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1 Introduction

The long lasting research on mechanics of solids usually relies on the fundamental assumption
about continuity of the displacement field. A major complication arises when continuous dis-
placements are used to describe cracking, a phenomenon manifested by discrete displacement
jumps. One can either weaken the discontinuity by assuming smeared cracks (e.g., crack band
model [1]) or embed additional auxiliary discontinuities into the model (e.g., XFEM [2]).

Another complex issue related to fracture simulations of quasibrittle materials (such as
concrete, rock, bone, ice, ceramics, ...) is regularization of the dissipated energy. The strain
softening constitutive relation exhibited by these materials makes the mathematical boundary
value problem ill-posed. The inelastic strain tends to localize into an infinitely thin line because
it is, from the energetic point of view, the cheapest failure mode. The numerical solution
therefore becomes spuriously dependent on the chosen approximation of the displacement field.
The problem is magnified in homogeneous models that do not posses any information about
material internal structure. The strain localization is in a real fracture process limited by the
material heterogeneity which gives rise to a finite width region called the fracture process zone
where the energy dissipation takes place. Therefore all remedies introduced in the numerical
modeling to regularize the energy dissipation somehow reflect the internal material structure
and introduce some length scale into the model. This can be for example nonlocal radius in
integral nonlocal models [3] or length parameter in phase field models [4].

There is also a class of models that directly represents material heterogeneity and therefore
contains the internal length scale automatically. In the case of concrete, these models are
called mesoscale models because they reflect concrete mesostructure composed of mineral
grains, matrix, pores and the interfacial transition zone. A huge disadvantage of mesoscale
models is their computational burden. The spatial discretization needs to be fine enough
to accommodate the material heterogeneities. Therefore even the medium size laboratory
specimens might become computationally infeasible.

The computational cost of mesoscale models can be substantially reduced by discrete ap-
proximation of the displacement field. Several versions of discrete mesoscale models exist, the
most prominent one is the Lattice Discrete Particle Model (LDPM) developed in Refs. [5, 6].
The kinematics of the model is based on polyhedral rigid bodies interconnected by compliant
contacts. Each rigid body is generated by a special tessellation around one larger mineral
grain, therefore the computational burden associated with the mesoscale structure is as low
as possible. There is a vectorial constitutive relation at the interparticle contact lumping
together both elastic and inelastic parts of the material behavior. Thanks to discrete displace-
ment jumps between rigid particles in the discrete model, the cracks are naturally represented
and oriented. LDPM has been proven to be robust and reliable numerical model, it has been
extensively validated using large sets of experiments.

Durability of concrete structures is determined by chemical and physical degradation of
the material. One of the major factors is transport of chemical substances inside or outside
the structural domain in a form of liquid. The transport phenomenon is strongly coupled with
mechanical behavior in the following three ways.

• The Biot’s theory describes how the volumetric strain affects the fluid pressure and how
the fluid pressure contributes to the stress state in solid.

• Open cracks create channels for the fluid to run through them significantly easier than
through the intact material.

• Cracks provide free volume filled with fluid and therefore serve as storage units.
The first coupling fabric, the Biot’s theory, can be easily implemented in any model type, how-
ever, the other two coupling schemes require detailed knowledge about the cracking pattern.
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The mesoscale discrete models are ideal for coupled mechanical-transport problems because
they provide high fidelity representation of both diffused and localized cracking states.

There are two major open issues concerning the mesoscale discrete models. The first
and the most crucial is the computational complexity of the model when applied at a larger
scale. This issue is common to all mesoscale models, the discrete version is actually the most
efficient one. Several techniques reducing the burden have been proposed, e.g., adaptive dis-
cretization [7, 8], coarse graining [9], model order reduction via proper orthogonal decomposi-
tion [10, 11] and computational homogenization [12, 13]. The second issue is more theoretical,
the discrete models cannot achieve all thermodynamically admissible values of Poisson’s ratio.
The upper limit is 0.25 in three dimensions. This fundamental limitation is caused by blending
the volumetric and deviatoric deformation parts in the vectorial constitutive model. There
are many papers showing how to improve discrete models towards achieving higher Poisson’s
ratio, e.g., Refs. [14, 15]. All of them essentially mimic the volumetric-deviatoric strain de-
composition used in the continuum models. Unfortunately, the consequence is a loss of stress
oscillations in the model that are understand to be arising from the mesostructure. The mod-
els are then, for example, not capable to exhibit splitting parallel cracks under compression.
For these reasons, the remedies for unlimited Poisson’s ratios are not popular in he mesoscale
modeling community.

The research of Jan Eliáš, author of this thesis, has been largely directed towards mechan-
ical mesoscale discrete modeling of concrete. Initially, he studied the lattice approach [16,
17], the focus soon shifted to the LDPM type of models. Papers [18, 19] are devoted to
blending mechanics and spatial variability of material parameters using discrete LDPM type
of model. The challenging question of Poisson’s ratio limit is addressed in Ref. [20], related
subject of a boundary layer (or a wall effect) is described in Ref. [21]. Finally, the reduction
of computational cost by an adaptive technique is published in Ref. [22]. The recent publica-
tion [23] is a review paper about discrete modeling of quasibrittle fracture that was written
in collaboration with arguably the best scholars from the field.

This thesis is based on the last two publications of the author [24, 25], both of them are
now in a review process and both of them were created in collaboration with Gianluca Cusatis,
creator of the LDPM model, during author’s stay at Northwestern University in years 2020–
2021. The primary objective of the papers is to reduce computational cost of mesoscale discrete
models to allow their application in engineering practice. The first publication [24] describes
asymptotic expansion homogenization of discrete model for mass transport in concrete, the
second one [25] uses the same asymptotic expansion to develop a homogenized solution for
coupled mechanical-mass transport mesoscale discrete model.

2 Mesoscale Discrete Model of Concrete

The discrete model of coupled mechanics and mass transport in fully saturated concrete is
briefly described in this section, detailed information are available for interested reader in
Ref. [25].

The spatial discretization of the domain is based on a computer-generated concrete mesostruc-
ture. Radii of the spherical particles are obtained from the Fuller curve [26]. The location
of the particles in the domain is generated randomly in a sequence restricting overlapping.
The power/Laguerre tessellation provides mass transport connectivity and discrete bodies for
mechanics while the (weighted) Delaunay triangulation gives mechanical connectivity and its
simplices serve as control volumes for the mass transport part. Such dual structure has been
originally proposed by Grassl [27] in 2D end extended to 3D in Ref. [28]. Thanks to the duality
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Figure 1: Idealization of the concrete mesoscale structure by the discrete model. Left: intact material,
right: open cracks filled with the fluid.

of the mechanical and transport geometrical structure, the material permeability coefficient
can be easily modified to account for crack openings in the mechanical part, see Fig. 1.

The mathematical structure of the coupled problem of mass transport and mechanics is
described in Fig. 2. There are three unknown field sets, one of them is refered to as the
primary one, the other two are dependent/secondary fields. The primary fields are the vector
of displacements, u, the vector of rotations, θ, and the pressure scalar, p. Displacement and
rotation degrees of freedom (DoF) are defined at centers of the spherical inclusions (denoted
I or J hereinafter) while the pressure DoF are defined at the vertices of the tessellation
(denoted P and Q hereinafter). The first dependent field set is often called intermediate
and involves the vector of strain, ε, the vector of curvature, χ, and the scalar of pressure
gradient, g. The last, dependent field set called flux collects the vector of traction, t, the
vector of couple traction, m, and the flux scalar, j. The mechanical dependent variables are
defined at the contact between the particles while the transport dependent variables are found
at the contact between simplices (or control volumes). The set of know fields referred to as
sources involves the vector of volume force, b, the vector of volume moment, z (omitted in this
work), and the scalar of fluid sources or sinks, q. Two basic types of boundary conditions are
the essential boundary conditions prescribing the primary variables over some portion of the
domain boundary explicitly and the natural boundary conditions prescribing the flux variables
over the rest of the domain boundary.

Three set of equation called kinematic, constitutive and balance relate the unknown fields.
Before deriving them, let us first present Fig. 3, where contacts between particles I and J

Figure 2: Tonti diagram showing structure of the multiphysical coupled problem of mass transport
and mechanics.
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Figure 3: Two dimensional sketch of the mechanical (a) and conduit (b) elements created by a dual
tessellation of the domain into ideally rigid mechanical particles and control volumes for the mass
transport.

and between simplices P and Q are sketched in 2D. These contacts are called mechanical and
conduit elements hereinafter. The strain and curvature at the contact between bodies I and
J read

εα =
1

l

(
uJ − uI + E : (θJ ⊗ cJ − θI ⊗ cI)

)
· eα χα =

1

l

(
θJ − θI

)
· eα (1)

where c is a vector connecting particle governing node with the integration point xc at the
contact face, E is Levi-Civita permutation symbol and eα are local normal and two tangential
directions (α ∈ {N, M, L}), respectively. The length of the contact is l = ||xIJ || and the
contact direction eN = xIJ/l where xIJ = xJ − xI . The contact direction eN can be in
general different from the true face normal n. The contact area A is therefore projected as
A? = AeN · n to account for directional mismatch.

The conduit element has area S, normal o, length h = ||xPQ|| and contact direction
eλ = xPQ/h, where xPQ = xQ − xP . The situation is sketched in 2D in Fig. 3b. Estimation
of pressure gradient between two nodes yields the last kinematic equation

g = ∇p · eλ ≈
pQ − pP

h
(2)

The transport face normal o might not be parallel to the contact vector eλ as well. Projected
area S? = So · eλ is again introduced to account for the directional mismatch when the total
flux is computed later in Eq. (5). Both Voronoi and power/Laguerre tessellation actually
ensure parallelisms eN ||n and eλ||o but the general formulation with projected areas A? and
S? is used for sake of generality.

The second set of equations are constitutive equations which provide flux variables.

j = fj(pλ, g, δλ) = −λ(pλ, δλ)g t = fs (ε)− bpaeN m = fm (χ) (3)

The first equation expresses linear dependence of the flux, j, on the pressure gradient, g, while
the permeability coefficient, λ, is governed by an average crack opening, δλ, and an average
pressure, pλ, in the element. Several possible formulations are being used to describe effects
of cracks or pressure on material permeability in the literature [29, 30, 31]. The second
constitutive equation defines another coupling between transport and mechanics as the total
traction, t, becomes dependent on the fluid pressure according to Biot’s theory [32, 33], b
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is a material parameter called Biot coefficient and s = fs (ε) is the traction vector in the
solid. The pressure pa is the weighted average pressure from control volumes surrounding
the mechanical element. The third constitutive equation assumes that the couple traction,
m, depends solely on the curvature, χ, i.e., it is decoupled from the transport part of the
model. The homogenization procedure described in this thesis is in principle independent on
the choice of the functions λ, fs and fm. Implementation of the constitutive equations employs
simplified relations developed for the LDPM model [34]. They are stated in Ref. [25] along
with material parameters used in the numerical examples.

Finally, balance equations are assembled. The balance of linear and angular momentum
of particle I read

V ρüI + Muθ · θ̈
I − V b =

∑
J

A?tαeα Mθ · θ̈
I

+ MT
uθ · üI =

∑
J

A? [w +mαeα] (4)

where w = E : (cI ⊗ t) = tαE : (cI ⊗ eα) is the moment of traction with respect to the
mechanical node xI . Mθ and Muθ are the moment of inertia tensors and V is a volume of the
rigid body.

The mass balance equation for a fully saturated medium, established for each control
volume P separately, reads∑

Q∈W

[
S?j − ρw0Wv̇c

(
1 + b+

pλ − p0
Kw

)
− ρw0Wvc

ṗλ
Kw

]
− ρw0

(
3bε̇V +

ṗλ
Mb

)
W −Wq = 0

(5)

It is assumed that the liquid is slightly compressible with bulk modulus Kw, ρw0 is fluid
density under the reference pressure, p0. Mb is the Biot modulus (reciprocal of capacity, c),
W is volume of the control volume (tetrahedron), the volumetric strain, εV , is estimated as
one third of the relative difference in a tetrahedron volume due to displacements u, vc is the
relative crack volume within a conduit element connecting nodes P and Q evaluated as the
total crack volume in the element divided by the element volume.

3 Asymptotic Expansion

Two spatial variables are considered now for every point in the domain: the macroscopic, slow
variable x and the microscopic, fast variable y (see Fig. 4). The following scale separation
relationship holds

x = ηy (6)

Figure 4: Reference systems considered in the asymptotic expansion homogenization.
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with η being the separation of scales constant with properties 0 < η � 1. The model appears
continuous from the viewpoint of reference system x but discrete in the reference system y.

Moreover, another global reference system X that uniquely defines position in the contin-
uous macroscopic space is introduced. System X has the same units as x but there is only
one such system while infinitely many x reference systems are defined at macroscopic spatial
points.

All the variables involving length are consider to be in the x reference system. One needs
to transfer them into the y reference system according to the transformation rules reflecting
the power of distance unit involved. •̃ denotes variable • in y reference system.

The primary variables p, u and θ are now considered to be approximated by two compo-
nents, the macroscopic component •(0) and the microscopic component •(1). Expansions of the
pressure and displacements are straightforward. The expansion of rotations is done according
to Rezakhani and Cusatis [12] by assuming existence of some continuous displacement-like
field d the curl of which provides the rotations.

p(X,y) = p(0)(X,y) + ηp(1)(X,y) + . . . (7a)

u(X,y) = u(0)(X,y) + ηu(1)(X,y) + . . . (7b)

θ(X,y) = η−1ω(−1)(X,y) +ω(0)(X,y) +ϕ(0)(X,y) + ηϕ(1)(X,y) + . . . (7c)

All of the fields p, u and d are assumed to be periodic over some Representative Volume
Element (RVE) with periodic geometrical structure of the discrete model. Therefore also the
rotations ω and ϕ derived from d must be RVE-periodic. It is also assumed that all these
fast fields (or fluctuations) yield zero average over the RVE.

From the viewpoint of the macroscopic spatial coordinate X, neighboring mechanical nodes
I and J are close to each other. According to Fish et al. [35], one can use the macroscopic
gradient ∇X at node I to approximate the mechanical field variables at node J . The same
Taylor expansion of pressure around node P provides pressure estimation at neighboring node
Q.

p(XQ,yQ) = p(XP ,yQ) +
∂p(XP ,yQ)

∂Xi

xPQi +
1

2

∂2p(XP ,yQ)

∂XiXj

xPQi xPQj +O(h3) (8a)

u(XJ ,yJ) = u(XI ,yJ) +
∂u(XI ,yJ)

∂Xj

xIJj +
1

2

∂2u(XI ,yJ)

∂XjXk

xIJj x
IJ
k +O(l3) (8b)

θ(XJ ,yJ) = θ(XI ,yJ) +
∂θ(XI ,yJ)

∂Xj

xIJj +
1

2

∂2θ(XI ,yJ)

∂XjXk

xIJj x
IJ
k +O(l3) (8c)

Figure 5: An analogy to homogenization: we are interested in an elephant point of view (reference
system X), a mouse point of view (reference system y) is understood as quasi-periodic oscillations
equal on average to the mean behavior observed by the elephant.

10



Terms with h3 and l3 are omitted as h and l are assumed to be very small with respect to the
global variable X.

The compatibility equations (1) and (2) are now rewritten

g =
1

h
[p(XQ,yQ)− p(XP ,yP )] (9a)

εα =
1

l
[u(XJ ,yJ)− u(XI ,yI) + E : (θ(XJ ,yJ)⊗ cJ − θ(XI ,yI)⊗ cI)] · eα (9b)

χα =
1

l
[θ(XJ ,yJ)− θ(XI ,yI)] · eα (9c)

and the Taylor series (8) as well as the asymptotic expansion (7) is substituted afterwards.
Note that thanks to the Taylor expansion, there is always the same X coordinate (either XP

or XI) denoting the RVE location. The equations must hold for any X coordinate (or any
RVE), therefore we can drop it for sake of simplicity. As long as only a single RVE is involved
(constant X coordinate) the notation can be simplified to •αP = •(α)(X,yP )

The set of compatibility equations with substituted (7) and (8) and scaled length variables
reads

g = η−1g(−1) + g(0) + ηg(1) + . . . (10a)

εα = η−1ε(−1)α + ε(0)α + ηε(1)α + . . . (10b)

χα = η−2χ(−2)
α + η−1χ(−1)

α + χ(0)
α + . . . (10c)

where the respective components can be easily derived from the above expansion structure.
The terms with higher η power are omitted as they are negligibly small.

Next, the volumetric strain, εV , average normal crack opening, δN , and cracks volume
density, vc, are expanded. The exact expressions are not important at this point, but the scale
(power of η) at which they appear is.

εV = η−1ε
(−1)
V + ε

(0)
V + ηε

(1)
V + . . . (11a)

δN = δ
(0)
N + ηδ

(1)
N + η2δ

(2)
N + . . . (11b)

vc = η−1v(−1)c + v(0)c + η1v(1)c + . . . (11c)

Finally, the stress-like variables flux, traction, couple traction and moment of traction are
also decomposed into

j = η−1j(−1) + j(0) + ηj(1) + . . . t = η−1t(−1) + t(0) + ηt(1) + . . . (12a)

m = m(0) + ηm(1) + η2m(2) + . . . w = w(0) + ηw(1) + η2w(2) + . . . (12b)

The first terms in expansion (12) are expressed by components of the constitutive relations (3)
with the lowest η powers

η−1j(−1) =− η−1λ
(
p
(0)
λ , δ

(0)
λ

)
g(−1) η−1t(−1) =fs

(
η−1ε(−1)

)
− η−1p(−1)a beN (13a)

m(0) =fm
(
η−2χ(−2)

)
w(0) =η−1t(−1)α E : (cI ⊗ eα) (13b)

The field p(−1) is always zero [25] and is introduced only because it is included in Eq. (13a).
It will also be derived in the next Section that the primary fields p(0) and u(0) are constant
over the RVE and the primary field η−1ω(−1) is zero. It further implies that

g(−1) = j(−1) = 0 ε(−1) = t(−1) = 0 χ(−2) = m(0) = 0 w(0) = 0 (14)
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Moreover, this lead us to the conclusion that the volumetric strain ε
(−1)
V , crack opening δ

(0)
λ

and relative crack volume v
(−1)
c are zero as well because they depend on the strain ε(−1).

The second terms in expansion (12) are therefore again obtained from nonzero components
with the lowest η power

j(0) =− λ
(
p
(0)
λ , ηδ

(1)
λ

)
g(0) t(0) =fs

(
ε(0)
)
− p(0)a beN (15a)

ηm(1) =fm
(
η−1χ(−1)

)
ηw(1) =t(0)α E : (cI ⊗ eα) (15b)

These equations represent the actual constitutive equations of the discrete model.
The third components of stress-like variables are approximated by the Taylor expansion.

The flux (or more precisely the permeability coefficient λ) is expanded around points p = p
(0)
λ ,

δN = ηδ
(1)
λ , traction t and moment of traction w around points ε = ε(0), p = p

(0)
a and couple

traction m around point χ = η−1χ(−1), respectively.
The source terms q and b (as well as other variables, e.q., Biot coefficient b, capacity c

or density ρ) might also be dependent on the primary or other fields. In such cases, their
expansion must be developed as well and added to the balance equations in the next section.

4 Balance Equations at Multiple Scales

The balance equations of individual grains are now assembled using variables transformed into
the y reference system. Starting with Eqs. (4) and (5), assuming all material parameters are
of order ≈ O(η0), transforming all the length variables from x to y reference system, and
dividing everything by η3, η3 or η4, respectively, the balance equations read

ρw0W̃

(
3bε̇V +

ṗλ
Mb

)
+ W̃ q =

1

η

∑
Q∈W

[
S̃?j − ηρw0W̃ v̇c

(
1 + b+

pλ − p0
Kw

)
− ηρw0W̃vc

ṗλ
Kw

]
(16a)

Ṽ ρüI + ηM̃uθ · θ̈
I − Ṽ b =

1

η

∑
J

Ã?tα (16b)

ηM̃θ · θ̈
I

+ M̃T
uθ · üI =

1

η2

∑
J

Ã?(w +mαeα) (16c)

The expansions developed in Eqs. (7), (10), (11) and (12) can now be substituted into the
balance equations, which can be then decomposed into separate equation sets collecting the
terms with corresponding powers of η.

η−2: constant pressure p(0) and displacement u(0)

Terms with the negative second power of η brought back to the x reference system and
multiplied by η3, η3 and η4, respectively, yield

η−1
∑
Q∈W

S?j(−1) = 0 η−1
∑
J∈V

A?t(−1)α eα = 0
∑
J∈V

A?
(
w(0) +m(0)

α eα
)

= 0 (17)

Assume now linear behavior only. Assembling these three equations for all particles and
control volumes inside the RVE and considering the periodic boundary conditions, we obtain
linear system with degrees of freedom p(0), u(0) and η−1ω(−1).
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The first equation is satisfied in linear regime only if p(0) is constant over the whole RVE.
Therefore, pressure gradients g(−1) and fluxes j(−1) are always zero. The solution to the
third equation is constant η−1ω(−1) providing χ(−2) = m(0) = 0. Note that this solution
was previously assumed in Eqs. (14). From constantness of η−1ω(−1), one derives that the
solution to the second balance equation (angular momentum) must correspond to a rigid
body translation and rotation. The u(0) can be expressed as u(0)(X,x) = v(0)(X) + η−1E :(
ω(−1)(X)⊗ x

)
. Such a rigid body rotation is developed in Ref. [12] for homogenization of

the mechanical model. However, considering also the required y-periodicity of the unknown
fields, the solution from from Ref. [12] is corrected here. Rotation η−1ω(−1) must be zero
rendering displacement u(0) constant over the RVE.

Other solutions might exist in the nonlinear regime. However, the presented trivial solution
to system (17) is always valid. The variables p(0) and u(0) remain unknown. They represent
the macroscopic pressure and macroscopic translation. Thanks to constantness of p(0) over the
RVE, one may replace the averages of the pressure by constant: p

(0)
λ = p

(0)
a = p(0) hereinafter.

η−1: RVE problem

Negative first power of η collects the following terms (already transformed to x reference
system and multiplied by η3, η3 and η4, respectively and with substituted solution from the
previous section v

(−1)
c = ε

(−1)
V = 0). ∑

Q∈W

S?j(0) = 0∑
J∈V

A?s(0)α eα = p(0)
∑
J∈V

A?beN∑
J∈V

A?
(
s(0)α eαE : (cI ⊗ eN) + ηm(1)

α eα
)

= p(0)E :
∑
J∈V

A?bcI ⊗ eN

(18a)

(18b)

(18c)

The pressure gradients, strains and curvatures that give rise to fluxes, tractions, couple
tractions and moments of tractions are g(0), ε(0) and η−1χ(−1). Their expressions are rewritten
based on the previous solution at η−2 scale (η−1ω(−1) = 0, u(0) and p(0) are constant) and
using identity yIJ = c̃I − c̃J (Fig. 3b)

g(0) =
η

h

[
p1Q − p1P

]
− ĝ (19a)

ε(0)α =
eαi
l

[
ηu1Ji − ηu1Ii + Eijkω0J

j c
J
k − Eijkω0I

j c
I
k

]
− ε̂α (19b)

η−1χ(−1)
α =

eαi
l

[
ω0J
i − ω0I

i

]
(19c)

These are original compatibility equations of the discrete model (1) and (2) with additional
terms interpreted as eigen-pressure gradient ĝ and eigen-strain ε̂α. These eigen terms turn out
to be negative projections of the macroscopic pressure gradient a = ∇Xp

(0) and the Cosserat
strain tensor γ = ∇X ⊗ u(0) − E ·ϕ(0)

ĝ = −∂p
(0)

∂Xi

eλi = −a · eλ

ε̂α = −eαi

[
∂u

(0)
i

∂Xk

− Eijkϕ(0)
j

]
eNk = −eN · γ · eα

(20a)

(20b)
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Both vector a and tensor γ are provided by the macroscopic problem to be described later.
Vector ϕ(0) shall be identified from its definition as a macroscopic rotation of the RVE and
therefore is constant over the RVE. The projection of the macroscopic Cosserat curvature that
was derived in Ref. [12] is missing here since the ω(−1) term is corrected to be zero.

All three balance equations (18) to be solved numerically are steady state (or static)
equations; the transient terms are not present. Unknown fields in these problems are ηp(1),
ηu(1) andω(0) being the microscopic pressure, translation and rotation, respectively. Note that
these problems are partially decoupled. The mechanical RVE depends only on the macroscopic
pressure p(0), primary field ηp(1) has no effect on the mechanical behavior. The transport
problem, however, depends on mechanical primary field ηu(1) via the crack opening ηδ

(1)
N . One

should therefore first solve the mechanical RVE problem and then use the computed crack
openings ηδ

(1)
N when solving the transport RVE problem.

The transport RVE is loaded only by the projection of the macroscopic pressure gradient
in the form of eigen-pressure gradient (Eq. 20a). The load applied to the mechanical RVE
comes from the macroscale in two ways: (i) in the form of eigen-strain (Eq. 20b) and (ii)
as a force and moment acting on each particle due to the macroscopic fluid pressure as the
right-hand side terms in Eqs. (18).

The periodic boundary conditions must be enforced for pressure, displacements and rota-
tions. Furthermore, equations (19) consider only differences in the primary fields of displace-
ments and pressure and are ill-conditioned without an additional constraint. The assumption
behind the asymptotic expansion (7) requires the microscopic fields (fluctuations) to be zero
on average, therefore the last boundary conditions should prescribe zero volumetric average
of these fields over the RVE

〈ηp(1)〉 = 0 〈ηu(1)〉 = 0 (21)

where the weighted volumetric average reads

〈•〉 =
1

V0

∑
w∈V0

Vw• (22)

with Vw being volume (VI or WP ) associated with the mechanical or mass transport node and
w denotes either mechanical (e) or conduit (d) elements.

Direct enforcement of boundary conditions (21) is not practical. If one applies the lin-
ear constraint, the system matrix becomes full and computational and storage requirements
rapidly grow. It is therefore recommended to randomly pick some node where pressure and
translations are directly prescribed to be some random values (the easiest is to set everything
to zero). After the solution is found, both transport and mechanical fast fields can be shifted
to satisfy the required constraint, i.e., equations (21) are enforced during the post-processing.
Moreover, the actual fast primary fields are typically not required and one can skip this post-
processing step.

η0: macroscopic level

Terms with zero power of η, already transformed to x reference system and multiplied by η3,
η3 and η4, respectively, are the following (note that terms with v

(1)
c , which is always zero, are
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already deleted)

3bε̇
(0)
V +

ṗ(0)

Mb

+ q =
∑
Q∈W

[
ηS?j(1)

Wρw0
− v̇(0)c

(
1 + b+

p(0) − p0
Kw

)
− v(0)c

ṗ(0)

Kw

]
(23a)

η
∑
J∈V

A?t(1)α = V ρü0I − V b (23b)

η2
∑
J∈V

A?
(
w(2) +m(2)

α eα
)

= MT
uθ · ü(0) (23c)

The equilibrium of the whole RVE unit is of interest at the macrolevel, therefore equations
for all the bodies within the RVE are summed and divided by the RVE volume. In the
case of forces and fluxes, the summations are straightforward. In the case of balance of
moments (23c), one must select some reference point in the global coordinate system X and
sum all the moment contributions with respect to that particular point. After several rigorous
mathematical operations (details available in Ref. [25]), the summed equations transforms into
the following partial differential equations for the poromechanical macroscale problem

∇X · f = ρw0

[
v̇c0

(
1 + b+

p(0) − p0
Kw

)
+ vc0

ṗ(0)

Kw

+ 3bε̇
(0)
V +

ṗ(0)

Mb

]
+ q

∇X · σs −∇Xp
(0) · ξ = 〈ρ〉ü(0) − b

∇X · µs −∇Xp
(0) · ζ+ E : σs − p(0)E : ξ = 0

(24a)

(24b)

(24c)

where vc0 is the relative crack volume in the whole RVE. The remaining five new tensors
represent outcome of the RVE problem sent back to the macrolevel; f is the flux vector, σs is
the solid stress tensor, µs is the solid couple stress tensor and ξ and ζ are second order tensors
describing RVE internal structure used to compute effect of pressure on the macroscopic stress
and couple stress.

f =
1

V0

∑
d∈V0

hS?j(0)eλ

σs =
1

V0

∑
e∈V0

lA?s(0)α eN ⊗ eα

µs =
1

V0

∑
e∈V0

lA?eN ⊗
[
ηm(1)

α eα + s(0)α E : (xc ⊗ eα)
]

ξ =
1

V0

∑
e∈V0

lA?beN ⊗ eN

ζ =
1

V0

∑
e∈V0

lA?beN ⊗ [E : (xc ⊗ eN)]

(25a)

(25b)

(25c)

(25d)

(25e)

As the RVE geometry remains unchanged during calculation, ξ and ζ are constant tensors
evaluated only once at the simulation initiation.

Note that the mechanical equations (24b) and (24c) correspond to micromorphic (Cosserat)
continuum. The primary fields are pressures p(0), displacements u(0) and rotations ϕ(0). Sev-
eral emerging coupling terms are obtained describing storage of the fluid in cracks and an effect
of volumetric changes on the pressure (Eq. 24a), an effect of the pressure gradient on the linear
momentum balance (Eq. 24b), and effects of the pressure gradient and the pressure on the
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angular momentum balance (Eq. 24c). The macroscopic equations are naturally anisotropic
due to the heterogeneity and cracking at the microscale.

The macroscale problem shall be supplemented with appropriate boundary conditions and
solved, e.g., by the finite element method. A transformation of Eqs. (24) to the weak form
is straightforward. The macroscopic pressure gradient, a, and the Cosserat strain tensor, γ,
are computed at each integration point and projected onto the RVE problem (Eqs. 20) from
which stress-like variables (Eqs. 25) are evaluated.

5 Verification

The full and homogenized models are implemented in an in-house software. Both steady state
and transient simulations are investigated; however, the transient terms are only used for the
mass transport part; mechanical behavior is always quasi-static in the presented verification
studies. Implicit time integration scheme called the generalized-α method with spectral radius
0.8 is adopted [36, 37]; the two-way coupled problem of mechanical and mass transport balance
is solved in a strongly coupled numerical scheme ensuring second order accuracy.

The spatial discretization is based on an actual mesostructure, it shall be called physical
according to Ref. [23]. All the verification examples assume a material with the maximum
aggregate diameter dmax = 10 mm and aggregate relative volumetric content 80%. For sake of
computational feasibility, only aggregates with diameter above 4 mm are explicitly considered,
the rest is phenomenologically represented by the contact constitutive behavior.

Rezakhani and Cusatis [12] showed that cubic RVE with edge length 5dmax is already
sufficient for the mechanical problem. According to Ref. [24], such RVE size is acceptable
also for the transport problem. Therefore, the RVE used here for all the calculation has size
50× 50× 50 mm3; the mechanical RVE has 1539 degrees of freedom (DoF) and the transport
RVE has 2160 DoF. A nonlinear steady-state solver is used to calculate the RVE problems.

In the initial intact state, responses of both mechanical and transport RVEs are linear.
They can be therefore easily pre-computed resulting in a great computational cost reduction.
The linear pre-computed state is adaptively replaced by the full RVE non-linear problem with
a help of Ottosen’s criterion [38] serving as an indicator of inelastic behavior. The decision
process is implemented exactly as described in Ref. [13] for the mechanical homogenization,
the transport RVE is replaced simultaneously.

The continuous macroscopic solution is approximated via the finite element method, de-
velopment of the discretized weak form of Eqs. (24) is straightforward. Cosserat trilinear
isoparametric brick elements extended by additional pressure degrees of freedom are used.
The same trilinear shape functions are applied to approximate the element shape as well as
the displacements, rotations and the pressure. The methodology for element implementa-
tion was adopted from Ref. [39]. Full Gauss integration using 8 integration points (hence 8
submodel RVE pairs for each element) is employed.

The model was verified in Ref. [25] by four examples featuring concrete specimens: (i)
Terzaghi’s consolidation, (ii) flow through a compressed cylinder, (iii) constrained tension of
a sealed prism and (iv) hydraulic fracturing of a hollow cylinder. The second and fourth ones
are presented also here. They share the same material mesostructure, constitutive model and
material parameters (see Ref. [25]).
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Figure 6: a) Cylindrical specimen, full model; b) single brick element, homogenized model; c) RVE
attached to an integration point.

Flow through compressed cylinder

A steady state simulation of cylinder (depth 0.1 m, diameter 0.1 m) compressed in z direction
is performed assuming no friction taking place at the loading platens, i.e., the lateral expansion
is completely unconstrained. Simultaneously, a pressure gradient is applied in z direction by
prescribing pressure at the bottom face being 1 MPa and at the top face being 0 MPa. The
normal flux component over the curved cylindrical shell is set to zero. The Biot coefficient is
b = 0, hence this example verifies only a single coupling mechanism, the dependency of the
permeability coefficient λ on crack opening.

The homogenized model consists of a single brick with 8 integration points. Depth of the
brick is 0.1 m, upper and bottom faces are squares of size 0.05

√
π× 0.05

√
πm2 corresponding

to the cylinder cross-sectional area. A sketch of the model is shown in Fig. 6. The macroscopic
model consists of additional 8 free DoF. The homogenized model therefore has 8 × (2, 160 +
2, 016) + 8 = 33, 416 DoF in total and runs in 25 min. The full model has 32, 500 DoF and
runs in 68 min. Even though the number of DoF is similar, the speed-up factor is about 2.7.
The improvement is caused by decoupling the systems into separate RVE problems, hence
speeding-up its solution.

Stresses and fluxes obtained by the full and homogenized model are similar, see Fig. 7.
Since the constitutive model features strain softening, the mechanical problem suffers from
the strain localization. It is well known that localization phenomenon cannot be homogenized
as the scale separation does not hold [40]. Few research papers [41, 42] provide suggestions

Figure 7: Loading traction and flux through cylindrical specimen obtained by the full and homoge-
nized model. Circles label states at which the models reached the maximum loading force.
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and remedies to capture strain localization properly in the homogenization scheme but these
are not implemented here yet. The reason why the verification study gives more or less satis-
factory results even with the strain localization is that the RVE volumes exactly correspond
to the volumes of material represented by the associated integration points. Consequently, the
strain localization occurs in the same material volumes in both models and should be there-
fore macroscopically equivalent. This shortcut was developed in Ref. [12] for the mechanical
problem only, one can see that it is applicable also for the coupled problem. Unfortunately,
the major benefit of homogenization, that the large material volume can be macroscopically
represented by a small RVE, is lost.

Hydraulic fracturing of hollow cylinder

The second example is meant as a simple application. The specimen is a hollow cylinder
of depth 0.05 m, inner radius ri = 0.05 m, outer radius ro = 0.3 m. Cylinder central axis
is align with axis z. Transport boundary conditions prescribe constant zero pressure at the
outer cylindrical shell, pressure linearly increasing in time pi = 200t at the inner surface and
zero normal flux at the upper and bottom surfaces at z = 0 m and z = 0.05 m. Mechanical
boundary conditions restrict z displacements at the upper and bottom surface and apply
an inward traction on the inner surface of magnitude equal to the prescribed pressure.

The full model has approximately 323, 000 DoF. The homogenized model is composed of 4
elements equidistantly distributed in radial direction, 10 elements along the circumference and
one element over the depth, resulting in 40 element, 320 RVEs and approx. 320 × (2, 160 +
2, 016) ≈ 1.3 mil. DoF, assuming all the RVEs are switched from pre-computed to inelastic
states.

The example features all three coupling fabrics: Biot’s effect, storage space created by
cracks and permeability enhancement by cracks. Besides full inelastic transient behavior
presented here, Eliáš and Cusatis [25] shows additional verification using steady state elastic
solution compared with the analytical solution developed in Ref. [43].

The initial and reference pressures are set to zero. Simulation is controlled by increase
of the inner pressure, pi, thus it eventually reaches the critical maximum pressure at which
macroscopic cracks develop across the whole cylinder and solver fails due to loss of convergence.

Figure 8: Pressure in the hole obtained during simulation of hydraulic fracturing. The horizontal axis
shows relative volumetric change of the central hole of initial volume Vh0, ∆Vh denotes the absolute
volume change.
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Figure 9: Fluxes obtained during simulation of hydraulic fracturing at the inner and outer cylindrical
surface.

Figure 10: Cracks developed in the full and homogenized models at the last valid step of the simu-
lation.

Change of volume of the hole, ∆Vh, inner flux and outer flux are recorder during the simulation.

The results are shown in Figs. 8 and 9. A reasonable correspondence in terms of pres-
sures/tractions and fluxes is obtained. The larger differences occurring in the later stages
of the simulations are attributed to the developed strain localization. The RVE volumes of
the homogenized model are actually much larger than the the macroscopic material volumes
associated with integration points. Unfortunately, the localized cracks significantly affects the
solution and cause deviations of the homogenized model results from the reference full solu-
tion. Note, that Fig. 9 shows also fluxes obtained from elastic simulations to visualize effect
of cracking on the flux as a difference between elastic and inelastic solutions.

Figure 10 shows cracks developed in the full and homogenized models. One can see localized
macrocracks developed in the full model. The internal structure of the full model (position
of particles) is constant, that is why the macrocracks tend to appear at the same locations,
presumably at some locally weaker region. On the contrary, the homogenized model possesses
an ideal symmetry and strain localization occurs in a random direction due to the numerical
truncation. No strain localization has been achieved for homogenized models with Biot’s
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coefficients 0.75 and 1, the symmetry was maintained until the last simulation step.
Interestingly enough, the cracking character changes with Biot coefficient. There is more

diffused microcracking appearing at the critical pressure around the central hole for low Biot
coefficients. This is due to different pressure magnitude sustained by models with different
Biot coefficient. If one studies the cracking at the same pressure level, the situation is actually
the opposite: larger Biot coefficients give more diffused cracking because the fluid pressure
reduces both radial and circumferential compressive stresses in the solid. Since it further helps
to open the cracks, the critical pressure for larger Biot coefficients is substantially lower.

The full model runs took 2970 min, 2290 min, 1220 min, 980 min and 730 min for Biot
coefficients 0, 0.25, 0.5, 0.75 and 1, respectively. Only the coarse homogenized model was em-
ployed in inelastic analyses reaching computational times 330 min, 250 min, 150 min, 132 min
and 120 min and speed-up factors about 9, 9.2, 8.1, 7.4 and 6.1, respectively. This is surprising
considering that the homogenized model has about 4 times more DoF when all RVEs leave
the pre-computed state. The high speed-up factors are achieved by decoupling the system of
equations into independent subsystems and also keeping many RVEs in their pre-computed
state till the end of the simulation.

6 Coupled Humidity and Heat Conduction

The same homogenization strategy can be applied to discrete mesoscale models of other phys-
ical phenomena. Homogenization of a coupled moisture and heat conduction in an idealized
dam is presented as was developed in Ref. [24]. Details regarding derivation of the homoge-
nization as well as implementation strategy can be found in the same reference. The Hygro-
Thermo-Chemical (HTC) constitutive model and its material parameters were adopted from
Refs. [44, 45] to simulate cement hydration and silica fume (pozzolanic) reactions.

The geometry and boundary conditions of the dam are adopted from Gasch et al. [46] and
simplified as shown in Fig. 11. The simulated dam has total width of 10.25 m, depth of 13 m
and thickness of 1 m, the maximum aggregate diameter is dmax = 150 mm. It is assumed that
the dam is kept for 2 weeks under moist-curing conditions. After demolding at the end of
week 2, it is exposed to the ambient relative humidity and temperature for another 4 weeks
before filling with the water and starting its service at the end of week 6.

The boundary conditions during the service life are governed by negative cosine functions
with a period of one year for air (a), water (w) and soil (s) temperature (T) and relative
humidity (H), see Ref. [24]. The front and back surfaces of the three-dimensional model have
prescribed zero out-of-plane flux for both relative humidity and temperature. Also the out-of-
plane flux of humidity at the bottom surface is zero. The initial conditions are T = 15◦C and
H = 1 everywhere. The total simulated time is 100 years.

The evolutions of relative humidity and temperature delivered by the homogenized model
are shown in Fig. 12 in gray color. Three different locations A, B and C are selected for
observation. The plotted time range for temperature is shortened as the temperature keeps
oscillating in the same manner as in the first six years. Figure 13 shows the relative humidity
and temperature profiles along the horizontal line through point B at different time instants.
The total computational time of the homogenized model was 302 s using 2,246 DoF.

A reasonable estimate is that the full model would need months to compute the same
analysis. Instead, we simulated only the first 10 years to verify the homogenized results. The
full model has 1,496,652 degrees of freedom, the computational time of the first 10 years was
584,800 s (about one week). The results are shown in Figs. 12 and 13 in black and they agree
well with those obtained by the homogenized model. The achieved speed-up factor due to
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Figure 11: Left: Rappbodetalsperre - an example of a real concrete dam in the Harz Mountains (pic-
ture taken from https://www.harz-abenteuer-wandern.de/en/rappbodetalsperre/); right: dimensions
and boundary conditions of the idealized dam simulated using coupled heat and moisture conduction.

Figure 12: Evolution of relative humidity, and temperature at points A, B and C.

Figure 13: Relative humidity and temperature along the horizontal line through point B.

homogenization is roughly four orders of magnitude. This large speed-up factor is achieved by
pre-computing the RVE problem, even though it is strongly nonlinear and with internal sources
depending on mathematical description of the cement hydration. The nonlinear part depends
on the primary field values (temperature and humidity), which makes the pre-computation
possible [24]. The same simplification is unfortunately not applicable in mechanics where the
nonlinearity is govern by strain, the first derivative of the primary field.
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7 Conclusions

Discrete mesoscale modeling of mechanics, mass transport, heat conduction or coupled pro-
cesses is a robust and reliable way to predict and asses behavior of concrete structures and
structural parts. The main disadvantage is a computational burden associated with the
mesoscale character of the model which prohibits wider application in engineering practice.
The thesis presents a possible way how to overcame the large computational demands.

Asymptotic expansion homogenization of discrete mesoscale models is developed. A rig-
orous mathematical derivation is applied for the elastic/linear case while additional realistic
assumptions must be utilized for the inelastic/nonlinear case at scale η−2. The macroscale
problem arising from the homogenization is described by the standard transient Poisson’s
equation for the scalar field problems while the mechanical problem results in Cosserat con-
tinuous differential equations. Additional coupling terms emerge for coupled problems. The
macroscale can be solved with a help of the finite element method with the constitutive equa-
tion routines replaced by subscale RVE problems. The macroscopic homogenized material
therefore exhibits naturally anisotropy due to heterogeneity and cracking at the microscale.

The microscale (one should say mesoscale in the case of concrete) problems are discrete
and steady state. In the case of coupled mechanics and mass transport, the mechanical RVE is
independent on the transport RVE while the transport RVE requires information about crack
openings from the mechanical RVE. Therefore, they can be solved in a sequence.

The speed-up factor for elastic (and some special inelastic) problems can reach several
orders of magnitude because the RVE solution can be pre-computed. Inelastic problems with
strain localization unfortunately still requires using the identical material volumes at the
macroscale and microscale, therefore the computational savings are relatively low. However,
all the calculations are done on a single processor within a single thread. There is a huge
potential to speed-up the homogenized model by distributing independent RVE problems over
several processors. An additional advantage is an extremely simple pre- and post-processing
where the standard commercial finite element software can be used (in contrast to the full
model where special software routines are needed).

Future Activities in Research and Teaching

The main future research plans are focused on improving the homogenization technique and
applying it in engineering practice. The following two improvements are planned: (i) further
reduction of computational cost via the Proper Orthogonal Decomposition (POD) at the RVE
scale and (ii) derivation of a remedy allowing to correctly capture the strain localization within
the homogenization scheme.

POD is a model order reduction technique capable to extract a relevant reduced response of
a complex system. A high-dimensional problem is projected onto a low-dimensional subspace
which contains the solution or at least some good approximation of it. For nonlinear problems
the POD subspace is optimal only as long as the model state does not deviate too much
from the configuration at which the subspace was built. This is particularly problematic
in strain-softening materials where rapid model changes occur when a crack initiates and
grows. Therefore the reduced subspace needs to be updated in time as the model nonlinearity
evolves. Such an update is quite computationally expensive when done for the whole structure.
Kerfriden et al. [10] proposed to use POD only in those parts of the domain where nonlinearity
is weak and the update is not needed. Even more elegant would be application of separate
PODs for each RVE. The update would be necessary only locally if a substantial evolution of
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state variables in the RVE takes place.
The strain localization is the major unsolved problem in multiscale theories as it violates

the fundamental homogenization assumptions and the RVE ceases to exist. The microscale
problems become size dependent. Recent breakthroughs finally allowed to use homogenization
techniques even for quasibrittle materials exhibiting the strain localization. The first crucial
progress is development of a special periodic-like boundary conditions [47] capable to initiate
and propagate a crack under an arbitrary direction. The second fundamental development is
an extension of the homogenization cornerstone, Hill–Mandel principle, for the strain localiza-
tion. One can, according to Unger [42], duplicate the RVE and solve two RVE problems at the
same time after the strain localization occurs at some integration point. The first RVE, loaded
by the projection of a localized part of the strain tensor, represents a region with a localized
strain. The second RVE, onto which homogeneous part of the strain is projected, represents
an unloading region.

An application of the finalized homogenization scheme into engineering practice is planned
to be done in connection with company DesignTec. They are experienced in complex numerical
analysis of structures using Ansys software. We would like to implement the RVE analysis
into Ansys as a material constitutive equation subroutine. Consequently, the whole discrete
mesoscale model would appear to the user only as a different material in otherwise standard
calculation setup.

Other author’s future research directions are relatively broad, from general mechanics of
solids to coupled multi-physical problems, high strain rate events and blending mechanics and
probability theory. These topics are intensively studied by scholars around the world. The
author would like to strengthen his international collaboration in these fields, work further
with the current international connections and find new contacts and opportunities abroad.

The fundamental ingredient to fulfill these ambitious plans is a collaboration with moti-
vated and talented students at the Institute of Structural Mechanics in Brno. The author sees
the basic teaching activities as a crucial part of his work assignment that may recruit talented
students for Ph.D. programs. There are currently two young Ph.D. students working with the
author on these topics and there is definitely enough room for some more local or international
applicants.
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Abstract

Mechanics and mass transport phenomena in concrete structures are strongly coupled. The
first coupling fabric is the Biot’s theory according to which fluid pressure interacts with solid
stress state and volumetric deformation rate of the solid induces changes in fluid pressure.
Another coupling mechanism emerges with cracks which serve as opens channels for the fluid
to flow through them. Especially the second coupling mechanism presents a challenge for nu-
merical modeling as it requires detailed knowledge about cracking process. Discrete mesoscale
mechanical models coupled with mass transport offer simple and robust way to solve the
problem.

The kinematics of the discrete model is based on polyhedral rigid bodies interconnected
by compliant contacts. There is a vectorial constitutive relation at the interparticle contact
lumping together both elastic and inelastic parts of the material behavior. Thanks to discrete
displacement jumps between rigid particles, the cracks are naturally represented and oriented.
Mesoscale character of the model ensures high-fidelity of the crack pattern. On the other
hand, detailed mesoscale representation lead to large computational demands.

Asymptotic expansion homogenization technique for the discrete coupled problem is de-
veloped in order to reduce this computational burden. It delivers (i) continuous and homoge-
neous description of the macroscopic problem which can be easily solved by the finite element
method, (ii) discrete and heterogeneous mesoscale problem in the periodic setup attached to
each integration point of the macroscale along with (iii) equations providing communication
between these two scales. The transient terms appear at the macroscale only, as well as the
Biot’s coupling terms. The coupling through cracking is treated at the mesoscale by changing
conductivity of the conduit elements according to the mechanical solution, otherwise the two
mesoscale steady state problems are decoupled and can be therefore solved in a sequence.
Verification studies showing performance of the homogenized solution are presented as well.

Homogenization of coupled heat and humidity conduction is presented in the last section
and verified by simulating large concrete dam in a fraction of time needed by the original
mesoscale model.

Shrnut́ı

Autor se dlouhodobě věnuje výzkumu v oblasti výpočtové mechaniky. Jeho hlavńım výzkum-
ným tématem je vývoj diskrétńıch mesoúrovňových model̊u mechanického porušeńı betonu.
V předložené práci jsou představeny výsledky vytvořené přibližně v posledńım roce a p̊ul ve
spolupráci s prof. Gianlucou Cusatisem z Northwestern University, Illinois USA, které jsou
v tuto chv́ıli (květen 2022) zaslány k recenzńımu ř́ızeńı do impaktovaných časopis̊u. Tyto
výsledky ukazuj́ı analytické odvozeńı homogenizovaného řešeńı diskrétńıho mesoúrovňového
modelu pro sdruženou úlohu mechaniky a transportu hmoty v betonu. Hlavńım ćılem tohoto
výzkumu je sńıžit výpočtovou náročnost diskrétńıho modelu a výrazně zjednodušit práci s ńım
(př́ıpravu modelu a vyhodnoceńı výsledk̊u). Výhledově je takovéto homogenizované řešeńı
vhodné pro implementaci v komerčńıch softwarech jako materiálová (konstitutivńı) funkce
volaná v každém integračńım bodě konečněprvkového modelu.

Diskrétńı mesoúrovňový model je v současné době ve světě považován za jeden z nejro-
bustněǰśıch numerických model̊u pro simulace porušeńı betonu. Diskrétńı popis pole posun̊u
redukuje počet stupň̊u volnosti modelu a také umožňuje jednoduchou reprezentaci oriento-
vaných trhlin v materiálu. Mimo to podstatně zjednodušuje ř́ıdićı rovnice, které již nemaj́ı
charakter parciálńıch diferenciálńıch rovnic, a konstitutivńı vztahy. Ty jsou ve spojitých
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modelech formulovány tenzorově a vyžaduj́ı nezávislost na rotaci souřadnicového systému,
v diskrétńıch modelech jsou to jednodušš́ı, pouze vektorové vztahy. Dı́ky tomu, že mesoúrov-
ňový model př́ımo obsahuje materiálovou strukturu betonu (zrna kameniva, matrici, př́ıpadně
póry), je v modelu automaticky zohledněna charakteristická délka materiálu a také se ob-
jevuj́ı oscilace v poli napět́ı a deformace odpov́ıdaj́ıćı heterogenńımu charakteru materiálu.
Tyto oscilace umožňuj́ı např́ıklad vznik př́ıčných tahových trhlin při tlakovém zatěžováńı.
Řada vědeckých článk̊u ukazuje validaci těchto model̊u pomoćı r̊uzných druh̊u experiment̊u.

Dı́ky věrnému popisu trhlin jsou diskrétńı mesoúrovňové modely vhodné pro sdružené
úlohy, kdy se současně simuluje několik provázaných fyzikálńıch jev̊u. V př́ıpadě této práce se
jedná o provázaný problém mechaniky a transportu tekutin, tzv. poromechaniku. V elastické
oblasti je provázáńı těchto dvou problémů popsáno pomoćı Biotovy teorie, při vzniku trhlin
se přidávaj́ı daľśı sdružuj́ıćı jevy jako ukládáńı tekutiny v prostoru trhlin nebo snadný tok ka-
paliny vytvořenými trhlinami. Proto je d̊uležité dosáhnout v mechanickém modelu realistické
reprezentace trhlin, jejich množstv́ı, otevřeńı a orientace.

Kritickou nevýhodou všech mesoúrovňových (nejen diskrétńıch) model̊u je ovšem jejich
výpočtová náročnost. Jelikož je jejich diskretizace ř́ızena velikost́ı materiálových heterogenit,
bývá náročné simulovat už i některá větš́ı laboratorńı betonová tělesa, natož celé konstrukčńı
d́ılce. Existuj́ı r̊uzné techniky umožňuj́ıćı ušetřit výpočtový čas, např́ıklad pomoćı adaptivńı
diskretizace nebo sofistikované projekce problému do podprostoru s méně stupni volnosti.
Jednou z nejuniverzálněǰśıch cest, jak ušetřit výpočtový čas, je však u heterogenńıch materiál̊u
homogenizace.

Tato práce představuje odvozeńı homogenizačńı techniky pro diskrétńı modely sdružené
úlohy mechaniky a transportu. Nejprve je provedeno rozděleńı primárńıch veličin diskrétńıho
modelu na dvě složky: makroúrovňovou, představuj́ıćı pr̊uměrné chováńı, a mikroúrovňovou,
představuj́ıćı periodické oscilace okolo pr̊uměru. Toho je dosaženo přidáńım velmi malé kon-
stanty η, která vyjadřuje úroveň, na které se jednotlivé výrazy nacházej́ı. Druhou zásadńı in-
gredienćı je aproximace primárńıch veličin mezi sousedńımi diskrétńımi zrny pomoćı Taylorovy
řady. Tyto dvě fundamentálńı složky jsou vloženy do ř́ıdićıch rovnic modelu, které se následně
rozpadnou do několika úrovńı podle mocniny konstanty η. Źıskané sady ř́ıdićıch rovnic pak
popisuj́ı numerický problém na dvou r̊uzných úrovńıch. Makroúrovňový model je spojitý a ho-
mogenńı. Je popsán parciálńımi diferenciálńımi rovnicemi Cosseratova typu, které je možné,
po převedeńı na slabou formulaci, řešit pomoćı metody konečných prvk̊u. Makroúroveň ob-
sahuje časově závislé výrazy (transientńı problém). Oproti tomu je mikroúroveň diskrétńı,
heterogenńı a statická, časová proměnná v rovnićıch nevystupuje. Je představována dvěma pe-
riodickými problémy, jedńım pro mechaniku a jedńım pro transport. Zat́ıžeńı mikroúrovňových
periodických úloh je vnášeno projekćı makroskopického tenzoru deformace a vektoru gradientu
tlaku. Výsledky z mikroúrovně jsou pak přeneseny zpět na makroúroveň jako tenzory napět́ı
a vektor toku.

Sdružuj́ıćı členy představuj́ıćı Biotovu teorii a ukládáńı tekutiny v trhlinách jsou př́ıtomny
pouze na makroúrovni. Vliv trhlin na propustnost materiálu se však projevuje na mikroúrovni.
Nejprve je nutné vyřešit mechanický periodický problém, źıskané otevřeńı trhlin poté přenést
do transportńıho periodického problému a následně ho vyřešit.

Práce ukazuje př́ıklady porovnávaj́ıćı homogenizované a plné řešeńı, tedy řešeńı vypočtené
s p̊uvodńım diskrétńım mesoúrovňovým modelem. V naprosté většině př́ıpad̊u je dosaženo
dobré shody a zásadńı úspory výpočtového času. V př́ıpadech, kdy docháźı k lokalizaci de-
formace, však nejsou splněny předpoklady pro homogenizaci a vznikaj́ı odchylky od plného
řešeńı. Úprava homogenizovaného modelu tak, aby pokrýval i lokalizaci deformace, je podle
současné vědecké literatury možná, a bude předmětem daľśıho výzkumu autora práce.
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