Detail publikace

The RoScan Thermal 3D Body Scanning System: Medical Applicability and Benefits for Unobtrusive Sensing and Objective Diagnosis

CHROMÝ, A. ŽALUD, L.

Originální název

The RoScan Thermal 3D Body Scanning System: Medical Applicability and Benefits for Unobtrusive Sensing and Objective Diagnosis

Anglický název

The RoScan Thermal 3D Body Scanning System: Medical Applicability and Benefits for Unobtrusive Sensing and Objective Diagnosis

Jazyk

en

Originální abstrakt

The RoScan is a novel, high-accuracy multispectral surface scanning system producing colored 3D models that include a thermal layer. (1) Background: at present, medicine still exhibits a lack of objective diagnostic methods. As many diseases involve thermal changes, thermography may appear to be a convenient technique for the given purpose; however, there are three limiting problems: exact localization, resolution vs. range, and impossibility of quantification. (2) Methods: the basic principles and benefits of the system are described. The procedures rely on a robotic manipulator with multiple sensors to create a multispectral 3D model. Importantly, the structure is robust, scene-independent, and features quantifiable measurement uncertainty; thus, all of the above problems of medical thermography are resolved. (3) Results: the benefits were demonstrated by several pilot case studies: medicament efficacy assessment in dermatology, objective recovery progress assessment in traumatology, applied force quantification in forensic sciences, exact localization of the cause of pain in physiotherapy, objective assessment of atopic dermatitis, and soft tissue volumetric measurements. (4) Conclusion: the RoScan addresses medical quantification, which embodies a frequent problem in several medical sectors, and can deliver new, objective information to improve the quality of healthcare and to eliminate false diagnoses.

Anglický abstrakt

The RoScan is a novel, high-accuracy multispectral surface scanning system producing colored 3D models that include a thermal layer. (1) Background: at present, medicine still exhibits a lack of objective diagnostic methods. As many diseases involve thermal changes, thermography may appear to be a convenient technique for the given purpose; however, there are three limiting problems: exact localization, resolution vs. range, and impossibility of quantification. (2) Methods: the basic principles and benefits of the system are described. The procedures rely on a robotic manipulator with multiple sensors to create a multispectral 3D model. Importantly, the structure is robust, scene-independent, and features quantifiable measurement uncertainty; thus, all of the above problems of medical thermography are resolved. (3) Results: the benefits were demonstrated by several pilot case studies: medicament efficacy assessment in dermatology, objective recovery progress assessment in traumatology, applied force quantification in forensic sciences, exact localization of the cause of pain in physiotherapy, objective assessment of atopic dermatitis, and soft tissue volumetric measurements. (4) Conclusion: the RoScan addresses medical quantification, which embodies a frequent problem in several medical sectors, and can deliver new, objective information to improve the quality of healthcare and to eliminate false diagnoses.

Plný text v Digitální knihovně

Dokumenty

BibTex


@article{BUT167314,
  author="Adam {Chromý} and Luděk {Žalud}",
  title="The RoScan Thermal 3D Body Scanning System: Medical Applicability and Benefits for Unobtrusive Sensing and Objective Diagnosis",
  annote="The RoScan is a novel, high-accuracy multispectral surface scanning system producing colored 3D models that include a thermal layer. (1) Background: at present, medicine still exhibits a lack of objective diagnostic methods. As many diseases involve thermal changes, thermography may appear to be a convenient technique for the given purpose; however, there are three limiting problems: exact localization, resolution vs. range, and impossibility of quantification. (2) Methods: the basic principles and benefits of the system are described. The procedures rely on a robotic manipulator with multiple sensors to create a multispectral 3D model. Importantly, the structure is robust, scene-independent, and features quantifiable measurement uncertainty; thus, all of the above problems of medical thermography are resolved. (3) Results: the benefits were demonstrated by several pilot case studies: medicament efficacy assessment in dermatology, objective recovery progress assessment in traumatology, applied force quantification in forensic sciences, exact localization of the cause of pain in physiotherapy, objective assessment of atopic dermatitis, and soft tissue volumetric measurements. (4) Conclusion: the RoScan addresses medical quantification, which embodies a frequent problem in several medical sectors, and can deliver new, objective information to improve the quality of healthcare and to eliminate false diagnoses.",
  address="MDPI",
  chapter="167314",
  doi="10.3390/s20226656",
  howpublished="online",
  institution="MDPI",
  number="22",
  volume="20",
  year="2020",
  month="november",
  pages="1--22",
  publisher="MDPI",
  type="journal article in Web of Science"
}