Detail publikačního výsledku

Realizability of the endomorphism monoid of a semi-cascade formed by solution spaces of linear ordinary n-th order differential equations

CHVALINA, J.; CHVALINOVÁ, L.

Originální název

Realizability of the endomorphism monoid of a semi-cascade formed by solution spaces of linear ordinary n-th order differential equations

Anglický název

Realizability of the endomorphism monoid of a semi-cascade formed by solution spaces of linear ordinary n-th order differential equations

Druh

Článek recenzovaný mimo WoS a Scopus

Originální abstrakt

We construct a certain minimal extension of the action of the aditive monoid of all non-negative integers on the phase set formed by n-dimensional solution spaces of n-th order linear homogeneous ordinary differetnial equations allowing to endowe the mentional phase set with a structure of an extensive oin space, goodendomorphism monoid of which coincides with the endomorphism monoid of the obtained semi-cascade.

Anglický abstrakt

We construct a certain minimal extension of the action of the aditive monoid of all non-negative integers on the phase set formed by n-dimensional solution spaces of n-th order linear homogeneous ordinary differetnial equations allowing to endowe the mentional phase set with a structure of an extensive oin space, goodendomorphism monoid of which coincides with the endomorphism monoid of the obtained semi-cascade.

Klíčová slova

Linear differential operator, semi-cascade, linear ordinary differential equation.

Klíčová slova v angličtině

Linear differential operator, semi-cascade, linear ordinary differential equation.

Autoři

CHVALINA, J.; CHVALINOVÁ, L.

Rok RIV

2011

Vydáno

01.02.2010

ISSN

1337-6365

Periodikum

Journal of Applied Mathematics

Svazek

2010

Číslo

1

Stát

Slovenská republika

Strany od

211

Strany do

223

Strany počet

13

BibTex

@article{BUT46810,
  author="Jan {Chvalina} and Ludmila {Chvalinová}",
  title="Realizability of the endomorphism monoid of a semi-cascade formed by solution spaces of linear ordinary n-th order differential equations",
  journal="Journal of Applied Mathematics",
  year="2010",
  volume="2010",
  number="1",
  pages="211--223",
  issn="1337-6365"
}