Detail publikačního výsledku

On a nonlocal boundary value problem for first order linear functional differential equations

OPLUŠTIL, Z.; LOMTATIDZE, A.; ŠREMR, J.

Originální název

On a nonlocal boundary value problem for first order linear functional differential equations

Anglický název

On a nonlocal boundary value problem for first order linear functional differential equations

Druh

Článek recenzovaný mimo WoS a Scopus

Originální abstrakt

Efficient sufficient conditions are established for the solvability and unique solvability of the boundary value problem for first order linear functional differential equations. u'(t)=l(u)(t)+q(t) u(a)=h(u)+c, where l is a linear bounded operator, h is a linear bounded functionals, q is a Lebesgue integrable function and c is a real number.

Anglický abstrakt

Efficient sufficient conditions are established for the solvability and unique solvability of the boundary value problem for first order linear functional differential equations. u'(t)=l(u)(t)+q(t) u(a)=h(u)+c, where l is a linear bounded operator, h is a linear bounded functionals, q is a Lebesgue integrable function and c is a real number.

Klíčová slova

Boundary value problem, functional differential equations

Klíčová slova v angličtině

Boundary value problem, functional differential equations

Autoři

OPLUŠTIL, Z.; LOMTATIDZE, A.; ŠREMR, J.

Vydáno

20.09.2007

Nakladatel

Publishing House GCI

ISSN

1512-0015

Periodikum

Memoirs on Differential Equations and Mathematical Physics

Svazek

2007

Číslo

41

Stát

Gruzie

Strany od

69

Strany do

85

Strany počet

16

BibTex

@article{BUT43999,
  author="Zdeněk {Opluštil} and Aleksandre {Lomtatidze} and Jiří {Šremr}",
  title="On a nonlocal boundary value problem for first order linear functional differential equations",
  journal="Memoirs on Differential Equations and Mathematical Physics",
  year="2007",
  volume="2007",
  number="41",
  pages="69--85",
  issn="1512-0015"
}