According to [10], we can
define new variables v’= E-1

v, b’= E-1
b and rewrite (2.7) to

bAIv ′







Λ+=′ −

−

1

1

1

intintintint
RC

p
RpC

η
. ( 2.8 )

Then, we yield

j

intint

j

CR
T

ηλ
= , ( 2.9 )

where Tj represents time constants of uncoupled modes [10]. The time constant can
be seen to be influenced by the learning constant η, which is represented by the
value of Rf, by the integration constant RintCint and by eigenvalues λ of the matrix W.
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This causes many problems in real-time applications: if ratio of eigenvalues is too
high, time constants of uncoupled modes are very different, which results in long
convergence time (computer simulations show, that for the eigenvalue ratio of two-
dimensional Wang network λ2/λ1=7, the optimal convergence time is 41.44 µs, and
for λ2/λ1=70000, the optimal convergence time is 20.52 ms). Moreover, if optimal
setting of ANN parameters for the ratio λ2/λ1=7 is used, an undesired state of ANN
is obtained when changing ratio to λ2/λ1=70000. In order to avoid this, parameters of
ANN should be designed for λ2/λ1=70000, which causes long convergence time.
Therefore, some improvements of the Wang network were developed in order to
decrease the dependency of the convergence rate upon the eigenvalue ratio.

Trying to obtain as high convergence rate as possible, instability can be excited if
real opamps are considered as shown in the next section. Therefore, the goal is to
find the stable state with the maximal convergence rate.

2.1.1 Analysis of Wang ANN containing a real opamp

The instability of the real Wang ANN is caused by high gain of its closed loops as
shown later. If the 2-dimensional network with real opamps is assumed, then three
types of closed loops can be found in the system: the first one is inside the model of
a real opamp (recursive definition of I3 – see bellow), the second one is a feedback
of the opamp (see Fig. 2.1), representing a mathematical operation in the circuit
(integration, e.g.), and the third one is the feedback of the neuron as depicted in Fig.
2.1. The gain of the last closed loop is influenced by elements of the matrix W
(represented by resistors Ri,j) and by the adaptive parameters of the network (time
constants RintCint and the learning constant η), the gain of the feedback of opamp is
influenced by the learning constant η. Therefore, all the mentioned parameters can
influence stability of the system. Further, we will discuss this influence.
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The considered opamp model can be described by the following equations [4]:

11
AUI = , ( 2.10 )

22
BUI = , ( 2.11 )

VH
HIU = , ( 2.12 )
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21213 DDPPB
EIEIDIDICII +−−+= , ( 2.13 )

where A to H are constants (see [4]) and the rest of symbols can be seen in Fig. 2.2.
The exact analysis of the multi-dimensional Wang ANN containing models of

real opamps is rather difficult because of very complicated mathematical
description. But, such analysis is not needed, because we can analyze one-
dimensional Wang ANN and extend results to N dimensions. Nevertheless even in
this case, some simplifications have to be done due to presence of non-linear circuit
elements (diodes D1 to D4), e.g. Moreover, because of big complexity of the real
opamp model, this model is considered being in the summing amplifier only. In the
integrating amplifier and the inverting one, the ideal opamps are considered.
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In the analyzed circuit, there are two feedbacks from the point of view of voltages
on the input of the opamp Uin and on its output Uout. The first feedback is
represented by the connection of input and output of the opamp through feedback
resistor Rf in the summing amplifier, and the second one by the connection through
resistor R11 (see Fig. 2.3). On the presence of these feedbacks, our analysis is based.

In the first step, the first feedback is handled. For this purpose, some
simplifications are done. Computer simulations show, that the input part of the
circuit (the differential amplifier in the opamp) can be described in a rather simple
way because both the capacitor C3 and the current source IZ can be neglected (they
do not significantly influence dynamics and stability of the network). JFETs can be
assumed to work in the linear regime (small signals are expected).

Further, the non-linear sub-circuit in Fig. 2.3 can be neglected in order to simplify
the analysis. After this simplification, the output voltage Uout(p) can be expressed as

ψχφσϕεδ

ξγβα

+++++++

+++

=

pCpCpCpC

pppRRRUC
pU a

out

)()()(

)(
)(

int

2

int

3

int

4

int

23

11int10int , ( 2.14 )

where Greek symbols represent relatively complicated expressions containing the
circuit parameters of the circuit from Fig. 2.3 (because of high number of
complicated expressions, these relations are not presented here; detailed information
about this analysis can be found in thesis). Since the polynomial in the denominator
of Uout(p) is of fourth order, the poles cannot be practically computed by the
classical analytical means (numerical methods have to be used). The time course of
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the error signal described by (2.14) has in the case of inappropriate setting of
adaptive parameters the form of sinusoidal divergent signal described by relation
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This expression in time domain represents the difference between fixed
oscillations and depressed ones, which corresponds with rising oscillations that
become stable after certain time. This time is given by a parameter b in (2.15).

From comparison of (2.15) and (2.14), we can get
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Relations (2.16) to (2.18) show, that existence of this state depends on many ANN
parameters and properties of the input signal matrix. For the use of the real Wang
ANN, it is important to find the condition for transition from the stable state (which
is described by (2.14) with polynomial in denominator with negative nonzero real
parts of all poles) to the state described by (2.15), but these conditions are practically
not possible to find by analytical means.  Dependence of the error signal on the ratio
of eigenvalues of input signal matrix can be obtained by using the above-described
matrix transform - we replace R11 by the matrix Rf(ηA

T
A)-1 and turn it to (ηE-1

ΛE)-1,
as was mentioned above. Nevertheless, the dependence of Uout(p) on ratio of
eigenvalues is rather complicated and difficult to discuss, because the resistor R11

occurs in many serial and parallel combinations of resistors, which were replaced by
many symbols simplifying presented relations as Ra, Rax etc. (for details, see thesis),
therefore it will be not discussed here. We can conclude that the performed analysis
resulted in the exact description of the ”real” Wang ANN behavior, which is much
more complicated in comparison with [13] and which shows the ANN stability
depending on many parameters of the used opamp model, on parameters of the
network and on parameters of the input signal matrix. Of course, we can consider
that most of them need not be changed during use of the network, but we must
always consider changes of eigenvalues of the input signal matrix. Because these
changes can cause unpleasant consequences, we must think about elimination of
such influences. Possibilities of the solution of this problem are discussed bellow.

2.1.2 Exploitation of Compton loop in Wang ANN

Recently, principle of Compton version of an analog control algorithm [9] is used
in digital neural networks in order to improve their properties. The following
relation can describe the circuit from Fig. 2.4:
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Using similar matrix transform, we can obtain
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The time constants of uncoupled modes of v(t) can be expressed as
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where λj is j-th eigenvalue of the matrix product AT
A. Comparing relations (2.20)

and (2.21) with relations describing classical Wang ANN, we can see weaker
dependence of convergence rate on the eigenvalue ratio. Nevertheless, the
convergence rate is still dependent on the time constant of the integrator.

Comparison of relations describing the Compton version of the Wang ANN and
classical Wang ANN shows that Compton version of Wang ANN converges more
slowly than the classical Wang ANN. On the contrary, computer simulations
demonstrate that the Compton version converges more quickly for all observed
eigenvalue ratios of the matrix W. For λ2/λ1=70000, the convergence time of the
Compton version is 150.0 µs compared to 20.52 ms for the classical one. For
λ2/λ1=700, the convergence time of the Compton version is 79.03 µs compared to
385.61 µs for the classical one and for λ2/λ1=7, the convergence time of the
Compton version is 3.42 µs compared to 41.44 µs for the classical one. The
difference between theoretical conclusions and results of computer simulations can
be explained by neglecting real circuit properties in the above-presented derivations.
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Fig. 2.4: Compton version of the first neuron of the one-dimensional Wang ANN

2.1.3 Modification of Wang ANN toward better convergence rate

Since convergence properties of Wang ANN are rather poor, we turned our
attention to their improvement. This goal can be reached by several ways.

The use of a non-linear element in Wang ANN

In order to improve the convergence, we have to consider the above-mentioned
negative properties of used opamps, which cause limiting of the convergence rate.
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For ideal Wang ANN, time constant is given by

f

intint

R

RCR
T

11
= . ( 2.22 )

Hence, the minimal convergence time equals to zero - if the time constant RintCint

approaches zero, we can find from the relation describing time course of solution
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RU
tv −−= exp1)(

1

111

1
, ( 2.23 )

that the convergence time approaches zero.
The bellow-limited convergence time of Wang ANN is caused by a potential

unstable state, appearing when the gain of one of closed loops is too high.
Consequently, only a certain minimal nonzero convergence time depending on
circuit parameters, which influence the gain of closed loops, can be reached.

Generally, it is possible to afford higher gains of closed loops in the beginning of
convergence process compared to the gains corresponding to the mentioned minimal
convergence time, when the circuit parameters are independent on time. This leads
to the increase of the convergence rate, which can be realized through a non-linear
time constant with small starting value, which is increased with time. This idea can
be realized by replacing of the resistor Rint by two contra-parallel diodes (Fig. 2.5).
The parallel resistor Rp ensures a minimal convergence rate when the voltage over
diodes is smaller then their threshold voltage, the serial resistor Rs limits the
resistance between output of the summing amplifier and input of the integrator
(a certain minimal value of this resistance ensures a stable state of the network).

In the analysis, we consider one-dimensional Wang ANN and an ideal diode
(described according to [5]). Because of simplicity of the analysis, the resistors Rp

and Rsi are neglected. That way, we obtain the error signal
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where

t
URC

IR

Tint

f

11

0
2

=α , ( 2.25 )

1

1

RU

RU

T

f
−=β ( 2.26 )

and
qkTU

T
= . ( 2.27 )

In (2.27), k is a Boltzman constant, q is a charge of electron, and T is temperature
in Kelvin scale. Replacing the left side of (2.24) by ε, we obtain the convergence
time when error signal reaches the value ε as



17

( )

( )
( )
( ) 







−+

−−

−−

−+
=

β

β

ε

ε
ε

exp1

exp1

exp1

exp1
ln

2
0

11

T

T

f

intT

U

U

RI

CRU
t . ( 2.28 )

Considering e1(0)>>UT and ε =UT, the argument of the logarithm in (2.28) goes to
one. Under the conditions that Rint=UT/2I0 and other circuit parameters are in both
networks the same, the convergence time for certain ε and e1(0) is shorter for the
modified Wang ANN. The reason is, that the conductance of diodes in the modified
Wang ANN is very low at the beginning of the convergence process and during this
process rises with time. The convergence time can be shortened by the use of the
resistor Rp (see Fig. 2.5), because the conductance of diodes for error signal close to
zero approaches infinity, which significantly decreases the convergence rate, and
this parallel resistor then ensures a certain minimal convergence rate. Unfortunately,
we cannot compute a relation for the time course in this case.
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Fig. 2.5: First neuron of Wang ANN with non-linear time constant

The above-presented theoretical conclusion is confirmed by results of computer
simulations. For λ2/λ1=70000, the convergence time of the modified ANN equals to
64.29 µs versus 20.52 ms of the classical one. For λ2/λ1=700, the convergence time
of the modified ANN equals to 69.64 µs versus 385.61 µs of the classical one and
for λ2/λ1=7, the convergence time of the modified ANN equals to 2.75 µs versus
41.44 µs of the classical one.

Parallel combination of the integration resistor and a capacitor in Wang ANN

The integrating resistor is substituted by the parallel combination of a resistor and
a capacitor in this modification. The analysis of such circuit requires considering
instead of an ideal opamp an inverting amplifier with a gain described at least by

τp

G
pG

+

−
=

1
)( . ( 2.29 )

Here, G and τ are constants. The voltage v1(p) can be expressed (considering
instead a block with G(p) an ideal opamp and a resistor R3 as being zero) as
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Now, we can compare the time constant of the analysed circuit



18

( ) fintdfinta RRCRRCT +=
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( 2.31 )

with the relation for the time constant of the classical Wang ANN
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Fig. 2.6: The analysed circuit

Comparing (2.31) and (2.32), the time constant of the novel ANN is always
higher than the time constant of the classical Wang ANN, i.e. the novel ANN should
converge more slowly. On the other hand, if the gain of the summing amplifier is
given by (2.29), the time constants of the novel ANN can be smaller (under certain
conditions) than in the classical Wang ANN with the same summing amplifier.

First, the classical Wang ANN from Fig. 2.6 is discussed. We consider the opamp
having the gain described by (2.29) instead of an ideal opamp in the summing
amplifier (the other opamps we consider as ideal). First, we consider an amplifier to
be given by the gain -G only. Then, the time course of Uout can be described as
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Now, we consider that the amplifier with the gain G(p) in the non-ideal summing
amplifier is described by (2.29). Then, poles of Uout are of the form
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and
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Fig. 2.7: Improvement of the convergence rate of Wang ANN

Considering the novel Wang ANN (Fig.2.7) and assuming the gain G(p) of the
amplifier given by (2.29), the poles of U’out can be expressed as
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Fig. 2.8: Another improvement of the convergence rate of Wang ANN

Comparing (2.43) and (2.40), we can conclude that under condition of certain
circuit-parameters setting (of course, corresponding circuit parameters have in both
networks the same values), convergence time of the modified circuit is shorter,
which is in opposite to the comparison of time courses of ideal circuits.

This conclusion is confirmed by results of computer simulations. For
λ2/λ1=70000, the convergence time of the novel ANN is 377.01 µs versus 20.52 ms
of the classical Wang ANN. For λ2/λ1=700, the convergence time of the novel ANN
is 131.88 µs versus 385.61 µs of the classical Wang ANN and for λ2/λ1=7, the
convergence time of the novel ANN is 31.89 µs versus 41.44 µs of the classical one.

Serial combination of the integration capacitor and a resistor in Wang ANN

The modification is depicted in Fig. 2.8. Here, we consider a constant-gain
amplifier only in order to obtain simpler description. Then, it can be obtained
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C’int and R’int are depicted in Fig. 2.8 and the rest of symbols was already explained.
This relation can be rewritten to
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and the poles of (2.46) can be expressed as
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Comparing (2.51) and (2.33), the voltage U”out(p) can be found to converge more
quickly to zero (under condition of certain setting of circuit parameters - of course,
the corresponding circuit parameters have in both networks the same values), which
is again in opposite to the comparison of ideal circuits.

This conclusion is confirmed by results of computer simulations. For
λ2/λ1=70000, the convergence time of the modified ANN (Fig. 2.8, SRIC-ANN,
instead of the block with G(p) is used a real opamp and the value of R3 is set to zero)
is 93.75 µs versus 20.52 ms of the classical Wang ANN. For λ2/λ1=700, the
convergence time of SRIC-ANN is 45.54 µs versus 385.61 µs of the classical Wang
ANN and for λ2/λ1=7, the convergence time of SRIC-ANN is 2.05 µs versus 41.44
µs of the classical Wang ANN.

2.2 ANN BASED ON SIMPLIFIED KALMAN FILTER

In this section, the recurrent analog neural network (ANN) based on the
simplified Kalman filter (SKF) is analyzed. On the basis of analysis results,
improvements of the simplified Kalman network (SKN) are proposed.

2.2.1 Description of Kalman filter based ANN

Application of Kalman filter theory to Wang ANN [7] removes negative features
of Wang ANN (low convergence rate, e.g.). Applying Kalman filter to the solution
of the simultaneous set of linear equations, following relations are obtained [7]:
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Here, P(t) is a predicted state-error, R -1 is inverted correlation matrix of a residual
error, K denotes a matrix of a Kalman gain, A is the matrix of coefficients of solved
set of equations, b denotes the column vector of right-hand sides of solved
equations, and v is the column vector of solution.
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Fig. 2.9: Neurons used in the Kalman ANN:

a) summing amplifier, b) integrator, c) predictor

Pure Kalman filter is very complicated, and therefore, its simplified version was
developed [7]. Simplification consists in use of diagonal elements of matrix P(t)
only.

In analog realization, simplification decreases the number of circuit elements
(analog multipliers, especially). Therefore, the simplified version of Kalman filter
(SKF) is used as a basis of ANN developed in this chapter. Discussion of
convergence properties of SKF was published in [6]: the paper concludes that
convergence properties of SKF approach pure Kalman filter on one hand and LMS
algorithm on the other hand. Unfortunately, mathematical description of SKF is
rather complicated. Therefore, we will use in following the mathematical description
of the pure Kalman filter (eqns. 2.52 to 2.54) only, which leads to the same result if
only one-dimensional network is considered (which is discussed first).

SKN is depicted in Fig. 2.10. The difference between the pure Kalman ANN and
SKN is hidden in the upper sub-circuit, which is very complicated for the pure
Kalman ANN (and therefore, it is not depicted here). All the modifications, which
are presented in this chapter, are therefore based on SKF.
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Fig. 2.10: Analog realization of SKN for solving set of simultaneous linear

equations

SKN consists of three types of neurons (Fig. 2.9): of a summing amplifier, an
integrator and a predictor (it computes diagonal elements of the predicted state-error
correlation matrix). In the predictor, a circle containing × denotes an analog
multiplier. The Kalman gain is led to integrators by JFETs, which serve as
electrically controlled resistors. Bias points of JFETs are set by DC sources θm.
Elements of the matrix A are interpreted in the circuitry by resistors Rm,n, R´m,n

nmfnm aRR
,,

/η= , ( 2.55 )

nmfnm aRR
,,

/' ρ= , ( 2.56 )

where Rf is a feedback resistor of an input opamp of the respective neurons, am,n is
an element of the matrix A, η is an adaptation constant and

ρ = R-1>0. ( 2.57 )
If R <0 (R >0), the respective negative (positive) neuron output is used. If am,n < 0,

then the negative output of the km,n neuron is led to the gate of the JFET and the
negative output of the em neuron is led to its drain. Inverted output (-km,n) is
connected to the input of the predictor through the resistor Rm,n (see Fig. 2.10) and
positive output of the integrator is connected to the respective resistor Rm,n. Resistors
and sources of the biasing thresholds of neurons are associated by

m

fm

m
R

R
b

η

θ
= , ( 2.58 )

where b is an element of the vector b and Rm is the resistance between the voltage
source and the summing amplifier. JFETs in Fig. 2.10 are serving as controlled
resistors, θ is a threshold for a JFET, and a resistor Rnew ensures stability of the
circuit in the case when the resistance of a JFET is small.

2.2.2 Analysis of SKN

For simplicity of the outcome of the analysis, only ideal one-dimensional SKN is
discussed first. The analysis of SKN is quite complicated, and therefore, some
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simplifications have to be done. Feedback resistors in summing amplifiers and time
constants are considered to be the same in the whole circuitry. Next, JFET (plus
Rnew) and following summing amplifier in the integrator are represented by the
product of Kalman gain and error signal. The solution v(t) can be expressed as
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The vector of solutions can be expressed by rewriting of (2.59) to matrix form:

bAIAAIv
1

1

0T
)(

−

−























+−=

intint
RC

tU
t

ηρ
. ( 2.60 )

We can use the above-described matrix transform in order to obtain the
dependence on eigenvalues: we can define new variables v’ = E-1 v, b’ = E-1 b,
where E denotes a transform matrix. We multiply (2.60) by E-1 and rewrite it to

bAIbAIIv ′







Λ+=′























+Λ−=′ −

−

−−

−

1

1

1

0

1

1

0
)(

tU

RC

RC

tU
t

intint

intint
ηρ

ηρ
. ( 2.61 )

Here, Λ represents the matrix of eigenvalues. Comparing Wang ANN and SKN,
the form of the convergence process of Wang ANN is given by the exponential
function of a negative argument. If the argument is a function of time, decrease of
such exponential function is quicker than decrease of the inverted value of time. But,
computer simulations show that SKN converges more quickly for the same input
signal, which can be explained by the influence of real circuit elements (see above).
Higher convergence rate of SKN is caused by multiplying the error signal by the
Kalman gain, which is decreasing with time very quickly. Therefore, the gains of the
closed loops in the lower part of SKN are not time-independent - they are decreasing
in time due to described multiplying. Hence, creating an unstable state requires
higher values of gains of closed loops at the beginning of the convergence process
comparing to Wang ANN, which leads to better convergence. It must be also noted,
that the Kalman gain depends also on the upper-circuit adaptation parameters, which
allows finer tuning of the network.

The results of computer simulations show that convergence time for all the
observed eigenvalue ratios is significantly shorter at SKN comparing to the classical
Wang ANN. For λ1/λ2=7, the optimal convergence time of SKN is 2.19 µs versus
41.44 µs of Wang ANN. For λ1/λ2=700, the optimal convergence time of SKN is
101.46 µs versus 385.61 µs of Wang ANN, and for λ1/λ2=70000, the optimal con-
vergence time of SKN is 789.27 µs versus 20.52 ms of Wang ANN. On the other
hand, the above-presented improvements of Wang ANN exhibit better (or
approximately the same) convergence rate than SKN.

The essential drawback of SKN is the stability dependence on the eigenvalue
ratio. If optimally set circuit parameters are used for another eigenvalue ratio, SKN
starts to diverge (except of the case λ1/λ2=7, when circuit parameters are optimally
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set for λ1/λ2=70000). Moreover, for λ1/λ2=70000, SKN converges for upper-part
parameter setting in a relatively narrow neighborhood of theirs optimal values only.

Considering the above-given discussion, SKN is not appropriate for the real-time
processing. Further, confrontation of SKN and improved Wang ANN shows similar
convergence properties of networks on one hand and more complicated circuitry of
SKN on the other hand. Therefore, improvements of SKN have to be proposed.

2.2.3 Improved versions of SKN

All the improvements we have developed for Wang ANN were applied even to
SKN. Since both the principles and the analysis methods are similar, we concentrate
to the discussion of the results here.

SKN with additional feedback

In the lower sub-circuit, two possible feedbacks can be created following the idea
of Compton loop. The feedback can connect the output of summing amplifier and its
input (as done at Wang ANN), or can connect the input of integrator and the input of
summing amplifier (see Fig. 2.11). The second solution provides better properties of
SKN due to involving Kalman-gain multiplication in the closed loop. The analysis
of this network leads to relation
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Exploiting the above mentioned transform, eqn. (2.62) can be expressed as
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Comparing classical SKN and improved one, weaker dependency of convergence
rate on eigenvalue ratio can be seen. In  (2.61),  time  is  multiplied  by
ΛηU0ρ/CintRint versus Λ{[Λ+(ηρU0)

-1]CintRint}
-1 in (2.63). Improved convergence

properties are illustrated by results of computer simulations: convergence time for
all the examined eigenvalue ratios is much better comparing to classical SKN. For
λ1/λ2=7, the optimal convergence time of improved SKN is 587 ns versus to 2.19 µs
of the classic one. For λ1/λ2=700, the optimal convergence time of the improved
SKN is 3.22 µs versus to 101.46 µs of the classic one. For λ1/λ2=70000, the optimal
convergence time of the improved SKN is 23.30 µs versus 789.29 µs of the classical
one. If the optimal setting of circuit parameters for λ1/λ2=7 and λ1/λ2=700 is used in
the case of λ1/λ2=70000, AF-SKN diverges. On the other hand, AF-SKN with
optimal setting for λ1/λ2=70000 converges even for eigenvalue ratio 7 and 700. In
the first case, the convergence time is 17.33 µs, in the second one 161.43 µs.
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Fig. 2.11: Analog realization of SKN with an additional feedback

We can conclude, that AF-SKN significantly improves convergence properties of
SKN. On the other hand, AF-SKN still exhibits relatively high dependence of the
convergence rate on the circuit parameters and on the eigenvalue ratio.

SKN with modified Kalman-gain course

A higher convergence rate can be reached by the low-pass filtering of the Kalman
gain (see Fig. 2.12). Unfortunately, an analysis of such modified SKN leads to rather
complicated expressions, which will be therefore not presented here. Computer
simulations show that only the optimal convergence time of MKG-SKN for
λ1/λ2=70000 is better (33.93 µs) comparing to classical SKN (789.29 µs). In other
investigated cases, convergence time of MKG-SKN is longer comparing to classical
SKN: for λ1/λ2=7, the optimal convergence time of MKG-SKN is 7.99 µs versus
2.19 µs of classical SKN, and for λ1/λ2=700, the optimal convergence time of MKG-
SKN is 118.97 µs versus 101.46 µs of classical SKN.

The dependence of the convergence rate on the circuit parameters of MKG-SKN
is a bit worse comparing to classical SKN. On the contrary, the dependence on
circuit elements CF and RF is relatively low – wide-range variation of CF and RF

causes neither divergence nor the significant change of the convergence time. MKG-
SKN is advantageous in relatively short optimal convergence time for λ1/λ2=70000:
for applying ANN, setting of circuit parameters for the highest used eigenvalue is
needed in order to minimize risk of the unstable states. Therefore, the fact, that the
optimal setting for λ1/λ2=70000 can be used for both the other investigated cases, is
an advantage. For λ1/λ2=7, MKG-SKN converges in 16.58 µs, and for λ1/λ2=700,
MKG-SKN converges in 1.35 ms. These results are worse than the results exhibited
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by the circuit from Fig. 2.11, nevertheless, MKG-SKN is important as a part of the
ANN from Fig. 2.14 (see bellow).
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Fig. 2.12: Analog realization of SKN with modified  predictor

SKN with modified integrator

This modification uses a resistor in series with Cint in integrator (see Fig. 2.13).
The rest of the circuitry corresponds to the original circuitry, therefore, we have to
derive the error signal and the solution only. The solution can be expressed as
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Eqn. (2.64) can be (using previously described transform) rewritten to
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The term in the first bracket equals to the expression in brackets in (2.63) if
R’int=Rint. In the second bracket, time is not multiplied by Λ, and therefore, there is
small influence of this term to the convergence rate for t sufficiently high.
Unfortunately, influence of this term occurs at the beginning of the convergence
process, which cause some influence of the eigenvalue matrix because of
multiplying by this term, which is disadvantage in comparison with (2.63).

Computer simulations show that only the optimal convergence time of the
modified network for λ1/λ2=70000 is better comparing SKN in this case (83.93 µs
versus 789.29 µs). In other investigated cases, modified ANN is worse: for λ1/λ2=7,
the optimal convergence time of the modified ANN is 25.71 µs versus 2.19 µs of
SKN, for λ1/λ2=700, the optimal convergence time of the modified ANN is 271.30
µs versus 101.46 µs of SKN.
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Fig. 2.13: Modified integrator

The dependence of the convergence rate on the circuit parameters is worse
compared to SKN, because the network often converges only in a narrow
neighborhood of the optimal value of the corresponding parameter. If the optimal
setting of circuit parameters for λ1/λ2=7 and 700 is used for another eigenvalue ratio,
then ANN diverges. If optimal setting is done for λ1/λ2=70000, then ANN converges
for λ1/λ2=7 in 86.79 µs, and for λ1/λ2=700 in 346.25 µs. These results are slightly
worse compared to Compton SKN, and better to MKG-SKN. The optimal
convergence time (except of λ1/λ2=70000) is worse compared to the respective mo-
dification of Wang ANN. In the circuit depicted in Fig. 2.8, capacitor C’int is used in
contrast to modified SKN, which reduces some negative influences of the resistor
R’int to the convergence rate. Here, we discussed the circuit without this capacitor in
order to reduce mathematical complexity. This modified SKN is important because
of its relatively low dependence of the convergence rate on the eigenvalue ratio, and
therefore, it is used in its improved version with capacitor C’int (see Fig. 2.15) as one
of main elements of the ANN from Fig. 2.14.

Combination of designed improvements

In order to obtain a very fast ANN of weak dependence of the convergence rate
on eigenvalue ratio, several above-described improvements can be combined.

The results of computer simulations show, that such ANN is of the best
convergence properties. For λ1/λ2=7, the combined SKN converges in 847.8 ns. For
λ1/λ2=700, the combined SKN converges in 591.4 ns, and for λ1/λ2=70000, the
convergence time is 1.21 µs. Further, the dependence of the convergence rate on the
eigenvalue ratio is very low. If the optimal circuit-parameter setting for λ1/λ2=70000
is used, the combined SKN converges in 1.23 µs for λ1/λ2=7, and the convergence
time for λ1/λ2=700 is 1.05 µs. I.e., the convergence time for all the examined
eigenvalue ratios is practically the same. Next, computer simulations show that the
convergence rate depends weakly on setting of the circuit parameters (much weaker
compared the other SKN), except parameters RF and CF.

Unfortunately, time course of the combined SKN cannot be expressed analytically
due to the enormous complexity. Therefore, the conclusions have to be based on
above-presented derivations. The only improvement, which was not discussed
before, is the use of the elements DF, CD and RD. Mathematical description of this
modification is very complicated due to the presence of the non-linearity. The
function of DF, RF and CF is to limit high values of the Kalman gain during the
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convergence process. As already discussed, SKN containing the low-pass filter only
decreases the influence of the eigenvalue ratio - hence, the combination of proposed
modifications is important.
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Fig. 2.14: Analog realization of the improved SKN for solving of simultaneous

linear equations

Finally, we can conclude that the combined SKN is convenient for the
exploitation to the control of adaptive antennas. This conclusion is supported by
results of computer simulations.
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3  APPLICATION OF ANN IN ADAPTIVE ANTENNA

SYSTEMS

In Chapter 1, we have demonstrated the fact that the problem of steering adaptive
antenna arrays can be converted to the set of simultaneous linear equations. Real-
time iterative solution of these equation sets is then performed by developed ANNs.

We have applied all the developed ANNs to the control of adaptive antennas.
Control of adaptive antennas by original improvements of Wang ANN and

Kalman one was simulated and results of computer simulations were compared. The
comparison confirmed conclusions of Chapter 2: the control system based on Wang
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ANN converged relatively slowly, the control system based on SKN showed higher
dependence of the convergence rate on eigenvalue ratio and input signal frequency.
Finally, the combined SKN exhibited both high convergence rate and low
dependence on the eigenvalue ratio and input-signal frequency. Therefore, this
circuit can be found the most suitable for the control of adaptive antennas.

Fig. 2.16: The time course of the vector of solutions of the two-dimensional

combined SKN for eigenvalue ratio equal to 70000 in the optimal case

4  CONCLUSIONS

In second chapter, two important types of the analog neural networks (Wang
ANN, SKN) were analyzed and discussed. On the basis of the performed analysis,
improvements of Wang ANN and SKN were proposed and implemented. Improved
ANNs exhibit both high convergence rate and good stability properties, which
enable their exploitation in such real time systems as the adaptive antennas are.

First, Wang ANN with the use of the non-linear time constant was presented and
mathematically analyzed. At the beginning of the convergence process, the
convergence rate is increased using low value of the non-linear time constant, which
is later increased in order to prevent unstable state of the ANN. The convergence
rate is (compared to the classical Wang ANN) much higher, which confirms the
conclusion of the mathematical analysis of this circuit.

Next, the improvement exploiting a parallel connection of a capacitor and the
integrating resistor, and the improvement exploiting a serial connection of a resistor
and the integrating capacitor were presented and analyzed. The fact that the analysis
based on ideal opamps can lead to improper conclusions was confirmed again: in the
case of ideal opamps, the analysis leads to the conclusion, that both improved
networks exhibit lower convergence rate than the classical Wang ANN. If an output
resistor and a limited gain are considered in the summing amplifier, the analysis
leads to the opposite conclusion, confirmed also by computer simulations.
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The dependence of the convergence rate on the ratio of eigenvalues of the input
signal matrix is another important problem, which was not solved by above-
mentioned improvements. The unpleasant consequence of this dependence is a long
convergence time in the case of a big eigenvalue ratio. This property is undesired in
applications, where the high convergence rate is required. The best solution from
both older and newly developed approaches in thesis was the application of the
modified Kalman filter algorithm. In real conditions, convergence problems of
classical Kalman network are similar to those of Wang one, but reached
convergence rate is much higher. In order to improve the convergence properties, we
can adopt the same improvements as for Wang ANN. Even the results are similar.

An original improvement of the Kalman neural network is exploitation of the low-
band filter in the predictor sub-circuit. That way, the signal of the Kalman gain K(t)
is filtered in order to reach higher convergence rate. Combining above described
improvements, very fast ANN with very low dependence of the convergence rate on
the eigenvalue ratio is obtained. It can be concluded, that such neural network can be
used also for real time processing in such applications as the adaptive antennas are.

Further, we discussed the use of previously presented analog neural networks in
the adaptive antenna systems. We described application of these analog neural
networks in the adaptive antenna control systems, including original mathematical
analysis of such application of the simplified Kalman network. On the basis of
previous conclusions, the modified Kalman neural network with the best
convergence properties was applied in the adaptive antenna control system, designed
circuit was simulated and results of computer simulations compared with results of
computer simulations of the control systems based on the classical Wang ANN and
classical SKN. Such comparison confirmed the conclusions – the control system
based on the Wang network converged in relatively long convergence times, the
control system based on the classical Kalman network showed high dependence of
the convergence rate on the ratio of eigenvalues and frequency of the input signal,
and the circuit based on the modified Kalman network exhibited both high
convergence rate and low dependence of the convergence rate on ratio of
eigenvalues and frequency of the input signal. Therefore, this circuit can be
considered the most suitable for the control of adaptive antennas.
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