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INTRODUCTION

Universal mathematical tools suitable for solving large scientific and technological
tasks are steadily taking on higher importance this time. This is due to constantly wider and
wider availability of sufficiently powerful computers including personal ones which can be
used with relatively low costs for the simulations. Nowadays, not only permanently faster
processors and larger memories but also advanced computer technologies, e.g. computers
with vector processors and/or multiprocessors, are starting to play significant role. These
aspects stimulate an effort to developing new and improving existing numerical techniques
applicable in the computer simulations.

One of such a universal mathematical tool is e.g. Matlab language of the MathWorks,
Inc., which has proven to be very convenient for the development and experimental
verification of novel numerical techniques and approaches. It is among others due to the
ability of this language to process vectors, matrices and multidimensional arrays very
effectively when many mathematical operations can be applied to run in parallel on these
data structures. Furthermore, many various advanced mathematical functions are included
in the core of the language and others can easily be appended through necessary problem-
oriented toolboxes. This is why all the methods developed inside the scope of the
habilitation thesis have been programmed, tested and verified using this mathematical
language. Besides the Matlab language is becoming increasingly popular not only among
scientists and engineers but also among undergraduate students this time, and thus running
on widely available PC machines the developed procedures are immediately ready to be
introduced into the educational process.

The habilitation thesis has focused its attention in two principal fields. In the first part
methods for the numerical inversion of Laplace transforms (NILT), both one-dimensional
(1D) and two-dimensional (2D), were elaborated, and the new techniques of their
computation have been developed. While the 1D Laplace transformation plays the
fundamental role in solving ordinary differential equations, the 2D-LT has its wide
applications to the solution of partial differential equations. Therefore, the NILT methods
rank among ones frequently used for an analysis of transient behaviour of linear dynamical
systems, and their fast and accurate computation has permanently wide theoretical and
practical significance.

Although many various techniques were studied, some of them can be found e.g. in
[1-16], finally two effective methods have been developed and elaborated in details. The
first method is based on the approximation of the exponential function in the definition
integral of the inverse Laplace transformation with functions containing hyperbolic cosine
or sine. This techniques lead to infinite sums the convergence of which can be accelerated
by Euler transformation [17-18]. The second method is based on the trapezoidal rule of
integration of the definition integral with properly chosen integration step. This technique
leads to infinite sums which can partially be evaluated using FFT algorithm while their
convergence is accelerated with the €—algorithm [19-26]. Comparing other existing NILT
methods and evaluating results of many experiments the developed procedures seem to
rank among the most versatile, accurate and fast. In this reduced thesis extent, however,
only the last method is described in more details as just this one has been applied to
problems of the consequent thesis part.



The second part of the habilitation thesis sets the task to contribute to techniques of the
computer simulation of transmission lines including multiconductor ones. From many
various methods, see e.g. [31-40], there are worked out those based on the Laplace
transformation (1D and 2D) making allowance for the effective algorithmization just in the
universal mathematical language Matlab. The methods related to the analysis and
simulation of the multiconductor transmission lines (MTL) attract the great attention this
time as they come in useful in the field of high-speed interconnects on microelectronic
chips and boards [41-44]. Transmisssion line effects such as reflection, dispersion,
attenuation and crosstalk may trigger false signals which in turn can cause malfunction of
all the system. Therefore, sufficiently accurate modeling and transient simulation of both
lossy and lossless MTLs are essential in reliable high-speed digital circuit design. The
transient analysis of the MTLs is also important in the field of power systems where it can
be used to predict the behaviour of long power lines excited by lightning strokes or by
short-circuit currents.

Firstly the methods based on the 1D Laplace transformation approach have been
elaborated. The developed procedures can handle MTLs considered as lossy, frequency
dependent, nonuniform, and under nonzero initial voltage and/or current distributions in
general [45-51]. The computation method is basically based on the direct matrix solution
of the set of MTL ordinary differential equations in frequency domain. Utilizing Matlab
capabilities effectively this approach has the advantages compared with widely used modal
analysis technique [31]. To simulate simple MTL systems the generalized Thévenin or
Norton equivalents are applied to model MTL’s linear terminating networks, and thus to
incorporate boundary conditions. For the simulation of more complex systems which
contain MTLs as their sections a technique based on the modified nodal admittance
(MNA) matrix equation is applied, see latest works [52,53]. As the final computation step
the NILT method is always used to get the solution in time domain [19-22].

In the case when only the uniform transmission lines are considered the 2D Laplace
transformation approach can be used for the simulation [54-57]. Applying the 2D-LT the
originally partial differential equations become the algebraic ones. Then after incorporating
boundary conditions the final 2D transform in (g,S)-domain is processed by the 2D-NILT
algorithm to get the solution in (X,t)-domain [23-26]. The advantage of the method lies in
the possibility to obtain the solution on the whole 2D region in a single calculation step. In
the case of the MTL’s zero initial conditions the method seems to be simple. To be able to
take MTL’s nonzero initial conditions into account, however, either the procedure for a
partial numerical inversion L, '[.] must be applied or convolution integrals must be
precomputed [56]. Beside of this direct 2D-LT method a new approach has also been
proposed when certain 2D transforms are inverted separately and finally the results are
convolved with respect to time t to get the resultant 2D original [56]. The method can
advantageously be used to demonstrate how the waves are propagated along MTL’s wires.
Utilizing Matlab language capabilities the results can easily be presented in three-
dimensional graphs or utilized for an animation process, too.

As the full thesis for habilitation consists of the set of published papers this presented
thesis has currently been appended with the chapter 2.3 based on the latest papers [52,53].



1. FFT-BASED METHODS OF NUMERICAL INVERSION OF LAPLACE
TRANSFORMS

As the speed of widely available computers is increasingly growing NILT methods
based on a relatively simple principle, namely a numerical integration of the Bromwich
integral, are gaining a renewed interest, see e.g. [16]. Following papers [8-10] a 1D-NILT
method based on the FFT and the €-algorithm was developed [19-22]. It proved to be
convenient from point of view of both desired speed and an accuracy. Particularly utilizing
capabilities of the Matlab language the numerical method under consideration appears to
be very fast to invert not only simple Laplace transforms but also more complicated
transforms arrising e.g. when multiconductor transmission line systems are simulated.
Especially for these purposes the basic (scalar) version of the 1D-NILT algorithm [19,20]
was generalized to be usable to invert the Laplace transforms in vector and matrix forms
very effectively [21,22]. This is enabled due to the fact that many mathematical operations
in the Matlab language (started with the version 5) can run in parallel on multidimensional
arrays without necessity to use any outer loop structures. This is why the CPU time is
saved considerably in practical applications. The above 1D-NILT method has been
generalized to 2D-NILT case in papers [23-26]. Compared with the recently published
method [16] the developed one shows to be more accurate about three orders in average.

1.1. ONE-DIMENSIONAL NILT METHOD

1.1.1. Theoretical Base

In principle to find the original f(t) to the Laplace transform F(S) the Bromwich
integral can be considered as

cilj'wF(s)es‘ds (1.1)

f)y=—
27—4 c—joo

under the basic assumption |f(t)| <Ke™, K real positive, a as the exponential order of
the real function f(t), t =0, and F(s) defined for Re[s] >a .

The aim is to evaluate this integral numerically not only accurately enough but also
very fast on a whole given interval [0;t [] Applying a trapezoidal rule of the integration

then after some manipulations [19,20] the approximate formula in a discrete form
f~k = fN(kT) can be written as

fe =C2Re[Y Fz{]1-F,} , k=0,--,N-1, (1.2)
n=0
with
C, :23e°”, F =F(c-jnQ), z =e?, (1.3)
T

where T and Q =271/(NT) are sampling periods in the original and the transform domain,
respectively. It was shown that (1.2) corresponds to the Fourier series approximation of the
original f(t) when the error can theoretically be controlled on the interval t [ <O; NT). In



practical computations, however, to avoid increasing the error at the end of this interval the
required maximum time is supposed to be t,, =(M —1)T, with M = N/2 as the number of
resultant computed points. This leads to the condition of choosing the sampling period in
the frequency domain as Q =7(1-1/M)/t,, . The error analysis [19] has shown that the

coefficient C in (1.3) can approximately be set as

Q
c=a-—IkE, , (1.4)
2
where E, denotes the desired relative error. To minimize the error towards this theoretical

value the infinite sum in (1.2) must be evaluated as accurately as possible.

1.1.2. FFT and g—-Algorithm Application

The solution consists of three steps. Firstly this sum is evaluated using only N first

terms when the FFT algorithm can be applied supposing N =2™, minteger. Secondly after
truncating the result of the FFT operation to have only the length M the €-algorithm
[27-29] is applied to accelerate the convergence of this series. The g-algorithm uses only a
few additional terms above those N used by the FFT, however, the sum becomes as if it
were evaluated using much more terms. Finally the result of the e-algorithm is substituted
into (1.2) to finish the computation.

The e-algorithm known also as Wynn algorithm ranks among nonlinear ones that are
used to speed up the convengence of series. The infinite sum of a complex Fourier series in
(1.2) is written in the form of the sum of a power series in a variable z. As it is shown e.g.
in [28] just for the partial sums of a power series the €-algorithm can be very efficient as it
is equivalent to constructing successive rational Padé approximations to the power series.
The principle is explained by using a lozenge diagram in Fig.1.1.

The first column is formed with & =0,

(0)
80
e £ s=1,2, ---, the second column with the partial
-1 1
e £© sums computed recurrently as
0 2
(2) (1) (0) 2(stl) — &(s) N+s
£ & £ & =47 +F.z2"", (1.5)
e® £® £ $=0,1,2---, when the initial partial sum &
-1 1 3 . . .
e® £® is gained as the result of a FFT using the first
@ 0 3 : N terms. The remaining columns are created
€. & as follows
e@®
0

4 =45 +8 40T, (16)

r,s=0,1,2---. Then the sequence of the

Fig.1.1 The €-algorithm lozenge diagram

successive approximations &, &”, &”,--- converges usually much more quickly than
the original sequence of partial sums. Thus starting the computation with 2P +1 partial
sums the &Y term is the required result of the €-algorithm. However, this algorithm can be

numerically unstable if P is chosen too big. From many experiments it seems P =2 or 3 are
good choices.



1.1.3. Scalar, Vector and Matrix NILT Versions

Based on the theory above three versions of the NILT algorithm will be considered as
follows [21,22].

A. Scalar version

If the transform to be inverted has the scalar form F(S) just as can be seen in (1.1) then
expressing above operations in a vector form the eq. (1.2) can be rewritten as

M =CM o 2Re[E{FFT(FN)}]-FM} , (1.7)

where particular vectors of upper indexed lengths are created according to (1.3), namely
for k=0,1,---,M =1, n=0,1,---, N —1. Especially FO'\’I is the M—element constant vector of
the values F(c). The E{.} designates an operator of the &-algorithm (including the

operation of N — M vector length reduction), and the symbol o means so-called
Hadamard product of matrices (in Matlab language called as the element-by-element
product). In this case the e-algorithm runs in parallel on all the elements of the vector and
it is programmed inside a two-dimensional array (matrix) utilizing Matlab language
parallelized array operations effectively.

B. Vector version

In the case when the transform has the form of a vector F’(s) = [F,(s),F,(s), - F, G
then an approximate formula in a matrix form corresponding to (1.2) can be written as

£ =CM o 2Re[E{FET(F™™)}]-F™) (1.8)

where all the terms are matrices of upper indexed sizes computed according to (1.3), but
formed for all the components F;(s), j=12,...,J, of the vector F’(s). The subscript

<2 > means that the FFT operation runs along the 2" dimension (columns) but in parallel
for all the rows. In this case the g-algorithm runs in parallel on all the matrix elements
when programmed inside a three-dimensional array. The computation runs faster compared
to a component-wise inversion by means of the scalar algorithm running within an outer
loop structure.

C. Matrix version

In the case when the transform has the form of a matrix

EFU(S) FIZ(S) FlL(S)D
a: (S) Fzz(s) le_(s)%

FJXLS: 21
(9=0 0,

H:Jl(s) F.(8) - FJL(S)E

then an approximate formula can be written by means of the three-dimensional arrays of



upper indexed sizes as

PR =0 o RE[E{FET(F™™ )} =R} . (1.9)

Here the FFT operation runs along the second dimension, but in parallel over the first and
the third dimensions along which the transform matrix to be inverted is situated. The
respective 3D arrays are again created according to (1.3). Because the g-algorithm must
now act on the values stored in the three-dimensional array it runs inside a four-
dimensional array to ensure the computation in parallel saving the CPU time considerably.

1.1.4. Experimental Error Analysis

As it was experimentally verified the method can successfully be applied to invert very
large class of Laplace transforms F(S). This covers not only rational but also irrational
and transcendental functions including transforms leading to originals delayed in time. In
all the experiments the relative error under 10™'° was possible to achieve with the exception
of the origin of time interval and a vicinity of discontinuities. The desired relative error can
be adjusted according to (1.4) in advance. Three examples are presented below in Tab.1.1
and Fig.1.2.

Tab.1.1 Laplace transforms with their originals
[ 1 2 3

F(S) | 1/Js*+1 e /s e/s

fi(®) J, (D) erfe(l/2Vt))|  1(t—1)

Computed originals Error analysis
1 ‘ : 10°
05\ ----- e - - R =
‘ ‘ o
bul —
R AN AV AV A [
-0.5
(o] 10 20 30
t
1
£
‘ ‘ o
N o5t Ao - oo .
‘ ‘ 0
=
(o]
(o] 5 10 15
t
1.5
b =
‘ o
o5 ------fF------ R o
o
o— 1 o o
-0.5 10™°
(o] 1 2 3 (o] 1 2 3

Fig.1.2 Computed originals with determined errors (M=128, P=3)
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1.2. TWO-DIMENSIONAL NILT METHOD

1.2.1. Theoretical Base

Consider the definition formula of the 2D-ILT in the form of the improper double-
integral as
1 CI+J°° cZ+J°°

f(t,t,)=- sithE(s,s,)dsds, , (1.10)

~jeogy=jeo

ait; +ast,

under basic assumption |f(t1,t2)| <Ke , with K, a1, o, as positive real constants,

and F(s,,s,) defined on a region {[s,s,]0C*:Re[s]>a, ORe[s,]>a,}, see [30] for
details. The aim is to evaluate the double-integral numerically not only accurately enough
but also to do it fast for a whole given 2D original region on a grid of discrete points. Then
following results in [23] the discrete form of the approximate formula can be derived after
a trapezoidal rule of the integration and some arrangements were applied as

0 0

f(kT, k,T,) =C""* {2Re[ Z W ESS L+ (Y R, EXES, -
. o, . (LD
_Z -n,,0 El<lnl ZFO -n, E ]+F00}
=0 n, =0
with k, =0,1,---,N, =1, i =12. For simplicity new designations were introduced as
Iznl’n2 = I:(C1 + jnIQl’CZ + JnZQZ) R E:l :22 = ejlelle ik hLmQ, — Ekll Ekzz ,
1.12
Ckl>k2 = QIQZ eclle1+C2k2T2 = Cklckz ( )
41 ’
with Q, =271/N.T, and T, i =1,2, as sampling periods in transform and original domains,

respectively. As was shown in [23] the eq. (1.11) corresponds to two-dimensional Fourier
series approximation of the original f(t,,t,), and theoretically the error can be controlled

on the region <0, N1T1>><<O, N2T2>. Also the approximate formula for choosing C

coefficients was derived in the form

g 0ER) (1.13)
NiTi

Il

where E, denotes the desired relative error. In practice, however, the error increases
rapidly near far ends of 2D original region. Therefore the required maximum 2D interval is
supposed to be (0,t,,)*(0,t,,), with t,, =(M, =1)/T,;, and M, =N,/2, =12, are
numbers of resultant computed points. This leads to the conditions of choosing
Q, = n(l -1/M, )/ t,,, 1 =1,2. To minimize error towards its theoretical value the infinite
sums in (1.11) must be evaluated as accurately as possible.

11



1.2.2. FFT and e-Algorithm Application

To be able to evaluate (1.11) very fast only N, =2™, m integer, i =1,2, terms will
first be summed. In such a case the incomplete sums for n, =0,1,---,N, =1, i =1,2, can be
calculated using the FFT algorithm to save the CPU time considerably. This is enabled due
to the integration steps which were chosen properly and led to the exponential terms

according to (1.12). Besides the €-algorithm taking next terms above N, i =1,2 Chyba!

Chybné propojeni., into account is integrated into the computational process to give a
precision to the result. Expressing these operations in the matrix form the approximate
formula can be written as

flk = chk 0{2R€[élz +éZI —éll _ézz]+Goo} . (1.14)

Here all terms are M, X M, matrices. The f4% matrix corresponds to (1.11), the C**
matrix is defined by (1.12) and can be calculated as

chk =ckOchk |, (1.15)

where C“ and C“ are M,x1 and 1xM, matrices (column and row vectors),
respectively, and [J means Kronecker tensor product of matrices. The G, matrix is
calculated as follows

Gy =Foollm, Ol 1 (1.16)
where F;, = F(c,,C,) is given by the eq. (1.12), and |, and I, are M, x1 and 1XM,

matrices (column and row vectors) whose all elements are equal to 1. Further, the éij,

I,j =1,2, 1 # j, matrices result from the operations as follows

E{FII:T(F—nlxnz)} - cA;l and E{FIZ:T(G?)} - élz, (1‘17)
E(FET(F, ) ~ G, and  EFETG,)} = Gy (LIB)
where F and F are matrices created according to (1.12), the subscript <k >,

-n;,n, -n;,—n,
k =1,2, means that the Ny — points FFT operation is performed along the k™ dimension
running in parallel over all the remaining ones. Such a choosing of a specific dimension is
enabled in Matlab language environment where no loops are needed to perform these FFT
operations. The symbol " designates the operation of complex conjugation, the symbol
E{} represents an operator of the €-algorithm (including the operation of N - M matrix
dimension reduction) which is applied on the result of each FFT operation, see later for

A

details. Finally, the G;, , i =1,2, matrices are computed according to formulae

G, =1, O0G (1.19) and G, =1, 0G" , (120
where éf:’l) and é(zl*) are the 1% column and the 1% row of matrices él and éz

according to equations (1.17) and (1.18), respectively. In the eq. (1.14) the symbol o
designates the Hadamard product of matrices (in Matlab language called as the element-
by-element product). Using the g-algorithm the matrices resulted from particular FFT

12



operations are made more accurate as if they were computed using many more terms then
only N,, i =12. Here all components of the lozenge diagram in Fig.1.1 are matrices
whose orders depend on which matrix is to be treated (egs. (1.17), (1.18)). More detailed
explanations about these procedures can be found in [24]. Again the number of terms
entering into the g—algorithm should not be chosen too big to avoid numerical
instability.

Two versions of 2D-NILT procedure have been programmed in the Matlab language —
the scalar version intended to invert simple 2D Laplace transforms F(S;,S,) and the vector

version enabling to invert transforms F’(s,s,)=[F(s.s,),F,(S,S).....F,(s,8)]"

parallel. To guarantee the high speed of computation three- and four-dimensional arrays
were utilized when programming scalar and vector 2D-NILT procedures, respectively.

1.2.3. Experimental Error Analysis

The experiments have proven the method can successfully be used to invert relatively
large class of Laplace transforms F(s;,s,). This covers not only rational but also irrational

and transcendental functions including transforms leading to shifted originals. For many
transforms the relative errors about 10™ can be achieved with the exception of the origins
of the original 2D interval and vicinities of discontinuities. The desired relative error can
be adjusted according to (1.13) in advance. Two examples are presented in Fig.1.3 (the

errors are expressed in logarithmic scales).
f=sin(t,)sin(t,) ~ F =1/[(sz+1)(s§+1)]

£
A

'4-\ "'ll\“ “‘

Relative error

A N\
f:““\‘“""““““ l '“‘\" :
g ‘““i 1\"‘ \'4 !,“,“u‘ "‘“
iy ﬁ‘lll‘\‘\‘\'l'"‘/'"‘” i \\‘l‘lﬁ"zm ‘\\n\‘\” i
& i j h
L L l“‘t‘\‘l\“\'&!!!//,,,f:‘qlm\‘;‘\ttl,\\};.;‘f#//fi i i
\;', ,.-.-/f/;f/[/ “““\\\\\' “ i (\\ .lll il

! " i&:’f{#ﬁ:”fﬂt

!
% \\l‘." ’!f{"”’
y ~

f= 1(t1—2,t2—1) ~ F = exp(-2p-q)/p/q

Absolute error

Fig.1.3 Computed originals with determined errors (M;=M»=256, P=2)
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2. METHODS OF TIME-DOMAIN SIMULATION OF TRANSMISSION LINES
BASED ON ONE-DIMENSIONAL LAPLACE TRANSFORMATION

In the first part the attention will be focussed on MTLs terminated at both ends with
linear networks that can be modeled by the generalized Thévenin or Norton equivalents.
Generally lossy, nonuniform and frequency dependent MTLs under nonzero initial voltage
and/or current distributions can be considered. The aim is to be able to determine not only
voltage and/or current waveforms at the MTL’s ends but also to show how the waves are
propagating along respective wires of the MTL [45-51].

In the second part whole linear systems containing MTLs as their sections are analysed.
Here a method based on the modified nodal admittance (MNA) matrix equation is used
while the same general cases of MTLs as mentioned above can be considered [52,53].

2.1. BASIC MTL EQUATIONS AND THEIR SOLUTION

Consider (n+1)—conductor transmission line of the length | with per-unit-length nxn
matrices R,(X), L,(X), G,(X), C,(X), i.e. the MTL can be nonuniform in general. The

MTL equations represent a set of 2n, coupled, first-order, partial differential equations with
varying coefficients which can be expressed in a compact matrix form as [32]
0o v(xHo_O 0 -R,(OvxH0 O 0 Ly(x) v(x,t)0

e 2.1
axHxnH Be,0 o HHxOH €, 0o HotHoxnH &b

where v(Xt) and i(X,t) are Nx1 column vectors of voltage and current waveforms of the n
active conductors at a distance X from MTL’s left end, respectively, 0 means nxn zero
matrix. After Laplace transformation with respect to t is performed and possible frequency
dependences of per-unit-length matrices are incorporated the MTL equations take the form

d EV(X,S)D:D 0 -Z(X,9) (x5O0 O O L,(XS) (x,000

Bl 2.2
xBxod Byxs o FBxoH FHuxs o HBxoB *?

where v(X,0) and i(x,0) are column vectors of initial voltage and current distributions,
respectively, and further

Z(X%S)=R,(X,5)+sL,(x,s) (23) , Y(XS)=G,(X5S)+sC,(X,S) (2.4)

denote per-unit-length series impedance and shunt admittance matrices, respectively.
Obviously, the eq. (2.2) can be written formally as

diW(X, S) =M (X,5)W(X,8) + N(X,s5)w(x,0) , (2.5)
X
with the solution [58-60]

W(x5) =@, (JW(x,9)+ [P (ENE, W(E,00d¢ - (2.6)
%
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In the last equation CDXXO (s) is so-called integral matrix (matrizant) which can be expressed

as the infinite series
&

X o X ‘?2 EI
cDXXo (S) = E+J.M(El7 S)dgl +ZJ'M(EI7 S)J.M(Eza S)J.M(E},S)- : 'IM(EM’ S)dgiﬂdfi o 'dgl (2-7)
X =% % %)

X

where E means the identity matrix of order 2n, W(X,S) is the solution at X=X, . In the case

of a uniform MTL the matrix M is independent of the variable X and the integral matrix
becomes the transition matrix expressed by means of a matrix exponential function as

®’ () =0(x-x,,5 =" (2.8)

M (X,5)=M (s)

In general case, however, only an approximate integral matrix can be calculated. It can be
made by dividing the interval of the variable X into several subintervals supposing M to be
constant in each of them. As the integral matrix (2.7) can now be written in the form

D} () =B (9P} (5)+ D2 (P} (S) 2.9)

where m is the number of subintervals, then taking the formula (2.8) into account the
approximate integral matrix can be expressed as

®} ()= |:| MG (2.10)

where AX, =X, = X_» { DX, %), K=1,2,...,m, and X =X.
In practical computations it can be more advantagenous to use a recurrent formula as
DX (s) =" I [@PXi(s)  with P(S)=E . 2.11)

Besides, to speed up the calculation only first two terms of Taylor series of the matrix
exponential function can be taken into account. This leads to the alternative formula

@} (9)= D[E+M(Zk,s)Axk] , (2.12)
=1
or in a recurrent form as
DX (s)=[E+M(,,90x @) (s) with D(s)=E . (2.13)

Considering the limit case m — o the equation (2.12) leads to so-called product-
integral introduced by Volterra [58]. Thus besides the formula (2.7) the integral matrix can
also be expressed as

), (5) = lim @ (5) = lim &} () :I:) [E+M(xs)dx] . (2.14)

The application of the recurrent formula (2.11) is also convenient for uniform MTLs
when waves propagation along the line is simulated. In such a case the transition matrix
®d(X—X,,S) is often evaluated for a whole set Ax, =X, — X, = kAX with a regular step AX.

Then the matrix exponential function (2.8) can be applied only once to determine

®(Ax,s) = MO (2.15)
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and the recurrent formula has the form as

P(KAX, S) = DP(AX,S) [D((k-1)AX,s) , k=1,2,....m, P(0,5)=E . (2.16)
2.2. SIMULATION OF WAVE PROPAGATION IN SIMPLE MULTICONDUCTOR
TRANSMISSION LINE SYSTEMS

2.2.1. Generalized Thévenin and Norton Equivalents Application

Suppose a simple linear system containing an MTL terminated at both ends with linear
networks according to Fig.2.1.

IL IR
—» <4—

LINEAR multiconductor LINEAR
NETWORK | VL transmission line VR |NETWORK
L) (R)

X
0 I |

Fig.2.1 Simple multiconductor transmission line system

To incorporate boundary conditions into the solution (2.6) the terminating networks are
regarded as multiports and modeled with their generalized Thévenin or Norton equivalents
[32]. Then after Laplace transformation the boundary conditions can be expressed as

VL,R (s) = ViL,R (- ZiL,R (sl LR (s (2.17)
or I LR (s) =1 iL,R Ok YiL,R (S)VL,R (s (2.18)
for Thévenin or Norton equivalent, respectively. Here V.(S) and |,(S) are nx1 internal

voltage and current vectors, Z,(S) and Y,(S) are nxn internal impedance and admittance
matrices, and subscripts | and r correspond to the left and right MTL’s ends, respectively.

Putting X, =0 (MTL’s left end) and denoting " @} (s), i, j =1,2, as square submatrices

of the whole integral matrix CD'O(S) the voltage and current vectors at X =1 (MTL’s right
end) can be determined according to (2.6) in a decomposed form as

V(9 0_C'@l(s) ‘2¢L<s>%§ms>g+wg<s>g o1
Hi.oH gols ot .o giea’ '
where
|
V3(9) = [ @4 (9L, (€. 9i(E.0)+ L (SIC, (€, V(E.0)E (2.20)
|
and 1(5) = [ DS (€. 9 (E.0)+> B} (SIC, (€, 9VIE.0)E (2.21)

are voltage and current components, respectively, existing due to nonzero initial voltage
and/or current distributions on the MTL.
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From the equations above, according to equivalents used to model the terminating
linear networks the expression for either current or voltage vectors at the left end of the
MTL can be derived as follows

Thévenin (left) — Thévenin (right)

1L(9) ={[" @ (9) = Z i (8) ®U(NZL () + Zi (9 @ (9)=" Dy (9)}

[ ©(9) = Z i (9 D (SIVy. (9) = Vi () + V(9 = Z (9)1 ()} 222
Norton (left) — Norton (right)
VL(9) =[P (8) =Y (9" DY (9+ Vi (9B (9" i)} 223)
A P4(9) = Yir (9PN (9 +1 1 () +11,(9) = Y (9V, (9)}
Thévenin (left) — Norton (right)
(&)= Py (S =Y (9" O (N2, (9+ Yy (97D RY (9} 224)
O ®,(9) = Y (9 (V. () +1 1 (9 +11(9) = Yy (9V (9}
Norton (left) — Thévenin (right)
V. (9) =H{[ () = Z (97 PL(I]Y, (8 +Z (9 DY ()" D (9} (225)

QD) = Z g (97PN (9 = Vi (9 +V ()= Z (N (9}

The remaining voltage or current vectors are always given by the necessary boundary
conditions (2.17) or (2.18), respectively.

2.2.2. Matlab Oriented Computational Method

To solve the voltage and current vectors at a given coordinate X the basic equation (2.6)
for X, =0 is used in the form

W(x,9) = DG(SHW, (s) +T5(9) , (2.26)

with W(x,9) =[V(x9),1(6S)]", W, (8) =[V, (9).! (9] and [}(9) =[V,(5).1}(9)], where
V, (s) and |, (S) are determined from the equations in the chapter 2.2.1. As it can be seen
from (2.22) — (2.25), however, the V,(s) and |,(s) values for the right end of the MTL

must be computed first to be able to continue with solving (2.26). Because the integral
expression I;(S) is that of a convolution type the solution can be done as follows [49,50].

a. A three-dimensional array of a cumulative product of matrices according to (2.11) or

(2.13) is computed, with m=2", N integer. In the case of a uniform line it is better to use
the egs. (2.15) and (2.16). In the Matlab language a built-in matrix exponential function
(marked as expm) is executed very effectively using Padé approximation method without
necessity to compute eigenvalues and eigenvectors of the matrix. This array is denoted as

Qo="{or s}y, . (2.27)
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with x, =kAx, x, =| and AXx as a discretization step, the superscript <3> means that the
array is formed along to 3" dimension. Such a created array is saved and will be used to
determine ®;(S) in (2.26).

b. After designation W(X,S)=N(XS)W(X,0), see eqs. (2.5) and (2.6), another 3D array is

created as follows
m

Q=" {W (x.901}" | (2.28)
where 1, =[1,1,---1] is 1x2n row vector with all elements equal to 1 and the symbol [

means Kronecker tensor product of matrices implemented like kron function in the Matlab
language.

¢. Thus the values of the integral expression I';(S) in (2.26) can be determined from the
array created as follows

Q, :l—IFFT%Z FT(Qq,)oFFT(Qq,))H (2.29)

m <3> o <3> <3> |:|

Here FFT and IFFT denote the 2m-point fast Fourier transformation operation and its
inversion, respectively, subscripts <2> and <3> determine dimensions along which
necessary operations are performed. A symbol o means so-called element-by-element
product (as it is defined in Matlab language) when corresponding elements of both arrays
are multiplied. Also fft and sum functions rank among the class of built-in functions in the
Matlab language.

Finally the m-th column of the array Q, is the ', (S) needed in the calculation V, (s)

or |, (s) according to eqgs. (2.22) —(2.25). The solution continues with the application of

the method for the numerical inversion of Laplace transforms. Especially the matrix form
of the NILT function is very convenient to be used, see the chapter 1.1.3.

2.2.3. Examples

Example 2.1 — MTL Driven from External Source

Consider the simple linear system with the uniform (3+1)-conductor transmission line
in Fig.2.2.

Rri

Fig.2.2 The (3+1)-condyctor transmission line system
The terminating resistors are R; = Ry =1Q, 1 =1,2,3. The MTL has thé length | =1m, the per-unit-

417 O 0 0O. (2.4 0.69 0.6400 H
length matrices are [35] R, = B 0 417 0 DH L, = %).69 2.36 0.69%’—

g0 0 41.75rn .64 069 240
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M6 0 00O S 021 -12 -40
G,=pg0 06 00— | C,=g12 26 —12%"—F .
m m
HO 0 0.6H B4 -12 21H
The input voltage source driving the central wire of the MTL has the waveform
vV, (t) =sin’ (71/ 20007) if 0<t<2007, v, (t) =0 otherwise, with the Laplace transform

1-exp(-2007°s)
2s[i(107°s/m)? +1]

The resultant voltage and current waves are shown in Fig.2.3.

Voltage on the ond (excited) wire

Vi, (8) =

1 : ; _ Current on the 2" (excited) wire

v

iAl

xmi 070

Voltage on the 1% and the 3" wire

vIV]
i[A]

x [m]

xmp 00 %y

Example 2.2 - MTL Excited with Nonzero Initial Voltage Distribution

Consider the same MTL system as in the Example 2.1 with the exceptions as follows:
R, =Ry =10kQ, 1=123, and V,,(t)=0. In this case the MTL is excited with the

nonzero initial voltage distribution on its central wire of the form v, (x,0) =sin’ (n{3x/| - 1])
if 1/3<x<2l/3, and v,(x,0) =0 otherwise. On the remaining MTL’s wires zero initial
voltage and current distributions are considered. The resultant voltage and current waves
are shown in Fig.2.4.
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Voltage of the 2" (excited) wire , Current of the 2" (excited) wire

vIV]
i[A]

Voltage of the 1% and the 3™ wire

i[A]
o

VM

i
s
s
i
)

===

i —
it

M

- -5
x[m] 0 ¢ x10

Fig.2.4 Voltage and current waves on the wires

Example 2.3 — Parabolic RG-21 Cable Transient Response Analysis Consider RG-21 cable
with the parameters | =96.8m, R, :0.3SQ/m, G, :OS/m, L, :265nH/m and

C, =94.34 pF /m [36]. The parabolic inhomogeneity and frequency dependence due to the skin effect are
involved as Z(X,S) =[R, +sL, + K\/g] [{1+ax)’, Y(x,8)= SCO/(I +ax)’ . There is considered
a= (\/E—l)/| with K =2.5 EI]O“‘Q\/E/m or K =0 (frequency independent cable). The cable is

driven with a unit-step voltage 1(t) and terminated with R, =Rz =53Q. The voltage transient
responses are
shown in Fig.2.5.

Frequency dependent parabolic cable

Frequency independent parabolic cable

Fig.2.5 Transient response of frequency dependent/independent cab
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2.3. TIME-DOMAIN SIMULATION OF NETWORKS CONTAINING SECTIONS WITH
MULTICONDUCTOR TRANSMISSION LINES

One of the method which is general enough to be used to analyse networks containing
sections with MTLs is the modified nodal admittance (MNA) matrix equation method
[42,43]. The MNA matrix equation will be formulated to enable to take the general case of
MTLs into account, i.e. the MTLs can be regarded as nonuniform and under nonzero initial
voltage and/or current distributions.

2.3.1. MNA Matrix Equation Formulation

Consider a linear network containing a section with lumped-parameter components and
P multiconductor transmission lines, see Fig.2.6.

10 i@ 0 10 10 10
i) i i i5 ib is

—> -— - —> -

EGlhEE

section with lumped-parameter components

L

Fig.2.6 Linear network containing MTLs

According to [43] the modified nodal admittance matrix equation in the time domain has
the form

e, M,

GMVM(t)+§Dkik(t):iM(t) ; (2.30)

where C,, and G,, are NXxN constant matrices with entries determined by the lumped
memory and memoryless components respectively, V,,(t) is the N X1 vector of node
voltages appended by currents of independent voltage sources and inductors, i,, (t) is the
N x1 vector of source waveforms, i,(t) is the n, X1 vector of currents entering the k-th

MTL, and D, is the Nxn, selector matrix with entries d, D{O,]} mapping the vector

I, (t) into the node space of the network. After Laplace transformation the frequency-
domain representation has the form

[Gy +sCy IV (S)+§Dklk(s):|M(S)+CMVM 0) (2.31)

The MTLs consist of N, =n, /2 active conductors, i.e. they can be regarded as 2N, -ports.
Then the I, (s) in (2.31) is formed to contain vectors of currents entering the input and
output ports as I, (S) =[1"(s),1”(s)]" and will be expressed from the basic MTL matrix
equation (2.6). In terms of the multiport theory the integral matrix ®)(s) acts as the chain
matrix @®(S). Thus denoting W(0,8) =[V " (s),1V(s)]", W(l,s) =[V?(s),-1 P(s)]" and
I (s)=[V 7 (s),1 "V (s)]" the k-th MTL can be described by the equation
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D/ (909, () @, (9)0 ka“)(s)g+ V" (s)0
J10©9F Bre oneb B0eE 3R

After some manipulations the admittance equations taking nonzero initial conditions into
account can be written as [53]

(2.32)

DS)(S)B_ V() Yin(90 B (9)0 D¥p(s) 00 V(90

k
= 0 T 0 0, (2.33)
%(kz)(s)ﬂ E(m(s) Yzz(s)ﬂ< %/éz)(s)ﬂ g(zz(s) ED< %(kr)(s)ﬂ
where Y,,(9) =071 (S),,(5), Y1,(8) ==, (D;1(S), Y,,(9 =®[1(9), and due to the
reciprocity of the MTL, Y,,(S)=Y,5(S). Besides in the case of the uniform MTL the

equality Y,,(S)=Y,,(S) would also be valid. Further O and E mean the zero and identity
matrix, respectively. In a compact matrix form the equation (2.33) can be written as

1 () =Y, (SV, () =X, (S (S) . (2.34)

Finally after substituting the equation (2.34) into the (2.31) the resultant MNA matrix
equation can be written in the form

V(9= EEM +sCy + g DkYk(S)D-Il; E_ EM (5)+Cy vy (0) + i Dkxk(s)rk(S)Er (2.35)

In this case the method for the numerical inversion of Laplace transforms in the vector
form according to the chapter 1.1.3. is very useful.

2.3.2. Examples
Example 2.4 — MTL Network Driven with External Source

Consider a linear network with three uniform (2+1)-conductor transmission lines in
Fig.2.7 [37,43].
25Q 6

Fig.2.7 Linear network with three uniform MTLs
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The MTLs differ only in their lengths as follows: |, =0.05m, |, =0.04m and |, =0.03m,
per-unit-length matrices for all three MTLs are

_O5 1500 | @946 633CnH 001 -00I0S (628 —490pF
°"Hs 75Hm> " "He33 4946Hm’ T Hoot 01 Hn' ° H49 628Hm

As it is marked in Fig.2.7, 15 node voltages and 2 currents are the variables to be
solved by the MNA method, i.e. the system of 17 equations is solved. Using the Matlab

language the frequency-domain solution V,, (S) according to (2.35) has been programmed

in the form of the M-file function. Finally this function is called by the niltv function for
the numerical inversion of vector Laplace transforms, see the chapter 1.1.3. Using this

function the time-domain solution v, (t)= L ™{V,, (S)} is computed for all the vector

components in parallel saving the CPU time considerably. Running on the PC with the
Pentium I 266MHz/64MB the CPU time was under 6 seconds. In Fig.2.8 only the input

V,,(t) and output v, (t) voltage waveforms are shown as the example.

Input voltage waveform

Output voltage waveform

1.2 0.6

1t - - 05F - - -

0.8 0.4

E 0.6

0.4r

S 03p - -

>" 0.2

in

V.

0.2 0.1} -

0 0

0.2 . . . . . 0.1 . . . . .
[o] 0.2 0.4 0.6 0.8 1 1.2 [o] 0.2 0.4 0.6 0.8 1 1.2

t[s] X107 t[s] x 10

Fig.2.8 Computed input and output voltage waveforms

The obtained results agree very well with those computed by both the NILT method in
[37] and the asymptotic waveform evaluation technique (AWE) in [43].

Example 2.5 - MTL Network Excited with MTL’s Nonzero Initial Condition

Consider a simple linear network with two identical (2+1)-conductor transmission lines
in Fig.2.9 .

Fig.2.9 Linear network with initially excited MTL,
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The MTLs are uniform of the length | =0.05m and with the per-unit-length matrices as in
the Example 2.4. On the first wire of the MTL, the nonzero initial voltage distribution
exists as follows

V,(x,0) =sin’ ?—%% if %sts%l ,  V,(X,0)=0 otherwise,

while the MTL, is considered under zero initial conditions. As it is shown in Fig.2.9, 8
node voltages and 3 currents are the variables to be solved by the MNA method, i.e. the
system is described by 11 equations. In the Matlab language the frequency-domain
solution V,,(s) according to (2.35) has been programmed in the form of the M-file
function which is called by the niltv function for the numerical inversion of vector Laplace
transforms as is described in the chapter 1.1.3. Using the PC with the Pentium II
266MHz/64MB the CPU time was about one minute. In this case the computation is much
more time-consuming compared to the Example 2.4 as the matrix convolution integral
must be evaluated, see the chapter 2.2.2. In Fig.2.10 there are presented some node voltage
and current waveforms as examples.

Node voltage v, waveform
T

0.4 T T T T

Current i3 waveform

T T

,,,,,,,,,,,,,,,,,,,,,

iy [A]

777777777777777

-0.4 . L . . . 5

«10° Node voltage Ve waveform

Node voltage v, waveform

Fig.2.10 Computed node voltage and current waveforms

The results have been verified by comparing results obtained by the method based
exclusively on the multiport theory when the cascade connection of multiports was
considered and terminating networks of the MTLs were modeled with the generalized
Norton equivalents, see the chapter 2.2.1.
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3. METHODS OF TIME-DOMAIN SIMULATION OF TRANSMISSION LINES
BASED ON TWO-DIMENSIONAL LAPLACE TRANSFORMATION

In the case when the aim is to determine not only the voltage and current waveforms at
the ends of the line but also to show how the waves propagate along the line it can be more
advantageous to use the method based on the two-dimensional Laplace transformation.
Thus two partial Laplace transformations are performed — with respect to time t and spatial
coordinate X — to transform the transmission line‘s partial differential equations into the
algebraic ones. Then taking boundary conditions into account two-dimensional transforms
in (g,9)-domain are derived and subsequently a method for the numerical inversion of
Laplace transforms in two variables is applied to obtain the solution in (X,t)-domain. To be
able to use this method generally, however, only uniform transmission lines have to be
considered [54-57].

3.1. BASic MTL EQUATIONS AND THEIR TRANSFORMATIONS

Consider a uniform (n+ 1)-conductor transmission line of a length | with per-unit-length
nxn matrices R,, L,, G,, C,. The MTL equations can be expressed in compact matrix

form as [32]
0 v(xtH)o 00 -R, (x,)o 4o LOEHa_Dl(x,t)D
W — iy mE
axdnd #6, 0 gHeod €, 0gatdend
where v(x,t) and i(x,t) are nx1 column vectors of instantaneous voltages and currents of n
active conductors at a distance X from MTL’s left end, respectively, 0 denotes nxn zero
matrix. After performing partial Laplace transformation with respect to time t and taking
frequency dependences of primary parameters into account the equation (3.1) leads to

(3.1)

iEV(x,S)D:D 0 -Z(9) (x,990 O O L,(S) (x,000 (32)
xHxsH Hys o FHxoH Eu9 o FHxoH
where

Z(9=R,(9+5L,(9) . Y(9=G,(+5C,(5) (3.3)

are the per-unit-length series impedance and shunt admittance matrices, respectively, and
v(x,0) and i(x,0) are column vectors of initial voltage and current distributions,
respectively. Obviously, the equation (3.2) can be written formally as

diW(x, S) =M (S)W(X,8) + N(s)w(x,0) , 3.4)
X
with the solution [58-60]

W(x,s) =" IwW(x ,s)+ }eWSW IN(S)W (€,0)d€ , (3.5)
Xy

where W(X,,S) is the solution given at a coordinate X,. Hereafter we put X, =0 as the
left end of the line is considered at this coordinate. Thus we can write

W(X,S) =P(X,S5)W(0,Ss) +JX’<D(x—E, SIN(S)W(¢,0)dé (3.6)
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where ®(X,S) denotes a transition matrix. Evidently, the integral expressions in last two

equations are those of a convolution type. Therefore after applying partial Laplace
transformation with respect to coordinate X we have

W(a,s) =[dgE-M ()] [W(0,9) +N(W(a,0)] . (3.7)

where E means an identity matrix of the order 2n. Here a matrix analogy of the well-
known relations for transforms of the exponential function and the convolution integral
was used. To prove this result by another way let us apply Laplace transformation w. r. to X
directly on the equation (3.4) which leads to

qW(a,s) - W(0,5) =M(s)W(q,s) + N(s)W(q,0) , 3.8)

and from this the equation (3.7) is already evident [56].

The above used partial Laplace transformations are defined as
(oo} |

L[foxt) = [t dt 3.9) L [f(xt)] = [f(x.hedx (3.10)
0 0

as the MTL has a finite length | and for X >1 the function f(X,t) is supposed to be zero.

3.2. BOUNDARY CONDITIONS INCORPORATION

Consider a simple MTL system according to Fig.2.1 as is shown in the chapter 2. The
eq. (3.7) can be written in a decomposed form as

[V(q,s)0_0OdE Z(s)D ED/L(s)D oo L, (s)%@/ (q)ED
JasoH Fe &l H.od o @M

where V, (s) =V(0,s) and |, (s)=1(0,S) are coupled by the equations (2.17) or (2.18),
V,(q)=V(q,0) and I,(g)=1(q,0) are transforms of initial voltage and current

distributions on the MTL, respectively, E denotes the identity matrix of the order n.
Applying rules for the inverse of a partitioned matrix and performing some manipulations
the inverse matrix in (3.11) can be expressed as follows [56]

(3.11)

0E zo0 0 gAY  -AGIZOSD
D(q, , 3.12
@9 %o &l Heaove @Bas - G-12)

where
A@,9) =[’E-Z(9Y(9]" , B(,9)=[q"E-Y(9Z(9]" . (3.13)
Due to the diagonal symmetry of the per-unit-length matrices it is also valid
B(q,5)=A"(q,9) . (3.14)

Thus taking (3.12) into account the equation (3.11) can be written in the form

V(9,90_[0,,(0,5) D,,(a,9)0LV, (90, OV, (q,9)0

, 3.15
HasH Ba@s bu@sbH. oH F1,@st G
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where
"V, (0,5) =D, (G, )L ()1 () + D,, (0, 5)C, (S)V, () , (3.16)
"1,(0,5) = D,, (0, )L o ()l o(A) + D,, (0, 5)C, (S)V,,(0) - (3.17)

When the partial inverse Laplace transformation of the equation (3.15) w.r. to X is
performed and X = substituted the result is

Ve (9 0_00,(9) ©(90Y, (90 V) (9)0
.o B9 e.oFH.oH Bieb’

where @,(s), i,j=1,2, are square submatrices of the whole transition matrix @(s) =®(l,s)

(3.18)

as it follows from the equation (3.6). As the transition matrix is only the special case of the
integral matrix the terms

Vi@ =L Vo@9l, 319 and  1h9= L7 1,@9)], (3.20)

can be expressed from (2.20) and (2.21), respectively, replacing " @} (s) with ®;(s), i.e.

|
Vi, (9) = [[®, (1 =8,9L((9)i(5,0) + @, (1 =&, 5)C (V(£,0)]dE (3.21)

|
1o (s) =@, (1 =&, 9L ((9)i(5,0) + @, (1 =&, 5)Cy (S)V(5,0)]dg . (3.22)

Similarly according to terminating equivalents the eqs. (2.22) —(2.25) can be utilized to
express either current or voltage vectors at the left end of the MTL as

Thévenin (left) — Thévenin (right)

I L (8= {[q)ll (9)-— ZiR (S)CDZI (S)]ZiL (5)+ ZiR (S)q)zz (8- q)lz (S)}_1

| | , (3.23)
E{[q)n (- ZiR (S)q)zl (S)]ViL (S) - ViR (S) + Vo (S) - ZiR sl 0 (S)}
Norton (left) — Norton (right)
VL (8= {[q)zz (S9- YiR (5)¢12 (S)]YiL (9+ YiR (S)q)n (- q)21 (S)}_1 (3.24)
AP, (9= Y (P, (9] (5 +1 i () +15(D =Y (Ve (9} '
Thévenin (left) — Norton (right)
1L(8) ={[@,,(9) = Yy (5)P,,(S)]Z,. (9 + Y (9P, (8) ~ D, ()} (3.25)
[P, (9) = Y (9P, (IIV, (9) +1 o (9 +11,(9) =Y (V4 (9}
Norton (left) — Thévenin (right)
VL (8= {[q)lz (s)- ZiR (S)q)zz (S)]YiL (s)+ ZiR (S)¢21 (- cl)11 (S)}_ (3.26)

O[P,,(9) = Z o ()P, (9 1. (9) = Vi (9 + Vo (S) = Z (N, (9)}

Finally the V, (s) and |, (S) vectors — given completely by the respective equation above
and boundary condition (2.17) or (2.18) — are substituted into the eq. (3.15).
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3.3. COMPUTATIONAL METHODS

To find the solution in the whole two-dimensional (X,t)-domain the equation (3.15) has
to be inverted using a procedure for two-dimensional numerical inversion of Laplace
transforms (2D-NILT). In the case of the MTL’s zero initial conditions the method seems
to be straightforward and simple. To be able to take MTL’s nonzero initial conditions into
account, however, either the procedure for partial numerical inversion Ly '[.] according to
(3.19) and (3.20) must be applied or the convolution integrals according to (3.21) and
(3.22) must be precomputed. The first method can be faster if this runs as a part of the
2D-NILT algorithm.

As is shown in [56], however, another method can be proposed to be usable in the case
of MTL’s nonzero initial conditions. In this method voltage and current 2D Laplace
transform vectors are expressed in the unified form as

F(a,9) = F(a,8) 0L, '[Fy (6, 9)l, +F.(a.9) (3.27)

where detailed forms of F,(q,S), i =0,1,2, depend on the terminating equivalents under
consideration according to eqs. (3.23)—-(3.26). Especially F;(g,S) is nxl vector
depending on the MTL’s nonzero initial conditions, F,(Q,S) is nx1 vector depending
moreover on terminating driving sources and F (g,S) is nxn matrix which depends only
on passive quantities.

Now to find the original f(x,t) = L'[F(q,s)] we can write due to a linearity

fxt) = L {R (a9 O R (@ 9)] } + L TR (@9)] - (3.28)
Taking a basic property of the 2-D Laplace transformation into account as [30]
L' [F(@,9)]= L' {L[F(@.9]} = L {L'[F(a.9)]} (3.29)

we have
foet) = L LR (@90 R (6,9} + L [R(a.9)] (3.30)
and subsequently

foxt) = L' TR (0,910 L, Ry (0.9 + L [F,(0,9)] (3.31)

Here the symbol O means the convolution operation with respect to time t. Finally
expressing this equation in (X,t)-domain we can write

f(xt)=f,(xt) O (1,H) +f,(x,t) , (3.32)

or

FOOD =000+ [fL 06t =6)f, (1,6)dE . (333)

In this method only the basic 2D-NILT procedure is applied three times, and finally the
matrix convolution integral is evaluated. This can be performed with the similar method as
was described in the chapter 2.2.2.
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3.4. EXAMPLE

Consider a simple linear system with the uniform (2+1)-conductor transmission line
according to Fig.3.1.
RL1=1Q RRlzle

ViLi(t) \L

Fig.3.1 The (2+1)-conductor transmission line system

The MTL has the length | =0.3m, and it is considered as lossless (R, =G, =0), with the
remaining per-unit-length matrices [34]

| _39%46 633 OnH o D28 -490pF
°"Hezz 4946Hm *"Has9 628Hm -

The input voltage waveform is Vv, ,(t) =sin®(7t/2007) if 0<t <2007, and v, (t)=0
othervise. The resultant voltage and current wave propagations are computed by the vector
form of the 2D-NILT procedure as is described in the chapter 1.2.

Waolage of the 1t wirs Woltsge of the 2nd wire
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L]
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Fig.3.2 Voltage and current waves on the MTL’s wires
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4. CONCLUSION

On more general level the thesis for habilitation has set the task to contribute to
development of the computer simulation of systems with distributed parameters including
multiconductor transmission lines. The methods under consideration are intended to
simulate linear systems and they are based on the Laplace transformation approach, both
one- and two-dimensional.

In concrete terms the thesis is a contribution to two relatively separate areas. Firstly the
methods for the numerical inversion of Laplace transforms in both one and two variables
were elaborated and new techniques of their computation have been developed. There were
worked out two different methods. The first method is based on the approximation of the
exponential function in the ILT definition integral with expressions containing hyperbolic
functions when, finally, Euler transformation is used to accelerate convergence of infinite
series. More explanations about the principle including 1D-NILT method in details are,
however, described only in the full habilitation thesis. The generalization to 2D-NILT case
was done in [15]. The second method is based on direct numerical integration of the ILT
definition integral in conjunction with the FFT and €-algorithm application. It is especially
suitable to be used to get the whole required interval in the original domain very fast.
Comparing other often used NILT methods and evaluating results of many experiments the
developed ones seem to rank among the most versatile, accurate and fast.

Secondly methods of simulation of MTL systems based on both 1D and 2D Laplace
transformation were worked out making allowance for the effective algorithmization in the
mathematical language Matlab. In the case of the 1D-LT the developed procedures can
handle MTLs considered as lossy, frequency dependent, nonuniform, and under nonzero
initial voltage and/or current distributions in general. To simulate simple MTL systems the
generalized Thévenin or Norton equivalents are applied to model MTL’s linear terminating
networks. For more complex systems containing MTLs as their sections a technique based
on the modified nodal admittance matrix equation is used. For the purposes of taking
nonzero initial conditions into account the novel Matlab oriented FFT-based method of
matrix convolution integral calculation was developed. Using advanced Matlab’s matrix
exponential function in the solution the eigenvalues and eigenvectors need not be found as
it is required in well-known modal analysis technique. For the case of uniform MTLs a
method based on the 2D-LT were worked out. The advantage of the method lies in the
possibility to obtain the solution on the whole 2D region in a single calculation step.
Beside of the direct 2D-LT method a novel approach has been proposed when certain 2D
transforms are inverted separately, and finally the results are convolved with respect to
time to get the resultant 2D original.

In the field of NILT techniques future effort can be oriented to find more efficient and
numerically stable methods of accelerating convergence of infinite series. Especially for
the case of the FFT-based NILT methods a quotient-difference algorithm of Rutishauser
will be tested to compare with the g-algorithm application. In the field of MTL systems
time-domain simulation the aim is to enable to include MTL’s nonlinear terminating
networks into the solution.
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SOUHRN (ABSTRACT IN CZECH)

Habilita¢ni prace si v obecnéjsi roving klade za cil ptispét k rozvoji metod pocitacové simulace
systému obsahujicich ¢asti s rozprostfenymi parametry, véetné vicevodi¢ovych pfenosovych
vedeni. UvaZované metody jsou uréeny pro simulaci linearnich soustav a jsou zalozeny na aplikaci
Laplaceovy transformace, a to jednorozmérné i dvojrozmérné.

V konkrétni rovin¢ je prace prispévkem ke dvéma relativné samostanym oblastem. Do prvni
oblasti patfi vyvoj dostatecné pfesnych a rychlych metod pro numerickou inverzni Laplaceovu
transformaci (NILT), a to funkci jedné i dvou proménnych. Druha oblast je pak vénovana vyvoji
algoritmt pro simulaci linearnich soustav s rozprostfenymi parametry vyuzivajici metod numerické
inverze Laplaceovych obrazli. Pii rozpracovani vhodnych numerickych postupli je pfitom
prihlizeno k moZznostem efektivniho vyuziti univerzalniho matematického jazyka Matlab.

V habilita¢ni praci jsou rozpracovany dvé v principu odlisné metody NILT. Prvni metoda je
zaloZzena na aproximaci exponencidlni funkce v definicnim integralu Laplaceovy transformace
vyrazy obsahujicimi hyperbolické funkce. Vysledkem jsou nekone¢né fady, jejichz konvergenci
lze urychlit pomoci Eulerovy transformace. Druhd metoda je zaloZena na piimé numerické
integraci Bromwichova integralu, kdy lze vhodn¢ vyuzit FFT pro castecné vycisleni vzniklé
komplexni Fourierovy fady a €-algoritmu pro urychleni jeji konvergence. Ob¢ metody jsou vhodné
pro inverzi nejen racionalnich, ale i Siroké tfidy iraciondlnich a transcendentnich funkci, vcetné
obrazli vedoucich na funkce zpozdéné v originalni oblasti. V tezich habilitacni prace je podrobnéji
rozvedena pouze druhd z obou metod. Jak ukézaly vysledky mnoha experimenti, tato metoda je
obzvlast¢ vhodnd pro rychly a pfitom dostateCné pifesny vypocet celého intervalu (jedno- i
dvojrozmérného) v originalni oblasti. Metodu lze efektivné algoritmizovat v jazyku Matlab,
predevsim pfi vyuziti schopnosti paralelniho zpracovani dat na vicerozmérnych polich. Dtsledkem
je moznost rychlé inverze obrazli nejen ve skalarnim, ale také ve vektorovém i maticovém tvaru.
Toho Ize vyhodné vyuzit pravé pii simulaci soustav s pienosovymi vedenimi, vCetné vedeni
vicevodiCovych.

Ve druhé oblasti habilitaéni prace jsou nejdiive rozpracovany metody simulace zalozené na
jednorozmérné Laplaceové transformaci. Vyvinuté algoritmy umoziuji simulovat prechodné jevy
na vicevodiCovych vedenich ztratovych, frekvencné zavislych, nehomogennich i s nenulovym
pocatecnim rozlozenim napéti a proudii. Jadrem feSeni je pfima maticova metoda vypoctu soustav
obycejnych diferencialnich rovnic ve frekvenc¢ni oblasti. Pro jednoduché soustavy je vyuZzito teorie
vicebrani a aplikace zobecnéného Nortonova nebo Théveninova teorému pro snadné zahrnuti
¢astmi je uzito modifikované metody uzlovych napéti, ktera byla rozsifena o moznost zahrnuti
pocateCnich podminek na vedenich. K tomuto ucelu byla v jazyku Matlab vypracovana originalni
metoda vypoctu konvoluc¢niho integralu maticového argumentu zalozend na aplikaci FFT na
trojrozmérnych polich. Kone¢nou fazi vypoctu je aplikace 1D-NILT algoritmu pro ziskani feseni
v Casové oblasti. Specialné¢ pro ptipad homogennich vicevodiCovych vedeni byla vypracovana
metoda zalozena na dvojrozmémé Laplaceové transformaci. Zde pivodn€ parcialni diferencialni
rovnice vedeni v (Xt)-oblasti jsou transformovany na rovnice algebraické v (Q,S)-oblasti. Po
zahrnuti hrani¢nich pfip. i nenulovych pocate¢nich podminek je aplikaci 2D-NILT algoritmu
ziskano kompletni feSeni v (X,t)-oblasti. Pro piipad nenulovych pocatecnich podminek na vedeni
byl dale teoreticky rozpracovan novy postup feseni zalozeny na oddélené inverzi jistych 2D obrazii
a nasledné Casové konvoluci vysledkii. Metodu 2D Laplaceovy transformace lze s vyhodou vyuzit
pro ucely rychlé demonstrace Sifeni vin na vedenich. Zv1asté ve spojeni s jazykem Matlab je mozné
vysledky snadno zobrazovat v 3D grafech nebo pouzit pro animaci.

Protoze byla habilitac¢ni prace pfedlozena jako soubor publikovanych praci, je partie tykajici se
simulace obvodl obsahujicich ¢asti s vicevodicovymi vedenimi (kap. 2.3) do piedklddanych tezi
aktualn¢ doplnéna.
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