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Introduction

Parkinson’s disease (PD) is a chronic idiopathic disorder characterized by the progressive
degeneration of dopaminergic neurons in the substantia nigra pars compacta [1], [2]. This
degeneration is caused by the abnormal accumulation of the alpha-synuclein protein, which
forms Lewy bodies (protein aggregates) that disrupt cellular function and are implicated in
neuron death [3]. The loss of dopaminergic neurons leads to dopamine deficiency, primarily
affecting the basal ganglia, a brain region responsible for movement control [4].

Globally, PD is the second most common neurodegenerative disorder after Alzheimer’s
disease, with prevalence increasing with age (and more prevalent in males). It affects approx-
imately 1% of individuals over 60 and about 2% of those over 65 [5]. Environmental risk
factors for PD include prolonged exposure to pesticides, heavy metals, and certain industrial
chemicals [5], [6]. While motor symptoms like bradykinesia, muscular rigidity, resting tremor,
and postural instability characterize PD, non-motor symptoms such as cognitive impairment,
mood disorders, and sleep disturbances are also prevalent and significantly impact patients’
quality of life [5]-[7].

Clinically, PD diagnosis is typically based on the presence of the above-mentioned motor
symptoms, although prodromal signs (symptoms that precede the classical motor signs) may
offer early diagnostic clues. These signs can include REM sleep behavior disorder, loss of smell
(anosmia), constipation, and mood changes, which may precede the onset of motor symptoms
by several years [5], [6]. Advances in biomarkers, particularly those derived from imaging
studies, have enabled more accurate identification of individuals at risk for PD and facilitated
research into early intervention strategies [5], [6].

Therapeutic options for PD are primarily symptomatic. Levodopa, a precursor to dopamine,
remains the cornerstone of treatment for motor symptoms, though long-term use can lead to
complications like motor fluctuations and dyskinesias [8], [9]. Deep brain stimulation (DBS)
of the subthalamic nucleus has shown efficacy for some patients, particularly in controlling
tremor and reducing medication requirements [8].

Due to the underlying basal ganglia pathology, up to 90 % of PD patients also experience
a motor speech disorder called hypokinetic dysarthria (HD) [8], [10]. HD manifests mainly in

these dimensions of speech:

¢ Respiration — Individuals with HD often experience reduced respiratory support, leading
to decreased air pressure available for speech. This may result in a lower vocal inten-
sity and shorter phrases due to insufficient breath support. The reduced control over

respiratory muscles can limit the effectiveness of coordinated speech breathing [11].

e Phonation — Phonatory issues in HD primarily involve reduced vocal loudness, often
perceived as a soft, breathy, or weak voice. Phonatory irregularities, such as increased
jitter, shimmer, and reduced harmonic-to-noise ratio, are common. These reflect im-
pairments in the vocal fold adduction and control, often contributing to a strained or
effortful phonatory quality [8], [11]-[13].



* Resonance — Resonance abnormalities include a tendency toward hypernasality, though
this is usually less pronounced compared to other dysarthria types. The altered reso-
nance stems from the lack of control over the velopharyngeal mechanism, possibly due
to generalized muscle rigidity and decreased range of movement in the articulatory or-

gans [11].

¢ Articulation — Articulatory precision is notably reduced in HD, often resulting in slurred
or imprecise consonant articulation. This manifests as a result of diminished range and
force of articulatory movements. Consonants may appear “blurred” due to the inability
to fully achieve the necessary articulatory positions, which is compounded by overall
bradykinesia and rigidity of the facial and lingual muscles [8], [11], [13].

e Prosody — Prosodic deficits are significant in HD, typically resulting in monopitch,
monoloudness, and inappropriate pauses. Speech rate abnormalities are common, with
some individuals displaying a rapid, staccato-like rate, while others may experience sud-
den bursts of speed interspersed with prolonged pauses. These prosodic disturbances
severely impact speech intelligibility and the natural rhythm of speech, contributing to
the overall flat and unexpressive speech typical of HD [8], [11], [13], [14].

These combined effects of HD on speech components contribute to reduced intelligibility
and communication effectiveness, posing substantial challenges in everyday interactions for
those with PD.

Since PD manifests in speech, this modality can be advantageously leveraged for supportive
diagnosis, assessment, or monitoring. For this purpose, digital speech biomarkers are partic-
ularly useful. The U.S. Food and Drug Administration (FDA) defines a digital biomarker as
“a characteristic or set of characteristics, collected from digital health technologies, that is
measured as an indicator of normal biological processes, pathogenic processes, or responses to
an exposure or intervention, including therapeutic interventions” [15]. In the case of digital
speech biomarkers, the digital health technology may consist of, for example, a smartphone
with a built-in microphone or an external microphone connected to a laptop. An example of
a characteristic could be the variability in the fundamental frequency (F0) of speech. Finally,
in our context, the pathogenic process is represented by PD.

The aim of this work is to introduce the concept of acoustic speech analysis in
patients with PD in depth and to highlight its benefits through two key examples:
1) research of a new treatment approach for HD based on repetitive transcranial

magnetic stimulation (rTMS), and 2) predicting cognitive decline in PD patients.



1 Concept of acoustic analysis of speech in pa-
tients with PD

The general concept of acoustic analysis of speech in patients with PD is visualised in Fig. 1.1.

The process usually consists of these steps:

1. Data acquisition — Depending on the intended application, speech data can be recorded
under controlled conditions, such as in a clinical setting [16], or in less controlled envi-
ronments, such as a patient’s home [17]. To ensure reliable results and prevent misinter-
pretations, certain requirements must be met concerning the microphone, environment,
sampling process, etc. Guidelines have been published to support this process [18], [19].
In addition, to capture all possible manifestations of HD, speech and voice are typically
recorded using a comprehensive protocol that includes tasks such as free speech (e.g.,
a patient talking about her/his hobbies), reading words, sentences, or paragraphs; sus-
tained phonation of vowels; diadochokinetic (DDK) tasks (rapid repetition of specific
syllables or sound sequences, such as “pa-ta—ka,” as quickly and accurately as possible);

expiration tasks, and more [18], [20].

2. Labeling — For task-specific analysis, such as measuring the rate of DDK, when multiple
tasks are present within a single recording, then segmentation is required . This means
isolating the part of interest from the entire recording, which can be done automatically
or manually. In the manual approach (generally more accurate), a person listens to
the recording, observes the spectrogram, and identifies specific time points, typically
marking the beginning and end of the prompt. These time points are then associated

with labels that provide textual information about the prompt’s content.
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Fig. 1.1: Concept of acoustic analysis of speech in patients with PD.

3. Metadata insertion — Once the recordings are segmented, the acoustic data are associ-

ated with metadata essential for subsequent analysis and for providing insights into the



patient’s profile. Typically, this includes demographic information (e.g., age and sex)
and clinical information, such as scores from assessments like the UPDRS IIT (Unified
Parkinson’s Disease Rating Scale, Part I1I: Motor Examination), RBDSQ (REM Sleep
Behavior Disorder Screening Questionnaire), FOG (Freezing of Gait Questionnaire),
NMSS (Non-Motor Symptoms Scale), BDI (Beck Depression Inventory), ACE-R (Ad-
denbrooke’s Cognitive Examination — Revised), and medication details via LED (L-Dopa
Equivalent Daily Dose) [12], [20]. After this step, we obtain a database of annotated
speech recordings, commonly referred to as a corpus.

. Pre-processing — Before proceeding to acoustic analysis and feature extraction, additional
pre-processing of the signals may be necessary. For instance, we can perform resampling,
normalization (standardizing signal amplitude to a consistent level), filtering with a pre-

emphasis filter (a simple high-pass filter that accentuates formants), etc. [21]

. Local feature extraction — Although the field of acoustic speech analysis is highly dy-
namic, with complex models playing an increasingly important role, the analysis of
speech and voice pathology requires clinical interpretability, which often necessitates the
use of so-called handcrafted features, i.e. features designed by humans based on heuris-
tic insights. Examples of such features include fundamental frequency or speech rate.
Generally, a speech feature is a metric extracted from a speech signal. In this work,
a digital speech biomarker is considered a speech feature associated with a pathogenic
process. The use of digital speech biomarkers in the field of PD is further discussed in
Section 1.1.

. High-level feature extraction — Features represented by tensors (e.g., segmental features)
are typically transformed into scalar values using statistical measures such as the median,
relative standard deviation, 95th percentile, or slope (using the Theil-Sen estimator),
among others [22].

. Global feature extraction — Extracting certain features requires input from multiple
speech tasks. This is the case, for example, with the vowel articulation index, which
is calculated based on formant frequencies extracted from several vowels. In this work,
features calculated from multiple tasks will be considered as global features. The output
of this step (or the previous one) is typically a feature matrix that undergoes further

processing.

. Statistical analysis — For an initial examination of the data, we typically use kernel den-
sity estimations, violin plots, or correlation matrices. When necessary, we control for con-
founding variables (e.g., age or medication levels) through regression. Since most features
do not follow a normal distribution (as verified by tests like the Kolmogorov-Smirnov
test), we apply non-parametric methods such as the Mann-Whitney U test, Wilcoxon
signed-rank test, and/or Pearson’s correlation with a significance level of @« = 0.05
during exploratory analysis. For analyses involving numerous features, we also apply

false discovery rate correction.



9. Machine learning — Depending on the specific application, we model the feature space
using approaches such as logistic regression, classification and regression trees, bag-
ging and gradient boosting methods, or artificial neural networks. To avoid overfitting
and ensure robust results, we typically employ a cross-validation strategy with multiple
repetitions. Hyperparameters are optimized through random search or Bayesian opti-
mization. Classifier performance is generally assessed by sensitivity, specificity, balanced
accuracy, and the Matthews correlation coefficient. For regressors, we evaluate perfor-
mance using metrics like mean absolute error, mean squared error, root mean squared
error, and estimation error rate. To gain insight into model robustness, we conduct
permutation testing. Finally, model interpretation is achieved using feature importance
scores or SHAP (SHapley Additive exPlanations) [14]. In some cases, we visualize model

performance with ROC (Receiver Operating Characteristic) curves.

1.1 Digital speech biomarkers associated with HD

In cases of pathological voice, tension on the vocal folds can vary greatly, causing the sig-
nal to become aperiodic and noise-like, making it challenging to identify patterns within the
acoustic signal. Sub-harmonics and chaotic elements often appear, which can undermine the
effectiveness of traditional speech signal analysis techniques. This challenge affects not only
the voice but also speech, as articulation issues can lead to unintelligibility. In response,
researchers have developed a range of advanced, handcrafted digital biomarkers to aid in
identifying these pathologies. This group of digital speech biomarkers includes, e.g., those
based on empirical mode decomposition, correlation dimension, fractal dimension, Hurst ex-
ponent, largest Lyapunov exponent, approximate entropy, sample entropy, correlation entropy,
recurrence probability density entropy, detrended fluctuation analysis, pitch period entropy,
normalized noise energy, segmental signal-to-dysperiodicity ratio, modulation spectra, and/or
bicepstra [8], [22], [23].

However, the limitation of most of these biomarkers is that they are typically very chal-
lenging to clinically interpret. To facilitate the adoption of this technology by clinicians (e.g.,
neurologists or speech-language pathologists), we must avoid “black boxes” and clearly ex-
plain how each biomarker functions and how it is linked to physiological processes. In recent
years, researchers have attempted to clinically explain some commonly used features, such as
Mel-frequency cepstral coefficients (MFCC) [24] and cepstral peak prominence [25]. Neverthe-
less, the majority of works focused on clinical practice continue to implement simple acoustic
measures [18].

Based on the manifestations of HD [11], a comprehensive review of scientific papers [8],
[13], [14], [18], [20], [23], [26]-]29], discussions with experts, and over fifteen years of experience
in the acoustic analysis of dysarthria, we have prepared a set of the most commonly used
digital speech biomarkers linked to specific pathologies of HD. These biomarkers are listed in

Tables 1.1-1.3. The utilization of these biomarkers is outlined in Section 2.
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Tab. 1.1: Respiratory and phonatory digital biomarkers commonly used in HD analysis.

Respiration

Specific manifestation of HD

Tasks

Biomarker Definition

Airflow insufficiency

SPL

MPT

Maximum phonation time, the aerodynamic effi-
ciency of the vocal tract, measured as the maxi-

mum duration of a sustained vowel.

Phonation

Specific manifestation of HD

Tasks

Biomarker

Definition

Irregular pitch fluctuations

Microperturbations in frequency

Microperturbations in amplitude

Increased noise

Aperiodicity

Tremor of jaw

Increased hoarseness

SP

SP

SP

SP

SP

SP

SP,
MO,
RE

relFOSD

PPQ

APQ

HNR

DUV

relF1SD,
relF2SD

CPP

Standard deviation of the fundamental frequency
relative to its mean; variation in the frequency of

vocal fold vibration.

Frequency perturbation, indicating the extent of
variation in the voice range. Jitter is defined as
the variability of the FO of speech from one cycle

to the next.

Amplitude perturbation, representing roughness
in speech. Shimmer is defined as the sequence
of maximum signal amplitude extent within each

vocal cycle.

Harmonics-to-noise ratio, the amount of noise in
the speech signal due to incomplete vocal fold clo-
sure and/or turbulences in the vocal tract. HNR
is defined as the ratio of harmonic (periodic) com-
ponents to noise (non-periodic) components in a
signal.

Degree of unvoiced segments, the fraction of pitch

frames marked as unvoiced.

Standard deviation of the first/second formant rel-
ative to its mean. Formants are related to reso-
nances of the oro-naso-pharyngeal tract and are

modified by the position of the tongue and jaw.

Cepstral peak prominence, defined as the differ-
ence between the cepstral peak representing the
fundamental frequency and the linear regression
line calculated from the magnitude-quefrency cep-

stra.

1 MO - monologue; RE -reading; SP —sustained phonation of a vowel at a comfortable pitch and loudness;

SPL —sustained phonation of a vowel at a comfortable pitch and loudness, held as constant and long as

possible.
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Tab. 1.2: Articulatory digital biomarkers commonly used in HD analysis.

Specific manifestation of HD Tasks

Biomarker Definition

Decreased tongue movement (im- MO,

precise vowels) RE
Rigidity of tongue and jaw MO,
RE
Reduced intelligibility RE
Slow alternating motion rate DDK

Instability of diadochokinetic pace DDK

Instability of diadochokinetic pace DDK

Acceleration of diadochokinetic DDK

pace

Acceleration of diadochokinetic DDK

pace

VAI

relF1SD,
relF2SD

#Indmrk

PR

Ccov

RI

PA

RA

Vowel articulation index, based on formant cen-
tralization, defined as VAI = (Fla + F2i)/(Fli +
Flu + F2a + F2u), where FXy is the Xth formant
extracted from vowel y.

Standard deviation of the first/second formant rel-
ative to its mean.

The number of speech landmarks relative to to-
tal speech time, representing moments of different
abrupt acoustic changes related to consonant pro-

duction.

Pace rate, representing the number of syllable vo-
calizations per second, considering the first 30 syl-
lables.

Coefficient of variation, defined as the ratio of the
standard deviation of the duration of the fourth to
tenth DDK cycles to the average duration of the
first three cycles.

Rhythm instability, defined as the sum of absolute
deviations from a regression line modeling each
DDK cycle duration, weighted by total DDK per-
formance time.

Pace acceleration, defined as PA = 100 x (avCyc-
Durd_6 — avCycDur7_9) / avCycDurl__3, where
avCycDurX_ Y is the average duration of cycles
X_Y.

Rhythm acceleration, defined as the gradient of
the regression line modeling DDK cycle durations

(positive values indicate acceleration).

1 MO - monologue; RE - reading; DDK — diadochokinetic task.
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Tab. 1.3: Prosodic digital biomarkers commonly used in HD analysis.

Specific manifestation of HD Tasks

Biomarker Definition

Monoloudness

Unstable mean loudness

Monopitch

Inappropriate silences

Higher proportion of silence time

Longer duration of silences

Higher variability of silence dura-

tion

Unnatural speech rate

MO,
RE

MO,
RE

MO,
RE
RE
RE
RE

RE

RE

relSEOSD

EEVOL

relFOSD

SPIR

PPR

DurMED

DurMAD

AR

Speech loudness variation, defined as the standard
deviation of the intensity contour relative to its

mean after removing silences exceeding 50 ms.

Energy evolution, defined as the slope of intensity.

Pitch variation, defined as the standard deviation
of the FO contour relative to its mean.

Number of pauses (longer than 50 ms) relative to

total speech time.

Percentual pause ratio, defined as the total dura-
tion of silences (longer than 50 ms) divided by the
total duration of speech.

Median duration of silences longer than 50 ms.

Median absolute deviation of silence duration

(longer than 50 ms).

Number of speech sounds produced per second af-

ter removing pauses longer than 50 ms.

1 MO - monologue; RE - reading.
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2 Examples

2.1 Research of a new treatment approach for HD based on
rTMS

In the first example, we demonstrate how digital speech biomarkers could be applied in re-
searching a new treatment method for HD. Although Levodopa is the most commonly used
pharmacological treatment for PD, its effect on HD varies significantly among individuals and
may depend on the progression of PD or the specific speech dimensions in which HD is most
prominent [8], [20], [30]. Another treatment approach for PD is DBS; however, its parameters
(such as the precise intracranial electrode targets) are primarily tailored based on DBS effects
on limb control rather than on HD. Consequently, DBS may even have a negative impact on
speech [8], [31].

Based on the findings above, we collaborated with neuroscientists from the Central Eu-
ropean Institute of Technology, St. Anne’s University Hospital, and Masaryk University to
explore and propose a new treatment approach using r'TMS [32]. This non-invasive technique
employs magnetic fields to modulate neuronal excitability in specific and interconnected brain
regions. Although rTMS has shown promise for various PD symptoms [33], there are still
significant knowledge gaps regarding its effects on HD. Thus, the aim of this study was to
investigate whether rTMS could positively impact HD and to determine the optimal rTMS
settings for the most beneficial effect.

2.1.1 Participants and methods

We enrolled 16 patients with clinically confirmed PD, all presenting mild to moderate HD,
as evaluated perceptively via the 3F Test [34]. Demographic and clinical details are provided
in Table 2.1. None of the participants had a history or current symptoms of hallucinations,
psychosis, depression, or dementia. Each participant underwent MRI scanning before and
immediately following each rTMS session, with speech recorded inside the scanner using a
previously described fMRI protocol [35]. All participants were tested in an ON-medication
state without dyskinesias and had not received speech therapy during the study. All partic-
ipants were native Czech speakers who provided informed consent as approved by the local
ethics committee.

A cross-over design was employed, with each participant undergoing five sessions of rTMS
over three different brain sites: the left orofacial motor area (OFMI1), the right superior
temporal gyrus (STG), and a control site at the vertex (V). Each participant received both
1Hz (low frequency) and 10 Hz (high frequency; except for OFM1) rTMS, randomized across
sessions, with at least a one-day interval between sessions. The stimulation was applied using
a figure-8 coil positioned over the designated areas with frameless stereotaxy 2.1. The 1Hz
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Tab. 2.1: Demographic and clinical information (except for gender, values are reported as

mean =+ std.

Clinical/demographic information Value

Gender (Female/Male) 5/11

Age [years] 67.21 +6.18
Duration of PD [years] 6.81 £ 5.00
LED [mg] 758.25 + 489
UPDRS III 18.6 £7.33
ACE-R 91.37 £4.68
Beck Depression Inventory 11 7.68 £ 3.58
3F Test Score 67.05 + 8.87

stimulation consisted of 1800 pulses per session, and the 10Hz stimulation involved 2250
pulses. Each stimulation session included an fMRI scan pre- and post-stimulation.

A 3T MR scanner was used for functional and anatomical imaging. T1-weighted high-
resolution images facilitated navigation, while resting-state and task-related BOLD scans were
used to examine connectivity and activation changes due to rTMS. Preprocessing included
realignment, normalization, and spatial smoothing of the functional data. Analysis focused
on detecting changes in connectivity and task-related activation in specific brain regions.

Each participant completed a distinct reading task within the MR scanner both before
and immediately after each rTMS session. Speech data acquisition spanned 15 minutes and
involved overtly reading short, emotionally neutral sentences or viewing a string of “X” as
a baseline condition. The task comprised 48 sentence-reading trials and 24 baseline trials,
presented in a pseudo-random order. Each stimulus was displayed for 5 seconds, with an
11-second black screen interval between stimuli.

Due to the MR scanner’s noise affecting recording conditions, we focused on digital speech
biomarkers that partly characterize speech prosody and articulation. Specifically, prosodic
parameters included measurements of monopitch (relFOSD) and inappropriate silences (SPIR
and TPT — total pause time). Articulation was quantified using formants (relF1SD, relF'2SD),
resonances of the oro-naso-pharyngeal tract influenced mainly by simultaneous tongue and
jaw movements. The front-back (horizontal) tongue gesture affects the second formant, while
the open-close gesture, primarily controlled by the jaw, impacts the first formant.

Effects of each stimulation condition on the relative change in digital speech biomarkers
were analyzed using linear mixed models or nonparametric Friedman tests. Paired t-tests or
Wilcoxon signed-rank tests were applied to compare these parameters before and after each
stimulation condition.

More details regarding the methodology can be found in our original article [32].



Fig. 2.1: Frameless r'TMS performed at the Central European Institute of Technology.

2.1.2 Results and discussion

The acoustic analysis revealed that 1 Hz rTMS applied to the STG led to a significant improve-
ment in articulation. This improvement was specifically marked by an increase in relF2SD,
a key digital speech biomarker reflecting movements of the tongue and jaw. The observed
changes were significantly greater than those achieved by stimulating either the control site
(V) or OFM1 with 10Hz rTMS. Following this low-frequency STG stimulation, a clinical
speech pathologist reported improved speech intelligibility in ten patients, while no change
was perceived in six patients. Secondary analysis indicated that 1 Hz stimulation of the STG
increased TPT for pauses longer than 50 ms, suggesting potential effects on speech fluency as
well as articulation. High-frequency stimulation of the STG also led to a modest increase in
the range of the first formant, though this effect was less prominent.

In the fMRI analysis, task-related changes following rTMS were evident in the functional
connectivity of the STG. Specifically, 1 Hz stimulation of the STG increased functional con-
nectivity between the STG and the right parahippocampal gyrus (PHG), a region implicated
in auditory-motor feedback mechanisms. This connectivity change was positively correlated
with the observed improvements in articulation, suggesting that rTMS-induced connectivity
enhancements within the auditory feedback pathway could contribute to the observed gains
in speech articulation. In addition, the high-frequency stimulation of the STG also increased
resting-state functional connectivity between the STG and the right inferior parietal lobule
(IPL).

This study was the first to demonstrate that low-frequency rTMS targeting the auditory

16



feedback area (specifically, the right STG) can induce significant acute effects on speech artic-
ulation in PD patients with HD. These findings suggest that modulation of the STG through
rTMS can improve motor-speech control by enhancing the function of the brain’s auditory
feedback network. The STG plays a critical role in encoding complex auditory information
during vocalization [36], and low-frequency stimulation may specifically strengthen its in-
volvement in feedback control, thereby improving articulation in speech. In clinical terms, the
study suggests that low-frequency r'TMS over the right STG could be a promising non-invasive
intervention for addressing HD in PD.

However, the study examined only the immediate effects of rTMS, which led us to explore
its longitudinal effects as well. In the following two studies, we demonstrated that 10 sessions
of 1Hz rTMS over the STG had long-lasting effects, primarily in the field of phonetics [21],
[37], thereby enhancing the therapeutic potential of this type of stimulation.

2.2 Prediction of cognitive decline in PD patients

Identifying PD patients who are at increased risk of developing dementia (PD-D) is essential
for effective patient care management and for conducting clinical trials aimed at prevention.
Major risk factors for PD-D include increased age, more advanced parkinsonism with features
such as postural instability and gait challenges, and mild cognitive impairment (MCI) [38].
MCI affects around 40 % of PD patients, marked by both subjective and objective declines in
cognitive function while maintaining typical social interactions and daily activities [39)].
Based on these facts, we teamed up with neuroscientists, psychologists, and speech-language
pathologists from the Central European Institute of Technology, St. Anne’s University Hos-
pital, University Hospital Brno, Masaryk University, and University Hospital Ostrava with
the aim to explore whether digital speech biomarkers alone, or in combination with certain

clinical scores, could predict cognitive decline in PD patients [40].

2.2.1 Participants and methods

In this longitudinal study, we enrolled 44 non-depressed PD patients, each examined twice with
an approximate two-year interval. These patients, diagnosed with mild to moderate PD and
free of other central nervous system disorders, were assessed using various scales, including
UPDRS III, BDI, RBDSQ, NMSS30 (Non-Motor Symptoms Scale), and FOG (Freezing of
Gait Questionnaire). Cognitive performance was evaluated with the ACE-R, which classified
participants based on cognitive status: normal cognition (PD-NC), mild cognitive impairment
(PD-MCI), and PD dementia (PD-D). These classifications were tracked over time to assess
changes in cognitive status. All participants were native Czech speakers tested in an ON-
medication state, and all provided informed consent, as approved by the local ethics committee.

The speech protocol was adapted from the 3F Test [34] and comprised five tasks focused on
assessing prosody. These tasks included reading 135 words at a comfortable pitch and volume,

producing interrogative, imperative, and declarative sentences, and reciting a poem with two
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rhymes. Speech was recorded using a large capsule cardioid microphone. The analysis targeted
13 features, including the relative standard deviation (relFOSD) and relative variation range
(relFOVR) of fundamental frequency, which reflect reduced melody variations (monopitch). To
assess monoloudness, features such as the relative standard deviation (relSEOSD) of squared
energy were extracted. Measures such as TST, AR, and SPIR were used to evaluate speech
rate and pausing. In total, 65 parameters were derived from combinations of speech features
and tasks. A correlation analysis was then conducted to examine relationships between these
parameters and changes in ACE-R scores. Ultimately, 10 parameters showing significant
Pearson correlation coefficients were selected for further analysis of their predictive power for
changes in ACE-R scores or cognitive status.

For statistical analyses, data normality was verified using the Shapiro-Wilk test, and differ-
ences in speech and clinical characteristics between patients with and without cognitive decline
were assessed using two-sample t-tests or Fisher’s exact tests. Linear regression models were
applied to analyze continuous changes in ACE-R scores, while logistic regression assessed cat-
egorical changes in cognitive status. Univariate models were initially developed to explore the
independent effects of variables on ACE-R changes and cognitive status decline. Significant
variables were then included in multivariate models, incorporating relevant clinical and de-
mographic covariates. The best linear and logistic regression models were selected based on
R-square and Nagelkerke R-square values, respectively.

More details regarding the methodology can be found in our original article [40].

2.2.2 Results and discussion

The study’s results revealed that over a two-year follow-up, 25% of PD patients showed
cognitive decline, evidenced by an average reduction of 3.8 points in their ACE-R scores.
Patients with cognitive deterioration also had longer disease duration, higher baseline scores on
the RBDSQ), and lower SPIR values. These baseline characteristics significantly distinguished
patients who experienced cognitive decline from those who did not. Multivariate analysis
identified a model combining pitch variation and RBDSQ score, which explained 37.2 % of the
variability in ACE-R score changes, suggesting that these factors could serve as promising
predictors of cognitive worsening in PD.

In the logistic regression analysis, SPIR emerged as a predictor of cognitive status changes,
with a baseline predictive accuracy of 73.2 %, rising to 80.5 % when combined with RBDSQ
scores. SPIR, which measures the number of pauses relative to total speech time, highlighted a
temporal-based impairment correlated with cognitive decline but independent of other clinical
and demographic factors. This finding is significant because SPIR captures timing-related
motor deficits that do not respond to dopaminergic treatments, similar to motor symptoms
like freezing of gait, which also lack responsiveness to these treatments [41].

Research indicates that patients with idiopathic RBD (Rapid Eye Movement Sleep Be-
havior Disorder) are at a significantly higher risk for developing neurodegenerative synucle-
inopathies [42]. RBD is characterized by a lack of typical muscle atonia during REM sleep,

18



leading to motor activity aligned with dream content. Among PD patients, those with RBD
exhibit a notably higher frequency of MCI and dementia compared to those without RBD [43].
Our findings showed that combining RBDSQ scores with either pitch variation or SPIR yielded
high predictive accuracy for overall cognitive decline and changes in cognitive status, respec-
tively. Our study supports the significant relationship between speech disorders and idiopathic
RBD [44]. Moreover, it has been shown that automatic assessment of speech disorders in RBD
patients can support the early diagnosis of PD [45].

In clinical terms, the study suggests that a simple acoustic analysis of speech could pre-
dict cognitive decline in PD patients, which is essential for enabling more personalized care
and helping patients manage daily life more effectively. Early identification allows for timely
interventions, such as cognitive therapies and support systems, which can delay or lessen
cognitive symptoms and help maintain independence longer. It also guides clinicians in op-
timizing treatment plans and aids researchers in developing therapies targeted at preventing
cognitive decline, all of which contribute to a higher quality of life for patients. Additionally,
in a follow-up study, we demonstrated that mHealth technology (e.g., a smartphone) can be
potentially used to assess cognitive decline in PD patients, allowing for easy and effective
cognitive screening outside a clinical setting [17].
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3 Conclusion

This thesis presents the concept of assessing and monitoring PD using digital speech biomark-
ers that quantify specific manifestations of HD, a motor speech disorder prevalent in this neu-
rodegenerative disease. The work demonstrates two applications of these biomarkers. First,
it illustrates how digital speech biomarkers were employed in designing a novel treatment
approach using rTMS, which positively impacts articulation and enhances brain auditory
feedback pathways. Second, the study explores the predictive capability of digital speech
biomarkers for cognitive decline in PD patients, suggesting that speech-based assessments can
aid in the early detection of cognitive risks.

Over the last decade, our team has made significant contributions to the field of rTMS,
successfully advancing research projects, bridging knowledge gaps, and pushing beyond the
current state of the art [21], [37], [46]. Research into non-invasive stimulation for speech in
PD patients continues, with current efforts focused on transcranial direct current stimulation
(tDCS), a more affordable method that patients can potentially administer themselves. For
example, in a recent study, we demonstrated that anodal tDCS could influence the temporal
characteristics of speech [16]. We are now investigating its effects in a longitudinal study.

Regarding cognitive decline, we have shown that digital speech biomarkers can effectively
support the prediction of this non-motor feature of PD. However, cognitive decline is not the
only aspect that can be predicted based on acoustic speech analysis. In another study, we
focused on gait alterations. HD and freezing of gait (FOG) are both axial motor symptoms
frequently observed in PD patients. FOG is characterized by sudden, brief episodes in which
patients feel unable to move their feet, especially during transitions, turning, or in confined
spaces. Both HD and FOG arise from motor circuit dysfunctions in the basal ganglia and are
less responsive to dopaminergic treatments than other PD symptoms, such as tremors and
rigidity. This limited responsiveness suggests that non-dopaminergic pathways also contribute
to the pathology of HD and FOG. In [41], we found that FOG in PD patients is primarily
associated with improper articulation, disturbed speech rate, and reduced intelligibility. Ad-
ditionally, we demonstrated that baseline acoustic analysis of HD can serve as a predictor for
the development of FOG deficits over a two-year follow-up period.

In addition to the above-mentioned, we have also demonstrated that digital speech biomark-
ers can be effectively used to understand phonation and articulation in PD [22], [47]-[50], in-
vestigate compensatory mechanisms [51], passively assess PD [17], explore the effects of phar-
macological treatment [52], [53], enable multilingual diagnosis of PD [14], and examine speech
subtypes in PD [20]. These studies underscore the potential of digital speech biomarkers as
non-invasive, objective tools to support clinicians in diagnosing PD, managing its symptoms,

monitoring progression, and tailoring patient care.
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3.1 Future directions

Over the last decade, there has been a growing belief that PD could be diagnosed solely
through the acoustic analysis of the sustained vowel sound [a] [23], [26]. Numerous studies
were published supporting this approach, suggesting it as a valid diagnostic method. However,
a few research teams, including ours, have clearly demonstrated that this approach is odd [54].
HD in PD can result in distinct speech subtypes, with the phonatory subtype occurring in
only about 30 % of patients [20], [30]. Hopefully, this insight will be quickly accepted by the
community, encouraging researchers to view HD as a multidimensional disorder that requires
a comprehensive set of digital speech biomarkers for accurate assessment.

Neurologists are still seeking methods to facilitate PD screening. Digital speech biomarkers,
as an easy-to-use technology, serve as strong candidates for this purpose. However, while HD
is present in up to 90 % of PD patients, it cannot be the sole source of diagnostic information.
Consequently, speech analysis is increasingly expected to be combined with other modalities,
such as handwriting, sleep, gait, etc. [55] This multimodal approach can further enhance the
sensitivity and specificity of PD screening.

Currently, most trustworthy and explainable machine learning models for the diagnosis
and assessment of PD rely on shallow methods, such as logistic regression, random forests,
and gradient boosting (also due to the limitations of small sample datasets in PD research).
These methods provide stable performance and are easier to interpret in clinical settings.
However, recent advancements have opened doors for applying deep learning architectures to
small sample datasets while maintaining clinical relevance and explainability. Techniques like
transfer learning allow models to leverage knowledge from larger datasets in related tasks, while
data augmentation strategies expand small datasets through synthetic data generation (on
the other hand, the generation of synthetic pathological samples remains highly challenging,
and these methods must be applied with caution). Furthermore, explainability techniques,
such as layer-wise relevance propagation (LRP) and SHAP, offer insights into model decisions
by highlighting the most influential features, enhancing the interpretability of deep neural
networks (DNNs) in a clinical context. These advancements are paving the way for deeper,
more complex models to be used effectively in PD research, potentially improving diagnostic
accuracy and patient assessment.

When diagnosing, assessing, or monitoring PD using digital speech biomarkers, mHealth
systems, such as smartphone-based applications, offer significant advantages. However, these
systems currently rely on active patient interaction with the device, e.g., via specific speech
tasks or vocal exercises, which presents limitations. Patients may experience fatigue, may
not consistently follow instructions, or may lack technical literacy, all of which can impact
data quality and adherence over time. In the future, passive speech assessment through
smartphones or smart assistants offers an alternative, capturing natural speech during daily
interactions without requiring active input from patients [45]. This passive approach could
improve convenience, adherence, and the frequency of monitoring, providing richer, real-world

data for longitudinal analysis. However, passive assessment also poses challenges, including

21



privacy concerns, the need for sophisticated background noise filtering, and the potential for
less controlled data variability. Balancing these factors will be essential in leveraging passive
speech assessment for effective PD management.

Advances are being made in using digital speech biomarkers to predict how patients respond
to treatments. Predictive models that analyze historical speech data can foresee treatment
efficacy, helping clinicians identify the best therapeutic approach while reducing trial-and-
error prescriptions. This level of personalization not only improves symptom control but also
enhances patients’ quality of life by aligning treatments more closely with their specific needs

and progression patterns.
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ABSTRACT

Parkinson's disease (PD) is the second most common neurodegenerative disorder, characterized by
a range of motor and non-motor symptoms. Up to 90 % of individuals with PD develop hypokinetic
dysarthria (HD), a motor speech disorder that affects respiration, phonation, resonance, articula-
tion, and prosody. Digital speech biomarkers (acoustic features related to underlying physiological
processes) offer an objective means of quantifying specific manifestations of HD. These biomarkers
can support neurologists, psychologists, and speech-language pathologists in the assessment and
monitoring of PD. This work presents the concept of acoustic speech analysis in PD patients and
highlights its benefits through two key examples: 1) the research of a new treatment approach for
HD based on repetitive transcranial magnetic stimulation, and 2) the prediction of cognitive decline
in PD patients. The work concludes with additional applications of digital speech biomarkers in
PD and outlines future research directions in this evolving field.

ABSTRAKT

Parkinsonova nemoc (PN) je druhé nej¢astéjsi neurodegenerativni onemocnéni, které se vyznaluje
Fadou motorickych i nemotorickych ptiznakd. AZ u 90% jedincii s PN se rozvine hypokineticka
dysartrie (HD), porucha motorické realizace Feli, kterd se projevuje v oblasti respirace, fonace,
rezonance, artikulace a prozodie. DigitaIni fe¢ové biomarkery (akustické metriky souvisejici s fyzio-
logickymi procesy) nabizeji objektivni nastroj kvantifikace specifickych projevii HD. Tyto biomarkery
mohou podpofrit neurology, psychology a klinické logopedy pfi hodnoceni a monitorovani PN. Tato
prace predstavuje koncept akustické analyzy feci u pacientti s PN a zd(iraziuje jeji pfinosy prostred-
nictvim dvou kli¢ovych pfikladd: 1) vyzkum nového pfistupu 1é¢by HD zaloZeného na repetitivni
transkranialni magnetické stimulaci a 2) predikce kognitivniho deficitu u pacientd s PN. V zavéru
prace jsou zminény dalsi aplikace digitalnich YeCovych biomarkerti u PN a jsou nastinény budouci
sméry vyzkumu v této oblasti.
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