Přístupnostní navigace
E-přihláška
Vyhledávání Vyhledat Zavřít
Detail publikačního výsledku
ŠEDA, M.; ŠEDA, P.
Originální název
Minimisation of Networks Based on Computational Geometry Data Structures
Anglický název
Druh
Stať ve sborníku v databázi WoS či Scopus
Originální abstrakt
In this paper, we deal with a problem of finding the shortest connection of points placed in the Euclidean plane. The traditional strategy starts from the complete graph and finds its minimum spanning tree. However, this approach is proportional to the second power of the number of vertices, and therefore not very efficient. Additionally, if instead of the minimum spanning trees, minimum Steiner trees are considered, then the total length of the final network is decreased. Since the Steiner tree problem is NP-hard, in the case of large instances, heuristics must be used. Here, we propose a Delaunay triangulation-based deterministic heuristic and show that it gives very good results in short times.
Anglický abstrakt
Klíčová slova
spanning tree, Steiner tree, NP-hard problem, heuristic, Voronoi diagram, Delaunay triangulation
Klíčová slova v angličtině
Autoři
Rok RIV
2019
Vydáno
11.11.2018
Místo
Moskva
ISBN
978-1-5386-9361-2
Kniha
2018 10th International Congress on Ultra Modern Telecommunications and Control Systems and Workshops (ICUMT)
Strany od
143
Strany do
147
Strany počet
5
BibTex
@inproceedings{BUT149746, author="Miloš {Šeda} and Pavel {Šeda}", title="Minimisation of Networks Based on Computational Geometry Data Structures", booktitle="2018 10th International Congress on Ultra Modern Telecommunications and Control Systems and Workshops (ICUMT)", year="2018", pages="143--147", address="Moskva", doi="10.1109/ICUMT.2018.8631247", isbn="978-1-5386-9361-2" }