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2. Introduction

Research described in this thesis has been carried out at Department of Radio Electron-
ics, Brno University of Technology. It has been done in cooperation mainly with several
other colleagues - prof. Geneviève Baudoin, prof. Roman Maršálek, prof. Markus Rupp,
doc. Jiřı́ Petržela, dr. Jiřı́ Blumenstein and doctoral students Ing. Jan Král, Ing. Martin
Pospı́šil and Michal Harvánek.

It is common situation that nonlinear devices are simulated using computers. There
can be complex models modelling physical phenomenas of each electronic part. Mod-
els on physical level are usually very complex and difficult to handle even with modern
computers. Another approach can be modeling systems in fact as a black-box device.

Another aspect of non-linear systems is the reduction and modeling of inconvenient
effects connected with a real characteristic of many real-world parts [18], especially the
modeling aspects connected with non-linear power amplifiers (PA) used in wireless
communications and broadcasting.

Power amplifiers are critical elements of mobile communication and broadcasting
systems because their efficiency conditions the autonomy and the weight of mobile hand-
set batteries and their linearity influences on performance of the communication. In
practice, PAs are not perfectly linear and present memory effects, i.e. the output signal
is a function of the current and of previous input signal values. And a compromise must
be achieved between the efficiency and the linearity of the PA [11].

The aim of this work is to bring new innovative solutions to improve the perfor-
mance of RF power transmitters. The work conducted in this thesis is a part of work
for the project AMBRUN (FUI project with partners: Thales, TeamCast, Supélec and ES-
IEE Paris). The project aimed to improve the radio performance of the amplification of
multiplexed signals using adaptive algorithms for dual applications: tactical communi-
cation and broadcasting VHF band. The originality and ambition of the project lie in the
bandwidths of processed signals (above 40 MHz) the involved powers (up to 100W) and
the non-stationarity of tactical multiplex signals.

An increasing demands on communications system with every generation of de-
vices. One may observe, that in 1985 for AMPS systems the required bandwidth of sig-
nal was 30kHz. Comparing for example with the latest LTE Advanced, that can require
100MHz of bandwidth. The LTE Advanced requires approximatively 3400 times larger
bandwidth than AMPS systems. And for future 5G systems (high speed, low latency),
the bandwidth expectations are in range of 1 GHz. That is also challenging in terms of
signal processing.
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3. Techniques For Analyzing And
Modeling Non-linear Systems

This chapter presents the principals models that can be used for modelling PA or for
digital predistortion (DPD). It is composed of two main parts: first the description of the
models, then the methods for identification of the models. It focuses on models that can
be used in the case of PA linearization.

There are several models used in modeling the PA (or used for DPD) from the sim-
plest models modelling just the amplitude distortions to the most general form known
as Volterra series and its derivatives.

We may distinguish the models to three basic categories: memoryless or static, quasi-
static and dynamic (or memory) models. For memoryless models, the output at time t
only depends on input at time t and it can be shown that the system introduces only
amplitude distortions. These amplitude distortions only depends on the magnitude of
the input signal. Quasi-static models can also model phase distortions depending on
the signal magnitude.

The third category is called dynamic, because these models are able to model mem-
ory effects.

3.1 Static and Quasi-static models

3.1.1 Memoryless RF Polynomial Series

One of the most straightforward models are the polynomial series. We can define the
RF model for power amplifier as:

yRF (t) =

N∑

n=1

anx
n
RF (t). (3.1)

The coefficients of models can be obtained from simple measurements such asPL1dB ,
IP3; etc. Let us establish the baseband equivalent model of the RF polynomial series.

Let us investigate the behavior in the presence of n-th order nonlinearity [5]:
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3.1. Static and Quasi-static models

xnRF (t) =
1

2n
[
x(t)ejω0t + x∗(t)e−jω0t

]n (3.2)

=
1

2n

n∑

k=0

(
n

k

)
x(t)kx∗(t)(n−k)ejω0(2k−n)t.

We are interested by yRF1(t) that is the component at frequency ±f0. So we look for
component for which:

(2k − n) = ±1. (3.3)

For n even, (2k − n) never equals 1, therefore ω0(2k − n) is always out of band. For
n odd the frequencies can be in-band. Hence (for −ω0) we may write:

k =
n− 1

2
, (3.4)

(n− k) =
n− 1

2
+ 1.

Then using (3.5) we may define:

x(t)kx∗(t)n−k = x(t)
n−1
2 x∗(t)

n−1
2

+1 (3.5)
= |x(t)|n−1x(t)∗.

Similarly for frequency +f0 for (2k − n) = 1 we obtain:

x(t)kx∗(t)n−k = |x(t)|n−1x(t). (3.6)

Using these results the baseband output is defined as:

y(t) =
N∑

n=1
n odd

an
2n−1

(
n

(n− 1)/2

)
|x(t)|n−1x(t), (3.7)

setting

bn =
an

2n−1

(
n

(n− 1)/2

)
. (3.8)

This explains why the baseband models are often defined with odd coefficients only.
They can be defined as:

y(t) =
N∑

n=1
n odd

bnx(t) |x(t)|n−1 =

N−1
2∑

k=0

b2k+1x(t) |x(t)|2k , (3.9)
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3. Techniques For Analyzing And Modeling Non-linear Systems

where x is the input baseband signal of the power amplifier, y is the output baseband
signal of PA and bn are the polynomial coefficients.

Another explanation why equivalent baseband models contain only odd terms can
be done using Shimbo formula [20, 19]. For the rest of the thesis we will refer only to
baseband models of PA (the PA is followed by bandpass filter).

In practice including even order terms in baseband models can improve performance.

Several models corresponding to modeling the AM/AM and AM/PM characteristic
have been given, for example: Saleh, Rapp, quasi-static models. Their general expres-
sion is given by:

y(t) = A(|x(t)|)ejφ(|x(t)|)x(t). (3.10)

We precise some of them in the following sections.

3.2 Dynamical Models Derived From Volterra Series

3.2.1 Polynomial series with memory

Polynomial memory series (PMS) were first presented in [12] and are widely used for
modeling the non-linearities [6, 5, 16]. They can be interpreted as a special case of a
generalized Hammerstein model. The presented series can model the memory effects.
In this model, all off-diagonal terms of the Volterra series are set to zero. The series is
defined as:

y(t) =
K∑

k=1

Q∑

q=0

bkq x(t− q)|x(t− q)|k−1

=
K∑

k=1

Q∑

q=0

bk,qΦk,q(x(t)) = Φ(t)b, (3.11)

where

Φk,q(x(t)) = |x(t− q)|k−1x(t− q), (3.12)
b = [b1,0, b2,0, ..., b1,1, ..., b1,Q, ..., bK,Q]T (3.13)

Φ(t) = [Φ1,0(x(t)), ...,ΦK,Q(x(t))]. (3.14)

Their structure is determined by 2 parameters: K the non-linearity order and Q the
memory length. The number of coefficients is K(Q+ 1).

These models have good performance for applications with narrow or medium band-
widths. But they are often insufficient when large bandwidth applications are needed
because of their limitation in modeling memory effects. For large bandwidth applica-
tions more complicated models are necessary.
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3.2. Dynamical Models Derived From Volterra Series

3.2.2 Dynamic Deviation Reduction Models

To overcome the complexity of the general Volterra series, an effective model pruning
method, called dynamic deviation reduction (DDR) [2, 13, 1] was proposed. It is based
on the fact that the effects of dynamics tend to fade with increasing nonlinearity order
in many real PAs, so that the high-order dynamics can be removed in the model, leading
to a significant simplification in model complexity.

Note that this dynamic-order truncation does not affect the nonlinearity or memory
truncation in the same way as in the classical series. In other words, it only removes
higher order dynamics, preserving the static nonlinearities and low-order dynamics[2].

The 2st-order dynamic truncation of the DDR-based baseband Volterra model in the
discrete time can be written as:

y(t) =

K−1
2∑

k=0

Q∑

i=1

g2k+1,1(i) |x(t)|2kx(t− i)

+

K−1
2∑

k=1

Q∑

i=1

g2k+1,2(i) |x(t)|2(k−1)x2(t)x∗(t− i)

+

K−1
2∑

k=1

Q∑

i1=1

Q∑

i2=1

g2k+1,3(i1, i2)|x(t)|2(k−1) x∗(t)x(t− i1)x(t− i2)

+

K−1
2∑

k=1

Q∑

i1=1

Q∑

i2=1

g2k+1,4(i1, i2)|x(t)|2(k−1) x(t)x∗(t− i1)x(t− i2)

+

K−1
2∑

k=1

Q∑

i1=1

Q∑

i2=1

g2k+1,5(i1, i2)|x(t)|2(k−2) x3(t)x∗(t− i1)x∗(t− i2). (3.15)

where x(n) and y(n) are the complex envelopes of the input and output of the PA,
respectively, and g2k+1,j is the complex Volterra kernel of the system.

A simplified version of the model is defined by:

y(t) =

K−1
2∑

k=0

Q∑

i=0

g2k+1,1(i) |x(t)|2kx(t− i)

+

K−1
2∑

k=1

Q∑

i=1

g2k+1,2(i) |x(t)|2(k−1)x2(t)x∗(t− i)

+

K−1
2∑

k=1

Q∑

i=1

g2k+1,3(i)|x(t)|2(k−1) x(t)|x(t− i)|2

+

K−1
2∑

k=1

Q∑

i=1

g2k+1,4(i)|x(t)|2(k−1) x∗(t)x2(t− i). (3.16)
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3. Techniques For Analyzing And Modeling Non-linear Systems

3.2.3 Generalized Memory Polynomials

Another model including cross terms is the generalized memory polynomials (GMP)[17].
Inserting a delay of samples between the signal and its exponentiated envelope using
positive and negative cross-term time shifts we get:

y(n) =

Ka−1∑

k=0

La−1∑

l=0

ak,lx(n− l)|x(n− l)|k

+

Kb∑

k=1

Lb−1∑

l=0

Mb∑

m=1

bk,l,mx(n− l)|x(n− l −m)|k

+

Kc∑

k=1

Lc−1∑

l=0

Mc∑

m=1

ck,l,mx(n− l)|x(n− l +m)|k, (3.17)

where the structure of GMP models is determined by 8 parameters: Ka,Kb ,Kc non-
linearity orders, La, Lb, Lc memory lengths and Mb, Mc distances from the diagonal of
Volterra series, and ak,l, bk,l,m and ck,l,m are the linear coefficients of the equation.

In order to reduce the complexity, it is not necessary in many cases to use all of the co-
efficients. For example, odd-order nonlinearities usually dominate so that we may only
want to consider odd-order terms. Also additionally, depending on the signal band-
width and sampling rate, it may not be necessary to implement all cross-term time shifts.

3.3 Identification of Models

In this section we will focus on models with linear dependency with respect to their
coefficients. The interest of these models is that we will obtain a convex minimization
problem for the least-squares (LS) criteria for PA modeling and DPD with indirect learn-
ing architecture.

In order to identify the coefficients of PA model or DPD coefficients, we use LS opti-
mization criterion:

e = min
b
||y− z||2 . (3.18)

We apply notations defined in Fig.3.1, where for PA modeling y(t) is measured signal
(for DPD x(t) is measured signal) and z(t) is the output of the model. We consider here
only indirect learning approach for the DPD.

The ||.||2 represent the quadratic norm of vector and z is expressed as:

z = Ub, (3.19)

and where a z is a in vector with dimensions N × 1:

z = [z(0), ..., z(N − 1)]T . (3.20)
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3.3. Identification of Models

Power 

Amplifier 

PA Model 

)(ty)(tx

+ 
- 

)(tz

)(te

Power 

Amplifier 

PA Inverse 

Model 

)(tx)(ty

+ 
- )(tz

)(te

0

1
G

Figure 3.1: Schematic of minimizing problem between measured and modeled signals.
The left schematic represents calculation of PA model. The right schematic represents
calculation of PA inverse model (note that the input x(t) and output y(t) notation is
swapped in order to meet error defined in (3.18).

y = [y(0), ..., y(N − 1)]T . (3.21)

e = [e(0), ..., e(N − 1)]T . (3.22)

As seen in equation (3.19) U is a matrix of sizeN × Nc (whereNc represents number
of coefficients and for example for PMS Nc = K(Q+ 1)):

U =




Φ(0)
Φ(t)

...
Φ(N − 1)


 . (3.23)

b a vector of size Nc × 1

b = [b0, ..., bNc−1]
T . (3.24)

The optimization problem can be written:

minb(eHe). (3.25)

3.3.1 Least Squares one-shot solution

The LS solution minimizing distance between each data point and the space of best fit
passing through the data points for (3.19). The criteria J can be expressed as:

J(b) = ||z− y| |2 = eHe = (y−Ub)H(y−Ub) (3.26)

= bHUHUb− yHUb− bHUHy + yHy

The solution of (3.27) can be obtained by calculating the gradient and setting it to 0. The
gradient is equal to:

∂J((b))
∂b

= 2 UHUb− 2 UHy, (3.27)
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3. Techniques For Analyzing And Modeling Non-linear Systems

The least square solution yields to:

UHUb−UHy = 0. (3.28)

b = (UHU)−1UHy = U+y, (3.29)

where U+ denotes Moore - Penrose pseudo-inverse. The LS algorithm is in fact one-shot
solution for block of data.

LS one-shot solution is quite good in terms of performance. Nevertheless an inter-
est in adaptive algorithms grows (adaptive filtering, adaptive equalization, etc.). The
problem with LS one-shot solution is, that it is not able to track PA variations. Therefore
adaptive algorithms have been proposed for the case of DPD identification either.

3.3.2 Damped Newton Algorithm

In many applications, adaptive estimation is performed on a block by block basis. There
exists method called Damped Newton Algorithm (DNA) that upgrades the LS solution
by adding possibility to control the speed of convergence depending on the preceding
error. The DNA works block by block and it adapts preceding vector of coefficients to
take into account the new block of data with a damping factor. In this section we will
describe DNA used for predistortion of PA. The approach for predistortion using DNA
was defined in [17].

+ 

- 

PA 

0

1
G

yz

ẑ

e

x

𝐳 = 𝐔𝐛 

𝒛 = 𝐘𝐛 

Figure 3.2: Schematic of DNA system.

The initialization vector b0 is usually chosen to use predistorter as a transparent block
as:

b0 = [1, 0, · · · , 0]T . (3.30)

According to notation in Fig.3.2 we can describe the algorithm for n ∈ 1, 2, 3, ..., where
n represents the block number, with the following equation for block n (each block has
N samples):

z = U bn−1. (3.31)
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3.3. Identification of Models

Equivalently as in (3.20-3.23) we define the output matrix Y from the signal y
G0

as:

ẑ = Y bn−1. (3.32)

Then we define the error vector e
e = z− ẑ. (3.33)

The coefficients b can be updated as:

bn = bn−1 + µ
(
YHY

)−1 YH e, (3.34)

where µ is a relaxation variable. When setting the relaxation variable µ = 1 the damping
is removed and the solution becomes the standard LS solution.

3.3.3 LMS algorithm

The Least Mean Square (LMS) algorithm is often used in adaptive systems due its sim-
plicity and relative precision. The algorithm works sample by sample. The algorithm
computes instantaneous error and then corrects the actual value of coefficients.

Using any of models defined before with linear relation with respect to their coeffi-
cients (for example PMS, OMPS, DDR) we note:

Φ(n) = nth row of matrix U. (3.35)

Then the criterion function can be defined as:

min J(n) = min |e(n)|2 (3.36)
= min |y(n)−Φ(n)b(n)|2 .

The estimated gradient vector becomes:

∇J(n) =
∂|e(n)|2
∂b(n)

(3.37)

Because

e(n) = z(n)−Φ(n)b(n), (3.38)

applying equation (3.38) to equation (3.37) we get:

∇J(n) = −e(n)ΦH(n). (3.39)

Then using the steepest descent weight update equation we obtain iterative solution:

b(n+ 1) = b(n) + µe(n)ΦH , (3.40)

where parameter µ adjusts the compromise between convergence speed and the error
value after convergence.

Due to sensitivity to value µ that can lead to instability, the algorithm was modified
by using a normalization that improves stability of the algorithm. This algorithm is so-
called Normalized Least Mean Square (NLMS) defined as:

b(n+ 1) = b(n) + µ e(n)
ΦH

Φ ΦH
(3.41)

Both LMS and NLMS suffers from low convergence speed and limited precision.
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3. Techniques For Analyzing And Modeling Non-linear Systems

3.3.4 RLS algorithm

For solving the LS criterion optimization problem recursive least squares (RLS) algo-
rithm can also be used. In its adaptive form it converges faster than LMS. Theoretically
where the forgetting factor is equal to 1, it achieves the optimal solution (Wiener solu-
tion) but it is more complex than LMS. Now defining the input of the system:

x(n) = [x(n), x(n− 1), . . . , x(0)]T , (3.42)

and vector of desired output:

y(n) = [y(n), y(n− 1), . . . , y(0)]T . (3.43)

Then we define line vector Φ(n) as before of size 1×Nc and matrix Θ of size (n+1)×Nc

as:

Θ(n) =




Φ(0)
...

Φ(n)


 . (3.44)

Then the output of the system will be:

z(n) = Θ(n)b(n). (3.45)

The instantaneous error at time n is:

e(n) = y(n)−Φ(n)b(n). (3.46)

Now defining the criterion function with a forgetting factor denoted as λ:

minb J(n) =

n∑

k=0

λn−k |e(k)|2

=

n∑

k=0

λn−k |y(k)−Φ(k)b(n)|2

= eHΛe(n) (3.47)

where:

Λ = diag
[
1, λ, λ2, . . . , λn

]
(3.48)

To use recursive implementation we need to define the correlation matrix R(n) by a re-
currence equation:

R(n) = ΘH(n)ΛΘ(n) (3.49)

=

n∑

k=0

λn−kΦH(k)Φ(k)

=
n−1∑

k=0

λn−kΦH(k)Φ(k) + ΦH(n)Φ(n)

= λR(n− 1) + ΦH(n)Φ(n).
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3.3. Identification of Models

We define the cross-correlation vector of size Nc × 1:

p(n) = ΘH(n)Λy(n) (3.50)

=
n∑

k=0

λn−kΦH(k)y(k)

=

n−1∑

k=0

λn−kΦH(k)y(k) + ΦH(n)y(n)

= λp(n− 1) + ΦH(n)y(n).

Defining the recursive solution:

b(n+ 1) = R−1(n)p(n) = P(n)p(n), (3.51)

where defining P(n) = R−1(n) and applying the inversion lemma to calculate R−1(n)
yields to:

P(n) = λ−1P(n− 1)− λ−2P(n− 1)ΦH(n)Φ(n)P(n− 1)

1 + λ−1Φ(n)P(n− 1)ΦH(n)
. (3.52)

Now defining the gain g(n):

g(n) =
λ−1P(n− 1)ΦH(n)

1 + λ−1Φ(n)P(n− 1)ΦH(n)
(3.53)

Then applying (3.53) to P(n) defined in (3.52) we get:

P(n) = λ−1P(n− 1)− λ−1g(n)Φ(n)P(n− 1). (3.54)

To rewrite the recursive weight update algorithm:

g(n) =
λ−1P(n− 1)ΦH(n)

1 + λ−1Φ(n)P(n− 1)ΦH(n)

P(n) = λ−1P(n− 1)− λ−1g(n)Φ(n)P(n− 1)

e(n) = y(n)−ΦT (n)b(n)

b(n+ 1) = b(n) + g(n)e(n). (3.55)

We define initial conditions as p(0) = 0, R(0) = δI, where I is identity matrix. The
typical value of δ is usually set as a small positive value equal to δ = 10−3. Then we can
define:

P(0) = R−1(0) = δ−1I. (3.56)

To show the relationship between LS solution and RLS algorithm lets set λ = 1, we get:

R(n) = ΘH(n)IΘ(n). (3.57)

p(n) = ΘH(n)Iz(n). (3.58)

15



3. Techniques For Analyzing And Modeling Non-linear Systems

and using:

R(n)b(n) = p(n)

ΘH(n)IΘ(n)b(n) = ΘH(n)Iz(n). (3.59)

we get:

b(n) =
(
Θ(n)ΘH(n)

)−1
Θ(n)z(n). (3.60)

We recognize (3.60) for n = N the LS solution for the block of N samples.

Introducing a forgetting factor λ leads to an adaptive algorithm. RLS converges faster
and is more precise than LMS. The RLS algorithm is more complex than LMS.
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Abstract

As the data throughput is still increased in the wireless communication systems, it is re-
quired to efficiently utilise the radio frequency spectrum which usually requires linear
transmitters. Consequently methods as a digital predistortion (DPD) are developed to
linearise nonlinear power amplifiers. To extract precise parameters for the DPD it is es-
sential to finely synchronise measured feedback signal with the known transmitted sig-
nal. In this section we propose an analytical method for the fractional sample period time
synchronisation suitable for DPD signals. Finally benefits of the proposed method are
presented on results of its usage for the DPD linearisation using a measurement test-bed.

4.1 Introduction
As wireless communication systems develop higher demand is placed on data through-
put and spectral and power efficiency. The higher data throughput and spectral ef-
ficiency is usually achieved using spectrally efficient modulations. The most of these
modulations require usage of linear power amplifiers (PAs). These PAs are in principle
low power efficient and in opposite high power efficient PAs are nonlinear. A technique
solving this contradiction in modern communication systems is usage of a high power
efficient nonlinear PA together with a digital predistorter (DPD). The DPD linearises
characteristics of the nonlinear transmitter while preserving high power and spectral
efficiency.

The typical implementation of the DPD is depicted by its baseband model in Fig. 4.1.
The transmitter input and output signals are sampled, aligned, and processed to extract
the DPD parameters that would be used to predistort the source signal before transmis-
sion to counteract the transmitter nonlinearities. However, the alignment accuracy in
DPD is limited by nonideal electronic components and the associated circuitry which
introduces unknown loop delay mismatch and thus degrades the overall linearisation
performance as shown in Fig. 4.2 and in [8]. This section analyses the influence of the
accuracy of the timing of these signals on the performance of the predistorter. It con-
siders the case of an integer and a fractional delay (less than the sampling period). It is
shown that for a predistorter without memory, even very small fractional offset degrades
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performance significantly. The theoretical analysis by Liu [15] reveals that performance
degradation caused by the loop delay mismatch increases as well with the bandwidth
of the orthogonal frequency-division multiplexing (OFDM) signal.
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Figure 4.1: Baseband model of the digital predistorter

where B is the bandwidth of the signal and τ is the delay of
the signal.

IV. USED METHOD

To evaluate the influence of lag on the performance of
the predistorter we introduced fractional lags the output of
PA. Then we used signals with misaligned for DPD. Then
we measured the performance of DPD and compared to
results obtained without lag in the identification of DPD. For
performance evaluation we used normalized mean square error
NMSE between the output of the cascade DPD + PA and
the original signal. For two signals x input and y output it is
defined as

NMSE(x, y)[dB] = 10 log

∑ ||x− y||2∑ ||x||2 (9)

A unique aspect of our work is not only to correct the nonlin-
earities introduced by power amplifier, but also simultaneously
correct for memory effects, integer and fractional lag.

V. EXPERIMENTAL RESULTS

We present results measured on Doherty amplifier UHF
NXP LDMOS using BLF888A transistor (75W) used for
DVB-T applications(470 MHz to 860 MHz). As the useful
signal we have used OFDM-like signal with the oversampling
factor 8. The amplifier has been modeled with orthogonal
polynomials with nonlinearity order K = 7 and the memory
dept M = 3. We give here the results for a DPD with the same
order of non-linearity K = 7 and the memory M ranging from
0 to 10.

A. Case of integer delay

In the case of integer mismatch between output of the
digital to analog converters the performance of coefficients
estimation is affected. In the Fig.3 we have used orthogonal
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Fig. 3. Effect of integer delay for different memory length of the DPD.

polynomial model with memory as a predistorter. We have
introduced integer delay ranging from τ = −10 Ts ( where

Ts period of sampling frequency) to τ = 10 Ts. We see, that
the polynomials are able to compensate the integer delay equal
to memory order of predistorter. Also we can see, that the
polynomial models are not able to well compensate advance
of the signal. Such inconvenience can be overcomed by using
GMP models.

B. Case of fractional delay

The fractional delay (in the meaning of real multiples of
sampling periode Ts) can be introduced by mismatch of digital
to analog and analog to digital converters and by the delay of
power amplifier. Fig.4 shows the values NMSE with variable

−0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5
−50

−45

−40

−35

−30

−25

−20

−15

τ/Ts

N
M

S
E

 [d
B

]

M=0
M=1
M=2
M=3
M=5
M=10

Fig. 4. Effect of fractional delay for different memory length of the DPD.

memory from 0 to 10 depending on the normalized fractional
delay (normalized by Ts) in the range between τ = −0.5 Ts
and τ = 0.5 Ts. We can see that the DPD is able to
compensate for the fractional offset and nonlinearities. The
usage of DPD with memory is very important and can increase
the performance of NMSE (20 dB). Unlike the case of integer
delay the memory is able to compensate fractional delay and
also fractional advance.

VI. CONCLUSION

We analyzed the influence of integer and fractional time
delay between the signals used for the calculation of a DPD
coefficients for predistortion. We have shown that the introduc-
tion of memory in the DPD can simultaneously compensate
the non-linearity and the fractional time lag with pretty good
accuracy (degradation of about 3 dB compared to a NMSE of
-47dB for zero offset of τ for the Doherty amplifier studied).
For the case of integer time delay the DPD can compensate
the same number of multiples of Ts as the memory depth
M . But for the case of integer advance, the PMS is not
able to compensate. But because the GMP is defined also
for advance cross.terms, the GMP can compensate both, the
integer advance and integer delay.

Figure 4.2: Effect of fractional delay for different memory length on normlised mean
square error (NMSE) of the DPD with PA modelled by orthogonal polynomials with
nonlinearity order K = 7 and the memory depth M = 3 [8]

As a consequence of the delay mismatch degradation, a precise time synchronisa-
tion method is required for the DPD implementation. Time synchronisation and recov-
ery have been already widely explored in the communication theory. An algorithm for
symbol timing recovery using baud-rate sampling is described in [3]. Later Armstrong
and Strickland presented an algorithm [4] to find a suitable strobe point and calculate
signal values between the sample points by the interpolation. The Maximum-likelihood
estimation theory also provides a general framework for developing near-optimum syn-
chronisation schemes [14]. A synchronisation concept shown in [10] is based on a low-
order polynomial approximation of the likelihood functions using the Farrow-based in-
terpolator. Fu and Willson in [7], instead of approximating a continuous-time signal
with a conventional (algebraic) polynomial and computing the synchronised samples
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using a Farrow structure, employed trigonometric polynomials.
In paper [21] there are presented two methods for signal alignment in a DPD system.

A frequency multiplication method was used for the coarse alignment and subsequently
the parabolic curve fitting method for the fine alignment.

In this section we propose an analytical method for the fractional delay signal syn-
chronisation and present results of its application in a DPD system. In the final section
we provide experimental results of the proposed method.

4.2 Problem Observation
The described problem exists in all real systems. In coherent systems, where the clock
signals in the feedback (FB) are exactly same as the clock signals in the direct path (DP),
the clock phase skew can be well controlled by the design and is constant over time.
The clock skew therein can be easily compensated. A different situation arises in inco-
herent systems where the clocks are not the same. It is to be noted that systems with
clocks derived from a reference system clock by different phase-locked loops (PLLs) are
considered as incoherent. A typical example of such system is an integrated transciever
with separated PLLs in the transmitter and the receiver, or a measurement test-bed com-
posed of a separated signal generator and an acquisition instrument. A simplified block
diagram of such test-bed is depicted in Fig. 4.3.
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Figure 4.3: DPD test-bed with separated signal generator and acquisition instrument

The generator clock has phase skew with respect to the acquisition instrument clock.
This skew is natural due to limited bandwidth of loop filters in PLLs and can vary over
time. If the acquired length of the signal is relatively short with respect to the change of
the clock phase skew, the phase skew can be assumed constant over the acquisition and
appears as fractional sample time offset. Particularly we have observed this behaviour
using high-end instruments from Rohde&Schwarz, the signal generator SMU 200A and
the real-time spectrum analyser FSVR used for the acquisition. The clock phase skew
spreads the amplitude-amplitude (AM/AM) characteristics as depicted in Fig. 4.4 and
the amplitude-phase (AM/PM) characteristics as in Fig. 4.5. This spread can be easily
misinterpreted as memory effect of the PA and it can be also partially compensated by
a DPD with a memory as described in [8].
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Figure 4.4: Influence of delay τ on AM/AM characteristics of PA using quadrature am-
plitude modulation (QAM) 16 signal with sampling period TS

Figure 4.5: Influence of delay τ on AM/PM characteristics of PA using QAM16 signal
with sampling period TS

4.3 Proposed Synchronisation Method

Let us assume that the PA is modelled by the polynomials and its baseband output y(t)
is given as

y(t) =
K∑

k=1

Q∑

q=0

bk,qx(t− qTS)|x(t− qTS)|k−1 (4.1)

where x(t) is the PA input signal, TS is the sampling period, K and Q represent the
maximum PA nonlinear order and memory length respectively, and bk,q is a coefficient
of the PA polynomial model. The obtained FB signal is

yFB(t) = y(t− τ) (4.2)

where τ is a delay caused by the physical measurement setup and the clock skew of the
instruments.
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For these signals we define their Fourier transforms as

F{x(t)} = X(jω) = |X(jω)|ejϕx(ω) (4.3)

and similarly Y (jω) for y(t) and YFB(jω) for yFB(t). Based on Eq. 4.2 and the property
of the Fourier transform it is possible to write

YFB(jω) = Y (jω)e−jωτ . (4.4)

As the PA model (Eq. 4.1) contains only power of the magnitude, for q = 0 it preserves
the phase of the original signal. If the memory effect of the PA is minimal and negligible,
it can be shown using Eq. 4.4 that

τω = ϕx(ω)− ϕFB(ω). (4.5)

For practical reasons the Eq. 4.5 is modified and the phase difference is taken from the
interval (−π, π〉

τω = P (ϕx(ω)− ϕFB(ω)) (4.6)

where P (·) is a function defined as

P (ϕ) =

{
ϕ mod 2π, if (ϕ mod 2π) <= π

(ϕ mod 2π)− 2π, otherwise.
(4.7)

The left side of Eq. 4.6 represents a line going through the origin and with the di-
rection τ . For real signals, τ can be found using the method of least squares and for the
discrete time signals is expressed as

τ0 =

ωmax∑
ωmin

ωP (ϕx(ω)− ϕFB(ω))

ωmax∑
ωmin

ω2

(4.8)

where ωmin and ωmax are lower and upper limits for least squares calculation. These
limits should be set according to the frequency range of the signal x(t). Eq. 4.8 expects
τ ∈ 〈−TS/2, TS/2〉 which can be achieved by cross-correlation methods. The extension
of the method for multiple TS is possible by unwrapping the phase difference.

When the time offset τ0 is obtained, the fractional sample time shift in spectrum do-
main is straightforward.

y(t) = F−1{YFB(jω)ejωτ0} (4.9)

The above describe approach does not change the shape of the AM/PM characteris-
tics as Eq. 4.9 is not dependent on the magnitude of the input signal. It only improves
the spread caused by the signal synchronisation offset. At the same time the method
does not expect the IQ rotation of the signal phase which occurs due to the modulator
and demodulator clock phase skew; therefore it is often convenient to determine τ0 for
signal magnitudes instead of complex signals.
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4.4 Experimental Results
The proposed method has been experimentally verified on our measurement test-bed
shown in Fig. 4.6. The test-bed consists of the signal vector generator SMU 200A, real-
time spectrum analyser FSVR, both from Rohde&Schwarz, and a radio-frequency power
amplifier. The reference clock for both instruments is an internal oscillator of the signal
generator.

Figure 4.6: Photography of our test-bed for DPD measurements

The DPD used for the linearisation is based on the simplified 2nd-order dynamic
deviation reduction (DDR) based Voltera series model [9] and its output is given by

x(n) =

K′−1
2∑

k=0

Q′∑

q=0

b′2k+1,1,q|z(n)|2kz(n− q)

+

K′−1
2∑

k=1

Q′∑

q=1

b′2k+1,2,q|z(n)|2(k−1)z2(n)z∗(n− q)

+

K′−1
2∑

k=1

Q′∑

q=1

b′2k+1,3,q|z(n)|2(k−1)z(n)|z(n− q)|2

+

K′−1
2∑

k=1

Q′∑

q=1

b′2k+1,4,q|z(n)|2(k−1)z∗(n)z2(n− q)

(4.10)

where z(n) is an input signal to be predistored, K ′ and Q′ are the maximum DPD non-
linear order and memory length respectively, and b′k,i,q is a coefficient of the DPD model.

The measurements were performed first with coarse cross-correlation synchronisa-
tion only and later with application of the proposed method. The maximum nonlinear
order of the DPD was setK ′ = 7 and memory lengthQ′ = 0. Fig. 4.7 shows the improve-
ment of the AM/AM characteristics for the PA before and after linearisation by usage of
the proposed method. The improvement of the AM/PM characteristics of the linearised
PA is shown in Fig. 4.8.
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Figure 4.7: Measured AM/AM characteristics of the PA before and after linearisation
with and without fractional sample period time synchronisation

Figure 4.8: Measured AM/PM characteristics of the linearised PA with and without
fractional sample period time synchronisation

Fig. 4.9 shows the phase difference (Eq. 4.6) and fitting of a line with direction τ0. The
vertical lines in this picture depict the frequency interval 〈ωmin, ωmax〉 which is used for
the calculation of τ0 using Eq. 4.8.

4.5 Power Amplifiers with Phase Distortion

Presence of phase distortion of the PA does not influence the performance of the pro-
posed synchronisation method. Phase distortion in spectrum domain spreads the sig-
nals phase difference, but it preserves the direction of the fitted line. The time delay
obtained using least squares is therefore insensitive to the phase distortion. Fig. 4.10 de-
picts a result of the synchronisation on the AM/PM characteristics of a PA with phase
distortion. These characteristics were obtained by simulations only as there was no real
suitable PA available for measurements.
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Figure 4.9: Phase difference of the synchronised signals with the fitted line representing
the time offset τ0

Figure 4.10: AM/PM characteristics of the PA model with phase distortion with and
without fractional sample period time synchronisation. Signals without synchronisation
are mutually shifted in time by τ/TS = 0.48.

4.6 Conclusion
In this section we have proposed the analytical method for fractional sample period time
synchronisation using spectrum domain. It has been presented that the method, due to
its properties, is suitable for time synchronisation in DPD systems suffering from inco-
herent sampling, e.g. integrated transcievers with separated PLLs in receiver and trans-
mitter. The main advantage of the proposed method is that it is analytical and thus
much faster than optimisation methods. We have shown application of our method in
linearisation process using laboratory instruments and a real PA. The experimental mea-
surements have shown its very good synchronisation capabilities. The simulation results
have shown its outstanding performance in synchronisation of the phase distorted sig-
nals.

24



5. Conclusions

The DC-to-RF efficiency of High Power Amplifiers (HPAs) is currently the main contrib-
utor to the power consumption of a telecomunication systems. This equipment is re-
sponsible for consuming more than 70% of the overall DC power available in bent-pipe
architectures. To improve the scenario, pre-distortion techniques are currently used in
order to linearise the HPA. Such linearisation allows for an increase of the overall DC-
to-RF efficiency since the HPA can be operated closer to saturation.

Feed-forward, Cartesian and Polar loop techniques provide relatively mediocre lin-
earization performance at the expense of more complex architecture. Maturity of these
techniques for wideband signals is lower compared e.g. to DPD. Moreover, as they are
implemented mostly in hardware their flexibility is limited.

Digital predistortion provides very high linearisation performance. It can improve
IMD3 by more than 25 dB. Since its implementation is mostly done in the digital domain
and the architecture is quite straightforward, the overall system complexity and associ-
ated technical risks are mediocre. Moreover, there exists many scientific publications
on the DPD and it is being deployed in several commercial applications. But in terms
of reliability operating DPD for example in space would require increased number of
digital components and complexity thereby reducing overall reliability.
On the other hand analogue RF predistortion that uses analogue HW components like
diodes is very simple and extremely low-cost. Unfortunately it may suffer from lower
linearisation performance. Improvements in IMD3 are roughly in the order of 10-25 dBc
over relatively wide bandwidth. This technology is quite well matured (e.g. linearisa-
tion of TWT amplifiers in satellites). We believe that this approach should be evaluated
in furtehr research works.

Usually due to low power consumption requirement, we believe that low complexity
solutions such as 1-bit observing path can reduce total power dissipation significantly.
This leads us to our preliminary assumption that the hybrid Analogue/Digital predis-
tortion could be the preferred candidate for future research activities.

5.1 Research Work Beyond Thesis

The thesis includes papers which I consider the most important outputs of my research
work. During my academic career, I have also been involved in other research works and
authored or co-authored papers, which do not form an integral part of the presented
thesis.

25



5. Conclusions

5.2 Bibliography

[1] Anding, Z.; Draxler, P.; Yan, J.; et al.: Open-Loop Digital Predistorter for RF Power
Amplifiers Using Dynamic Deviation Reduction-Based Volterra Series. Microwave
Theory and Techniques, IEEE Transactions on, vol. 56, no. 7, 2008: p. 1524–1534, ISSN
0018-9480, DOI:10.1109/TMTT.2008.925211.

[2] Anding, Z.; Pedro, J. C.; Brazil, T. J.: Dynamic Deviation Reduction-Based Volterra
Behavioral Modeling of RF Power Amplifiers. Microwave Theory and Techniques, IEEE
Transactions on, vol. 54, no. 12, 2006: p. 4323–4332, ISSN 0018-9480, DOI:10.1109/
TMTT.2006.883243.

[3] Armstrong, J.: Symbol synchronization using baud-rate sampling and data-
sequence-dependent signal processing. IEEE Transactions on Communications,
vol. 39, no. 1, Jan 1991: p. 127–132, ISSN 0090-6778, DOI:10.1109/26.68283.

[4] Armstrong, J.; Strickland, D.: Symbol synchronization using signal samples and
interpolation. IEEE Transactions on Communications, vol. 41, no. 2, Feb 1993: p. 318–
321, ISSN 0090-6778, DOI:10.1109/26.216506.

[5] Ding, L.; Zhou, G. T.: Effects of even-order nonlinear terms on power amplifier
modeling and predistortion linearization. Vehicular Technology, IEEE Transactions on,
vol. 53, no. 1, 2004: p. 156–162, ISSN 0018-9545, DOI:10.1109/TVT.2003.822001.

[6] Ding, L.; Zhou, G. T.: Effects of even-order nonlinear terms on power amplifier
modeling and predistortion linearization. Vehicular Technology, IEEE Transactions on,
vol. 53, no. 1, 2004: p. 156–162, ISSN 0018-9545, DOI:10.1109/TVT.2003.822001.

[7] Fu, D.; Willson, A. N.: Trigonometric polynomial interpolation for timing recovery.
IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 52, no. 2, Feb 2005: p.
338–349, ISSN 1549-8328, DOI:10.1109/TCSI.2004.841573.

[8] Gotthans, T.; Baudoin, G.; Mbaye, A.: Influence of delay mismatch on digital predis-
tortion for power amplifiers. In Proceedings of the 20th International Conference Mixed
Design of Integrated Circuits and Systems - MIXDES 2013, June 2013, p. 490–493.

[9] Guan, L.; Zhu, A.: Simplified dynamic deviation reduction-based Volterra model
for Doherty power amplifiers. In 2011 Workshop on Integrated Nonlinear Microwave
and Millimetre-Wave Circuits, April 2011, p. 1–4, DOI:10.1109/INMMIC.2011.
5773325.

[10] Hamila, R.; Vesma, J.; Renfors, M.: Polynomial-based maximum-likelihood tech-
nique for synchronization in digital receivers. IEEE Transactions on Circuits and Sys-
tems II: Analog and Digital Signal Processing, vol. 49, no. 8, Aug 2002: p. 567–576, ISSN
1057-7130, DOI:10.1109/TCSII.2002.805630.

[11] Ibanez-Diaz, J.; Pantaleon, C.; Santamaria, I.; et al.: Nonlinearity estimation in
power amplifiers based on subsampled temporal data. Instrumentation and Measure-
ment, IEEE Transactions on, vol. 50, no. 4, 2001: p. 882–887, ISSN 0018-9456, DOI:
10.1109/19.948293.

26



5.2. Bibliography

[12] Kim, J.; Konstantinou, K.: Digital predistortion of wideband signals based on power
amplifier model with memory. Electronics Letters, vol. 37, no. 23, 2001: p. 1417–1418,
ISSN 0013-5194, DOI:10.1049/el:20010940.

[13] Lei, G.; Zhu, A.: Simplified dynamic deviation reduction-based Volterra model for
Doherty power amplifiers. In Integrated Nonlinear Microwave and Millimetre-Wave
Circuits (INMMIC), 2011 Workshop on, 2011, p. 1–4, DOI:10.1109/INMMIC.2011.
5773325.

[14] Lin, L.; Zhang, J.; Ma, M.; et al.: Time Synchronization for Molecular Communi-
cation With Drift. IEEE Communications Letters, vol. PP, no. 99, 2016: p. 1–1, ISSN
1089-7798, DOI:10.1109/LCOMM.2016.2628903.

[15] Liu, Y.; Quan, X.; Pan, W.; et al.: Performance Analysis of Direct-Learning Digital
Predistortion With Loop Delay Mismatch in Wideband Transmitters. IEEE Transac-
tions on Vehicular Technology, vol. 65, no. 9, Sept 2016: p. 7078–7089, ISSN 0018-9545,
DOI:10.1109/TVT.2015.2496188.

[16] Marsalek, R.; Jardin, P.; Baudoin, G.: From post-distortion to pre-distortion for
power amplifiers linearization. Communications Letters, IEEE, vol. 7, no. 7, 2003: p.
308–310, ISSN 1089-7798, DOI:10.1109/LCOMM.2003.814714.

[17] Morgan, D. R.; Zhengxiang, M.; Jaehyeong, K.; et al.: A Generalized Memory Poly-
nomial Model for Digital Predistortion of RF Power Amplifiers. Signal Processing,
IEEE Transactions on, vol. 54, no. 10, 2006: p. 3852–3860, ISSN 1053-587X, DOI:
10.1109/TSP.2006.879264.

[18] Ngoya, E.; Quindroit, C.; Nebus, J. M.: On the Continuous-Time Model for
Nonlinear-Memory Modeling of RF Power Amplifiers. Microwave Theory and Tech-
niques, IEEE Transactions on, vol. 57, no. 12, 2009: p. 3278–3292, ISSN 0018-9480,
DOI:10.1109/TMTT.2009.2033297.

[19] Saleh, A.: Intermodulation Analysis of FDMA Satellite Systems Employing Com-
pensated and Uncompensated TWT’s. Communications, IEEE Transactions on, vol. 30,
no. 5, 1982: p. 1233–1242, ISSN 0090-6778, DOI:10.1109/TCOM.1982.1095568.

[20] Shimbo, O.: Effects of intermodulation, AM-PM conversion, and additive noise in
multicarrier TWT systems. Proceedings of the IEEE, vol. 59, no. 2, 1971: p. 230–238,
ISSN 0018-9219, DOI:10.1109/PROC.1971.8128.

[21] Wang, H.; Xue, W.; Ma, H.: Fast Algorithms for the Delay Estimation in Digital
Predistortion System. IEEE Microwave and Wireless Components Letters, vol. 25, no. 3,
March 2015: p. 202–204, ISSN 1531-1309, DOI:10.1109/LMWC.2015.2390532.

27



Abstract

The habilitation thesis is oriented in the field of modelling and linearisation of nonlinear
systems. The DC-to-RF efficiency of High Power Amplifiers is currently the main con-
tributor to the power consumption of a telecomunication systems. And since the modern
communication systems are using modulation techniques with non-constant envelope
(haveing high PAPR), usually back-off of power is applied in order to operate in linear
region of high power amplifier. This leads to signifficant decrease of power efficiency.
On the other hand, when operated closer to saturation the efficiency is increased, but
the transmitted signal is distorted by it’s non-linearity. Hence we may use linearisation
techniques such as digital predistortion (imposing inverse behaviour) to improve perfor-
mance.

This habilitation thesis presents research conducted at Department of Radio electronics
from 2014 to 2018. First brief introduction to modelling and linearisation is provided.
The second part is devoted to the analytical method for fractional sample period time
synchronisation using spectrum domain. It has been presented that the method, due to
its properties, is suitable for time synchronisation in digital predistortion (DPD) systems
suffering from incoherent sampling, e.g. integrated transcievers with separated PLLs in
receiver and transmitter. The experimental measurements have shown its very good syn-
chronisation capabilities.

Digital predistortion provides very high linearisation performance. It can improve IMD3
by more than 25 dB. Since its implementation is mostly done in the digital domain and
the architecture is quite straightforward, the overall system complexity and associated
technical risks are mediocre. Moreover, there exists many scientific publications on the
DPD and it is being deployed in several commercial applications.

Still there are several unanswered problems related with future systems such as 5G or
6G operating with currently large signal bandwiths. That is challenging no only in terms
hardware requirements, but as well in terms of signal processing. Usually due to low
power consumption requirement, we believe that low complexity solutions such as 1-bit
observing path can reduce total power dissipation significantly. This fact leads us to our
preliminary assumption that the hybrid analogue/digital predistortion could be the pre-
ferred candidate for future research activities.
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Abstrakt

Habilitačnı́ práce je zaměřena na problematiku modelovánı́ a linearizaci nelineárnı́ch
systémů. U telekomunikačnı́ch systémů je nı́zká účinnost radiofrekvenčnı́ch výkonových
zesilovačů v současnosti hlavnı́m zdrojem spotřeby energie. Dnešnı́ modernı́ komunikačnı́
systémy použı́vajı́ modulačnı́ techniky s nekonstantnı́ obálkou (a zároveň s vysokým PAPR).
Proto, aby nedocházelo ke zkreslenı́ signálu, je nutné snı́ženı́ vysı́lacı́ho výkonu (resp.
snı́ženı́ pracovnı́ho bodu výkonového zesilovače), proto aby bylo možno pracovat v lineárnı́
oblasti. To vede k výraznému snı́ženı́ energetické účinnosti. Nicméně, když je zesilovač
provozován blı́že k saturačnı́ oblasti, zvyšuje se účinnost. Přenášený signál je však trans-
formován jeho nelinearitou. Pro přenos signálů v nelineárnı́ oblasti zesilovače je možné
použı́t linearizačnı́ techniky.

Tento dokument prezentuje výsledky výzkumu v dané oblasti prováděné na Ústavu ra-
dioelektroniky v obdobı́ let 2014–2018. Prvnı́ část přinášı́ stručný úvod do modelovánı́
a linearizacı́ nelineárnı́ch systémů. Druhá část je věnována analytické metodě časové
synchronizace signálů s využitı́m spektrálnı́ domény a demonstruje vliv na výsledky lin-
earizace výkonového zesilovače. Dı́ky svým vlastnostem je metoda obzvláště vhodná pro
časovou synchronizaci v systémech čı́slicového předzkreslenı́ (DPD) napřı́klad v systémech,
které trpı́ nekoherentnı́m vzorkovánı́m (integrované transceivery se samostatnými PLL
v přijı́mači a vysı́lači). Experimentálnı́ měřenı́ ukázaly velmi dobré možnosti synchro-
nizace.

Čı́slicové předzkreslenı́ vykazuje velmi dobré vlastnosti z pohledu linearizovánı́ nelineárnı́ch
radiofrekvenčnı́ch systémů. Může zlepšit IMD3 (intermodulačnı́ produkty třetı́ch řádů)
o vı́ce než 25 dB.

I přes relativně jednoduchou možnost implementace, existuje stále mnoho nevyřešených
problémů souvisejı́cı́ch s budoucı́mi systémy, jako jsou napřı́klad mobilnı́ sı́tě 5G nebo 6G
(šı́řka pásma vysı́laného signálu jsou řádově jednotky Ghz). To je pochopitelně náročné
nejen z hlediska hardwarových požadavků, ale také z hlediska zpracovánı́ signálu. Proto
je nutné se zaměřit i na nı́zkou spotřebu energie. Jednı́m z možných řešenı́ problému
mohou být systémy s nı́zkou složitostı́, jako je 1-bitová zpětná vazba. Dalšı́m možným
řešenı́m je použı́t analogové řešenı́. Nicméně tyto skutečnosti nás vedou k předpokladu,
že preferovaným kandidátem pro budoucı́ výzkum v dané oblasti bude hybridnı́, tedy
kombinace analogové a čı́slicové, linearizace.
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