Detail publikačního výsledku

On computational stability of explicit schemes in nonlinear engineering dynamics

VALA, J.; JAROŠOVÁ, P.

Originální název

On computational stability of explicit schemes in nonlinear engineering dynamics

Anglický název

On computational stability of explicit schemes in nonlinear engineering dynamics

Druh

Stať ve sborníku v databázi WoS či Scopus

Originální abstrakt

Physical analysis of problems of engineering dynamics leads typically to hyperbolic systems of partial differential equations of evolution of 2nd order with some nonlinear terms, supplied with Dirichlet and Neumann boundary conditions together with some interface ones and with Cauchy initial conditions. Their numerical treatment needs coupling the finite element (or similar) method with the method of discretization in time. The preference of distributed and parallel computations for large problems, e. g. of multiple contacts of moving deformable bodies, stimulates the analysis of convergence and stability properties of explicit integration schemes, as simple, e ective and robust as possible. This paper demonstrates such research direction, significant for practical calculations, on the conditional stability of a model simple explicit algorithm, motivated by the central difference method, implemented ad hoc e. g. in the LS-DYNA software package.

Anglický abstrakt

Physical analysis of problems of engineering dynamics leads typically to hyperbolic systems of partial differential equations of evolution of 2nd order with some nonlinear terms, supplied with Dirichlet and Neumann boundary conditions together with some interface ones and with Cauchy initial conditions. Their numerical treatment needs coupling the finite element (or similar) method with the method of discretization in time. The preference of distributed and parallel computations for large problems, e. g. of multiple contacts of moving deformable bodies, stimulates the analysis of convergence and stability properties of explicit integration schemes, as simple, e ective and robust as possible. This paper demonstrates such research direction, significant for practical calculations, on the conditional stability of a model simple explicit algorithm, motivated by the central difference method, implemented ad hoc e. g. in the LS-DYNA software package.

Klíčová slova

finite difference method; computational dynamics

Klíčová slova v angličtině

finite difference method; computational dynamics

Autoři

VALA, J.; JAROŠOVÁ, P.

Rok RIV

2024

Vydáno

01.09.2023

Nakladatel

American Institute of Physics

Místo

Melville (USA)

ISBN

978-0-7354-4182-8

Kniha

ICNAAM 2021 Proceedings

Svazek

2849

Číslo

1

Strany od

370004-1

Strany do

370004-4

Strany počet

4

URL