Přístupnostní navigace
E-přihláška
Vyhledávání Vyhledat Zavřít
Detail publikace
MEZINA, A.
Originální název
Impact of loss function on multi-frame super-resolution
Typ
článek ve sborníku ve WoS nebo Scopus
Jazyk
angličtina
Originální abstrakt
Nowadays, one of the most popular topics in image processing is super-resolution. This problem is getting more actual even in security, since monitoring cameras are everywhere and in the case of an incident, it is necessary to recognize a person from records. A lot of approaches exist, which are able to reconstruct image, and the most of them are based on deep learning. The main focus of this work is to analyze, which loss function for neural networks is more effective for real-world image reconstruction. For this experiment chosen architecture and dataset are used for multi-frame super-resolution for 8 scaling.
Klíčová slova
super-resolution, image processing, loss function, deep learning
Autoři
Vydáno
27. 4. 2021
Nakladatel
Brno University of Technology, Faculty of Electrical Engineering and Communication
Místo
Brno
ISBN
978-80-214-5942-7
Kniha
Proceedings I of the 27th Conference STUDENT EEICT 2021: General papers
Edice
1
Strany od
601
Strany do
605
Strany počet
5
URL
https://www.eeict.cz/eeict_download/archiv/sborniky/EEICT_2021_sbornik_1.pdf
BibTex
@inproceedings{BUT171575, author="Anzhelika {Mezina}", title="Impact of loss function on multi-frame super-resolution", booktitle="Proceedings I of the 27th Conference STUDENT EEICT 2021: General papers", year="2021", series="1", pages="601--605", publisher="Brno University of Technology, Faculty of Electrical Engineering and Communication", address="Brno", isbn="978-80-214-5942-7", url="https://www.eeict.cz/eeict_download/archiv/sborniky/EEICT_2021_sbornik_1.pdf" }