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Abstract:

This thesis presents a framework for developing machine-learned prediction models design of steel
connections, with a focus on maintaining the reliability level required by Eurocode design proce-
dures. The work responds to the increasing use of finite element analysis (FEA) in structural joint
design, where traditional analytical or empirical design equations are often insufficient to describe
nonlinear and interaction-dependent behavior. The study outlines the motivation to replace sim-
plified analytical expressions with data-driven models trained on validated numerical simulations,
while preserving reliability in line with the requirements of structural engineering design practice.

A column web in transverse compression is selected as a representative example to illustrate the
proposed workflow. The procedure begins with automated generation of a large dataset through
parametric numerical design calculations using IDEA StatiCa Connection, where more than 9 000
FE models were computed. The dataset covers a broad range of geometric and material parameters,
and each simulation was evaluated according to a newly developed equivalent plastic strain limit
criterion. The definition of this strain limit is one of the central contributions of the thesis, as it
directly influences the calculated resistance and the consistency of the resulting machine learning
models.

A detailed discussion is provided on the identification of a reliable equivalent plastic strain
limit for steel structural components. The thesis compares recommendations given in different
parts of Eurocode 3 and highlights the inconsistencies that currently exist. A new plastic strain
limit proposal is derived based on numerous physical tests, numerical simulations and numerical
design calculations for the net section failure of plates with notches and bolt holes, which is deemed
to be the governing case. The proposed limit is clear and simple; it enables reproducible resistance
determination in numerical design calculations and serves as a solid basis for subsequent data-
driven modeling.

The thesis further introduces a complete process for the verification, validation, and reliability
assessment of machine learning models in structural engineering applications. The process is based
on the principles of EN 1990 and the draft standard FprEN 1993-1-14, ensuring that predictive
models meet equivalent reliability levels to traditional design methods. Neural networks were
selected as the primary modeling technique due to their ability to approximate complex nonlinear
relationships. Using Python-based automation and systematic hyperparameter tuning, models
were trained to predict resistances with a coefficient of variation below 2 % compared with FEA
results. The study also investigates the influence of dataset coverage, feature scaling, and model
regularization on prediction accuracy and reliability.

The results demonstrate that when trained on sufficiently rich and consistent data, machine
learning models can replicate the results of detailed numerical simulations with no bias and negli-
gible coefficient of variation. However, the reliability of such models remains limited to the range
of input parameters represented in the training dataset. The thesis emphasizes that careful dataset
generation, transparent preprocessing, and continuous verification are prerequisites for trustworthy
machine learning applications in structural engineering. A discussion is provided on extending the
range of validity through geometric similarity scaling.

The thesis concludes with recommendations for how machine learning can be integrated into
structural design practice while keeping the same level of safety and transparency required by engi-
neering standards. Several directions for future research are suggested: (i) improving the quality of
finite element models used for training, including possible expansion through geometric similarity
scaling or the use of simplified models with coarser meshes trained to produce high-quality results;
(ii) enhancing reliability assessment by considering objectively safer FEA modifications, such as
reducing the plastic strain limit or neglecting strain hardening; and (iii) creating well-documented
datasets of experimental studies and numerical simulations, and encouraging researchers to share
their results — a practice increasingly important in today’s data-driven research environment.

The developed framework helps to connect advanced numerical simulations with practical design
procedures and opens the path toward the next generation of efficient and reliable design tools.
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Chapter 1

Introduction

The aim of this thesis is to develop a framework for creating machine-learned predictions for
components of steel connections. It does not attempt to provide these precise predictions or
formulas, as their derivation will likely require several more years of research.

The thesis shows a workflow and highlights the critical areas that should be addressed on
an example of a column web in a transverse compression component. The process includes the
generation of data for machine learning, whose quality must be better than the current code
formulas, the establishment of a neural network, and the reliability assessment of predictions. It
is assumed that the data will be generated by finite element analyses.

The thesis focuses on two main areas, which are aligned with the projects and research papers
by the author:

e Failure criterion of plastic strain limit for numerical design calculation of steel connections
by finite element analysis.

e The process of data generation by numerical design calculation and machine learning, with
recommendations for the best performance.

1.1 Problem statement

There are two methods in the use of current design codes, such as EN 1993-1-8 [1]:
e Analytical methods
e Curve-fitting method

Analytical methods are mathematical equations derived from physical phenomena based on
predefined assumptions. In contrast, curve-fitting methods identify the variables that influence the
results but do not explicitly define the underlying assumptions or dependencies. These methods
are typically calibrated to a specific set of experiments or validated numerical simulations and
are commonly used, e.g., in the design of hollow section joints. The curve-fitting methods are
not popular in the scientific community because the mechanisms and theory behind them are not
apparent. The curve-fitting methods are only as good as the input data, i.e., the experiments,
in which regard the curve-fitting method is similar to machine learning. Although there was an
attempt to generalize the design of hollow section joints using the component method [2], this
effort was never completed.

There are two major drawbacks of these traditional methods:

1. The phenomenon is too complex and cannot be correctly described by simple formulas. The
assumptions and dependencies of variables are no longer apparent from the formulas.

2. The assumptions, e.g., first-order analysis, may be insufficient to achieve a good fit with the
real-world behavior.

Therefore, in many cases of the design of steel joints, the formulas are too complex, and regular
engineers no longer recognize the mechanics and theory behind the design formulas. Often, there
is no background to the code development, such as EN 1993-1-8, and scientific papers are not

7



8 CHAPTER 1. INTRODUCTION

available to everyone. Despite their complexity, code formulas often provide very large dispersion
to the experimental results or numerical simulations.

The range of validity of code formulas are not stated except for isolated cases, e.g., hollow
section joints. However, the code formulas, used for decades, were derived from a limited number
of experiments containing specimens of sizes reasonable for experimental testing. For example, the
formulas for the column web panel in transverse compression were derived from a database of tests
with the load resistance between 175 and 980 kN [3]. These tests obviously did not cover the whole
range of available hot-rolled cross-sections in terms of size or web slenderness. The sizes of welded
cross-sections may wildly vary from those tested. As a result, the engineering practice believes
that the code formula is reliable for any H-shaped cross-sections while the code was developed only
for a reasonable range of validity. Obviously, since 1989, many more tests were performed, and the
range of validity was expanded, but concerns of misuse of code formulas for very different cases
still remain.

With the advancements of computer performance, numerical simulations, and artificial intel-
ligence, it is nowadays possible to generate enough data to create a machine-learned algorithm
with a much lower coefficient of variation to numerical simulations and experimental results. Even
though the numerical models can be validated only on the available set of experiments, numerical
simulations are able to expand the range of validity with higher precision than simplified formulas
that neglect some physical phenomena. However, it should be kept in mind that the resulting set
of weights and biases in the neural network or derived formulas also has drawbacks:

e They are totally ineligible to humans

e They provide good results only in the range of validity used for training. Extrapolation
cannot be used.
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Figure 1.1: Comparison of machine-learning prediction example for column web panel in
transverse compression near the unstiffened end

The machine-learned formulas can be seen as a modern form of curve-fitting, where the de-
pendencies are no longer searched for by humans but by the activation functions of deep neural
networks. The accuracy of predictions within the range of validity where the sufficient amount of
data is provided is striking, surpassing any reasonable prediction by human-derived curve-fitting
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formulas; see the reliability graph in Fig. 1.1. The coeflicient of variation (CoV) in this example is
only slightly higher than the expected numerical error. In essence, the quality of machine-learned
prediction is nearly the same as the quality of finite element analysis that was used to generate
the dataset.

Deep neural networks are able to predict the datasets extremely closely, but two issues need to
be tackled:

e Creation of a reliable dataset with a sufficient range of validity;

e Building an understanding of artificial intelligence in the engineering community and creating
a set of rules preventing misuse and dangerous design.

1.2 Finite Element Analysis

There is an ever-increasing reliance on numerical calculations to replace traditional design proce-
dures prescribed in design standards such as EN 1993-1-1 [4] and EN 1993-1-8 [1]. These standards
primarily address basic and idealized cases; however, real structures often involve irregular geome-
tries or loading conditions that fall outside their scope. For decades, finite element analysis (FEA)
has been widely employed to determine internal forces in structural members. These members and
their joints are subsequently verified using code-based formulas, typically integrated into structural
design software.

Nowadays, FEA has become the dominant method for determining internal forces in structural
systems, with alternative approaches being virtually obsolete. Nevertheless, it will always be crucial
to validate numerical results through simplified hand calculations and by inspecting the deformed
shape of the structure. However, the checks of members and connections are often performed by
code formulas despite the fact that finite element analysis may provide much smaller variability
than these simple formulas. The creation of reliable numerical model for design of a substructure,
members, or connections is a complicated process that was formalized in FprEN 1993-1-14:2024
[5]. Generally, the following steps are necessary:

1. Mesh sensitivity
2. Verification

3. Validation

4. Reliability analysis

Each step will be explained in detail in the following chapters. Only thoroughly investigated
models can be used for reliable structural design in practice.
Important to note is also the distinction between:

e Numerical simulation
e Numerical design calculation

Numerical simulation attempts to replace the physical experiment. After numerical simulation
is proven to coincide well with the experiment, its parameters may be slightly modified to cre-
ate a large database of simulated experiments that are much cheaper to produce. Furthermore,
they are not encumbered by the uncertainties of physical experiments and may provide a more
straightforward correlation to physical parameters. Such simulations may be further analyzed to
produce design formulas. To obtain design resistance, numerical simulation must be subjected
to reliability analysis according to EN 1990 — Annex D [6] that produces a partial safety factor
vrE. Numerical simulation typically contains solid finite elements that allow for precise modeling
of geometry. True-stress true-strain material models are typically used for validation with the
experiment. However, the parametric studies may transition to statistically confirmed material
models, such as [7], [8] for hot-rolled steels or [9] for cold-formed steels.

Numerical design calculation directly provides the design resistance. It is usually a much simpler
model allowing fast calculation of a large number of load effects. Typically shell or beam elements
are used and the geometry is simplified with nominal dimensions. Bi-linear material models are
used with perfectly plastic or only slight hardening, which is meant to improve convergence of the
iteration process rather than to utilize the reserve of steel.
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1.2.1 Failure Criteria

Numerical design calculations should have clearly defined criteria that determine model load resis-
tance. Failure criteria of numerical models are [5]:

e Cl: The maximum load of the load-deformation response — typically obtained by buckling
e (C2: The load corresponding to a limiting deformation or strain criterion

Failure criterion C2 is nowadays heatedly discussed in technical committees for Eurocode devel-
opment. The new Eurocode FprEN 1993-1-14:2024 Furocode 3 — Design of steel structures — Part
1-14: Design assisted by finite element analysis [5] did not bring a clear definition. The issue
of the plastic strain limit for numerical design calculation was moved to the relevant annexes of
other parts of Eurocode 3. That may be ideal provided that every committee will invest research
capacities into determining the highest strain limit for the given steel grade and failure mode that
still provides sufficient reliability.

However, a clear criterion that can be used in algorithms is needed. For decades, in mechanical,
aerospace, and civil engineering, the plastic strain limit of 5% has been used for structural steel
with sufficient ductility (at least 15% for standardized tensile tests [10]). This limit is not only
for the material ductility but also for the finite element formulation that may produce increasing
error with increasing plastic strains. This is especially true for commonly used finite elements and
analysis types:

e Some solid finite elements are poor in plasticity and sensitive to mesh distortion. The well-
known culprit is the linear tetrahedral element that should be avoided for regions where
yielding is expected. On the other hand, this element allows for easy meshing of complicated
geometries.

e Shell finite elements with commonly used settings remain with constant thickness neglecting
the Poisson effect (necking) in one direction.

¢ Small displacement analysis (geometrially linear) is sufficient for many engineering problems.
However, for increasing deformations and strains, only geometrically nonlinear analysis can
provide precise results.
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Figure 1.2: Design material models according to EN 1993-1-14 [5] for S 235, S 355, and S 460

Furthermore, the chosen material model and failure criteria should consider material and ge-
ometry tolerances given in EN 1090-2 [11]. Tolerances in this standard may be assumed as the



1.3. RELIABILITY 11

maximum imperfections. Anything worse should be discarded. Eurocode assumes normal distri-
bution for geometrical and material properties for structures within these tolerances; see Annex
E of FprEN 1993-1-1 [12]. It must be shown that using nominal material properties, nominal
geometry (while plate thickness is typically the most important with the highest coefficient of
variation) without manufacturing tolerances with the selected failure criteria provide the reliable
design resistance in terms of EN 1990 [6]; see Eq. (2.30).

For the failure modes of yielding and tensile rupture, the governing parameter of numerical
design calculation is the plastic strain limit. It is assumed that geometry is modeled as perfect,
material model with nominal properties listed in EN 1993-1-14, Cl. 5.3.2 [5] is used (see Fig. 1.2):

e linear elastic — perfectly plastic without strain hardening (A)
e linear elastic — perfectly plastic with a nominal plateau slope for numerical stability (B)

e linear elastic — linear hardening plastic material model (quad-linear material model with
strain hardening) [7] (C)

If the plastic strain limit is constant, it can be assumed that a linear elastic — perfectly plastic
material model without strain hardening will always be the safest option. The material model
with a nominal plateau slope for numerical stability as specified in EN 1993-1-14 [5] (with strain-
hardening slope Ey;, = E/10000) provides only an extremely small increase in strength. It can be
assumed that the quad-linear material model (C) provides the most dangerous results if the plastic
strain limit is expected around 5 %.

The goal is to determine a reliable plastic strain limit for plates and hot-rolled steel profiles. The
most dangerous case is assumed to be the net section failure with the highest stress concentrators
allowed in execution standard EN 1090-2 [11] with the largest net-section reduction allowed in
EN 1993-1-8 [1], and therefore, it was selected for thorough investigation. It can be argued that
strain limit is also important in welds and in the heat-affected area, however, the resistance of
welds and their imminent vicinity may be calculated by code formulas and is not investigated in
this work.

Finding a reliable strain limit for numerical design calculation is the central topic of project
Inter Excellence LUAUS23114 of the research team from Czech Technical University in Prague,
Brno University of Technology, and University of Tennessee, Knoxville. The outcomes of this
research are shown primarily in Chapter 3.

1.3 Reliability

In recent years, the level of detail in numerical modeling has significantly increased. Not only are
global structural analyses performed using FEA, but members and joints are now frequently mod-
eled with shell elements to capture local effects. The outputs of such analyses—primarily stresses
and strains—are directly utilized for design verification, enabling the construction of structures
based on these advanced simulations. For instance, IDEA StatiCa Connection alone performs over
one million numerical design calculations each month. These models encompass both standard
configurations, such as end-plate connections, and highly complex cases where an engineer would
need to bend the code clauses and use engineering judgment extensively. The need to assess the
reliability of FEA that is used for such a vast number of designs is clear.

Eurocodes were developed with a reliability target 5 = 3.8 with the reference period of 50 years,
which corresponds to the yearly probability of failure approximately 1076. The same reliability
should be ensured by numerical design calculations, which is almost never done and the guidelines
on how to assess reliability are not well-known and publicly available. This thesis presents a
step-by-step procedure based on several documents — Eurocode background [13], SAFEBRICTILE
project Final report [14], and most importantly SAFEBRICTILE deliverable D1.1 [15].

The reliability assessment of numerical design calculation requires a set of physical experiments.
The design resistance is drastically affected if the number of specimens is low; see Fig. 1.3. Ideally,
more than 100 specimens are available, which can be assumed as sufficient to use the minimum
value of kg,, which is used as a multiplier of the coefficient of variation Vx. The reliability target
B is divided between the probability of loads by the factor ap = 0.7 and resistances by the factor
ar = 0.8. This way, the reliability may be tackled separately. According to Tab. D2 of EN 1990
[6], kgn, = ar- B = 0.8-3.8 = 3.04 for an infinite number of specimens (which can be assumed 100).
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Figure 1.3: Values of kg, based on number of specimens

On the other hand, the specimens and their corresponding numerical design calculations should
be divided into batches, which typically decreases the coefficient of variation of experimental re-
sistance to model resistance ratio.

The reliability assessment procedure is described in detail in Section 2.6 and evaluated for
Eurocode design procedure, a new proposed analytical method, and machine-learned predictions
in Section 4.6.

1.4 Machine Learning

Recent development of neural networks providing machine-learned formulas allows very precise
model predictions taking into account all input variables. Machine learning is included in many
open-source packages, such as PyTorch [16] for the Python programming language. The program-
ming of neural networks is well documented, and simple programs can therefore be constructed
easily with the help of large language models (LLMs), such as ChatGPT [17]. Anyone can nowa-
days simply define a neural network that is able to provide predictions as an alternative to a design
formula. However, several aspects need to be kept in mind:

e Training data should be high-quality. In cases where finite element analysis is used to generate
them, the reliability of training data should be at or above the Eurocode target.

e Due to the nature of activation functions, the machine learning predictions can be used only
inside a defined range of validity (where training data are available in sufficient density). The
range of validity must be stated and strictly adhered to. If any generality is required from
the neural network, the number of data points must typically be in tens of thousands.

e Machine-learning predictions will introduce additional error to the error of finite element
analysis. It is expected that the reliability of predictions will be lower than the reliability
of the original training data. Reliability analysis must be repeated for the machine-learning
predictions.

The ultimate goal is to provide a framework to enhance prediction accuracy while maintaining
Eurocode-level reliability in structural engineering design. All tools are at our disposal now. The
following chapters provide examples and the author’s experience with this goal in mind.

Three important topics are discussed in detail in Sections 2.4, 2.5 and Chapter 4.7:

e Data generation and scaling
e Neural network architecture to obtain the best predictions

e Interpretation and explainability of prediction behavior



Chapter 2

Methods

The author works as a Product Owner at IDEA StatiCa and his responsibility is the reliability of
component-based finite element model (CBFEM) calculations. He is involved in a large number
of comparisons to Eurocode [1], AISC [18] and the other six design codes across the world [19],
[20], [21]. In the author’s work, differences between design formulas and component-based finite
element models are apparent in several cases. This indicates that either the numerical model or
the design formula is wrong. The author’s job is to find out which is the case and if needed to
improve the numerical model. Two cases are presented here:

e Component Column web in transverse compression
e Tensile rupture of a weakened plate

The column web in transverse compression project started in 2022 with a project by colleagues
from Brno University of Technology [22]. Here, CBFEM was confirmed by more detailed ANSYS
[23] model with solid finite elements SOLID 186. The author and his colleagues continue with this
project; several dozen experiments were performed and articles published [24], [25], [26]. This work
continued with a joint project of IDEA StatiCa and ISISE, Portugal, with a focus on column web
in shear. Inevitably, the component column web in transverse compression is also present [27]. All
these studies show significant differences between design formulae in the first [1] and second [28§]
generation of Eurocode, and AISC Specification [18]. In the case of significant compressive force in
the column, the design codes even provide unsafe results compared to the design numerical model
in Abaqus. Therefore, the definition of the component column web in transverse compression can
be further improved.

The tensile rupture (net section failure) of a weakened plate shows a smaller deviation between
code predictions and the experiments. The experimental resistance is typically simply equal to
the net section area multiplied by ultimate strength with small variations caused by stress con-
centrations and the presence of shear stresses causing the disruption of the uniaxial stress state.
The primary concern is then the calculation of net section area [29] for staggered bolt holes,
which seem to provide much less conservative values than the code formula for regular bolt-grid,
as will be shown later. The experiments of weakened plates are relatively simple, which allows
performing large sets with multiple parameters like steel grade, plate thickness, or stress concentra-
tions. Furthermore, the variability of crucial parameters was investigated and is nowadays codified
in EN 1993-1-1:2024 [12] with the boundaries given by manufacturing tolerances in EN 1090-2
[11].The primary objective of these tests was to find a reliable plastic strain limit for structural
steel that could be used for any type of steel structures and joints for the failure modes of yielding
and tensile rupture. The improvement of the formulas for net-section failure is outside the scope of
this thesis and rather a numerical-analytical method is used to generate samples for Monte-Carlo
simulation.

2.1 Design codes and state-of-the-art

2.1.1 Web panel in transverse compression

The component column web panel in transverse compression is present in unstiffened beam-to-
column connections or at locations of points of load concentrations, i.e., patch loading. This

13
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component is described in Eurocode EN 1993-1-8:2005, Cl. 6.2.6.2 [1], EN 1993-1-8:2024, Cl. A.6
[28], or AISC 360-22, CL. J.10 [18]. The state-of-the-art is described in detail in papers [24], [30]
and it will be shortly also introduced here.

!
COLUMN COLUMN ‘

C;l-'BEAM | BEAM“;D Ql BEAM ' BEAM-|D 1

¥
=

r COLUMN

BEAM BEAM
)

(a) (b) (c) (d)

Figure 2.1: Examples of web panel in transverse compression active component: welded (a) and
bolted (b) beam-to-column connection, roof connection (c), and load near the unstiffened end(d)

[30]

The elastic behavior could be mathematically derived, but the phenomenon of yielding is ac-
tually complicated and parameters are set empirically from a limited number of experiments [31].

In EN 1993-1-8 [28], the CWC resistance is obtained as the minimum of web yielding and web
buckling expressions based on an effective width into which the load is dispersed; the formulation
does not explicitly account for proximity to a free member end. EN 1993-1-5 [32] adopts an effective-
length concept that embeds plate-buckling effects and distinguishes between loading at one flange,
at both flanges, and near an unstiffened end. While broadly safe, parts of these models rely on
empirical parameters calibrated over limited slenderness ranges, and simplifications in the assumed
boundary conditions (primarily simply supported web-to-flange) may lead to conservatism. [33,
34]

The American Specification AISC 360-22 [18] treats web local yielding with expressions equiv-
alent to Eurocode away from member ends, and provides separate formulations for web buckling
(for load acting from both sides) and crippling (for load acting from one side only). The resistances
are halved when the load is applied near the unstiffened end. For web local yielding, the boundary
is at a distance from the member end that is less than or equal to the full nominal depth of the
member, h. For web local crippling and compression buckling, the boundary is at a distance from
the member end that is less than h/2.

Recent experimental campaigns and validated GMNIA studies have sharpened the understand-
ing of the actual mechanisms [24]. For loading away from member ends, plastic strains concentrate
at the flange—web transition and, for typical rolled IPE sections, local buckling seldom governs the
resistance when realistic fixity at the junction is present. Interaction with axial force can, however,
significantly diminish column web panel resistance—an effect not fully captured by the current
EN 1993-1-8 [28] reduction factor k..

Balazs [30] addressed a case still weakly codified: transverse compression applied close to an
unstiffened end. Combining full-scale tests on IPE 200 specimens with GMNIA across IPE 100-600,
the end-distance effect and its dependence on web slenderness was quantified. When the load is
very close to the unstiffened end (e.g., e &~ 0.1h), the resistance may reduce to about 60% of the
far-from-end case, and buckling becomes more likely due to the loss of restraint at the free edge.
An analytical procedure consistent with current design philosophies is proposed to capture these
effects.

This phenomenon is therefore ideal as a test case for finite element analysis and subsequent
machine learning predictions.

Only the procedure of FprEN 1993-1-8:2024, C1. A.5 [28] is described below, because the other
code implementations are very similar and older.

The design resistance is the minimum of the yielding and buckling resistances:

w kwc be w bwe we
Fc,wc,Rd = i fy, (21)
Tnmo
kwc be w bwe we
Fc,wc,Rd S “ POt fy, (22)

M1
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The spreading angle for the determination of b.ys . starts at the weld outer edge and is 1:1
through an end plate and 2.5:1 through the flange and web-to-flange radius (of hot-rolled) or leg
size of fillet weld (of welded) of the compressed member; see Fig. 2.2.
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Figure 2.2: Spreading angle through the rolled transversely compressed member [30]

Reduction factor w depends on the ratios of bending moments of the beams on the opposite
side of the column, the transformation parameter 8 that can be taken from Cl. 7.2.3 [28]. In the
dataset, the forces coming from the opposite sides will be equal, and therefore, w = 1 as can be
seen from Tab. A.1. [2§]

Further variables are ¢, column web thickness, fy .., column web yield strength, and yp0 =
1.0, partial safety factor.

Buckling failure mode is determined by the buckling reduction factor p. Buckling of the web
in transverse compression is based on the following assumptions:

e Web is pinned into the flange [35]
e The effective width, bey¢ ., is irrelevant for the calculation of critical force

e The web plate is assumed to be infinitely long. Or in other words, the end is far enough that
it does not affect the buckling resistance nor the critical force.

e If any stiffeners are nearby, but not directly under the point of compression, their contribution
is disregarded.

The buckling curve was modified in the second generation of Eurocode [28] to reflect Winter
curve [36], which actually made buckling even more likely to govern the design.

1.0, if A\, <0.673
pP=A 5 . (2.3)
i, > 0673
Relative slenderness is calculated:
3 w kwc beff,w towe fy,wc
Ap = 0.932 \/ Bi. (2.4)

The following paragraphs are not included in the code [28], but they are included in the paper in
preparation [30]. There an analytical approach is presented based on the optimization algorithms
and engineering judgment. This serves as a very good comparison to machine-learning.

In [30], the author and his colleagues have shown how this design method could be adapted to
better reflect the numerical simulations performed with ANSYS [23] in [37].

Spreading angle

Firstly, the results of materially nonlinear analysis (MNA) at 5% plastic strain, which is assumed to
simulate the design yielding resistance, were used to obtain the effective width, i.e., the spreading
angle set to 2.5:1 in codes. Two methods were used:
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1. Division of numerical resistance by web thickness and yield strength

Fri,mna
besfu = =5 (2.5)
we " Jy,we

2. Distribution of stresses normal to the transverse load at the web directly below the rounding.
Only the positive stresses were taken into account in the equivalent area averaging; see
Fig. 2.3.

‘\ actual distribution
of the vertical
normal stress

™

equivalent area

heff.\\

Figure 2.3: Determination of the effective width beys ., using normal stress o [30]

The comparison of effective widths for IPE cross-sections determined using the current Eu-
rocode approach with the spreading angle 2.5:1 (EC3), division of numerical resistance (Fgi mna),
and the distribution of normal stress (o,) is shown in Fig. 2.4.

250

200

150 1

100 +

Effective width bes,w [mm]

50

100 200 300 400 500 600
IPE

Figure 2.4: Effective width determined by Eurocode and numerical methods

It can be seen that the approach using o, is the safest, which is probably caused by a more
complicated stress distribution including also shear stresses and o, cannot be directly compared
to yield stress. Fig. 2.5 shows the reliability graphs. These contain number of specimens n, bias b
(see Eq. (2.32)), and variation coefficient Vs (see Eq. 2.36) for quick first order reliability method
(FORM) assessment. Fri pnva approach can be directly compared to EC approach where the
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spreading angle 2.5:1 through the flange and radius shows good estimation with IPE 300 and
larger cross-sections and for small cross-sections (IPE 100 and IPE 200) is rather optimistic. In
the subsequent calculations, the spreading angle of 2.5:1 is retained. Future work could focus on

the source of this issue and perhaps a separate spreading angle through the flange and through the
radius.
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Figure 2.5: Reliability graphs of the effective width determination by EC3 in comparison to
division of numerical resistance Fri mna (left) and distribution of normal stress o, (right) [30]

The resistance determined by MNA decreases as the distance towards the unstiffened end is
getting closer. This could be expressed by decreasing the effective width as calculated by Eq. (2.5)
by ratio re:

ro = leffwe (2.6)
beff,'w

where:
® beyfw,e — effective width for load near the unstiffened end
o beys . — effective width for load unaffected by the unstiffened end

From the numerical models, it can be observed that the yield resistance Fgi is not affected
by the unstiffened end if the load is further from the edge than x = e/h = 0.45, i.e., the ratio
re = 1.0 for x > 0.45. For the cases closer than that, it seems that a parabola fits well with the
datapoints; see Fig. 2.6. Due to this, the coefficient of variation Vj is rather high, 7.2 %, but for
higher loads, the differences are low. It can be assumed that the fitted parabola simulating the
effect of unstiffened end proximity is in good agreement with the numerical data.

re = =21 (x —0.45)* +1 (2.7)

The reliability graph in Fig. 2.6 shows the most significant deviations at low loads, meaning
for cross-sections IPE 100 and IPE 200. The difference originates primarily from the assumed
distribution angle 2.5:1, which diverges by 10 % and 5 % for IPE 100 and IPE 200, respectively.

Degree of fixity of web to flange transition

The critical force for the plate of infinite length supported at two opposing edges was derived by
Timoshenko [38]:

w2 Bt

Fcr:kcr'
12-(1—02) - dy,

(2.8)
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Function: re(x) = —2.10-(x — 0.45)2 + 1 y
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Figure 2.6: Reduction of effective width in relation to end distance; reliability graph of Fry
estimated by fitted formula [30]

4/mw,  for simply supported edges
ker = (2.9)
14/7, for fixed edges

where:

e F = 210000 MPa — steel modulus of elasticity
e v = (.3 — Poisson coefficient

o dyc=h—2-t;.—2 -1 — web height between radii (for hot-rolled) or edges of fillet welds (for
welded)

e k. — factor for the degree of fixity of web plate into flange plates [35, 39]

The values of F,, are available from LBA, and since all other parameters are known, k.. can
be calculated directly. For the general case where the unstiffened end is sufficiently far away and
influences neither the yielding nor the buckling strengths of the web in transverse compression (see
1.0 - h in Fig. 2.7), the degree of fixity is on average 3.619, which is closer to the fixed condition
(14/m = 4.456) than to the pinned condition assumed in the code [28] (4/7 = 1.273); see Fig. 2.7
and Eq. (2.9).

For the cases of load near the unstiffened end, the critical force F,,. calculated by LBA is
decreasing. This can be explained by the fact that the web plate is not infinitely long but its end
is getting closer. The buckling behavior is thus more appropriate for the plate supported on three
sides rather than all four sides. The degree of fixity of the web to the flanges likely remains the
same, but for simplicity, the same factor k.. is used to account for this decrease in the critical
force F... Very conveniently, the values of k.. show small variation across all IPE cross-sections;
the average coefficient of variation is 0.070.

The averages of k.. across all the IPE sections seem to follow a bilinear trend when plotted
against relative distance towards the end z = e/h, where e is the distance between the load
application and the unstiffened end and h is the cross-section depth. By minimizing mean squared
error, the following bilinear function was constructed:

ker () = min (3.6, 5.7 - ) = min (3.67 5.7 %) (2.10)

Fig. 2.8 proves that the critical force calculated by the proposed formulas closely fit the numer-
ical solution by the LBA.



2.1. DESIGN CODES AND STATE-OF-THE-ART 19
>0 ! ! ! ! ! ! ® 0lh
45 | | | | | |
v L R ® 02h
35 p------- [ S ® .‘. ....... S 6 _______ ‘_ _______ ® 03h
3.0 fommm o SRR A . S — :
— ’ S g hy ; y 0.4-h
525 oo S G oo bomone- s IARLELERS o 05h
20 bocoooos e ______ . ______ & ______ e_______ o ___ #. _______ '
15 boooooos L ' N Y ¢ o ______ & o ® 10h
10 b--eoeoeo % _______ 4: ________ i ________ E. _______ % _______ _E ________ Simply supported
1 1 1 1 1 1 web
05 f-==---- [ 1T A FTTTTo M Tt e Fixed web
00 | | | | | |
IPE 100 IPE 200  IPE 300 IPE 400 IPE 500 IPE 600
Figure 2.7: The degree of fixity ke for varying distance to the unstiffened end [30]
2500 - e
4.0 /.
e RC )
35 4
: 2000 - P iards
ey
3.0 R
= R
25 ~ 1500 A /,‘:/
- 3 )y e
220 e /0%
-~ w 0 o
15 1000 - ﬁ, Crltlg%I force
n=
Lo ® Data points s ® H=1.003
: ’ Vs = 0.029
0.5 === Fitted linear function 500 ¢ j === 45" line
=== +/-10% error
0.0 ! : : : :
0 0.2 0.4 0.6 0.8 1 500 1000 1500 2000 2500
x=e/h[-] Fer, caic [kN]

Figure 2.8: Fitted bilinear curve for ke as a function of x and comparison of critical forces
determined by analytical calculation and by LBA [30]

Relative slenderness

The code equation (see Eq. (2.4)) for relative slenderness can be rewritten according to EN 1993-

1-5, Annex B [32] to:
Qylt,k _ Fc
V Qer

Finite element analysis directly provides the ot 1 or F¢ we ra by MNA with failure criterium
such as ey = 5% and a., or F,, = F'-a., by LBA, where F is the applied load. By the assumption
of spreading angle 2.5:1 and above-mentioned equations, the compressive resistance and critical
force may also be calculated. The comparison is in Fig. 2.9 showing good approximation with
Vs = 4.8% and higher deviations at low values of relative slenderness, where the difference is not
extremely important.

,2we,Rd
)\P

FCT‘

(2.11)

Buckling curves

Buckling curves were the most challenging to determine due to the limited amount of data points
for various relative distances of the compressive force to the unstiffened end z. Especially for the
basic case of x = 1, the relative slenderness A did not fall below 0.7. More significant reduction
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Figure 2.9: Relative slenderness calculation [30]

due to buckling occurred only for load close to the unstiffened end; see Fig. 2.10. This makes any
optimization difficult and unreliable; therefore, engineering judgment was employed extensively.

Buckling curves in the form specified in EN 1993-1-5, Annex B [32] were chosen:

1
p=—"F —
¢p+\/¢12;_)‘p
1 _ _ _
¢p:§~[1+ap-(/\,,—/\po)+/\p]

(2.12)

(2.13)

By optimization algorithms, using the Differential Evolution function in scipy.optimize pack-
age in Python [40], the parameters of o, and 5\,,0 were sought. The datapoints were the reduction
factor p, calculated as the ratio of GMNIA to MNA resistances, and relative slenderness calculated
by Eq. (2.11) from MNA and LBA. The optimization algorithm was able to minimize the error,
but the optimized buckling curves made little sense; see Fig. 2.10. The imperfection factors oy,

were wildly different, which should not happen for the same hot-rolled sections.

Optimized Ay and a,

1.0 1

0.9 1

Optimized A, and fixed a,
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Q QU
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Figure 2.10: Optimized buckling curves [30]
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The second step was to fix the imperfection factor o, to 0.21, which seems reasonable for hot-
rolled IPE sections and is close to the average for distances x = 0.1, 0.2, and 0.3. It was assumed
that the distance x = 0.4 consists of too few points, the reduction p does not go below 0.9, and the
imperfection factor for the red curve is meaningless. The error was slightly larger, but still within
acceptable limits.

However, it was assumed that as the distance = is decreasing, the plate edge is getting closer
and the buckling reduction should be more prominent. This is true for most cases, but strangely,
the Ao = 0.372 for x = 0.1 and A,o = 0.332 (smaller!) for larger distance z = 0.2. This was
assumed as a numerical error, and the final buckling curves were chosen with o, = 0.21 and Xpo
according to Eq. (2.14), although the error increased for = 0.1 and 0.2; see Fig. 2.11.

Apo = min (0.673, 0.223 + 0.9 - ) = min (0.673, 0.223 + 0.9 - %) (2.14)

Calculated A, and fixed ap
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Figure 2.11: Buckling curves according to EN 1993-1-5, Annex B [32] with calculated parameters

[30]

Buckling resistance for the whole set

The buckling resistance using above-mentioned equations were compared to the whole set of FEA
models made in ANSYS [37] as well as the experiments performed at Brno University of Technology
in 2023 [30]. Note that the numerical models utilize nominal geometrical and material properties,
design equivalent geometric imperfections are applied, and therefore they may be considered as nu-
merical design calculations proving design resistances [5]. For the experiments, measured geometry,
yield strength, and modulus of elasticity was used in the above-mentioned formulas.

In total, 10 experiments and 153 numerical design calculations are compared; see Fig. 2.12.
Several issues are found with the proposed approach:

e Welded sections have much higher resistances, which indicates the spreading angle 1:2.5 is
not constant through the flange and through the fillet radius or fillet weld.

e The reduction in EN 1993-1-8 — Eq. (A.25) [28] for compressive force in the column is insuf-
ficient. The calculations are to the unsafe side.

Solving these issues is a topic for future research.
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Figure 2.12: Reliability graph of the proposed method to all ANSYS numerical design calculations

[87] and BUT experiments

2.1.2 Net section failure in tension

Net section failure of plates loaded in tension is considered as the most dangerous for finding a
reliable plastic strain limit for numerical design calculations. Therefore, the approaches in design

codes are briefly summarized in this section.

EN 1993-1-1 [4] requires verification of members loaded in tension in Clause 6.2.3 by the fol-

lowing equations:

NEga
<1.0 2.15
Nira — (2.15)

. A - 09 . Ane “Ju
Nt,Rd = min {Npl,Rd = 7fy, Nu,Rd = tf} (2.16)
YMo M2
FprEN 1993-1-1 [12] in Clause 8.2.3 modifies the net section failure as follows:
k- Ane TJu
Ny = o Anet Ju (2.17)
YM2
where:

e & = 1.0 for sections with smooth holes (i.e. holes without notches), for example holes

fabricated by drilling or water jet cutting;

e k& = 0.9 for sections with rough holes (i.e. holes with notches), for example holes fabricated

by punching or flame cutting;

e k= 0.9 for structures subjected to fatigue.

So for standard cases, the net section resistance is 10% higher than in the first generation of

Eurocodes.

Note that both generations of Eurocode consider only one possibility of shear lag effect — in an

angle cross-section connected by only one flange.
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AISC 360-22 [18] in Section D.2 determines the tensile strength as the minimum of tensile
yielding (corresponding to gross section yielding) and tensile rupture (corresponding to net section
failure):

P, :min{¢t,y'A'fya ¢t,u - Apet fu} (2'18)
where:
e A — gross section area

o A, — effective net area specified in Section D.3

fy — yield strength

fu — ultimate strength

@1,y = 0.9 — resistance factor for tensile yielding
e ¢, = 0.75 — resistance factor for tensile rupture

Interestingly, AISC 360 covers in Table D3.1 (see Fig. 3.3) a large variety of cases where shear
lag effect decreases the net section area.

Note that the ratio between safety assigned to gross section yielding and net section failure is
different according to each code.

e 09 for EN 1993-1-1,
e 125 for FprEN 1993-1-1, (219)
A LB for AISC 360.

Provided that the ratio of f,/f, remains constant, with increasing weakening, net section
failure begins to govern first according to the current EN 1993-1-1, then according to the second
generation FprEN 1993-1-1, and lastly according to AISC 360.

2.2 Experiments on web in transverse compression

This section describes the physical experiments performed at BUT and elsewhere. The simplest
setup is to apply the load from both sides against an I-section; see Fig. 2.13. Applying load from
one side is complicated, because the web panel in shear or the member in bending may fail first.
The geometry for such testing is therefore limited.

The overview of experimental research is given in Tab. 2.1. Most tests are for double-sided
concentrated load [30, 24, 44, 35]. Note that the four specimens included in [24] are the same as

Figure 2.13: Ezperiments performed at BUT — test setup (left) and web buckling after significant
yielding (right) [24]
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Table 2.1: Overview of experimental programs on column web in compression

Paper No. of Measured Measured

experiments geometry material
Baldzs et al. (2025) [30] 10 Yes Yes
Bougoffa et al. (2022) [41] 2 No Yes
Bougoffa et al. (2021) [42] 4 No Yes
Rodilla and Kowalkowski (2021) [43] 7 No No
De Mita et al. (2008) [44] 12 No Yes
Kuhlmann and Kithnemund (2001) [45] 16 Yes Yes
Bose (1998) [46] 7 No Yes
Aribert et al. (1992) [35] 33 No fyy only
Total 91

in [30]. More challenging and well-documented tests were performed at the University of Stuttgart
[45], where also the axial load was applied to the HEA 240 and HEB 240 sections. In the USA
research, the load was applied also from one side only (specimens labeled SC) [43]. Bose [46] tested
complete beam-to-column single-sided joints with end-plate connections that failed in the column
web in transverse compression. The resistance of this component must be recalculated from the
bending moment and the assumed lever arm.

As can be seen, the researchers rarely provide all the data that are necessary to properly analyze
the reliability of design methods. The following data are required:

e Exact explanation of loading and boundary conditions
e Nominal geometry
e Nominal material properties

e Measured geometry — Note that the differences may be high, e.g., some specimens tested
by Kuhlmann and Kithnemund [45] have the web thickness 8.25 mm instead of the nominal
7.5 mm (10 % difference). This may be critical especially for buckling where the thickness is
to the power of three for the determination of moment of inertia.

e Measured material properties — Measured material properties are crucial, because the varia-
tion may be high. Ideally, the full stress-strain curve of coupon tests is provided for numerical
simulation. Analytical methods and numerical design calculations may require only yield
strength.

e Load-deformation curve — The stiffness of the web panel in transverse compression is relatively
high and it is also important to subtract the stiffness of the test rig, as was done by De Mitta
[44] and Baldzs [24, 30]. The full load-deformation curve is preferable, because the stiffness
may be derived and the load resistance may be determined in a different way than simply
the peak load — e.g. by load at specified accepted deformation, specific stiffness reduction or
specific secant stiffness.

Subsequently, mean material and geometrical properties and the coefficient of variation of these
properties can be found in FprEN 1993-1-1 — Annex E [12].

The necessary results are the load-deformation curves. The transverse deformation in the
direction of the load must be measured and post-processed. The stiffness of webs in transverse
compression may be relatively high and the stiffness of the testing rig is relevant. An additional
experiment with a solid steel block should be tested in the testing rig and this stiffness subtracted
from the load-vertical deformation curves.

Lateral deformations of the web should also be measured at several levels. Every experiment
of the web in transverse compression ends with a buckled web (for rolled sections after significant
yielding). Buckling may be a perfect bow shape but typically it is unsymmetrical and at least five
layers of lateral displacements are needed to sufficiently capture the buckling shape.
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Important research subjects are the stresses and strains below the transverse load. Both Eu-
rocode [1] and AISC Specification [18] assume the spreading angle 2.5:1 through the flange and
fillet radius; see Fig. 2.2. This is a significant simplification — the spreading angle is probably dif-
ferent through the flange and the fillet radius (or fillet weld of welded sections) and it may change
after yielding. Observing stresses and strains is nowadays possible by digital image correlation
(DIC), however, no experiment with such testing equipment has been performed yet.

The research into the component column web panel in transverse compression continues. Fur-
ther 16 specimens of IPE 400 made of S 355 steel grade were recently tested at BUT. The results
have not yet been processed and published. Another experimental campaign is in progress at the
University of Coimbra with and without axial load in the member.

2.3 Finite element analysis

The use of IDEA StatiCa for dataset generation offers both advantages and limitations. Re-
cently, the developers significantly enhanced the parametric design capabilities and introduced
a REST API [47]. With tools such as the Python client, it becomes feasible—and not overly
time-consuming—to generate large datasets.

However, several drawbacks need to be acknowledged. IDEA StatiCa models are based on
shell elements with a relatively coarse mesh. A particularly critical issue is the neglect of the
fillet radius between the flange and the web, which plays an essential role in the load transfer
mechanism. Current code formulas assume the same spreading angle through both the flange and
the fillet radius, whereas IDEA StatiCa simplifies this geometry. Another important limitation
is the absence of imperfection definitions and GMNIA analysis in IDEA StatiCa Connection.
In cases where buckling governs the behavior, results must either be post-processed using the
general method in EN 1993-1-5, Annex B.1 [32], or excluded from the evaluation. Furthermore,
the material model is fixed to linear elastic — perfectly plastic with a nominal plateau slope for
numerical stability, Es, = E/1000.

Despite these shortcomings in the finite element modeling, IDEA StatiCa was chosen as a
practical tool for dataset generation.

For the case of column web panel in transverse compression, Pesek [37] showed that IDEA
StatiCa with the mesh size of 12 elements per web height h does not significantly diverge from
predictions by ANSYS [23] with solid elements and fine mesh; see Tab. 2.2.

Table 2.2: Summarization of resistance ratios (MNA, GMNIA) and critical loads (LBA) [37]

Analysis: IDEA StatiCa/ANSYS

Parameter

MNA GMNIA LBA
Minimum 0.83 0.83 0.68
Maximum 1.15 1.40 1.55
Average value 0.98 0.98 1.06
Standard deviation 0.08 0.08 0.21

The case of tensile rupture of plates is very simple regarding modeling. The main limitations
of IDEA StatiCa design model is the simplicity of the material model and the use of shell elements
neglecting the through-thickness contraction. Most notably, the ultimate strength, which governs
the experimental resistance, is not a variable taken into account in the model. As a result, the
coefficient of variation of experimental to numerical resistances is high when plates with multiple
ultimate to yield strength ratios (f,/f,) are grouped together.

2.3.1 Mesh sensitivity

The first step after creating the geometry and assigning the boundary conditions and loading is
the mesh sensitivity study. That consists of the following steps:

1. Select a coarse mesh and calculate your model. Write down the load resistance, F', and a
number of elements, N.
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2. Select a slightly finer mesh and calculate your model. Write down the load resistance and
the number of elements.

3. Repeat step 2 until you have at least five load resistances. The load resistances should not
jump wildly and should decrease with increasing number of elements. The mode of failure
should not change.

4. Create a graph with 1/N at x axis and F at y axis.

5. Extrapolate the curve created by your analyses until zero point on x axis. Use linear extrap-
olation with beam elements, quadratic extrapolation with shell elements, and cubic extrap-
olation with solid elements.

6. Note down the ideal load resistance where the extrapolated curve intersects with zero. This
is the resistance of an idealized model with an infinite number of finite elements.

7. Meshes whose load resistance does not differ more than 5 % from the ideal load resistance
are qualified. Typically, use the coarsest qualified mesh.
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Figure 2.14: Mesh sensitivity for simple models of plate with a hole and a T-stub failing in mode 1

The mesh sensitivity study is shown in Fig. 2.14 for two cases: Plate with a large hole and a
T-stub with four M16 bolts failing in mode 1. IDEA StatiCa Connection with shell finite elements
is used. The number of elements at the plate edge is changed from 4, 8, 12, 16, 24, 32, and up to
50. This number of elements at the plate edge is used in the graph rather than the total number
of elements, so the linear trend of mesh sensitivity is expected. The idealized load resistances are
181 kN and 147 kN for the T-stub and plate, respectively. Accepting the 5 % error qualifies meshes
with resistances below 190 kN and 154 kN for T-stub and plate, respectively. The load resistance
of the T-stub is not very dependent on the mesh and all the tested meshes could be used. On the
other hand, the resistance of the plate with a hole decreases rapidly with increasing mesh density.
Only meshes with 50 and 32 elements at the plate edge should be used.

This procedure is simple and does not require an extremely fine mesh to determine the ” correct”
load-resistance. For more details, refer to [48]. On the other hand, note that such a result may
be too conservative if there are some simplifications that should be considered. For example, shell
models connected node-to-node do not have the added stiffness of thicker plates. When the T-stub
flange bends, the plastic hinge appears below the web, which is unrealistic and decreases the T-stub
tensile resistance. Furthermore, the area where plastic strain appears must be significant and not
infinitesimal. The mesh that provides the load resistance closest to reality is not always the finest.

Mesh sensitivity comes hand-in-hand with failure criteria. The load resistance determined by
the plastic strain limit is increasing with decreasing mesh size. This is clearly seen in Fig. 2.15,
where meshes that provide the same moment-rotation response show a failure determined by 5%
plastic strain at different locations. Note that the bending moment resistance is not very affected,
but rotation, ¢;, is very different. A practical recommendation is to use the coarsest mesh within
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Figure 2.15: Decreasing load resistance with decreasing mesh size [49]

the 5% error to the idealized infinite mesh. Another option is to use strain averaging across multiple
finite elements as suggested by L. da Silva in [50]. However, the determination of a volume, over
which strain averaging should be performed is as complicated as the determination of the plastic
strain limit.

2.3.2 Failure criteria

Failure criterion C1 regarding the maximum attained load is tackled by the use of equivalent ini-
tial imperfections in geometrically nonlinear analysis with imperfections (GNIA) or also including
material nonlinearities (GMNIA) [5]. The reliability of initial imperfection amplitude for example
for column buckling curves was worked out by F. Walport [51]. In conclusion, the nominal value or
fifth percentile should be used for material and geometrical properties, and with the recommended
amplitude of initial imperfections the GMNIA provides reliable load resistance. Cases of shell
buckling may be much more complicated and require testing several imperfection shapes including
the shapes not originating from the eigenvalue analysis but from the consideration of manufactur-
ing process. However, this is not important in connection design and will not be worked out in
this thesis.

A crucial parameter in connection design is the equivalent plastic strain limit — failure crite-
rion C2. The current accepted version of FprEN 1993-1-14 [5] in Cl. 8.1.5 states:

If there are mo other values given, a recommended value for the maximum equivalent plastic
strain of the material may be assumed by 0.33 - €, for uniazial and 0.15 - &, for biaxial stress-
strain state. The value of &, for all steels may be taken from Formula (5.5). In case of triaxial
stress-strain state or multiaziality, strain limits should be based on advanced damage theory.

Currently, the rules across various Eurocode 3 parts are inconsistent and unstructured; see
Tab. 2.3. In principle, the strain limits for beam finite elements should be the lowest and may
be higher for shell or solid elements. However, this is not the case. Furthermore, it is unclear
what rules should be followed when designing e.g. plated girders with some connection elements
— there will always be at least welds. Is it the EN 1993-1-5 or EN 1993-1-8 rule? The generic rule
in EN 1993-1-14 distinguishes between uniaxial, biaxial, and multiaxial. In practice, considering
the Poisson effect, engineers may consider even axial loading to cause a triaxial stress state. As a
result, to be safe, 0.15-¢,, will be used. Furthermore, strain limits for numerical design calculation,
as the other two rules, 0.33 - £, and 0.15 - €, are meant, based on advanced damage theory are
meaningless. In nearly every case, the strain limits based on advanced damage theory via numerical
simulation will reach much higher values. Therefore, the strain limit for a triaxial stress state will
be higher than for a biaxial or even an uniaxial if the clause is followed to the letter. The intention
was to warn against edge cases of extreme triaxial stress states that are not possible if traditional
detailing rules are followed, but for which numerical tools could be used.

Considering the expectation that engineers will mostly lean towards the safer 0.15 - ¢,, the
generic rule seems to be too low based on the current practice and experience. Further issue is
the unclear distinction between numerical design calculation (directly provides the design load
resistance) and numerical simulation (has to be subjected to reliability analysis to find the design
load resistance). Yet another problem is the missing link to element type — beam, shell, or solid. It
could be argued that beam elements are tackled in Annex C, so these limits apply to shell and solid
elements both, but this is not clearly stated. Next, it is unclear, what failure mode the criterion



28 CHAPTER 2. METHODS

Table 2.3: Strain limits according to Eurocode 3 parts (A. Taras, personal communication, Sep.
20, 2025)

EC3 Part Rule S235 S355 S460

EN 1993-1-14
(C2, generic)

Max eq. plastic strain = 0.33 - ¢, (uniaxial) 6.88% / 4.84% / 2.93% /
/ 0.15 - g, (bi- or triaxial), with e, = 0.6 - 3.13% 2.20% 1.33%

(L= fy/fu)-
EN 1993-1-14
— Annex C epd < ecsm (CSM). With Q = 15, the cap 1.68% 2.54% 3.29%
(beams) ~15- ¢,
EN 1993-1-5
(plated girders) . . _
& EN 1993.1.3 Max acceptable plastic strain e,,,, = 5% 5% 5% 5%
(cold-formed)
iﬁeﬁzi’&lﬁ Epeq.Bd < Gpeq - (0.04 — f,4/40000), with 6.83%  6.23%  5.70%
apeq =2 and fyq = f, (N/mm?).
EN 1993-1-8 No explicit % limit; in practice use EN 1993- — — —
(joints)

1-14 (C2)

C2 attempts to capture. Is it to limit the deformation at bolt holes or should it allow for ultimate
bearing resistance; see FprEN 1993-1-8 — Tab. 5.9 [28]? Or is it the limit deformation of 3% used
for the determination of hollow section joints; sce CIDECT Design Guides [52]?

As can be seen, the determination of a reliable plastic strain limit for steel structures is still
an unfinished work and an amendment for the modification of this Clause 8.1.5 was accepted in
September 2025.

This topic is the primary goal of the project Inter Excellence, LUAUS23114, a collaboration
between the Brno University of Technology with the Czech Technical University in Prague and the
University of Tennessee, Knoxville. The procedure and investigation is moved into a standalone
Chapter 3.

In the following investigation of machine learning, the outcome of this research was used, which
is to limit the equivalent plastic strain limit for all situations to:

ev = max{0.06,0.6 - (1 — f,/fu)} (2.20)
crim = 0.25 - g4, (2.21)

2.4 Data generation

Machine learning requires data, preferably a large amount of data. These can be generated using
numerical simulations or numerical design calculations. Numerical simulations will likely have
less scatter to the experimental data and will require a safety factor vpg. The quality of data
directly correlates to the quality of machine-learning prediction, because machine learning is able
to correlate very closely to the training data; see Fig. 1.1.

It is very tempting to use most-commonly approach to distribute data perfectly regularly using
nested cycles. Also, such an approach is better for human understanding and plotting of depen-
dencies. However, such structured sampling introduces patterns that may bias machine learning
models or lead to overfitting localized regions of the input space. Machine learning works better
with randomly distributed data.

Randomly distributed input samples (e.g., using Latin Hypercube Sampling) provide better
coverage of the multidimensional input space. This reduces correlation among features and avoids
alignment with the grid structure of the model, ultimately improving generalization [53]. Moreover,
random sampling better reflects the natural variability and uncertainty present in real-world data.
A comparison between regularly and randomly distributed datasets is shown in Fig. 2.16.

There may be exceptions to the general approach of using independent, continuous variables
in machine learning models. For instance, when investigating the resistance of rolled steel cross-
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Figure 2.16: Comparison of reqularly spaced and randomly distributed data

sections, the geometrical dimensions — such as flange thickness, web thickness, overall depth, and
width — are typically standardized and manufactured in discrete steps according to product norms
(e.g., EN 10365:2017 [54]). These dimensions are interdependent; for example, it is unlikely to
encounter a flange thickness of 10 mm paired with a web thickness of 20 mm. Therefore, it is
often more appropriate to directly use the real cross-sectional properties of rolled profiles. In this
context, the profile designation (e.g., IPE 100) can be treated as a categorical input (random
variable), while its geometrical properties serve as numerical features for model training,.

A similar consideration applies to steel grades. Their nominal mechanical properties — such
as yield strength and ultimate tensile strength — are predefined according to standards (e.g., EN
10025-2:2019 [55]), and the ratio of ultimate to yield strength is partially dependent on the yield
strength itself.

The range of validity of the model is a critical factor. In general, expanding the range of
input variables increases the amount of data required for accurate training. Moreover, the author
has observed that enlarging the validity domain can reduce prediction accuracy, even when the
training dataset is proportionally expanded. This phenomenon may be attributed to the increased
complexity and variability introduced by the broader input space, which challenges the model’s
generalization capability.

In this context, it is crucial to accept that the neural network will not be able to predict every
case, and to make a reasonable compromise based on investigation of current design practice. In
the field of connection design, the largest dataset is the Connection Library of IDEA StatiCa [56].
After proper organization, the dataset could be investigated and the range of validity covering a
desirable percentage of cases, e.g. 80 %, could be selected.

It is also important to note that design customs vary across the regions. For example, in the
USA, the commonly-used wide flange sections have a thicker web than the European counterparts.
Also, the common design utilizes rigid base plates and end plates that do not allow prying actions,
i.e., the base plates and end plates are typically thicker.

2.5 Neural network

This section outlines the methodology adopted for developing a data-driven prediction model
using supervised machine learning. The approach leverages artificial neural networks (ANNs),
implemented in PyTorch [57], and encompasses standard procedures such as feature scaling, data
splitting, network training, and performance evaluation.

Supervised learning is a paradigm where a model learns a mapping from input features X to a
target variable y using labeled data [58]. In this case, the objective is to predict the characteristic
resistance of components of structural joints based on multiple input parameters derived from
numerical simulations or experiments.

ANNs have their origins in the 1940s with the early models of McCulloch and Pitts [59],
further developed by Hebb [60] and later by Minsky and Papert [61]. Initially conceived as sim-
plified representations of biological neurons, ANNs have evolved into powerful tools for solving
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complex, non-linear problems. In recent years, their application in architecture, engineering, and
construction has grown significantly, driven by improved hardware (notably GPUs), algorithmic
advancements, and accessible software frameworks.

A single artificial neuron combines input features x,, with trainable weights W,,, adds a bias
by, and applies a non-linear activation function:

y(@) =a- (Z Wy - @y + bNN) (2.22)

Networks consist of multiple interconnected neurons organized in layers, allowing the model
to learn hierarchical feature representations. During training, weights and biases are adjusted to
minimize prediction error, quantified by a loss function such as mean squared error (MSE) or
mean absolute error (MAE). This optimization typically relies on gradient-based algorithms such
as backpropagation and stochastic gradient descent.

Data preprocessing is critical for effective training. Normalization or standardization ensures
that all features contribute equally by removing differences in scale and distribution; see Tab. 2.4.
The outputs for training should be also scaled, so that large values do not cause mathematical
issues during the training process.

The output of a neural network may subsequently be passed through another activation function
(e.g., sigmoid for binary classification or softmax for multiclass classification), depending on the
task. In this study, no activation function was used for the output.

2.5.1 Neural network architecture

In this work, deep neural networks (DNNs) are trained to predict the non-linear resistance of com-
ponent column web panel in transverse compression and tensile rupture of weakened plates. The
model architecture and hyperparameters follow prior studies by Andreas Miiller [62], [63], [64] and
following investigations in the scope of the project Machine Learning-based Design Optimization of
Steel Connections (MADESCO) in a cooperation of IDEA StatiCa, ETH Ziirich and CTU Prague.
In the following, the effects of the input and output scalers, activation functions, optimizers, learn-
ing rate, and the width and depth of the neural network are investigated. As a dataset, a knee
welded joint loaded by a combination of bending moment and shear force was chosen. This dataset
contains over 800 thousand analyzed models, but for this exercise, only 5 % of the available data
was used. The graphs were done primarily by Tamer Cakir at ETH. The DNN architecture, in
terms of the number of neurons and layers, was varied in each of the following investigations. The
differences between wider DNN (with more neurons) and leaner DNN (fewer neurons in one layer)
are not great. The wider DNN typically achieves better error in the form of R? than the leaner
DNN. On the other hand, it should be noted that the more neurons, the longer the training takes.

Overall, the variation in parameters (scalers, optimizers, learning rate, activation functions)
shows that the correct selection of DNN architecture is very important. Some parameters perform
much worse than others. These comparisons indicate that the DNN architecture must be tested
for a particular problem, and various options should be considered.

2.5.2 Input and output scaler

Prior to model training, all input features may be subjected to dimensional scaling to cross-section
depth of e.g. 200 mm using similitude theory [65], [66]. For example, IPE 300 with cross-section
depth of 300 mm is scaled by L = 200/300 = 2/3. Then, features are scaled as follows:

e Lengths ~ L1
e Areas and forces ~ L2

e Volumes, masses, and bending moments ~ L3

Constants, stresses, and strains ~ L° (invariant under scaling)

Stiffness (force/displacement) ~ L!

This is called a Similitude scaling, and it utilizes the physical similarity of the model and the
same stress distribution as in the scaled model. This allows drastically reducing the number of
cases for training and potentially increasing the range of validity. Training data are generated by
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physical testing, numerical simulations or numerical design calculations, which are the most time-
and resource-intensive. When using physical experiments, some experimental variations may get
lost and it can be beneficial to add scaled data to the original dataset. When using numerical
simulations or numerical design calculations, similitude theory should be perfectly valid and the
original dataset may be replaced by the scaled dataset.

Next, all input features should be scaled according to one of the following methods. This
preprocessing step ensures that all features contribute equally to the learning process, avoids
dominance by features with larger magnitude, and enhances convergence during optimization [58].
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Table 2.4: Qverview of common data scaling and transformation methods

Method Formula

T; 1 1
Standardization xh = lT'u, W= o Z?zl Tj, 0= \/E 2?21(333' — )2

T; — 1

Mean Normalization xh = ik s M=

Tmax — LTmin n

ZTi — T

Min—Max Scaling rh= T

Tmax — ilrgllill
x; — median(x)

Qs—Q1

xf =log(z; +¢), >0

Robust Scaling Q1 = 25" percentile, Q3 = 75" percentile

Logarithmic Transform

Fig. 2.17 shows a comparison of the different scalers; see Tab. 2.4. In this case, the outputs were
normalized to the bending and shear resistance of the connected beam. Note that the results may
vary significantly when the outputs, such as load resistance, are not normalized. The performance
of all four tested DNNs is very poor with the log scaler, where both inputs and outputs are
transformed into a logarithmic scale. The performance of the other scalers is relatively similar,
with the best choice varying depending on the DNN width and depth.
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2.5.3 Optimizer

Fig. 2.18 shows a preliminary comparison of the optimizers. A thorough evaluation would require
tuning additional hyperparameters for each selected method. Adagrad clearly performs worst in
this comparison, while RMSProp achieves the highest R2. However, RMSProp exhibits significant
fluctuations during the early stages of training, whereas Adam and AdamW remain much smoother.
The overview of optimizers used historically and in current machine-learning tasks is in Tab. 2.5.

Table 2.5: Overview of selected gradient-based optimizers®

Optimizer Update rule / principle Remarks

SGD wy = w1 — NV Iy Simple stochastic gradient descent; sen-
sitive to learning rate; may oscillate in
narrow valleys.

D . .
SGD + vy = P11+ VI Accelerates convergence in relevant di-
Momentum . s .

Wy = Wi_1 — N rections; dampens oscillations; intro-
duces momentum hyperparameter f3.
Adagrad [67] Gri=Gi_1;+ (ViL)? Effective for sparse data; learning rates
Wii = W14 — LviLt decrease monotonically, may become
’ 7 Gei+e too small.
RMSProp [68] | v = Bvi—1,i + (1 — B)(ViLt)? Mitigates Adagrad’s diminishing learn-
Wii = W1 — LviLt ing rate; works well in non-stationary
’ T Ui tE settings; requires decay tuning.
Adam [69] my = fimie—1 + (1 — 51)VL Combines momentum and adaptive
vp = Bavi_1 + (1 — B2)(VL)? scaling; fast and robust; may general-
My = M by = v ize worse than SGD with momentum.
T8 T
n N
Wy = W] — ————171
t t—1 Jo+c t
AdamW [70] Same as Adam, but with decoupled | Improves generalization; widely used in
weight decay (regularization applied | large-scale models such as Transform-
separately from the gradient step). | ers.

2 Notation: w; — parameter vector at iteration t; VL; — gradient of the loss at iteration ¢; V;L; — gradient
w.r.t. parameter w;; 1 — learning rate; € — small constant to prevent division by zero; G;; — accumulated
squared gradients (Adagrad); v¢,; — exponential moving average of squared gradients (RMSProp, Adam); m¢ —

exponential moving average of gradients (Adam); My, 0y — bias-corrected estimates (Adam); 8, f1, 82 — decay
rates for moving averages; v¢ — momentum term in SGD 4 momentum.

2.5.4 Learning rate

Fig. 2.19 shows the DNN performance for varying learning rates. Very high learning rates may
overshoot the global minima and fail to converge to a good solution, while very low learning
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Figure 2.19: Comparison
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rates converge too slowly. The results indicate that particularly large learning rates should be

avoided.

Interestingly, Adam should dynamically adjust the learning rate based on estimates

of first and second moments of the gradients. It slows down the learning rate when nearing a
minimum, which helps not overshooting the minimum and reducing bouncing around the minimum.
However, an additional (manual) adaptive learning rate that decreases as the loss function becomes
smaller provides the best results. PyTorch provides a built-in scheduler for this purpose, called

ReduceLROnPlateau.

2.5.5 Activation function

1.001 RelU
—— Leaky ReLU
—— Tanh
0.75H— EWY
— GELU
—— SiLU (Swish)
0.50
0.25
=
Y
0.00
-0.25
-0.50
-0.75
-1.00 -0.75

Figure 2.20: Activation functions in the
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Fig. 2.21 compares the model performance across different activation functions. Among these,
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Figure 2.21: Comparisons of activation functions

the ReLU function is currently the most widely used due to its simplicity and computational
efficiency. An overview of commonly implemented activation functions available in frameworks
such as PyTorch is provided in Tab. 2.6 while Fig. 2.20 illustrates their behavior over the input
domain [—1, 1]. Interestingly, different activation functions converge to a stable error R2.The
GELU function achieves the highest performance with a final error of R? =~ 0.99 whereas some
functions plateau below R? ~ 0.96. This difference is substantial in terms of prediction quality.
A more comprehensive investigation would require evaluating combinations of activation functions
across hidden layers and output layers to fully understand their impact.

RZ Scores vs Epochs — 20% of data
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Figure 2.22: Optimized model

The optimized model shown in Fig. 2.22 is able to quickly achieve very high prediction quality
with a final error R? ~ 0.99. In this optimized model, RMSProp optimizer, GELU activation
function, adaptive learning rate using ReduceLROnPlateau in-built scheduler and a wide neural
network with the initial width of 128 neurons progressively decreasing across 5 hidden layers to
one output. The optimization considers only the resulting error R? without any regard for the
speed of learning process. That is because the calculation of dataset takes days or even months
while the learning process is typically in minutes.
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Table 2.6: Overview of Activation Functions

Activation Formula Range Key Characteristics
Function
ReLU [71] f(x) = max(0, x) [0, 00) Simple, computationally effi-

cient; can suffer from the ”dy-
ing ReLU” problem.

Leaky ReLU f(z) = max(azx, ) (—00,0) Allows a small, non-zero gra-
dient when the unit is inactive
and not saturating.

Tanh f(z) = ET;Z—T (—1,1) Smooth, zero-centered output;
suffers from vanishing gradi-
ents for large inputs.

if x>0
ELU f(z) = {x " 1 * (—a, 0) Smooth and differentiable;
a(e” 1) ifr<0 aims to push mean activations

closer to =zero, mitigating
vanishing gradients.

GELU [72] flz) =z ®(x) (—00,00) Smooth, non-monotonic; ap-
proximates identity for large
positive inputs and zero for
large negative inputs.

SiLU (Swish)  f(z) =z - o(z) (—o0,00) Self-gated activation function;
combines properties of sigmoid
and linear functions.

a Notation: o — scaling factor for negative inputs (Leaky ReLU, ELU); ®(x) — cumulative distribution function
of the standard normal distribution; o(x) — sigmoid function.

2.5.6 Loss function

Minimizing the loss function encourages the model to make predictions close to the actual target
values. The most commonly used loss function for regression problems is the Mean Squared Error
(MSE):

1o o
Lyise = n ;(yz ¥i) (2.23)
The disadvantage is that MSE penalizes large errors more severely. The prediction tends to
lean towards the outputs with high magnitudes. This skews the results when the dataset contains
members or connecting elements of different sizes. For example, the results with IPE 600 cross-
section are more relevant than the results with IPE 100 cross-section.
There are several approaches to mitigate this issue. The outputs, e.g., component load resis-
tance, can be transformed into a logarithmic scale. Furthermore, different loss functions may be
used:

e Mean Absolute Error (MEA)

1 A
Lyviga = - Z lyi — 3l (2.24)
i=1
e Huber loss [73]
Ly —9)? if |y — 9| <
Ltyg) = {2000 W< (2.29)
6 (ly— 9| — 36) otherwise

e Relative mean squared error (RMSE)

LrMse = %Zn: (W)Q (2.26)

i=1
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e Log-Cosh

N
1 N
Liog-Cosh = i E log (cosh (y; — 9:)) (2.27)
i=1
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Figure 2.23: The overview of different loss functions and their output with increasing error

The comparison of loss values in relation to error magnitude is shown in Fig. 2.23. For effective
optimization, larger errors must be penalized more heavily. MSE increases quadratically with
error, i.e., in log-log scale is with the steady slope. MAE increases only linearly, i.e., the slope in
log-log scale is smaller than for MSE. Huber loss function provides a transition from MSE to MAE
at error ¢, blending quadratic and linear behavior around this point. The Log-Cosh loss function
behaves similarly to the Huber loss with § = 1, producing nearly the same curve with only slight
differences near the transition region.

Note that using RMSE loss function prevents use of some types of scalers (Mean normalization,
Standardization, and Robust scaling) for output. The output values y; and g; cannot be equal to
zero or close to zero. This would produce a mathematical error.

2.5.7 Final model for web in compression

In the investigation of column web in transverse compression, these parameters of neural network
as a feedforward architecture were adopted:

e 8 input features that include geometric and material properties, 128 neurons, 64 neurons, 32
neurons, 16 neurons and 1 output layer — plastic resistance Fy; rq or a.r. The model was
implemented using torch.nn.Sequential.

e Similirity scaler is applied — all inputs and outputs are scaled to the reference beam depth
h = 200 mm.

e StandardScaler from scikit-learn [74] for the inputs.

e Custom scaler for the output so that the values are between 0 and 10.

Yscaled = - 10 (228)

ymam

e Adam optimizer, because it is more advanced and does not suffer from the initial fluctuations.
Its performance scored similarly as the first, RMSProp.

e Learning rate with and initial value of 0.01 and the use of scheduler with the factor of 0.9
(learning rate is reduced only by 10 % loss function is not decreasing for 20 epochs) and
minimum learning rate of 0.0001.
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e To avoid unnecessary training cycles and prevent overfitting, early stopping was applied.
Training was halted if the coefficient of variation (CoV) on the validation set failed to improve
over 2 000 consecutive epochs. A minimum of 3 000 epochs was enforced to allow sufficient
training. A maximum of 10 000 epochs are used.

e GELU activation functions in hidden layers and no activation function at the output layer.

e Loss function implemented as Relative Mean Squared Error. The purpose of this loss function
is for each data point, no matter the size of member, to add the same weight into the training
process.

To evaluate the generalization capability of the model, the dataset is randomly split into training
and testing subsets. The training set is used to fit the model, while the testing set provides an unbi-
ased evaluation of prediction accuracy. An 80:20 split ratio was employed using train_test_split
from scikit-learn [74]. The split is utilized to:

e Prevent overfitting to the training data,
e Allow estimation of model performance on unseen data,

e Simulate real-world deployment conditions.
The following metrics were used to assess model performance:

e Bias: Measures systematic deviation of predictions from true values; see Eq. (2.32).

e Coefficient of Variation (CoV): Measures relative variability in predictions. CoV is defined

| Cov = SWW/H) (2.29)

mean(y/7)

e Relative Error: Used to identify outliers with poor prediction accuracy.

Predicted vs. true values were visualized using scatter plots, including +10% error bounds.
Matplotlib [75] was used for plotting. Any outliers with relative error > 10%) were extracted and
analyzed for patterns or data quality issues.

The final trained model was serialized and saved as a .pth file using torch.save, enabling
future inference without retraining. Note that only weights and biases of the model are not
enough. Input and output scaling parameters and DNN options must also be preserved to maintain
prediction consistency.

2.6 Reliability

Eurocode EN 1990 [6] allows two types of reliability verification:
e Semi-probabilistic approach using partial safety factors

e Reliability-based design and assessment

2.6.1 Semi-probabilistic approach

This chapter provides step-by-step guidance for the reliability assessment according to Eurocode
standards and is mostly built upon SAFEBRICTILE deliverable D1.1 [15], which was not pub-
lished.

First, it is necessary to split the reliability of actions and resistances, which greatly simplifies
the task. Eurocode assumes factors for resistance ap = 0.8 and for loads agp = 0.7. The probability
that the actual resistance R is smaller than the design resistance Ry is then:

P(R<Ry)=®(—ap-B)=®(—0.8-3.8) = d(—3.04) (2.30)

In other words, 1183 samples should fail out of a million. Note that the target reliability is
the same for all types of failure modes; member yielding or bolt or weld fracture, with possibly
higher consequences, keep the same reliability target. Also, all reliability classes (RC 1, RC 2,
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RC 3) are defined by the same resistance reliability target ag - 5 = 3.04. The reliability differenti-
ation is achieved by either through increases of the load-sided partial factors or through increased
supervision and fabrication inspection levels [15].

Then a set of experiments should be specified, and experimental resistance r.; determined.
This may seem like an easy task, but the load resistance is often an ambiguous term that needs to
be clarified. For the example of tensile rupture, the load resistance is assumed to be at maximum
load.

Then the numerical design model is created for each experiment and the numerical resistances
ry; are obtained. The geometrical and material properties are set as measured in the experiment.
The numerical model should be subjected to a validation and verification process as described in
FprEN 1993-1-14:2024 — Chapter 7 [5].

The next step is to determine the basic variables that affect the results. These variables are,
for example, the plate thickness or the material yield strength. The mean values and coefficient
of variation for the basis for calibration of partial factors are now codified in FprEN 1993-1-
1:2017 — Table E.1 [6]. Interestingly, the variability in dimensional properties does not match the
manufacturing tolerances, e.g. in EN 10029:2010 [7], but it outlines the assumptions, upon which
the reliability of Eurocodes is built. Next, the mean value of bias b should be calculated:

b= i Te,iTt,i/ z": 7"?,1‘ (2.31)
i=1 i=1

Where n is the number of specimens. There is a problem with this bias when dataset contains
varying sizes of members or connection elements, e.g., bolts or welds. This bias is affected dis-
proportionately more by large members and elements. A more appropriate formula is the simple
mean:

p— L §o Lo (2.32)

o
i=1 bt

FprEN 1993-1-14 — Annex A [5] states that b should be in the range of 0.8 < b < 1.25.
SAFEBRICTILE [14] requires even more restrictive range of 0.85 < b < 1.15. However, for
numerical design calculation models with bilinear material model and small plastic strain limit,
it is expected to reach high values of b, e.g. 1.3. Such higher values should be expected when
neglecting strain-hardening and should not be the reason to terminate the reliability assessment
due to inaccuracy.

Then the coefficient of variation of the error Vs should be calculated by the following equations:

Te,i

- 2.
0= 3 " (2.33)
A; =1n(4;) (2.34)
1 - —\2
2 _
A= ; (A; — A) (2.35)

Vs = /exp(si) — 1 (2.36)

Where A is the average of A;. The next step is to calculate the coefficient of variation V.,
for the basic input variables. For that, the geometrical and material properties should be changed
in these numerical models to mean values according to Table E.1 [12]. The load resistances of
these numerical models are r;;(X,,). Furthermore, the numerical models with slightly changed
mean values should be calculated. For example, if the basic variables are plate thickness and yield
strength, a set of numerical models with changed plate thickness (load resistances r;;(At)) and
another set of numerical models with changed yield strength should be calculated (load resistances
7¢,:(Af,)). The change should be small but meaningful, and it should not completely change the
failure mode. The authors suggest using values close to the standard deviation of the basic variable
.
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2
i (Xm) — re (At
V7"2,t,i,At = [(Tt’ <7)At 1 (A1) -o(t)] (2.37)
2
SRRV M [(”7 ()Af:t) (A1) -a(fy)] (2.38)
Vr2m = (‘/;"215,2',At + V;"Qt,i,Afy) /T?z(&) (2.39)
Vo = ey (2.40)

It is probable that many numerical models will have more basic variables. In that case, the
formulas should be expanded accordingly. The values of V;; depend mainly on the relationship
of the result to the basic variables. If the relationship is linear, such as for tensile rupture, the
expected values of V,.; are about 5%. For phenomena, where relationship is quadratic or even on
a power of three, such as plate bending or buckling, the values of V,., will be higher. It is difficult
to establish V,.; specifically for every experimental set, and V,; may be set based on previous
experience; e.g. first generation of Eurocode was built mainly with V,.;, = 7%.

Finally, the two errors, V5 and V,; are added together to the coefficient of variation:

Ve =/VE+ V2 (2.41)

Now variation coefficients @ can be calculated either for individual V;.; for each specimen, or
global V,:

Qrti =1/In (me +1), or for global V;4 : Q= y/In(V2 +1) (2.42)

Qs =\/In(VZ+1) (2.43)

Qi = \/ln (V& + V3. +1), orforglobal Vi : Q= +/In(V, +1) (2.44)

The design resistance is calculated according to the number of specimens n (for global V.,
replace Q¢ for Q¢ and Q; for Q):

2 2
- b-rey (&) exp (—kdm . ( C}“) —kan - (625) —0.5- Q?) , for n <100 (2.45)
0T 7 i .
by (&) exp (*kd,oo -Q; —0.5- Qf) , for n > 100

Where kg, and kqo are from EN 1990 — Table D2 [6], and FprEN 1993-1-14 — A3(4) [5]
suggests that V, unknown should be used. Often, the number of specimens is higher than 30 and
interpolation between 30 and infinity should be made. Authors suggest treating 100 specimens as
infinity, i.e., k4,100 = k4,00 = 3.04 and interpolate between 30 and 100.

Finally, the partial safety factor can be calculated for each model and then the average:

YM,i = Tnom,i/rd,i (246)
-y 27
™ = n 2 VM i .

This partial safety factor should be below an acceptable limit, otherwise, it should be applied
to each numerical design calculation using these model settings.

SAFEBRICTILE [15] recommends acceptable levels of vy according to current Eurocode prac-
tice based on coeflicient of variation V;; see Table 2.7. These acceptance limits are within the target
reliability according to Equation (1). In case vy is below acceptance limit, it does not need to be
applied.

Furthermore, coefficient of variation Vs may be reduced by two options:
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Table 2.7: Recommended acceptance limits of v [15]

Range of V; Acceptance limit for v,
0.00 < V; < 0.04 1.03
0.04 <V; <0.20 1.034+0.75 - (Vi — 0.04)
Vi >0.20 1.15

e Sample subdivision: The set of specimens may be divided into groups, for which one model
or model settings is more appropriate than the other. For example, some phenomena may be
well captured only by GMNIA. Another appropriate subdivision may be into mild steel and
high-strength steel. Note that with decreasing number of specimens in the set, k4 ,, increases.

e Tail approximation. This is useful for cases where many results of numerical model are very
safe compared to experiments, which leads to high coefficient of variation V5. Such very safe
cases may be disregarded in the reliability assessment, which leads to decrease in b value but
also decrease in Vs. In practice, the samples may be disregarded from the safest (smallest
r1,i/Te,i) until partial safety factor vas decreases. This takes into account the fact that the
distribution is not normal, but rather log-normal and the tail-end may be ignored. The value
of kg, remains unchanged.

This procedure can be used for reliability assessment of analytical formulas, such as those
included in Eurocodes, numerical design calculations, numerical simulations, or machine-learning
predictions.

2.6.2 Direct reliability approach

A direct reliability approach based on crude Monte Carlo simulation requires a huge number of
simulations. For structures classified as RC2, with a target reliability index of § = 3.8, this
corresponds to approximately one million simulations [76].

1

N~ ——
VE- P

(2.48)

Where V. is coefficient of variation and P is probability of failure.

In practice, analytical equations may be used for this number of simulations, but finite element
analyses are not feasible. A practical alternative is the use of machine-learned predictions. It
should be noted, however, that these predictions carry their own errors. Provided there is no
systematic error in the range of predictions and the means values approximately coincide, this
should not pose a significant issue, and a smaller, more conservative estimate of load resistance
can be achieved; see 2.24.
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Figure 2.24: Prediction by FEA and ML with the same mean
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However, if the means do not coincide and there is a systematic error in the ML predictions,
the result may be dangerous despite the variation coefficient, V,., being larger. Therefore, it is
important to create at least a single finite element simulation with mean values to confirm the
means do coincide with an acceptable error. Typical accepted error is 5 %.

—— Finite element simulations
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Figure 2.25: Prediction by FEA and ML with different means

Note that the outliers in machine learned predictions are common, in probabilistic simula-
tions, millions of predictions with slight changes in inputs are carried out. The chance of outliers
consistently pushing the mean is therefore much lower than an occurrence of a single outlier.

An interesting paper opening the doors for a direct reliability approach was recently published
by Ljubinkovié et al. [77]. The primary benefit of the direct reliability approach lies in its appli-
cation to existing structures. Using a Bayesian update, input parameters can be specified more
realistically, and the remaining service life—typically shorter than that of a new structure—can
be explicitly considered. Other approaches together with comparisons with DNN predictions for
direct reliability assessment are described e.g. in [78, 79].

The direct reliability approach is not within the scope of this thesis.
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Chapter 3

Determination of reliable strain
limit

3.1 Explanation of concept

The author, together with several colleagues, aims to find a safe failure criterion C2, which
typically governs the connection resistance. The concept of this approach was created by Frantisek
Wald, Martin Vild, Jaromir Kabela¢, and Kirill Golubiatnikov and is discussed within Eurocode
working groups. Most of the tedious work of numerical modeling was done by Kirill Golubiatnikov.

It must be assumed that the equivalent plastic strain limit is relevant only for steel plates
unaffected by, for example, the heat-affected zone near the weld. The resistances of welds or bolts
should be determined in a different way.

Plastic strain
gpl ‘

Plastic strain at fracture

Uniaxial
tension Range of validity:

n<Xx

« Reliable limit(s): |
| I >

-1/3 1/3 2/3 o b
Uniaxial Biaxial Triaxiality parametern = =

Figure 3.1: Assumption: Plastic strain at fracture depends on triaxility; plastic strain at failure
might depend too

In the latest discussions in the development of Fpr EN 1993-1-14 [5], it is argued that the strain
limit at fracture is dependent on the triaxility parameter, which is the ratio of hydrostatic stress
to the von Mises equivalent stress.

There is a lot of research focusing on the effect of triaxiality parameter and lode angle on the
strain at fracture, e.g. [80, 81, 82, 83]. The strain at fracture represents the upper bound for the
strain at failure (at design resistance). However, this does not guarantee that the strain at design
failure actually depends on triaxiality; see Fig. 3.1. The strain at fracture is typically much higher
than the strain at design failure.

The strain at failure could be simplistically estimated using the safety factor ~vjs2, which was
crudely evaluated during the 1980s and 1990s with the development of the first generation of

43
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Figure 3.2: Assumption: Safety factor can be applied to numerical simulation

Eurocodes, but later refined and confirmed as 1.23 [84, 85, 86]. Therefore, from the literature it
seems this simple approach might be sufficient; see Fig. 3.2. However, a confirmation is needed.

The criterion C2 is dominant especially for cases of tensile rupture (net-section failure). A large
variety of physical tests were collected and modeled in IDEA StatiCa Connection to determine the
ability of the numerical model with rough mesh to capture tensile rupture since this failure mode
is checked in a fundamentally different way than the components [87]. However, in the large series
of 529 specimens, only very few failed at a lower load than A, - f,, gross section area multiplied
by measured yield strength. The shear lag factors in Tab. D3.1 in AISC Specification [18] would
not be needed if the resistance (safety) factor for tensile rupture were not required to be higher.
In fact, in the Eurocodes [4, 1], these factors are missing, and only provisions for angles bolted by
one leg (CL 3.10.3) or for unsymmetrical angles welded by the shorter leg (Cl. 4.13) are included
[1].

Therefore, the plate specimens with holes and notches were selected as the most critical elements
of steel structural joints. They are not only critical for a relatively large triaxiality factor, but
also for large manufacturing tolerances — for the plates of a nominal thickness of 5 mm, the real
thickness can be as small as 4.4 mm (12% reduction!) [88]. The real thicknesses were measured in
the SAFEBRICTILE project and the distribution was normalized in FprEN 1993-1-1 — Annex E:
Basis for calibration of safety factors [12]. Furthermore, the tolerances for bolt hole misalignment
and ovalisation are normalized in EN 1090-2 [11]. Nearly every variable is known; the only issue is
the unknown distribution of bolt hole tolerances and the effect of production, i.e., hole roughness.
Still, a reasonable distribution can be derived using an uncertainty factor — a distribution of
experimental tensile resistance to tensile resistance determined by the numerical simulation.

This research group believes that the net-section resistance is the most critical for the value
of equivalent plastic strain limit for numerical design calculation, and when such limit is found, it
is generally applicable to all numerical design calculations. To find this limit, a large set of plate
specimens with stress concentrations induced by holes or notches was tested at Brno University
of Technology and Czech Technical University in Prague, and numerical models with nominal
geometry and also edge-case imperfections [11] were created.

The workflow is as follows:

1. Gather data from literature and perform experiments
2. Create numerical simulations with good alignment to the experiments
3. Approximate an analytical formula with good alignment to the numerical simulations

4. Create a large set of Monte Carlo simulations using analytical formulas with the distributions
of material properties and geometry within the codified tolerances

5. Find the design resistance using reliability approach in EN 1990 [6]



45

3.1. EXPLANATION OF CONCEPT
Case Description of Element Shear Lag Factor, U Examples
1 All tension members where the tension
load is transmitted directly to each of the
. uUu=1.0 -
cross-sectional elements by fasteners or
welds (except as in Cases 4, 5, and 6).
2 All tension members, except HSS, where %
the tension load is transmitted to some — EL
but not all of the cross-sectional elements _ :J\; I
by fasteners or by longitudinal welds Uu=1-%
in combination with transverse welds. l e
Alternatively, Case 7 is permitted for W, M, 3
S, and HP shapes and Case 8 is permitted J X
for angles. X %r
3 All tension members where the tension U=1.0and
load is transmitted only by transverse Ap = area of the _
welds to some but not all of the cross- directly connected
sectional elements. elements
4lal | Plates, angles, channels with welds I
at heels, tees, and W-shapes with
connected elements, where the tension 372 X b 1 | Plateor T
load is transmitted by longitudinal welds = 302+ w2 (1 - 1] Wl —=— Ci’“”em‘ed -
only. See Case 2 for definition of X. P
5 Round and rectangular HSS with single
concentric gusset through slots in the
HSS.
__b_2b2+tH-2r2
2H + 4b— 4t
u=1-%
/
t
6 Rectangular HSS with two side gusset BUg + HUy B
plates. U= T H+B
312
Ug=—55—
752,82 H
312
Uy=—%—=
g2 2
B = overall width of rectangular HSS member, measured 90° to the plane of the connection, in. (mm);
D = outside diameter of round HSS, in. (mm); H = overall height of rectangular HSS member, measured in the
plane of the connection, in. (mm); d = depth of section, in. (mm); for tees, d = depth of the section from which
the tee was cut, in. (mm); / = length of connection, in. (mm); w = width of plate, in. (mm); x = eccentricity of
connection, in. (mm).
lal; _ M where /1 and /> shall not be less than 4 times the weld size.

Figure 3.3: Table D3.1: Shear lag factors for connections to tension members from AISC
Specification [18]

6. Create numerical design calculation models with nominal material properties and geometry

7. Find a reliable plastic strain limit for numerical design calculation; see Fig. 3.4



46 CHAPTER 3. DETERMINATION OF RELIABLE STRAIN LIMIT
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Figure 3.4: Damage initiation at numerical simulation with probability of failure Ps(—pf - ag)
corresponds to reliable load resistance

Reliable resistance by numerical simulation means the damage initiation (reaching ultimate
strain €,, at any location) of the simulation where only 0.1183 % of simulations provide the lower
load at the damage initiation. Such a simulation is at the design resistance level with a probability
of failure:

Pi(—B-ar) = P;(—3.8-0.8) =1.183-10* (3.1)

Consequently, the maximum plastic strain at the numerical design calculation equal to this
reliable load resistance is the design plastic strain limit.

Based on the maximum possible weakening in EN 1993-1-8 — Tab. 3.3 [1] (see Fig. 3.5) and
knowledge of fatigue, the most critical variants were selected; see Fig. 3.6. The stress concentration
factor at elastic stage is determined from numerical simulations or for simpler cases according to
Murakami [89]:

\wﬁ‘(

€2

Figure 3.5: Maximum weakening in structural plates according to EN 1993-1-8 [1]

Omax h
SCF = =142/ 3.2
Y hom AR (3.2)

® Omax — Maximum normal stress near the stress concentrator

where:
® 0,om — uniformly distributed normal stress far from the stress concentrator
e h — width of weakening
e R —radius of weakening

The initial triaxility parameter 7, is determined from finite element analysis; see Fig. 3.7.
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Figure 3.6: Selected geometries with stress concentration factor and initial triaziality parameter

Factor of Triaxiality
Expression: ((Sx+Sy+S52)/3)/SEQV
Time: 4,7226 s

29.04.2024 15:32

0,66511 Max
H 0,51902
037293
0,22684
0,080755
! -0,065333
-0,21142
-0,35751
-0,5036
-0,64969 Min

Figure 3.7: Triaziality parameter determined by ANSYS at elastic stage

3.2 Experimental investigation

3.2.1 Brno University of Technology

The first set of experiments was performed using Labortech 6.1000.1 testing machine at
AdMaS research center at the Faculty of Civil Engineering, Brno University of Technology in July
2024. A total of 18 specimens were tested. The plates were laser-cut and holes drilled. Three
geometries (see Fig. 3.8) and two steel grades (5235 and S355; see Tab. 3.1) varied; each geometry
of a steel grade was tested three times; see Tab. 3.2. The nominal dimensions of length x width
X thickness were 500 x 100 x 6 mm, respectively. The thickness of each specimen was measured
at multiple locations and the average calculated. Notably, specimens made of S235 were thinner,
at the edge of tolerance limits. Only the force and displacement over the original gauge length of
220 mm, with bolt holes in the middle, were measured. The speed of loading was 2.8 mm/min.

Table 3.1: Material properties of used steel from tensile coupon tests [10]

Steel grade E [MPa] f, [MPa] f, [MPa] Strain at f, [%] Strain at fracture %]
5235 209067 279 405 18.7 33.9
5355 202167 383 537 14.9 26.6
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Figure 3.8: Geometry of three specimen types for BUT experimental set; hole layout 2xd20 — type
V5 (left), 4xd20 — type V6 (middle), 2xd26 — type V11 (right)

Table 3.2: Geometric and material properties of specimens

Specimen Holes  Steel grade Thickness [mm] do [mm] Apet®[mm?]  Ag [mm?]

S1 2xd20 S235 5.50 20.00 330.0 550.0
52 2xd20 S235 5.49 20.00 329.3 548.8
S3 2xd20 5235 5.54 20.00 332.3 553.8
S4 2xd20 S355 5.95 20.10 355.8 595.0
S5 2xd20 S355 5.95 20.23 354.3 595.0
S6 2xd20 S355 5.83 20.15 347.8 582.5
S7 4xd20 S235 5.76 20.05 345.2 576.3
S8 4xd20 S235 5.88 20.08 351.6 587.5
59 4xd20 S235 5.81 20.10 347.6 581.3
S10 4xd20 S355 6.26 20.15 373.9 626.3
S11 4xd20 S355 6.19 19.83 373.4 618.8
512 4xd20 S355 6.06 20.10 362.5 606.3
S13 2xd26 S235 5.83 26.10 387.8 582.5
S14 2xd26 S235 5.91 26.00 394.8 991.3
S15 2xd26 S235 5.88 26.03 392.0 587.5
S16 2xd26 S355 6.26 26.00 418.2 626.3
S17 2xd26 S355 6.25 26.03 417.0 625.0
518 2xd26 S355 6.13 26.08 408.1 612.5

a Calculated according to EN 1993-1-1, Cl. 6.2.2.2 [4].

The photographs of failed specimens are in Fig 3.9. Specimens S7-S12 with four bolt holes
seemingly failed in the same way as specimens S1-S6 with two bolt holes, but the deformation
at failure was considerably larger. There was a significant strain achieved near the single hole
before the tensile rupture at two bolt holes occurs. The load-deformation curves are plotted in
Fig 3.10. The results are very consistent. Note that the specimens with shear plane (S13-S18)
achieved the peak load just before tensile rupture, but the shear plane ultimately failed at very
large deformations.

Eurocode reliability EN 1993-1-1 [4] provides guidance on the calculation of the net area in
Cl. 6.2.2.2 and tensile rupture resistance in Cl. 6.2.3. In the conducted experiments, tensile rupture
always governed over tensile yielding. To maintain consistent reliability, the ratio of experimen-
tal resistance to calculated resistance should be constant, but this ratio changes dramatically in
Tab. 3.3. Results of specimen triplets are averaged, and measured material properties are used in
calculations. N, stands for simple multiplication of A,.; and f,, Interestingly, specimens S1-S6
reached even greater resistances by 10%, indicating that the normal stress exceeded the nominal
ultimate strength. This can be explained by stress biaxiality. Due to stress flow and Poisson effect,
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Figure 3.9: Photographs of ruptured plates with centered and staggered bot holes
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Figure 3.10: Results of specimens S1-S18 tested at Brno University of Technology

the steel at bolt holes is in biaxial tension and the normal strength is increased according to von
Mises theorem. For specimens S7-S12, the effect was similar but lessened by the occurrence of
another hole, which disrupted the stress flow.

N¢ ra is calculated according to Cl. 6.2.3. The formulas are highly conservative for specimens
S1-S12, overestimating the resistance on average by 50%. The overestimation for specimens S13—
S18 is significantly lower, only 30%. Clearly, the reliability for only tensile rupture and combined
tensile and shear rupture is different. These findings are supported by another research [86]. The
reason for very high safety margin was an assumption of fatigue fracture at the bolt hole. However,
this is inconsistent; the assumption is not kept for combined tensile and shear rupture. A revision
of tensile rupture calculation would be beneficial, but the formulas stay the same also in the next
generation of Eurocode [12]. On the other hand, the reliability of both steel grades, S235 and S355,
seem very consistent.
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Table 3.3: Comparison of analytical, design, and experimental tensile resistances

Specimen S1-S3  S4-S6  S7-S9 S10-S12  S13-S15  S16-S18
Apet [mm?] 330.5 3526 3481  369.9 391.6 414.4
Ag [mm?] 550.8  590.8  581.7 617.1 587.1 621.3
N; [kN] 133.9 189.4 141.0 198.7 158.6 222.6
Ni.Rd [kN] 96.4 136.3 101.5 143.0 114.2 160.2
Ny ra [kN] 153.7  226.3 162.3 236.3 163.8 237.9
Ni exp [kN] 147.3  208.0 146.8 209.3 147.6 208.9
Ny exp [kN] 102.3 132.1 101.9 138.3 103.7 134.5
Nt exp/Ny (%] 110.1 109.9 104.1 105.4 93.1 93.9
Niexp/Nera [%]  152.9 1526 1446  146.4 129.3 130.4
V3b
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Figure 3.11: Geometries of the second set of specimens tested at BUT
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The second set of experiments was performed again at the AdMaS center at BUT using
the same test machine. The experiments proceeded in the same manner as the first set, only the
loading rate was decreased to 1 mm per minute. The measurements and testing were performed
by Amina Hajdarevi¢, Michal Strba, Martin Vild, Mykola Lastovetskyi, Petr Danék, and Pavel
Schmid.

This is a very large set of experiments containing 11 geometries, two thicknesses (see Fig. 3.11),
and four different nominal materials: S 235 (Note that the delivered specimens consisted of two
distinct materials, labeled based on visual surface texture: S for smooth and R for rough. Tensile
coupon tests were conducted for both materials.), S 355, S 460, and S 700.

Every type with the same geometry, type, and thickness was manufactured and tested three
times. In total, 204 specimens were tested. However, due to some issues with the test machine,
several specimens had to be discarded.

] Steel grade
300 "
./ —— 5235
4 $355
—— 5460
250 1 *% —— 5700
X
200 -
=z
2 150 |
©
®
o
-
100 A
50
O -
0 2 4 6 8 10 12 14

Deformation [mm)]

Figure 3.12: Load-deformation curves for specimen V6 and nominal thickness of 6 mm for all
steel grades

Examples of load-deformation curves for geometry type V6 with four bolt holes are shown in
Fig. 3.12. The yield point is marked by circle. It was determined by fitting the initial stiffness, shift-
ing it by 0.0005x gauge length equal to 220 mm and finding the intersection with load-deformation
curve. The peak point is marked by square. Ultimate strength was likely achieved at slightly
smaller load, but it cannot be experimentally recognized. The fracture is marked by a cross, and
was determined by the gradient of —50 kN/mm, but for many cases manually overridden by the
engineering judgment and alignment to the DIC measurements. Nevertheless, the real fracture
initiation will be found later with the usage of numerical simulations. Fracture initiates where the
numerical simulation with the true stress-strain material model begins to diverge — the experiment
starts descending faster than the numerical simulation.

The data can be visualized in the form of histograms. All geometry types and thicknesses are
grouped together. The average engineering stress (calculated as the peak load divided by original
measured area) at the peak load is shown in Fig. 3.13. Note that some specimens failed in pure
tension, others in pure shear (V10) and others in combined tension and shear. The average peak
stress is greatly affected by this. S 700 steel grade achieved by far the highest average stresses; the
differences between other steel grades are not so apparent. Both S 235 and S 355 were very likely
much stronger than their nominal strengths.

The deformations at the ultimate load are shown in Fig. 3.14 and are very relevant to the
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Figure 3.14: Histogram of deformations achieved at peak load

research of plastic strain limit in numerical design calculation. The deformations were measured
at the gauge length of 220 mm by LVDT, therefore some very small portion of deformation is
attributed to the elastic deformation of plates. The smallest deformations at peak load were
generally achieved by plates made of S 700 and by geometries with the highest stress concentration
factor (geometry V3b); see Tab. 3.4.

Deformation at fracture determined by a gradient or manually measured at 220 mm gauge
length is shown in a histogram in Fig. 3.15. The order of geometry types by fracture deformation
is similar to that of deformations at the peak load. The exception is geometry type V10 loaded by
pure shear, where all the specimens failed very shortly after reaching the peak load.

Most of the specimen types and materials were measured by digital image correlation by Kirill
Golubiatnikov and Vojtéch Stanc¢ik. Several outputs are in Fig. 3.16 and 3.17.

From DIC measurements, several preliminary findings could be drawn:

e The peak strains in the plastic region were in the center of the weakened specimen and the
fracture originated there for all steel grades for the geometries with low stress concentration
factor, i.e. type V1 and V8.
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Table 3.4: Mean values of deformation at peak load for individual geometry types

Geometry Mean deformation [mm)]

Vi1 7.463
V2 5.905
V3 4.343
V3b 3.305
V5 3.511
V6 4.593
V7 3.823
V8 7.669
V9 8.120
V10 9.303
Vil 5.272
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Figure 3.15: Deformation at fracture (significant load gradient drop)

e The peak strains and fracture origin were located at the weakening edge for higher SCFjy;t,
i.e. geometry types V2, V3, V3B.

e For V5 (two bolt holes) and V6 (four staggered holes), the strain peaks and fracture origins
were located at the inner edge of the bolt holes, but interestingly, this switched to the outer
edge of the bolt holes for V9 (six bolt holes).

e The stress concentration factor appears to govern the maximum strains measured by DIC
immediately before fracture. The smallest strains occurred for geometry type V3B (SCFipniy =
9.944; see Eq. (3.2)) around 0.1. Note that such weakening geometry is outside the scope
of structural engineering detailing rules where the minimum notch radius should be 5 mm
(EN 1090-2 — CL 6.7 [11]). The highest strains were reached for V1 (around 0.3) and for V8
(up to 0.5).

e The difference between steel grades is noticeable but not great. For several geometries, the
strain at fracture initiation as measured by DIC was actually lower for S 355 than for S 700.
Typically, the strains at fracture initiation were for S 700 lower by about 30 % than for other
steel grades.

The fracture area was captured by an electronic microscope by Karel Vafeka, a Ph.D. student
at CEITEC at BUT. A comparison of micrographs with the same magnification of steel grades
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Figure 3.16: Specimen V1 made of 5235 steel grade captured by DIC
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Figure 3.17: Specimen V8 made of 5460 steel grade captured by DIC

S 355 and S 700 is shown in Fig. 3.18, 3.19, and 3.20. From these images, the following observations
can be made:

o S 355 (left):

— At small and medium magnifications, the fracture surface is irregular with multiple
indentations and uneven topography. No clear layering is visible; the surface appears
more homogeneous.

— The fracture surface at large magnification is rough and irregular. Numerous dimples
and microvoid coalescence are visible, which indicates a ductile fracture morphology.

e S 700 (right):
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Figure 3.18: Small magnification of fracture surfaces: Significant delamination is observed at
each S 700 specimen
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Figure 3.19: Medium magnification of fracture surfaces

— At small and medium magnifications, the cross-sectional view is with distinct layers.
There are visible fracture separations between layers, suggesting a more complex mech-
anism, involving delamination. The structure looks more organized compared to S 355.

— The fracture surface at large magnification is smoother and more layered. There are
fewer dimples and voids compared to S355, which suggests a less ductile (more brittle)
fracture morphology.

This theme is repeated in all cases. Steel grade S 700 shows a distinctly different fracture
pattern with delamination, while mild steel (S 235 to S 460) fractures with large uniform surfaces
at an angle about 45° from the longitudinal axis. These surfaces are switched suddenly several
times; see Fig. 3.18.

The experimental measurements, DIC data, and photographs will be subjected to further inves-
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Figure 3.20: Large magnification of fracture surfaces

tigations and numerical simulations with the aim of determining the design strain limit for failure
in numerical design calculation as well as parameters for the model fracture, i.e., the fracture initi-
ation and descending branch of the load-deformation diagram for numerical simulation. The data
will be uploaded to the Zenodo database once a research paper is published.

3.2.2 Czech Technical University in Prague

Another set of experiments was performed at the Czech Technical University in Prague (CTU).
These experiments were designed to find the load resistance when the geometrical tolerances are
at their limits. The plate thickness was machined to the limits in EN 10029 [88] and the bolt
holes were drilled at the extreme out-of-center and out-of-shape tolerances in EN 1090-2 [11]. The
experiments are described in detailed in a paper by Golubiatnikov [90] and another in review [91].
The basic geometry of experiments was very similar to those of geometry types V1-9 shown in
Fig. 3.11. Shimadzu 300 kN testing machine performed the test with the controlled deformation
speed at 0.26 mm/min; see Fig. 3.21.

All the performed experiments together with the well-described experiments from the literature
are critical for validation of numerical simulations and determination of numerical-analytical model
and uncertainty factor for Monte Carlo simulations.
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Figure 3.21: Tensile test at CTU Prague [90]

3.3 Numerical models

Numerical simulations were created by Kirill Golubiatnikov in ANSYS [23] at CTU Prague. The
models are described in detail in publications [90, 91]. Three model types were created: (i) damage
model able to simulate the descending branch of load-deformation diagram, i.e. steel fracture, (ii)
solid model that is valid only up to necking, i.e. reaching f, in the most stressed element. GMNIA
was used in both models, although geometric nonlinearities and imperfections did not affect the
results noticeably. And finally (iii) numerical design calculations using nominal material models
and nominal geometry.

3.3.1 Damage model

Damage model utilizes explicit dynamic solver and 4-node tetrahedron elements. Damage model
is meshed relatively coarsely. The goal was finding parameters that simulate experimental load-
deformation curve of notched tensile test specimens and stress and strain distributions captured
by DIC; see Fig. 3.22.

3.3.2 Solid model

Solid model is finely meshed by 20-node quadratic cubic elements. Because the damage criteria
are missing, the model is valid only until the first element reaches necking, ultimate strength f,.
For tensile coupon test [10] with uniaxial loading, this moment is coincidental with the peak in
the load-displacement diagram. For specimens with weakenings, such as notches or bolt holes, f,
is reached sooner, at the load ~3 % lower, depending on the weakening geometry. Assuming this
is the peak load is therefore a safe assumption. Fig. 3.23 shows the comparison of experimental
load-deformation curve with the numerical with real material stress-strain diagram (Real MC)
and four-point stress-strain diagram with measured yield and ultimate strengths (Artificial MC).
The load resistance determined by Artificial MC is at most 7 % lower, while the deviation in
displacements is greater.

Solid models were used for numerical simulations and determination of the effects of geometric
tolerances and varying material curves with four-point material model [7].
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Figure 3.23: Comparison of real and four-point material curve for geometry types V2 (left) and
V3 (right) [91]

3.3.3 Shell model

Shell models were used for numerical design calculations. That means nominal geometry and
nominal material properties were utilized. The effect of mesh densities, small or large deflections
theories, and element types were investigated. As shown in Fig. 2.14, net section failure is not
very dependent on mesh density, nor is it particularly dependent on geometrical nonlinearities or
element types. FprEN 1993-1-14 [5] allows different material diagrams; see Fig. 1.2. It was shown
that the four-point material model provides the highest load resistance [90]. In Fig. 3.4, shell
models with four-point material model are utilized to create the left graph for each geometry type.

3.4 Numerical-analytical model

A single numerical simulation took two and a half hour. Numerical-analytical model (curve-fitted
formulas based on numerical simulations) is therefore needed to run millions of simulations for
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Monte Carlo reliability analysis. Solid models described in Section 3.3.2 were created and analyzed
in large quantities.

The numerical-analytical model is assumed to be a function of material M, geometry G, and
uncertainty U:

Nra = Anet - fu/ 2 = fnea (M, G, U) (3.3)

3.4.1 Material factor

Eurocode EN 1993-1-1 in Cl. 3.2.2 [4] defines the material, which may be used for structural
purposes. There are three limits:

e Ratio of ultimate to yield strength f,/f, > 1.10.
e Elongation at failure must be not less than 15 %.
e Ultimate strain ¢, > 15 - €,,, where ¢, is the yield strain (¢, = f,/E).

It is assumed that any structural steel must conform to these limits and otherwise, the distri-
bution in FprEN 1993-1-1 — Annex E [12] is used; see Fig. 3.24.
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Figure 3.24: Material properties of Furopean structural steel — real (left) and simplified (right)
distribution [92]

A set of numerical simulations was performed for three steel grades (S 235, S 355, and S 460)
and six groups of f,/f, ratios: f,/f, = 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, except for steel grade S 460
with maximum ratio of f,/f, = 1.43 for all geometry types V1-V9. Used material models are
shown in Fig. 3.25. They are represented in the Monte Carlo simulations by relative frequencies
shown on the right in Fig. 3.24. The resistances of numerical simulations are further modified by
geometry reduction factor G (typically reducing the resistance) and uncertainty factor U (typically
increasing the resistance) into Monte Carlo simulations.
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Figure 3.25: Four-point material models used for numerical simulations
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3.4.2 Geometry reduction factor

Geometry reduction factor G takes into account the effect of manufacturing tolerances, such as hole
misalignment or variability in plate thickness. In total, 198 numerical simulations were performed.
Three thicknesses (4.40 mm, 4.55 mm, and 5.00 mm), nine geometry types with and without
geometric imperfections at the edge of tolerances [11] (in total 33 geometries), and two material
models were varied. The Geometry reduction factor was determined as a lower-bound linear
function of the plate thickness taking into account any combination of geometrical imperfections
due to tolerances:

trea
G=p:- 7l+202 (3.4)

tnom

where t,.¢4; is the real thickness, t,o, is the nominal thickness, and p; and p, are parameters
in Tab. 3.5.

Table 3.5: Values of parameters p1 and py for geometry types VI-V9 [91]

Variant ‘ V1 V2 V3 V4 V5 V6 Vi V8 V9

P1 0915 0915 0.939 0950 0.962 0944 0.874 0.963 1.041
D2 -0.005 0.004 -0.053 0.019 -0.021 -0.024 0.023 -0.005 -0.090

3.4.3 Uncertainty factor

Uncertainty factor U simulates the production-related factors, such as hole drilling/punching/-
cutting methods and counter weighs the conservatism of modeling approach. Uncertainty factor
was determined by comparing the numerical simulations with the above-described modeling pro-
cedures to the experimental research [93, 90, 85, 94, 95, 96, 97] comprising 178 static tensile tests.
The uncertainty factor here therefore coincides with the bias b. Fig. 3.26 shows the distribution
of experimental r. to numerical-analytical r, resistance ratio. The histogram of r./r; ratios was
approximated by normal distribution with mean uy = 1.115 and standard deviation oy = 3.69 %
with the minimum value of U = 1.00 and maximum value of U = 1.20.
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Figure 3.26: Distribution of experimental to numerical-analytical resistance ratios [91]

3.5 Monte Carlo simulations

3.5.1 Design resistance

Monte Carlo simulations were generated using a Python script, where input sets of parameters
— geometry type, ultimate-to-yield strength ratios, real thicknesses, uncertainty factors — were
generated independently as pseudorandom parameters (parameters are independent of each other).
The resistance was calculated by numerical-analytical method described above.
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The required sample size was determined through a sensitivity study of the design net cross-
section resistance Ng g for geometry V3 of S235 steel grade, which exhibited the highest local stress
peak. Input sets were generated for several sample sizes, and the lowest 0.1184 % of resistances
were discarded. The smallest remaining value was taken as the design resistance Ng 4. Each case
was repeated ten times per sample size, and standard deviations from the mean were evaluated.
A target maximum deviation of 0.01 was achieved with approximately 2.8 million samples. Three
million samples were used for each geometry in simulations.
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Figure 3.27: Determination of design resistances for varying steel grades, geometry type V3 [92]

Fig 3.27 shows an example of the generated resistances for geometry V3 across all considered
steel grades. Colored dots represent the simulated results, while red cross marks experimental
resistances of specimens with different permitted deviations; see Section 3.2.2. A reminder that
the experimental specimens were fabricated in three thicknesses: 5 mm, 4.55 mm, and 4.4 mm —
the lowest allowed deviation from the nominal 5 mm thickness.
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Figure 3.28: Design resistances Ng 4 for geometry types V1-9 [92]

Fig. 3.28 presents the resulting design resistances Np q for all geometry types categorized ac-
cording to steel grades, initial stress concentration factors SC Fip;, and ultimate-to-yield strength
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ratios fu/fy. Geometry type V7 (the highest SCF,;, = 5.76, above-average triaxiality factor
Minit = 0.52; see Fig. 3.6) shows consistently the lowest design resistance of all geometry types.
Otherwise, no clear correlation with stress concentration or triaxiality was found.

3.5.2 Partial safety factor yyps

The same procedure as for design resistance was used for the partial safety factor ~ye. They
were determined as the ratio of nominal resistance A, - fu to the real possible resistance Ny =
f(M, G, U). The nominal resistances are calculated from the material curves in Fig. 3.25. The
highest 0.1184 % of partial safety factors were discarded.
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Figure 3.29: Partial safety factors for net section failure for each steel grade and geometry type

The maximum partial safety factor vy = 1.22 for geometry type V3. This confirms the
Eurocode yy2 = 1.25 and is consistent with recommended g = 1.23 from the literature [85, 86].

3.6 Plastic strain limit for numerical design calculation

Numerical design calculations should directly provide design resistance when nominal geometry
and nominal material properties are used as an input. Different solid elements (20-node and 8-
node), shell elements (8-node and 4-node) and mesh densities (1.0 x 1.0¢,, 0.5 x 0.5¢,, 0.25 X
0.25t,,, 0.2 x 0.2¢,,, where ¢, is the nominal thickness) were tested. Material nonlinear analysis was
performed (small deflection theory).

Section 3.5.1 found the reliable design resistance from a representative set of numerical-analytical
simulations (see the right side of Fig. 3.4), these numerical design calculations allow finding the
reliable plastic strain limit e);, (see the left side of Fig. 3.4). Note that in some cases, the numerical
design calculation did not reach the reliable design resistance INg 4. In such instances, a conversion
based on the deformation energy ratio [98] was applied; see steel grade S235 in Fig. 3.30. Such
cases are not critical, i.e. causing minimal plastic strain limit, and will not be further discussed
here.

Numerical design calculation with the reliable plastic strain limit ey, provides at most the
design resistance NR 4 determined by Monte Carlo simulations. The reliable plastic strain limit is
suggested in a form of multiplication of ultimate strain €,; see Eq. (2.20). The ultimate strains are
e = 20.8 %, 16.5 %, and 8.9 % for steel grades S 235, S 355, and S 460, respectively. A reduction
factor yx = €1im/ey is sought.

Fig. 3.30 and 3.31 show that the element type nor the mesh density are relevant for the reliable
reduction factor vx; see also Fig. 2.14. Surprisingly, the geometry types with low initial stress
concentration factor determined the smallest «x. This is due to high thickness tolerances and
critical material models with f,/f, = 1.1 ratios that cause low design resistance Nrq, and at
the same time the strains in numerical design calculation being evenly distributed across the net
section.

The recommended plastic strain limit for numerical design calculation is:

€lim =YX - €u = 0.25 - &gy (3.5)
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Figure 3.31: Plastic strain limits €y, and reduction factors vx for all geometries, element types,
and mesh densities

The numerical design calculations with this plastic strain limit provide in the vast majority
of samples smaller design resistance than the reliable design resistance Ng 4. The experimental
load resistances of specimens failing in net section [90, 93, 85, 94, 96, 97] were plotted against
the numerical design calculations with the proposed equivalent plastic strain limit according to
Eq. (3.5) in Fig. 3.32.
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Figure 3.32: Reliability graph: comparison of numerical design calculations with the proposed
plastic strain limit €y, with the experiments

This proposed equivalent plastic strain limit must precede the values of fracture strain for
structural steel from the available literature, e.g. [99]. This requirement is satisfied.

3.7 Outlook

The proposed equivalent plastic strain limit is simple to use and provides similar values to 5 % for
steel grades S 235, S 275, and S 355. The equivalent plastic strain limit will gradually decrease for
higher steel grades — decreasing fy nom/fynom. The author and colleagues from CTU will attempt
to push this proposal into FprEN 1993-1-14 [5] and FprEN 1993-1-8 [28].

In next months, the BUT experiments will be included in the experimental database of net sec-
tion failures and numerical design calculation models will be analyzed. The reliability of numerical
design calculations with the proposed plastic strain limit for all specimens will be determined using
the procedure in Section 2.6.

Furthermore, numerical simulations will be built in Abaqus [100] for the BUT specimens to find
the plastic strain at fracture initiation. This plastic strain must be higher than the suggested plastic
strain limit for the numerical design calculation and will illustrate the safety of the proposal.



Chapter 4
Application

In this chapter, the complete workflow is illustrated using the example of a column web panel
in transverse compression. The current design methods, along with possible improvements, were
presented in Section 2.1, followed by experimental research by the author and others in Section 2.2.
The numerical model is described, and the process of a dataset creation is shown. The performance
of the neural network with various settings is investigated. Finally, the reliabilities of code formulas,
the new proposed method, and machine-learned predictions are evaluated.

4.1 Numerical model

A numerical model in IDEA StatiCa Connection was used because through API, thousands of
models can be generated and solved within a reasonable time. The trade-off is the model precision.

The in-house-made four-node shell finite elements [101] are used for all plates. The rolled I-
section is made of three plates, where the nodes of flange are directly connected to the nodes of
the web. The number of elements dividing the flange along the cross-section therefore has to be
even. The meshing follows the default settings of IDEA StatiCa Connection. The biggest member
cross-section size h is divided between 12 elements; see Fig. 4.1. The biggest side of plates is
divided into 20 elements. The stiffeners are exempt from this rule for plates and instead follow the
meshing rule for cross-sections. The minimum element size is set to 8 mm and maximum size to
50 mm. The software attempts to create elements as close to a square shape as possible.

z z
A )
|
X — S |
I N
|
! |
! !
i |
i |
g § _ b Y & E ______| ______ -y
|
: |
6|
; )
| |
|
' PN
|

SN—

120 |, 200

Figure 4.1: Biggest member cross-section size h is height or width, whichever is bigger

The model in IDEA StatiCa is created by a series of manufacturing operations; see Fig. 4.2.
The top and bottom blocks are solid steel with a cross-section of 200 x 200 and a length of 1.25 x h
of shell elements plus 4 x h as condensed beam element. These blocks are intended to be as rigid as
possible. Between the blocks and the I-section, spreading plates are placed with the cross-section

65



66 CHAPTER 4. APPLICATION

l Elastic
material
Top hlk | ’

Real
material

Bottom block

Elastic
material

A

-500.0

Figure 4.2: Model in IDEA StatiCa Connection

height of 30 mm and width equal to the cross-section width of the I-section. The thickness of these
plates is one of the examined variables. Both blocks and the spreading plates are modeled with
elastic material (f, =4 000 MPa).

Weld
spreading area

Surface

plate Edge plate

Weld
spreading area

i
i

i

Forces in

nodes

Figure 4.3: The model of butt welds in IDEA StatiCa Connection

The transition between the blocks, spreading plate, and I-section is modeled using butt welds,
represented as links between the nodes with weights proportional to the weld spreading area,
calculated as 0.6 - t,, where ¢, is the edge plate thickness; see Fig. 4.3.

For each model, materially nonlinear analysis (MNA) and linear buckling analysis (LBA) is
solved; see Fig. 4.4. The failure criteria in this dataset do not follow the IDEA StatiCa defaults of
5% plastic strain limit for structural steel and 1% for high-strength steel. Instead, the conclusions
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Figure 4.4: Buckling shape (left) and plastic strain (right)

of current research into plastic strain limit shown in Chapter 3 are used, i.e., the plastic strain
limit is calculated according to Eq. (2.21).

The Stop at limit strain function is utilized, which means the load between the converging step
(plastic strain is below the set limit) and the diverging step (plastic strain is above the set limit) is
halved eight times. The achieved plastic strain at the last converged step is below but may still be
quite far away from the set plastic strain limit, e.g. e = 3.52 % < €13 = 4.13%. Furthermore, it
should be noted that the scale in the software’s 3D scene shows values averaged in nodes, which are
typically even smaller. The values presented in the Check tables show values averaged in elements
that are more suitable for strain check.

Mesh sensitivity has already been observed by Pesek [37]. IDEA StatiCa model of the web
panel in transverse compression is strongly dependent on mesh size; see Fig. 4.5 for an example of
IPE 300 cross-section made of S 355 steel grade.

Web height was divided into 6, 8, 12, 16, and 20 elements. The highest resistance is achieved
with the coarsest mesh and the lowest resistance with the finest mesh. The theoretical plastic
resistance at infinite mesh determined by MNA is Fj; rq = 224 kN. Accepting the 5 % error,
1.05 - 224 = 235 kN is the qualified plastic resistance. However, even the finest tested mesh with
20 elements per cross-section height reaches 262 kN. The theoretical critical force at infinite mesh
determined by LBA is F,, = ar - Fpi ra = 459 kN. Accepting the 5 % error, 1.05- 459 = 482 kN is
the qualified critical force. Again, even the finest tested mesh with 20 elements per cross-section
height reaches 501 kN.

The default value of 12 elements per cross-section height causes an error of 33 % in plastic
resistance and 12 % in critical force compared to the infinite mesh. On the other hand, the model
is simplified, the fillet radius is not modeled, nor does the fillet weld add any stiffness to the force
distribution. These simplifications decrease the resistance against transverse compression. The
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Figure 4.5: Mesh sensitivity for a web panel in transverse compression model — plastic resistance

Fpi,ra and critical force F,

default value of 12 elements per cross-section height was found to be a good balance for hot-rolled
cross-section and this value is used in the dataset creation.

4.2 Dataset creation

The dataset is created as follows:

e The whole range of IPE, HEA, HEB (European), and W (USA) sections is used totalling
432 cross-sections. This approach was chosen to maintain the realistic ratios of cross-section
dimensions; see Fig. 4.6.
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Figure 4.6: Histogram of cross-section geometry ratios

e European steel grades were chosen in this study; see Tab. 4.1.

e Relative distance from the unstiffened end z = e/h is generated in a log-spaced grid between
0.05 and 1. Log-spaced grid is chosen because it was observed that the load resistance changes
rapidly with a small change near the unstiffened end but is stabilized with increasing distance
x. Therefore, it is beneficial to have a denser population of data points in the region of large
load resistance gradients — with small x near the unstiffened end.
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Table 4.1: Steel grades and corresponding mechanical properties

Steel Grade fy [MPa]  f, [MPa] Eu Elim
S 235 235 360 20.8% 5.21%
S 275 275 430 21.6% 5.41%
S 355 355 490 16.5% 4.13%
S 450 440 550 12.0% 3.00%
S 420 MH/MLH 420 520 11.5% 2.88%
S 460 MH/MLH 460 540 8.9%  2.22%
S 620 Q/QL/QL1 620 700 6.9% 1.71%
S 690 Q/QL/QL1 690 770 6.2% 1.56%
S 500 MC 500 550 6.0% 1.50%
S 550 MC 550 600 6.0% 1.50%
S 650 MC 600 650 6.0% 1.50%
S 700 MC (tle8 mm) 700 750 6.0% 1.50%
S 700 MC (t>8 mm) 680 750 6.0% 1.50%

e Relative spreading plate thickness a = t,/ty is uniformly randomly distributed between
a € [1, 5]. In this case, it is beneficial to have all values evenly populated.

The dataset was selected to directly provide the design load resistance when using nominal
material and geometric properties. It should be noted that the choice of properties would differ
if the objective were to generate millions of simulations for a Monte Carlo analysis aimed at a
reliability-based design approach. In such a case, it would be beneficial to treat yield strength
and ultimate strength as random variables interlinked with each other, e.g. f, € [1.1 f,, 1.6 f,],
because a uniform distribution is preferable to a step-wise distribution of feature values.

The whole dataset is shown in histograms in Fig. 4.7. The variations in beam sizes can be
seen. The small number of datapoints in the regions of very thick flanges (¢; > 80 mm) and very
thick webs (£, > 55 mm) will likely cause issues with predictions of neural network. It is useful to
filter out such datapoints and reduce the range of validity. The relative end distance x also has a
decreasing trend, but that is by design and should not cause any troubles. The outputs — plastic
resistance Fj; pq and especially F., may reach extremely high values, which cannot directly be
used as targets for training a neural network, as such models work best with targets normalized
to ranges [-1, 1] and of comparable order of magnitude. Therefore, some form of normalization
needs to be devised for these variables. It is strictly needed to scale these outputs down and most
likely also necessary to filter out the extremely high values. A viable alternative is using a., — the
multiplier of F},; rq to obtain critical force F,,. This value is basically already scaled by F}; rd.
Another option is to scale Fj; rq against some cross-sectional property, e.g. the web thickness
multiplied by the flange thickness.

The Python code utilizing IDEA StatiCa Connection API [47] that was used to model and
calculate the dataset is published at a Github repository [102] along with the generated dataset.
In total, 9 241 models were solved and the load resistance Fj,; at strain limit as determined by
MNA, critical force Fy, and «., as determined by LBA were noted.

The main limitations of this dataset are as follows:

e Buckling resistance is not provided and must be further calculated by analytical equations
from the results of MNA and LBA

e Shell models are utilized, the effect of the fillet between the web and the flange is totally
neglected.

Range of validity is determined by the dataset. Each feature is divided into 30 bins, and bins
containing fewer than 5 samples, along with all subsequent bins, are removed. Sparsely populated
regions of the feature space would likely lead to poor predictions and degrade the performance of
the training process. The remaining dataset defines the range of validity shown in Tab. 4.2.

The range of validity of geometrical features may be exceeded provided the ratios plotted in
Fig. 4.6 are maintained if the Similitude scaler is utilized.
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Figure 4.7: Histogram of all features with outputs

Table 4.2: Minimum and mazimum values of input and output features after filtering

Feature Minimum Maximum
Depth h [mm)] 80.0 1137.9
Width b [mm] 46.0 447.0
Flange thickness t¢ [mm] 4.9 89.9
Web thickness t,, [mm] 3.8 51.3
Fillet radius r,, [mm] 5.0 30.0
Relative end distance x 0.05 1.0
Relative plate width a 1.0 5.0
Yield strength f, 235 690
Plastic strain limit ey, 0.015 0.054
Load resistance Fpj ra [kN] 34 13549

4.3 Dataset scaling

Dataset scaling may be difficult to grasp only by engineering judgment. How could the predictions
be better when only different units (e.g. MN instead of kN for the output of load resistance)
are used? The neural networks are numerical optimizers; therefore, all inputs should have the
same scale and outputs should be in a reasonable range. Large values lead to large gradients and
therefore unstable training; small values lead to slow training. The benchmark case without any
scaler is shown in Fig. 4.8. The predictions of this model are terrible clearly indicating that scalers
are necessary and greatly improve model performance.
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Figure 4.8: Model performance without any scaler

Similitude scaling is explained in Section 2.5.2. Its usage is shown in the following graph in
Fig. 4.9 where cross-sectional dimensions are varying and the outputs in the form of yield resistance
and critical force can be predicted by scaling. The dimensions of cross-section — beam depth h,
beam width b, flange thickness t;, and web thickness t,, are all multiplied by a scaling factor. The
plastic resistance F},; rq and critical force Fr, are multiplied by the scaling factor on the power of
two.
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Figure 4.9: Scaling dimensions perfectly proportionally allows prediction of plastic resistance and
critical force

It can be observed that for the factor up to 3, the scaling prediction fits the finite element
analysis nearly perfectly. However, for larger factor, the prediction and calculation diverge. The
reasons why similitude scaling may not work well are as follows:

e Yield strength of some grades is thickness-dependent — thicker plates may be assigned a lower
yield strength. For some standards, such as EN 10025 [55], the yield strength for thickness
above 40 mm is reduced. For other standards, such as EN 10149 [103], the yield strength is
reduced for thickness above 8 mm [12].

e Not all elements in the model are scaled — in the model for the column web in transverse
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compression (see Fig. 4.2), the top and bottom stubs are kept constant.

e Meshing rules include the minimum and maximum finite element size. Very small sections
(h < 12 -8 = 96 mm) consist of smaller number of finite elements. Very large sections
(h > 12-50 = 600 mm) consist of more finite elements. This is what causes the divergence
in the example in Fig. 4.9.

Inputs are further scaled using StandardScaler from scikit-learn [74].

Outputs are scaled by dividing each value by the maximum output and multiplying by 10. This
ensures that the maximum output is 10 and the minimum remains greater than 0. This may seem
as a useless step but the increase in model performance can be clearly seen when the output scaler
is applied. Using the output scaler leads to b = 0.9992, CoV = 0.0228, Minimal ratio = 0.843, and
Maximal ratio = 1.111. Compare to not using output scaler: b = 0.9994, CoV = 0.0342, Minimal
ratio = 0.727, Maximal ratio = 1.166. The convergence is also much slower; see Fig. 4.10.
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Figure 4.10: Comparison of learning rate and CoV over epochs with and without output scaling
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Figure 4.11: Comparison of the Similitude scaler

The Similitude scaler actually makes the predictions worse, as seen in Fig. 4.11, where input
and output scalers are both applied with and without the Similitude scaler. This is no surprise
for the reasons stated above — the dataset contains both very small and very large members and
the meshing difference and yield strength reduction cause issues. If this was taken into account in
the dataset creation by removing the minimum and maximum element sizes, this issue would be
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mitigated. This is the tradeoff for an increased range of validity. If these issues were dealt with,
the similitude scaler might actually prove useful for datasets with a larger number of parameters,
as it effectively reduces the dimensionality of the input domain by one. However, in the dataset
considered here, it didn’t seem necessary.

4.4 Dataset size

A key question is the minimum dataset size required to achieve sufficiently accurate predictions.
Figure 4.12 illustrates the effect of varying the training set size by adjusting the train/validation
split; for example, 20 % is used for training, 80 % for testing, then 30 % and 70 %, and so on.
Across all training sizes, the model without the Similitude scaler (but using standard input scaling
and custom output scaling) consistently outperformed the model with the Similitude scaler, both
in terms of CoV and maximum prediction error.
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Figure 4.12: CoV and mazximum error of DNN with and without the Similitude scaler for varying
training set size

Increasing the number of cases always improves the prediction quality, but it converges to a
limit value, and adding additional samples is less and less effective.

4.4.1 Active learning

Urben, in his master’s thesis [104] prepared within the MADESCO project investigated active
learning (AL) in the analysis of steel connections using DNNs. AL means strategically increasing
the dataset in locations of unsatisfactory model performance. The main issue is recognizing the
areas in the multidimensional space of bad predictions without the knowledge of ground truth
(calculated models).

Several learning functions were implemented and evaluated:

e Random Sampling: Serves as a baseline, selecting data points without any heuristic.

e Error-Based Acquisition: Prioritizes samples with high relative prediction error, effective
when ground truth is available.

e Latin Hypercube Sampling (LHS): Ensures uniform coverage of the input space, independent
of model predictions.

e Cluster-Based Sampling: Uses unsupervised clustering to select representative samples from
distinct regions.

e Uncertainty-Based Acquisition: Employs Monte Carlo Dropout (MCD) to estimate epistemic
uncertainty, guiding sample selection without requiring ground truth.
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Figure 4.13: Active learning — adding more training data into regions of bad prediction accuracy

[104]

Empirical evaluations revealed that error-based and uncertainty-based strategies yielded the
most sustainable improvements in model performance. However, error-based acquisition is not
applicable when ground truth is unavailable, which limits its practical use.

Two complementary AL frameworks were developed:

e Local Active Learning (LAL): Targets existing designs with poor predictive performance. For
each design, new load combinations are selected using a multi-objective function that balances
exploration (distance from existing loads) and exploitation (proximity to high-uncertainty
regions). These combinations are evaluated via FEM and added to the training set.

e Global Active Learning (GAL): Explores the broader design space by generating novel connec-
tion designs. A feasible hypercubemap (FHCM) is constructed to partition the design space
into feasible and infeasible regions. Samples are drawn from feasible hypercubes, clipped
to match standardized profiles, and evaluated using the DNN and MCD uncertainty. High-
uncertainty samples are selected for FEM evaluation and dataset augmentation.

Active learning, supported by uncertainty quantification and automated FEM integration, en-
ables efficient and targeted dataset expansion for structural engineering applications. The proposed
frameworks demonstrate the feasibility of autonomous, data-driven model refinement, laying the
groundwork for intelligent design tools in steel connection engineering. The areas of bad predictions
can be recognized and further samples added to such areas; see Fig. 4.13.

However, the full loop that would assign the parameters of CBFEM model has not yet been
developed. Active learning remains a promising strategy to reduce the number of time-consuming
and costly FEM analyses while achieving the target accuracy, e.g. CoV < 0.02.

4.5 Predictions of different datasets

The predictions of the current dataset is amazingly precise; the DNN provides nearly the same
results as IDEA StatiCa Connection numerical design calculation that was used for the data gener-

ation. In the following section, the quality of predictions towards different datasets is investigated.
Two evaluation models are used:

e Without the Similitude scaler — performed better for all known data

e With the Similitude scaler — anticipated to also remain reliable outside the geometric range
of validity

4.5.1 Full dataset without filtering

The aim of this section is to quantify how well the DNN can predict also the unknown data outside
the range of validity.
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Figure 4.15: Histogram of plastic resistance Fp; rq predictions

Fig. 4.14 and 4.15 show that the Similitude scaler may indeed help predicting the samples
outside the range of validity (for cut-offs, see Tab. 4.2). However, the unknown ratios, e.g. too
thick web to beam depth ratio, remain an issue. Without the Similitude scaler, the DNN tends to
undervalue the load resistance F},; rq for jumbo cross-sections. By including all data, the Similitude
scaler becomes more appropriate, with superior variation coefficient Vy; see Eq. (2.36).

For buckling analysis, the same procedure is done for the predictions of critical buckling factor
Oer = Fer /Fpi pa- Predicting o, instead of Fy, is convenient, because the buckling factor is already
normalized and the range of values is much smaller; see Fig. 4.7. In the Similitude scaler, it must
be remembered that the output in the form of coefficient ., is no longer scaled.

The predictions of the buckling factor are much worse. Both predictions with and without the
Similitude scaler overestimate the buckling factor a., for unknown data, despite the fact that the
predictions for training and testing dataset with the data filtering were excellent; see Tab. 4.3.

Overall, the Similitude scaler allows predicting datapoints outside the range of validity better.
However, the results were still too far away from the ground truth — finite element analysis (FEA).
Predicting outside the range of validity cannot be recommended, although future research may
show that going outside the geometry limits while keeping the geometry ratios may be viable with
the Similitude scaler.
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Figure 4.17: Histogram of buckling factors ., predictions

Table 4.3: Bias, CoV, and the worst predictions for scalers with and without Similitude scaling

for filtered dataset

Scaler Bias CoV Min ratio Max ratio
Similitude 0.9993 0.0194 0.895 1.120
No similitude 0.9997 0.0159 0.926 1.169
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4.5.2 IDEA StatiCa dataset created by nested for loops

The second dataset should not cause any troubles for the DNN. The parameters are within the
range of validity created by the same software that was used for models used for training, IDEA
StatiCa Connection. In this dataset, six cross-sections are used: IPE 100, IPE 200, ..., IPE 600
and relative distance to the unstiffened end x varies between 0.05 and 1. Otherwise, relative plate
width a = 1, S 355 steel grade, £;;,,, = 0.05 are kept constant.
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Figure 4.18: Dataset created by nested for loops
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Figure 4.19: Reliability graphs of dataset created by for loops — plastic resistance by MNA, Fp ra

As stated above, such dataset is suitable for human perception and it allows noticing interesting
remarks about the numerical design calculation in IDEA StatiCa:

e By varying relative distance x, the plastic resistance slightly jumps up and down although it
is stabilized for x > 0.4; see Fig. 4.18. This is caused by the number of finite element nodes
being active in direct transfer of transverse force; see Fig. 4.3.

e By keeping the same mesh, this fluctuation propagates throughout all cross-section sizes.
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Figure 4.20: Histogram of dataset created by for cycles

The DNN trained on this dataset is actually able to capture this numerical error. That is
not desirable and is a sign of overfitting.

e Interestingly, this numerical error increases with increasing cross-section size. The relative
errors calculated as Fyin/Fmax in the range xz = [0.4,1.0] are 99.01%, 98.77%, 97.65%,
97.02%, 97.06%, 95.21% for IPE 100 to IPE 600, respectively.

e Because this numerical error reaches up to 5%, achieving higher levels of accuracy by DNN
prediction does not seem feasible. This finding is relevant also for other datasets created by
IDEA StatiCa Connection.
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Figure 4.21: The plot of relative prediction error to relative distance for IPE 600

Against expectations, Fig. 4.19 and 4.20 show that the DNN has troubles to perfectly imitate
the behavior of dataset. Fig. 4.19 shows clear bands of results. The DNN overpredicts the plastic
resistance for small relative distance z. The relative errors are the smallest for IPE 200 and
IPE 300, but increase up to 14 % for IPE 400, 500, and 600. The relative error of prediction
without the Similitude scaler plotted against relative distance x for IPE 600 is shown in Fig. 4.21.
There is not much of a difference between the usage of the Similitude scaler.

The training set was intentionally created with high density of samples with small relative
distance x exactly to prevent this issue; see Fig. 4.7. It is an unpleasant surprise that the predictions
are not capturing the load decrease near the unstiffened end for some cross-sections well enough.
On the other hand, the variation coefficient V5 = 0.044 for both DNNs is small.

4.5.3 Dataset created in ANSYS software

The aim of this section is to investigate the differences between the predictions trained on a crude
numerical design calculation in IDEA StatiCa compared to the finely-meshed solid models created
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in ANSYS by Ondiej Pesek [37]. Note that the same ANSYS models were used in papers [25, 26,
24, 30] and their responses have been validated on physical experiments.
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Figure 4.22: Web and flange is divided between 4 solid elements across their thickness; beam
length is equal to 4 - h [37]
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Figure 4.23: Validation of ANSYS model — transverse load-displacement curves for IPE 200 [24]

The mesh and von Mises stress for the base model of IPE 400 are shown in Fig. 4.22. The
model is validated by using the measured true stress-strain curve and low geometric imperfections.
The basic case of a web in transverse compression is validated on BUT tests described in [24]; see
Fig. 4.23. Models with axial force are validated on tests by Kuhlmann [45] and with load near the
unstiffened end on other BUT tests [30]. The models with the end plate have not been validated
yet, but due to their simplicity, no issues are expected.

In the following comparisons, ANSYS models utilize bilinear stress-strain curve with insignifi-
cant strain-hardening of F /1000 and plastic strain limit of &;;,,, as suggested by EN 1993-1-5 [32].
Equivalent geometric imperfections equal to d,,/200 as suggested by FprEN 1993-1-14 [5], where
d,, is the depth of straight portion of column web (clear depth).

The dataset created in ANSYS brings two additional parameters for several models: (i) axial
force in the member in the range n = Nga/Np ra € [0.1, 0.9], (ii) end plate with the thickness
in the range t.,/ty € [0.5, 2]. The presence of an axial force cannot be captured by the trained
model. The end plate thickness was transformed into the relative plate width a using the Eurocode
assumption, where the distribution slope is 1:1, i.e. amoq = @ + 2 * top,. Furthermore, two welded
sections are introduced; one is small and thick-webbed, which may not be an issue, but the other
is with the depth of A = 550 mm and web thickness of t,, = 10 mm. Such high web slenderness is
unusual among the hot-rolled sections.

Also note that for the DNN predictions, relative distance x was set to 1 (the highest value in
the range of validity), although in ANSYS models, it was = 2. It is assumed that any models
with the distance over z > 1 provide the same load resistance as x = 1.

Plastic resistance F),; rg by MNA is investigated first. The histograms in Fig. 4.24 show high
scatter, which requires further investigation. Understandably, the DNN cannot accurately predict
the additional parameters.
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Figure 4.25: Reliability graphs of dataset created by validated ANSYS models — plastic resistance

by MNA, Fpl,Rd

Fig. 4.25 shows reliability graph in several batches:

e Standard: Contains IPE and welded sections without any additional parameters.

e N: Contains the same cross-sections but loaded also by axial force n = Ngq/Np ra =
{0.1, 0.3, 0.5, 0.7, 0.9}

e End plate: Contains the same cross-sections but with the transverse load acting through an
end plate with the relative thickness of t.,/t; = {0.5, 0.75, 1.0, 1.5, 2.0}

The Standard batch shows good alignment of DNN predictions towards ANSYS models. IDEA

StatiCa models appear to be well calibrated. The exception is the welded section with high
web slenderness (r. = 902 kN). The DNN with the Similitude scaler grossly underestimated its
resistance (r; = 545 kN), whereas DNN without the Similitude scaler overestimated it (r, =
981 kN). This point disrupts the variation coefficient Vs for Similitude scaler.

The N batch shows that the predicted values are constant, equal to the standard case of n = 0.

The load resistance determined by ANSYS progressively decreases with increasing axial load ratio

n.

Therefore, many points fall to the unsafe side, below 45° line. Again, the welded section disrupts

DNN results with the Similitude scaler, pushing bias b even above one.
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Figure 4.26: Load resistances by IDEA StatiCa and ANSYS for varying plate width a and added
end plate thickness

The End plate batch is the most interesting. The DNN predictions are extremely safe. There
may be two reasons for this discrepancy; either the spreading angle 1:1 is not correct, or IDEA
StatiCa Connection does not predict well high values of relative plate thickness a. This can be
quickly verified by several calculations with IPE 300 cross-section in IDEA StatiCa Connection; see
Fig. 4.26. The ratio of IDEA StatiCa resistance F; rq(a = 5) is only 8 % higher than F,; ra(a = 1).
On the other hand, ANSYS with end plate t.,/t; = 2 carries 56 % more.

An additional IDEA StatiCa model with an added end plate was created and plotted into the
same graph. The shell model with end plate follows the same trend as ANSYS model.

Critical buckling factor a.. by LBA is shown next.
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Figure 4.27: Histogram of dataset created by validated ANSYS models — ag,

Fig. 4.27 shows the histograms of aer pra to aer pyn ratios. The bias b is smaller than one,
meaning DNN predicts on average higher critical factor than determined by ANSYS, which is
unsafe. Furthermore, the scatter is very large with V5 = 0.233. Note that ae, = Fe,/Fpi ra, and
F1, ra is already not determined correctly and this error propagates also into a...

Fig. 4.28 utilizes the same division into batches as Fig. 4.25. Standard batch shows good
agreement of DNN predictions with ANSYS models. Batches N and End plate are not correctly
captured.

From the above-mentioned graphs, it can be seen that: (i) End plate thickness cannot be
simulated by increased bearing plate thickness a in the IDEA StatiCa Connection model and
therefore in trained DNNs; (b) additional parameter of normal force significantly disrupts the
alignment of predictions to the ground truth (ANSYS model) despite Eurocode assumption that



82 CHAPTER 4. APPLICATION
Standard . Standard .
®  p=1.015, V5=0.064 ‘/ ®  H=1.029, V5=0.057 ‘/’
N %4 N "
®  p=0.915, V5=0.156 4 ®  H=0.926, V5=0.147 4
End plate End plate /’
b=0.658, V5=0.167 % b=0.649, V5=0.138 L
o 0 o 7’
1014 7" 45° line // 1004 77 45° line //
7/ 7/
.,/ .‘//
- o, - o,
— 7/ — 7/
< ® < ®
: 1" : ’(’
!’,f‘t ,{A‘
7z 4
100 A e 100 4 S
d 7
4 4
d d
100 10t 100 10!
Predicted [-] Predicted [-]

(a) With Similitude scaling (b) Without Similitude scaling

Figure 4.28: Reliability graphs of dataset created by validated ANSYS models — buckling factor
aer (log scale)

up to n = 0.7, no reduction is necessary, and (iii) unknown welded cross-section may cause serious
issues, although all the geometric parameters are within the range of validity; see Tab. 4.2.

Buckling resistance Fj pq can be calculated using geometrically and materially nonlinear anal-
ysis with imperfections (GMNTIA) or estimated using General method in EN 1993-1-1 — Cl. 6.3.4
[4] or EN 1993-1-5 — Annex B [32]. Web buckling resistance was determined in ANSYS by GM-
NIA, while only predictions of F},; rq and o, were trained on MNA and LBA in IDEA StatiCa
Connection.
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Figure 4.29: The comparison of General method (r:) and GMNIA (r.) using only ANSYS data

At first, the test is performed to determine whether the General method using Eurocode buck-
ling curves and the new proposal described in Section 2.1.1 is feasible; see Fig. 4.29. In some
cases, the General method provides nearly the same buckling resistance factor, p — for standard
cases including load near unstiffened end. However, the buckling resistance factor decreases with
increasing axial load; for n = 0.9, the drop is down to 70 % and the General method does not follow
the decreasing trend nearly as much — only down to ~92 %. Although, it should be mentioned
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that for n = 0.7, the drop is not nearly as dramatic, and for n < 0.5, it is not noticeable. The end
plate thickness is predicted better, but on the other hand, smaller buckling resistance is predicted.
In sum, the General method in combination with the Eurocode buckling curve for the web panel
in transverse compression and new proposed method may be used with the exception of extreme
axial forces (n > 0.7).
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Figure 4.30: Reliability graphs of dataset created by validated ANSYS models — GMNIA
calculation in ANSYS vs General method using predicted Fp,; rq and o,

Fig. 4.30 shows the comparison of buckling resistance F} rq determined directly by GMNIA in
ANSYS and the General method using the predicted plastic resistance Fj; rq and buckling factor
acr by DNN. The results for Standard cases and cases with low axial force have good alignment
except for the welded section.

It is concerning that such a poor prediction is obtained for a relatively standard welded cross-
section. The welded cross-section has a large web slenderness — ratio of (h — 2 - tf)/t,,. However,
all the individual dimensions and this ratio was included in the training set — the range of validity
of this ratio is (h — 2 - ty)/t,, € [3.19, 62.52]. What is apparently outside the range of validity is
the fillet radius.
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Figure 4.31: Predictions of plastic resistance by DNN with the Similitude scaler for varying fillet
radius

Fig. 4.31 shows the predictions of the same welded cross-section with only one varying geometric
parameter — fillet radius r,,. As shown earlier, the calculations of IDEA StatiCa remain constant
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with varying r,. Also, the SHAP graphs (see Section 4.7) show that 7, does not affect the
predictions nearly at all. However, going outside the range of validity with the scaled 74 scaled =
6/550 - 200 = 2.18 mm < 3.48 mm (minimum 7y, scqreq in the training dataset) by the Similitude
scaler, the predictions are wildly modified.

4.6 Reliability

This section presents the reliability of the current approach of the second generation Eurocode [28],
the reliability of the proposed model by Baldzs et al. [30] with an increased degree of fixity between
the flange and web, better corresponding to the numerical models and also with a possibility to
provide design resistance close to the unstiffened end (see Section 2.1.1), and finally the reliability
of predictions made by the neural network described in the previous sections of this chapter. The
procedure for reliability assessment is described in Section 2.6.

4.6.1 Eurocode reliability

The experimental set of 91 specimens has to be reduced — specimens with load applied close to the
unstiffened end tested by Balazs [30] are removed. A total of 85 specimens remain to be calculated
according to Eurocode procedures. The ratios of experimental results to Eurocode predictions
using measured material and geometrical (if available) properties are shown in Fig. 4.32 and 4.33.
No experiment failed at a lower than calculated load with measured properties. It can be seen
that some specimens failed at extremely large ratios, demonstrating the Eurocode prediction is
highly conservative. Taking into account all tests, the bias calculated as the average of ratios is
b = 1.462, the coefficient of variability of prediction errors is rather high, Vs = 0.199, and by
assuming variation of the basic variables V,; = 0.07, as was used in Eurocode development, the
coefficient of variation V;. = 0.211 is obtained. Theoretically, V,; could be calculated more precisely,
but with high Vy this does not make any sense. The resulting safety factor is vp; = 1.128, which
is below the acceptance limit 1.15.
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Figure 4.32: Reliability graph of all specimens — comparison of experiments to calculations with
measured properties

The histogram shows a log-normal rather than the normal distribution assumed in Eurocode
reliability calculations. The tail-fitting should be applied. In Fig. 4.34, where the specimens with
the highest Experimental/Measured ratios, r./r., are deleted one-by-one and -y is calculated for
each step, the best v;s is achieved at 43 removed specimens.
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Figure 4.33: Experimental resistance at peak load vs. Eurocode calculation [28]
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Figure 4.34: Tail fitting with safety factor evaluated for each iteration

The resulting parameters of reliability assessment for the dataset of 44 removed specimens
with the highest r./r. are as follows: b = 1.228, V5 = 0.071, V. = 0.100, vyas = 0.937, and the
acceptance limit is 1.075. That means Eurocode formulas are well-calibrated even with a sufficient
safety margin. However, half of the specimens removed by tail-fitting fail at a much higher load in
the experiment than in the EC calculation. The formulas may clearly be improved.
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Figure 4.35: Reliability graph of all specimens calculated by new proposal
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4.6.2 Reliability of new method

The new method proposed in Baladzs [30] and shown in the second part of Section 2.1.1 allows
the calculation of all 91 specimens including those with concentrated load near the unstiffened
end. The reliability graph in Fig. 4.35 and the histogram in Fig. 4.36 show that the coefficient
of variation is smaller. On the other hand, multiple specimens failed with a lower experimental
resistance than determined by calculation, which indicates that the safety factor vy, > 1.0 must
be applied.

2.5 = Normal y=1.24,0=0.22
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Figure 4.36: Fxperimental resistance at peak load vs. calculation according to the new proposal

[30]

Taking into account all specimens results into the following parameters of reliability assessment:
b = 1.243 (significantly lower than EC), V5 = 0.181 (slightly lower than EC), V,. = 0.194, vy =
1.226, and the acceptance limit is 1.15.
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Figure 4.37: Tail fitting with safety factor evaluated for each iteration

The histogram in Fig. 4.36 again indicates that tail-fitting may be beneficial. According to
Fig. 4.37, removing 35 specimens results in the smallest safety factor. The resulting parameters of
reliability assessment for the dataset of 35 removed specimens with the highest r. /r. are as follows:
b =1.098, Vs = 0.119, V,. = 0.138, vp; = 1.163, and the acceptance limit is 1.104. The safety
factor is above the acceptance limit and the safety factor has to be applied. It can be calculated
as the ratio of vy, and the acceptance limit, i.e., the final vy5; = 1.163/1.104 = 1.053.

However, some safety should be added for the potential compressive force in the column, which
is typical. The Eurocode formulation decreases the resistance of the column web panel in transverse
compression component only for loads at 70 % of the column plastic axial resistance and higher. The
experiments by Kuhlmann and Kithnemund [45] suggest that the component resistance decreases
even at smaller axial loads. Therefore, a higher safety factor, about vy5; ~ 1.15 should be applied
for this new procedure.

Alternatively, a safer assumption of resistance reduction for axial force in the column may be
adopted, e.g. by Corman [105].
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4.6.3 Reliability of neural network

Reliability of predictions by DNN with and without the Similitude scaler is shown on a set of all
experiments except for tests by Bougoffa [42, 41] that were welded with large patch loading (feature
a) outside the range of validity; experimental dataset comprises 85 specimens. In both DNNs, only
one specimen failed at a slightly lower load in the experiment than the DNN predictions with
measured material and geometrical properties — Delft 5.1 [35] but only by 2% and 1% with and
without the Similitude scaler, respectively.

DNN was trained to predict plastic resistance, F,; r and buckling factor ... The final buckling
resistance, Fy r, which can be compared to the experimental resistance, must be calculated by the
following procedure. The relative slenderness is calculated:

j\p =+/1/ae
For the load sufficiently far away from the unstiffened end (z > 0.5), the standard Eurocode
[28] equation for the buckling reduction coefficient according to Eq.(2.3) is used. For the load near
the unstiffened end, the new approach is used, i.e., Eq. (2.13) followed by Eq. (2.12) where Ay is
calculated using Eq. 2.14.
Finally, the buckling resistance of the web in transverse compression is calculated:

(4.1)

Fyr=p-Fp,r (4.2)

where p is calculated according to Eq. (2.12) for z < 0.5 and according to Eq. (2.3) otherwise.
Three buckling resistances are calculated as in previous reliability assessments:

1. Using measured material properties and measured geometric properties (if available)
2. Using nominal material and geometrical properties
3. Using mean material and geometrical properties
Similitude scaler provides very conservative predictions, with bias b = 1.565 and relatively

large scatter V5 = 0.221; see Fig. 4.38. When considering all specimens, the partial safety factor
vp = 1.100 is below the acceptance limit of 1.15.
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Figure 4.38: Reliability graph of all specimens predicted by DNN with the Similitude scaler

Fig. 4.39 shows again lognormal rather than normal distribution, and therefore the tail fitting
is used. Fig. 4.40 shows that the best result is achieved after removing 26 specimens with the
highest 7. /r; ratio. The final bias b = 1.368 and variation coefficient V5 = 0.112. Again, assuming
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Figure 4.39: Ezperimental resistance at peak load vs. prediction by DNN with the Similitude scaler

1.075 4

—e— yy progression

1.050
1.025 4
£ 1.000 1
0.975 A
0.950 A
0.925 A

0 10 20 30 40 50
Tail fitting iteration

Figure 4.40: Tail fitting with safety factor evaluated for each iteration

Vit = 0.07 results in V,, = 0.132 and the partial safety factor vy, = 0.916 below the acceptance
limit of 1.099.
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Figure 4.41: Reliability graph of all specimens predicted by DNN without the Similitude scaler
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Without Similitude scaler , the DNN predictions are very similar. Bias b = 1.567 and large
scatter V5 = 0.220; see Fig. 4.41. Assuming all specimens, the partial safety factor yp; = 1.093 is
within the acceptance limit of 1.15.
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Figure 4.42: Fxperimental resistance at peak load vs. prediction by DNN without the Similitude
scaler
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Figure 4.43: Tail fitting with safety factor evaluated for each iteration

The histogram in Fig. 4.42 shows lognormal distribution, so again, tail fitting is utilized.
Fig. 4.43 shows that removing 35 specimens yields the best partial safety factor. The final bias
b = 1.330 and variation coefficient V5 = 0.100, V,, = 0.122; partial safety factor vy, = 0.911 is
below the acceptance limit of 1.092.

Both with and without the Similitude scaler, the predictions are extremely conservative for
specimens with end plates. The unsuitability of the model was shown already in ANSYS compar-
ison; see Fig.4.25. These specimens are removed by tail fitting.

4.6.4 Comparison of methods

Both DNNs provide nearly the same results, comparable to the reliability of Eurocode equations,
but both failed to improve the predictions. The DNN provides the most conservative results of all
methods and unfortunately also the largest scatter to the experimental results; see Tab. 4.4.

Table 4.4: Comparison of statistical parameters before and after tail fitting

No tail fitting After tail fitting
Model Spec. b ‘/5 YM §7M,lim Spec. b V5 YMm §'YM,lim
EC 85 1.462 0.199 1.128 < 1.15 42 1.228 0.071 0.937 < 1.075
New proposal 91 1.243 0.181 1.226 > 1.15 56 1.098 0.119 1.163 > 1.104
DNN Simil. 85 1.565 0.221 1.100 < 1.15 59 1.368 0.112 0.916 < 1.099
DNN No Simil. 85 1.567 0.220 1.093 < 1.15 50 1.330 0.100 0.911 < 1.092
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A closer look at individual specimens is necessary to find specific issues of each approach; see
Tab. 4.5. Eurocode predictions are very conservative for the slender specimens tested by Bougoffa
[42, 41]. Such high relative slenderness is rare in the dataset. This indicates that the degree of
fixity between the web and flange is really higher than as assumed in Eurocode.

Many specimens in [35] are badly predicted by DNNs — with end plates, which confirms Fig. 4.26,
but also others. Strangely, the calculations by Aribert according to Eurocode in some cases differ
markedly from the calculations using the reported data, suggesting potential discrepancies in the
Aribert database.

The tests by Bose [46] are the full beam-column end plate connections and it is likely that the
governing failure mode as reported by the author — column web in compression — may be affected
by web panel in shear or other effects.

Table 4.5: Ratio r./r; for experimental dataset — All approaches

Specimen Section (Note) EC Prl(\)I;Z;al ]:S)INI\/T lel\;’l;TM
[30] — IPE200-T1 IPE200 1.343 1.142 1.386 1.397
[30] — IPE200-T2 IPE200 1.352 1.160 1.422 1.432
[30] — IPE200-T3 IPE200 (z = 0.5) 0.984 1.183 1.192
[30] — IPE200-T4 IPE200 (z = 0.5) 1.062 1.278 1.287
[30] — IPE200-T5 IPE200 (z = 0.125) 1.085 1.235 1.253
[30] — IPE200-T6 IPE200 (z = 0.125) 1.009 1.148 1.165
[30] — IPE200-T7 IPE200 1.420 1.207 1.461 1.473
[30] — IPE200-T8 IPE200 1.305 1.134 1.395 1.405
[30] — IPE200-T9 IPE200 (z = 0.25) 0.946 1.117 1.124
[30] — IPE200-T10 IPE200 (z = 0.25) 0.943 1.111 1.117
[41] - POS_508 W508x200x10x6 2.316 1.528

[41] - POS_370 W369x200x10x6 2.206 1.490

[42] — US_1 IPE300 1.892 1.441

[42] - US_2 W400x180x12.3x5.5 1.616 1.079

[42] - US_3 W395x200x10x6 2.475 1.663

[42] - US4 W528x200x10x6 2.501 1.647

[35] — INSA L1 HEB140 1.253 1.253 1.398 1.425
[35] — INSA L2 HEB200 1.528 1.528 1.768 1.773
[35] — INSA L3 HEB260 1.290 1.250 1.445 1.460
[35] — INSA L4 HEB140 1.196 1.196 1.424 1.453
[35] — INSA L5 HEB200 1.505 1.505 1.788 1.795
[35] — INSA L6 HEB200 1.548 1.548 1.886 1.896
[35] — INSA L7 HEB260 1.263 1.209 1.457 1.473
[35] — INSA N1 HEB160 1.613 1.613 1.889 1.913
[35] — INSA T1 HEB200+EP10 1.593 1.593 1.968 1.984
[35] — INSA T2 HEB200+EP15 1.597 1.597 2.044 2.066
[35] — INSA T3 HEB200+EP20 1.601 1.601 2.107 2.135
[35] — INSA T4 HEB200+EP30 1.642 1.642 2.251 2.259
[35] — INSA M1 IPE140 1.592 1.546 1.707 1.763
[35] — INSA M2 HEA260 1.490 1.225 1.597 1.622
[35] — INSA M3 IPE220 1.748 1.543 1.622 1.687
[35] — INSA M4 IPE360 1.579 1.206 1.305 1.313
[35] — S.T. Delft 1.1 IPE240 1.410 1.018 1.470 1.454
[35] — S.T. Delft 2.1 IPE240 1.085 0.762 1.071 1.068
[35] — S.T. Delft 3.1 HEA240 1.167 0.991 1.412 1.421
[35] — S.T. Delft 4.1 HEA300 1.102 0.847 1.205 1.202
[35] — S.T. Delft 5.1 HEA500 1.230 0.985 0.984 0.988
[35] — INSA MH1 HEA140 1.374 1.219 1.919 1.905
[35] — INSA MH2 HEA160 1.628 1.413 2.365 2.361
[35] — INSA MH3 HEA160 1.617 1.409 2.352 2.346
[35] — INSA MH4 HEA200 1.887 1.438 2.438 2.421
[35] — INSA MH5 HEA200 1.838 1.400 2.374 2.357
[35] — INSA MH6 HEA200A 1.299 0.904 1.614 1.598
[35] — INSA MH7 HEA300A 1.129 0.782 1.366 1.371
[35] — INSA MH8 IPE240 1.461 1.018 1.366 1.409
[35] — INSA MH9 TPE360A 1.578 1.058 1.229 1.272
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New DNN DNN

Specimen Section (Note) EC Proposal SIM  No SIM
[35] — INSA MH10 HEA160+EP10 1.619 1.340 2.552 2.551
[35] — INSA MH11 HEA160+EP15 1.660 1.343 2.670 2.635
[35] — INSA MH12 HEA160+EP20 1.709 1.353 2.779 2.681
[45] — A1 HEA240(n = 0.67) 1126 1.061 1368  1.379
[45] - A2 HEA240(n = 0.6) 1107 1.042 1348  1.359
[45] — A3 HEA240 1.307 1.228 1.590 1.603
[45] — A4 HEA240(n = 0.11) 1.242 1.165 1.548 1.557
[45] — A5 HEA240(n = 0.23) 1.159 1.087 1.453 1.461
[45] - A6 HEA240(n = 0.34) 1.193 1124 1497 1505
[45] — AT HEA240(n = 0.49) 1135 1.081 1466 1471
[45] — A8 HEA240 1.251 1.183 1.587 1.595
[45] — B1 HEB240 1.285 1.285 1.496 1.507
[45] — B2 HEB240(n = 0.47) 1.157 1.157 1.348 1.357
[45] — B3 HEB240(n = 0.66) 1.061 1.061 1.224 1.232
[45] — B4 HEB240(n = 0.12) 1414 1414  1.680  1.687
[45] - HEB240(n = 0.26) 1.349 1.349 1.603 1.609
[45] - HEB240(n = 0.38) 1.306 1.306 1.550 1.556
[45] — HEB240(n = 0.61) 1220 1220 1450  1.456
[45] — HEB240 1.461 1.461 1.737 1.744
[43] - W10x19 SC-NS  W10x19 1.548 1.225 1.189 1.160
[43] - W10x19 DC-NS  W10x19 1.739 1.376 1.335 1.302
[43] — W10x39 SC-NS  W10x39 1.494 1.290 1.284 1.300
[43] - W12x26 SC-NS  W12x26 1.684 1.152 1.327 1.298
[43] — W12x26 DC-NS  W12x26 1.860 1.273 1.467 1.434
[43] — W16x31 SC-NS  W16x31 2.171 1.525 1.408 1.342
[43] - W16x31 DC-NS  W16x31 2.326 1.634 1.508 1.437
[46] — Test 1 254x254 UC 73 (EP12) 1.256  1.025  1.201  1.185
[46] — Test 2 254x254 UC 89 (EP12) 1.301 1.165 1.272 1.258
[46] — Test 3 254x254 UC 73 (EP15) 1.264 1.021 1.226 1.201
[46] — Test 4 254x254 UC 73 (EP15) 1210  1.021  1.248  1.223
[46] — Test 5 254x254 UC 89 (EP15) 1.248 1.152 1.348 1.321
[46] — Test 6 254x254 UC 89 (EP15) 1.391 1.313 1.510 1.491
[46] — Test 7 254x254 UC 89 (EP20) 1.216  1.133  1.345  1.320
[44] — HE200A HEA200 1.340 1.340 1.709 1.724
[44] — HE200B HEB200 1.442 1.442 1.891 1.904
[44] — HE220A HEA220 1.167 1.045 1.373 1.389
[44] - HE220B HEB220 1.359 1.359 1.575 1.578
[44] — HE240A HEA240 1.019 0.874 1.244 1.241
[44] — HE240B HEB240 1.300 1.300 1.620 1.625
[44] — HE260A HEA260 1.331 1.144 1.574 1.598
[44] - HE260B HEB260 1.492 1.492 1.887 1.905
[44] — HE280A HEA280 1.224 1.111 1.589 1.604
[44] - HE280B HEB280 1.499 1.490 1.669 1.685
[44] — HE300A HEA300 1.196 1.092 1.520 1.538
[44] — HE300B HEB300 1.231 1.114 1.240 1.254

4.7 Explainability of DNIN predictions

The predictions of DNNs are often considered a “black box”. The output is generated by a
mathematical model in which each neuron is defined by its weight and bias, while the entire neural
network is characterized by its architecture — namely width, depth, and activation functions. In
principle, any prediction can be decomposed into the contributions of individual neurons. However,
practically, this is impossible to grasp for human perception.

To address this limitation, model-agnostic explainability methods have been developed. In this
study, the SHapley Additive exPlanations (SHAP) framework [106] is employed. SHAP is based
on Shapley values from cooperative game theory, which provide a theoretically consistent measure
of the contribution of each feature to a given prediction. For every input sample, SHAP assigns
additive importance values to all input features, such that their sum explains the deviation of the
prediction from the mean model output.
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Several types of SHAP visualizations are adopted to analyze the trained DNN without the
Similitude scaler:

e Summary plots: show the distribution of SHAP values across all samples, indicating both
global feature importance and the direction of influence (positive or negative contribution).

e Bar plots: rank the features by their mean absolute SHAP value, providing a straightforward
measure of global importance without considering the sign.

e Waterfall plots: decompose a single prediction into baseline value and successive contri-
butions of features, thereby explaining why the model produced the given output for an
individual specimen.

Through these visualizations, SHAP allows the identification of the most influential geometric
and material parameters and clarifies whether their increase tends to strengthen or weaken the
predicted structural response. In this way, the DNN predictions can be interpreted in engineering
terms rather than remaining opaque numerical results.

Note that scaling input parameters has both positive and negative outcome. Scaling allows
directly comparing percentage changes in input values and is valuable when input parameters are
of very different magnitude, e.g., beam depth h and web thickness t,,. On the other hand, scaled
inputs may be hard to understand — their scale is no longer e.g. in [mm] units.

f(x)

Web thickness [mm]
Flange thickness [mm]
Eiim [-] . +157.26

Beam width [mm] —100.67 '
Relative end distance x [-] —81.66 .
Beam depth [mm] ~20.49 {
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Figure 4.44: SHAP waterfall plot for IPE 400 sample

An example of one particular specimen is shown in Fig. 4.44. This is IPE 400 (h = 400 mm,
b = 180 mm, ty = 13.5 mm, t,, = 8.6 mm), steel grade S 355 (f, = 355 MPa, e, = 4.13%),
relative distance to unstiffened end x = 0.739, relative plate thickness a = 1.68, calculated plastic
resistance Fj; rq = 504.6 kN. The mean predicted output is E[f(X)] = 2361.681 kN. The waterfall
plot shows that the fillet radius has the smallest impact on the predicted output — plastic resistance
Fpi ra. This is expected, since in IDEA StatiCa calculations used for training, fillet radius has
no impact at all. This feature could be totally omitted for this training set. The second smallest
impact has relative plate width a. It was observed in Fig. 4.26 that IDEA StatiCa is not very
sensitive to this parameter. Strangely, the value of a = 1.68, which is below the average of a = 3
increases the resistance. The next feature that changes the mean resistance only lightly is the
beam depth h, likely because h = 400 mm is close to the dataset mean. Next feature is the relative
end distance x = 0.739, which decreases the mean output by 81.66 kN, which again comes as a
surprise. g5, is above average, so it increases the resistance by 157 kN. More influential features
follow. Flange thickness for IPE cross-section is low, thus reducing the resistance by 566 kN; the
same applies for web thickness that reduces the resistance by another 597 kN. The most impactful
is the yield strength, reducing the resistance by further 692 kN to final prediction of 485 kN.

For the entire dataset, a bar plot was constructed; see Fig. 4.45. It presents the average impact
of individual features on the output — plastic resistance F,; rq — can be observed. As expected, the
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Figure 4.45: SHAP bar plot shows the mean importance of each feature
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Figure 4.46: Summary plot with dot plot (beeswarm plot)

three most influential features are flange thickness, web thickness and yield strength. Note that the
feature relative plate width is scaled according to flange thickness (¢ = t,/t¢), which may increase
the SHAP of flange thickness feature. Also, as expected, the fillet radius does not influence the
IDEA StatiCa calculations used in the DNN training, and thus does not affect DNN prediction of
the plastic resistance. This is caused by the simplicity of the model rather than the reality. This
limitation arises from the simplicity of the training model rather than from structural behaviour.

A summary plot using the default dot representation is shown in Fig. 4.46. In this plot, each
sample in the dataset is represented by a single dot, and the color indicates the feature value (e.g.,
low to high). The horizontal position of each dot corresponds to the SHAP value, i.e., the impact of
that feature on the model output. This visualization provides an additional perspective on feature
importance: not only can the magnitude of influence of each feature be assessed, but the direction
of its effect on the prediction can also be observed. Specifically, features with dots predominantly
on the positive side tend to increase the output, whereas features with dots on the negative side
tend to decrease it. Furthermore, the color gradient allows identifying whether high or low feature
values are associated with positive or negative contributions. Overall, the summary plot conveys
both global feature importance and local feature effects across the dataset.

A more detailed investigation of individual features can be performed using SHAP scatter
plots, which visualize the relationship between feature values and their contribution to the model
output. In Fig. 4.47, the SHAP scatter plot for flange thickness shows a near-linear increase of
SHAP values (corresponding to the predicted plastic resistance) with increasing flange thickness.
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Figure 4.47: SHAP scatter plot — SHAP impact of flange thickness and web thickness (Note that
SHAP values are in a different scale in this graph)

This trend suggests that thicker flanges generally lead to higher plastic resistance. The observed
linearity is likely influenced by correlations with other geometric parameters in the dataset, such
as web thickness, beam width, and overall depth, which tend to increase proportionally with flange
thickness in the sampled beams.

Such scatter plots are particularly useful to identify non-linear effects, thresholds, or saturation
points in feature contributions, as well as potential interactions with other features. For instance,
deviations from the linear trend may indicate regions where other parameters, material properties,
or joint detailing start to dominate the resistance behavior. This enables more targeted inter-
pretation of the model’s predictions and highlights areas where design optimization or additional
experimental validation may be needed.
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Conclusion and future outlook

In this thesis, a framework for developing a reliable machine-learned model was outlined. It
covered all stages of the process, and potential challenges were always highlighted. It is expected
that only numerical design calculations are able to provide enough data samples for the successful
creation of machine-learned model; therefore, big attention is given to the process of modeling,
verifying, and especially failure criteria, which is still unresolved within the development of the
second generation of Eurocode. An example of a column web panel in transverse compression
component that aligns with the latest research focus of the author is selected. Analytical methods
were described, experimental results collected, and a large-scale dataset of numerical models was
generated with IDEA StatiCa Connection. The process of verifying numerical design calculations
was described with special attention on failure criterion C2 — a plastic strain limit. The procedure
for reliability assessment using the current state-of-the-art was described and the reliability of four
different methods was assessed using the experimental dataset.

Machine learning is able to predict the training dataset with near-perfect accuracy, provided
that a sufficient amount of data (several thousand samples) is available. The reliability of the
machine-learned predictions is basically the same as that of samples used for training. There is a
big potential in machine learning used in engineering practice for the following reasons:

e The precision of predictions is unparalleled. The coefficient of variation less than 2% is
achievable.

e The speed of predictions is extremely fast, comparable to any calculation using code formulas.
Machine-learned predictions may be used for a direct reliability approach using Monte Carlo
simulations.

e The reliability of machine-learning predictions within a certain range of validity may be
assessed in the same way as the reliability of any other approach.

On the other hand, there are several critical issues that anyone using neural networks must
keep in mind.

e The range of validity must be strictly kept. This applies not only to the boundaries of
individual features but also to the ratios of feature values; for example, not only must the
thickness of the web and flange lie within the range of validity, but also the ratio of web to
flange thicknesses.

e The machine-learned model, if perfectly applied, copies the training dataset. If the training
dataset has any shortcomings, they directly propagate into the machine-learned model.

Dataset for training was created using IDEA StatiCa Connection, where thousands of models
can be effortlessly calculated using Python programming language and IDEA StatiCa API. More
than 9 000 models simulating the behavior of the column web in transverse compression component
were calculated. The dataset comprises all hot-rolled I- or H-sections used in Europe and USA
(IPE, HEA, HEB, and W), main steel grades used in Europe (S 235, S 275, S 355, S 450, S 420
MH/MLH, S 460 MH/MLH, S 620 Q/QL/QL1, S 690 Q/QL/QL1, S 500 MC, S 550 MC, S 600 MC,
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S 650 MC, S 700 MC), varying distance to the unstiffened end, and varying width of plate inducing
the transverse compression. IDEA StatiCa provides good approximation of load resistance for the
standard cases, however, there were issues in the chosen strategy. The width of plate inducing the
transverse compression has very little effect on the load resistance and wide plate cannot be used
to simulate patch loading or loading through the end plate.

For these reasons, the machine-learned predictions failed to improve the code formulas for web
panel in transverse compression. However, after expanding the dataset by cases with end plate
and with an axial force in the column, the variation coefficient of machine-learned predictions will
become lower than code calculations.

The geometrically and materially nonlinear analysis with imperfections, which would directly
predict buckling resistance comparable to the experimental resistance, is only available in IDEA
StatiCa Member without API. IDEA StatiCa Connection provides only materially nonlinear anal-
ysis and linear buckling analysis. The general method was utilized to estimate buckling resistance
using the combination of both analyses.

There are possibilities for creating the dataset with higher-quality models:

e Similitude scaler could be used for enlarging the training and testing dataset rather than
being used in the input and output scaling. In principle, for every calculated numerical
model, another hundred geometrically similar models could be created.

e Machine learning could also be involved in the creation of a dataset:

— It was shown that the General method works well for some cases and badly in others.
Machine learning could be utilized to predict the results of computationally demanding
GMNIA from the results of MNA, LBA and other parameters, such as geometry and
material.

— Assume Abaqus or ANSYS models created with solid elements. There is very likely a
correlation between models with coarse and fine mesh. Again, machine learning could
predict the results of numerical models with mesh conforming to the mesh sensitivity
conditions from the simple and quickly analyzed models with a coarse mesh. This way,
models could be calculated in minutes instead of several hours.

— Much as likely, there is a correlation between IDEA StatiCa shell models and detailed
models finely meshed with solid elements. Approximating correctly the results of de-
tailed models by machine learning could speed up the process of dataset creation even
more — seconds per model.

The machine-learned predictions achieve almost perfect alignment with the dataset used for
training and testing — coefficient of variation equal to 0.0158 and 0.0134 for two different scaling
strategies. This precision is only possible by optimizing the neural network architecture.
Within the thesis, the effects of width (number of neurons in a layer) and depth (number of lay-
ers) were investigated together with learning rate, activation functions, optimizers, loss functions,
and input and output scalers. The dataset size even for this simple model with only a few fea-
tures (varying parameters) must be large — several thousand models. Each added model increases
the prediction precision; however, this benefit diminishes with growing numbers. The coefficient
of variation asymptotically approaches the numerical error of the finite element model. Active
learning strategies were presented, but not applied.

The performance of machine-learned predictions was tested on several other datasets — (i)
full dataset including large cross-sections that were filtered out with the aim of observing model
performance outside the range of validity, (ii) dataset created in a traditional manner using nested
for cycles, which is suitable for human perception but may cause overfitting of neural networks,
and (iii) dataset created in another software — ANSYS where the shortcomings of IDEA StatiCa
shell models were identified.

Building the numerical models with higher accuracy is an ideal task for Ph.D. students. These
models should overcome the limitations of the numerical design calculations used in this thesis —
missing geometrically nonlinear analysis with imperfections, neglected fillet radius, and insufficient
end plate simulation. A sufficiently large database may serve as a training dataset for machine
learning the foundations for improvements of current analytical models. Methods to enlarge the
database by e.g. Similitude scaling or physically-informed methods could be investigated as well
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as active learning. Such advancements may provide sufficiently large datasets for the creation
of reliable machine learning models of structural components with much smaller deviations from
numerical simulations and experiments.

Reliability assessment in accordance with current Eurocodes [6], based on the SAFEBRICTILE
project [15], was presented as a step-by-step procedure. This procedure can be applied to any
method — analytical, numerical simulations, numerical design calculations, or machine-learned
predictions.

Reliability is a central topic of this thesis. It was evaluated for a Eurocode component, a new
approach aimed at reducing Eurocode conservatism by increasing the degree of fixity between the
web and the flange, and particularly for machine-learned predictions with and without the Simili-
tude scaler. Achieving this is only possible through the collection of a large number of experimental
results from the literature. Unfortunately, this is a challenging task, as many publications omit
crucial information. There is room for improvement in verifying reported data and recovering
missing information, such as measured geometrical properties.

The reliability assessment procedure is suitable for sets of similar experiments involving similar
materials. However, when multiple steel grades or different types of experiments are considered,
the limitations of the method become apparent. For instance, a material model with a high plastic
strain limit and significant strain hardening exhibits low variability between experimental and
numerical resistances. Such a model may appear highly reliable, allowing the application of a
small partial safety factor y5;. Conversely, if the model is made objectively safer — by reducing
the plastic strain limit or using a bilinear material model that neglects strain hardening — the
variability increases substantially, particularly when different steel grades with varying yield-to-
ultimate strength ratios are involved. Paradoxically, this more conservative model may show
lower reliability than the model closely matching experimental data. Clearly, this is inconsistent,
highlighting the need for improvements in the reliability assessment procedure.

Data availability is more important today than ever. Collecting published data enables confi-
dent use of material models or assessment of manufacturing tolerances. Recent examples include
the formulation of a characteristic material model by Yun and Gardner [7], distributions of material
properties and thicknesses of plates and hot-rolled sections from the SAFEBRICTILE project [14],
and bolt tests compiled by Ding and Elkadhy [107]. Published experimental data are essential for
validating numerical models, which is of paramount importance. Just as machine learning mod-
els have a limited range of validity, modeling choices may perform well for one failure mode but
poorly for another. Validation against a wide variety of experiments builds confidence and allows
the development of sufficiently general solutions.

The work by Ding and Elkadhy [107] in compiling bolt experiments highlights common issues
with insufficient reporting in research papers and technical reports. Firstly, researchers often
measure different and incompatible displacements. Secondly, published values are frequently post-
processed without clear explanation and presented only in graphs, making it difficult — or sometimes
impossible — to extract key parameters such as initial stiffness. Out of potentially hundreds or
thousands of bolt tests, only about 60 were found to be reported with sufficient detail.

A potential solution is the development of unified databases of standardized tests, such as tensile
coupon tests [10] or bolt tensile tests [108], which could gradually expand to include additional test
types, such as connection component tests and end-plate connection tests. Such databases would
encourage researchers to measure and report the necessary data while also providing guidance and
shared experience for early-career researchers and laboratory personnel.

Fields in which data sharing and proper documentation are standard—such as software en-
gineering—demonstrate much higher productivity than civil engineering. Time is wasted on the
literature reviews again and again.

Deep neural networks are often considered black boxes, but in reality they are optimizers
whose behavior can be interpreted. In this thesis, SHAP plots [106] were employed to facilitate
this interpretation. These plots visualize the deviation of each prediction from the mean and allow
assessment of the contribution of each input feature (parameter). Tools like SHAP enable a deeper
understanding of neural network behavior.

A critical aspect of using neural networks correctly is ensuring predictions remain within the
range of validity. For machine-learned predictions to be safely adopted by the engineering com-
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munity, engineers must be informed whether the input parameters fall within this valid range.
Predictions outside the range of validity should not be provided, as they are likely to be unreliable
or misleading.

Neural networks are suitable for significant improvements in design formulas. The reliability of
design resistances can be maintained while increasing the load resistance. Thus, significant savings
in material are possible.
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