Přístupnostní navigace
E-přihláška
Vyhledávání Vyhledat Zavřít
Detail publikace
MEZINA, A. BURGET, R.
Originální název
Chest X-ray Image Analysis using Convolutional Vision Transformer
Typ
článek ve sborníku ve WoS nebo Scopus
Jazyk
angličtina
Originální abstrakt
In recent years, computer techniques for clinical image analysis have been improved significantly, especially because of the pandemic situation. Most recent approaches are focused on the detection of viral pneumonia or COVID-19 diseases. However, there is less attention to common pulmonary diseases, such as fibrosis, infiltration and others. This paper introduces the neural network, which is aimed to detect 14 pulmonary diseases. This model is composed of two branches: global, which is the InceptionNetV3, and local, which consists of Inception modules and a modified Vision Transformer. Additionally, the Asymmetric Loss function was utilized to deal with the problem of multilabel classification. The proposed model has achieved an AUC of 0.8012 and an accuracy of 0.7429, which outperforms the well-known classification models.
Klíčová slova
deep learning, multilabel classification, chest Xray images, Vision transformer, InceptionNetV3
Autoři
MEZINA, A.; BURGET, R.
Vydáno
25. 4. 2023
Nakladatel
Brno University of Technology, Faculty of Electrical Engineering and Communication
Místo
Brno
ISBN
978-80-214-6154-3
Kniha
Proceedings II of the 29th Conference STUDENT EEICT 2023 Selected papers
Edice
1
ISSN
2788-1334
Periodikum
Proceedings II of the Conference STUDENT EEICT
Stát
Česká republika
Strany od
161
Strany do
165
Strany počet
5
URL
https://www.eeict.cz/eeict_download/archiv/sborniky/EEICT_2023_sbornik_2_v2.pdf
BibTex
@inproceedings{BUT183898, author="Anzhelika {Mezina} and Radim {Burget}", title="Chest X-ray Image Analysis using Convolutional Vision Transformer", booktitle="Proceedings II of the 29th Conference STUDENT EEICT 2023 Selected papers", year="2023", series="1", journal="Proceedings II of the Conference STUDENT EEICT", pages="161--165", publisher="Brno University of Technology, Faculty of Electrical Engineering and Communication", address="Brno", doi="10.13164/eeict.2023.161", isbn="978-80-214-6154-3", issn="2788-1334", url="https://www.eeict.cz/eeict_download/archiv/sborniky/EEICT_2023_sbornik_2_v2.pdf" }