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1 Introduction

The adaptive control theory follows in time classical control theory. The simple idea to adapt
to the new control conditions (process parameters or even structure of the process) leads us to
set controller e. g. in the classical way but moreover in the real-time. Naturally, the assumption
to use adaptive control scheme brings us many advantages but also some problems.
Generally, the adaptive controller scheme is separable into two parts: identification and

controller. It is not novelty that the “core” of each adaptive controller is in the very iden-
tification of process. If the identification correctly estimates the real controlled process any
stable controller could be used. In this case real-time identification (as the identification is
comprehended in adaptive controller) is very important and presented thesis focuses on the
identification dealing with practical problems. In presented thesis, the adaptive optimal con-
troller is investigated to fulfill following properties: feasible implementation into industrial
controller and the real process control.
First, the overview of identification methods is presented in thesis. Next, several iden-

tification methods are implemented with purpose to overcome the quantization effect. The
quantization problem arises when the sampling period in the real process control is short. The
decreasing of the sampling period is simply provable in the faster controller reaction mainly for
the disturbance rejection. Several identification methods working in real-time are investigated
in comparison with the identification based on neural networks. The advantage of using of the
identification based on neural networks is shown.
Instead of presenting purely simulation results, the real problems in the real process con-

trol are investigated. All algorithms are firstly developed in simulation environment, i. e.
MATLAB/Simulink. The algorithms are verified on the real process (physical models) via new
developed real-time communication toolbox afterwards. Finally, new direct implementation of
control algorithms into industrial controller (PLC) is presented.

Motivation of Ph.D. Thesis

During my work on adaptive controllers I have realised that crucial problem in adaptive
control is the quantization effect. Quantization effect is not properly described in the current
literature in connection with adaptive control. That is why the thesis begins with quantization
effect description (chapter 2). At the end of such description, the aims of the thesis have
naturally arisen.

2 Quantization Effect

The quantization effect is more known for example in instrumentation theory or signal proces-
sing theory than in control theory. Furthermore, in control theory the phenomenon has been
usually disregarded. It is due to the fact that the conditions used in process control allow the
quantization effect to be ignored. Nowadays, when the sampling period is demanded to be very
short and the requirements for the control precision are higher then before, the quantization
effect plays considerable role in the practical control.

State of the Art

The quantization error given by using A/D and D/A converters are more known in instru-
mentation and measurement theory. Fowler’s [21] and Händel et al. [27] papers published in
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IEEE Transactions on Instrumentation and Measurement affirmed that. Next, an overview of
quantization with historical background is published by Gray and Neuhoff [24].
The relationship between process control theory and quantization effect is investigated by

Williamson [47] as the finite word-length considerations. Next, Åström and Wittenmark [5]
together with Middleton and Goodwin [36] basically deal with problems with digital process
control. Recently, papers [7, 22] deal with digital process control for short sampling period
and different resolution of quantizers.

2.1 Quantization Error

The process control of continuous time system and the control of sampled continuous time
system are two different fields. It happens that the controller design is created without precise
knowledge of sampling, shaping and quantization effect. The A/D and D/A converters are

Fig. 1: The real model with A/D and D/A converters represented as quantizers.

necessary parts of each real-time system [21]. The basic feature of the converters is to convert
analog signal to discrete values and back (see fig. 1).

y = G(s)uq

yq = Q2(y) uq = Q1(u)︸ ︷︷ ︸
yq = Q2{G(s)Q1(u)}

(2.1)

The quantization error e is limited to quantization band ≡ 1 LSB. The quantization range
QRANGE and the quantization resolution QRES are basic parameters for definition of the quan-
tization band. For example, for QRES = 8 bits we get 2QRES = 28 = 256 number of codes. Next,
for bipolar converters ±10 V we get the quantization band QBAND = 10/256 = 39.1 mV ≈
0.04 V. Therefore the value in finite word-length precision is numerically round off to the three
valid places divisible by ≈ 0.04 V.
The quantization error may be modelled as deterministic or stochastic signal in linear ana-

lysis. In deterministic model, the error is modeled as constant having the size of quantization
errors and with the resolution in the arithmetic calculation. In the stochastic model, the error
introduced by rounding or quantization is then described as additive white noise with rectan-
gular distribution (Åström and Wittenmark [5], pp. 479–480). Next, Williamson deals with
quantization analysis and shows cases where after linearization the roundoff quantization error
is uncorrelated with the quantizer input ([47], pp. 209–211).
Simple results where previous mentioned conclusions are not applicable [56] are presented

in this section. Let us consider the modelling of quantizer. The model can be built from
quantization effect description to show the disturbance properties of quantization effect. The
model can be seen in fig. 2 where the linear part of value uL is disturbed by non-linear part
represented as quantization error e. This point of view is very simple, given from description of
quantization effect and it gives us the beginning point for explanation of quantization effect.
The quantization error e is not independent from quantizer input u and hence cannot be

treated as the independent additive noise [56]. Next, the quantization error cannot be treated
as the Gaussian or even white noise because it is directly derived from quantizer input. It means
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Fig. 2: Principal model of quantization effect.

that the noise is deterministic and it can be predicted. For example, the error is influenced
more when the amplitude of quantizer input is smaller.

2.2 Amplitude Shape

The amplitude shape of transformation from continuous time into discrete time could be
described mathematically (2.2) [5, 29]

u∗(t) = u(t) ·m(t)

m(t) =
∞∑

k=−∞

δ(t− kTS)
(2.2)

where m(t) is modulation function of Dirac impulses δ(·).
Sampler is usually followed by shape filter, very often represented by Zero-Order-Hold

(ZOH) filter (2.3)

GZOH(s) =
1
s
− 1

s
exp(−sTS) =

1− exp(−sTS)
s

(2.3)

where the shape is given by integration of Dirac impulse (with infinitely short time length
and with unit integral) in every sampling period kTS. Then we get unit integral multiplied
by amplitude of sampled continuous time signal u(kTS)δ(kTS). This value will be held by
integrator until the next Dirac impulse. Of course, the past held values will be integrated out
firstly. The sampler could be written in Fourier series (2.4)

m(t) =
1
TS

(
1 + 2

∞∑
k=1

cos(kωSt)
)
. (2.4)

The model is illustrated in fig. 3.
The amplitude and phase changes due to ZOH filter are important fact which can be

easily forgotten. For tested process with transfer function

G(s) =
1

(10s+ 1)(s+ 1)2
(2.5)
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Fig. 3: Model of the sampler and the shape filter.

the Bode diagram (see fig. 4) is solved before and after conversion to discrete domain. The
final transfer function after conversion from continuous time domain is

G0(jω) =
1
TS

1− exp(−jωTS)
jω

1
(10jω + 1)(jω + 1)2

. (2.6)

Let us see what happen if the sampling period has been set ten times longer, i. e. TS = 1 s.
The final changes of amplitude and phase are the same in Nyquist frequency because of
the different Nyquist frequency. Although the phase is absolutely bigger, i. e. −360◦ (for
TS = 0.1 s) and −325◦ (for TS = 1 s). The amplitude is again absolutely bigger, i. e. −112 dB
(for TS = 0.1 s) and −53 dB (for TS = 1 s).

Fig. 4: Bode diagram of continuous and sampled system in dB for sampling period TS = 0.1 s.

In conclusion, the results are related to the problem of the choice of the quantization
precision for the set of short sampling period. According to theoretical solution of Signal to
Noise Ratio (SNR) [21] for A/D converters, it is interesting to compare the SNR for the
chosen quantizer resolution with the drop of the amplitude [56]. In our example, the change of
sampling period from TS = 1 s to TS = 0.1 s is expressed in amplitude drop −59 dB in Nyquist
frequency. Therefore, the precision of A/D converters should follow the amplitude drop to get
the same undisturbed results. In [21], we can find that −62 dB is the theoretical SNR value
for resolution QRES = 10 bits. For example if 8 bits A/D converter for the sampling period
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TS = 1 s has been chosen as the minimum appropriate resolution, than after the reduction to
TS = 0.1 s, the A/D resolution should be increased too.

2.3 Chapter Summary

In this chapter several reasons why the quantization effect must be considered when dealing
with digital process control are presented.

1. It is shown when and why the quantization error could not be treated as the independent
white or Gaussian noise.

2. It is shown why the definition of persistent excitation signal must be augmented due to
quantization effect1.

3. Next, strong relationship between the setting of sampling period and the choice of quan-
tizers resolution for given process is shown too.

To sum up, the existing digital control theory does not deal enough with the real process
control problems: quantization effect is applied when the sampling period is short or the
quantizer resolution are not considered at all [22, 23, 44]. That is why the presented thesis is
focused on overcoming of quantization effect.

3 The Aims of Ph.D. Thesis

The previous chapter has shown two main problems which are connected. The quantization
effect due to A/D and D/A converters is always presented in the digital control process. Its
influence increases when the sampling period is short. The setting of sampling period is the
second problem. The reason for short sampling period is explained in chapter 7. These two
problems together with basic assumptions of adaptive controller lead to determine the main
aims of thesis:

• To build an adaptive optimal controller which is suitable for implementation into in-
dustrial controller, i. e. controller enables fast and numerically stable real-time solution.

• To improve current optimal controller, i. e. to explain the purpose of installed universal
weighted matrix; to extend the universal weighted matrix and to include the integral
action into universal weighted matrix.

• To explore briefly identification methods which are generally known with purpose to
overcome the quantization effect.

• To show why and where the existing published solution of controller for the setting of
short sampling period are unacceptable in real process control.

• To show identification based on neural networks in comparison with other identification
methods for the same setup of the controller.

• To explain where and why the identification method based on neural networks is better
than other methods for following assumptions: the quantization effect is presented and
the sampling period is short.

• To build user comfortable tool which enables us to verify control algorithms before final
implementation of algorithm into industrial controller.

1This part is completely excluded from an abridged version of Ph.D. Thesis.



10 Identification

4 Identification

In chapter 2 we have worked on issue called quantization effect. To reduce the quantization
effect in identification process it is necessary to know all possibilities of identification in closed
loop. Therefore, the overview of identification is introduced.
Basically, three adaptive control schemes [4, 33] exist. The open-loop adaptive control is

the first scheme where the system outputs are not measured and the adaptation comes from
the change of an environment around the system only (e. g. gain-scheduling system). Next,
direct adaptive control assumes the given reference model (closed-loop) and the performance
is given according to difference between the reference behaviour and the real behaviour (e. g.
Model Reference Adaptive Control–MRAC). In our case, the third scheme will be applied.
Indirect adaptive control allows firstly real-time estimation (identification) of the process and
then the controller is solved in real-time according to identified model of the real process.

State of the Art

Recursive Least Square method (RLS) is well-known identification method. Therefore, it is a
part of many published books, for example in Åström and Wittenmark’s Adaptive Control [4].
Besides this book, Åström and Wittenmark’s Computer–Controlled Systems [5] holds forth
on theory and design of process identification. Ljung’s System Identification [34] is the basic
book about classic identification theory for user. Next, Bobál et al. [13] and Horáček [29]
present practical aspects of identification in closed loop. Numerical stability of the algorithm
is presented in Böhm [14].
The aim of thesis is also to present identification based on neural networks. Haykin’s Neural

Networks [26] shows a comprehensive foundation of neural networks and their application.
Modern view of neural networks as self-optimizing non-linear model is given by Cichocki and
Unbehauen [17]. Mathematical properties of neural networks are presented in Fine’s book [20].
Narendra presents in his work [37, 38] neural networks for control theory and practise and
Chen and Narendra [16] present adaptive control using neural networks.

4.1 Unconventional Overview of Identification Methods

Linear and even nonlinear black-box identification can be divided into three elements [56]:

• model structure of identified process,
• regression vector of observed data,
• and algorithm for minimization.

4.1.1 Model Structure

The model structure should be chosen according to the observed system. From linear point
of view, the structures of model are called: FIR (Finite Impuls Response), ARMA (Auto-
Regressive Moving Average model), ARX (Auto-Regressive model with eXogenous input–from
econometrics), ARMAX (Auto-Regressive Moving Average model with eXogenous input), OE
(Output Error model) etc. All of them are built from generally known formula [34, 41]

A(q)y(k) =
B(q)
F (q)

u(k) +
C(q)
D(q)

e(k). (4.1)

The state-space (SS) representation is also taken as a different structure model which is power-
ful for its general MIMO definition.



4.1 Unconventional Overview of Identification Methods 11

In nonlinear case, the structures are called NFIR, NARX, NOE, NARMA, NBJ or nonlinear
state-space representation where “N” generally means nonlinear model.
The new group of above mentioned structures represents the improved structure (the nu-

merical precision). It is always given by new operator which comprises the linear combination
of previous operators. The best example is given by [30] where the commonly used q time-shift
operator and Z-transform operator z (which represents complex value and is used in frequency
domain z = exp(jw)) are linearly combined into new δ and γ operators in δ-model domain in
way:

δ =
q − 1
TS

, γ =
z − 1
TS

. (4.2)

4.1.2 Regression Vector

The regression vector ϕϕϕ is inseparable part of the model structure but we can look at it as
a new part which brings us a possibility of choice. For example the difference between ARX
and OE model is just in the difference treatment of data representation. The ARX model uses
past measured output data yk while the OE model uses estimated output data ŷk. Generally
speaking, we can treat the data as we want to build another model that is not named yet. For
example the past output and input can be filtered as in the δ-model domain. Next example
is given in CLOE (Closed Loop Output Error) identification method where both estimated
inputs ûk and outputs ŷk are used and the criterion minimizes squared error between measured
y(k + 1) and estimated ŷ(k + 1) output in closed loop.

4.1.3 Algorithm

The algorithm is used to minimize the criterion. It is the last option we have. That means
any of presented linear or non-linear structures can be minimized by many algorithms (the
exception is possible). The criterion is usually given as the quadratic (L2 norm) but can be
either L1 norm or L∞ as well [42]

V (θθθ) = E ‖y(k + 1)− ĝ(ϕϕϕ(k), θθθ(k))‖2 (4.3)

where the expectation operator E is overwritten for practical purposes as the sample mean
(stationary process)

V (θθθ) = limN→∞
1
N

N∑
k=1

‖y(k + 1)− ĝ(ϕϕϕ(k), θθθ(k))‖2 (4.4)

and the “best” parameter vector is given by

θθθ∗ = arg min
θθθ

V (θθθ). (4.5)

The generalization of every minimization algorithm is given in next iterative equation which
is basically suggested in [17]

w(k + 1) = w(k) + η(k)d(k + 1) (4.6)

where new updated parameters w(k + 1) in step (k + 1) are influenced by past parameters
w(k) in previous step of iteration and the direction vector of minimization d(k + 1) in length
given by its learning rate η(k).
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Recursive Least Square Method

The RLS method is well known for identification but we do not need to look at this as the
unique method for minimization. It is useful to see the comparison between accelerated LMS
and RLS [17]. We can rewrite the modification of general minimization algorithm in eq. (4.6)
to RLS version with exponential weighting λe, i. e.,

θθθ(k + 1) = θθθ(k) + η(k)e(k + 1)P(k)ϕϕϕ(k + 1) (4.7)

where we can see that the learning rate parameter η(k) and convergence matrix P(k) are now
time-variant

P(k + 1) =
1
λe

[
P(k)− P(k)ϕ

ϕϕ(k + 1)ϕϕϕT(k + 1)P(k)
λe +ϕϕϕT(k + 1)P(k)ϕϕϕ(k + 1)

]
η(k) =

(
λe +ϕϕϕT(k + 1)P(k)ϕϕϕ(k + 1)

)−1
.

(4.8)

LD-FIL Matrix Decomposition

LD-FIL as a robust algorithm could be used mainly for following attributes: numerically
stable algorithm and easy implementation for real-time solution. LD-FIL (lower-diagonal-
upper) decomposition algorithm [14] could be used in form as it is illustrated in eq. (4.9)p11 p12 p13

p21 p22 p23
p31 p32 p33

 =
 1 0 0

g12 1 0
g13 g23 1

d1 0 0
0 d2 0
0 0 d3

1 g12 g13
0 1 g23
0 0 1

 (4.9)

where G denotes lower triangular matrix, GT denotes upper triangular matrix and D denotes
diagonal matrix. Parameters on the main diagonal mainly influence identification. Matrix P
is given by

P(k + 1) =
[
ΦT(k)Φ(k) +ϕ(k + 1)ϕT(k + 1)

]−1
= G(k + 1)D(k + 1)G(k + 1)T.

(4.10)

Well-known LD-FIL matrix decomposition is derived by lemma for matrix inversion (see
eq. (4.11)) G(k + 1) denotes lower-triangular matrix

(A+BCD)−1 = A−1 −A−1B(C−1 +DA−1B)−1DA−1 (4.11)

and then [50, 52]

G(k + 1)D(k + 1)G(k + 1)T = GDGT −GDGTϕ(1 +ϕT · · ·
GDGTϕ)−1ϕTGDGT

= G
[
D−DGTϕ(1 +ϕTGD · · ·

GTϕ)−1ϕTGD
]
GT

= G
[
D−DfifTD

1
1 + fTDf

]
GT

(4.12)

where an auxiliary vector f is given f(k) = GT(k)ϕ(k + 1).
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Back-propagation Algorithm

The back-propagation learning algorithm is built on gradient vector [50], the vector of the first
partial derivatives

g(w) = ∇V (w) =
∂V (w)

∂w
=

n∑
i=1

∂V

∂ei

∂ei

∂wi

=
n∑

i=1

ei
∂ei

∂wi

(4.13)

where energy V = 1
2

∑
e2 is the scalar function.

To clarify the search direction [17], let us focus on the first-order Taylor’s series approxi-
mation (i. e. f(x) − f(x0) ∼= f ′(x0)(x − x0)) of energy function V (w) near the point w(k)
where k = 0, 1, 2, . . .

V (w(k + 1))− V (w(k)) ∼=
(
w(k + 1)−w(k)

)T∇V (w(k)) (4.14)

and according to eq. (4.6) and (4.13) we can write

g(w(k))
(
w(k + 1)−w(k)

)T
= g(w(k))

(
η(k)d(k + 1)

)T
< 0 (4.15)

and this steady descent condition is satisfied in simplest way according to steepest descent
algorithm

η(k) > 0, d(k + 1) = −g(w(k)). (4.16)

Therefore the back-propagation learning algorithm can be summarized as (compare to eq.
(4.6))

w(k + 1) = w(k)− η(k)g(w) + α (w(k)−w(k − 1)) . (4.17)

4.2 Chapter Summary

Chapter 4 can be considered as the most important part of the thesis. The innovative overview
of all identification methods is discussed (see section 4.1) with the purpose to present all
available methods that can overcome the quantization effect. According to innovative view of
identification methods, the contribution of chapter is given in following description of three
modifiable possibilities in black-box identification:

• model structure of identified process,
• regression vector of observed data
• and algorithm for minimization.

Model Structure’s Influence on Quantization Effect

The approximation property of nonlinear model based on sigmoidal function (NARX) is known
[9, 18, 45]. Mentioned approximation property can be used in the real digital process control
where quantizers are always inbuilt. In such real case, the quantizers are not ideal. Narrow
Code, Missing Code, Wide Code, Integral nonlinearity ow Hystereze nonlinearity [21] are
included to the previously described “ideal” quantization error (see fig. 5).
The smooth approximation property of neural networks is advantageously used because

of the permanent present of different types of nonlinearities in originally linear processes.
Next, Baron [9] pointed out that total number of parameters used in the networks (h + 2)m
is considerably smaller than in the classical case (polynomial or spline). Parameter m means
the number of the basis functions (nodes) and h is the dimension of the input.
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Fig. 5: Differential nonlinearities of quantizers.

Regression Vector’s Influence on Quantization Effect

The second possible choice in each identification method is the regression vector [56]. The
results in chapter 7 justify the idea that the gradient algorithm applied to NARX structure
of neural networks works better than RLS algorithm applied to ARX structure in q time-shift
or δ-model domain. The reason can be theoretically explained: δ-model are built to overcome
finite word-length precision of used (saved) variables in controller but quantizers decrease the
precision more. It is a fact that values of parameters with finite mantisa and exponent are
easily saved when converging to zero (δ-model domain) than to one (q time-shift domain). The
input-output round off error (due to A/D and D/A converters) cannot be overcame sufficiently
in q time-shift domain and in δ-model domain either.

Algorithm’s Influence on Quantization Effect

This section explains the difference between performance of two types of iterative minimization
algorithms. Generally, we can conclude that two rates of algorithms exist [56]:

• quadratic rate based on Newton method where the Gauss-Newton algorithm and RLS
algorithm belong;

• gradient based called also steepest descent method where the back-propagation algo-
rithm and conjugate gradient algorithm belong.

No other basic methods are applicable and spread. The choice of direction of quadratic based
and gradient based algorithm influences the rate how quickly the minimum is reached.
Let us consider the rate of convergence. The huge steps into the point where the mi-

nimum is expected surely spare time for solution. For example RLS algorithm automatically
solves both the learning rate and the direction vector of minimization. The relationship with
Newton algorithm is given in Hessian matrix which is solved for RLS according to well-known
lemma for the matrix inversion (see eq. (4.11)). The problems arise when the minimization
performance (loss function) is disturbed by noise and the minimum is unclear or even not
unique. Due to disturbed data (but not by Gaussian or white noise) we cannot expect (from
the probability theory) that after sufficient time the performance minimum will be reached.
Exactly in this case related to the short sampling period and the low quantization resolution,
too big steps in minimization which are automatically solved (see RLS algorithm (4.7)) lead
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to the instability of parameters in wider range than gradual controllable minimization steps
(see simple gradient method (4.17)).

5 Linear Optimal Controller

The term optimal from Latin “optimus” always represents the critical point which is equal
to the maximum or minimum. These two states are called the extremes and mathematical
methods searching for the extremes are very old. The first notice comes from Aristotle in the
fifth century before Christ. He solved isoperimetric problem as the extreme problem. In the
year 1696, Johann Bernoulli proposed the brachistochrone problem, which asks what shape a
wire must be for a bead to slide from one end to the other (without friction) in the shortest
possible time only accelerated by gravity. The brachistochrone problem was one of the earliest
problems posed in the calculus of variations. Finally, Pontryagin’s maximum principle transfers
optimal theory to control theory in 1962.
Thesis is focused on adaptive optimal controller. The objective of optimal control theory is

to find optimal control rule according to chosen performance (e. g. quadratic or time minimum
in followed example) and according to given conditions (e. g. fixed points solution). The best
solution (control rule) is the permanent advantage of optimal control theory. Any other solution
must be worse or mostly the same for the same conditions and chosen performance.
The mathematics closed the optimal theory in the late 60s when the Moon was objective of

cosmic flights (Sputnik and Apollo projects) but many problems remain unsolved. Presented
thesis shows linear optimal controller, i. e. LQ controller in adaptive version. LQ controller
is augmented and improved in quadratic performance via its weight matrix. LQ controller is
designed to achieve the aim at its possibility of direct implementation into industrial controller
(e. g. Programmable Logic Controller–PLC).

State of the Art

The linear optimal theory is the fundamental part of many books. Anderson and Moore’s
Optimal Control [1] could be called the basic book. The optimal control as complete theoretic
analysis and synthesis is generally presented there. Mathematical optimal theory and short
historical summary is presented in Krupková [31]. Optimal control as a part of modern control
theory is presented in Štecha and Havlena’s textbooks [25, 43]. Bellman’s dynamic program-
ming is used to clearly derive LQ and LQG controller in Andersen and Stoustrup’s lecture
notes [2]. Camacho [15] presents optimal control theory and its industrial application.
The aim of thesis is to present an adaptive version of linear optimal controller where

Åström and Wittenmark’s Adaptive Control [4] is the basic book. The standard principles
and structures of adaptive control are presented there. Kubík et al. [32] presents optimal and
adaptive systems. Next, practical aspects of self-tuning controllers are presented in Bobál et
al. [13] and practical process control is given by Pivoňka [39].

5.1 Adaptive LQ Controller

Adaptive LQ controller is solved according to identified ARX (NARX) model in each step
and according to minimization of the quadratic performance [13, 48]. Identification ensures
adaptation in the real time. Quadratic performance is defined by

J = xT(N)Qx(N) +
N−1∑
k=0

qy

(
w(k)− y(k)

)2
+ qu

(
u(k)− u0(k))

2 (5.1)



16 Linear Optimal Controller

where w(k) denotes desired value, y(k) denotes output of the process, u(k) denotes action
value, u0(k) denotes action value for offset elimination and it is equal to desired value. Para-
meter qy (qu) denotes weight for process output (input), k = 0 denotes the first step while the
minimization is used and xT(N)Qx(N) denotes the minimum at the last step N .

5.2 Universal Weight Matrix

The quadratic performance can be rewritten into more suitable form [49, 50, 53]

J =
N∑

k=0

zT(k)Qz(k) (5.2)

where zT(k) = S(k)[u(k),ϕϕϕ(k − 1), w(k), u0(k)]. Next, zT(k) = S(k)z(k − 1). Weight matrix
Q is more universal. The weight matrix (5.5) is implemented to the quadratic performance
in equations (5.9), (5.13) and (5.15). This means the matrix can accomplish the quadratic
performance or even an incremental weighting and an integral action. We will work with
pseudo-state matrix S = [Su,Sϕϕϕ,Sw,Su0 ] defined by equations (5.3) and (5.4)

Su =
[
1 0 0 b0 0 . . . 0

]T
Sw =

[
0 0 0 0 . . . 1 0

]T
Su0 =

[
0 0 0 0 . . . 0 1

]T (5.3)

and

Sϕϕϕ =



0 0 0 . . . 0 0
1 0 0 . . . 0 0
0 . . . 0 . . . 0 0
b1 . . . br a1 . . . an

0 . . . 0 1 . . . 0
...
. . .

... 0
. . . 0

0 . . . 0 0 . . . 0


. (5.4)

Universal weight matrix can be written in many forms to designer’s expectation. The idea to
use nonstandard state-vector z allows to build universal quadratic performance. An example
of universal weight matrix shows equation (5.5)

Q =



qu −qu 0 . . . 0 . . . 0 −qu

−qu qu 0 . . . 0 . . . 0 0
0 0 qu . . . 0 . . . 0 0
0 0 0 . . . qy 0 −qy 0
...

...
...
. . . 0 qy −qy 0

0 0 0 . . . −qy −qy qy 0
−qu 0 0 . . . 0 . . . 0 qu


. (5.5)

In this example, the incremental weighting of the input and output is included as well. This
solution leads to smoother reaction of both action value (weighted by qu) and output error
(weighted by term qy). Finally, the mutual ratio between qy and qu decides according to designer
demands between fast controller reaction and smooth action value.
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5.3 Integral Action Implementation

It is well-known that integral action is not included in original definition of linear optimal
controller. That is why the integral action is basically solved as parallel action to basic action
of controller. Integral is defined as

ui(t) =
∫ t

0
e(τ)dτ

ui(q) =
1

1− q−1
e(q).

(5.6)

The solution is given in next equation

ui(k) = e(k) + ui(k − 1) (5.7)

which can be included into the quadratic performance

u(k)
u(k − 1)
u(k − 2)

y(k)
y(k − 1)
y(k − 2)

ui(k)
w(k)
u0(k)



T 

qu 0 0 0 0 0 0 0 −qu

0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 qy 0 0 0 −qy 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 qi 0 0
0 0 0 −qy 0 0 0 qy 0
−qu 0 0 0 0 0 0 0 qu





u(k)
u(k − 1)
u(k − 2)

y(k)
y(k − 1)
y(k − 2)

ui(k)
w(k)
u0(k)


(5.8)

where we weighted integral action by term qiu
2
i .

5.4 LD-FIL Application

The method for the minimization in the each step ahead is known and it is described in next
equations [49, 51, 50]. The performance is given by

J(N − 1) = zT(N − 1)STQSz(N − 1)
= zT(N − 1)Hz(N − 1).

(5.9)

We can simplify the vector z for this moment in form zT = S[u,ϕϕϕ]. Hence,

J(N − 1) =
[
u,ϕϕϕ

] [
Huu Huϕϕϕ

Hϕϕϕu Hϕϕϕϕϕϕ

] [
uT

ϕϕϕT

]
=

[
uHuu +ϕϕϕHϕϕϕu, uHuϕϕϕ +ϕϕϕHϕϕϕϕϕϕ

] [
uT

ϕϕϕT

]
= uHuuu

T +ϕϕϕHϕϕϕuu
T + uHuϕϕϕϕϕϕ

T +ϕϕϕHϕϕϕϕϕϕϕϕϕ
T

= uHuuu
T + 2uHuϕϕϕϕϕϕ

T +ϕϕϕHϕϕϕϕϕϕϕϕϕ
T.

(5.10)

Next, derivative of J(N − 1) with respect to u is

∂J(N − 1)
∂u

= 2Huuu
T + 2Huϕϕϕϕϕϕ

T = 0. (5.11)
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Tab. 1: LQ Controller Solved in Iteration Method

Step Equation Notes

1. H∗ = Hϕϕϕϕϕϕ −HTuϕϕϕH−1
uuHuϕϕϕ recursively solves lost function

2. GDGT = H LD-FIL decomposition

3. u(k) = −G−1
uuGuϕϕϕϕϕϕ(k − 1) solves action value

The action value is solved by equation

uT = −H−1
uuHuϕϕϕϕϕϕ

T = u (5.12)

which we can use in previous equation (see eq. (5.10)).
Hence,

min[Ψ(N − 1)] = z̄T(N − 1)
(
Hϕϕϕϕϕϕ −HTuϕϕϕH−1

uuHuϕϕϕ

)
z̄(N − 1) (5.13)

where z̄T(N − 1) is zT(N − 1) without u(N − 1) and

H =
[
Huu Huϕϕϕ

Hϕϕϕu Hϕϕϕϕϕϕ

]
. (5.14)

We can simply see that H is the symmetric matrix and consecutively the next minimization
step (N − 1) is defined by

min[Ψ(N − 1)] = z̄T(N − 1)H∗z̄(N − 1)
+ zT(N − 1)Qz(N − 1)

(5.15)

where matrix H∗ = Hϕϕϕϕϕϕ −HTuϕϕϕH−1
uuHuϕϕϕ is defined at step (N). Using LD-FIL decomposition

(see (4.9)) for matrix G instead of H, where H = GDGT. We can rewrite the quadratic
performance to the triangular factor quadratic norm

‖G[u(k),ϕϕϕ(k − 1), w(k), u0(k)]T‖2. (5.16)

Now, it is simple to find control law u(k) with influences on the first row only of the minimi-
zation at step k

Guuu(k) +Guϕϕϕϕϕϕ(k − 1) = 0 (5.17)

where the minimum is given ‖Gϕϕϕϕϕϕϕϕϕ(k − 1)‖2 and Guu, Guϕϕϕ and Gϕϕϕϕϕϕ are sub-matrices of G.
Finally, the control law is given by

u(k) = −G−1
uuGuϕϕϕϕϕϕ(k − 1). (5.18)

LQ is solved at the each one step ahead. Tab. 1 shows recursively solved LQ iteration method.

5.5 Chapter Summary

Chapter Linear Optimal Controller brings us the improved LQ controller which satisfies given
aims (see chapter 3). The contribution of this chapter is as follows:

1. Improved LQ controller is presented which is able to work in the real-time (section 5.4).
Deterministic time of its solution in each step is short. That is why it can be implemented
in industrial controller.
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2. The universal matrix is augmented by incremental weighted inputs and outputs (section
5.2). Next, new solution of integral action is presented (section 5.3).

To sum up, the existing linear optimal controller is rebuilt with the purpose to use it in
industrial controller. The same setup of the controller is necessary assumption for correct
comparison of investigated identification methods.

6 MATLAB Toolbox

The implementation of the control algorithms from the simulation environment into industrial
controller is necessary to solve effectively in relation to minimization of implementation errors.
The capability of algorithm transmission into the industrial controller is important and transmis-
sion time should be minimal. Is it obvious that the control algorithms are designed and deve-
loped in simulation environment first and they are implemented into the industrial controllers
in the real production processes afterwards.
The object of this chapter is an analysis of possibilities of the control algorithm direct

implementation from MATLAB, i. e. today’s most applicable simulation environment in au-
tomation, into PLC, i. e. programmable logic controller.
The advantages of the direct implementation of control algorithms are given first of all by

the minimum of implementation errors in comparison with the indirect implementation. The
development of heterogenous control algorithms becomes faster. The choice of optimal control
algorithm is relatively simple due to its proven functionality in the real processes.

State of the Art

The new MATLAB/Simulink toolbox of direct implementation is one of practical benefits of
presented thesis. The handbooks of direct implementation can be found in works of Pivoňka
[39], Middleton and Goodwin [36] and Horáček [29].
The MathWorks’ Real-Time Workshop and Real-Time Windows Target [35] present the

standard inbuilt real-time communication between the simulation environment and the real
process. The basic principles in the real-time systems are presented by Årzén course [3].
Programmable Logic Controller in use and its inbuilt communication protocols are pub-

lished in B&R help [8].

6.1 Basic Description of Solution

The real-time communication between MATLAB/Simulink and the real process controlled by
PLC is aimed at time decreasing required for the transmission of algorithm from simulation
environment to the control of the real process. At the beginning, the control algorithm is
developed in simulation environment, e. g. MATLAB. Afterwards the control algorithm is
directly tested on the real process [28].
The direct implementation of control algorithms is based on three steps [54, 57] which are

mutually connected and form explicit way how to implement any control algorithm from the
simulation environment into industrial controllers. General view on direct implementation is
presented in three steps as fig. 6 shows.
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Fig. 6: The scheme of complex solution of three steps of direct implementation from
MATLAB/Simulink into PLC.

6.2 New Real-Time Toolbox

The real-time communication between simulation environment and real process is an advan-
tageous tool. It is important to have in mind that one nondeterministic cycle in communication
should not stop or crash the whole operating system only for the fact that soft real-time system
is used [3]. The suggested real-time algorithm is shown in fig. 7.

Fig. 7: Control sequence of implemented real-time algorithm.

The synchronization is given from PC-CPU clock. The algorithm sampling period TS is
equal to the cycle time. Each cycle is sum of two times TA and TB. Time TA represents
algorithm reaction time and time TB represents the rest of cycle time. Algorithm 1 shows how
the algorithm could be implemented to the system and describes algorithm reaction time TA
in details.

6.3 Chapter Summary

The presented chapter deals with possibilities of complex algorithm implementation from si-
mulation environment MATLAB/Simulink into industrial controller–PLC. The contribution
can be seen in suggested solution of direct implementation which effectively spare time needed
for control algorithm implementation. It also minimizes eventuality of implementation errors.
The new real-time communication toolbox enables us to verify very quickly many diffe-
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Algorithm 1 Real-time communication (TA = T1 + T2 + T3 + T4 + T5)

1: to read process output from PLC (T1)
2: to transfer process output to MATLAB/Simulink (T2)
3: to solve control algorithm action value (process input) in MATLAB/Simulink according to process
output and desired value (T3)

4: to transfer process input from MATLAB/Simulink (T4)
5: to write process input into PLC (T5)

rent control algorithms directly on the real process without need of sequential implementation
of each algorithm.
The suggested solution is advantageous due to its independence of communication proto-

col because it consists of many accessible communication protocols including Ethernet, RS
232, CAN or Profibus. These possibilities are given by applied PVI interface made by B&R
Automation Company.
This chapter gives information about alternative real-time communication toolbox in envi-

ronment MATLAB/Simulink instead of using inbuilt Real-Time Workshop. The new toolbox is
stable, easy to implement and understandable for users, robust and applicable for verification
and testing of complex heterogenous algorithms for technological process control.

7 Commented Results

This chapter shows achieved simulation results (from MATLAB/Simulink ver. 6.5) and real
results (from real physical models controlled via PLC B&R CP360–Pentium 266 MHz). The
simulation is extended with purpose to be more closer to real process control instead of using
“pure” simulation, i. e. the action value is bounded to ±10 V, quantizers given by A/D and
D/A converters are added etc. In regulation, the output response is not the only single scale
for the measurement of the control quality. That is why the action value in time is shown too.
Graphs with parameters of the model in time and loss function in time can be also shown but
graphs with process input and output in time testify enough the control quality.

Setting of Short Sampling Period: Firstly, the reason for decreasing of the sampling pe-
riod is shown in the simulation experiment2 (published in papers [50, 53]).

Choice of Quantizers Resolution: The idea of decreasing sampling period has already
been justified. The problem arises when the simulation is extended with a quantization
effect2 (published in papers [52, 53]).

Using the New Real-Time Toolbox: Ethernet TCP/IP and serial link have been used in
laboratory experiment2 (published in papers [54, 55, 57, 58]).

Real Process Control Results: The comparison of classical RLS identification algorithm
of the third order ARX structure with LD-FIL decomposition in q time-shift domain and
nonlinear ARX identification (NARX) based on NN for the real process is shown2 (pub-
lished in paper [52]). The real digital process control results have proven the simulation
results (see paper [50]).

δ-Model ARX Identification versus NN Based Identification: The second possible cho-
ice of identification method (in comparison with [50, 52, 53]) is the Recursive Least Square

2This part is completely excluded from an abridged version of Ph.D. Thesis.
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method (RLS) applied to δ-model of ARX structure [56]. The simulation results have
already justified the idea that the gradient algorithm applied to Nonlinear ARX structure
(NARX) of neural net have worked better. This conclusion means that δ-model are built
to overcome finite word-length precision of used variables in controller only [23, 44, 22].
The values with finite mantisa and exponent are easily stored when converging to zero
(δ-model domain) than to one (q time-shift domain). The input-output round off error
cannot be overcame sufficiently.

The real results have been obtained for process given by

FE(s) ≈
0.9

(10.1s+ 1)(0.9s+ 1)2
. (7.1)

Fig. 8 and 9 show the real process response and disturbance rejection together with controller
action value. The process output (every upper sub-figures) and input (every lower sub-figures)
are shown for desired step set to +2 V at time 60 s. Disturbances have disturbed proces all the
time. 10 bits quantizers have been used. Exponential weighting has been se to λe = 0.95. LQ
controller has been used with incremental weighting matrix Q where parameters have been
set to qu = 0.005, qy = 1 and qi = 0.1.
The sub-section presents the comparison of the real process control for NN identification

and classical identification where NN identification is better for assumed conditions:

• short sampling period TS to produce faster disturbance rejection and process response;

• highly decreased numerical precision due to used A/D and D/A converters as a necessary
part in practical regulation.

Fig. 8: The real result of closed-loop identification based on δ-model with adaptive LQ controller.
The sampling period has been set TS = 0.1 s. A/D and D/A converters have been set to 10 bits.

The reasons why the identification based on neural networks has been significantly suc-
cessful in the real process control in comparison with simulation control can be explained as
follows:
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1. in real process control, the several nonlinearities (hystereze nonlinearity, integral nonli-
nearity, etc.) which have not been included into simulation are better approximated by
NARX structure than ARX structure;

2. the classical identification sampling period cannot be too short otherwise identified
transfer function loses the correct estimation of the real process.

Fig. 9: The real result of closed-loop identification based on NN with adaptive LQ controller. The
sampling period has been set TS = 0.1 s. A/D and D/A converters have been set to 10 bits.

8 Conclusion

The presented thesis is motivated by problems which arise from differences between “pure”
simulation results and real results after implementation. The same control algorithm is imple-
mented both into simulation environment (MATLAB/Simulnik) and into industrial controller
(PLC B&R). The differences are shown in chapter 2 where the choice of quantizers resolution
and the setting of sampling period are two options which need to be discussed. Naturally, the
reduction of negative influence of quantization effect and objective reasons for short sampling
period have lead to the aims of thesis.
Adaptive control scheme is assumed because of reasons mentioned in chapter 5. It com-

prises the advantage of linear optimal controller with several identification methods. Liner
optimal controller gives an optimal solution according to quadratic performance (therefore it
is called LQ controller where L means Linear gain and Q means Quadratic performance). In
identification, several classical methods are compared with neural network based identification.
The contribution of presented thesis is:

• Adaptive LQ controller is suitable for implementation into industrial cont-roller–PLC
(i. e. fast and numerically stable real-time solution is ensured due to LD-FIL decomposi-
tion). The issue has been published in [48, 49, 51].

• LQ controller is improved by universal weighted matrix Q where integral action and
incremental weighting are included. This issue has been published in [49, 50].
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• New and unconventional overview of identification methods is presented with purpose to
overcome the quantization effect. The issue has been published in [56].

• The existing solution of controller for the setting of short sampling period published in
recent scientific papers is not longer acceptable. The issue has been published in [52].

• Several comparisons of different identification methods are shown in case where the
quantization effect plays an important role. The issue has been published in [50, 52].

• Benefits of using identification based on neural networks instead of other methods are
presented for assumptions: the quantization effect is presented and the sampling period
is short. The issue has been published in [50, 52, 53].

• New real-time toolbox in MATLAB/Similink enables verifying of control algorithms be-
fore its final implementation into industrial controller much faster than before. The issue
has been published in [54, 55, 57, 58]. B&R company has been interested in our solution
published in paper [54], therefore our paper has been cited in company journal Automo-
tion vol. 12, 2003, pp. 11. Next, paper [57] has been cited in Czech journal Automatizace
vol. 12, 2003, pp. 795.

Thesis aims have been clearly fulfilled.
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Abstract: Presented thesis is focused on adaptive linear optimal controller which is built and
improved with the purpose to use controller in the real process control. The issue of overcoming
the quantization effect for decreased sampling period is investigated. Several identification
methods working in real-time are compared with identification based on neural networks.
Application of neural networks shows the best results on that issue.

Abstrakt: Disertační práce je zaměřena na návrh adaptivního lineárního optimálního re-
gulátoru za účelem jeho využití pro řízení reálných procesů. V této souvislosti je vyšetřována
problematika potlačení kvantizačního efektu při předpokladu krátké periody vzorkování. Použité
identifikační metody pracující v reálném čase jsou porovnávány s identifikační metodou zalo-
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