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ABSTRACT
The presented habilitation thesis summarizes significant recent results from uncertainty
quantification in civil engineering. The presented results were obtained within the frame-
work of various research projects investigated at the Faculty of Civil Engineering of Brno
University of Technology. The habilitation consists of seven scientific articles divided
into two main research topics – semi-probabilistic methods, and approximations in the
form of polynomial chaos expansions. The presented articles significantly extended the
possibilities of the state-of-the-art methods in both research topics and represent a co-
herent collection of methods for computationally efficient uncertainty quantification of
costly mathematical models.

KEYWORDS
Uncertainty quantification, semi-probabilistic approach, surrogate model, polynomial
chaos expansion

ABSTRAKT
Předložená habilitační práce shrnuje nedávné významné výsledky z oblasti kvantifikace
nejistot ve stavebním inženýrství. Prezentované výsledky byly získány v průběhu řešení
řady výzkumných projektů na Fakultě stavební Vysokého učení technického v Brně. Habi-
litační práce je tvořena sedmi vědeckými články rozdělenými do dvou stěžejních výzkum-
ných témat – polo-pravděpodobnostní metody návrhu a aproximační metody ve formě
polynomiálního chaosu. Prezentované publikace významně rozšiřují možnosti metod ak-
tuálního stavu poznání v obou tématických blocích a představují ucelenou kolekci metod
umožňující výpočetně efektivní kvantifikaci nejistot výpočetně náročných matematických
modelů.
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1 Introduction
All models are wrong, but some are useful.

— George Box

Increasing economical and safety requirements placed on engineering in today’s
society inevitably increase the demands for accuracy and efficiency of mathematical
models representing physical systems. As a result of these needs and availability of a
higher computational power than ever, there is a rapid development of advanced nu-
merical methods designed for the analysis of complex engineering structures. Such
methods are typically employed for the analysis of structures constructed from non-
traditional materials or complicated systems affected by multi-physics phenomena.
Moreover, there are a lot of structures, especially bridges, built in the last cen-
tury, which must often be enhanced for higher loads taking actual conditions of the
structures into account.

Although the advanced numerical methods, such as the non-linear finite element
method (NLFEM), are more often employed in industry, their routine applications
are still limited by their extensive computational costs. The computational burden
is further accented in the presence of various uncertainties associated with an in-
vestigated physical system as well as with its mathematical model. Uncertainties
arise from the lack of knowledge of material characteristics (e.g. fracture energy),
actual geometrical properties (e.g. position of reinforcement), and even mathemat-
ical models of some physical phenomena (e.g. fracture mechanics of quasi-brittle
materials). This lack of knowledge may generally lead to inaccurate results and
even fatal failures despite the advanced numerical analysis. The impact of uncer-
tainties is especially significant in the safety of systems containing a large number
of unknown parameters, which is typical for concrete structures. Although a struc-
tural safety is implicitly implemented in codes by partial safety factors [1], their
compatibility with advanced numerical methods is not generally guaranteed, and
thus adequate stochastic analysis should be performed. Therefore, the crucial task
here is the propagation of uncertainties through the numerical mathematical model
and quantifying the uncertainty of the response as illustrated in Fig. 1.1.

Uncertainty quantification (UQ) covers quantifying and characterizing uncer-
tainty in computational models [2]. In modern engineering, uncertainties are rep-
resented by random variables or random vectors described by certain probability
measures. UQ then contains various tasks such as the estimation of statistical mo-
ments or probability distribution of a quantity of interest (QoI), and sensitivity
analysis characterizing the role of uncertain inputs with respect to QoI. UQ as a
separate scientific area combining various fields of applied mathematics is nowadays
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present in almost every branch of engineering and science [3]. The importance of
UQ is clearly visible from the exponentially growing number of published scientific
works presenting novel techniques as well as their applications in real-life systems.

A successful uncertainty quantification allows for direct probabilistic assessment
of structures, i.e. a calculation of the probability of structural failure. The concept
of failure probability was already implemented into the general design standards for
structures by the simplified semi-probabilistic approach. Instead of failure probabil-
ity, the semi-probabilistic approach is focused on the estimation of design values of
load effect and structural resistance satisfying the prescribed safety requirements.
Design values can be seen as a specific quantile of the QoI’s probability distribution,
and thus UQ plays a crucial role in this process.

Although semi-probabilistic methods offer computationally efficient tools for the
design and assessment of structures, they are only valid for relatively simple phys-
ical systems and stochastic models. Otherwise, it is necessary to employ advanced
techniques offering higher versatility, though associated with a higher computational
cost. The only generally applicable method for UQ is a Monte Carlo (MC) type sam-
pling, which is based on a large number of repetitive deterministic simulations with
realizations of the input random vector randomly generated according to its prob-
ability distribution. Unfortunately, the combination of MC and computationally
costly mathematical models prevents its use in industrial applications. The natural
solution of this problem is an approximation of the costly mathematical models by
computationally efficient surrogate models.

Besides the traditional surrogate models such as Taylor series expansion, there
are more efficient methods often employed specifically for UQ: support vector ma-
chines, neural networks, kriging, or polynomial chaos expansion (PCE). PCE is
especially suitable for UQ thanks to its convenient properties that derive from its
orthogonality properties with respect to the probability measures of the input vari-
ables. Interestingly, PCE was originally proposed by the famous mathematician
Norbert Wiener in 1938 [4], but it took more than five decades to be employed
in UQ of engineering systems [5]. Ever since then, there has been a rapid devel-
opment of this method and various adaptations have been proposed. Nonetheless,
although PCE represents a general UQ tool, its theoretical background is still under
development, and it should be adapted for applications in structural mechanics and
engineering further.

This habilitation thesis is presented through a series of journal articles themat-
ically divided into two separate chapters. The first chapter is focused on the semi-
probabilistic approach, specifically the estimation of the coefficient of variation of
QoI, and the second chapter is focused on PCE and its modifications. The the-
sis contains significant recent developments in both topics – simplified methods for
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the semi-probabilistic approach based on the estimation of the first two statistical
moments presented 2, and novel theoretical methods developed for an efficient con-
struction and analysis of surrogate models in the form of PCE in chapter 3. Both
approaches tackle the identical problem – UQ of engineering systems –, but they
are both employed in different contexts. While simplified methods should be ap-
plied for a routine analysis of relatively simple mathematical models in engineering
practice, PCE provides an access to a broad palette of measures for UQ including
statistical and sensitivity analysis. The discussion of the obtained results together
with concluding remarks can be found in the last chapter of this thesis.

Stochatic model
X1 X2

Mathematical
model

Stat. Moments

Sensitivity

PDF

Sources of Uncertainty
Uncertainty

Quantification
Y σ

μ

Fig. 1.1: Propagation of uncertainties through a mathematical model and UQ.
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2 Uncertainty Quantification
and Semi-probabilistic Approach

With thermodynamics, one can calculate
almost everything crudely; with kinetic theory,
one can calculate fewer things, but more
accurately; and with statistical mechanics, one
can calculate almost nothing exactly.

— Eugene Wigner

Assume a probability space (Ω, ℱ , 𝒫) where Ω is an event space, ℱ is a 𝜎-algebra
on Ω and 𝒫 is a probability measure on ℱ . If the Doob-Dynkin lemma is satisfied
and the input variable of a costly mathematical model ℳ(𝑋) is a random variable
𝑋(𝜔), 𝜔 ∈ Ω with finite variance, the output QoI 𝑌 = ℳ(𝑋)(𝜔) is also a random
variable with finite variance. The deterministic mathematical model ℳ(𝑋) here
represents an analyzed physical system, and it is typically created in commercial
software. Thus, it can be seen as a black box in the context of UQ. Moreover,
these systems can be seen as complex models of a large number of input parameters
represented by a random vector X consisting of 𝑀 marginal random variables and
described by a joint probability distribution function 𝑓X. The ultimate goal of a
probabilistic analysis is thus UQ of ℳ(X) in order to quantify statistical moments
and estimate a probability distribution of 𝑌. Moreover, it is often desired to perform
a sensitivity and reliability analysis for a further analysis of the model.

Reliability analysis is a crucial topic in engineering, since it is focused on the
estimation of the safety margin 𝑍 given as a difference between structural resistance
𝑅 and action effect 𝐸. The probability of a negative safety margin – probability of
failure 𝑝𝑓 = 𝑃 (𝐸 > 𝑅) = 𝑃 (𝑍 < 0), quantifies the safety of structures. The failure
probability can be generally obtained by the integral as follows:

𝑝𝑓 =
∫︁
R

𝑓𝐸(𝑡)𝐹𝑅(𝑡) d𝑡 (2.1)

where 𝑓𝐸 is a probability density function of 𝐸, and 𝐹𝑅 is a cumulative distribution
function of 𝑅. A direct analytical evaluation of the 𝑝𝑓 is extremely complicated or
impossible in engineering applications, and thus it is necessary to employ numerical
methods. The traditional approach is a transformation of the stochastic problem into
a large set of deterministic calculations using well-known Monte Carlo (MC) method.
MC is based on a large number of repetitive simulations with randomly generated
realizations of input random vector x according to its probability distribution law:
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𝑝𝑓 =
∫︁

Ω𝑓

𝑓X(x) d x =
∫︁
R𝑀

𝐼(x)𝑓X(x) d x , (2.2)

where Ω𝑓 is a failure domain and 𝐼(x) is an indicator function defined as:

𝐼(x) =

⎧⎪⎨⎪⎩1 if 𝑔(x) ≤ 0
0 otherwise

, (2.3)

with 𝑔(x) as the limit state function.
Naturally, in order to get a reliable estimation of 𝑝𝑓 , it is necessary to evaluate

a very large set of deterministic simulations, and this number of simulations is
dependent on 𝑝𝑓 . Note that civil engineering is characterized by a very low target
𝑝𝑓 around 10−6 (depending on the specific category of a structure) and the fact
that in practical applications, models solved by NLFEM could be computationally
expensive. Due to the combination of both aspects, MC is rarely employed in
industrial applications due to its enormous computational cost. It was necessary to
develop simplified safety formats based on the semi-probabilistic approach focused
on the estimation of coefficient of variation (ECoV) as described in the following
paragraphs.

Semi-probabilistic methods were developed as an alternative to a complex relia-
bility analysis for relatively simple mathematical models, and they are implemented
in today’s design codes [1]. The concept of a semi-probabilistic approach is based
on the separation of 𝑅 and 𝐸, and the estimation of their design values 𝑅𝑑 and
𝐸𝑑 satisfying the given safety requirements instead of the direct calculation of the
failure probability 𝑝𝑓 . The safety of a physical system is then assessed simply as
𝑅𝑑 ≥ 𝐸𝑑. The following paragraphs are only focused on the resistance side 𝑅, since
the load effects are often not known a priori. The design value of resistance 𝑅𝑑 in
Eurocode is completely described by the sensitivity factor derived from First Order
Reliability Method (usually simplified by the absolute value of 𝛼𝑅 = 0.8), the target
reliability index 𝛽, and finally the first two central statistical moments together with
the assumption of Gaussian or Lognormal probability distribution of 𝑅 [1]. In other
words, instead of a computationally costly estimation of 𝑝𝐹 by various numerical
methods, structural safety is assessed by the semi-probabilistic approach based on a
statistical analysis of QoI – structural resistance 𝑅 = ℳ(X). Moreover, statistical
analysis is further simplified by the assumption of a two-parametric probability dis-
tribution, and thus it is possible to employ simplified, but computationally efficient
ECoV methods.

In the context of the semi-probabilistic approach and the corresponding safety
formats, several methods were developed or adapted for the estimation of CoV of 𝑅:
numerical quadrature [6, 7], ECoV methods [8, 9], Taylor series expansion (TSE)
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[10], and Latin Hypercube Sampling (LHS) [11, 12]. These methods generally differ
in the statistical sampling of input variables. For the sake of completeness, there
are also two methods implemented in the Eurocode: Partial Safety Factor (PSF)
method commonly used for structural design, and global safety factor method for a
non-linear analysis of concrete structures according to EN 1992-2 (EN 1992-2). Note
that these methods implemented in the Eurocode are not focused on the estimation
of statistical moments. These methods try to directly estimate the design quantile of
resistance from a single numerical simulation and several strong simplifications. De-
spite the success of such an approach in linear calculations, its utilization in NLFEM
is questionable, since simulations with extremely low design material characteristics
in PSF may lead to unrealistic results, or an implicit assumption of the CoV of 𝑅 in
the global safety factor could lead to a significant deviation from the reality as has
already been shown by the author of this thesis in several studies [13, 14, 15, 16].

The standard ECoV method [9] proposed by Červenka was implemented in fib
Model Code [17], and it is worthy to note that it will be implemented also in the new
version of Eurocode prEN 1990:2022 and replace the global safety factor method in
prEN1992-1-1:2022. Despite the success of the method in various industrial applica-
tions, it is still significantly limited by two aspects: (a) an assumption of Lognormal
distribution of QoI, and (b) estimation of CoV from two numerical simulations with
mean values and characteristic values (5% quantile) of input variables. The author
of this thesis thus proposed a generalization of this standard ECoV method.

In order to derive a simplified method for statistical analysis based on a solid
theoretical background, it was necessary to review the classic TSE method and
propose several differencing schemes suitable for semi-probabilistic methods [18, 8].
Unfortunately, TSE suffers from the curse-of-dimensionality, since the number of
terms grows rapidly with the number of input variables and the order of TSE.
Therefore, it was necessary to assume another simplification – a correlation structure
among input random variables, which is not typically known.

The role of correlation is thoroughly investigated in the first journal publication
Estimation of Coefficient of Variation for Structural Analysis: The
Correlation Interval Approach [19] attached to this chapter. First of all, it
is shown that standard ECoV is implicitly based on the very strong assumption of
fully correlated input random variables. Further, it is proved that standard ECoV
coincides with TSE based on simple backward differencing. Identical methodology
can be easily utilized for an adaptation of various differencing schemes developed
for TSE and circumvent the curse-of-dimensionality. The proposed methodology is
referenced as Eigen ECoV.

The Eigen ECoV fills the gap between the existing over-simplified methods im-
plemented in codes commonly employed by civil engineers and the advanced costly
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techniques based on TSE. Naturally, it is necessary to carefully consider the appli-
cability of these assumptions in industrial applications and their possible impact.
However, it is important to emphasize that identical simplifications are also implic-
itly assumed in standard ECoV, though it is not often discussed. The significant
benefits of Eigen ECoV are its versatility and adaptivity allowing for easy modifi-
cations reflecting various aspects of specific mathematical models. The comparison
of the existing semi-probabilistic methods and the Eigen ECoV is schematically
depicted in Fig.2.1 together with LHS.

The estimated variance of QoI is significantly affected by the assumed correlation
among input random variables, though the definition of correlation matrix among
material characteristics is still challenging and there aren’t any recommendations
in codes. Although fully correlated input variables assumed by ECoV methods are
not physically realistic, they significantly reduce the computational cost. On the
other side of the spectrum, it is common to assume the also unrealistic uncorrelated
input variables. In the second case, it is necessary to employ methods using a
significantly higher number of simulations such as standard TSE or LHS. These two
limit cases define the interval of variance reflecting vague or incomplete information
about the correlation structure among input random variables. Practically speaking,
one can suggest starting with the case of fully correlated random variables solved by
computationally efficient but conservative Eigen ECoV. If the estimated CoV leads
to a too conservative 𝑅𝑑, one should employ TSE or LHS assuming uncorrelated
input random variables.

x x Latin Hypercube Sampling

2 ECoV by Červenka
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Fig. 2.1: Graphical interpretation of ECoV methods. (Adapted from [19])
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The second paper attached to this chapter entitled Comparison of Advanced
Semi-probabilistic Methods for Design and Assessment of Concrete
Structures [20] presents a thorough comparison of existing semi-probabilistic meth-
ods together with a numerical validation of the correlation interval approach. The
paper serves as a guideline for civil engineers and complements the theoretical results
obtained from the first paper presenting Eigen ECoV. Numerical examples solved
by NLFEM represent three typical concrete structural elements failing in different
mechanisms. The mathematical models replicated the destructive tests found in
the literature with credibility. All numerical examples are analyzed by PSF, TSE,
Eigen ECoV, and standard ECoV in order to estimate CoV of resistance, and conse-
quently 𝑅𝑑. The obtained results are compared to the correlation intervals obtained
by LHS assuming uncorrelated and fully correlated variables. Moreover, there is
also a result assuming a realistic correlation matrix obtained from an experimental
campaign [13].

The numerical results presented in this paper are very important for a further
development of the semi-probabilistic methods, since they generally show a very
good agreement with theoretical expectations, and thus support the whole method-
ology. Specifically, it is evident that Eigen ECoV consistently leads to accurate
and robust estimations, even for a significantly non-linear example, as opposed to
standard ECoV, which fails in the case of shear failure due to limited information
obtained from the simple backward differencing scheme. Furthermore, one can see
that the concept of the correlation interval works for practical applications very well.
Finally, it can be concluded that the whole methodology of Eigen ECoV serves as
a basis for the development of the class of ECoV methods. An analyst can choose
a suitable differencing scheme, an order of Taylor series expansion, and follow the
process presented in the first paper in order to create an ECoV method suitable for a
specific application. The obtained ECoV scheme can be further utilized for an esti-
mation of CoV of 𝑅, and ultimately in safety formats based on the semi-probabilistic
approach.
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2.1 Estimation of Coefficient of Variation for Struc-
tural Analysis: The Correlation Interval Approach

NOVÁK, L.; NOVÁK, D. Estimation of coefficient of variation for structural anal-
ysis: The correlation interval approach. Structural Safety, 2021, vol. 92, no. 1.
ISSN: 0167-4730. (WoS-AIS: D1)
DOI: 10.1016/j.strusafe.2021.102101

Description

The paper presents a theoretical background of the novel semi-probabilistic method
referenced as Eigen ECoV, and a concept of correlation interval approach for design
and assessment of structures represented by costly mathematical models solved by
NLFEM. The existing safety formats are critically reviewed in the first part of the
paper, and their limitations are theoretically investigated. Further, the role of sta-
tistical correlation among input random variables is thoroughly investigated. The
core of the paper presents a general methodology for the derivation of various ECoV
methods combining TSE of the first and the second order with simple and advanced
differencing schemes. Finally, a concept of a correlation interval for structural as-
sessment is presented. The correlation interval approach is based on an estimation
of two physically unrealistic limit states – uncorrelated input random variables and
fully correlated random variables. Both limit states lead to different variances of
QoI and clearly show the consequences of the imprecise determination of correlation
matrix.

Role of the author

Percentage of contribution: 80%
Lukáš Novák is the main author of this paper responsible for the concept, the
methodology, and the numerical results of the presented research. Furthermore,
he prepared the original draft of the paper, which was later reviewed by the second
author, Drahomír Novák.
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A B S T R A C T

The paper is focused on the efficient estimation of the coefficient of variation for functions of correlated
and uncorrelated random variables. Specifically, the paper deals with time-consuming functions solved by
the non-linear finite element method. In this case, the semi-probabilistic methods must reduce the number
of simulations as much as possible under several simplifying assumptions while preserving the accuracy of
the obtained results. The selected commonly used methods are reviewed with the intent of investigating their
theoretical background, assumptions and limitations. It is shown, that Taylor series expansion can be modified
for fully correlated random variables, which leads to a significant reduction in the number of simulations
independent of the dimension of the stochastic model (the number of input random variables). The concept of
the interval estimation of the coefficient of variation using Taylor series expansion is proposed and applied to
numerical examples of increasing complexity. It is shown that the obtained results correspond to the theoretical
conclusions of the proposed method.

1. Introduction

Today, non-linear finite element analysis (NLFEA) is employed ever
more frequently for the design and assessment of structures, especially
concrete structures with significant non-linear behaviour. Moreover in
the last decade, it has become more common to use reliability analysis
of real structures. This trend reflects the higher economical and safety
requirements placed on engineering in todays society. Therefore, it is
natural to connect NLFEA and reliability analysis in order to obtain ac-
curate results [1–4]. Although the combination of NLFEA and reliability
analysis is a strong tool for the realistic modelling of structures, it is also
still highly time consuming to perform the reliability analysis of large
non-linear mathematical models with many input random variables.

This paper is focused on the semi-probabilistic approach, which
is well known from EN 1990 and partial safety factors [5]. This ap-
proach is able to greatly reduce the number of non-linear calculations
necessary in order to estimate the design value of resistance satisfy-
ing the target reliability when the approach is used instead of the
direct calculation of failure probability. However, it is still challeng-
ing to apply the semi-probabilistic approach to non-linear mathemat-
ical models solved by finite element software, when one deals with
the non-linearity of functions combined with highly computationally
demanding calculations.

Assuming a mathematical model of input random vector 𝐗 de-
scribed by a specific joint probability distribution, the basic reliability

∗ Corresponding author.
E-mail addresses: novak.l@fce.vutbr.cz (L. Novák), novak.d@fce.vutbr.cz (D. Novák).

concept is given as 𝑍(𝐗) = 𝑅−𝐸, where 𝑍(𝐗) represents safety margin,
which is defined as the difference between structural resistance 𝑅 and
action effect 𝐸. Failure of the structure is represented by condition
𝑍(𝐗) < 0. In the semi-probabilistic approach, the resistance of structure
𝑅 is separated and the design value of resistance 𝑅𝑑 that satisfies safety
requirements is evaluated, instead of the direct calculation of failure
probability 𝑝𝑓 = 𝑃 (𝑍(𝐗) < 0). The typical formula for the estimation
of 𝑅𝑑 , assuming a lognormal distribution of 𝑅, is

𝑅𝑑 = 𝜇𝑅 ⋅ 𝑒𝑥𝑝(−𝛼𝑅𝛽𝑣𝑅), (1)

where 𝜇𝑅 is the mean value, 𝑣𝑅 is the coefficient of variation (CoV)
and 𝛼𝑅 represents sensitivity factor derived from First Order Reliability
Method (FORM) [6,7]; the recommended value is 𝛼𝑅 = 0.8 according
to [5]. The target reliability index 𝛽 for the ultimate limit state,
moderate consequences of failure and a reference period of 50 years
is set at 𝛽 = 3.8 according to the Eurocode. Note that, from a proba-
bilistic point of view, the whole process represents the estimation of a
quantile satisfying the given safety requirements under the prescribed
assumption of lognormal distribution.

Obviously, for the determination of a design value by a semi-
probabilistic approach, it is crucial to estimate the mean value and
variance of structural resistance 𝑅 = 𝑟 (𝐗) accurately. This can be done
via various techniques, such as numerical quadrature [8], simplified
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methods for the estimation of the coefficient of variation (ECoV meth-
ods) [9], or stratified sampling [10]. Although simplified ECoV methods
are often discussed at conferences, e.g. [11–14], and recommendations
already exists in fib Model Code 2010 [15] and such methods are
expected to be included in the Eurocode and fibModel Code 2020, there
are still no significant scientific publications presenting the theoreti-
cal background and more importantly the limitations of the existing
methods. Therefore, this paper contains a brief review of commonly
used methods and also an investigation of the theoretical background
of selected methods and their connection to well-known mathematical
concepts.

ECoV methods offer a balance between computational cost and
accuracy. However ECoV methods also have several limitations due to
the assumed simplifications. Therefore besides an overview of ECoV
methodology, this paper presents a novel generalization of ECoV meth-
ods for correlated random variables, since material characteristics (es-
pecially in the case of concrete structures) are correlated and this may
play a crucial role in probabilistic analysis. In most cases, there is a
lack of information on statistical correlation. Therefore, it is useful to
examine two extreme cases (uncorrelated and fully correlated random
variables). The interval ECoV approach and novel Eigen ECoV for fully
correlated case are thus proposed in this paper.

2. Safety formats for NLFEA

The safety formats that include ECoV methods can be sorted by type
of simplification into three levels as will be described in this section.
Since non-linear mathematical models are generally not proportional,
the standard quantile-based approach (level I) may lead to incorrect
results. Accurate results are only guaranteed if the probability distri-
bution of resistance 𝑓𝑅 is identified together with statistical moments
(Level III methods), which might not be a simple matter in general cases
and is definitely time-consuming. Therefore, it is beneficial to assume
several simplifications and employ Level II methods representing a
compromise between accuracy and efficiency.

2.1. Level I: Quantile-based methods

Quantile-based methods are based on the very strict assumption
that 𝑟(𝐗𝑑 ) = 𝑅𝑑 , i.e. a numerical simulation with input variables
set to a generally desired quantile (e.g. design 𝐗𝑑) leads to a result
corresponding to the identical desired quantile of response distribution
𝑅. Of course, this might be a severe problem in case of NLFEA,
where a simulation with extreme input variable values may lead to
the unrealistic behaviour of the computational model, which is usually
verified within a specific range of input variables. However, such an
approach can still be acceptable for simple structural members with
a single almost linear failure mode and low 𝑣𝑅, e.g. the bending of a
simple beam.

2.1.1. Partial safety factors
According to Partial Safety Factors (PSF) method proposed in EN

1990 [5], NLFEA is computed with design values of input random
variables and it is assumed that the obtained result corresponds to the
design value of resistance 𝑅𝑑 [16]. The design values of input vari-
ables are typically derived from characteristic values using normative
coefficients 𝛾𝑀 , which consider material and model uncertainty:

𝑅𝑑 = 𝑟(𝑋1∕𝛾𝑀 , 𝑋2∕𝛾𝑀 ,…). (2)

Note that, the design values in the partial safety factors method
are extremely low, thus possibly leading to the unrealistic redistribu-
tion of internal forces and even to different structural failure modes.
One solution might be the calibration of partial safety factors based
on laboratory experiments involving material and structural measure-
ments [17].

2.1.2. Global safety factor according to EN 1992-2
In the global safety factor concept according to EN 1992-2 [18], the

design value is estimated as follows:

𝑅𝑑 =
𝑟(𝑓𝑦𝑚, 𝑓𝑐𝑚,…)

𝛾𝑅
, (3)

where 𝑓𝑦𝑚 = 1.1𝑓𝑦𝑘 is the mean value of the yield strength of steel rein-
forcement and 𝑓𝑦𝑘 represents its characteristic value (5% quantile), 𝑓𝑐𝑚
is the reduced mean value of concrete because of its higher variability
and the idea shown in Eq. (4) that design values should correspond
to the same probability and reflect the safety of normative material
partial safety factors 𝛾𝑠 = 1.15 and 𝛾𝑐 = 1.5. The global safety factor
for resistance is set as 𝛾𝑅 = 1.27 including model uncertainty.

𝑓𝑐𝑚 = 𝛾𝑠 1.1
𝑓𝑐𝑘
𝛾𝑐

≈ 0.85 𝑓𝑐𝑘. (4)

It is assumed that design values of concrete and steel should corre-
spond to an identical quantile of probability. Furthermore, it is assumed
that the mean value of steel can be obtained as 𝑓𝑦𝑚 = 1.1𝑓𝑦𝑘, and thus
𝑓𝑦𝑑 = 𝑓𝑦𝑚∕1.27.

Therefore, 𝑓𝑐𝑚, according to Eq. (4), reflects the partial safety factors
by virtue of the presented rationale. Note that 𝑓𝑐𝑚 does not represent
the mean value of concrete material characteristics and it is lower
than the characteristic values. As a result, it includes additional safety
due to the higher variability of concrete. Also note that for concrete
characteristics, Eurocode 2 allows only the compressive type of failure.

2.2. Level II: Simplified probabilistic methods

The task of Level II methods is reduced to the estimation of the mean
value 𝜇𝑅 and variance of 𝑅, represented by the coefficient of variation
𝑣𝑅, which can be further decomposed as:

𝑣𝑅 =
√
𝑣2𝑔 + 𝑣2𝑚 + 𝑣2𝑓 , (5)

where 𝑣𝑔 or 𝑣𝑚 represents the coefficient of variation caused by geomet-
rical or model uncertainties and the 𝑣𝑓 coefficient of variation caused
by the material. There are several studies dealing with model uncer-
tainties and it is necessary to adopt 𝑣𝑔 or 𝑣𝑚 for specific structures [16,
19,20]. Therefore for the sake of generality, the paper is focused only
on the estimation of the coefficient of variation of mathematical model
caused by the uncertainty of material parameters 𝑣𝑓 .

2.2.1. Numerical quadrature
A classic method to estimate moments of function 𝑅, was proposed

in 1975 by Rosenblueth [8]. This point estimate method is simple and
direct, thus the method can be easily employed in practical applica-
tions. Moreover, Christian and Baecher [21] have shown its robustness
and mathematical background in numerical quadrature. The expected
value of the m-th moment of function 𝑟(𝐗) can be estimated as:

E
[
𝑅𝑚

]
≈

2𝑁∑
𝑖=1

𝑃𝑖 ⋅ 𝑟
𝑚
𝑖 , (6)

where 𝑃𝑖 =
1
2𝑛 are weighting factors and 𝑟𝑖 is a result of mathematical

model. Since the function 𝑟(𝐗) is computed in 2𝑁 points with coor-
dinates plus/minus one standard deviation 𝜎𝑋𝑖 for the 𝑖-th random
variable, the computational requirements increase rapidly with the
number of input random variables – 2𝑛 simulations are needed to esti-
mate the statistical moments of 𝑅 and thus it cannot be recommended
for typical engineering applications.
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2.2.2. ECoV by Červenka
The computationally efficient ECoV method was proposed in 2008

by Červenka [22]. The method is based on a simplified formula for
the estimation of a characteristic value corresponding to a lognormal
variable with the mean value 𝜇𝑅 and 𝑣𝑓 :

𝑅𝑘 = 𝜇𝑅 𝑒𝑥𝑝
(
−1.645 𝑣𝑓

)
, (7)

where −1.645 corresponds to the 5% quantile of standardized Gaus-
sian distribution 𝛷(0.05). After simple mathematical operations and
under the assumption that 𝑅𝑚 ≈ 𝜇𝑅, the coefficient of variation of 𝑅
associated with material uncertainties 𝑣𝑓 can be estimated as:

𝑣𝑓 = 1
1.645

𝑙𝑛
(
𝑅𝑚
𝑅𝑘

)
, (8)

and the global resistance safety factor is calculated as:

𝛾𝑅 = 𝑒𝑥𝑝(𝛼𝑅𝛽𝑣𝑓 ). (9)

Note that, just 2 NLFEA simulations are needed in this approach in-
dependent of the size of the stochastic model – 𝑅𝑚 ≈ 𝑟

(
𝝁𝑿

)
with mean

values of input random variables and 𝑅𝑘 using characteristic values (5%
percentile) of input variables. Obviously, there is the strong assumption
that 𝑅𝑘 ≈ 𝑟

(
𝑿𝒌

)
. However there is significant advantage in comparison

to previous methods, since it estimates 𝑣𝑓 and thus the design value 𝑅𝑑
corresponds to target safety requirements and the specific distribution
of 𝑅. Moreover the characteristic values of material parameters are not
as extremely low as in the case of PSF and may not lead to structural
system or material model exhibiting unrealistic behaviour, which can
be considered as a significant advantage. Note that, the described
concept was adopted in the fib Model Code 2010 [15] and is widely
accepted in the engineering community todays [23]. However, in spite
of the success of this method, its theoretical background has not yet
been sufficiently investigated. In this paper an attempt to fill this gap
has been made, primarily in Section 4.1.

2.2.3. Taylor series expansion
Let us assume the mathematical model 𝑟 (𝐗) is infinitely differen-

tiable in an open interval around the mean values. Under this assump-
tion, it is possible to expand the original model into an infinite Taylor
series:

𝑅 = 𝑟(𝐗) = 𝑟(𝝁𝑿 )+∇𝑟(𝝁𝑿 ) ⋅ (𝐗−𝝁𝑿 )+
1
2
(𝐗−𝝁𝑿 ) ⋅∇∇𝑟(𝝁𝑿 ) ⋅ (𝐗−𝝁𝑿 )+⋯

(10)

where the derivatives are evaluated at 𝝁𝑿 . In engineering applications,
it is common to assume that the terms of TSE are only linear and
that input random variables are independent. For the sake of clarity,
the commonly known analytical expressions for the estimation of the
expected value E [𝑅] and variance VAR [𝑅] of a function 𝑟 (𝐗) of 𝑁
independent random variables, approximated by linear terms of the
TSE, are as follows:

E[𝑅] ≈ 𝑟
(
𝜇𝑋1

, 𝜇𝑋2
,… , 𝜇𝑋𝑛

)
, (11)

and

VAR[𝑅] ≈
𝑁∑
𝑖=1

(
𝜕𝑟(𝑋)
𝜕𝑋𝑖

)2
𝜎2𝑋𝑖 , (12)

As can be seen from the equations, the efficiency and accuracy of
TSE depends on the number of used terms and the differencing scheme
for the practical computation of derivatives. A practical example of
TSE utilization is the ECoV method proposed by Schlune et al. [24],
which can be seen as a TSE in which, derivatives are approximated by
one-sided differencing as:
𝜕𝑟(𝑋)
𝜕𝑋𝑖

=
𝑅𝑚 − 𝑅𝐗𝐢∆

𝛥𝑋𝑖
. (13)

where the response of mathematical model 𝑅𝑚 is determined by a
calculation with mean values, and 𝑅𝐗𝐢∆ is the result of a model using
mean values of input random variables and a value of the 𝑖-th random
variable which has been reduced by 𝛥𝑋𝑖 . This differencing scheme has
been adapted for structural design according to Schlune et al. using
step size parameter 𝑐 = (𝛼𝑅𝛽)∕

√
2 and 𝑋𝑖𝛥 = 𝐹−1

𝑖 (𝛷(−𝑐)), where 𝐹−1
𝑖

is an inverse cumulative distribution function of the 𝑖-th variable and
𝛷 is the cumulative distribution function of the standardized Gaussian
distribution. For the sake of clarity, the difference is calculated as
𝛥𝑋𝑖 = 𝜇𝑋𝑖 −𝑋𝑖𝛥.

Schlune et al. thus proposed a simple formula [24] for the co-
efficient of variation caused by material uncertainty 𝑣𝑓 if material
parameters are not correlated as:

𝑣𝑓 ≈ 1
𝑅𝑚

√√√√√
𝑁∑
𝑖=1

(
𝑅𝑚 − 𝑅𝐗𝐢∆

𝛥𝑋𝑖
𝜎𝑋𝑖

)2

. (14)

Note that this approach requires 𝑁+1 simulations of NLFEA, where
𝑁 is the number of random variables. However, all simulations act as
a parametric study of a numerical model, which is usually performed
during the development of a model in industrial applications. As a
result, TSE can be recommended due to its medium computational cost
and strong theoretical background.

Of course, one can use various differencing schemes instead of
Eq. (13) depending on ones computational possibilities, as was pro-
posed by the authors of this paper in [25]. Assuming linear TSE, one of
the most promising advanced differencing schemes using 𝑛𝑠𝑖𝑚 = 2𝑁 +1
simulations is defined as:

𝜕𝑟(𝑋)
𝜕𝑋𝑖

=
3𝑅𝑚 − 4𝑅𝐗𝐢∆𝟐

+ 𝑅𝐗𝐢∆

𝛥𝑋𝑖
, (15)

where the middle additional term 𝑅𝐗𝐢∆𝟐
is obtained via the evaluation

of the original mathematical model with mean values and a reduced
𝑖-th variable 𝑋𝑖 𝛥2

= 𝜇𝑋𝑖 − 𝛥𝑋𝑖∕2.

2.3. Level III: Monte Carlo methods

Monte Carlo (MC) type sampling methods are the only general tools
available for reliability or statistical analysis. However, it is necessary
to perform large number of calculations if they are used. Nonetheless,
the number of simulations is still lower than in the case of Level II
methods for large stochastic models and thus Level III for ECoV [10]
is recommended for large stochastic models or computationally cheap
computational models.

The main feature of MC techniques is their use of pseudo-random
sampling and the statistical analysis of performed deterministic sim-
ulations. Crude Monte Carlo is not efficient because thousands of
simulations are needed and the use of this approach in combination
with NLFEA, is not feasible in industrial applications. A stratified sam-
pling technique called Latin Hypercube Sampling (LHS) was developed
for the efficient estimation of statistical moments [26,27]. It drastically
reduces the number of needed simulations. LHS is not dependent on the
size of the stochastic model, and thus it is recommended for extensive
stochastic models. The cumulative distribution function of the input
variable is divided into 𝑛𝑠𝑖𝑚 equal intervals, where 𝑛𝑠𝑖𝑚 is the number
of simulations. Every value is picked within each segment. There are
several ways to choose the probability of picked value — mean value
of interval, median or random value. Once the values are chosen, the
random permutation of realizations is performed and random vectors of
input variables are generated. The described approach leads to uniform
distribution within a design domain. Additionally, MC type simula-
tion techniques are able to take the correlation among input random
variables into account. Several methods have been developed for this
purpose, e.g. generalized Nataf transformation [28] and optimization
techniques [29,30].
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Fig. 1. The presented semi-probabilistic methods together with their computational cost 𝑛 are depicted in 2-dimensional space (figure adapted from [31])..

2.4. Graphical comparison of safety formats

As was already shown by Pimentel et al. [31], each NLFEA sim-
ulation can be represented by a point in 𝑁-dimensional space called
the design domain. The design domain is considered to be the domain
of sampling probabilities, where coordinates of sampling points are
described by an input random vector. The 2-dimensional case can be
seen in Fig. 1 together with the sampling points used for the presented
safety formats. The stochastic model contains only 2 typical input
material characteristics – the yield strength of reinforcement 𝑓𝑦 and the
compressive strength of concrete𝑓𝑐 , which are considered to be random
variables described by specific probability distributions.

Level I: The PSF and the EN-1992 methods represented by triangles
are very efficient from the computational point of view — only one
simulation is needed but CoV is not estimated. Although quantile-based
methods are sufficient for a linear mathematical model, they may lead
to severe problems depending on the degree of non-linearity of mathe-
matical models solved by the NLFEA. Moreover, design values of input
random variables are defined only for selected material parameters
(excluding e.g. fracture energy).

Level II: ECoV by Červenka (represented in Fig. 1 by circles) always
works with 2 simulations — the mean and the characteristic values
of input random variables. On the other hand, TSE with differencing
according to Schlune et al. (represented in Fig. 1 by squares) is linearly
dependent (𝑛𝑠𝑖𝑚 = 𝑁 + 1), and the Numerical Quadrature (stars) is
exponentially dependent (𝑛𝑠𝑖𝑚 = 2𝑁 ) on the number of input random
variables. Although such dependency is not a problem for low dimen-
sional space, it can play a crucial role in industrial applications with
many input variables and thus it might be more efficient to employ
Monte Carlo type methods. The level III Monte Carlo type method is
represented by LHS (crosses) in the figure. LHS can be used for general
stochastic models and will be employed in this paper as a reference
solution.

3. Correlation among random variables

The presented ECoV methods are recommended for the practical
assessment of structures assuming that material characteristics are
independent, which is usually incorrect. This is especially true in the
case of concrete structures, where a correlation among compressive
strength, tensile strength and fracture energy is usually assumed [3,
32]. Therefore, the paper is focused on the generalization of ECoV
methods for structures with dependent input material characteristics,
which are typically obtained from laboratory experiments or assumed
according to the literature. General transformation between correlated
and uncorrelated space is briefly described in this section.

3.1. Nataf transformation

In a general case involving non-normal correlated random variables,
it is necessary to utilize what is known as the Rosenblatt transfor-
mation [33]. However, in practical applications only the marginal
distributions and the correlation matrix are usually known, which does
not provide complete information about the joint probability distribu-
tion [34]. Therefore, it is necessary to assume a specific copula [35]
or construct an arbitrary joint distribution using vine copulas [36],
which is beyond the scope of this paper. A special case of Rosenblatt
transformation that assumes Gaussian copula [37] is also known as
the Nataf transformation [38], which is usually utilized in reliability
applications. Nataf transformation to 𝝃 space is composed of three
steps:

𝝃 = 𝑇𝑁𝑎𝑡𝑎𝑓 (𝐗) = 𝑇3◦𝑇2◦𝑇1(𝐗). (16)

The first two steps are commonly known as iso-probabilistic trans-
formation, which uses the cumulative distribution function of variables
𝐹𝑥 and the Gaussian inverse cumulative distribution function 𝛷−1 as
follows:

𝑇2◦𝑇1(𝐗) ∶ 𝐗 ↦ 𝐙 = 𝛷−1(𝐹𝑥(𝐗)). (17)

The last step represents a transformation to uncorrelated space using
linear transformation. For this procedure, we can use the Cholesky
decomposition or the Eigen decomposition of the fictive correlation
matrix 𝐑𝐙. Using Cholesky decomposition, the decomposition is

𝐑𝐙 = 𝐋𝐋𝑇 , (18)

and final transformation using 𝜞 = 𝐋−1 thus reads

𝑇3 ∶ 𝐙 ↦ 𝝃 = 𝜞𝐙. (19)

The Nataf transformation, can be easily inverted in order to trans-
form 𝝃 ↦ 𝐗. Note that the transformation matrix 𝐋 is a lower triangular
matrix with a unit on the first entry of the main diagonal and therefore
the first coordinate 𝑥1 remains unchanged. This complication can be
circumvented by using Eigen decomposition instead of Cholesky de-
composition. The target covariance matrix Σ can be decomposed using
Eigen decomposition as:

Σ = Θ𝜆
1
2 𝜆

1
2 Θ𝑇 , (20)

where 𝝀 is the diagonal matrix of eigenvalues of Σ and Θ is the
eigenvector matrix associated with the eigenvalues. Instead of the
transformation matrix 𝐋, one can then use Θ𝜆

1
2 .
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3.2. Fictive correlation matrix

A critical task for Nataf transformation is the determination of 𝐑𝐙.
The fictive correlation matrix 𝐑𝐙 is a square symmetric positive-definite
matrix, and thus it is possible to perform Cholesky decomposition.
The assumed Gaussian copula is parametrized by elements 𝜌𝑧𝑖𝑗 of 𝐑𝐙.
Note that 𝜌𝑧 = 0 ↔ 𝜌𝑥 = 0 and ||𝜌𝑥|| ≤ ||𝜌𝑧|| as was shown in [34].
The relationship between fictive correlation coefficients 𝜌𝑧𝑖𝑗 and 𝜌𝑥𝑖𝑗
determined for 𝐗 is defined by the following integral equation:

𝜌𝑥𝑖𝑗 =
1
𝜎𝑖𝜎𝑗 ∬R2

{
𝐹−1
𝑖

[
𝛷
(
𝑧𝑖
)
− 𝜇𝑖

]
𝐹−1
𝑗

[
𝛷
(
𝑧𝑗
)
− 𝜇𝑗

]
× 𝜙2

(
𝑧𝑖, 𝑧𝑗 , 𝜌𝑧𝑖𝑗

)}
,

(21)

where 𝜇 is the mean value, 𝜎 is the standard deviation and 𝜙2 is the
bivariate standard normal probability density function parametrized by
fictive correlation coefficients 𝜌𝑧𝑖𝑗 . The computation of Eq. (21) might
be complicated for practical usage. Moreover, for specific combina-
tions of input parameters there is not a guaranteed solution (more
details about the limitations of Nataf transformation can be found
in [35]). Generally, a simplification of Eq. (21) according to Liu &
Kiureghian [39] can be in the form 𝜌𝑧 = 𝑡 ⋅ 𝜌𝑥, where 𝑡 is known for
several combinations of probability distributions of random variables.
The material characteristics are often assumed to be lognormaly dis-
tributed with coefficient of variation 𝑣 ≤ 0.5 in practical applications.
Assuming both random variables to be lognormally distributed, Liu &
Kiureghian derived 𝑡 in the following form:

𝑡 =
𝑙𝑛

(
1 + 𝜌𝑥𝑣1𝑣2

)

𝜌𝑥
√
𝑙𝑛

(
1 + 𝑣12

)
𝑙𝑛

(
1 + 𝑣22

) , (22)

where 𝑣1 and 𝑣2 are coefficients of variation of the first and second
random variable respectively. As can be found in [39], the derived
formula is exact in this specific case. Additionally, in common practical
applications, one can assume there is a positive correlation among
material characteristics which leads to negligible differences between
𝜌𝑧 and 𝜌𝑥 [34].

4. Ecov for functions of correlated random variables

Besides the general probabilistic methods in level III, it is also
possible to extend Level II of safety formats for correlated random vari-
ables. The numerical quadrature can be easily extended for correlated
variables via the modification of weighting factors 𝑃𝑖 as follows [21]:

𝑃(𝑠1 ,𝑠2 ...𝑠𝑛) =
1
2𝑛

[
1 +

𝑛−1∑
𝑖=1

𝑛∑
𝑗=𝑖+1

(𝑠𝑖)(𝑠𝑗 )𝜌𝑖𝑗

]
, (23)

where 𝑠𝑖 is a positive sign when the value of the 𝑖-th variable is the
mean plus the standard deviation 𝜎 and negative for points with a
coordinate mean value minus the standard deviation. Although it is
generally possible to use numerical quadrature, it is highly computa-
tionally demanding (𝑛𝑠𝑖𝑚 = 2𝑁 ) and thus its potential for industrial
applications is limited, and it will not be employed in numerical
examples.

The next presented Level II method – TSE – is more interesting
for industrial applications, since it is not highly computationally de-
manding. It is possible to generalize the TSE for correlated variables
using additional terms of the expansion. Specifically, an extension of
the method for dependent random variables can generally be obtained
from a first order TSE assuming correlation among random variables
represented by the correlation coefficient 𝜌 in analytical form as

VAR[𝑅] ≈
𝑁∑
𝑖=1

(
𝜕𝑟(𝑋)
𝜕𝑋𝑖

)2
𝜎2𝑋𝑖 +

∑
𝑖,𝑗=1,…,𝑁𝑖≠𝑗

𝜌𝑖,𝑗𝜎𝑋𝑖𝜎𝑋𝑗
𝜕𝑟(𝑋)
𝜕𝑋𝑖

𝜕𝑟(𝑋)
𝜕𝑋𝑗

. (24)

However, higher terms of the TSE or more accurate approximations
of derivatives should be considered for the correct estimation of vari-
ance in the case of dependent input random variables and non-linear

functions. The authors of this paper recently proposed a methodology
consisting of three levels of increasing accuracy and complexity de-
scribed from the mathematical point of view in [25]. This methodology
can be used for an arbitrary correlation matrix.

There is no theoretical background available in literature for the
second presented Level II method (ECoV by Červenka), and thus it
is not possible to directly generalize it for any correlation matrix.
Therefore, the TSE for functions of fully correlated random variables
and its connection to ECoV by Červenka are investigated in the next
subsection.

4.1. Special case: ECoV for fully correlated random variables

There is often a strong assumption of fully correlated input random
variables in industrial applications, which will be adopted for the fur-
ther investigation of TSE. Without loss of generality, let us investigate
the situation in Gaussian space. Similarly as in the case of Eq. (7) for
lognormal distribution, ECoV by Červenka, which assumes Gaussian
distribution, is based on the following formula:

𝑅𝑘 = 𝜇𝑅
(
1 − 1.645 𝑣𝑓

)
, (25)

and 𝑣𝑓 is therefore obtained as:

𝑣𝑓 =
𝑅𝑚 − 𝑅𝑘
1.645 𝑅𝑚

, (26)

where 𝑅𝑘 = 𝑟
(
𝑿𝒌

)
and 𝑅𝑚 = 𝑟

(
𝑿𝒎

)
≈ 𝜇𝑅.

For further comparisons, let us set up the step size parameter of TSE
as 𝑐 = −𝛷(0.05) ≈ 1.645, which corresponds to the same quantile as in
ECoV by Červenka. The differencing scheme defined for the uncorre-
lated case in Eq. (13) can be transformed by a Nataf transformation
which has been parametrized by arbitrary correlation coefficients, as
can be seen in Fig. 2 (left).

The 𝑁-dimensional ellipsoid corresponding to 𝑠𝑖𝑔𝑚𝑎-distance is de-
scribed by eigenvectors (𝜃1,… , 𝜃𝑁 ) and eigenvalues (𝜆1,… , 𝜆𝑁 ) ob-
tained from the Eigen decomposition of a covariance matrix. Note that
in the limit case lim𝜌→1 𝜆1 = 𝑡𝑟 (𝜮) = 𝜎2𝛩 and lim𝜌→1 𝜆𝑖 = 0∀𝑖 > 1. In other
words, the 𝑁-dimensional joint probability distribution is reduced to a
1-dimensional projection with the distribution 𝑋𝛩 ∼  (

𝜇𝛩, 𝜆1
)
. The

Nataf transformation of 𝑿𝒊𝜟 is depicted in standardized Gaussian space
𝝃 for a 2D case with increasing positive 𝜌 ∈ ⟨0, 1) together with isolines
of bivariate Gaussian distribution in 𝑐 ⋅ 𝑠𝑖𝑔𝑚𝑎-distance. As can be seen
in Fig. 2 (left), with increasing 𝜌→ 1 the coordinates of 𝑿𝟏𝜟 transform
to 𝑿𝒌 and 𝑿𝒊𝜟∀𝑖 > 1 to 𝑿𝒎, and thus:

𝜕𝑟(𝑋)
𝜕𝑋𝑖

=
𝑅𝑚 − 𝑅𝑿𝒊𝜟

𝛥𝑋𝑖
= 0 ∀𝑖 > 1. (27)

The limit cases 𝜌 = 0 and 𝜌 = 1 are compared in Fig. 2 (right). As
can be seen, the iso-lines of bivariate Gaussian distribution in 𝑠𝑖𝑔𝑚𝑎-
distance (grey) and 𝑐 ⋅ 𝑠𝑖𝑔𝑚𝑎-distance (red) are reduced to a single line.
From the simple geometry, one can derive the following expressions:

𝛥𝛩 = 𝑐 ⋅
√
𝜆1 =

√√√√ 𝑁∑
𝑖=1

(
𝜇𝑋𝑖 −𝑋𝑖𝛥

)2
. (28)

Finally, the variance estimated by linear TSE for fully correlated
input variables can be estimated as:

VAR[𝑅] =
(
𝜕𝑟 (𝐗)
𝜕𝑋𝛩

)2
𝜆1, (29)

where the derivative is obtained from two simulations 𝑅𝑚 = 𝑟(𝑿𝒎) and
𝑅𝜣𝜟 = 𝑅𝑘 = 𝑟(𝑿𝟏𝜟) as

𝜕𝑟 (𝐗)
𝜕𝑋𝛩

=
𝑅𝑚 − 𝑅𝜣𝜟

𝛥𝛩
. (30)
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Fig. 2. Nataf transformation of a TSE in standardized Gaussian space. Transformation of 𝑿𝒊𝜟 with increasing 𝜌 together with isolines of bivariate Gaussian distribution (left).
Comparison of limit cases for 𝜌 = 0 and 𝜌 = 1 (right). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

For a direct comparison with ECoV by Červenka, 𝑣𝑓 from the
equation above is obtained as:

𝑣𝑓 =
𝜎𝑅
𝜇𝑅

=

√√√√√
(
𝑅𝑚 − 𝑅𝜣𝜟

𝑐 ⋅
√
𝜆1

)2

𝜆1
1
𝜇𝑅

=
𝑅𝑚 − 𝑅𝑘
1.645 𝑅𝑚

. (31)

Therefore, ECoV by Červenka (see Eq. (26)) can be seen as a special
case of the TSE for fully correlated random variables that assumes lin-
earity of the mathematical model together with a specific distribution
of 𝑅 (typically lognormal). If these assumptions are fulfilled ECoV by
Červenka is a highly efficient method. In the opposite case, it may lead
to inaccurate results. Note that this method is widely used without
knowledge of assumed fully correlated input random variables, which
usually increases the variance of the function in practical applications
and thus obtains conservative results.

As significant disadvantage of ECoV by Červenka is its theoretical
background based on the simplified formula Eq. (7), which is only
accurate for low 𝑣𝑅. Moreover, it cannot be easily generalized and thus
more complex ECoV formulas using different derivative schemes are
derived from the TSE for fully correlated variables in the following
section.

4.2. Eigen ECoV

Using differencing schemes proposed by the authors of this paper
in [25], one can create several formulas similar to ECoV by Červenka
directly from a TSE transformed by Nataf transformation for fully cor-
related random variables, which is depicted in Fig. 3 for Gaussian input
random variables. In the special case that 𝜌 → 1, the joint probability
distribution is reduced to the 1D distribution 𝑋𝛩 ∼  (𝜇𝛩, 𝜆1), which
can be expanded by the TSE.

If there is no assumption of Gaussian input random variables, one
has to use a corresponding probability distribution of input random
variables, i.e. 𝑋𝑖𝛥 = 𝐹−1

𝑖 (𝛷(−𝑐)). Moreover, the geometrical properties
become more complex and thus one has to assume a specific distribu-
tion of 𝑋𝛩 in order to calculate 𝛥𝛩 in physical space. Typically, one can
assume lognormal distribution and thus 𝛥𝛩 can be estimated as follows:

𝛥𝛩 = 𝜇𝛩 − 𝜇𝛩 ⋅ 𝑒𝑥𝑝(−𝑐 ⋅
√
𝜆1
𝜇𝛩

), (32)

where 𝜇𝛩 is calculated as:

𝜇𝛩 =

√√√√ 𝑁∑
𝑖=1

(
𝜇𝑋𝑖

)2
. (33)

Fig. 3. Graphical interpretation of Eigen ECoV.

The first order TSE leads to well known expressions for the variance
(Eq. (29)) and mean value 𝑅𝑚 ≈ 𝑟(𝑿𝒎) of structural resistance 𝑅. Fur-
thermore, one can use an arbitrary differencing scheme and step-size
parameter 𝑐. As was shown, simple backward differencing is used with
different 𝑐 by Schlune et al. [24] (𝑐 = (𝛼𝑅𝛽)∕

√
2) and Červenka [22]

(𝑐 = 1.645). Note that 𝑐 = 1.645 is assumed in Fig. 3. For the sake of
clarity, let us recall the following notation: 𝑅𝜣𝜟 = 𝑟(𝑿𝜣𝜟) and 𝑿𝜣𝜟 =
(𝑋1𝛥,… , 𝑋𝑁𝛥). The input vector consists of reduced values of input
random variables 𝑋𝑖𝛥 = 𝐹−1

𝑖 (𝛷(−𝑐)). The 𝛥𝛩 is calculated according
to Eq. (32) under the assumption of lognormally distributed 𝑋𝛩 or
Eq. (28) under the assumption of Gaussian 𝑋𝛩 (Gaussian input random
variables). The variance of 1D Eigen distribution is 𝜆1 = 𝑡𝑟 (𝛴) =∑𝑁
𝑖=1 𝜎

2
𝑋𝑖

. Based on the presented theory and notation, the following
variants of Eigen ECoV are proposed:

(a) The Eigen ECoV derived from the first order TSE using simple
backward differencing leads to the following expression for the
expected value, variance and CoV using two simulations:

E[𝑅] = 𝑅𝑚 ≈ 𝑟(𝑿𝒎), (34)

VAR[𝑅] ≈
(
𝑅𝑚 − 𝑅𝜣𝜟

𝛥𝛩

)2
⋅ 𝜆1, (35)
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𝑣𝑓 ≈
𝑅𝑚 − 𝑅𝜣𝜟

𝛥𝛩
⋅

√
𝜆1
𝑅𝑚

. (36)

(b) Furthermore the Eigen ECoV derived from the first order TSE
using advanced backward differencing leads to the following
expression for mean, variance and CoV using three simulations:

E[𝑅] = 𝑅𝑚 ≈ 𝑟(𝑿𝒎), (37)

VAR[𝑅] ≈
⎛
⎜⎜⎝

3𝑅𝑚 − 4𝑅𝜣 𝜟
𝟐
+ 𝑅𝜣𝜟

𝛥𝛩

⎞
⎟⎟⎠

2

⋅ 𝜆1, (38)

𝑣𝑓 ≈
3𝑅𝑚 − 4𝑅𝜣 𝜟

𝟐
+ 𝑅𝜣𝜟

𝛥𝛩
⋅

√
𝜆1
𝑅𝑚

, (39)

where 𝑅𝜣 𝜟
𝟐
= 𝑟(𝑿𝜣 𝜟

𝟐
) and position of 𝑿𝜣 𝜟

𝟐
= (𝑋1 𝛥2

,… , 𝑋𝑁 𝛥
2
) is

depicted in Fig. 3. The input vector consists of reduced values of
input random variables:

𝑋𝑖 𝛥2
= 𝜇𝑋𝑖 −

𝜇𝑋𝑖 −𝑋𝑖𝛥

2
= 𝜇𝑋𝑖 −

𝛥𝑋𝑖
2
. (40)

(c) Additionally, using three identical simulations to those used
in case (b), one can derive the Eigen ECoV from the second
order TSE and thus obtain more accurate expressions. However
it is necessary to include the information of higher statistical
moments into the expression for variance in the case that 𝑋𝛩
has an assumed lognormal distribution (lognormally distributed
input random variables). The following expressions are derived:

E[𝑅] ≈ 𝑅𝑚 +
𝑅𝑚 − 2𝑅𝜣 𝜟

𝟐
+ 𝑅𝜣𝜟

𝛥2𝛩
⋅
𝜆1
2
, (41)

𝑣𝑓 ≈
√
VAR[𝑅]
E[𝑅]

. (42)

• Assuming Gaussian 𝑋𝛩, the third central moment 𝜇3 = 0 and the
fourth central moment 𝜇4 ≈ 3𝜆21, and thus the variance is obtained
via the following expression:

VAR[𝑅] ≈
⎛⎜⎜⎝

3𝑅𝑚 − 4𝑅𝜣 𝜟
𝟐
+ 𝑅𝜣𝜟

𝛥𝛩

⎞⎟⎟⎠

2

𝜆1 +
⎛⎜⎜⎝

𝑅𝑚 − 2𝑅𝜣 𝜟
𝟐
+ 𝑅𝜣𝜟

𝛥2𝛩

⎞⎟⎟⎠

2
𝜆21
2
.

(43)

• Assuming lognormally distributed 𝑋𝛩, higher central moments
must be included in the expression as follows:

VAR[𝑅] ≈
⎛
⎜⎜⎝

3𝑅𝑚 − 4𝑅𝜣 𝜟
𝟐
+ 𝑅𝜣𝜟

𝛥𝛩

⎞
⎟⎟⎠

2

𝜆1 +
⎛
⎜⎜⎝

𝑅𝑚 − 2𝑅𝜣 𝜟
𝟐
+ 𝑅𝜣𝜟

𝛥2𝛩

⎞
⎟⎟⎠

2
𝜇4𝛩 − 𝜆21

4
+

+𝜇3𝛩
⎛⎜⎜⎝

3𝑅𝑚 − 4𝑅𝜣 𝜟
𝟐
+ 𝑅𝜣𝜟

𝛥𝛩

⎞⎟⎟⎠

⎛⎜⎜⎝

𝑅𝑚 − 2𝑅𝜣 𝜟
𝟐
+ 𝑅𝜣𝜟

𝛥2𝛩

⎞⎟⎟⎠
. (44)

The third and fourth central moments can be derived for lognor-
mal distribution 𝑋𝛩 ∼  (𝜇𝐿𝑁 , 𝜎𝐿𝑁 ) directly from the shape
parameter 𝜎2𝐿𝑁 = 𝑙𝑛(1 + 𝜆1

𝜇2𝛩
) as:

𝜇3𝛩 =

[(
𝑒𝜎

2
𝐿𝑁 + 2

)√
𝑒𝜎

2
𝐿𝑁 − 1

]
𝜆

3
2
1 , (45)

𝜇4𝛩 =
[(
𝑒4𝜎

2
𝐿𝑁

)
+ 2

(
𝑒3𝜎

2
𝐿𝑁

)
+ 3

(
𝑒2𝜎

2
𝐿𝑁

)
− 3

]
𝜆21. (46)

4.3. Correlation interval ECoV

Since the information about correlation among input random vari-
ables is often vague and usually based on expert judgement, it is
beneficial to study two limit cases: uncorrelated variables and fully
correlated variables. The obtained results can be used for the reliable
estimation of variance or CoV. Moreover, an analyst can clearly see

Fig. 4. Interval ECoV approach assuming identical increasing 𝜌 among all variables.
(For interpretation of the references to colour in this figure legend, the reader is referred
to the web version of this article.)

the consequences of the imprecise determination of correlation matrix,
which is often neglected. In the case of uncorrelated input random
variables, TSE with simple (𝑛𝑠𝑖𝑚 = 𝑁 +1) and advanced (𝑛𝑠𝑖𝑚 = 2𝑁 +1)
differencing can be used according to the TSE methodology presented
in [25]. The fully correlated case is examined via the proposed Eigen
ECoV methods in three variants together with ECoV by Červenka. This
methods are utilized in numerical examples in order to compare and
show the limitations of the existing and proposed ECoV methods. From
the practical point of view, it is beneficial to estimate variance while
assuming fully correlated random variables in the case of a limited
computational budget (large mathematical models) and only make
further use of the TSE in order to obtain an accurate estimate of the
role of correlation.

5. Numerical examples

The results of the numerical examples in this section are presented
for two variants of stochastic models: under the assumption of Gaus-
sian input variables and under the assumption of lognormal input
variables. The reference solution is obtained by LHS with 𝑛𝑠𝑖𝑚 = 104
for uncorrelated random variables and also for increasing 𝜌 = ⟨0, 1)
with step 0.1 (identical 𝜌 is assumed among all input variables). The
two extremes (fully correlated and uncorrelated) define the boundaries
for the interval of variance as can be seen in Fig. 4, where the blue
line represents the reference solution obtained by a Monte Carlo type
simulation technique for increasing 𝜌, and the interval is highlighted
in grey. The depicted results correspond to Example 3, though the
approach was used for all examples.

The variance of the uncorrelated case is estimated via a linear TSE
with a simple derivative scheme (Eq. (13)) represented in the figures by
a dashed line, and with an advanced differencing scheme (Eq. (15)) in
figures represented by a dot-and-dash line. Note that these two methods
represent the first and second order of the methodology proposed
in [25]. The estimation of variance for a fully correlated limit case is
obtained by the proposed Eigen ECoV and ECoV by Červenka, which is
equal to Eigen ECoV (a) in Gaussian space, though there is a difference
due to the approximation of lognormal distribution by Eq. (8).

5.1. Example 1: Ultimate bending moment

The very first example is a classical mathematical model of the
ultimate bending moment of a reinforced section taken from Ditlevsen
[40]:

𝑅 = 𝑟(𝐗) = 𝑋1𝑋2𝑋3 −𝑋4
𝑋2

1𝑋
2
2

𝑋5𝑋6
, (47)
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Fig. 5. Results of example 1 assuming Normal (left) and Lognormal (right) distribution of input variables. The variance of the uncorrelated case is estimated by the TSE with
simple (dashed) and advanced (dot-and-dash) differencing. The variance of the correlated case is estimated by ECoV methods, which are depicted in the corresponding columns
by solid lines. The reference solution (grey interval) is estimated by LHS.

Table 1
Stochastic model of the first example described by the first and the second statistical
moments of input random variables.

Variable 𝑋1 𝑋2 𝑋3 𝑋4 𝑋5 𝑋6

Mean value 1260 mm2 250 N/mm 770 mm 0.55 30 N∕mm2 250 mm
Standard deviation 63 mm2 17.5 N/mm 10 mm 0.055 4.5 N∕mm2 5 mm

and the stochastic model contains six input random variables summa-
rized in Table 1.

The results are compared in Fig. 5. The 𝑋-axis is divided into
four columns representing the results of the ECoV methods used for
the estimation of variance for fully correlated variables, and the 𝑌 -
axis represents VAR [𝑅]. Note that the grey colour corresponds to the
variance interval determined by LHS (for the sake of clarity, results
for intermediate 𝜌 are not depicted). The TSE with both differencing
schemes for uncorrelated random variables estimated almost identical
variance, which reflects the linearity of the mathematical model. From
the obtained results for fully correlated variables it is clear that ECoV
by Červenka provided a very good estimate of the variance of the
lognormal case, since this case fulfils both assumptions of the method:
that the mathematical model is almost linear and the distribution of
𝑅 is close to lognormal. In such cases, ECoV by Červenka represents
the most efficient method. However, if the stochastic model contains
Gaussian distribution, ECoV by Červenka fails. Note that ECoV (a)
leads to inaccurate results in both cases due to the simple derivative
scheme employed. However, using one more simulation (𝑛𝑠𝑖𝑚 = 3) and
expressions (b) and (c) of Eigen ECoV leads to accurate results that are
independent of the distribution of input variables.

5.2. Example 2: Approximation of an industrial example

The second example is motivated by the industrial applications in
civil engineering that are often represented by non-linear finite element
models — typically the ultimate resistance given by the peak of the
load–deflection curve of a concrete structural element. The behaviour
of such physical system is often monotone with a slightly non-linear
progression. A typical function solved by the FEM can be found for
example in [24], and due to the computational demands of FEM, its

shape was replicated by the following artificial function suitable for
the purposes of our tests:

𝑅 = 𝑟(𝐗) = 𝑋1𝑋2 −𝑋2
1 −

(
𝑋2

2
30

)
−
(
𝑋1 − 30

) (
𝑋2 − 200

)
. (48)

This function is significantly non-linear, and the stochastic model con-
tains two input variables with the vector of mean values 𝝁 = [40, 300]
and the corresponding vector 𝐂𝐨𝐕 = [0.10, 0.15].

The non-linearity of the second mathematical model can be clearly
seen from the difference between both TSE approximations used for the
uncorrelated case. Generally, the difference between the two results
is more significant with increasing non-linearity of the mathematical
model, which is additionally highlighted by non-Gaussian distribution.
Of course, Eigen ECoV (a) leads to a value identical to that obtained
by ECoV by Červenka in Gaussian space, and a similar result is gained
in lognormal space. With only one additional calculation, the results
obtained by Eigen EcoV (b) and (c) are far more accurate. The superi-
ority of these two methods is obvious from Fig. 6. In Gaussian space the
results are almost exact and identical to each other, since higher central
moments have negligible influence. However, in the lognormal case
there is an obvious difference between both methods using identical
calculations of the original mathematical model.

5.3. Example 3: Truss structure 2D NLFEA

The third example is represented by the 2D truss structure shown in
Fig. 7. The ultimate load 𝐹 for the allowed midspan deflection (the blue
point in the figure) of 𝑣 = 10 cm is obtained by NLFEA implemented
in OpenSeesPy [41]. Uniaxial Giuffre–Menegotto–Pinto steel material
with isotropic strain hardening is used to represent all structural mem-
bers. The stochastic model contains six random variables: yield strength
𝑓𝑦 and initial elastic tangent 𝐸 for the top chords (1), web members
(2) and bottom chords (3), with the mean values 𝜇𝑓𝑦 = 255 MPa,
𝜇𝐸 = 210 GPa and CoVs: 𝐶𝑜𝑉𝑓𝑦 = 0.10, 𝐶𝑜𝑉𝐸 = 0.05.

The reference solution was obtained by LHS with 𝑛𝑠𝑖𝑚 = 104
simulations for each 𝜌 and both variants (Gaussian and lognormal). The
results gained by TSE and Eigen ECoV for this NLFEA are depicted in
Fig. 8. Note that the function exhibits significant non-linearity, since
the variance estimated by the linear TSE with simple differencing is
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Fig. 6. Results of example 2 assuming Normal (left) and Lognormal (right) distribution of input variables. The variance of the uncorrelated case is estimated by the TSE with
simple (dashed) and advanced (dot-and-dash) differencing. The variance of the correlated case is estimated by ECoV methods, which are depicted in the corresponding columns
by solid lines. The reference solution (grey interval) is estimated by LHS.

Fig. 7. Scheme of 2D truss structure. (For interpretation of the references to colour in
this figure legend, the reader is referred to the web version of this article.)

significantly different from the reference solution and thus simple linear
differencing is not able to approximate the function. On the other hand,
the TSE with advanced differencing is very accurate, especially for the
Gaussian variant. For the fully correlated random variables, Eigen ECoV
(b) and (c) with 𝑛𝑠𝑖𝑚 = 3 calculations lead to very accurate results in
both the Gaussian and the lognormal case. Moreover, Eigen ECoV is
not limited to lognormal distribution but works generally for arbitrary
distributions of response in similar manner to TSE.

6. Discussion

The proposed Eigen ECoV is derived directly from TSE, which is in
compliance with PSF defined in Eurocode [7,42] and therefore can be
recommended for the design and assessment of structures. Moreover,
it is a general method that works without assumptions about the prob-
ability distribution of 𝑅, which stands in contrast to the widely used
ECoV by Červenka implemented in Model Code 2010, which assumes
Gaussian or lognormal distribution (with 𝑣𝑅 < 0.2) of 𝑅. On the other
hand, if these assumptions are fulfilled and the mathematical model is
nearly linear, ECoV by Červenka is highly efficient.

The significant advantage of Eigen ECoV is its adaptivity using
various differencing schemes. Eigen ECoV (a) represents an equivalent
method to ECoV by Červenka. It is derived from the first order TSE
with simple backward differencing and thus leads to identical results in
Gaussian space. However, it has been shown that it is not suitable for
non-linear mathematical models. Eigen ECoV (b) is derived from the
first order TSE with advanced backward differencing, which leads to
more accurate estimates and preserves the simplicity of the formulas for
variance. Therefore, it can be easily used by civil engineers in industrial

Table 2
Comparison of estimated variance for example 2 assuming increasing uncertainty of
input random variables.

CoV LHS Eigen ECoV b) Eigen ECoV c) 𝜖

[0.10, 0.15] 0.82 ⋅ 106 0.90 ⋅ 106 0.88 ⋅ 106 2%
[0.30, 0.35] 4.63 ⋅ 106 6.47 ⋅ 106 5.82 ⋅ 106 14%
[0.40, 0.45] 7.14 ⋅ 106 11.15 ⋅ 106 9.32 ⋅ 106 26%

applications using NLFEA. Although Eigen ECoV (c) is derived from
the second order TSE, it uses identical numerical calculations of the
original mathematical model to those employed by Eigen ECoV (b). It
typically leads to slightly improved estimates of variance and expected
values of 𝑅, taking higher moments of probability distributions of
input random variables into account. However, the ECoV formula is
much more complicated and should be implemented into a software
application.

The difference between proposed Eigen ECoV (b) and (c) is higher
with growing skewness and kurtosis of 𝑋𝛩. Naturally, this plays sig-
nificant role in case of lognormal distribution of 𝑋𝛩 with high CoV as
can be clearly seen in Eq. (44). In order to amplify this difference, let
us artificially increase the uncertainty of both input random variables
in Example 2 as follows: 𝐂𝐨𝐕 = [0.30, 0.35] and 𝐂𝐨𝐕 = [0.40, 0.45]. The
estimated VAR[𝑅] assuming both input random variables lognormally
distributed and fully correlated are summarized in the Table 2. Note
that the percentual difference 𝜖 is defined as an absolute value of
a difference between variance estimated by Eigen ECoV (b) and (c)
divided by the reference solution estimated by LHS. We would like to
note that, such high uncertainty of input variable is not common in
industrial applications and thus the difference between both solutions
is typically much lower.

In practical application of the correlation interval approach, one
should start with Eigen ECoV for the estimation of the variance of
fully correlated cases and then use standard TSE in order to obtain
the variance of uncorrelated cases if necessary. The difference between
variances is a direct measure of the impact of the vagueness of avail-
able information about the dependency structure among input random
variables. Higher correlation among random variables typically leads
to higher variance of 𝑅, and thus one can assume Eigen ECoV as a
conservative estimate. However, analysts might need more accurate
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Fig. 8. Results of example 3 assuming Normal (left) and Lognormal (right) distribution of input variables. The variance of the uncorrelated case is estimated by the TSE with
simple (dashed) and advanced (dot-and-dash) differencing. The variance of the correlated case is estimated by ECoV methods, which are depicted in the corresponding columns
by solid lines. The reference solution (grey interval) is estimated by LHS.

results, and thus the standard TSE with simple or advanced differencing
should be employed. More accurate results are especially important in
case of existing structures, since the economic impact of unnecessary
interventions could be significant. It naturally leads to more advanced
structural analysis by NLFEA but it should be also reflected in semi-
probabilistic analysis [31]. Note that for the practical design and
assessment of structures, it is necessary to additionally include model
uncertainty and geometrical uncertainty according to Eq. (5). The
correlation interval ECoV approach then leads to minimal or maximal
𝑣𝑅 and thus to the maximal (unsafe) design value 𝑅𝑑 or the minimal
(safe) design value 𝑅𝑑 obtained as a corresponding quantile of the
structural resistance.

7. Conclusions

The paper is focused on estimation of coefficient of variation meth-
ods for NLFEA. ECoV methods are the basis for the semi-probabilistic
approach for the design and assessment of structures and thus it is
crucial to use accurate and efficient methods for industrial applications.
The review of existing methods and three levels of assumed simpli-
fications is presented with attention to the theoretical mathematical
background of each method. Furthermore, the influence of correlation
among random variables and Nataf transformation is briefly described.
Finally, the general Eigen ECoV method for functions of fully correlated
random variables and the interval ECoV approach are proposed. The
Eigen ECoV is analytically compared to the existing well known ECoV
method by Červenka. It is shown that Eigen ECoV represents a special
case of the general Taylor Series Expansion and can be directly com-
pared to the ECoV method by Červenka in Gaussian space. However, it
is a general method without any assumption regarding the probability
distribution of structural resistance, which is in contrast to existing
methods. The presented methods are applied for three numerical exam-
ples, and the expected behaviour of Eigen ECoV is proved. The most
efficient method for industrial applications is Eigen ECoV (b) using
three numerical calculations of the original mathematical model since
it leads to the accurate estimation of variance, preserving the simplicity
of analytical formulas that are easily applicable in industrial practice.
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recently proposed Eigen ECoV method and the correlation interval approach. Nu-
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modes. From the obtained numerical results, it can be concluded that Eigen ECoV
leads to superior results, though its benefit for an almost linear function (bending
failure) is negligible. Furthermore, it is shown that the correlation interval can be
efficiently estimated by ECoV methods and TSE, and it clearly shows the impact of
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Abstract

This paper presents the comparison of advanced semi-probabilistic methods

for the design and assessment of concrete structures represented by mathemat-

ical models solved by non-linear finite element methods. The special attention

is given to the advanced methods focused on the estimation of the coefficient

of variation of structural resistance. Numerical examples represent a replica-

tion of laboratory experiments of beams with different failure modes. The

obtained results are discussed with respect to the accuracy of the employed

methods and the influence of the assumed statistical correlation among basic

variables. Simplified methods give a good estimation of the design values,

though their accuracy is dependent on the type of the failure mechanism.

Moreover, it is shown that mutual correlations among random variables may

significantly affect the design value of resistance, and they should be carefully

defined and modeled.
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1 | INTRODUCTION

The determination of a design value of resistance ensur-
ing a target level of structural reliability represents a key
task for engineers. Design codes like Eurocodes offer a
clear background for that, making it possible to separate
structural resistance and action effect in most design situ-
ations. A relative importance of resistance and of the load
effect is expressed through the respective sensitivity fac-
tors whose recommended values commonly ensure rea-
sonably conservative design solutions. As structural
analysis can then be fully focused on resistance, the
approach is called semi-probabilistic.

Various procedures to determine the design value of
resistance are generally termed as safety formats. They
are elaborated at different levels of simplification and
accuracy. Safety formats according to Eurocodes fully rely
on the partial factor method; also the EN 1992-2:20051

approach belongs to this category. The design value of
resistance is obtained by one calculation of the computa-
tional structural model using the design values of basic
variables. While this approach performs well and is fully
justified for linear computational models, its use for non-
linear models is questionable and can lead to an over-
conservative design resistance2,3 or may even fail.4 In
contrast, it is well known that the probabilistic analysis
in combination with a non-linear finite element analysis
offers a significant added value over the standard linear
analysis and semi-probabilistic approach implemented in
Eurocodes,5 and researchers are highly motivated to
develop novel techniques coupling the accuracy of the
non-linear finite element analysis (NLFEA) with a realis-
tic description of the basic variables by probabilistic
modeling.

The only general tool for probabilistic analysis is
represented by the Monte Carlo simulation (MC), simu-
lating uncertainties with their complete probability distri-
bution and statistical correlation. For a large number of
simulations, the approach leads to the complete informa-
tion about the distribution of resistance, but the number
of simulations is often limited, and the design value of
resistance is estimated based on the estimates of the
mean value and coefficient of variation (CoV). The accu-
racy depends on the quality of these estimates. Even if
the advanced stratified sampling such as Latin
Hypercube Sampling (LHS)6 is used, a number of simula-
tions may range from tens to hundreds. There are more
advanced and computationally demanding MC
techniques,7 but their implementation is usually far more
complicated, and thus they are typically utilized for sci-
entific applications only. The computational burden of
MC represents the main obstacle of the approach for
time-consuming mathematical models like NLFEA, since

it is not computationally feasible for industrial applica-
tions. Significant efforts have been made to reduce the
computational cost of the estimation of statistical
moments and its dependency on number of input ran-
dom variables. Recently, promising results were obtained
by high-dimensional model representation method8 and
its later modifications, such as the Maximum Entropy
Multiplicative Dimensional Reduction Method.9

Although these methods represent a significant improve-
ment for general estimating of statistical moments, it is
still necessary to perform tens of numerical simulations.

That is why alternative techniques focused on the
Estimation of Coefficient of Variation (ECoV) of struc-
tural resistance have been developed. They represent a
compromise between the simple and, in most cases, the
conservative approach of partial factors and MC. They
consider uncertainties in the form of N basic (input) ran-
dom variables, but under several simplifying assump-
tions, they reduce the computational model calculations
to a very low number acceptable in practice:

•ECoV according to fib Model Code 201010—2
numerical calculations for any N,

•Eigen ECoV11—3 numerical calculations for any N,
•ECoV based on Taylor Series Expansion12,13—N + 1

or 2 N + 1 numerical calculations, i.e. only three calcula-
tions when the concrete compressive strength and the
yield strength of the reinforcement are modeled as sto-
chastic variables for the whole structure, but an exces-
sively increasing number when random material
properties are modeled at various locations at the struc-
ture, or when the stochastic model contains additional
random parameters.

The ECoV methods commonly simplify an estimation
of the mean value of resistance as a result of the calcula-
tion of the computational model using the mean values
of input variables. This assumption is strong (particularly
for highly nonlinear models), though it can be accepted
in many applications where ECoV methods achieve suffi-
cient accuracy.14–17 The second strong simplification
common for all ECoV methods is assuming a lognormal
distribution of resistance.

Note that LHS can be used as an ECoV technique for
the estimation of the mean value and CoV.17 In particular,
for a low number of simulations (tens), the assumption of
lognormal distribution is necessary, as a reliable estima-
tion of distribution of resistance generally requires a
higher number of simulations. A similar situation applies
to the methods based on numerical quadrature,18 how-
ever, they are extremely computationally expensive for
increasingN, and thus are rarely employed in industry.

This paper presents a summary of the available
approaches and the comparison of the semi-probabilistic
methods for practical examples of NLFEA. In contrast to
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the review of ECoV methods,19 a special attention is given
to the verification of the recently proposed adapted Taylor
series expansion (TSE), and a special case of TSE refer-
enced as Eigen ECoV, which does not bring a significant
additional computational burden, but extends the range of
applicability of ECoV according to fibModel Code 2010.

The aim of the paper is to contribute to the discussion
and clarify the recommendations provided by the nearly
complete drafts of fib MC 2020 and prEN 1992-1-1.20 The
general theoretical background of the semi-probabilistic
approach, PSF, and selected ECoV methods are described
in Section 2. Note that there is a strong reasoning for the
selection of these particular simplified ECoV methods,
since they are based on the general formulation of TSE.
The purpose of this section is thus not only to summarize
the selected methods, but also to clarify their similarities
and assumed simplifications. Besides the simplified ECoV
methods and PSF, a brief summary of stratified sampling
is also presented, since we use this method for a reference
solution of the numerical examples. Section 3 describes
selected case studies and the methodology of the numeri-
cal examples, i.e. our strategy for a proper comparison of
the selected methods. Besides the comparison of the
ECoV methods, we also present their theoretical charac-
teristics regarding the correlation among input random
variables. The case studies are represented by three math-
ematical models replicating laboratory experiments from
the literature. Each model exhibits a different failure
mode, and thus a different influence of correlation
among material parameters. Section 4 contains an
extended discussion of the obtained results reflecting the-
oretical assumptions of the selected methods and their
limitations. Moreover, in the second part of the discus-
sion, we present an artificial analytical example present-
ing some of these limitations in the case of models with
multiple failure modes. In the last section, Section 5, the
main findings of this paper are summarized and the
importance of the correlation among the material charac-
teristics of concrete is emphasized.

2 | SEMI-PROBABILISTIC
APPROACH

Structural reliability represents a crucial topic of civil engi-
neering globally implemented into the design codes using
semi-probabilistic approaches. The semi-probabilistic
approaches assume the separation of two random vari-
ables, structural resistance R and action effect E, through
their design values:

Rd ¼F�1
R �αRβð Þ, ð1Þ

and

Ed ¼F�1
E �αEβð Þ, ð2Þ

where F�1 represents the inverse cumulative distribution
function, α is a sensitivity factor originally derived from
First Order Reliability Method (FORM), and β is the tar-
get reliability index. The paper is focused on the estima-
tion of Rd when the function of structural resistance r(X)
of input random vector (X being a vector of N basic vari-
ables) is solved by an NLFEA. The recommended value
of αR ¼ 0:8 is then utilized, typically with a lognormal
distribution of R. Based on these assumptions, the proba-
bility distribution is fully described by the mean value
and CoV, and the reliability analysis reduces to the esti-
mation of the first two statistical moments—the task of
the ECoV methods.

2.1 | Partial safety factors

Although NLFEA has been employed for the design and
assessment of structures more frequently in recent
decades, it is still insufficiently included in Eurocodes,
and its potential for a wide application in the industry is
thus limited. Specifically, there is the Partial Safety Fac-
tors (PSF) method, and the global factor method for
NLFEA of concrete structures according to EN
1992-2:20051 implemented in Eurocode. Unfortunately,
both methods may provide only crude estimates in the
cases with a strongly non-linear behavior, multiple fail-
ure modes, or when the assumptions adopted by these
approaches do not apply.

Although the PSF implemented into Eurocodes was
originally not intended for NLFEA applications, it is
often employed due to its simplicity. To estimate the
design value of resistance Rd in Equation (3), only one
calculation must be computed with the design values of
basic variables The design values of input variables are
typically derived from the characteristic values using par-
tial factors γM ¼ γRd

γm, which reflect the uncertainties in
the material and the geometrical properties, and model
uncertainties:

Rd ¼ r X1,k=γM ,X2,k=γM ,…ð Þ¼ r f ck=γC, f yk=γS,…
� �

: ð3Þ

where Xk denotes a characteristic value of the basic vari-
able X, γM is the partial factor for a material property, fc
is the concrete compressive strength, and fy is the yield
strength of steel reinforcement.

Note that the design values used in the PSF method
might be very low, which might lead to unrealistic
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results, since non-linear material models are often cali-
brated to specific ranges of input values only (closer to
their mean and/or characteristic values). Therefore, it is
beneficial to calibrate the partial factors with respect to
real laboratory experiments involving material and struc-
tural measurements.21

Another approach for the derivation of PSF with the
explicit definition of the model, material, and geometrical
uncertainties was recently introduced in Annex A to prEN
1992-1-1:2021.20 The main idea is to account for the biases
and CoVs of various basic variables directly in the model
of resistance, not only the material itself. Such an
approach leads to a considerable simplification of the
modeling of the geometrical uncertainties, which may be a
difficult task in NLFEA. Disregarding now the model
uncertainties—treated separately later by a model uncer-
tainty factor γRd specific to the case under consideration—
allows for an unambiguous comparison of all the pre-
sented safety formats and semi-probabilistic methods
(Section 3). The general formula for the definition of PSF
according to the new Eurocode proposal is then:

γc ¼
exp αR β vRcð Þ

μRc
¼

exp αR β
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2fcþ v2ηþ v2Ac

q� �
f cm
f ck

μη μAc
ð4Þ

γs ¼
exp αR β vRsð Þ

μRs
¼

exp αR β
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2fyþ v2d

q� �
f ym
f yk

μd

where Xm and vX denote the mean and the coefficient of
variation of the basic variable X, Rc and Rs are model
resistances related to concrete crushing and yielding of
reinforcement respectively, and μ in Equation (4) is a bias
in the basic variable X—the systematic deviation of ran-
dom values of the variable from its characteristic (nomi-
nal) value, expressed as the ratio of the mean to the
characteristic (nominal) value.

Equation (4) assumes that concrete resistance Rc, typi-
cally governing the resistance of non-slender columns,

and reinforcement resistance Rs, typically governing the
flexural resistance, are random variables that are lognor-
mally distributed, obtained as a linear product of the rele-
vant resistance parameters; see Tables 1 and 2 taken
from Annex A to prEN 1992-1-1:2021.20

In the case of a bending failure governed by reinforce-
ment, geometrical uncertainties relate to the most impor-
tant parameter—the effective depth d as described in
Table 1, along with a relevant material property and
model uncertainties. In the case of compressive failure
with dominating concrete strength, the CoV of resistance
is similarly affected by a geometrical uncertainty through
the concrete area Ac, but the uncertainty of in-situ
strength is also additionally affected by the conversion
factor η (see Table 2).

Non-linear material models of concrete typically con-
sider additional material characteristics, such as tensile
strength f ct, and fracture energy Gf of concrete. An iden-
tical philosophy as in the case of compressive strength
was adopted in order to derive the statistics for the PSF
and ECoV methods. Specifically, the values according to
Table 3 are taken into account.

The CoV of f ct is set to v¼ 0:18 in compliance with
prEN 1992-1-1.20 Note that the variability of Gf is
assumed to be identical as for f ct . The characteristic value
of tensile strength is obtained from compressive strength
according to prEN 1992-1-120 as [in MPa]:

f ct,k ¼ 0:7 0:3 f c,k
2=3

� �
ð5Þ

and fracture energy according to the 2021 draft of Model
Code 2020 as follows [in MPa]:

Gf ,k ¼ 85 f c,k
0:15 ð6Þ

Note that values from Tables 1–3 are further utilized for
derivation of mean and characteristic values used in
advanced semi-probabilistic methods as described in the
next subsection.

TABLE 1 Parameters assumed for

the derivation of a partial factor for

reinforcement

Parameter CoV Bias factor

Yield str. f y vf y ¼ 0:045 f y,m=f y,k ¼ exp 1:645vf y

� �
Model unc.a vθ ¼ 0:045 μθ ¼ 1:09

Effect. depth db vd ¼ 0:05 μd ¼ 0:95

Resistance characteristics vf y ,R ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:0452þ0:052

p
¼ 0:067 μf y ,R ¼ f y,m=f y,k�μd ¼ 1:02

Abbreviation: CoV, coefficient of variation.
aModel uncertainties are reflected in this study by γRd

and are determined separately for each numerical
example.
bValid for d = 200 mm. For other effective depths: vd ¼ 0:05 200=dð Þ2=3 and μd ¼ 1�0:05 200

d

� �2
3:
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2.2 | Simplified methods for estimation
of coefficient of variation

Besides PSF, there are alternative methods published in
scientific papers and international documents such as fib
Model Code 2010.22 The ECoV methods under consider-
ation were developed in order to effectively estimate the
first two statistical moments of function of random vari-
ables from simple formulas. Simplified ECoV methods
are often applied in practical design and the assessment
of structures without the knowledge of their theoretical
background. However, it is essential to respect their limi-
tations to avoid making crude estimates of the design
resistance.

2.2.1 | ECoV according to fib model code

Probably the most frequently used method is the one
developed by Červenka7 and implemented into fib
Model Code 2010.22 It is based on a simplified for-
mula for the estimation of a characteristic value cor-
responding to a lognormal variable with the mean
value μR and CoV of the model resistance vR: Based on
two numerical simulations—one with the mean values of
the basic variables, Rm, and the other using the character-
istic values (5% fractile for material parameters) of basic
variables, Rk—the following simplified formula was
derived:

vR ¼ 1
1:645

ln
Rm

Rk

� �
ð7Þ

Based on the conventional models for basic variables pro-
vided in Tables 1–3, one can derive the mean and charac-
teristic values summarized in Table 4. Note that the
characteristic values X�

k in Table 4 reflect the uncertainty
in the basic variables assumed for the derivation of PSF.

Since there are only two numerical calculations used in
Equation (7), it can be shown that ECoV according to fib
Model Code 2010 implicitly assumes a full correlation among
basic variables (including fc, fy or geometrical parameters).11

Moreover, the simplified Equation (7) for the fractile of a log-
normal distribution should be applied for a low CoV only.
According to prEN 1990:202123 and prEN 1992-1-1:2021,20

this approximation may be used for a coefficient of variation
of less than 0.2; the exact formula for the fractile provided in
prEN 1990:202123 leads to lower values of vR.

2.2.2 | ECoV based on Taylor series
expansion

The standard method for a statistical analysis of functions
of random variables is the Taylor Series Expansion (TSE).
The most significant advantages of ECoV based on TSE
are its versatility and adaptability. TSE is generally an
infinite series which must be truncated to a finite number
of terms considering the non-linearity of the

TABLE 2 Parameters assumed for

the derivation of a partial factor for

concrete

Parameter CoV Bias factor

Compr. str. f c vf c ¼ 0:1 f c,m=f c,k ¼ exp 1:645vf c
� �

Conversion fact. η vη ¼ 0:12 μη ¼ 0:95

Conc. area Ac vAc ¼ 0:04 μAc
¼ 1:0

Model unc.a vθ ¼ 0:06 μθ ¼ 1:02

Resistance
characteristics

vf c ,R ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:12þ0:122þ0:042

p
¼ 0:16 μf c ,R ¼ 1:18�0:95�1:0¼ 1:12

Abbreviation: CoV, coefficient of variation.
aModel uncertainties are reflected by γRd

determined separately for each numerical example.

TABLE 3 Additional parameters

assumed for the derivation of a partial

factor for concrete

Parameter CoV Bias factor

f ct ,Gf v¼ 0:18 f m=f k ¼ exp 1:645vð Þ
Conversion fact. η vη ¼ 0:12 μη ¼ 0:95

Conc. area Ac vAc ¼ 0:04 μAc
¼ 1:0

Model unc.a vθ ¼ 0:06 μθ ¼ 1:02

Resistance
characteristics

vX ,R ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:182þ0:122þ0:042

p
¼ 0:22 μX ,R ¼ 1:34�0:9�1:0¼ 1:28

Abbreviation: CoV, coefficient of variation.
aModel uncertainties are reflected by γRd

determined separately for each numerical example.
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approximated function. In engineering applications, it is
common to use TSE truncated to linear terms, and thus
with μR ≈Rm and CoV:

vR ≈
1
Rm

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXN

i¼1

∂r Xð Þ
∂Xi

σXi

� �2
s

, ð8Þ

where the partial derivatives can be numerically com-
puted by various differencing schemes.13 The simplest
scheme is one-sided backward differencing:

∂r Xð Þ
∂Xi

¼Rm�RXiΔ

ΔXi

: ð9Þ

RXiΔ is the result of a numerical simulation using the
mean values of all random variables except the value of
the i-th random variable, which is reduced by ΔXi . Natu-
rally, one can derive various differencing schemes adapted
for different situations. Specifically, for ECoV based on
TSE, the methodology based on linear and quadratic TSE
was recently proposed, providing for three levels of com-
plexity and accuracy.13 The balance between efficiency and
accuracy is achieved by the second level based on linear
TSE and the following advanced differencing scheme:

∂r Xð Þ
∂Xi

¼
3Rm�4RXi

Δ
2
þRXiΔ

ΔXi

, ð10Þ

where the middle term RXi
Δ
2
is obtained by evaluating the

mathematical model with a reduced i-th variable
XiΔ2

¼ μXi
�ΔXi=2 and with the mean values of all the

other variables.
The adaptivity of TSE is enhanced by introducing a

step size parameter c used for defining the difference
ΔXi ¼ μXi

�XiΔ, where XiΔ¼F�1
i Φ �cð Þð Þ. F�1

i is an
inverse cumulative distribution function of the i-th vari-
able and Φ is the cumulative distribution function of the
standardized normal distribution. Schlune et al.12 pro-
posed to consider ¼ αRβð Þ= ffiffiffi

2
p

. Occasionally, it brings

additional computational burden when analyzing differ-
ent limit states with different β, since it is necessary to
calculate N+ 1 (Equation (9)) or 2 N+ 1 (Equation (10))
simulations for each limit state. It might be recom-
mended to use c¼ 1:645 irrespective of the type of the
investigated limit state, which is in accordance with the
ECoV according to fib Model Code 2010.

2.2.3 | Eigen ECoV

The recently proposed Eigen ECoV11 is derived directly
from TSE. However, in contrast to TSE suitable for arbi-
trary correlation structures, Eigen ECoV assumes fully
correlated input random variables similarly to ECoV
according to fib Model Code 2010. Therefore, the number
of simulations is significantly reduced in comparison to
TSE. The reduction of the number of simulations is
achieved by the projection of the differencing scheme
into the fully correlated space, i.e. Eigen ECoV is based
on the idea of projecting the input random vector on 1D
eigen distribution Θ with the variance equal to the first
eigenvalue of input covariance matrix σ2Θ ¼P

σ2Xi
¼ λ1,

and the mean value is simply obtained as:

μΘ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXN

i¼1
μXi

� �2r
: ð11Þ

In the original proposal, there are three levels of Eigen
ECoV.11 The most promising Eigen ECoV formula for the
estimation of vR offering a balance between the efficiency
and accuracy (derived directly from Equation (10)) is:

vR ≈
3Rm�4RΘΔ

2
þRΘΔ

ΔΘ
�

ffiffiffiffiffi
λ1

p
Rm

, ð12Þ

where the simulation RΘΔ ¼ r XΘΔð Þ with the coordinates
of the input realization XΘΔ ¼ X1Δ,…,XNΔð Þ and
RΘΔ

2
¼ r XΘΔ

2

� �
with the coordinates XΘΔ

2
¼ X1Δ2

,…,XNΔ
2

� �
are depicted together with an illustration of the Eigen
ECoV method in Figure 1.

TABLE 4 Input random variables

and the defined values for safety

formats and ECoV methods

Parameter Mean value Characteristic value

Yield strength
(Table 1)

f y,m ¼ μf y ,R� f y,k f �y,k ¼ f y,m� exp �1:645 vf y ,R
� �

Compressive strength
(Table 2)

f c,m ¼ μf c ,R� f c,k f �c,k ¼ f c,m� exp �1:645 vf c ,R
� �

Tensile strength
(Table 3)

f ct,m ¼ μf ct ,R�0:7� 0:3f c,k
2=3

� �
f �ct,k ¼ f ct,m� exp �1:645 vf ct ,R

� �

Fracture energy
(Table 3)

Gf ,m ¼ μGf ,R�85� f c,k
0:15 f �c,k ¼Gf ,m� exp �1:645 vGf ,R

� �

Abbreviation: ECoV, estimation of coefficient of variation.
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For the sake of clarity, the input vectors consisting of
reduced values of input random variables are
XiΔ ¼F�1

i Φ �cð Þð Þ, and the intermediate coordinates are
as follows:

XiΔ2
¼ μXi

�μXi
�XiΔ

2
¼ μXi

þXiΔ

2
: ð13Þ

ΔΘ represents the distance between μΘ and the desired
quantile F�1

Θ Φ �cð Þð Þ obtained as:

ΔΘ ¼ μΘ�μΘ � exp �c �
ffiffiffiffiffi
λ1

p
μΘ

� �
: ð14Þ

The Eigen ECoV combines the versatility and adaptabil-
ity of TSE through various differencing schemes and the
step size parameter c, together with the efficiency of
ECoV according to fib Model Code 2010. Note that more
theoretical details can be found in the original proposal
of Eigen ECoV including additional formulas based on
other differencing schemes or higher TSE, which is suit-
able for input variables with high CoV.11 Similarly, as for
ECoV according to Model Code 2010, c¼ 1:645 in numer-
ical examples, which leads to XiΔ ¼X�

i,k and μXi
¼Xi,m as

summarized later in Table 4.

2.3 | Stratified sampling for estimation
of coefficient of variation

The standard approach to the statistical analysis of com-
plex functions of random input variables is the MC

simulation consisting of a large number of repetitive
deterministic calculations with randomly generated reali-
zations of the input random vector. In order to improve
the efficiency of the crude MC method, a stratified sam-
pling (Latin Hypercube Sampling, LHS) was developed.6

Although the MC simulations lead to an accurate estima-
tion of the statistical moments, it is typically necessary to
perform tens to hundreds of simulations, which is often
not feasible in combination with NLFEA due to an enor-
mous computational burden. In contrast, LHS is the only
general tool for a complex stochastic analysis without
any simplifying assumptions (taking arbitrary correlation
into account), allowing for estimating statistical charac-
teristics from tens of simulations. This is why it will be
used as a reference in the following numerical examples.
Note that in order to obtain the consistency of the results
and the design values of resistance, we assume lognormal
distributions of input random variables with the mean
values and CoVs given in Tables 1–3.

3 | CASE STUDIES

The models developed in the ATENA Science software
based on non-linear fracture mechanics24 are used to rep-
licate the experimental results from the scientific litera-
ture. The nonlinear behavior of the concrete material is
modeled using the fracture-plastic material model.25,26

Specifically, three typical structural members, each fail-
ing in a different mode, are selected. The presented
advanced ECoV methods and PSF are compared to a ref-
erence LHS solution. Moreover, the specific values of
input material characteristics for each of the methods are
summarized in tables in order to simplify their practical
application or replication of the obtained results.

3.1 | Methodology for numerical
comparison of ECoV methods

The task of a probabilistic analysis is simplified to esti-
mating the first two statistical moments, and all the
described methods were employed for the comparison of
the obtained results in terms of the design resistances
determined by Equation (1) and considering αR ¼ 0:8 and
β¼ 3:8. Model uncertainties are included by an addi-
tional reduction factor γRd

obtained during the extensive
benchmark investigation specifically for the employed
ATENA Science software and for different failure
modes27 (assuming model uncertainty as a non-dominant
resistance parameter). Note that it is recommended to
perform Bayesian updating of the prior distribution of
the resistance model uncertainty given in the draft Model

FIGURE 1 Illustration of Eigen ECoV in standardized normal

space with coordinates of realizations of input random vector.11

ECoV, estimation of coefficient of variation
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Code 2020 as recently described by Engen et al.28; the
application of this updating is beyond the scope of this
paper.

For each example, three reference solutions provided
by LHS were obtained reflecting the assumed correlation
structure among basic variables. The first case corre-
sponds to the unit covariance matrix, i.e. the case with
independent basic variables, which is rather unrealistic
for concrete structures (though often assumed). The sec-
ond limit case represents the full correlation among all
input random variables. The full correlation does not rep-
resent real situations in physical systems, but it allows for
considerable simplifications11 and it could be considered
as another reference solution for the ECoV methods.
Both limit cases define the variance interval within
which the design values can range depending on the
actual correlation structure. The last case solved by LHS
represents a realistic correlation matrix inferred from
experiments.2 However, this information is commonly
unavailable, and thus not reflected in industrial applica-
tions. The realistic correlation matrix according to Slowik
et al.2 prescribes high positive Spearman correlation coef-
ficients only among concrete parameters as can be seen
in Table 5.

To sum up, the three cases solved by LHS represent
the reference solutions dependent on the correlation
among input random variables, i.e. addressing none, full,
and realistic correlation. It was recently shown that the
simplified ECoV methods implicitly assume full correla-
tion.11 In contrast to this method, the only method
designed for uncorrelated (and possibly arbitrary corre-
lated) variables is TSE, and thus its estimation should be
close to the second boundary of the defined correlation
interval. Note that TSE with advanced differencing deter-
mined almost identical design values as TSE with simple
differencing in the following examples, and thus the
results of the former are not presented.

In the following figures presenting the obtained
results, the reader can find load-deflection diagrams of
reference solutions consisting of 30 simulations generated
by LHS. In order to clearly show the influence of correla-
tion, three selected realizations are highlighted: the first
simulation, 15th (median), and the last realization of the
input random vector, where realizations are in an
increasing order of the compressive strength of concrete.

Besides the load-deflection diagrams and the correspond-
ing statistical values, one can see a comparison of the
design values estimated by simplified methods and the
defined correlation interval of design values (reference
solution). Note that if the estimated design value is out of
the interval, it is highlighted by green or red color indi-
cating whether it is conservative or non-conservative,
respectively.

For the sake of clarity, Table 4 summarizes the gen-
eral formulas for the determination of the mean values
and characteristic values f �k of all the basic random vari-
ables used for the ECoV methods in the following exam-
ples. Note that the characteristic values with the
superscript * are obtained as 5% quantiles of lognormal
distributions based on the conventional models adopted
for PSF (Section 2.1). Note that in all computations pre-
sented here, the nominal values of geometrical variables
are applied in NLFEA models. The influence of their bias
and CoV, μgeo and vgeo, is already reflected in the charac-
teristic values f �k.

3.2 | Experimental program by Bosco
and Debenardi

The first two examples are a replication of the tests done
by Bosco and Debenardi.29 The investigated structural
member is a simple beam failing in bending. The geome-
try and reinforcement arrangement of the analyzed
beams are described in Figure 2. Two tests with identical
beam geometry were selected for this comparison: the T8
test with a low reinforcement ratio, which exhibits a
bending failure due to reinforcement yielding, and the
T11 test with the reinforcement ratio exhibiting a bend-
ing failure due to concrete crushing (see Figure 3). The
reinforcement is modeled using the embedded approach
assuming a perfect connection to the surrounding

TABLE 5 Correlation matrix considered in the case studies2

f t f c Gf

f t 1 0.7 0.8

f c 0.7 1 0.6

Gf 0.8 0.6 1

FIGURE 2 Geometry of the beam specimens by Bosco and

Debenardi29
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concrete. It should be noted that this assumption is not
limiting since the bond failure can be captured quite well
by the cracking of the finite elements next to the ele-
ments with the embedded reinforcement. The typical
finite element mesh, shown in Figure 4, leads to an opti-
mal number of finite elements (affecting computational
costs) assuring the desired accuracy in the area of interest
where the cracks develop.

The characteristic values considered to determine the
mean values of strengths are f y,k ¼ 500MPa and
f c,k ¼ 25MPa. Note that the effective depth of the T8 and
T11 beams is d = 0.565m, and thus vd ¼ 0:05 200=dð Þ2=3
¼ 0:025 and μd ¼ 1�0:05 200=dð Þ2=3 ¼ 0:975. The impor-
tant quantiles for the application of the presented safety
formats and semi-probabilistic methods for the first two
numerical examples are summarized in Table 6, and the
results of NLFEA can be found in Table 7.

3.2.1 | The T8-A1 beam failing in bending

The obtained design values are further divided by
γRd

¼ 1:01 reflecting the model uncertainties in bending.27

In this simple example, all the utilized semi-probabilistic
methods lead to an identical design value of resistance,
Rd ¼ 40 kN. The experimental result from the original
publication was 50 kN.

As can be seen from the reference solutions in Figure 5
(top), there is a significant influence of correlation among
input random variables on the variance of the quantity of
interest (QoI)—the ultimate resistance of the structural
member represented by the peak of the Load-Deflection
diagram (LD). The highest variance is associated with the
case of full correlation among all input random variables.
One can see that the QoI of the highlighted LD realiza-
tions clearly corresponds to their rank since the correla-
tion assures that all material characteristics increase
proportionally. The second extreme case is the assumption
of uncorrelated input random variables, which leads to the
lowest variance of QoI, and the rank of realizations is not
related to their ultimate resistance. The realistic correla-
tion matrix leads to the variance close to the uncorrelated
case due to a low influence of the concrete material char-
acteristics on failure of this structural member, and thus it
can be expected that ECoV methods and PSF will be con-
servative in comparison to this realistic design resistance.

FIGURE 3 Finite element

model and failure modes of

theT8 beam (top) with

reinforcement failure, and T11

(bottom) with concrete crushing

failure

FIGURE 4 Typical mesh for the

beam specimens with the mesh size of

30 mm in the middle
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The comparison of design values determined by
ECoV methods and PSF can be seen in Figure 5 (bot-
tom). The non-linearity of this example (steel failure in
bending) is insignificant, and thus all the employed
methods lead to similar design values, and the absolute
differences are less than 10%. The highest design resis-
tance is determined by TSE, which is almost identical
to the reference uncorrelated solution. With respect to
the solution assuming a realistic correlation among

input random variables (the vertical gray line in
Figure 5), TSE is the most accurate, but also the most
expensive method. The ECoV methods estimated almost
identical design values inside of the correlation interval.
Finally, the most conservative method is PSF, though
the results of all the used methods are in close agree-
ment. This example shows the typical results of
semi-probabilistic methods in simple, almost linear
mathematical models.

TABLE 6 Input random variables

and the defined values for safety

formats and ECoV methods

Random variable Xi,d Xi,m XiΔ ¼Xik XiΔ2

Yield strength, f y [MPa] 449 525 482 504

Compressive strength, f c [MPa] 17.2 28 21.5 24.7

Fracture energy, Gf [MN/m] 9.02 e-5 1.76 e-4 1.23 e-4 1.49 e-4

Tensile strength, f ct [MPa] 1.2 2.3 1.6 1.9

Abbreviation: ECoV, estimation of coefficient of variation.

TABLE 7 Results of NLFEA utilized in the presented safety formats and ECoV methods

PSF

ECoV MC 2010 Eigen ECoV

Rm Rk Rm RΘΔ
2

RΘΔ

T8 beam [kN] 40.0 50.1 45.4 50.1 47.8 45.4

T11 beam [kN] 308 376 340 376 358 340

Abbreviations: ECoV, estimation of coefficient of variation; NLFEA, non-linear finite element analysis.

FIGURE 5 T8 beam—Three reference solutions obtained by LHS assuming different correlations (top) and comparison of design

resistances (bottom). LHS, Latin Hypercube Sampling
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3.2.2 | The T11-A1 beam failing in bending

The T11-A1 beam exhibits combined compressive crush-
ing and shear failure by the yielding of stirrups. There-
fore, the obtained design values are further reduced by
γRd

¼ 1:13 reflecting the model uncertainties of shear fail-
ure.27 Design resistances are depicted in Figure 6 together
with the reference solution (the distribution and design
quantile obtained by LHS). The experimental result from
the original publication was 380 kN.

In this example, the yield strength of the reinforce-
ment has the dominant influence on the ultimate
structural resistance, since the realistic correlation
matrix defining a strong correlation among concrete
material characteristics leads to the identical variance
as in an uncorrelated case. The comparison of the
design values determined by ECoV methods and PSF
can be seen in Figure 6 (bottom). Note that all the
methods are in good agreement with the LHS and
their results are according to expectations: ECoV
methods lead to design values near the fully correlated
boundary and TSE1 leads to the uncorrelated bound-
ary of the correlation interval. The most conservative
design value is obtained by PSF from a single simula-
tion, though it is very close to the defined reference
interval, and thus it may be seen as a very efficient
method.

3.3 | Experimental program by
Anderson and Ramirez

The third example is based on the experimental program
by Anderson and Ramirez.30 In this experiment, a beam
with the cross-section of 406 � 406 mm was subjected to
a four-point bending test with a shear span a = 0.91 m.
The beam was designed to fail in shear, i.e. to comply
with the condition for shear stress Vtest/(bwd) > 6. The
beam geometry and reinforcement are shown in Figure 7
and the finite element model in Figure 8. The shear rein-
forcement is composed of double stirrups no. 3 with ;
9.525 mm. The top longitudinal reinforcement consists of
5 bars no. 6 (; 19.05 mm) and the bottom reinforcement
of 5 bars no. 9 (; 28.65 mm).

The characteristic values used for the determination
of the mean values of material parameters are
f y,k ¼ 422MPa and f c,k ¼ 25MPa. The effective depth of
this beam is d = 0.344m, and thus
vd ¼ 0:05 200=dð Þ2=3 ¼ 0:034 and
μd ¼ 1�0:05 200=dð Þ2=3 ¼ 0:97. The important quantiles
for the application of the presented semi-probabilistic
methods are summarized in Table 8.

From the obtained results of NLFEA, the beam is failing
in shear (see Figure 9), and thus the obtained design values
are further reduced by γRd

¼ 1:13 reflecting the model
uncertainties of the shear failure.27 Numerical results of

FIGURE 6 T11 beam—Three reference solutions obtained by LHS assuming different correlations (top) and comparison of design

values (bottom). LHS, Latin Hypercube Sampling
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NLFEA for the ECoV methods and PSF are summarized
in Table 9. The experimental result was 460 kN.

The results of the semi-probabilistic methods are pre-
sented in Figure 10 (bottom). From the reference solutions
by LHS, one can see that there is a moderate influence of
correlation among concrete material characteristics since
the case with the realistic correlation matrix leads to a
slightly higher variance in comparison to the uncorrelated
case. The design values determined by the simplified
ECoV methods are in good agreement with the reference
solution. The estimate of the standard ECoV is close to the
uncorrelated boundary while it should be closer to the
fully correlated reference solution; the difference, how-
ever, is insignificant for practical applications. This can be
attributed to a significant non-linearity in this example.
Note that in contrast to the standard ECoV, an almost
identical estimate by TSE1 is in agreement with the theo-
retical expectations and the high accuracy of this method
is demonstrated by all the case studies. The additional sim-
ulation in Eigen ECoV significantly improves the estima-
tion of standard ECoV, and its result is close to its
reference solution (fully correlated). This is in agreement
with the previous theoretical results,11 since it should
achieve a higher accuracy in comparison to the standard
ECoV in the case of moderate non-linearity of the investi-
gated mathematical models. Note that PSF leads to a very
accurate estimation of design resistance, though it is not
typical in the case of shear failure.2–4

4 | DISCUSSION

4.1 | Effect of correlation

Statistical correlation among material characteristics
might play a crucial role, since it has a significant influ-
ence on the variance of QoI, particularly for concrete
structures. Nonetheless, the exact information about the
correlation matrix is usually unavailable and the recom-
mendations in scientific literature widely differ depend-
ing on the concrete mixture, strength class, etc.2,31,32 For
practical analyses of concrete structures, two extremes
may be important: fully correlated random variables and
uncorrelated random variables, which together define the

variance interval caused by insufficient information
about the correlation. The fully correlated random input
variables usually lead to a larger variance of QoI and con-
servative estimates of design values. The lower boundary
of the variance corresponding to the uncorrelated case
needs to be estimated by advanced probabilistic methods
such as LHS, or approximated by TSE. In both cases, the
number of calculations is significantly higher in compari-
son to the ECoV methods.

Based on the obtained results for the three structural
members failing in different modes, it can be concluded
that all the presented ECoV methods are well bounded
by the correlation intervals. One should keep in mind
that, Eigen ECoV and ECoV according to fib Model Code
2010 are based on the fully correlated case, and TSE cor-
respond to the uncorrelated case. The examples indicate
that Eigen ECoV provides better estimates for the fully
correlated case and one additional simulation may signif-
icantly improve the estimate by ECoV (according to fib
Model Code 2010). However, if only a single input ran-
dom variable fully describes the variance of QoI, the stan-
dard ECoV has a superior efficiency as shown by the
second example. In contrast, Eigen ECoV might be more
suitable for shear failures with a higher non-linearity.
The analysis of the obtained results and of the underlying
assumptions reveals that the accuracy of the ECoV
methods depends on a specific failure mode and assumed
correlation matrix. Moreover, the ECoV methods may
provide crude estimates in the case of multiple failure
modes as briefly discussed in the following subsection.

4.2 | Limitation of simplified ECoV
methods for multiple failure modes

Simplified safety formats are commonly devised to yield
adequate estimates of design resistances in most practi-
cally relevant applications, while, inevitably in some
cases, overconservative or unsafe approximations might
be obtained. Though a detailed study of such errors is
beyond the scope of this contribution, a fundamental
example is analyzed here to provide the first insights. It is
often argued that simplified safety formats may fail in the
cases with several local extrema as typically caused by
multiple failure modes. To verify this, two columns
exposed to compression without eccentricity, acting as a
series system, are analyzed (Figure 11).

The example is focused on a simple series system
whose resistance R is obtained as a minimum of resis-
tances of two identical RC columns:

R=Ac ¼ min f c1þρf y1, f c2þρf y2
� �

ð15Þ

FIGURE 7 Geometry of the W1 beam of Anderson and

Ramirez.30 Note that the dimensions are in [m], but the original

experiment was in imperial units
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where Ac denotes a concrete section area; and ρ is the
reinforcement ratio common to both columns. The rein-
forcement ratio is a study parameter, arbitrarily varied
disregarding practical constraints.

Mutually statistically independent strengths fci and fyi
are described by lognormal distributions with the follow-
ing characteristics:

• fcm = 29.1 MPa, vfc = 15%, and fc0.05 = fck = 22.6 MPa
• fym = 455 MPa, vfy = 5.8%, and fy0.05 = fyk = 414 MPa

These assumptions are based on a more detailed
study focused on the performance of safety formats for
series systems.33 Uncertainty in geometrical variables is

ignored here to keep focus on the key aspects affecting
the performance of the simplified safety formats.

All the obtained design values are normalized to
those obtained by the probabilistic approach using the
numerical integration (Rd,prob). Besides Rd,PSF, all design
values are obtained as a fractile of the system resistance
corresponding to the probability of 1.12‰, resulting from
αR ¼ 0:8 and β¼ 3:8.Model uncertainty is not considered
in this section as it is typically treated separately, beyond
the application of a particular safety format. Note that
the justification of γC = 1.5 and γS = 1.15 according to
Eurocode 2 Commentary34 indicates that the model
uncertainty factors related to the recommended values in
EN 1992–2:20051 are very close to unity, and thus
γC = 1.5 and γS = 1.15 are adopted without any adjust-
ment in the following analysis, where model uncertainty
is ignored.

Figure 12 displays a variability of Rd,safety format/Rd,-

probab with a reinforcement ratio. For low ρ-values, the
resistance of a column is governed by the concrete contri-
bution, while the reinforcement contribution becomes
important with the increasing ρ, and the distribution of
column resistance attains a bimodal character. Figure 12

FIGURE 8 Finite element mesh for

the nonlinear analysis of the W1 beam

of Anderson and Ramirez

TABLE 8 Input random variables

and the defined values for safety

formats and ECoV methods

Random variable Xi,d Xi,m XiΔ ¼Xik XiΔ2

Yield strength, f y [MPa] 369 439 399 419

Compressive strength, f c [MPa] 17.1 28 21.5 24.7

Fracture energy, Gf [MN/m] 9.02 e-5 1.76 e-4 1.23 e-4 1.49 e-4

Tensile strength, f ct [MPa] 1.2 2.3 1.6 1.9

Abbreviation: ECoV, estimation of coefficient of variation.

FIGURE 9 Results from the nonlinear analysis of theW1 beam failing in shear

TABLE 9 Results of NLFEA utilized in the presented safety

formats and ECoV methods

PSF

ECOV MC 2010 Eigen ECoV

Rm Rk Rm RΘΔ
2

RΘΔ

W1 beam 307 387 351 387 367 351

Abbreviations: ECoV, estimation of coefficient of variation; NLFEA, non-
linear finite element analysis.
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also shows that ECoV based on TSE leads to nearly the
same design resistance as the probabilistic approach. All
the other simplified formats provide reasonably conserva-
tive estimates, with errors mostly between 2% and 6%.
Eigen ECoV (EE in the figure) performs slightly better
than PSF and ECoV, but the differences are negligible in
this case.

All the ECoV methods lead to conservative estimates
of vR as can be seen in Figure 13. As expected, the best
estimates are obtained by TSE based on the largest num-
ber of limit state function evaluations, then following
with Eigen ECoV and the standard ECoV.

What is interesting to observe is that TSE yields
Rd,TSE ≈ Rd,probab for any ρ > ρm while it systematically

overestimates vR (which should have led to Rd,TSE < Rd,

probab). A detailed analysis indicates that this safe-sided
error is nearly exactly outweighed by the failure in identi-
fying the type of distribution of system resistance, ignor-
ing the bimodal character of the distribution by TSE; this
is common to all ECoV methods. The skewness of the
bimodal distribution (reflected by the probabilistic

FIGURE 10 W1 beam—Three reference solutions obtained by LHS assuming different correlations (top) and comparison of design

resistances (bottom). LHS, Latin Hypercube Sampling

FIGURE 11 Illustration of the analyzed series system and

probability density functions (PDFs) of component and system

resistances

FIGURE 12 Variability of Rd,safety format/Rd,probab with ρ
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approach) tends to be lower than that of a lognormal dis-
tribution, and the ECoV methods thus make unsafe
errors here.

The presented limited analysis of the series system
with two failure modes indicates a number of directions
for further research:

• Most concrete structural systems are deemed to have
properties closer to parallel systems as they are often
indeterminate, providing for multiple load paths. The
preliminary results for parallel systems, already partly
presented,35 indicate that the ECoV methods perform in
a similar way as those observed here; the partial factor
method tends to be conservative for parallel systems.

• Positive correlations between failure modes are
expected to reduce the ECoV error for both types of
systems. In contrast, the errors may amplify with an
increasing number of failure modes of a similar impor-
tance. These counteracting effects should be investi-
gated further.

5 | CONCLUSIONS

The comparison of the selected advanced semi-
probabilistic methods is presented in three numerical
examples failing in different modes. The case studies
demonstrate how uncertainties in geometry can be com-
bined with those in material properties and considered in
NLFEA applications. The obtained results show that all
the employed methods lead to design values close to the
reference solution. The numerical differences become
more significant with an increasing non-linearity of the
failure mode. The theoretical behavior of the recently

proposed modification of Taylor Series Expansion (TSE)
and its adaptation Eigen ECoV is successfully verified by
realistic case studies. The correlation among input ran-
dom variables might play a crucial role in determining
the design values, and thus it might be beneficial to verify
two limit situations: a fully correlated case by ECoV
methods, and an uncorrelated case by TSE. For practical
applications, recommendations should be provided as to
when the examination of the two limiting situations is
needed and how to proceed when a large difference
between the design values is obtained.
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Jan Červenka https://orcid.org/0000-0003-4945-1163
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5. Slobbe A, R�ozs�as Á, Allaix DL, Bigaj-van Vliet A. On the value
of a reliability-based nonlinear finite element analysis
approach in the assessment of concrete structures. Struct
Concr. 2020;21:32–47. https://doi.org/10.1002/suco.201800344

FIGURE 13 Variability of coefficients of variation estimated

by various methods with ρ
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3 Polynomial Chaos Expansion in Structural
Mechanics

Truth is much too complicated to allow
anything but approximations.

— John von Neumann

The propagation of uncertainties through complex mathematical models repre-
senting general physical systems is a very challenging task. Similarly to the previous
chapter, such models are computationally expensive, and thus it is not feasible to
employ standard sampling techniques. Moreover, UQ in a general setting contains
various tasks including many types of sensitivity analyses and higher-order statistical
analyses. Therefore, it is beneficial to create a computationally efficient surrogate
model approximating the original mathematical model. Once the surrogate model
is available, it is possible to employ various existing sampling-based methods for
a statistical and sensitivity analysis [21, 11, 22]. Although there are many differ-
ent types of surrogate models varying from methods as simple as TSE [18] to very
complex Artificial Neural Networks [23], the analysis of physical systems is a very
specific task requiring on the one hand accurate and numerically efficient surrogates,
but on the other hand a certain level of interpretability of these surrogate models.
This thesis is focused on non-intrusive PCE combining computational efficiency of
polynomial basis functions, a well-developed theoretical background of regression
methods, and interpretability stemming from carefully selected basis functions al-
lowing for analytical UQ. Although a general theoretical background of PCE was
proposed by a brilliant mathematician, Norbert Wiener, in 1938 [4], it took more
than 50 years to adapt the method for UQ in engineering [5].

Assuming that QoI has a finite variance, PCE represents the 𝑌 = ℳ(𝑋) as
a function of another random variable 𝜉 called a germ with a known probability
distribution function 𝑝𝜉. The function is in the form of infinite series of the poly-
nomial chaos consisting of deterministic coefficients 𝛽 and basis polynomials Ψ(𝜉)
orthonormal with respect to 𝑝𝜉. In the case of 𝑋𝑋𝑋 and 𝜉 being vectors containing 𝑀

independent random variables, the polynomial Ψ(𝜉) is multivariate and it is built
up as a tensor product of univariate orthonormal polynomials:

𝑌 = ℳ(𝑋𝑋𝑋) =
∑︁

𝛼𝛼𝛼∈N𝑀

𝛽𝛼𝛼𝛼Ψ𝛼𝛼𝛼(𝜉), (3.1)

where 𝛼𝛼𝛼 ∈ 𝒜 is a multi-index containing integers reflecting polynomial degrees as-
sociated to each 𝜉𝑖. Coefficients 𝛽 can be obtained in intrusive or non-intrusive
frameworks. The intrusive approach requires a modification of a finite element
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solver, and thus it is not commonly employed in industrial applications due to its
implementation difficulties. This thesis is focused on a non-intrusive approach using
any third-party solver as a black box representing an input-output transformation.
From a statistical point of view, PCE is a simple linear regression model with in-
tercept. Therefore, it is possible to use ordinary least squares (OLS) regression to
minimize the error of the approximation. However, for the practical estimation of
𝛽, it is necessary to truncate PCE to a final number of terms.

The selection of a truncation scheme, and thus cardinality of #𝒜, is a crucial step
in the construction of an efficient approximation, since PCE suffers from the curse-of-
dimensionality. This can be clearly seen in Fig. 3.1 presenting selected truncation
schemes with 2 input random variables and maximum polynomial order of basis
functions 𝑝 = 4. The selected common truncation schemes are [24]: a simple tensor
product of multivariate polynomials, a total polynomial order scheme, and a hyper-
bolic scheme. As can be seen from the comparison, the tensor product constructs
a complete set of basis functions including all possible combinations of polynomi-
als leading to the highest possible #𝒜, the total polynomial order scheme neglects
all interaction terms which have a total polynomial order (the sum of individual
polynomial orders 𝑝𝑖) |𝑝|= ∑︀

𝑝𝑖 ≤ 𝑝, and hyperbolic truncation further reduces the
number of interaction terms by the parameter 𝑞 ∈ [0, 1]. This can be justified by
the sparsity-of-effects principle, which states that most models describing physical
phenomena are dominated by the main effects and low-order interactions [25].

The obtained 𝒜 can be further reduced by sparse solvers utilizing the best model
selection algorithms identifying the most suitable basis for a given experimental
design (ED) containing realizations of the input random vector and corresponding
model outputs, e.g. Least Angle Regression [26, 27], orthogonal matching pursuit
[28] or Bayesian compressive sensing [29]. Note that, contrary to the truncation
schemes, sparse solvers are highly dependent on the quality of the given ED, and
thus it is important to carefully select the realizations of the input random vector.

q

Tensor product Total pol. order Hyperbolic Sparse solution

Fig. 3.1: 2D Graphical interpretation of truncation schemes utilized for the con-
struction of PCE with maximum polynomial order 𝑝 = 4.
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The quality of ED is generally influenced by the positions and the number of
samples, i.e. sampling technique. One of the most widely used techniques is LHS
[30, 22, 31]. Another popular strategy for DoE is to uniformly fill the design domain
according to some space-filling criteria [32] or to decrease the discrepancy of the
samples [33, 34, 35, 36, 37]. These techniques can be used without any knowledge
about the specific mathematical model or the type of surrogate model. Nonetheless,
it is possible to increase the quality of ED by incorporating additional information
into a sampling technique. In the context of regression-based surrogate models,
the quality of ED can be measured by the optimality of the information matrix.
There are various techniques developed for the selection of the best samples from
a large candidate set improving the given optimality criterion of information ma-
trix, i.e. alphabetical optimality leads to an optimal ED with respect to specific
basis functions [38, 39, 40]. Furthermore, it is often beneficial to include additional
information stemming from the specific mathematical model at hand and to sequen-
tially improve the optimality of ED. The concept of adaptive sequential sampling
for learning surrogate models is often termed active learning.

Naturally, it is ideal to use both exploitation (leveraging model behavior) criteria
and exploration (space filling) criteria for the definition of an optimally balanced
criterion [41]. Therefore, the first journal paper attached to this chapter entitled
Variance-Based Adaptive Sequential Sampling for Polynomial Chaos
Expansion [42] presents a novel approach for an adaptive sequential sampling
developed specifically for PCE. The core idea of this approach is based on the
general definition of the 𝑚th statistical moment and properties of PCE:

⟨
𝑦𝑚
⟩

=
∫︁ [︁

ℳ(𝑋)
]︁𝑚

𝑝𝑋(𝑥)𝑑𝑥 =
∫︁ [︁ ∑︁

𝛼∈N𝑀

𝛽𝛼Ψ𝛼(𝜉)
]︁𝑚

𝑝𝜉(𝜉)𝑑𝜉 = (3.2)

=
∑︁

𝛼1∈N𝑀

...
∑︁

𝛼𝑚∈N𝑀

𝛽𝛼1 ...𝛽𝛼𝑚

∫︁
Ψ𝛼1(𝜉)...Ψ𝛼𝑚(𝜉)𝑝𝜉(𝜉)𝑑𝜉.

It is evident that in the case of PCE, it is possible to get statistical moments
by the integration of basis functions Ψ (orthonormal polynomials). Moreover, it is
possible to analytically derive a variance of QoI directly from the orthonormality
properties of basis functions as a sum of squared deterministic coefficients 𝛽. How-
ever, one can also see this formula as the integration of local contributions to the
total variance, which is a function referenced in the paper as variance density. Vari-
ance density shows local deviations of the investigated mathematical model from its
mean value. Motivated by the rationale of the Koksma-Hlawka inequality and the
associated active learning method [41], the variance density was incorporated into
the proposed Θ criterion defining the best possible locations of statistical samples
for the surrogate model at hand. The Θ criterion consists of two parts: variance
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density, and a geometrical term assuring uniform coverage of the whole design do-
main. Such an approach can be easily coupled with any existing sampling scheme
for the construction of a candidate set.

The versatility and efficiency of the Θ criterion can be seen from published com-
parisons and applications, e.g. [43, 44]. Moreover, several extensions have already
been proposed by several research teams (e.g. for multi-variate outputs [45] or
reliability analysis [46]). Unfortunately, highly non-linear models or models with
discontinuities can be approximated only by high-order PCEs inevitably leading
to the curse-of-dimensionality despite the efficiency of sparse solvers and optimal-
ity of ED. This significant limitation can be alleviated by the decomposition of an
input random space to several sub-domains approximated by low-order PCEs as
presented in the second paper attached to this chapter – Active Learning-based
Domain Adaptive Localized Polynomial Chaos Expansion [47]. Although
the concept of domain decomposition and construction of local surrogate models is
not entirely new [48, 49], the proposed method combines the decomposition with
the active-learning methodology governed by the Θ criterion in the non-intrusive
framework. Such a combination represents a very general approach, which can be
combined with various sampling techniques and sparse PCE solvers. Moreover, the
whole process is governed by the variance density, and thus it leads to the optimal
decomposition with respect to UQ. Fig. 3.2 shows the three crucial steps of the
iterative adaptive domain decomposition.

Fig. 3.2: Iterative decomposition of the input space governed by active learning.
Top row shows the decomposed input domains, and bottom row presents associated
mean squared errors. (Reprinted from [47])
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In the first step of the algorithm referenced as DAL-PCE in the attached paper,
the input space is decomposed into smaller sub-domains in a way that in each
iteration there is divided a sub-domain containing a candidate sample associated
to the highest Θ criterion. Furthermore, PCE is either reconstructed in the new
sub-domain if possible, or new samples are added to the new sub-domain (Fig.
3.2a). During the process of decomposition and construction of localized PCEs, it
is also possible to measure both the cumulative error of localized PCEs and the
global PCE error. If the global PCE error is lower than the cumulative error of
localized PCEs, the decomposition is discarded and the process starts again (Fig.
3.2b). The final decomposition thus contains the best possible decomposition of the
input space for the given ED and maximum 𝑝 of localized PCEs (Fig. 3.2c) with
respect to the Θ criterion. Localized approximations are represented by low-order
PCEs (e.g. 𝑝 = 2), and thus it significantly reduces the size of ED in comparison
to a single global high-order PCE. Moreover, the proposed algorithm combined
with sparse solvers is extremely efficient for functions with localized non-linearity or
discontinuity, especially for high-dimensional examples.

The active learning, various sparse solvers, and the domain decomposition lead
to a construction of accurate PCEs for general mathematical models. Once the
PCE is available, its specific form and basis functions can be exploited for an ef-
ficient UQ. It is well known that PCE is in the identical form as Hoeffding-Sobol
decomposition of a function [50], and thus it is possible to analytically derive Sobol’
indices and the first two statistical moments directly from the deterministic coeffi-
cients [51]. However, UQ in civil engineering is often focused on the estimation of
a complete probability distribution of QoI, and so it is also necessary to estimate
higher statistical moments as proposed in the third paper attached to this chapter –
On Distribution-based Global Sensitivity Analysis by Polynomial Chaos
Expansion [52]. Although the first two statistical moments can be obtained di-
rectly from PCE coefficients, getting higher moments is not such a straightforward
process. The complication lies in the evaluation of triple and quad products of the
basis functions as can be seen in Eq. 3.2. However, triple products can be ana-
lytically obtained for several polynomials using the standard linearization problem
as shown in the attached paper for Hermite and Jacobi polynomials often used in
PCE. The fourth-order product can be further obtained from the third-order prod-
uct by a mathematical induction. The first four statistical moments can be used
for the approximation of a probability distribution of QoI by the commonly known
Gram-Charlier expansion or Edgeworth expansion. Finally, motivated by Hoeffding-
Sobol decomposition and the recently proposed distribution-based sensitivity meth-
ods [53, 54], a novel distribution-based sensitivity analysis derived directly from PCE
was proposed. The main concept is depicted in Fig. 3.3. Sensitivity indices are ob-
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Fig. 3.3: The concept of the distribution-based sensitivity analysis. (Reprinted from
[52])

tained as Kullback-Leibler divergence between the original cumulative distribution
function (CDF) of QoI and conditional CDF neglecting PCE terms containing a
selected input variable. CDFs are approximated by the Gram-Charlier expansion
based on the first four statistical moments obtained analytically from the PCE ne-
glecting selected terms – referenced as reduced PCE.

The reduced PCE is a general methodology for the selection of terms in PCE as-
sociated with analyzed input variables. Besides its application in distribution-based
sensitivity, it can be utilized for sensitivity analysis in the space-time domain. In
this case, some input variables are deterministic, though typically represented by
uniform distributions and associated Legendre polynomials in the context of PCE.
Therefore, it is necessary to filter-out their influence in statistical and sensitivity
analysis. Using reduced PCE, it is possible to perform localized UQ for given space-
time coordinates. A typical application of this approach is UQ of stochastic partial
differential equations (PDE) as shown in the fourth paper attached to this chapter
entitled Physics-Informed Polynomial Chaos Expansions [55]. Although
surrogate models lead to generally accurate approximations, their applications in
physics are still limited due to their data-driven nature, i.e. their quality is de-
pendent on the quality of the given ED. The solution of this problem can be seen
in the recently proposed physics-informed machine learning [56], improving data-
driven approach by known physical principles, to ensure a realistic and physically
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Fig. 3.4: Graphical representation of PC2 combining 𝑝-adaptivity, LAR algorithm
and KKT solver with virtual samples. (Reprinted from [55])

meaningful surrogate model behavior and to reduce training data demands. Follow-
ing the framework of physics-informed machine learning, the paper presents a novel
method referenced as physically constrained PCE (PC2) combining the developed
non-intrusive PCE sparse solvers with constrained least squares based on Karush-
Kuhn-Tucker (KKT) matrix. The proposed method represents a computationally
very efficient solution of PDEs containing random parameters, or stochastic PDEs
containing random fields. The methodology is schematically depicted in Fig. 3.4.
The PCE is constructed from three separate sets of data points: boundary sam-
ples, standard ED containing ground-truth solutions, and virtual samples. While
standard ED, containing solutions of the original mathematical model or measure-
ments, is associated with a high computational burden, virtual samples represent
only point-wise locations at which the PCE approximation is constrained to satisfy
the PDE, and thus they, together with boundary samples, do not bring any addi-
tional significant computational cost. Surrogate models constructed by PC2 satisfy
the given physical constraints and do not lead to physically unrealistic results.

Finally, PC2 in combination with reduced PCE is an efficient tool for UQ as
evident in the following simple example of stochastic Euler beam with a constant
stiffness and distributed load 𝑞(𝑥) represented by a Gaussian stochastic process:

𝜕2

𝜕𝑥2

(︃
𝐸𝐼

𝜕2𝑤

𝜕𝑥2

)︃
= 𝑞(𝑥). (3.3)

The input random vector contains the first four components of the 𝑞(𝑥) obtained
by Karhunen-Loève Expansion, and QoI is the deflection of the beam 𝑤(𝑥). Since
the PCE is constrained by the given differential equation, it is also possible to obtain
physically meaningful derivatives corresponding to bending moments, shear forces,
and finally also the applied load directly from the PCE function. Reduced PCE
methodology is utilized for a localized UQ as can be seen in Fig. 3.5 depicting
the mean values and ±3𝜎 intervals of QoI and its derivatives. Similarly, one can
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Fig. 3.5: PC2 approximation of stochastic Euler beam equation and UQ.

obtain localized sensitivity measures (e.g. Sobol’ indices) or higher-order statistical
moments.

In order to provide the developed methods to a broad UQ community, all pre-
sented methods for adaptive sequential construction of PCE, advanced statistical
and sensitivity analysis, and physics-informed PCE are implemented in a general
Python package UQPy. The development team consists of researchers from top-tier
institutions from the USA and Europe together with professional software develop-
ers. The UQPy package contains several modules for general uncertainty quantifi-
cation, surrogate modeling and machine learning as described thoroughly in the last
paper attached to this chapter UQpy v4.1: Uncertainty Quantification with
Python [57]. The author of this thesis is the main developer of the PCE module
containing various techniques for non-intrusive PCE implemented in a user-friendly
framework. The UQPy can be found on GitHub repository and PyPI package man-
ager, and it contains extensive documentation with various examples (the links are
in the QR codes depicted in Fig. 3.6).

Fig. 3.6: UQPy package repository and documentation.
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3.1 Variance-based Adaptive Sequential Sampling for
Polynomial Chaos Expansion
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Description

The paper presents a novel active learning method for PCE. The proposed technique
enables a one-by-one extension of an ED while trying to obtain an optimal sample
at each stage of the iterative surrogate model construction process. The proposed
criterion for the sample selection balances both exploitation of the surrogate model
and exploration of the design domain. The original idea comes from Koksma-Hlawka
inequality and its utilization for sequential Monte Carlo sampling. In this paper,
the proposed criterion consists of two parts: a local contribution to variance (di-
rectly derived from PCE basis functions), and a geometrical term assuring uniform
coverage of the whole design domain. It can be seen from the numerical results
that the proposed sequential sampling leads to a higher accuracy of the PCE in
all the tested examples, including a study in high dimensions. Additionally, it was
shown in the paper that the proposed adaptive sequential sampling technique can
be used in tandem with any user-defined sampling method and any non-intrusive
PCE algorithms.

These obtained results build the foundation for further research in various areas
including active learning for multi-variate outputs, domain decompositions etc. The
paper has already had a significant impact on the UQ community – 24 citations,
according to Scopus.

Role of the author

Percentage of contribution: 33%
Lukáš Novák is the main author of this paper responsible for the concept, the
methodology and the numerical results of the presented research. He created the
theoretical background of the proposed method in collaboration with Miroslav Voře-
chovský and Michael D. Shields. The theoretical algorithm was transformed into a
Python algorithm by Lukáš Novák with a significant help provided by Václav Sadílek
in order to perform the extensive numerical investigation presented.
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Abstract

This paper presents a novel adaptive sequential sampling method for building Polynomial Chaos Expansion surrogate models.
The technique enables one-by-one extension of an experimental design while trying to obtain an optimal sample at each stage
of the adaptive sequential surrogate model construction process. The proposed sequential sampling strategy selects from a pool
of candidate points by trying to cover the design domain proportionally to their local variance contribution. The proposed
criterion for the sample selection balances both exploitation of the surrogate model and exploration of the design domain.
The adaptive sequential sampling technique can be used in tandem with any user-defined sampling method, and here was
coupled with commonly used Latin Hypercube Sampling and advanced Coherence D-optimal sampling in order to present its
general performance. The obtained numerical results confirm its superiority over standard non-sequential approaches in terms
of surrogate model accuracy and estimation of the output variance.
c⃝ 2021 Elsevier B.V. All rights reserved.

Keywords: Polynomial Chaos Expansion; Adaptive sampling; Sequential sampling; Coherence optimal sampling

1. Introduction

The Polynomial Chaos Expansion (PCE), originally proposed by Norbert Wiener [1] and further investigated in
the context of engineering problems by many researchers, e.g. [2,3], represents a spectral expansion of the original
stochastic problem in a polynomial basis. PCE approximation represents very efficient method for sensitivity
analysis, uncertainty quantification or reliability analysis [4]. Moreover, once the PCE is available, it is possible
to investigate the constructed explicit function in order to estimate additional information about the original
problem including its statistical moments, output probability distribution or sensitivity indices without additional
sampling [5], which is especially beneficial in industrial applications [6,7]. PCE can be generally formulated in
intrusive or non-intrusive form. Despite the recent progress in research on the intrusive approach [8], it is still rarely
employed in practical applications since it requires redesign of the mathematical model solver.

On the other hand, the non-intrusive approach offers a convenient way to perform probabilistic analysis of
any black-box model. There are generally two types of non-intrusive methods for calculation of deterministic
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coefficients: spectral projection and linear regression. The spectral projection approach utilizes the orthogonality
of multivariate polynomials and calculates the coefficients using inner products. Although the integrals in spectral
projection can be calculated by traditional tensor-product quadrature rules, the number of collocation points
grows exponentially with the number of input random variables which is called curse of dimensionality and thus
computationally far more efficient sparse grids [9,10] should be employed. The second type of the non-intrusive
approach is based on linear regression. Although it is typically less expensive than spectral projection (the number
of samples should be at least O(P ln(P)), where P is the number of terms in PCE [11,12]) it suffers from the curse
of dimensionality as well, since number of PCE terms is extremely large for high dimensions and high polynomial
orders. Therefore, it is necessary to employ advanced adaptive techniques for construction of sparse PCE in order
to obtain efficient solutions for real-life physical systems. Moreover, the regression based PCE can be significantly
affected by sampling schemes as was recently shown in extensive review paper [13]. Therefore, this paper is focused
on the combination of PCE adaptivity with a sequential sampling strategy designed for the non-intrusive approach
based on linear regression.

Since each evaluation of a computer model representing the engineering problem is typically highly time-
consuming (e.g. non-linear finite element method), it is necessary to reduce the number of model evaluations as much
as possible in the process of training the surrogate model, while maintaining the accuracy of the approximation.
The balance between accuracy and computational requirements is strongly connected to the selection of the support
points in the design domain of input variables — a computational design of experiments (DoE). Besides the
commonly used crude Monte Carlo sampling, there are several advanced techniques developed in the fields of
statistical/numerical estimation of integrals which improve the efficiency and accuracy of the DoE. One of the
most widely used techniques is Latin Hypercube Sampling (LHS) [14], a variance reduction technique that uses
stratified selection of sampling points. Another popular strategy for DoE is to uniformly fill the design domain
according to some space-filling criteria such as miniMax, Maximin [15] or generalized versions of distance-based
criteria [16,17], or to decrease the discrepancy of the point set. Low discrepancy designs can be obtained either
by direct algorithmic minimization of selected discrepancy measure or as Quasi Monte Carlo sequences (known
also as low-discrepancy sequences, or number-theoretical designs; see e.g. the sequence due to Halton [18,19],
Sobol’ [20,21], Niederreiter [22–24], Faure [25], the generalization of the Faure sequences by Tezuka [26], and
others). These techniques for DoE can be used for general probabilistic analysis (=numerical integration) without
any knowledge about the specific mathematical model or surrogate model.

Further it is often beneficial to include additional information into the DoE stemming from the specific type
of the surrogate model at hand. The coherence-based sampling was proposed specifically for PCE constructed by
ordinary least squares regression (OLS) [27] and it leads to higher stability in estimation of PCE coefficients in
comparison to general sampling methods such as LHS, which is commonly used in combination with PCE. Another
method developed specifically for OLS is induced sampling [28], which has been proved to be optimal for weighted
least-squares methods.

Methods for DoE construction usually need to specify the number of simulations a priori. It is however much
more efficient and practical to sample additional points one-by-one until desired accuracy of the approximation
is reached. Such methodology for sample size extension is referred to as sequential sampling and it is especially
beneficial in practical engineering applications. Sequential sampling schemes are often driven by a defined criterion
to compare candidates for sample size extension. The concept of adaptive experimental design for learning surrogate
models is often termed active learning. This approach is a common approach when the goal is reliability analysis
with a surrogate: an initial experimental design is iteratively updated based on the current estimation of the limit-
state surface in an active learning algorithm [29–31]. Active learning approach involving PCE in the context of
reliability analysis was used e.g. in [32–34].

Although there are recent studies focused on general sequential sampling based on space-filling criteria or
alphabetical optimality used for PCE [35,36], it is beneficial to use both exploitation (leveraging model behavior)
criteria and exploration (space filling) criteria for definition of an optimally balanced criterion [37]. Such sequential
sampling for sparse Bayesian learning PCE combining both aspects — epistemic uncertainty of the statistical
inference (exploration) together with quadratic loss function (local exploitation) was recently proposed [38].
However, its application is limited to PCE build by sparse Bayesian learning only. This paper presents a novel
adaptive sequential sampling technique with such a balanced criterion. The technique presented in this paper can
be coupled with any sparse regression solver and common methods for DoE such as LHS and thus can be easily

2



L. Novák, M. Vořechovský, V. Sadı́lek et al. Computer Methods in Applied Mechanics and Engineering 386 (2021) 114105

implemented into the existing software solutions for PCE construction (e.g. [39–43]). Additionally, in order to
increase the efficiency of the proposed scheme, the developed technique is coupled with coherence D-optimal
sampling created specifically for non-intrusive PCE solved by OLS and thus all parts of the method are designed
in order to increase the efficiency and accuracy of this particular type of surrogate model.

2. Polynomial Chaos expansion

Assume a probability space (Ω ,F ,P), where Ω is an event space, F is a σ -algebra on Ω (collection of subsets
closed under complementation and countable unions) and P is a probability measure on F . If the input variable of
a mathematical model, Y = g(X ), is a random variable X (ω), ω ∈ Ω , the model response Y (ω) is also a random
variable. Assuming that Y has a finite variance, PCE represents the output variable Y as a function of an another
random variable ξ called the germ with given distribution

Y = g(X ) = gPCE(ξ ), (1)

and representing the function g(X ) via polynomial expansion in a manner similar to the Fourier series of a periodic
signal. A set of polynomials, orthogonal with respect to the distribution of the germ, is used as a basis of the Hilbert
space L2 (Ω ,F ,P) of all real-valued random variables of finite variance, where P takes over the meaning of the
probability distribution. The orthogonality condition for all j ̸= k is given by the inner product of L2 (Ω ,F ,P)
defined for any two functions ψ j and ψk with respect to the weight function pξ (probability density function of ξ ) as:

⟨ψ j , ψk⟩ =

∫
ψ j (ξ )ψk(ξ )pξ (ξ ) dξ = 0. (2)

This means that there are specific orthogonal polynomials associated with the corresponding distribution of
the germ via its weighting function. For example, Hermite polynomials orthogonal to the Gaussian measure
are associated with normally distributed germs. Orthogonal polynomials corresponding to other distributions can
be chosen according to Wiener–Askey scheme [44]. For further processing, it is beneficial to use normalized
polynomials (orthonormal), where the inner product is equal to the Kronecker delta δ jk , i.e. δ jk = 1 if and only if
j = k, and δ jk = 0 otherwise

⟨ψ j , ψk⟩ = δ jk . (3)

In the case of X and ξ being vectors containing M independent random variables, the polynomial Ψ (ξ ) is
multivariate and it is built up as a tensor product of univariate orthogonal polynomials as

Ψα(ξ ) =
M∏

i=1

ψαi (ξi ), (4)

where α ∈ NM is a set of integers called the multi-index. The quantity of interest (QoI), i.e. the response of the
mathematical model Y = g(X), can then be represented, according to Ghanem and Spanos [3], as

Y = g(X) =
∑

α∈NM

βαΨα(ξ ), (5)

where βα are deterministic coefficients and Ψα are multivariate orthogonal polynomials.

2.1. Non-intrusive computation of PCE coefficients

For practical computation, PCE expressed in Eq. (5) must be truncated to a finite number of terms P . The
truncation is commonly achieved by retaining only terms whose total degree |α| is less than or equal to a given p.
Therefore, the truncated set of PCE terms is then defined as

AM,p
=

{
α ∈ NM

: |α| =

M∑
i=1

αi ≤ p

}
. (6)

The cardinality of the truncated index set AM,p is given by

card AM,p
=
(M + p)!

M ! p!
. (7)
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L. Novák, M. Vořechovský, V. Sadı́lek et al. Computer Methods in Applied Mechanics and Engineering 386 (2021) 114105

Moreover, in practical applications, it is beneficial to prefer only basis functions with lower number of interaction
terms. Therefore, it was proposed by Blatman and Sudret [2] to create a PCE basis by a “hyperbolic” truncation
scheme:

AM,p,q
=

{
α ∈ NM

: ∥α∥q ≡

( M∑
i=1

α
q
i

)1/q
≤ p

}
. (8)

Note that selection of q = 1 corresponds to the standard truncation scheme according to Eq. (6) and, for q < 1,
terms representing higher-order interactions are eliminated. Such an approach leads to a dramatic reduction in the
cardinality of the truncated set for high total polynomial orders p and high dimensions M .

When PCE is truncated to a finite number of terms, there is an error ε of the approximation such that

Y = g(X) =
∑
α∈A

βαΨα(ξ )+ ε.

From a statistical point of view, PCE is a simple linear regression model with intercept. Therefore, it is possible
to use ordinary least square (OLS) regression to minimize the error ε

β = arg min
β∈RP

1
nsim

nsim∑
i=1

[
βTΨ

(
ξ (i))
− g

(
x(i))]2

. (9)

Knowledge of vector β fully characterizes the approximation via PCE. To solve for β, first it is necessary to
create nsim realizations of the input random vector X and the corresponding results of the original mathematical
model Y , together called the experimental design (ED). Then, the vector of P deterministic coefficients β is
calculated as

β = (Ψ TΨ )−1 Ψ TY, (10)

where Ψ is the data matrix

Ψ =
{
Ψi j = Ψ j (ξ (i)), i = 1, . . . , nsim, j = 0, . . . , P − 1

}
. (11)

Note that the number of terms P is highly dependent on the number of input random variables M and the maximum
total degree of polynomials p. Estimation of β by regression then needs at least the number of samples O(P ln(P))
for stable solution [11,12]. Therefore, in case of a large stochastic model, the problem can become computationally
highly demanding. However, one can utilize advanced model selection algorithms such as Least Angle Regression
(LAR) [45] to find an optimal set of PCE terms and thus reduce the number of samples needed to compute the
unknown coefficients if the true coefficient vector is sparse or compressible as proposed by Blatman and Sudret [2].
Note that beside LAR, there are other best model selection algorithms such as orthogonal matching pursuit [46] or
Bayesian compressive sensing [47] with comparable numerical results. The sparse set of basis functions obtained
by any adaptive algorithm is further denoted for the sake of clarity as A.

2.2. Estimation of approximation error

Once the PCE is constructed, it is crucial to estimate its accuracy. Further, the accuracy of PCE can be used for
the direct comparison among several PCEs in order to choose the best surrogate model. Therefore it is beneficial to
use methods which do not need any additional sampling of the original mathematical model. A common choice is the
coefficient of determination R2, which is well known from machine learning. However, R2 may lead to overfitting
and thus advanced methods should be used. One of the most utilized methods for measuring the performance of
the learning algorithm in recent years is the leave-one-out cross validation error Q2. This statistic is based on
residuals between the original surrogate model and the surrogate model built with the ED while excluding one
realization. This approach is repeated for all realizations in the ED and the average error is estimated. Although
the calculation of Q2 is typically highly time-consuming, it is possible to obtain results analytically from a single
PCE as follows [48]

Q2
= 1−

1
nsim

∑nsim
i=1

[
g
(

x(i)
)
−gPCE

(
x(i)

)
1−hi

]2

σ 2
Y,ED

, (12)
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where σ 2
Y,ED is a variance of experimental design calculated using the original mathematical model and hi represents

the i th diagonal term of matrix H = Ψ
(
Ψ TΨ

)−1
Ψ T .

2.3. Statistical moments derived from PCE

The specific form of PCE together with the orthogonality of the polynomials allows for a powerful and efficient
post-processing. Once a PCE approximation is created, it is possible to obtain statistical moments of the QoI.
Generally, its raw statistical moment of the mth order is defined as⟨

Y m ⟩
=

∫ [
g
(
X

)]m pX
(
X

)
dX =

∫ [ ∑
α∈NM

βαΨα(ξ )
]m pξ

(
ξ
)

dξ (13)

=

∫ ∑
α1∈NM

. . .
∑

αm∈NM

βα1 . . . βαmΨα1 (ξ ) . . .Ψαm (ξ ) pξ (ξ ) dξ

=

∑
α1∈NM

. . .
∑

αm∈NM

βα1 . . . βαm

∫
Ψα1 (ξ ) . . .Ψαm (ξ ) pξ (ξ ) dξ .

As can be seen from the final part of the formula, in case of PCE, it is necessary to integrate only over the basis
functions (orthonormal polynomials), which leads to a dramatic simplification in comparison to the integration of
the original mathematical function. Moreover, it is also possible to write an analytical expression of the integral in
several cases. Specifically, the first statistical moment (mean value) is obtained as

µY =
⟨
Y 1⟩
=

∫ [ ∑
α∈NM

βαΨα(ξ )
]1 pξ

(
ξ
)

dξ =
∑

α∈NM

βα

∫
Ψα(ξ ) pξ

(
ξ
)

dξ . (14)

Considering the orthonormality of the polynomials∫
Ψα(ξ )pξ

(
ξ
)

dξ = 0 ∀α ̸= 0, Ψ0 ≡ 1,

it is possible to obtain the mean value directly from the PCE deterministic coefficients. Namely, the mean value is
equal to the first deterministic coefficient of the expansion

µY =
⟨
Y 1⟩
= β0. (15)

The second raw statistical moment,
⟨
Y 2

⟩
, is written as

⟨
Y 2⟩
=

∫ [∑
α∈A

βαΨα (ξ)

]2

pξ (ξ) dξ =
∑
α1∈A

∑
α2∈A

βα1βα2

∫
Ψα1 (ξ)Ψα2 (ξ) pξ (ξ) dξ (16)

=

∑
α∈A

β2
α

∫
Ψα (ξ)

2 pξ (ξ) dξ =
∑
α∈A

β2
α ⟨Ψα,Ψα⟩ .

Considering again the orthonormality of the polynomials, defined by the inner product in Eq. (3), it is possible to
obtain the variance σ 2

Y =
⟨
Y 2

⟩
−µ2

Y as the sum of all squared deterministic coefficients except the intercept (which
represents the mean value), i.e.

σ 2
Y =

∑
α∈A
α ̸=0

β2
α. (17)

Note that, higher statistical central moments skewness γY (3rd moment) and kurtosis κY (4th moment) need
precomputing of the triple and quadruple products.

In the following, we select the variance of the output variable, i.e. σ 2
Y in Eq. (17), as the target characteristic of Y

and we focus on development of the sequential sampling strategy in order to estimate this variance as accurately as
possible at any stage of PCE build. The reason for selection of variance is that we expect a monotonic relationship
between function variation in the sense of Hardy and Krause [49] and its variance. As will be shown below,
Eq. (16) can be modified in order to obtain the local contribution to variance. We conjecture that it is therefore
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important to place samples densely in regions of large local variance and sparsely in regions of small local variance,
in order to obtain a near-optimal sample [37]. This arrangement of samples may decrease the error of the function
approximation and its integral.

3. Sampling methods

Assuming a non-intrusive approach for calculation of the PCE coefficients using OLS defined in Eq. (9),
it is necessary to create an ED containing nsim realizations of the input random vector and the vector of
corresponding results of the original mathematical model. Typically we consider sampling of ξ using its density
fξ , which represents the distribution according to the Wiener–Askey scheme. For the M-dimensional Legendre
polynomials this means sampling uniformly from the M-dimensional hypercube [−1, 1]M and for M-dimensional
Hermite polynomials, it corresponds to sampling from the M-dimensional Gaussian distribution with independent
standardized Gaussian marginal distributions. Naturally, it is crucial to use an efficient sampling scheme for the
DoE of ξ in order to obtain accurate results for a given computational budget.

DoE has been an area of interest for many researchers since the beginning of uncertainty quantification and
structural reliability. The most simple but generally applicable method is crude Monte Carlo Sampling (MC),
i.e. a method associated especially with robust (and inefficient) numerical integration. In standard Monte Carlo
integration, the important condition of integration being unbiased is that the sample is selected uniformly and
independently with respect to the target density. In MC the sampling points are selected independently of each
other and therefore, clusters of points emerge randomly as well as regions which are not covered by any point.

There has been considerable effort spent on improving the spatial arrangement of points in a sample. The
Koksma–Hlawka inequality [49], which was developed to predict an upper bound of integration error, motivates the
decrease in discrepancy of the sample set (ED). Discrepancy in a way measures uniformity of a point set, i.e. the
difference between the desired uniform distribution and the empirical distribution of the point set. Such uniformity
of point distribution may be useful also for initial screening or building a surrogate model. Low discrepancy
can be achieved either by direct minimization of a suitable discrepancy measure [17,50–52] or simply by using
various Quasi Monte Carlo sequences mentioned in the Introduction section. Quasi Monte Carlo sequences are
deterministic point sets and they allow for sequential addition of points one-by-one while retaining an optimal rate
of star discrepancy decrease with increasing sample size [53].

Another branch of research focuses on variance reduction techniques such as importance sampling which place
points according to a predefined or adaptively adjusted sampling density which can be different from the target
density or methods of stratified selection of sampling points that improve spatial arrangement of the sampling points.
One of the most widely used techniques is Latin Hypercube Sampling (LHS) first suggested by Conover [14];
see also [54]. LHS specifically has the effect of reducing variance associated with the additive components of
a transformation. Hence, for functions that are dominated by the main effects of the individual variables, LHS will
significantly reduce variance. For functions with significant variable interactions, it is less effective. [55–58].

Another important aspect of sample selection for DOE is the uniformity of filling of the design domain. This
aspect is important for function approximation and resulted in the seminal works on space-filling criteria based
on mutual distances among points: the Maximin and miniMax criteria [15]. These criteria prefer designs without
point clusters or without large empty areas. A generalization of the Maximin criterion to the phi-criterion [16] was
presented along with a heuristic construction algorithm that can be combined with the LHS strategy. Similarly,
the miniMax criterion can be generalized [59]. Moreover, the recently developed periodic versions of the whole
class of distance-based criteria [17,60] guarantee statistically uniform distribution of points along with even point
distribution within each single design. These distance-based criteria can be employed for direct design optimization.

Uniformity of ED and space-filling criteria are important characteristics to obtain a quality ED for PCE. The
LHS thus typically leads to more accurate estimation of β in comparison to crude MC [61,62]. Sampling for PCE,
however, might be motivated by additional criteria of optimality than the space-filling property, discrepancy or
statistical uniformity with respect to the target distribution. The optimality criterion should consider aspects related
to the particular method of identification of the polynomial modes and their coefficients.

This naturally leads to sampling from a probability measure different from the input distributions, which minimize
a selected characteristic of the ED. Moreover, it is also necessary to modify the basis functions in order to preserve
orthonormality of the data matrix. Minimizing the coherence parameter of a PCE basis functions [63] leads to
the coherence optimal and related asymptotic sampling [27], which is theoretically more efficient in comparison
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to standard sampling based on the input distribution. Similarly the Christoffel sparse approximation [64] was
derived using a different definition of the coherence parameter. Note that these sampling strategies are derived
for a specific purpose (non-intrusive PCE) and thus their efficiency in general probabilistic analysis might be
unsatisfying. Although coherence optimal sampling is more computationally demanding, it is not a crucial problem
in engineering, where the calculation of mathematical models takes the largest part of the whole process.

Also, it would be optimal if the PCE that has been set at any stage of sampling based on the available information
about the samples and the corresponding function values g(x), can propose the new sampling point (sample size
extension). With such an algorithm at hand, one can build the PCE approximation incrementally while exploiting
all the knowledge available so far. For efficient accurate exploitation, it is necessary to use an adaptive algorithm
for PCE construction (by adaptive we mean selection of the most important combinations of modes in the index
set A). There are several methods for adaptive selection of the optimal PCE basis functions such as LAR [45]
employed in numerical experiments. The selected basis functions are further used for the process of exploitation
and thus it is crucial to identify new basis functions in every iteration of the sequential sampling in order to obtain
the best possible location for a new sampling point. Moreover, the adaptivity of the basis functions is important for
the accurate coherence optimal sampling briefly described in the following paragraphs.

3.1. Coherence-optimal sampling

Generally, it is beneficial to take all pieces of information about the given mathematical task into account in order
to choose a correct methodology. Although standard sampling based on the input distribution is suitable for any
probabilistic analysis, there are more efficient methods developed specifically for PCE solved by over-determined
OLS [27], which is employed in this paper.

Coherence-optimal sampling constructs a new sampling measure minimizing a coherence parameter associated
with stability and convergence of the PCE solved by OLS. The coherence parameter µ (Y ) is defined as [65]

µ
(
Y

)
:= sup

ξ

P∑
j=1

|w(ξ )ψ j (ξ )|2, (18)

where the weight function w(ξ ) is

w(ξ ) :=
P

B(ξ )
. (19)

The analytical expression of B(ξ ) is generally not available, but it is possible to evaluate its value for arbitrary
ξ as

B(ξ ) =

√ P∑
j=1

|ψ j (ξ )|2. (20)

Finally, the coherence-optimal probability measure is defined as

fcoh(ξ ) := P−1 f (ξ )B2(ξ ). (21)

In order to sample from fcoh(ξ ) one may use Markov Chain Monte Carlo (MCMC) [65]. The proposal distribution
for MCMC is suggested for case when p ≤ M where one should use standard sampling from distributions naturally
orthogonal to the employed polynomial basis as already described for standard sampling. If p ≥ M , samples should
be independently drawn from a uniform distribution on a M-dimensional ball of radius

√
2
√

2p + 1 for Hermite
polynomials, and a M-dimensional Chebyshev distribution for Legendre polynomials.

Note that the coherence-optimal sampling does not generally lead to the orthonormal columns of the data matrix
and the deviation

⟨
Ψα1 ,Ψα2

⟩
− δα1α2 may be significant. Therefore, one has to apply a weight function w(ξ ) to the

basis functions and use weighted least squares in order to estimate β using coherence-optimal sampling as described
in previous paragraphs. Weighted least squares method is a special case of generalized least squares containing only
diagonal members of the correlation matrix of residuals. Optimal values of the deterministic coefficients is then
obtained by solution of the following system of equations:

WΨβ ≈WY, (22)

where matrix W is a diagonal matrix with Wi,i = w(ξ (i)).

7
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Fig. 1. An ED containing 100 samples generated by LHS, coherence-optimal sampling and coherence D-optimal sampling for Legendre
polynomials.

3.2. D-optimal experimental design

Optimality of the ED for OLS can also be measured by the so-called alphabetic criteria of the information
matrix I := 1

nsim
Ψ TΨ , which is crucial for stability of OLS. There are several types of criteria focused on various

characteristics of the information matrix; see [62] for a review of criteria in the context of PCE. Although one of
the most promising is the S-optimal criterion [35], it is also highly computationally demanding especially for large
M . Therefore, in this paper we use the following cheaper and well known estimation-oriented criterion D-optimal
design, which is focused on accurate estimation of β.

Since the PCE basis functions are orthonormal, I is on average identity, but for finite sample size nsim there is
a deviation from the identity matrix

∥I − I∥ > 0. (23)

The D-optimal design, obtained by maximizing the determinant of the information matrix, leads to small deviation
and thus stable estimation of β. For the practical construction of D-optimal ED, it is possible to employ Fedorov
exchange algorithm [66], greedy algorithm [67] or rank revealing QR decomposition [68] to find an optimal
information matrix containing nsim rows out of a candidate pool containing npool ≫ nsim rows.

3.3. Coherence D-optimal experimental design

As originally proposed together with coherence optimal sampling [68], it is beneficial to merge the previous two
techniques in order to obtain a Coherence D-optimal (Coh D-opt) ED for the stable and accurate solution of WLS.
Although Coh D-opt was originally proposed for compressed sensing in the context of PCE [68], D-optimality was
already employed in combination with standard sampling (LHS and MC) for OLS and LAR in [35]. Therefore, Coh
D-opt can similarly be used also for the non-intrusive approach based on WLS and LAR as employed in this paper.
The pool of candidates is generated by coherence optimal sampling and further reduced by D-optimality criterion
which leads to uniform ED without clusters of samples as can be seen in Fig. 1.

4. Adaptive sequential sampling

In industrial applications, it is often not feasible to perform a large number of evaluations of the original
mathematical model (e.g. FEM) and thus it is important to reduce the number of simulations as much as possible.
An efficient approach therefore is adaptive sequential sampling, which uses iterative selection of the new sampling
points according to specific criteria while exploiting the already available information. Although general sequential
sampling is an area of interest for many researchers [69–72], there is still a lack of studies focused specifically
on PCE. The recent study [35] compared several simple sequential sampling methods based on D/S-optimality of
samples or maximin criterion of samples.

8
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Note that there are two different strategies for sequential sampling. The first is to enrich the initial ED according
to a space-filling criterion (exploration) without assuming any knowledge of the mathematical model or PCE form;
see e.g. [71,73]. The motivation is clear: we do not want to locate an augmented point very close to an existing
point to avoid getting redundant information in the nearby region. However, by obtaining data sequentially, it is
possible to learn from the early stages to inform subsequent data collection, minimize wasted resources, and provide
answers for various objectives (exploitation). Therefore, the second strategy works with the structure of the PCE
(basis functions) in order to identify an optimal sample. Unfortunately, in situations when the initial screening
overlooks a globally important region, the exploitation criterion may continue refinement of some other, locally
important region that was detected, and there is a risk of never discovering a globally important region. Therefore,
it is beneficial to include a balance between both criteria in search for a suitable candidate. Note that, such approach
was employed e.g. in [37] in a different context: a criterion motivated by the Koksma–Hlawka inequality [49] was
proposed and coupled with stratified sampling in order to improve the efficiency of statistical integration.

As discussed above, the adaptivity feature of the PCE surrogate model can be ensured by any model selection
algorithm. Moreover, it can be combined also with hyperbolic truncation according to Eq. (8), which is efficient for
high P . A general adaptive sequential algorithm thus should adaptively reconstruct the PCE using model selection
algorithms in order to identify a sparse set of basis functions A in each iteration.

The sequential feature can be added by using a comparison criterion for selection of the best candidate from
a pool of candidates while balancing between exploration and exploitation. Exploitation of the local areas of
the design domain is focused on identification of sub-domains associated with a defined characteristic of the
mathematical model such as high gradient, local maxima etc. The candidates from the identified sub-domains are
further preferred. Another typical example can be identification of sub-domains associated with high variation of
the mathematical model. Although exploitation is a powerful technique for identification of the best candidate, it
is typically based on a built surrogate model and thus it is highly dependent on the quality of a given ED. On the
other hand, exploration assures uniform coverage of the whole design domain, possibly with respect to specific
characteristic as in case of alphabetical optimality [74], and it assures that the algorithm does not get stuck in local
minima. It opens the door to detection and exploration of important areas in design domain, where the behavior of
the studied function g(x) might be significantly different from possibly incorrect expectation based on the surrogate.

4.1. The proposed Θ criterion for sequential sampling

We propose an adaptive sequential sampling strategy accompanied by a criterion designed for efficient and
accurate estimation of β using least squares. Consider a pool of candidates containing npool realizations of the
random vector ξ generated by an arbitrary sampling technique. Once the pool of candidates conditioned by the
selected PCE basis is generated, it is necessary to construct a criterion for the selection of the best candidate
balancing between the exploitation and exploration of the design domain. Such criterion, called the Θ criterion
from here on, is proposed as follows

Θ(ξ (c)) ≡ Θc =

√
σ 2
A (ξ (c)) · σ 2

A (ξ (s))

ave variance density

l M
c,s

vol.

≡

√
σ 2

c · σ
2
s l M

c,s. (24)

where we introduce an abbreviated notation by dropping the point designation ξ (·) and using simply the lower index
instead and also by dropping the set of basic functions, A, which is selected for every instant of the algorithm and
thus may differ as the sample size increases. The criterion has an intuitive meaning and also has units of variance
and is a product of two parts: the exploitation part (denoted as “ave variance density”) and the exploration part (the
distance term lc,s raised to the domain dimension). Multiplication of these two independent contributions maintains
the optimal balance between exploration and exploitation.

The exploration aspect is maintained by accounting for the distance lc,s between a candidate ξ (c) and its nearest
neighboring point from the existing ED, ξ (s). For the distance term a suitable metric must be selected. In this paper,
we select the Euclidean distance between the candidate and its nearest neighbor as

lc,s =

√ M∑
i=1

|ξ
(c)
i − ξ

(s)
i |

2
, (25)

although other distances can be considered, particularly in high dimension.
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Fig. 2. Geometrical meaning of the proposed Θ criterion for a candidate “c” in two and three dimensions. Black solid circles are existing
points and point “s” is the nearest neighbor to candidate “c”. The solid thin curve/surface represents the current estimation of variance
density over the design domain.

The exploitation in candidate selection is motivated by our desire to uniformly cover local contributions to
the total variance, σ 2

Y . By recalling Eq. (17), we know that σ 2
Y can be estimated simply as the sum of all squared

deterministic coefficients except the intercept. The mean square can be obtained as the integral featuring the selected
polynomial basis over the design domain; see Eq. (16). This means that the variance can be thought of as an integral
of local contributions over the design domain indexed by coordinates ξ . In other words, we need to integrate a local
variance density σ 2

A(ξ ). Once the PCE has been established at any given stage of the algorithm, the variance density
is computationally cheap to evaluate for any location ξ as

σ 2
A (ξ ) =

[∑
α∈A
α ̸=0

βαw (ξ)Ψα (ξ)
]2 pξ (ξ) . (26)

The local variance is therefore estimated based on the basis functions and coefficients β of the PCE. Depending
on technique utilized for sampling of candidates, one should apply the weight w (ξ) (also used in weighted least
squares) to basis functions in order to reflect influence of sampling from a probability measure different from the
input distribution. Specifically in this paper, w (ξ) is defined for Coh D-opt according to Eq. (19) and w (ξ) = 1 for
LHS. When considering a candidate “c”, one might think about the variance contribution of the region between the
candidate and its nearest neighbor. A rough estimation may be obtained by considering an average of local variance
densities between the candidate and its nearest neighbor, “s”. This average is represented by the geometric mean
between the two numbers. The geometric mean between n numbers xi is defined as (

∏n
i=1 xi )1/n and therefore, we

take the geometric mean of two local variance densities simply as the square root of the local variance densities of the
candidate and its nearest neighbor, see the first term in Eq. (24). When this geometric mean is multiplied by the M th
power of the distance between the two points, l M

c,s, the volume (variance contribution) of a neighborhood between
them is estimated; see the sketch in Fig. 2. In other words, the criterion estimates the amount of variance in a “bite”
by the candidate. Note that Eq. (24) defines the bite as a hypercube of side-length lc,s. However, other geometric
entities may be considered without practical impact on the algorithm. The reason is that all the geometric volumes
for various candidates under comparison would have the same positive multiplier of l M

c,s which can be dropped as
it does not change the ranking of the compared candidates. Therefore, we can say that the proposed criterion helps
to select a candidate with roughly the largest amount variance being refined. The balance between exploration and
exploitation is maintained: a candidate which is close to an existing point can only be selected if the corresponding
variance density is large. Similarly, when a region with low contribution is being detected by the PCE, candidates
from such regions are ignored.

In situations when the variance density is a constant function, the criterion collapses to a simple space-filling
criterion (a form of miniMax criterion); [15,60]. Such criterion ensures the preference of candidates filling the
largest empty regions in the design domain and thus leading to uniform distribution of points in the sense of
miniMax design criterion. We remark that miniMax design is a preferable choice for the construction of emulators
because it minimizes the worst case prediction variance.
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L. Novák, M. Vořechovský, V. Sadı́lek et al. Computer Methods in Applied Mechanics and Engineering 386 (2021) 114105

A question may arise: why do we propose to use the geometrical mean instead of arithmetical mean? The reason
is that the criterion may also be used for infinite design domains (for example in conjunction with Gaussian germ).
In such situation, the pool of candidates may contain points ξ (c) that are very far from the mean value and such
a point may have (almost) zero variance density. Yet, the criterion would prioritize it due to the large distance from
the nearest neighbor ξ (s) as the arithmetical average with its variance density would equal one half of the two local
densities. In other words, infinitely distant candidate points would always win the comparison, despite a vanishing
contribution of one of them. Using the geometrical mean prevents unimportant distant points with zero density from
being selected.

Maximization of the criterion leads to the best candidate, which is added to active ED. As can be seen, the
proposed criterion prefers candidate points in parts of multidimensional space associated with higher contribution
to the variance of the mathematical model. This idea is similar to the sequential sampling proposed in [37] based
on Koksma–Hlawka inequality respecting both variation of the function and discrepancy of realizations, however
the proposed criterion is constructed specifically for PCE and thus it can use the PCE basis functions in order
to increase the efficiency of the computation. The significant advantage of the proposed method is the ability to
add candidates into existing ED one-by-one and thus it can be employed at any moment of the PCE construction
process and it can be combined with any sampling algorithm for construction of initial ED marked with subscript
as ξED, WED, YED.

4.2. Adaptive sequential sampling with LHS-based candidates

LHS represents perhaps the most common sampling technique in surrogate modeling and it can be easily coupled
with the proposed sequential sampling in a simple manner. The pool of candidates is generated by LHS and the
proposed criterion is employed for the selection of the best candidate. This process is repeated at every iteration
of the sequential sampling (with the pool being either regenerated or reused from the preceding step). In order to
illustrate the proposed sequential adaptive algorithm, we selected five iterations and depict the corresponding states
in Fig. 3. The initial ED is represented by solid black circles and the sequentially selected realizations are plotted
using solid red circles. The color maps represent the value of the proposed criterion (right column) and also its
individual components (the preceding columns). Since the generation of the pool of candidates by LHS is simple
and fast, LHS-based adaptive sequential sampling represents an efficient extension to non-sequential LHS and it
could be easily implemented into existing software tools.

4.3. Adaptive sequential sampling with coherence-based candidates

The proposed criterion can generally be coupled with any sampling technique. However, since coherence-based
sampling is highly affected by the set A, it might be ideal if the pool of candidates is generated by coherence-
based sampling. Further, in order to obtain stable estimates of β, the pool of candidates should be reduced using
D-optimality criterion calculated by QR factorization with column pivoting [68] also called rank revealing QR
factorization (RRQR). Note that it is necessary to evaluate the proposed criterion for every candidate and thus it
might be computationally demanding for large npool. Therefore, we propose to generate the pool of candidates by
coherence D-optimal sampling in every loop of sequential sampling instead of a single large pool generated before
the start of the iteration process. Smaller pools for every iteration are not only computationally efficient but such
approach reflects the actual sparse set of basis functions of PCE obtained by LAR in each iteration. This might
be crucial for the candidate set generated by coherence-based sampling, since it is optimized for the selected basis
functions in each step. Moreover, the proposed criterion gives higher importance to basis functions associated to
higher β, which is important for identification of functional extremes.

Algorithm 1 thus reflects all pieces of information about the stochastic model (probabilistic distribution of
input variables), investigated mathematical model (sparse set of basis functions) and even type of solver for PCE
construction (weighted least squares) in order to obtain accurate and stable estimates of the deterministic PCE
coefficients β. Combination of all techniques used in the algorithm thus leads to superior performance as will be
shown in the numerical examples. However, generation of the pool of candidates is much more computationally
demanding in comparison to the LHS-based adaptive sequential sampling.
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Fig. 3. Illustration of five stages during the proposed sequential sampling. Black solid circles: initial design. Red circles: extended sample.
Crossed empty circle: the best candidate. The value of the proposed criterion and its components are depicted using the underlying color
maps. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

5. Numerical experiments

The proposed algorithm was numerically tested on several examples of increasing complexity. The setup common
to all examples was as follows: PCE is solved by non-intrusive OLS (LHS) or WLS (Coh D-opt), a sparse set of
the basis functions A is obtained by LAR with maximum total polynomial order p = 10, if not said otherwise.
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Algorithm 1 Coherence-Based Adaptive Sequential Sampling — one iteration

Input: ξED, WED, YED, A, β, (nsim) current Experimental Design and the corresponding PCE
1: n = 5P , npool = 3P set the pool sizes based on the p and M
2: ξ coh ← n samples from fcoh(ξ ) using MCMC (Eq. (21)) draw points from the coherence density
3: Wcoh ← weights corresponding to ξ coh (Eq. (22)) calculate the corresponding weights
4: ξ pool, Wpool ← npool D-optimal samples & weights preselect the final pool of candidates
5: for all ξ (c)

∈ ξ pool do loop thru all candidates
6: ξ (s)

← arg min
ξ∈ξED

lc,s(ξ (c), ξ ) find the nearest neighbor

7: Θc = Θ
(
ξ (c), ξ (s)) compute the criterion (Eq. (24))

8: end for
9: ξ (new)

← arg max
ξ (c)

Θc select the best candidate

Output: ξ (new), w(ξ (new)) return the best candidate and the corresponding weight

Identical p for all examples simulates a possible engineering situation with a black-box function (e.g. finite element
analysis) where it is not possible to select the best p a priori. The initial ED for the PCE construction before the
first step of the proposed iterative algorithm is generated by LHS and it contains an initial screening design with
nsim = 10 realizations of the input random vector for the first three examples and nsim = 20 for the last example.

Although the proposed criterion can be coupled with any sampling technique for ED generation, only two selected
techniques (LHS and Coh D-opt) were employed and compared in the numerical examples. LHS was selected for
this study as it is the most common sampling technique for surrogate modeling due to its efficiency and simplicity.
Existing software applications and packages for PCE construction (e.g. [39–43]) usually contain implementation of
LHS and thus the process can be easily extended by proposed selection criterion. On the other hand, Coh D-opt is
not a common approach, thus it is representative of advanced sampling methods suited specifically for least-squares
PCE. Coh D-opt EDs usually achieve higher accuracy but their implementation is not straightforward.

Each example is solved by three types of strategies:

• non-sequential approach (non-seq) with ED generated via LHS for each sample size at once — this represents
the most common approach employed in surrogate modeling,
• the proposed sequential sampling with candidates generated by LHS, and
• the proposed sequential sampling with candidates generated by Coh D-opt.

The sample size in the first (LHS) strategy is fixed and we study the PCE behavior for a range of these sample
sizes selected a priori.

The two sequential sampling strategies differ in the way the pool of candidates is proposed. For the sake of
clarity, the pool of candidates obtained by Coh D-opt for sequential sampling contains 3P D-optimal samples,
which are selected from a greater pool of 5P Coh-optimal samples; for LHS sequential sampling, it contains 3P
samples generated by LHS.

The results are compared in terms of the (i) relative error in variance of QoI

ϵ =
|σ 2
− σ 2

Y |

σ 2
Y

, (27)

defined as the absolute deviation of the estimated variance σ 2 from the exact value σ 2
Y divided by the exact variance,

and the (ii) leave-one-out error of PCE approximation Q2 according to Eq. (12). In order to get a picture about
reproducibility of the results, the calculations were repeated 100 times for each set of settings. The averages of
log10(ϵ) (the order of relative error in variance) and log10(1 − Q2) are depicted by solid-lines and the scatters
represent ± σ confidence intervals.
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5.1. Toy 2D function

Consider a simple 2D function in which the two independent input random variables are uniformly distributed,
X ∼ U , with the mean values µ = {0, 0} and variances σ 2

= {6, 6}. The design domain is thus a square
[−
√

18;
√

18]2. The output variable (symmetrical and highly non-normal with zero mean value and skewness) is
the following transformation

Y = cos
(

X1π

5

)
sin

(
X2π

3

)
,

[
σ 2

Y ≈ 0.199 575 434
]

(28)

which should be easily approximated by all employed methods and the whole process is easily tractable.
Non-sequential LHS was calculated for 10 increasing sample sizes in range ⟨24, 150⟩. The supposedly uniform

distribution of LH-samples is compared with the proposed algorithm for sequential selection of 140 candidates
(to reach the same final sample size of 150 points). The rows in Fig. 3 show selected iterations of the sequential
algorithm. The color maps show the local variance density (left column), and then spatial distribution of the two
components of the proposed criterion: the average variance computed using the geometrical mean with the nearest
neighbor and the squared distance to the nearest neighbor. The maps on the right hand side finally present the spatial
distribution of the proposed Θ criterion. A relatively large pool of LHS candidates was generated and the color
maps were computed on a fine grid of coordinates. The scale of Θ in the rightmost column is proportional to the
amount of variance associated with individual candidates. It can be seen that the value Θ of the best candidate also
indicates how much gain in the variance accuracy can be expected by adding one point. This information can be
incorporated as a kind of “stopping criterion”. The scales in Fig. 3 show that refining from nsim = 10 to nsim = 35
decreases the variance bites from 10−1 to roughly 7.5 · 10−3. However, further increase in sample size (and the
associated time spent on evaluation of the g(x) function) leads only to minor decrease in Θ criterion for the best
candidate and this improvement may not be deemed as worth the expense.

This reasoning is well supported by the plots of variance error in Fig. 4 (left column). One can see that from the
ED with nsim ≈ 25 points, further decreases in variance error are obtained at low rates. This is emphasized by a thin
vertical dashed line showing that the available polynomial basis is saturated as the maximum polynomial order is
exhausted. The decision to consider is either (i) stop the algorithm: the accuracy is acceptable or computing resources
are too expensive (ii) increase the maximum polynomial order p with a chance to improve the convergence rate for
further size extensions. Indeed, one can see in Fig. 4 (left column, bottom plot) that after adding about 15 points to
the initial design with 10 points, the maximum polynomial degree of p = 10 gets almost always fully exploited and
the error almost stabilizes (both the error in variance estimation and also the Q2). When the experiment is repeated
with p = 20 (see the middle column in Fig. 4), the saturation is postponed and both errors quickly decrease until
the design reaches about nsim = 120 points. This fact documents that the adaptivity feature should also increase the
polynomial degree if higher accuracy is requested.

To conclude, the proposed sequential sampling clearly outperforms standard non-sequential sampling in error in
estimated variance. Although difference in the approximation error Q2 between non-seq and sequential LHS is not
significant for p = 10, its sequential variant leads to the most accurate estimation of variance. In case of p = 20,
the superiority of the sequential sampling is even more significant.

For the sake of completeness, the adaptivity of p was coupled with the proposed sequential sampling (see the
right column in Fig. 4). Although there exist advanced adaptive algorithms such as adaptive Coh-D opt [75], the
simplest algorithm with iterative increment of p was employed for both sampling schemes, i.e. p was iteratively
increased from p = 5 to p = 20 and PCE was built for a given ED and finally p yielding the lowest approximation
error measured by Q2 was selected. The obtained results show the similar behavior of the sequential technique as
in case of p = 20, as can be expected. Note that, techniques for p-adaptivity and many other advanced sampling
techniques are beyond the scope of this paper. This research is focused on the proposed sequential sampling and
for the possibility of direct comparison, such type of adaptivity is excluded in the following examples in order to
show purely the role of Θ criterion, though they can generally lead to more accurate approximations.

5.2. Ishigami function

Consider now a three-dimensional Ishigami function [76]. The function is strongly nonlinear, non-monotonic and
presents strong interactions. We set the coefficients as in [77]. Let X ∼ U[−π, π]3 and the mathematical model

Y = sin (X1)+ 7 sin2 (X2)+ 0.1X4
3 sin (X1) .

[
σ 2

Y ≈ 13.844 587 940
]

(29)
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Fig. 4. Results for Toy 2D function obtained with maximum polynomial order p = 10 (left), p = 20 (middle) and adaptive p (right).
The first two rows represent the accuracy measured by ϵ and Q2. The last row shows the mean value (solid blue line) and the empirical
probability mass function (blue points) of the maximum order p in active A for LHS. (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)

The Ishigami function represents a well-known benchmark function for surrogate modeling and sensitivity
analysis and thus additional analysis with a very large pool size was performed in order to show additional results
discussed extensively in Section 6. First of all, non-sequential PCE based on Coh-D optimal sampling was created
for the direct comparison. The obtained results for standard setting are summarized in Fig. 5 (left column).

The non-sequential Coherence-D optimal ED leads to unsatisfactory results both in variance estimation and Q2.
Although the convergence rate is lower for our purpose (low number of samples), note that it is significantly more
efficient with increasing number of samples. As can be seen, the proposed sequential sampling clearly outperforms
the non-seq standard approach. Moreover, the convergence rate is significantly higher, until the polynomial chaos
gets saturated by reaching the maximum order p = 10 as can be seen in Fig. 5 (left column, bottom plot). Naturally,
non-sequential technique converges to identical accuracy with increasing number of samples.

Since the Ishigami function is a low-dimensional and inexpensive example, it was also possible to perform
calculation with ED pool containing a large number npool = 5000 of simulations and 100 repetitions in order to
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Fig. 5. Results for the Ishigami function. The first two rows represent the accuracy measured by ϵ and Q2. The last row shows the mean
value (solid blue line) and the empirical probability mass function (blue points) of the maximum order p in active A for LHS. The maximum
polynomial order is p = 10 for the left (npool = 858) and right columns. The pool size for the middle column is npool = 3P = 5313
candidate points. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

obtain statistical estimates. Note that the pool for Coh-D opt was obtained by D-optimal reduction from larger pool
generated by coherence optimal sampling as in the previous examples.

The obtained results, for the case of an extremely large pool of candidates, depicted in Fig. 5 (right column)
are slightly worse in comparison to the moderate size of the pool. This phenomenon is extensively discussed in
Section 6. Additionally, note that the presented results are obtained for the fixed maximum polynomial order p = 10,
which imposes a strong limit on achievable accuracy for nsim ⪆ 120. Similarly to the previous numerical example,
allowing a higher p leads to higher accuracy of the PCE, which can be seen in Fig. 5 (middle column) using
p = 20 (the saturation is postponed to about nsim ≈ 200).

5.3. 2D mirror line singularities

The 2D line singularities function is a mirrored version of a function used in [37]. The true surface of this
function is studied for three different values of the parameter δ; see Fig. 6. In order to document the effectiveness
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Fig. 6. 2D mirror line singularities: underlying map shows function values (the top row) and Θ criterion (others). Points represent the initial
design ED (black points) and selected four iterations of algorithm adding candidates to the existing ED. Mathematical model for different
parameters δ: δ = 1 (left), δ = 0.1 (middle), δ = 0.01 (right). The maximum polynomial degree was p = 12 and therefore the ability of
PCE to mimic a sharp singularity was limited.

of the proposed sequential sampling in the convergence plots, we selected the case of δ = 0.1. Let X ∼ U[0, 1]2

and the mathematical model be in the following form

Y =
1

|0.3− X2
1 − X2

2| + δ
−

1
|0.3− (1− X1)2 − (1− X2)2| + δ

.
[
δ = 0.1 : σ 2

Y ≈ 13.070 477 042
]

(30)
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Fig. 7. Numerical results for Example 3 (left), Example 4 (middle) and Example 5 (right). The rows represent the accuracy measured via
ϵ and Q2. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Note that, this example represents a challenging task for PCE especially for low values of δ. There are curved
singularities located in a narrow vicinity of two circular arcs and thus it is crucial to identify the location of the
singularity and use high-degree interacting polynomials for approximation. The values of the function range between
its extremes of roughly ±δ−1. We remark that the results of non-seq Coh D-opt are out of the graph range and thus
this technique is not depicted in Fig. 7. Fig. 7 (top-left) shows a typical comparison of sequential and non-sequential
LHS techniques. Sequential sampling is significantly better for mid-size ED, while the differences are reduced for
large sample sizes when the polynomial chaos gets saturated. We remark that the high convergence rate for small
to medium sample size is the practical range for which the proposed method is developed. Coh-D opt sequential
strategy shows the best accuracy in Q2 as well as in estimated variance. On the other hand, as can be seen in Fig. 7
(bottom-left) sequential LHS leads to low accuracy measured by Q2.

5.4. Truss structure (Hermite polynomials)

This problem involves nonuniform input variables and thus the selected set of polynomials is composed of
Hermite polynomials. The design domain becomes open: RM . The mathematical model represents deflection of
the truss structure depicted in Fig. 8. The deflection can be computed using the method of virtual work (unit load
method). This method results in the following expression for the mid-span deflection

Y = F
(

552
Ah Eh

+
50.9117

Ad Ed

)
.

[
σ 2

Y ≈ 0.000 2373
]

(31)

The input random vector of the model, X , consists of five independent random variables: the properties of
the horizontal bars (Young’s modulus Eh and cross-section area Ah), the properties of the diagonal bars (Young’s
modulus Ed and cross-section area Ad), and the magnitude of the loading forces F on the top joints. The properties
of the input random variables are summarized in Table 1.

First of all, in order to construct PCE, the input random vector is transformed to standardized Gaussian random
space by Nataf transformation [78,79] corresponding to Hermite germs. Further full set of polynomial basis functions
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Fig. 8. Truss structure constructed from two types of bars.

Table 1
Five random variables featured in the truss example.

Variable Distribution Mean Units CoV

Eh, Ed Log-normal 210 GPa 0.10
Ah Log-normal 2000 mm2 0.10
Ad Log-normal 1000 mm2 0.10
F Gumbel-Max 50 kN 0.15

P is reduced by hyperbolic truncation with q = 0.5 according to Eq. (8). The initial ED contains nsim = 20
realizations of X generated by LHS. We remark that Nataf transformation might increase the polynomial degree
required to compute the PCE approximation of a function. To avoid the increase in nonlinearity of the problem by
using the Nataf transformation, one could also compute the polynomials numerically in practical applications [80].

Obtained results can be seen in Fig. 7 (middle column). Similar to the previous example, sequential LHS leads
to higher accuracy in estimated variance but the approximation error Q2 is comparable to non-sequential LHS. The
proposed sequential Coh D-opt method is clearly the most accurate and convergence rate is significantly faster both
in Q2 and variance estimation. The Coh-D sequential sampling converges to errors several orders of magnitude
smaller than commonly used non-sequential LHS.

5.5. Truss structure (Hermite polynomials) — Reduced dimension

Adaptivity of the proposed algorithm is provided by the best model selection algorithm (LAR in this paper),
which should be able to select the best possible set of basis functions A. In order to examine this feature in
the context of the proposed adaptive sequential sampling, the results of the previous example are compared to
a manually reduced stochastic model of the previous example (Truss structure) preserving identical mathematical
model as follows [81]:

Y = F
(

552
Æh
+

50.9117
Æd

)
,

[
σ 2

Y ≈ 0.000 2373
]

(32)

where Æh is a Log-normal random variable with mean of 420 MN and Æd is a Log-normal random variable with
mean of 210 MN, CoV of both random variables equals 0.141 77. The results obtained from the sequential sampling
are summarized in Fig. 7 (right). As can be seen, the final accuracy of this example measured by relative error in
variance ϵ is similar to the 5D formulation of the g(X) when the size of ED reaches the final nsim = 220, although
the convergence of the reduced model to this value is significantly faster for lower nsim. This is in compliance with
the theoretical behavior of the model selection algorithm, which becomes more efficient with greater samples size.
The faster convergence also affects the final accuracy of Coh D-opt measured by Q2, which is able to converge to
lower values for the final nsim.

6. Discussion

6.1. Optimal pool size and the maximum polynomial order p

As already briefly mentioned above, the selection of fixed maximum polynomial order p may impose a lower
bound on achievable accuracy. This phenomenon was visible in the first “Toy” example (see Fig. 4) as well as
for the “Ishigami function”, see Fig. 5. In these examples, the initial guess on p = 10 was found insufficient and
selection of p = 20 allowed for much higher accuracy of the surrogate. This is documented by examination of the
set A, specifically maximum p in the active set of basis functions A chosen by LAR depicted by blue color in
the bottom rows of Figs. 4 and 5. It can be seen, that convergence rate is very low once the maximum order p in
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active A achieves its prescribed maximum of p = 10 since there are no additional possibilities for improvement of
the approximation (the space of basis functions is out of suitable candidates). Therefore, if one extends the space
of basis functions by sufficiently incrementing p, the decrease in error does not stop and ϵ for maximum nsim is
significantly lower. Unfortunately, the ideal p is not known a priori and thus one should adaptively increase it with
growing active ED. However, as discussed already in [2], it is possible to employ an adaptive selection of the best
p for each iteration. Such a feature might play a significant role in some cases. Such approach was deliberately
not employed in this paper because the influence of the proposed sampling scheme might not be clearly separable
from the model selection.

The proposed sequential technique achieved higher accuracy of estimated variance for lower number of samples
in comparison to non-sequential sampling in all presented numerical examples. However, as can be seen from
numerical results of the Ishigami function, increasing the pool size does not generally lead to higher accuracy or
faster convergence rate. In fact, a very large number of candidates might cause slower convergence (comparable to
non-sequential sampling). After detailed examination of this example, one can see the different structure of A for
the large set of candidates depicted in Fig. 5 (rightmost column). During the initial phase of the adaptive sequential
sampling, LAR algorithm typically selects high-order polynomials since there is not enough information about
a mathematical model, which leads to overfitting. Further increasing the sample size enables the adaptive algorithm
to identify more appropriate low-order basis functions (nsim ≈ 50 for Ishigami function). Sequential sampling in the
following steps of algorithm selects the candidates with respect to the current A and exploration aspect. Note that
high-order basis functions are selected by adaptive algorithm once the new regions associated to high local variance
are discovered (peaks of the given mathematical model). However, such regions are not preferred by the selection
criterion since low-order basis functions ignore the currently unknown extremes. Therefore, the convergence rate
of the adaptive sequential sampling can be significantly affected by the number of candidates, since if there are no
candidates in regions favored by low-order basis functions, the exploration part of the proposed criterion could
investigate new functional extremes and adapt A to a set of high-order basis functions. This phenomenon is
illustrated by blue color in numerical results in Fig. 5 (left). In the first case with npool = 3P (and p = 10),
one can see a fast convergence for nsim ranging between 50 and 150 (associated to lower maximum p in active A)
until the space of basis functions is out of suitable candidates as described in the paragraph above. On the other
hand, for the second case with npool = 5 000 (and p = 10 again; see Fig. 5 right), an active A contains low-order
basis functions for a range of significantly greater nsim, which leads to a slower convergence of accuracy ultimately
leading to the identical final error.

In summary, the achievable accuracy of the adaptive sequential sampling is limited by the maximum polynomial
order p used. Simply, the flexibility of the polynomial approximation may not be sufficient to approximate the
original function at a given precision level. In practical applications, a sufficient polynomial order is not known
a priori and therefore p should be adaptively increased with increasing nsim in order to achieve the best performance
of the proposed algorithm. On the other hand, the convergence rate is significantly affected by npool and extremely
large pool leads to slow convergence, since a selection of high-order basis functions is postponed to higher nsim.
Therefore the heuristic rule npool = 3P is recommended for practical applications.

6.2. High dimensions

What remains an open question is the behavior of the proposed criterion in high dimensions. In particular, we
need to understand the effect of the exploration part l M

c,s in Eq. (24). Generally, in high-dimensional space with
independent and identically distributed (iid) components, the Minkowski distance of order P > 0 (sometimes
referred to as the P-norm) concentrates, i.e. the coefficient of variation of the norm decreases with increasing
dimension, M . This effect on P-norm of letting M go large is well known in the computational learning literature.
A discussion in the context of iid Gaussian distribution can be found e.g. in [82]. The asymptotic behavior of
P-norm and its convergence rates have been studied in [83].

The role of the distance term must be discussed especially in the case of uniform distribution of the germ
which is defined over a hypercube. It is known that Euclidean distances (a special case of Minkowski distance with
P = 2) of any pair of points inside a hypercube tend to concentrate around its mean value when the dimension is
high. It is known that the standard deviation of the Euclidean distance between any two randomly picked points
stays approximately constant with increasing dimension while the mean value keeps growing proportionally to
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Fig. 9. Results for the Shubert function in 10 (left), 15 (middle) and 20 (right) dimensions. The first row represents the accuracy of estimated
variance measured by ϵ and the second row shows the approximation accuracy measured by Q2.

√
M [84,85]. Therefore, the coefficient of variation of a random distance is asymptotically proportional to 1/

√
M .

In such a case the distance contrast decreases and it is said that the distances concentrate [86,87]. The same holds
also for the squared Euclidean distance l2 between points picked at random: the squared distance has Gaussian
distribution with the mean value of M/6 and variance 7M/180. In order to obtain the hypervolume of a region
in between a pair of points, the squared distance must be raised to M/2. We have found that the coefficient of
variation of such volume quickly increases as the problem dimension grows high. Therefore, there is no problem
with insufficient contrast as the proposed Θ criterion sufficiently varies even in domains of high dimension.

Although it will be necessary to perform extensive study with advanced sampling schemes in order to investigate
the efficiency of the proposed criterion in high dimensions, the general behavior of the Θ criterion is demonstrated
in the following simple example with input random vector X ∼ U[−1, 1]M — Shubert function No. 4 [88]:

Y =
M∑

i=1

5∑
j=1

j cos(( j + 1) X i + j).
[
σ 2

Y ≈ M · 45.266 621 664
]

(33)

This function can be easily utilized as a benchmark for an arbitrary number of input random variables; in our study
we use M = {10, 15, 20}. The maximum polynomial order p = 12 and hyperbolic truncation parameter q = 0.3
were used for construction of surrogate model, and the initial ED contains nsim = 10 realizations of X generated
by LHS. Since the hyperbolic truncation significantly reduces the P in high dimensions, we increased the pool size
to npool = 5P . Note that, this study is focused only on stability of the proposed Θ criterion in higher dimensions
and thus only the sequential and the non-sequential LHS were employed for direct comparison. From the obtained
results depicted in Fig. 9, it can be seen that the proposed criterion enabling one-by-one extension of ED achieves
higher accuracy in comparison to non-sequential approach independently of dimension M and thus the theoretical
discussion in the previous paragraph was presented also numerically. Naturally, the absolute value of accuracy is
highly dependent on the investigated function and on the particular sampling scheme coupled with Θ criterion,
however this study demonstrates the applicability of the proposed criterion in high dimensions.
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6.3. Further work

Since the DoE is usually not a bottleneck in probabilistic analysis and sequential sampling offers several
advantages in comparison to non-sequential sampling, it can be recommended to employ the proposed algorithm
for the construction of PCE despite higher computational requirements of repetitive DoE in each step. Although
the choice of the sampling technique coupled with the proposed criterion for the sequential selection of the best
candidate is arbitrary, it can be seen from the numerical examples, that LHS is efficient for low dimensional
mathematical models. On the other hand, coherence D-optimal sampling achieved significantly higher accuracy
in more complex examples. Therefore further work will be focused on an improvement of effectiveness by using
advanced optimized space-filling designs for the generating of a pool of candidates and a comparative study of
existing advanced sampling techniques coupled with the proposed criterion will be performed. Employment of
designs generated from the target distribution that additionally avoids clustering [17,81,89] or empty regions [60]
while maintaining true statistical homogeneity via periodic distance-based criteria has the potential to further
improve the effectiveness of the proposed method, especially in high-dimensional space. Moreover, it was shown
that fixed p represents a significant limitation for the proposed method and thus further work will be also focused
on adaptive basis strategies [75,90], which have the potential to dramatically improve the final accuracy of PCE
and solve the problem with LAR and with a large size of the pool of candidates.

7. Conclusion

A novel adaptive sequential sampling technique for accurate and efficient construction of a non-intrusive PCE
was proposed in this paper and its performance was validated on several numerical examples of increasing
complexity and dimensionality. The proposed technique selects the best candidate sample from a large pool
maintaining the balance between exploration of the design domain and exploitation of the current characteristics of
the PCE. The criterion driving the selection of the best candidate was successfully coupled with LHS and Coh-D
optimal sampling and both variants were used in numerical examples. From the obtained results, it can be concluded
that the proposed technique leads to higher accuracy of the constructed PCE in comparison to non-sequential
sampling. The difference in accuracy between sequential and non-sequential sampling is especially significant for
a low-size ED. However, it can be expected that the accuracy of sequential sampling converges to identical results as
a non-sequential sampling for a very large ED in which the PCE is saturated. Comparing both sequential sampling
techniques, superior performance was achieved by sequential adaptive Coh-D optimal sampling due to is adaptivity
of the candidate sample in each iteration.
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Description

The paper extends the active learning methodology based on the Θ criterion to
highly non-linear applications. The active learning is used for the decomposition of
the input space to small sub-domains associated to the high variance density. The
proposed algorithm leads to iterative decomposition of the input space and construc-
tion of local low-order PCEs. The numerical examples represent various types of
functions: functions with high local non-linearity, functions with discontinuity, and
high-dimensional functions with non-linear terms in low-dimensional subspace. The
obtained numerical results show the superiority of the proposed method in compar-
ison with the state-of-the-art technique of stochastic spectral embedding based on a
similar concept. The discussion presents a detailed insight into the behavior of the
algorithm, and explains the role of each of its components in the process of active
learning. Additionally, the final part of the discussion is focused on the possible
modifications and extensions of the proposed method.
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A B S T R A C T

The paper presents a novel methodology to build surrogate models of complicated functions by
an active learning-based sequential decomposition of the input random space and construction
of localized polynomial chaos expansions, referred to as domain adaptive localized polynomial
chaos expansion (DAL-PCE). The approach utilizes sequential decomposition of the input
random space into smaller sub-domains approximated by low-order polynomial expansions.
This allows the approximation of functions with strong nonlinearities, discontinuities, and/or
singularities that often appear in dynamical systems. Decomposition of the input random space
and local approximations alleviates the Gibbs phenomenon for these types of problems and
confines error to a very small vicinity near the non-linearity. The global behavior of the
surrogate model is therefore significantly better than existing methods, as shown in numerical
examples, including an engineering dynamical system exhibiting discontinuous response. The
whole process is driven by an active learning routine that uses the recently proposed 𝛩 criterion
to assess local variance contributions (Novák et al., 2021). The proposed approach balances both
exploitation of the surrogate model and exploration of the input random space and thus leads
to efficient and accurate approximation of the original mathematical model. The numerical
results show the superiority of the DAL-PCE in comparison to (i) a single global polynomial
chaos expansion and (ii) the recently proposed stochastic spectral embedding (SSE) method
(Marelli et al., 2021) developed as an accurate surrogate model and which is based on a similar
domain decomposition process. This method represents a general framework upon which further
extensions and refinements can be based and which can be combined with any technique for
non-intrusive polynomial chaos expansion construction.

1. Introduction

The Polynomial Chaos Expansion (PCE), originally proposed by Norbert Wiener [1] and further investigated in the context of
engineering problems by many researchers, e.g. [2,3], is a preferred method for uncertainty quantification (UQ) and surrogate
modeling in industrial applications [4,5] thanks to its efficiency and powerful post-processing. Once a PCE is available for a given
problem, the constructed explicit function can be exploited to directly estimate important properties of the original problem
including its statistical moments, response probability distribution or sensitivity indices (without additional sampling [6]), which
brings significant efficiency for surrogate modeling, sensitivity analysis, uncertainty quantification and reliability analysis [7].
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The PCE, in its non-intrusive form, offers a convenient way to perform probabilistic analysis of any black-box model, e.g. finite
element models representing complex physical systems in engineering. There are generally two types of non-intrusive methods to
calculate the deterministic PCE coefficients: spectral projection and linear regression. The spectral projection approach utilizes the
orthogonality of the multivariate polynomials and calculates the coefficients using inner products. The spectral projection leads to
an explosion of computational complexity referred to as the curse of dimensionality. Therefore, the non-intrusive approach based on
linear regression is often preferred. Although it is typically less expensive than the spectral projection (the number of samples should
be at least 𝒪(𝑃 ln(𝑃 )), where 𝑃 is the number of terms in the PCE [8,9]), it suffers from the curse of dimensionality as well, since
the number of PCE terms grows rapidly with both dimension and maximum polynomial order. Therefore, it becomes necessary to
employ advanced adaptive techniques to construct sparse PCEs that yield efficient solutions for real-world physical systems.

Regression-based PCE can be significantly affected by the selected sampling scheme, as was recently shown in an extensive
review paper [10] comparing several general statistical sampling techniques. However, PCE construction as a linear regression
model is a very problem specific task and it can be highly beneficial to use methods that exploit information from the given
mathematical model and sequentially update the surrogate model — referred to as active learning. Active learning is a common
approach for surrogate-based reliability analysis, wherein an initial experimental design is iteratively updated based on the current
estimate of the limit-state surface [11–16]. Several active learning techniques for Kriging were recently developed [17,18] and
used in multi-fidelity framework [19,20]. Active learning for reliability analysis with PCE was used e.g. in [21–23]. However,
there is significantly less development in active learning for general UQ, some recent studies have focused on general sequential
sampling for PCE based on space-filling criteria or alphabetical optimality [24,25]. However, it is beneficial to use both exploitation
(leveraging model behavior) criteria and exploration (space filling) criteria to define an optimally balanced criterion [26]. Such
sequential sampling for sparse Bayesian learning PCE combining both aspects — epistemic uncertainty of the statistical inference
(exploration) together with quadratic loss function (local exploitation) – was recently proposed in [27]. However, its application is
limited to PCE built by sparse Bayesian learning only.

The authors of this paper recently proposed a general active learning method based on sequential adaptive variance-based
sampling [28], which is an efficient tool for accurate surrogate modeling that is sufficiently general for further extension [29].
Although this approach leads to superior results in comparison to standard approaches without active learning, it is limited by
the inherently smooth nature of the PCE. More specifically, polynomial basis functions are not able to approximate functions with
discontinuities or singularities. Moreover, it is necessary to use high-order polynomials to approximate functions with local non-
linearities, even when the rest of the input random space could be easily approximated by a low-order PCE. This can lead to spurious
oscillations in the approximation and over-fitting. To overcome this limitation, we propose a method to construct localized PCEs
based on the concept of divide-and-conquer, i.e. decomposition of the input random space to sub-domains approximated by many
low-order PCEs instead of a single high-order global PCE. Although this concept is not entirely new in stochastic finite elements [30]
and stochastic collocation [31,32], there is no such approach for non-intrusive PCE. However there are two primary techniques based
on similar concepts as described in the following section.

1.1. Related developments

Stochastic Spectral Embedding (SSE) [33] is a general approximation technique based on a decomposition of the input random
space and the construction of embedded local approximations. Although it is generally possible to use any spectral approximation
technique, it is beneficially coupled with PCE. SSE is based on a novel idea of embedding – instead of constructing local
approximations of the original mathematical model, local surrogates are constructed to approximate the residuals between the
model and approximation from the previous level of the decomposed space. Although such an approach can lead to significant
improvement in comparison to a single global approximation [33], it is not a sequential approach based on active learning and thus
it does not iteratively reflect new information obtained from the previous steps of the algorithm. Active learning is crucial in analysis
of functions with discontinuity or singularity because it allows for the aforementioned exploration and exploitation necessary to find
and resolve these features. For the sake of completeness, active learning for SSE has been proposed for reliability analysis [34], but
it does not lead to an accurate approximation over the entire input random space. Its accuracy is limited to regions around the limit
surface, which are important for an estimation of failure probability.

The second related technique is Multi-element generalized Polynomial Chaos Expansion (ME-gPC) [35] and its modification
based on ANOVA decomposition [36], which improves its computational efficiency for high dimensions. ME-gPC was developed
as an extension of generalized PCE based on Wiener-Askey scheme [37] allowing analysis of models with arbitrary distribution
of input random vector. The ME-gPC method consists of three main parts: decomposition of the input random space, numerical
construction of locally orthogonal polynomials and an adaptive procedure based on the decay rate of local error in estimated variance
derived from local PCE. ME-PCE applies an ℎ-type mesh refinement procedure akin to mesh refinement in finite element methods.
By doing so, they introduce a structured grid of uniform points in each new element and solve for the PCE coefficients. This can
be cumbersome and does not afford the flexibility to adaptively select sparse and near-optimal training points. Although ME-gPC
was recently improved by 𝑝-adaptivity in anisotropic ME-gPC [38], we note that the ME-gPC was created mainly for uncertainty
propagation in models with arbitrary input distributions, and thus in contrast to SSE, its objective is not necessarily to construct the
best possible surrogate model using adaptive algorithms, but rather to minimize errors in response statistics. This is a subtle, but
important difference that distinguishes its use as a predictive tool from that of a tool for statistical estimation.

Active learning has also been investigated in the context of collocation methods. Jakeman et al. [39] developed an efficient
method for the detection of discontinuities followed by a decomposition of the input random space to several sub-domains
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separated by discontinuities. The adaptive simplex stochastic collocation method [31,40] extends the applicability of ME-gPC to
high-dimensional models on non-hypercube spaces. Further improvement of computational efficiency was achieved by ℎ𝑝-adaptivity
in ME-gPC with re-use of existing samples in adapted weighted Leja collocation [41]. Although these recent developments in
stochastic collocation show very promising results, they are specific to collocation schemes (usually on sparse grids) whose aim
is integration and not surrogate model construction. Unlike these collocation methods, this paper focuses on the development of
domain decomposition and active learning-based sequential sampling for constructing surrogate models with generally arbitrary
sampling schemes.

1.2. Contributions of this paper

This paper describes a novel method, termed Domain Adaptive Localized PCE (DAL-PCE), that applies adaptive sequential
decomposition of the input random space and adaptive sequential sampling within the sub-domains. Both of these features are based
on the recently proposed criterion for variance-based sequential statistical sampling, developed specifically for PCE in [42]. In the
context of previously described methods SSE and ME-gPC, the proposed novel approach can be thought to lie between them. Like
SSE, it is developed specifically for the construction of accurate surrogate models, especially for functions with high non-linearity
or discontinuity. But the decomposition of the input random space is rather similar to ME-gPC. The uniqueness of our proposal
lies in the combination of active learning, sequential sampling, sequential decomposition of the input space and regression-based
PCE using sparse solvers such as Least Angle Regression (LARS), allowing adaptivity and learning in each iteration of the proposed
algorithm.

2. Polynomial chaos expansion

Consider a probability space (𝛺,F ,P), where 𝛺 is an event space, F is a 𝜎-algebra on 𝛺 and P is a probability measure on F . If
the input variable of a mathematical model, 𝑌 = 𝑓 (𝑋), is a random variable 𝑋(𝜔), 𝜔 ∈ 𝛺, the model response 𝑌 (𝜔) is also a random
variable. Assuming that 𝑌 has finite variance, PCE represents the output variable 𝑌 as a function of another random variable 𝜉
called the germ with a known distribution

𝑌 = 𝑓 (𝑋) = 𝑓 𝖯𝖢𝖤(𝜉), (1)

and represents the function 𝑓 (𝑋) via infinite polynomial expansion. A set of polynomials, orthogonal with respect to the distribution
of the germ, are used as a basis of the Hilbert space 𝐿2 (𝛺,F ,P) of all real-valued random variables of finite variance, where P
takes over the meaning of the probability distribution. The orthogonality condition is given by the inner product of 𝐿2 (𝛺,F ,P)
defined for any two functions 𝜓𝑗 and 𝜓𝑘 for all 𝑗 ≠ 𝑘 with respect to the weight function 𝑝𝜉 (probability density function of 𝜉) as

⟨𝜓𝑗 , 𝜓𝑘⟩ = ∫ 𝜓𝑗 (𝜉)𝜓𝑘(𝜉)𝑝𝜉 (𝜉) d𝜉 = 0. (2)

This means that there are specific orthogonal polynomials associated with the corresponding distribution of the germ via its
weighting function. For example, Hermite polynomials orthogonal to the Gaussian measure are associated with normally distributed
germs. Orthogonal polynomials corresponding to other distributions can be chosen according to Wiener-Askey scheme [37] or
constructed numerically [43]. For further processing, it is beneficial to use normalized polynomials (orthonormal), where the inner
product of 𝑖th and 𝑗th polynomials is equal to the Kronecker delta 𝛿𝑗𝑘, i.e., 𝛿𝑗𝑘 = 1 if and only if 𝑗 = 𝑘, and 𝛿𝑗𝑘 = 0 otherwise.

In the case of 𝑿 and 𝝃 being vectors containing 𝑀 independent random variables, the polynomial 𝛹 (𝝃) is multivariate and it is
built up as a tensor product of univariate orthonormal polynomials, i.e.,

𝛹𝜶(𝝃) =
𝑀∏
𝑖=1

𝜓𝛼𝑖 (𝜉𝑖), (3)

where 𝜶 ∈ N𝑀 is a set of integers called the multi-index reflecting polynomial degrees associated to each 𝜉𝑖. The quantity of interest
(QoI), i.e. the response of the mathematical model 𝑌 = 𝑓 (𝑿), can then be represented as [3]

𝑌 = 𝑓 (𝑿) =
∑

𝜶∈N𝑀
𝛽𝜶𝛹𝜶(𝝃), (4)

where 𝛽𝜶 are deterministic coefficients and 𝛹𝜶 are multivariate orthonormal polynomials.

2.1. Non-intrusive computation of PCE coefficients

For practical computation, the PCE expressed in Eq. (4) must be truncated to a finite number of terms 𝑃 . One can generally
choose any truncation rule (e.g., the tensor product of polynomials up to the selected order 𝑝), but the most common truncation is
achieved by retaining only terms whose total degree |𝜶| is less than or equal to a given 𝑝, in which case the truncated set of PCE
terms is then defined as

A𝑀,𝑝 =

{
𝜶 ∈ N𝑀 ∶ |𝜶| =

𝑀∑
𝑖=1

𝛼𝑖 ≤ 𝑝

}
. (5)
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The cardinality of the truncated index set A𝑀,𝑝 is given by

card A𝑀,𝑝 = (𝑀 + 𝑝)!
𝑀! 𝑝!

≡ 𝑃 . (6)

When the PCE is truncated to a finite number of terms, there is an error 𝜀 in the approximation such that

𝑌 = 𝑓 (𝑿) =
∑
𝜶∈A

𝛽𝜶𝛹𝜶(𝝃) + 𝜀 .

From a statistical point of view, PCE is a simple linear regression model with intercept. Therefore, it is possible to use ordinary least
squares (OLS) regression to minimize the error 𝜀. Knowledge of vector 𝜷 fully characterizes the approximation via PCE. To solve
for 𝜷, first it is necessary to create 𝑁sim realizations of the input random vector 𝑿 and the corresponding results of the original
mathematical model Y , together called the experimental design (ED). Then, the vector of 𝑃 deterministic coefficients 𝜷 can be
determined by OLS as

𝜷 = (𝜳 𝑇𝜳 )−1 𝜳 𝑇Y , (7)

where 𝜳 is the data matrix

𝜳 =
{
𝛹𝑖𝑗 = 𝛹𝑗 (𝝃(𝑖)), 𝑖 = 1,… , 𝑁sim, 𝑗 = 0,… , 𝑃 − 1

}
. (8)

A well-known problem, the curse of dimensionality, states that 𝑃 is highly dependent on the number of input random variables 𝑀
and the maximum total degree of polynomials 𝑝, which is clear from Eq. (6). Considering that estimation of 𝜷 by regression requires
at least 𝒪(𝑃 ln(𝑃 )) number of samples for stable solution [8,9], the problem can become computationally highly demanding in
case of a large or strongly non-linear stochastic models. Although one can use advanced model selection algorithms such as Least
Angle Regression (LAR) [2,44], orthogonal matching pursuit [45] or Bayesian compressive sensing [46] to find an optimal set of
PCE terms, and thus reduce the number of samples needed to compute the unknown coefficients, the benefit of these techniques is
significant only if the true coefficient vector is sparse or compressible. The sparse set of basis functions obtained by any adaptive
algorithm is further denoted by A for the sake of clarity.

2.2. Approximation error estimation

Once the PCE is constructed, it is crucial to estimate its accuracy. Further, the PCE accuracy can be used to directly compare
several PCEs to choose the best surrogate model. Ideally, the ED should be divided into validation and training sets, but this might
be extremely computationally demanding in engineering applications with complex numerical models. Therefore in the field of
uncertainty quantification (UQ) of engineering models, it is preferred to estimate the approximation error directly from the training
set without any additional sampling of the original model. A common choice is the coefficient of determination 𝑅2, which is well-
known from machine learning or statistics. However, 𝑅2 may lead to over-fitting, and thus, advanced methods should be used. One
of the most widely-used methods is the leave-one-out cross-validation (LOO-CV) error 𝑄2. The LOO-CV is based on residuals between
the original surrogate model and the surrogate model built with the ED while excluding one realization. This approach is repeated
for all realizations in the ED and the average error is estimated. Although the calculation of 𝑄2 is typically highly time-consuming,
it is possible to obtain results analytically from a single PCE as follows [47]

𝑄2 =

1
𝑁sim

∑𝑁sim
𝑖=1

[
𝑔
(
x(𝑖)

)
−𝑔𝖯𝖢𝖤

(
x(𝑖)

)
1−ℎ𝑖

]2

𝜎2𝑌 ,ED
, (9)

where 𝜎2𝑌 ,ED is the variance of the ED calculated using the original mathematical model and ℎ𝑖 represents the 𝑖th diagonal term of
matrix H = 𝜳

(
𝜳 𝑇𝜳

)−1 𝜳 𝑇 .

2.3. Statistical moments derived from PCE

The form of PCE as a linear summation over orthonormal polynomials allows for powerful and efficient post-processing. In
particular, once a PCE approximation is created, it is possible to directly estimate statistical moments of the output from the
expansion.

The first statistical moment (the mean value) is simply the first deterministic coefficient of the expansion 𝜇𝑌 =
⟨
𝑌 1⟩ = 𝛽𝟎. The

second raw statistical moment,
⟨
𝑌 2⟩, can be estimated by

⟨
𝑌 2⟩ = ∫

[∑
𝜶∈A

𝛽𝜶𝛹𝜶 (𝝃)

]2

𝑝𝝃 (𝝃) d𝝃 =
∑
𝜶1∈A

∑
𝜶2∈A

𝛽𝜶1
𝛽𝜶2 ∫ 𝛹𝜶1

(𝝃)𝛹𝜶2
(𝝃) 𝑝𝝃 (𝝃) d𝝃 (10)

=
∑
𝜶∈A

𝛽2𝜶∫ 𝛹𝜶 (𝝃)2𝑝𝝃 (𝝃) d𝝃 =
∑
𝜶∈A

𝛽2𝜶 ⟨𝛹𝜶 , 𝛹𝜶⟩ .
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Considering the orthonormality of the polynomials, it is possible to obtain the variance 𝜎2𝑌 =
⟨
𝑌 2⟩ − 𝜇2𝑌 as the sum of all squared

deterministic coefficients except the intercept (which represents the mean value), i.e.

𝜎2𝑌 =
∑
𝜶∈A
𝜶≠𝟎

𝛽2𝜶 . (11)

Note that the computation of higher statistical central moments, specifically skewness 𝛾𝑌 (3rd moment) and kurtosis 𝜅𝑌 (4th
moment), are more complicated since they require triple and quad products. These can be obtained analytically only for certain
polynomial families, e.g., formulas for Hermite and Legendre polynomials (and their combination) can be found in [42].

3. Active learning-based domain adaptive localized PCE (DAL-PCE)

In this section, we propose a novel methodology to construct localized PCEs designed for highly non-linear functions, termed
Domain Adaptive Localized PCE (DAL-PCE). Instead of increasing the maximum polynomial order 𝑝 (𝑝-adaptivity), which brings
high computational requirements due to the curse of dimensionality, we propose to decompose the input random space into several
sub-domains approximated by low-order PCEs (ℎ-adaptivity). Although this idea is not entirely new, we use this approach in
combination with novel active learning methods to identify domains for refinement and for sequential sample selection and
regression-based PCEs. This allows us to use any sparse adaptive solver (e.g. LAR), and thus it can be easily implemented into
the existing software packages [48,49]. In the following sections, we define the requisite components of the proposed method and
provide an algorithm (Algorithm 1) for its implementation.

3.1. Variance-based adaptive sequential sampling

The decomposition of the input random space is a sequential process coupled with adaptive sampling, assuring optimal coverage
of the sub-domains of interest. The whole process thus consists of two steps: (i) identification of an important sub-domain, that is,
a domain that is either large compared to other sub-domains or that is associated with a high local variance; and (ii) identification
of the best positions for additional samples extending the current ED in the selected sub-domain. Each of these steps must be based
on a criterion that balances exploration of the input random space with exploitation of the surrogate model, which in our case is in
the form of a PCE. The 𝛩-criterion for adaptive sequential sampling, which is driven by the output variance and its approximation
via local variance using PCE [28], is employed for both steps. We will first discuss the process for adaptive sequential sampling
within a specified sub-domain in this section. This will be followed by the process for refinement of the domain in the subsequent
sections.

Consider a pool of candidate samples containing realizations of the random vector 𝝃 generated by an arbitrary sampling
technique, e.g., Latin Hypercube Sampling (LHS) [50,51] or Coherence sampling [8,52,53]. From this pool of candidates, we select
the best sample using a method inspired by the sequential sampling proposed in [26] and based on Koksma-Hlawka inequality [54].
The 𝛩-criterion for PCE, which accounts for both variation of the function and discrepancy of the samples, was proposed as
follows [28]

𝛩(𝝃(c)) ≡ 𝛩𝑐 =
√
𝜎2A (𝝃(c)) ⋅ 𝜎2A (𝝃(s))

⎵⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⎵
ave variance density

𝑙𝑀c,s
⎵⎵
vol.

≡ √
𝜎2c ⋅ 𝜎2s 𝑙

𝑀
c,s. (12)

The criterion is a product of two terms — the exploitation term (denoted as ‘‘ave variance density’’) and the exploration part (the
distance term 𝑙c,s raised to the domain dimension) – which are multiplied to maintain an optimal balance between exploration and
exploitation [28].

The exploration aspect is maintained by accounting for the distance 𝑙c,s between a candidate 𝝃(c) and its nearest neighboring
realization from the existing ED, 𝝃(s) as

𝑙c,s =

√√√√ 𝑀∑
𝑖=1

|𝜉(c)𝑖 − 𝜉(s)𝑖 |2. (13)

If the criterion was reduced to this term only, sequential filling of the greatest empty regions would occur, converging to uniform
space coverage in the spirit of the space-filling ‘‘miniMax criterion’’ [55–57].

The exploitation component is motivated by the desire to sample points in regions with the greatest contributions to the total
variance of the QoI 𝜎2𝑌 , i.e. at points with the highest variance density. Once the PCE has been established at any given stage of the
algorithm, the variance density is computationally cheap to evaluate for any location 𝝃 as

𝜎2A (𝝃) =
[∑
𝜶∈A
𝜶≠𝟎

𝛽𝜶𝛹𝜶 (𝝃)
]2𝑝𝜉 (𝝃) . (14)

The local variance is therefore estimated directly using the basis functions and coefficients 𝛽 of the PCE. When considering
a candidate ‘‘c’’, an estimate of the variance contribution of the region between the candidate and its nearest neighbor ‘‘s’’ may
be obtained by averaging the local variance densities between the two. Therefore, we can say that the candidate with the greatest
𝛩𝑐 criterion is the one that represents the largest amount of total variance to be refined by its selection.
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Fig. 1. The first iteration of the algorithm: the original sub-domain is split and the new local PCE is constructed in 𝒟𝑖 (red background), while the second part
in 𝒟⋆

𝑖 inherits the PCE approximation from the original domain.

A significant advantage of this method is the ability to add candidates to an existing ED one-by-one. Thus, it can be employed
at any moment of the PCE construction process. Moreover, this learning function can be combined with any sampling algorithm for
the construction of the initial ED and candidates for extension. The ideas behind the 𝛩 criterion will now be used in the proposed
domain decomposition and ED extension algorithm.

3.2. Decomposition of input random space

The core of the proposed approach is a sequential decomposition of the input random space 𝒟 for the construction of local
approximations. This approach assumes that the original mathematical model can be approximated by piecewise low-order PCEs
that are valid only in individual sub-domains of 𝒟 . Therefore, in the proposed approach, the input random space is sequentially
decomposed into 𝑛𝒟 smaller non-overlapping sub-domains 𝒟𝑖 ⊂ 𝒟 that collectively fill the full input random space 𝒟 , i.e.

𝑛𝒟⋃
𝑖=1

𝒟𝑖 = 𝒟 such that 𝒟𝑖 ∩𝒟𝑗 = ∅ ∀𝑖, 𝑗 . (15)

In each iteration of the algorithm, a single sub-domain 𝓓𝒊 (referred to as the parent) is identified for refinement and divided by
a plane perpendicular to the direction of one selected input random variable. Specifically, 𝓓𝒊 is divided into a refinement-child
𝒟𝑖, which is further processed, and an inheriting-child 𝒟⋆

𝑖 adopting the PCE from the parent as illustrated for a one-dimensional
function in Fig. 1. In this case, we see that the space is divided into two subdomains. In the left (refinement child) a new PCE
is constructed. In the right (inheriting child), the original PCE is retained. Such process assures an exhaustive decomposition into
disjoint subsets i.e. 𝓓𝒊 = 𝒟𝑖 ⊕ 𝒟⋆

𝑖 . This sequential domain decomposition is illustrated in Fig. 2, which depicts the original input
random space and the first four iterations of the decomposition process.

In contrast to SSE [33], the selection of a single sub-domain for refinement in each iteration is based on an active learning
approach, the details of which are provided in subsequent sections. Importantly, actively integrating information from the original
mathematical model leads to a significantly more effective decomposition of the space and thus assures accurate approximations,
even for small-size EDs. On the other hand, the identified decomposition and the associated ED are directly connected to the given
mathematical model and, therefore, might be inefficient for general statistical analysis.

The complete surrogate model is assembled from the 𝑛𝒟 local PCEs associated with all sub-domains 𝒟𝑖 as

𝑌 ≈
𝑛𝒟∑
𝑖=0

∑
𝜶𝑖∈A𝑖

𝛽𝜶𝑖𝛹𝜶𝑖 (𝝃)1𝒟𝑖 (𝝃), (16)

where 1𝒟𝑖 (𝝃) represents indicator function, i.e. 1𝒟𝑖 (𝝃) = 1 only if 𝝃 ∈ 𝒟𝑖 and 1𝒟𝑖 (𝝃) = 0 otherwise. In other words, to approximate
the original model at any point, it suffices to determine the one relevant sub-domain and use the corresponding local PCE. Each such
local PCE has its own set of basis functions A𝑖 and corresponding coefficients 𝛽𝜶𝑖 , which can be obtained by any model-selection
algorithm. In this paper, the OLS and LAR algorithms are employed, but generally, any non-intrusive technique can be used.

3.3. Domain selection via modified variance-based criterion

The selection process to identify the ‘‘best’’ subdomain for possible division is governed by extending the 𝛩-criterion from Eq. (12)
as follows

𝛩𝑖 = W𝑖 ⋅ exp (𝑄2
𝑖 )⎵⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⎵

weight of subdomain

⋅
√
𝜎2A𝑖

(𝝃(𝑐)) ⋅ 𝜎2A𝑖
(𝝃(𝑠)) 𝑙𝑀𝑐,𝑠

⎵⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⎵
𝛩𝑐 in 𝑖th subdomain

. (17)
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Fig. 2. The first four steps of the decomposition of a 3D space of input random variables. The thick black lines outline the parent domain selected for division.
The red and green boxes inside it represent the two newly created refinement-child 𝒟𝑖 (red) and inheriting-child 𝒟⋆

𝑖 (green) sub-domains created by splitting the
parent domain 𝓓𝒊 (bold boundaries), selected via Eq. (17), by the cutting plane (blue). The cutting plane is perpendicular to the variable selected for splitting
(blue arrow).

This extended criterion aims to identify sub-domains of the input random space associated with the maximum value of 𝛩𝑐 , while
simultaneously accounting for the size of each subdomain and the accuracy of the existing local PCE. The former is calculated using
Eq. (12) calculated for a rich pool of screening global candidates, while the latter are measured by incorporating the volume of
each sub-domain W𝑖 and the LOO-CV error 𝑄2

𝑖 , respectively. The LOO-CV term, exp (𝑄2
𝑖 ), can be thought to artificially inflate the

domain volume as a penalization for inaccurate approximation. When the approximation is perfect (𝑄2
𝑖 = 0), the true volume of the

sub-domain is used. Meanwhile, a poor approximation with 𝑄2
𝑖 = 1 leads to roughly 2.72 times increased volume.

The three terms featured in Eq. (17) aim at different aspects affecting the accuracy of the final surrogate model: large sub-domains
are preferred by W𝑖, sub-domains containing poor PCE approximation are promoted via exp (𝑄2

𝑖 ) and finally, 𝛩𝑐 prefers sub-domains
with a high concentration of variance. Note that 𝛩𝑐 is calculated for a rich pool of screening candidates, and W𝑖 and exp (𝑄2

𝑖 ) are
calculated directly from the geometry of existing sub-domain and the local PCE model, respectively. The product of all three terms
in the extended criterion, therefore, maintains the desired balance and assures the selection of the sub-domain, 𝒟𝑖, that currently
seems to be the most important for increasing the accuracy of the PCE surrogate model.

Sub-domain 𝒟 with the greatest 𝛩𝑖 is selected and one of the operations described in detail in Section 3.6 is performed, depending
on whether 𝒟𝑖 contains a critical number of ED points. Two scenarios can occur:

• 𝒟𝑖 contains a sufficient number of ED points (𝑛𝑖 ≥ 𝑛sim) to ensure accuracy of a PCE on the domain. Therefore, it becomes
a parent 𝓓𝒊 (bold boundaries in Fig. 2) and is divided into two parts by a selected rule. The child domain containing the
decisive candidate with the greatest 𝛩𝑐 becomes the refinement-child 𝒟𝑖 (see the red subdomains in steps 1−4 in Fig. 2). The
remaining volume becomes an inheriting-child denoted 𝒟⋆

𝑖 (see the green subdomains in Fig. 2), which retains the PCE from
the parent. Division occurs by a cutting plane, oriented perpendicular to the selected direction (blue arrows in Fig. 2), and
naturally, the coordinates of the cutting plane are restricted to the bounding box of the selected parent 𝓓𝒊, see Section 3.6.
If needed, the refinement-child domain 𝒟𝑖 is sequentially filled with additional ED points (according to 𝛩𝑐) to reach 𝑛𝑖 = 𝑛sim
needed to construct a new PCE approximation.

• 𝒟𝑖 does not contain a sufficient number of ED points (𝑛𝑖 < 𝑛sim). The domain is not divided because the suggestion for division
is based on insufficient information. Instead, new ED points are sequentially added to 𝒟𝑖, again using the 𝛩𝑐 criterion. Note
that this scenario practically arises when the selected domain was an inheriting-child in the previous iteration. In this case,
the selected domain has inherited a PCE model that was constructed over a larger domain. When that domain was divided, it
was left with an insufficient number of points from which to construct a new PCE.

3.4. PCE basis functions

Without loss of generality, the proposed method operates on the 𝑀-dimensional unit hypercube with uniform distributions of
input random variables, i.e., 𝑿 ∼ U [0, 1]𝑀 . In the case of a general joint probability distribution of 𝑿, it is always possible to
transform input random vector to the unit hypercube by Rosenblatt transformation [58], Nataf transformation [59] or various
methods based on copulas [60]. Standard normalized Legendre polynomials, orthonormal to the uniform distribution, can thus be
used as basis functions for the PCE. However, due to the decomposition of the input random space to smaller sub-domains, each
with lower bound 𝑎𝑖 and upper bound 𝑏𝑖, it is necessary to use univariate scaled orthonormal Legendre polynomials of 𝑛th order
�̃�𝑛(𝜉) defined as follows

�̃�𝑛(𝜉) = 𝜓𝑛

(2𝜉 − 𝑎𝑖 − 𝑏𝑖
𝑏𝑖 − 𝑎𝑖

)
, (18)

where 𝜓𝑛 represents standard orthonormal Legendre polynomials. Naturally, the transformation of the original input random vector
to the unit hypercube might bring additional non-linearity, and thus one might prefer the direct construction of polynomials
locally orthonormal to the given original probability measure as proposed in the Me-gPC [35]. While certainly possible, this brings
additional computational demands and thus it is not employed here.
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3.5. Local and global statistical estimates from DAL-PCE

The significant advantage of PCE is that analytically post-processing of the expansion yields highly efficient estimates of statistical
moments [42], sensitivity indices [6] and LOO-CV [2]. In the proposed DAL-PCE, since the original domain 𝒟 is decomposed into
a set of sub-domains (see Eq. (15)), standard analytical post-processing can be applied locally, and global characteristics can be
obtained by simple weighted summations that converge to the true values as 𝑛𝒟 increases. Specifically, the global mean value and
variance of a QoI are obtained from localized PCEs (denoted by subscript 𝒟𝑖) as follows

𝜇𝑌 =
𝑛𝒟∑
𝑖=1

W𝑖𝛽0𝑖 =
𝑛𝒟∑
𝑖=1

W𝑖𝜇𝒟𝑖 , (19)

𝜎2𝑌 =
𝑛𝒟∑
𝑖=1

W𝑖
∑
𝜶𝑖∈A𝑖
𝜶𝑖≠𝟎

𝛽2𝜶𝑖 =
𝑛𝒟∑
𝑖=1

W𝑖𝜎
2
𝒟𝑖
, (20)

where the local mean 𝜇𝒟𝑖 and variance 𝜎2𝒟𝑖 are obtained as described in Section 2.3.
Local Sobol’ indices, 𝑆𝒟𝑖

, of any order, can be derived directly from localized PCEs and their first-order (main effect) estimates
are given by

𝑆
𝑋𝑗
𝒟𝑖

= 1
𝜎2𝒟𝑖

∑

𝜶𝑖∈A
𝑋𝑗
𝑖

𝛽2𝜶𝑖 A𝑋𝑗
𝑖 =

{
𝜶𝑖 ∈ A𝑖 ∶ 𝛼

𝑗
𝑖 > 0, 𝛼𝑘≠𝑗𝑖 = 0

}
. (21)

These local Sobol’ indices are used in the DAL-PCE to determine the cut direction (see Section 3.6). Likewise, global Sobol’ indices
can be obtained easily from the weighted summation of local contributions to partial variances normalized by 𝜎2𝑌 as follows

𝑆𝑋𝑗 =

∑𝑛𝒟
𝑖=1 W𝑖

∑
𝜶𝑖∈A

𝑋𝑗
𝑖
𝛽2𝜶𝑖

𝜎2𝑌
. (22)

Similarly, global LOO-CV, 𝑄2, of a QoI can be approximated by the weighted summation of the local contributions as

𝑄2 =
𝑛𝒟∑
𝑖=1

W𝑖𝑄
2
𝒟𝑖
, (23)

where 𝑄2
𝒟𝑖

are obtained from each local PCE using Eq. (9).
These estimates are used throughout the proposed DAL-PCE, as described in detail next.

3.6. Numerical algorithm

Based on the presented theoretical background, we now present the numerical algorithm for the domain adaptive localized PCE.
As mentioned above, the whole process can be divided to two iterative tasks: (i) decomposition of the input random space and (ii)
construction of localized PCEs. Both of these tasks are described in the following paragraphs with specific reference to the steps in
Algorithm 1.

The first task identifies the important sub-domain 𝒟𝑖 that should be divided and over which low-order local PCE should be
constructed. The sub-domain 𝒟𝑖 is specifically identified using the 𝛩𝑖 criterion from Eq. (17), which again incorporates three
important characteristics for accurate surrogate modeling — the size of the sub-domain W𝑖, the accuracy of the existing local
PCE measured by 𝑄2

𝒟𝑖
, and the original 𝛩𝑐 criterion measuring the variance contribution in 𝒟𝑖. While W𝑖 and 𝑄2

𝒟𝑖
are computed

for the whole sub-domain, 𝛩𝑐 is computed at specific realizations of input random vector. Therefore, it is necessary to cover the
sub-domains with a sufficiently large number of screening candidates, such that the total global number of screening candidates is
given by 𝑛𝑐,𝑔 . Based on numerical experiments, we recommend 𝑛𝑐,𝑔 ≥ 1000𝑀 to ensure that each sub-domain contains a sufficient
number of screening candidates. Note that the screening candidates are used only to identify 𝒟𝑖 [step 5]. They are not used for the
ED, and thus even high 𝑛𝑐,𝑔 does not bring any additional computational demand.

Once 𝒟𝑖 is identified, it is necessary to check whether there are enough samples to construct a PCE inside the sub-domain.
We start with finding out how many points belong to the selected domain 𝒟𝑖 [step 6]. If the number of samples in the identified
sub-domain, 𝑛𝑖, is greater than (or equal to) 𝑛sim [step 7], a local PCE already exists for 𝒟𝑖. The subdomain is then assigned as a parent
𝓓𝒊 for division [step 8] and the first-order Sobol’ indices are estimated by Eq. (22) [step 9]. This identified parent 𝓓𝒊 is divided in
the direction of the highest first-order Sobol’ index 𝑆𝑋𝑗𝒟𝑖

. The new restricted coordinates of refinement-child 𝒟𝑖 are identified and
the inheriting-child 𝒟⋆

𝑖 is created [step 10]. Further, the number of ED samples 𝑛𝑖 in the refinement-child 𝒟𝑖 is determined [step
11]. On the other hand, if the identified sub-domain 𝒟𝑖 does not contain enough samples (i.e. 𝑛𝑖 < 𝑛sim), the inherited PCE from
the previous iteration is not sufficiently local (it was trained over a domain that has since been divided) and it is necessary to add
new samples to 𝒟𝑖 before constructing a new local PCE.

The second task of the proposed algorithm is sequential sampling and adaptive PCE construction in sub-domain 𝒟𝑖. Recall that
this domain may be either
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Algorithm 1 DAL-PCE: Active Domain Decomposition and Construction of Localized PCEs
Input: maximum local polynomial order 𝑝, number of screening global candidates 𝑛𝑐,𝑔 , number of local candidates 𝑛𝑐,𝑙, number
of iterations 𝑛iter

1: set the minimum number of realizations for local PCE construction 𝑛sim ∈ ⟨𝑃 , 2𝑃 ⟩
2: generate a rich pool of 𝑛𝑐,𝑔 screening candidates
3: generate the initial ED (size 𝑛sim) and construct the initial global PCE
4: for 1 to 𝑛iter do
5: identify the sub-domain 𝒟𝑖 with the highest 𝛩𝑖 based on screening candidates
6: 𝑛𝑖 ← number of ED samples existing in 𝒟𝑖
7: if 𝑛𝑖 ≥ 𝑛sim then
8: the identified sub-domain 𝒟𝑖 becomes a parent 𝓓𝒊
9: identify the direction of the highest first-order Sobol’ index 𝑆𝒟𝑖

of the parent 𝓓𝒊
10: restrict coordinates of 𝓓𝒊 → 𝒟𝑖 and create 𝒟⋆

𝑖
11: 𝑛𝑖 ← number of ED samples existing in 𝒟𝑖
12: end if
13: generate 𝑛𝑐,𝑙 local candidates in 𝒟𝑖
14: while 𝑛𝑖 < 𝑛sim do
15: extend size of local ED 𝑛𝑖 using the local 𝛩𝑐 criterion
16: end while
17: reconstruct local PCEs in the 𝒟𝑖
18: end for

Output: list of subdomains and corresponding PCEs

(i) a refinement-child that was just divided but does not contain a sufficient number of points (𝑛𝑖 < 𝑛sim) or,
(ii) an inheriting-child that now does not contain at least 𝑛sim ED samples.

Next, a set of local candidates is generated in region 𝒟𝑖 [step 13]. To ensure sufficient assessment of the coverage of the domain, the
number of local candidates is empirically recommended as 𝑛𝑐,𝑙 ∈ ⟨3𝑃 , 5𝑃 ⟩ [28]. From these candidates, the standard 𝛩𝑐 criterion
in Eq. (12) is used to iteratively select the best candidates until there are 𝑛sim samples in 𝒟𝑖 [step 14-16]. This sequential extension
of the sample in 𝒟𝑖 is adaptive in the sense that the pairwise distances in Eq. (12) between candidates and existing ED points
are updated after the addition of each new point. However, because 𝑛𝑖 < 𝑛sim the local variance densities are estimated from the
previously existing PCE, which cannot be updated until a sufficient number of samples are available in 𝒟𝑖.

The last step of each iteration is to construct the local PCE using scaled Legendre polynomials as basis functions (see Eq. (18))
[step 17]. Any non-intrusive technique can be used to estimate the coefficients 𝜷; we use LARS and OLS for an adaptive construction
of the local PCEs in this paper. At the end of the iteration, all sub-domains are re-numbered and a list of sub-domains with
corresponding PCEs can be exported, or the next iteration can be started. Note that the final surrogate model according to Eq. (16)
is discontinuous, which might be problematic for continuous functions. However, this problem is less significant with an increasing
number of iterations because the sub-domains are smaller, and the 𝛩 criterion prefers samples near boundaries.

3.7. Adaptivity in PCE construction and domain decomposition

Adaptivity is central to the proposed DAL-PCE. In the proposed algorithm, there are two types of adaptivity employed:

(i) adaptivity in PCE construction (selection of the optimal set of basis functions), and
(ii) adaptivity in domain decomposition

Since the PCE can be constructed by any regression technique in each sub-domain, PCE adaptivity is incorporated by sparse solvers
and best model selection algorithms, e.g. Least Angle Regression [44], orthogonal matching pursuit [45] or Bayesian compressive
sensing [46]. Although sparse solvers are often used for PCE with high 𝑝, this adaptivity is also important for reducing the number
of basis functions (and thus the minimum number of ED samples) for high-dimensional examples or, in our case, for very low-size
ED in each 𝒟𝑖 approximated by low-𝑝 local PCE.

The second type of adaptivity is the proposed adaptivity in the domain decomposition. At any point in the iterative process, the
existing ED samples can be used to construct local PCEs or a single global PCE. The DAL-PCE is not guaranteed to provide a better
approximation than the global PCE. This can be measured via 𝑄2, specifically by computing 𝑄2

local from Eq. (23) and 𝑄2
global from

a single global PCE according to Eq. (9). If 𝑄2
local > 𝑄2

global at a given iteration, the domain decomposition is deemed to be poor
and the whole decomposition process is re-started. That is, the complete geometrical decomposition is forgotten and all existing ED
points are taken as an initial ED for a brand new run of the algorithm. This is illustrated in Fig. 3, which shows the decomposition
(top) and the associated error (bottom) right before the restart (a) at 𝑁sim = 181, (b) the new decomposition and error right after
the restart, and (c) the final decomposition/error, which shows significant improvement over the global PCE. These histories show
the standard 𝑅2 error defined in Eq. (24). It is not necessary to check this criterion at every iteration, but it is suggested to check
it periodically, every 𝑛𝑟 steps, to ensure adequate local refinement.
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Fig. 3. Illustration of domain decomposition restart. (a) decomposition and error evolution prior to restart, (b) rebuilt decomposition and error drop right after
the restart, (c) final decomposition and error showing that the restart unlocks a dramatic decrease in error.

3.8. Stopping criteria

The proposed DAL-PCE algorithm can be fully automated by adding an adequate stopping criterion. A simple but practical
stopping criterion is based on computational budget, i.e. once the total number of model evaluations 𝑁sim or number of iterations
𝑛iter have reached a critical level/budget. One may also use a stopping criterion based on decomposition pattern, e.g. the smallest
or the largest volumes of any subdomain, to ensure a desired resolution. Valuable stopping criterion can be also obtained directly
from 𝑄2, corresponding to a target/threshold level of achieved accuracy. Regardless of the selected stopping criteria, it can easily
be applied before step 5 of the proposed algorithm (start of each iteration).

4. Numerical experiments

The proposed DAL-PCE is presented on four numerical examples of increasing complexity and which illustrated different aspects
of the approach. The obtained results are compared (a) to the standard global PCE approach with adaptive maximum order 𝑝 ∈ [5, 25]
and (b) to SSE [33], as current state-of-the-art non-intrusive surrogate modeling technique based on the domain decomposition. The
PCE is constructed using the UQPy package [48] and the original implementation of SSE is used from the UQLab package [49]. To
compare methods, the relative mean squared errors 𝜖 are calculated for all three approximations 𝑓 on a validation set containing
a large pool of 106 integration points generated by crude Monte Carlo according to

𝜖(𝑿) ∶=
E
[(
𝑓 (𝑿) − 𝑓 (𝑿)

)2]

D
[
𝑓 (𝑿)

] , (24)

where E[] and D[] are the mean value and variance operators, respectively.
To show representative results of the proposed DAL-PCE algorithm, the calculations were repeated 100 times, and the same

settings of the algorithm for all examples were selected as follows: maximum local polynomial degree 𝑝 = 2, number of global
candidates 𝑛𝑐,𝑔 = 1000 𝑀 , number of local candidates 𝑛𝑐,𝑙 = 5𝑃 , the minimum number of samples for local PCE construction
𝑛sim = 1.5𝑃 , the minimum number of iterations before checking for restart 𝑛𝑟 = 20, and 𝜷 are obtained by LARS and OLS algorithm.
The minimum number of samples in sub-domains required to justify an expansion for SSE was set identically to DAL-PCE, and
polynomial order is adaptively selected in the range 𝑝 ∈ [2, 6]. Since the SSE is not a sequential approach, the presented results
were obtained for ten discrete sample sets of increasing size to compare the convergence of the method. Note that all samples and
candidates are generated by LHS for all compared approaches, though it was shown [28] that for the variance-based sequential
sampling, it is significantly better to use advanced techniques such as Coherence D-optimal sampling [53].
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Fig. 4. (a), (b) The adapted domain and ED before (iteration 4) and after (iteration 11) exploration and discovery of the exponential part of the mathematical
model. (c) Final surrogate models from global PCE and DAL-PCE. (d) Convergence plot comparing the mean square error for global PCE SSE, and DAL-PCE.
The convergence plots for Global PCE and DAL-PCE show continuous mean value ±𝜎 intervals from 100 repeated trials, while those for SSE are plotted for
several discrete ED sizes.

4.1. One-dimensional toy example

The first example involves a simple 1D function [33] that is extremely difficult to approximate with PCE due to the third, highly
nonlinear ‘‘exp’’ term

𝑓 (𝑋) = −𝑋 + 0.1 sin(30𝑋) + exp(−(50(𝑋 − 0.65))2), 𝑋 ∼ U [0, 1]. (25)

The poor performance of a single global PCE learned from 200 samples is depicted by the blue line in Fig. 4c where it is clear that
a single global PCE is not able to accurately approximate the function even for a high number of samples and high maximum
polynomial order 𝑝 ∈ [5, 25]. This function was originally developed to demonstrate the efficiency of SSE based on domain
decomposition and thus, it is a natural choice for comparison of the proposed DAL-PCE and SSE.

Fig. 4a–b show a typical realization of the DAL-PCE where the algorithm sequentially decomposes the domain and adds
additional samples to the ED. Specifically shown are the 4th and 11th iterations. The boundaries of sub-domains are represented by
blue vertical lines and red dots show the positions of samples in the ED. Once the algorithm discovers the highly nonlinear region
(the steep peak caused by exp), it progressively refines this region and adds more samples there as a result of the high variance
density. Of course, these figures show only one realization of the algorithm, and the decomposition is dependent on the initial ED.
Therefore, it is necessary to repeat the algorithm many times with random initial ED to assess convergence.

Fig. 4d shows convergence of the error 𝜖 from 100 repeated trials. The single global PCE is unable to accurately approximate the
original function even when using high 𝑝, and thus, 𝜖 does not converge, as expected. Both methods based on domain decomposition
(DAL-PCE and SSE) achieve great accuracy already for 200 samples. However, the DAL-PCE consistently has 1–2 orders of magnitude
higher accuracy than SSE for the given number of samples. Moreover, increase in variance of 𝜖 is, in general, slower in DAL-PCE than
in SSE. Fast increment in the variance of SSE can also be seen in the original paper [33]. Finally, we again observe that convergence
is continuous with DAL-PCE, where convergence can only be assessed at discrete sample sizes with SSE through a new analysis. All
of these advantages of the DAL-PCE can be attributed to active learning, which both explores the space and exploits the behavior of
the function to decompose the domain and add samples. Although active learning might lead to lower accuracy (higher 𝜖) initially
(for small 𝑛sim = 10–20) as it is dominated by exploration, it rapidly improves once it identifies important features and begins to
favor exploitation.
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Fig. 5. Results for the 2-dimensional Singularity function: (a) original mathematical model, (b) approximation via DAL-PCE (background color), current domain
division and the corresponding ED, (c) local LOO-CV 𝑄2

𝒟𝑖
and 𝛩𝑖 value for each sub-domain, (d) convergence plots for DAL-PCE, Global PCE, and SSE showing

the mean value and ±𝜎 interval. Convergence plots for SSE show the mean ±𝜎 at discrete sample sizes.

4.2. Two-dimensional singularity

The second example involves a 2D function with mirrored quarter-circle arc line singularities [28]. The form of the function is
given by

𝑓 (𝑿) = 1
|0.3 −𝑋2

1 −𝑋2
2 | + 𝛿

− 1
|0.3 − (1 −𝑋1)2 − (1 −𝑋2)2| + 𝛿

, 𝑿 ∼ U [0, 1]2, (26)

where the strength of the singularities is controlled by the parameter 𝛿, which we set as 𝛿 = 0.1. The singularities in this example
represent a challenging task for a global PCE even with high order, due to the well-known Gibbs phenomenon [61]. It is thus
beneficial to identify the location of the singularity, locally decompose the domain, and construct low-order local PCEs.

Fig. 5 illustrates the decomposition and DAL-PCE approximation at a given stage of the computation. Panel (a) visualizes the true
values of the function via a background color. The same coloring scheme is used in panel (b) for the pointwise information available
in the current ED (small circles) and for the function approximation via DAL-PCE by the background color. Panels (b) and (c) show
also the final domain decomposition. The symmetry in the decomposition documents the great convergence of the DAL-PCE thanks
to an adaptive decomposition described in the previous section. Plot (c) shows the local 𝑄2

𝒟𝑖
error in each individual sub-domain

(darker color corresponds to higher local error). These local errors clearly show localization of the prediction error to very small
areas near singularities, which are continually being refined. The color of the small solid squares in the center of each sub-domains
shows the 𝛩𝑖 value for that sub-domain.

Finally, the convergence plot in Fig. 5(d) shows that both DAL-PCE and SSE outperform the global PCE, as expected. The SSE
performs comparable to or slightly better than DAL-PCE for small 𝑁sim, but the DAL-PCE begins to outperform SSE as 𝑁sim grows
thanks to the active learning approach that targets samples in the vicinity of the singularities. Note that the error converges for both
SSE and DAL-PCE as we approach 1000 samples and does not seem to substantially reduce after this. This is due to the fundamental
limitation of trying to approximate this singularity, even locally, with low-order polynomials.



Mechanical Systems and Signal Processing 204 (2023) 110728

13

L. Novák et al.

Fig. 6. Results for the 2-dimensional discontinuity function: (a) original mathematical model, (b) approximation via DAL-PCE and ED, (c) local LOO-CV 𝑄2
𝒟𝑖

and 𝛩𝑖 value for each sub-domain, (d) convergence plots for DAL-PCE, Global PCE, and SEE showing the mean value and ±𝜎 interval. Convergence plots for
SSE show the mean ±𝜎 at discrete sample sizes.

4.3. 𝑀-dimensional discontinuity

The third example investigates the role of dimensionality on the performance of the proposed DAL-PCE. The following
discontinuous function is defined for an arbitrary number of input random variables 𝑀 [32]

𝑓 (𝑿) =

{
sin (𝑋1𝜋) sin (𝑋2𝜋) if 𝑥1 ≤ 0.5 and 𝑥2 ≤ 0.5∑𝑀
𝑖=3𝑋𝑖 otherwise,

𝑿 ∼ U [0, 1]𝑀 . (27)

This function has a discontinuity in the first two input random variables, which can be seen in Fig. 6a. A single global PCE cannot
accurately approximate the function because of the discontinuity, although the function 𝑓 (𝑿) can be easily approximated by two
separate PCEs in the two regions for which the definitions differ. But, this requires a priori knowledge of the discontinuity location.
Since the location of the discontinuity is assumed to be unknown, this function is a good example for domain adaptation using
DAL-PCE.

The detailed results for a 2D version of this problem are depicted in Fig. 6 in identical form as in the previous example. Note
that the local 𝑄2

𝑖 errors Fig. 6c show perfect accuracy in the part of the input random space where 𝑓 (𝑿) = 0 and thus the associated
sub-domains are not preferred for further decomposition. The convergence plot in Fig. 6d confirms that a single global PCE is
not able to create an accurate approximation, and adding more points to ED does not lead to significant improvements in the
approximation. The mean values of errors 𝜖 associated with the proposed DAL-PCE approach are significantly lower in comparison
to SSE (1–2 orders of magnitude) – similarly as in the first example, though the convergence trend is similar for both methods. SSE,
however, uses a random splitting routine. This can lead to very high variance of results since the accuracy is highly dependent on
the pattern of the decomposed input random space. This clearly shows the advantage of an active learning approach.

The influence of dimensionality 𝑀 on the convergence of the DAL-PCE, SSE, and global PCE is studied in Fig. 7 for (a) 3, (b)
5, (c) 6, and (d) 8 input random variables. As the domain dimension increases, the linear part of the function 𝑓 (𝑿) occupies an
increasing proportion of the domain while the discontinuity remains low-dimensional. The proposed DAL-PCE greatly improves
the convergence because it is able to identify an ideal decomposition and local samples to resolve the discontinuity. For low-
dimensions (𝑀 = 2, 3), SSE error 𝜖 shows a decreasing trend that is better than global PCE but has an extremely high variance.
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Fig. 7. Convergence plots for the 𝑀-dimensional function: (a) 3-dimensional version, (b) 5-dimensional version, (c) 6-dimensional version, and (d) 8-dimensional
version. Convergence plots for the DAL-PCE and global PCE show the mean value ±𝜎 interval. Convergence plots for SSE also show the mean ±𝜎, but at discrete
sample sizes.

This is caused by a lack of control in sample placement. The domain decomposition in SSE is a product of sample location, and
without active learning to guide the sample placement, SSE will sometimes produce very good decomposition and sometimes very
poor decomposition. Meanwhile, the proposed DAL-PCE errors have comparably low variance for low-dimensions and consistently
have accuracy comparable to, or better than, the best SSE realizations.

As the dimension, 𝑀 , increases, the DAL-PCE is able to maintain a very high level of accuracy, while the accuracy degrades
completely for the SSE such that it is comparable to the global PCE. The DAL-PCE is able to maintain its low error because the
discontinuity remains low-dimensional and the active learning process is able to target this region for domain refinement and
sampling. This means that the DAL-PCE remains largely independent of the problem dimension and instead depends predominantly
on the intrinsic dimension of the discontinuous/nonlinear features of the model. The performance of SSE, on the other hand, degrades
with dimension because its domain decomposition depends only on a set of a priori specified points that are not selected in a way
that is aware of the important features of the model. Consequently, as the dimension increases, the algorithm becomes less likely to
refine the domain appropriately around an embedded low-dimensional feature. We remark that this desirable scalable convergence
trend of the DAL-PCE is not likely a universal property, as the trend may break down in problems where the intrinsic dimension of
the discontinuity/nonlinearity is high or where the discontinuity occupies a very small proportion of the domain — in which case
exploration of the space to find the important feature may take a very large number of samples.

In the present example, the discontinuity in the function given in Eq. (27) lies at 𝑥1 = 0.5 and 𝑥2 = 0.5, which corresponds to the
exact location where the domain will be split for both SSE and during the early iterations of the DAL-PCE. One might argue that
this presents an unreasonable advantage for the proposed algorithm. We therefore modified the function such that the discontinuity
lies at 𝑥1 = 0.61 and 𝑥2 = 0.61. Fig. 8 shows the convergence for the DAL-PCE and SSE for this modified function with varying
dimensions, 𝑀 . The absolute errors 𝜖 exhibit a slower decrease, especially for dimensions 𝑀 = 3 and 𝑀 = 5. However, the proposed
active learning still leads to superior results (especially for higher dimensions, as in the previous case). Note that there are visible
spikes in the DAL-PCE convergence graph for the 3-dimensional example. Although the results were statistically processed, these
spikes are caused by the restart adaptivity occurring at the same 𝑁sim in each replication. In this case, the optimal decomposition
pattern is very complicated, and therefore, the algorithm activates the restart adaptivity frequently (after multiples of 𝑛𝑟 steps) until
it finds a suitable pattern to continue convergence. SSE in the 3- and 5-dimensional cases has a higher mean error and significantly
lower variance in comparison to the previous example. This is caused by the fact that the modified discontinuity location no longer
lies along the boundary of the domain decomposition. In the previous example, some SSE realizations achieved near-perfect accuracy
because the domain was coincidentally divided along the discontinuity.

This phenomenon is investigated more closely in Fig. 9, which compares the number of outliers in both versions of 3D examples.
In addition to the mean ±𝜎 seen previously, the figure also shows standard boxplots for SSE (median along with lower and upper
quartiles) and the corresponding number of ‘‘extreme’’ realizations producing very high accuracy (top axis) for (a) the original
position of discontinuity; and (b) discontinuity at 𝑥1 = 0.61 and 𝑥2 = 0.61. As can be seen, in panel (a) there are many outliers
producing 𝜖 < −7, which effectively decreases 𝜇 relative to the median while also significantly increasing the variance. In contrast,
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Fig. 8. Convergence plots for the modified 𝑀-dimensional function: (a) 3-dimensional version, (b) 5-dimensional version, (c) 6-dimensional version, and (d)
8-dimensional version. Convergence plots for the DAL-PCE and global PCE show the mean value ±𝜎 interval. Convergence plots for SSE also show the mean
±𝜎, but at discrete sample sizes.

Fig. 9. Convergence plots for DAL-PCE and SSE with additional boxplots for SSE showing the median, lower and upper quartiles and outliers for: (a) the 3D
example with a discontinuity at 𝑥1 = 0.5 and 𝑥2 = 0.5, (b) the 3D example with a discontinuity at 𝑥1 = 0.61 and 𝑥2 = 0.61.

DAL-PCE has no outliers, and it leads to very consistent results. In panel (b), there are no outliers for either SSE or DAL-PCE, and
the results are thus consistent with low variance for both methods.

4.4. Dynamical response of asymmetric shallow von Mises truss

In this section, we demonstrate the relevance of the proposed method for a representative engineering example exhibiting
discontinuous response. Consider the shallow two-bar planar truss subjected to a vertical load at its top joint, as presented in [15]
and illustrated in Fig. 10a. The target is to approximate the outcome of a detailed dynamical analysis. The approximated quantity of
interest is the displacement of the loading point. These types of engineering systems are prone to snap-through instability. The von
Mises truss pictured in Fig. 10a is an example of bistable shallow structures, which has been used for many years as a benchmark
in the numerical analysis of nonlinear structures, including the dynamic buckling of structures.

The truss is formed by two prismatic bars made of a hard wood (density 800 kg/m3, modulus of elasticity 𝐸 = 12 GPa). There
are two variables in the studied von Mises truss: (i) the loading vertical force 𝐹 , and (ii) a half sine-wave imperfection of the left
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Fig. 10. Asymmetric shallow von Mises truss. (a) Initial geometry with two random variables 𝐹 and 𝛿; (b) illustrative sketch of the discrete dynamical model
and the meaning of output variable 𝑦𝐹 (the course of dynamical response obtained by the FyDiK code is shown in FyDiK animation, see the supplementary
material); (c) illustration of the discontinuous response function of the two input variables.

Fig. 11. Results for the von Mises truss example: (a) original mathematical model (numerical solution), (b) approximation via DAL-PCE and ED, (c) local
LOO-CV 𝑄2

𝒟𝑖
and 𝛩𝑖 value for each sub-domain, (d) convergence plots for DAL-PCE, Global PCE, and SSE showing the mean value and ±𝜎 interval; convergence

plots for SSE show the mean ±𝜎 at discrete sample sizes.

bar having magnitude 𝛿, see the sketch in Fig. 10a. The load is applied dynamically as a step function at time zero for an unlimited
duration. The structure is modeled, as illustrated in Fig. 10b. In particular, the mass of the bar is concentrated in 21 mass points,
including the supports and the loading point. These mass points are connected via 10 + 10 translational springs representing the
normal stiffness of the true bars. The pairs of the axial members are connected via a rotational spring having zero moment for a zero
angle between adjacent bars. The only exceptions are the loading ans support points where there are no rotational springs attached
(hinges). The damping is associated with the mass points via linear viscous damping coefficient set to 11 N s∕(kg m) approximating
the relative damping of about 3%. Explicit dynamics solver FyDiK [62,63] was used to solve the equations of equilibrium at the
mass points; see the attached FyDiK animation (see the supplementary material). The animation compares two solutions with a
small difference in the loading force magnitude: the top truss keeps its upright configuration while the bottom truss is loaded by a
larger force leading to snap-through. The changing colors of individual segments of the bars represent the pulsating normal forces.
The numerical solution lasts to up to two seconds, which is the time needed for almost complete stabilization of the solution (kinetic
energy drops below a negligible threshold).
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Fig. 12. Convergence plots of DAL-PCE in high-dimensional example: 𝑀 dimensional function with localized low-dimensional discontinuity. The input random
space contains 𝑀 = 10, 15, 20, 30 random variables (from left to right).

Since the structure is very shallow, sudden application of the vertical force can cause snap-through buckling, wherein the loading
point drops down between the supports and the members switch from a state of compression to tensile stresses in the final stable
state. We specifically study the horizontal coordinate 𝑦𝐹 of the loading point after the dynamic response stabilizes to the final
deformed shape. The force 𝐹 ∈ (31.6, 772.6) kN and initial imperfection 𝛿 ∈ (−0.4, 0.4) m are treated as uniform random variables
mapped to the unit square such that the model input X ∼ U [0, 1]2. Because of the potential snap-through buckling, the solution
is discontinuous as illustrated in Fig. 10c. On each side of the discontinuity, the solution 𝑦𝐹 is smooth and slowly varying, having
values near +1 m and −1 m, respectively. Note that the output is not symmetric with respect to 𝛿 = 0 because the dynamical response
evolves differently for concave and convex initial displacements.

The sharp boundary between the buckled and unbuckled regions, shown in Fig. 11a cause global PCE to produce poor
approximations that are vulnerable to the Gibbs phenomenon, similar to the example in . This is shown by the convergence plots in
Fig. 11d comparing global PCE, DAL-PCE, and SSE. Clearly, the complexity of this example and the complicated shape of the
discontinuity limits the accuracy of all the surrogate models. The proposed DAL-PCE achieves low accuracy for small sample
sizes because the correspondingly small number of sub-domains and low-order PCEs are unable to sufficiently approximate the
boundary. Therefore, the global PCE and SSE (with a low number of embedding levels) are initially better. With an increasing
number of samples, the proposed DAL-PCE approach leads to superior results because the active learning is able to resolve the
discontinuity as illustrated in Fig. 11b, which shows the domain decomposition and approximation after 2000 samples. Fig. 11c
shows the corresponding LOO-CV errors for each subdomain, demonstrating the errors are confined to small, localized regions near
the boundary.

5. Discussion & future work

The proposed DAL-PCE approach is a general methodology for the decomposition of the input random space and construction
of localized PCEs using active learning. The proposed active learning is based on a novel 𝛩 criterion that optimally balances global
exploration with local exploitation of the model. However, an important topic of further research is to study the behavior of the
proposed criterion in higher dimensions. In order to show the computational possibilities of the proposed algorithm for higher
dimensions, the study of the third example with growing 𝑀 can be seen in Fig. 12. As can be seen, the trend of the convergence
is identical to in the previously presented lower-dimensional cases. The numerical construction of DAL-PCE for growing 𝑀 is not
significantly more costly because just a single sparse PCE is constructed in each iteration (i.e., there is only a computational cost
of an ordinary least square regression). Therefore, it is possible to use DAL-PCE for arbitrary dimensions 𝑀 under the assumption
that it is possible to locally construct standard sparse PCE. The computational cost of the domain decomposition is negligible, and
so is also the computational cost of evaluating the 𝛩 criterion for all candidates. However, we would like to emphasize that this
example has low dimensional discontinuity; thus, the DAL-PCE is extremely efficient in this case. However, the efficiency could be
significantly lower for examples with high-dimensional discontinuities, where sparse solvers do not bring any benefits. The proposed
algorithm can be easily applied to examples in low to medium-sized space dimensions. However, there are still some unresolved
theoretical questions when it comes to high-dimensional space. In particular, the geometrical terms 𝑙𝑀𝑐,𝑠 and W𝑖 likely cause poor
convergence in high dimensions. Although some preliminary results focused on investigating the term 𝑙𝑀𝑐,𝑠 in high dimensions was
previously performed in the paper [28] proposing the original 𝛩 criterion, it is still necessary to perform an extensive study of its
behavior as well as investigating the influence of W𝑖, which may need to be reformulated for high dimensions.

The roles of the individual components of the 𝛩 criterion are investigated in Fig. 13, which reports their evolution during the
convergence of the first 1D example. The exploration part (orange line) is composed of the subdomain weights (blue) and the
powered distances between the global candidates and the existing ED samples (green). The exploitation part (red) accounts for
the local variance density. The left column of the figure shows statistical results based on 50 repetitions (averages ± one standard
deviation). Based on the average trends of the red and orange lines, we can identify three stages with typical proportions between
exploration and exploitation. In the first stage lasting about 20 samples, the sampling is slightly dominated by exploration. This
corresponds to the situation in which only little is known about the approximated function. In the second stage (roughly between
20–50 samples), the exploitation term does not tend to decrease, which suggests the dominance of the exploitation aspect in the
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Fig. 13. Components of 𝛩 criterion in the 1D example (first row): statistical results based on 50 repetitions (left); a selected single realization (right). The
convergence of the achieved accuracy can be seen in the second row similarly as in the previous examples.

candidate selection and corresponds to sampling near the explored regions with significant non-linearities. In the third stage (from
about 50 samples), the algorithm promotes exploration in the search for new important regions as expected.

The behavior of the algorithm is better visible when focusing on just one realization (run). The right-hand side column of Fig. 13
shows one selected realization of the algorithm. The figure clearly identifies stages dominated by exploitation: the convergence
plot shows peaks in the composite criterion caused by the sudden increases in the exploitation term (red). In these stages, the
approximation errors rapidly decrease thanks to significant adjustments of the local PCEs, which are based on exploitative samples.

Besides already presented comparisons of DAL-PCE to SSE based on similar concepts (PCE combined with domain decom-
position), the following Fig. 14 shows a comparison to adaptive Kriging. Kriging is typically preferred for an approximation of
highly non-linear functions, and it shares some of the possibilities of the analytical post-processing for sensitivity and statistical
analysis [64]. Therefore it is, besides PCE and SSE, a natural choice for comparison with the proposed DAL-PCE. Specifically, we
use adaptive Kriging based on expected improvement for global fit learning function [65] implemented in UQPy [48]. Kriging is
constructed with linear trend, Matérn kernel, correlation lengths equal to 𝑙GP = 0.1 and the process variance 𝜎GP = 0.1 in both
examples. The learning function governing adaptivity is in the following form

ℒ (x(𝑐)) =
[
𝑓 (x(𝑐)) − 𝑓 (x(𝑠))

]2 + 𝜎𝑓 (x(𝑐))2, (28)

where x(𝑐) is a candidate, x(𝑠) is a closest sample in the existing ED and 𝜎𝑓 (x(𝑐))2 is a Kriging variance in the location of candidate.
Candidates were generated by LHS, similarly as in DAL-PCE. The numbers of initial samples and candidates are identical as for
DAL-PCE. Although there are many learning functions for reliability analysis based on the Kriging prediction, these are not useful
for the global approximation addressed in the present paper. However, as can be seen in Eq. (28), the selected learning function
has a very similar rationale as the 𝛩 criterion: it aims to construct a space-filling design via the second term, but it prefers regions
associated with high local non-linearities; therefore, it can be directly compared to DAL-PCE.

Adaptive Kriging was compared to DAL-PCE in two selected examples: (a) the first 1D example and (b) the third example with
discontinuity in 2D. On the one hand, Kriging is significantly more efficient in the 1D highly non-linear example, as expected.
The reason is that the approximated function was specifically proposed as a very challenging task for PCE due to the exponential
term, which polynomials cannot easily approximate. However, the exponential term is not very challenging for Kriging or other
surrogate models. On the other hand, Kriging clearly fails in example (b) containing discontinuity because continuous surrogate
models cannot approximate such functions without domain decomposition as in DAL-PCE or SSE. Moreover, adaptive Kriging
(light green in Fig. 14b) is even worse than standard Kriging without adaptive sampling (solid green) in this example because the
discontinuity leads to ED consisting of black dots (initial sample by LHS) adaptively extended by an enormous number of samples
very close to each other (green dots in the vicinity of function discontinuity), i.e., the first term (exploitation part) of the additive
learning function is almost always dominating in Eq. (28).
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Fig. 14. Comparison of DAL-PCE and adaptive Kriging in two examples: (a) convergence plot of 1D non-linear example, (b) convergence plot of 2D example
with discontinuity and final adapted ED.

From the obtained numerical results supporting the theoretical characteristics of both methods, it can be stated that the proposed
DAL-PCE offer a general extension of standard global PCE, allowing an approximation of highly non-linear functions. However, it
does not necessarily lead to superior performance in comparison to Kriging, which is an extremely powerful interpolator, especially
for reliability analysis, though the PCE is often preferred as a global surrogate for its extensive analytical post-processing for UQ [42].

Although this paper presents one specific learning algorithm, the methodology is general and amenable to modifications to reflect
the specific user’s needs. The whole process can be divided into two tasks: (A) decomposition of the input random space and (B)
construction of localized PCEs; and both can be easily modified as discussed further:

(A) The most important sub-domain 𝒟𝑖 is identified by extended 𝛩 according to Eq. (17) evaluated for a large number of global
candidates. In this paper, we use standard LHS for candidate generation, but it may be beneficial to use different sampling
methods that produce more uniform coverage of the whole input random space (see e.g. [57,66,67]). Although generating
a large number of candidates is generally possible, it might be challenging to uniformly cover the entire input random space,
especially in high dimensions. Thus, one can use any sampling technique suitable for a specific example, e.g., [68].
Once the 𝒟𝑖 is identified via Eq. (17), it is either divided (providing it contains enough ED points) or the sample is extended
inside it, to achieve a better PCE approximation. The simplest division occurs by splitting the volume into two parts of
identical hypervolume in the direction of the highest first-order Sobol’ index. However, the algorithm can accommodate
various different approaches. For example, it is possible to divide the 𝒟𝑖 into a higher number of sub-domains, not just two.
Moreover, other criteria can be used instead of splitting the domain into parts of equal hypervolume. For example, the cutting
plane can be positioned so to split the domain variance into equal parts.

(B) The user can choose to employ any existing method to construct the non-intrusive PCEs, including various sparse solvers or
adaptive algorithms, which may be preferable for certain applications [10]. For example, we use LARS with OLS. However, it
is generally more efficient to use active learning based on the 𝛩 criterion for PCE as shown in [28], which employs variance-
based sequential sampling. This improvement can be integrated within the DAL-PCE to make local PCE more efficient in each
subdomain, thereby improving the overall convergence. This can be compounded by the use of advanced sampling techniques
within the subdomains, such as Coherence D-optimal sampling [52,53].

As seen from the previous paragraphs, the whole algorithm can be adapted for specific needs reflecting the characteristics
of a given mathematical model, such as dimensionality, sparsity, non-linearity etc., by simply exchanging components of the
proposed algorithm for suitable existing (or new) techniques. Note that even after the modification, the whole methodology
based on 𝛩 criterion is still valid and can be used for uncertainty quantification and surrogate modeling as described in this
paper. Moreover, in comparison to SSE, the DAL-PCE sequentially adds points and divides the sub-domains one-by-one based on
information obtained from the previous iteration. Another significant advantage of the DAL-PCE is that it provides estimates of the
local errors, 𝑄𝒟𝑖

, associated with each sub-domain. Since localized PCEs are constructed independently, local errors estimate the
local accuracy/uncertainty of the surrogate model directly and can be assembled to provide global error measures. Naturally, local
accuracy is very important information that can be used for further probabilistic analysis and active learning. Although this paper
does not propose any specific approach for further processing of this information, it could serve as a main ingredient for various
active learning algorithms. For example, it could be directly used to quantify a prediction uncertainty in industrial applications and
possibly extend the ED in a sub-domain of interest.

6. Conclusion

The paper presented a novel approach, domain adaptively localized PCE, for the adaptive sequential construction of localized
PCEs based on active learning and decomposition of the input random space. It combines adaptive sequential sampling based on the
recently proposed 𝛩 criterion to maintain the balance between exploration of the input random space and exploitation of the current
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characteristics of the PCE together with the adaptive sequential decomposition of the input random space creating sub-domains
approximated by local surrogate models. The methodology offers a general technique that can be easily adapted or modified for
specific functions extending its applicability. The performance of the proposed methodology was validated on several numerical
examples of increasing complexity investigating different aspects of the algorithm and leading to superior results in comparison to
a single global PCE and the recently proposed SSE.
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a b s t r a c t

This paper presents a novel distribution-based global sensitivity analysis based on the Kullback–Leibler
divergence derived directly from generalized polynomial chaos expansion (PCE). The synergy between
PCE and Gram–Charlier expansion is utilized for derivation of novel and computationally efficient sensi-
tivity indices. In contrast to a standard procedure for estimation of higher statistical moments, this paper
reviews standard linearization problem of Hermite and Jacobi polynomials in order to efficiently estimate
skewness and kurtosis direclty from PCE. Higher statistical moments are used for an estimation of prob-
ability distribution by Gram–Charlier expansion, which is represented by derived explicit cumulative dis-
tribution function. The proposed sensitivity indices taking the whole probability distribution into account
are calculated for several numerical examples of increasing complexity in order to present their possibil-
ities. It is shown, that the proposed sensitivity indices are obtained without any additional computational
demands together with Sobol indices, and thus can be easily used as complementary information for a
complex sensitivity analysis or any decision making in industrial applications. Application of the pro-
posed approach on engineering structure is presented in case of prestressed concrete roof girders failing
shear. Moreover, the potential of the proposed approach for reliability-oriented sensitivity analysis is
investigated in pilot numerical example.

� 2022 Elsevier Ltd. All rights reserved.

1. Introduction

The mathematical model of a physical system can be seen as a
function of an input vector g Xð Þ. It is necessary to consider the
uncertain input variables described by specific probability distri-
bution in order to obtain realistic results. The task of an analyst
is then an uncertainty quantification of the model response - quan-
tity of interest (QoI). There are efficient probabilistic methods com-
monly used in stochastic analysis for this purpose, typically based
on pseudo-random sampling of the input vector and repetitive cal-
culation of deterministic g Xð Þ in order to obtain corresponding
results, which are further statistically processed for moment and
sensitivity analysis.

Unfortunately, the combination of sampling-based probabilistic
methods and mathematical models in industrial applications is
highly time-consuming or even not feasible, especially in the case
of large mathematical models with many random input variables.
Moreover, the mathematical function is often represented by
non-linear finite element model (NLFEM) in industrial applications,
which is an accurate, but highly time-consuming numerical algo-

rithm. The solution can be an approximation of the original model
by an explicit function usually called the surrogate model. This
paper is focused on Polynomial Chaos Expansion (PCE) as a power-
ful surrogate model with broad possibilities of post-processing due
to its special form of basis functions, as will be shown further.

PCE originally proposed by Norbert Wiener [1] and further
investigated in the context of engineering problems by many
researchers, e.g. [2,3], represents spectral expansion of the original
stochastic problem in polynomial basis. Such approach is often far
more efficient in comparison to the sampling methods. Moreover,
once the PCE is available, it is possible to investigate the explicit
function in order to obtain additional information about a mathe-
matical model including statistical moments, probability distribu-
tion of QoI or sensitivity indices without additional sampling,
which is especially beneficial in industrial applications [4].

There are generally two types of sensitivity analyses. On the one
hand, there is local sensitivity analysis focused on the behavior of a
function around a point of interest (e.g. one-at-a-time and screen-
ing) [5]. Such information is typically obtained by a differentiation
of the mathematical model in the area of interest. On the other
hand, there is global sensitivity analysis investigating the whole
design domain e.g. the well-known analysis of variance (ANOVA)
[6,7]. Global sensitivity analysis is an area of interest for many
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researchers, especially ANOVA represented by Sobol indices is used
frequently nowadays. Nevertheless, ANOVA methods are still
highly computationally demanding, and thus their computation
in combination with time-consuming mathematical models is
often not feasible. Fortunately, it was shown by Sudret [8] how
to derive Sobol indices directly from PCE. It leads to a significant
reduction of computational demands in comparison with the tradi-
tional pick and freeze Monte Carlo approach [7].

Although ANOVA represents a strong tool for global sensitivity
analysis, it takes only the first two statistical moments into
account. Therefore, recent theoretical research is focused on the
so-called moment-independent or distribution-based sensitivity
analysis. These methods generally take the whole distribution of
random variables into account. The first distribution-based indices
were derived by Borgonovo [9,10], and later Gamboa et al. [11]
proposed indices based on the Hoeffding-Sobol decomposition
and Cramer-von Misses distance. Both approaches are well suited
for pseudo-random sampling to obtain sensitivity indices, which
are computationally highly demanding, and their accuracy is
highly dependent on the number of samples. Another approach is
represented by the relative entropy measure called Kullback–Lei-
bler divergence [12], which was proposed by Park [13] and has
already been used in several engineering applications [14,15]. This
approach is interpreted as the measure of the information loss
when the original distribution is approximated by distribution
neglecting the uncertainty of selected input variables. The use of
relative entropy for sensitivity analysis makes perfect sense, since
the obtained results are often used for reduction of stochastic mod-
els neglecting the uncertainty of selected variables. However, for
this method, it is necessary to obtain the probability distribution
of the original model, and the probability distribution of the model
neglecting the uncertainty of selected input variables according to
omission sensitivity [16], assuming it as a deterministic value (typ-
ically mean value). Unfortunately, such approach requires a high
number of numerical calculations.

This paper is focused on the derivation of sensitivity indices
based on Kullback–Leibler divergence directly from PCE without
any additional computational demands together with Sobol
indices. This novel approach is based on analytical expressions
for higher statistical moments obtained from PCE and their utiliza-
tion for CDF approximation by Gram–Charlier expansion, which is
also derived in analytical form in this paper. Thanks to analytical
expressions, the proposed approach can be employed without
additional calculations of the original mathematical model and
thus it leads to significant reduction of computational
requirements.

The proposed distribution-based sensitivity measure might be
especially important in sensitivity analysis with respect to reliabil-
ity of structures. The reliability analysis represents a crucial task in
a design and assessment of structures and thus it is important to
identify input random variables, which are able to significantly
affect the failure probability. However, it is not often trivial to
understand the influence of uncertainty of input random variables
to extremely low failure probabilities of structure. Therefore scien-
tists are ultimately interested in Reliability-Oriented Sensitivity
Analysis (ROSA) [17,18]. ROSA is generally able to identify the
importance of input variables directly with respect to reliability
of real structures [19]. Unfortunately important drawback of ROSA
is extreme computational burden, since it is necessary to estimate
conditional failure probabilities associated to each input random
variable. Therefore scientists are focused on novel efficient deriva-
tion of sensitivity measure for ROSA, e.g. Contrast function [20] and
Entropy [21,22]. The significantly higher efficiency of ROSA could
be also obtained by surrogate modeling, such as recently proposed
Krigging-MC strategy [23]. In this paper, a possibility of the pro-
posed approach based on PCE for efficient derivation of ROSA

indices based on two selected sensitivity measures is presented
in a pilot example.

2. Polynomial chaos expansion

2.1. Surrogate modelling with PCE

Assume a probability space (X;F;P), where X is an event
space, F is a r-algebra on X (collection of subsets closed under
complementation and countable unions) and P is a probability
measure on F. If the input variable of the mathematical model is
a random variable X xð Þ;x 2 X the model response Y(x) is a ran-
dom variable. PCE represents the variable Y as a function of an
another random variable n called germ with given distribution:

Y ¼ g Xð Þ ¼ gPCE nð Þ; ð1Þ
and representing that function as a polynomial expansion in a man-
ner similar to the Fourier series of a periodic signal. A set of polyno-
mials orthogonal with respect to the distribution of the germ are
used as a polynomial basis of Hilbert space L2(X;P;R) of all real-
valued random variables of finite variance, where P takes over
the meaning of the probability distribution. The orthogonality con-
dition for all j– k is given by the inner product of L2(X;P;R)
defined for any two functions wj and wk with respect to the weight
function pn(probability density function of n) as

wj;wk

� � ¼ Z
wj nð Þwk nð Þpndn ¼ 0: ð2Þ

It means that there are specific orthogonal polynomials associ-
ated with the specific distribution of a germ via its weighting func-
tion pn. For example, Hermite polynomials orthogonal to the
Gaussian measure are associated to the normally distributed
germs. Orthogonal polynomials corresponding to other distribu-
tions can be chosen according to Wiener–Askey scheme [24]. For
further processing, it is beneficial to use normalized polynomials
(orthonormal), where the inner product is equal to the Kronecker
delta, i.e. djk ¼ 1 if and only if j ¼ k and otherwise djk ¼ 0:

hwj;wki ¼ djk: ð3Þ
In the case of X and n being vectors containing M random vari-

ables, the polynomial W is multivariate and it is constructed as a
tensor product of univariate orthogonal polynomials

Wa nð Þ ¼
YM
i¼1

wai nið Þ; ð4Þ

where a 2 NM is a set of integers called multi-index reflecting
degrees of all univariate polynomials in the multivariate PCE term.
The orthonormality of multivariate polynomials is defined as:

wa;wb

� � ¼ Z
wa nð Þwb nð Þpndn ¼ dab: ð5Þ

The QoI, the response of the mathematical model Y ¼ g Xð Þ, can
be then represented according to Ghanem and Spanos [3] as:

Y ¼ g Xð Þ ¼
X
a2NM

baWa nð Þ ð6Þ

where ba are deterministic coefficients and Wa are multivariate
orthogonal polynomials.

Note that in case of arbitrary probability distribution of input
random variables, it is not possible to use Wiener–Askey scheme
of well-known polynomial families. However, it is possible to con-
struct basis polynomials directly by Gram-Schmidt orthogonaliza-
tion process [25] or transform all input random variables into
standardized Gaussian space by Nataf transformation [26–28].
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Unfortunately, for specific combinations of input parameters and
correlation coefficients, there is not a guaranteed solution; more
details about the limitations of Nataf transformation can be found
in [29]. The solution of such specific cases can be a general frame-
work based on the theory of copula [30].

2.2. Non-intrusive computation of PCE coefficients

PCE according to Eq. 6 must be truncated to a final number of
terms P for practical computation. It is commonly achieved by
retaining only terms whose total degree j a j is equal or less than
the given p. Therefore, the truncated set of PCE terms is defined as

AM;p ¼ a 2 NM : aj j ¼
XM
i

ai 6 p

( )
: ð7Þ

The cardinality of the truncated set AM;p is given by:

cardAM;p ¼ M þ pð Þ!
M!p!

ð8Þ

Moreover, in practical applications, it is beneficial to prefer only
basis functions with lower number of interaction terms, e.g. Hyper-
bolic truncation [31].

From a statistical point of view, PCE is a simple linear regression
model with intercept. Therefore, it is possible to use ordinary least
squares (OLS) regression to minimize the error e:

b ¼ arg min
1
n

Xn
i¼1

bTW n ið Þ
� �

� g x ið Þ� �� �2
: ð9Þ

First, it is necessary to create nrealizations of input random vec-
tor X and corresponding results of the original mathematical
model Y, together called experimental design (ED). Then, deter-
ministic coefficients b are calculated as

b ¼ WTW
� ��1

WTY; ð10Þ
where W is the data matrix:

W ¼ Wij ¼ Wj n ið Þ
� �

; i ¼ 1; . . . ;n; j ¼ 0; . . . ; P � 1
n o

: ð11Þ

Note that, the number of terms P is highly dependent on the
number of input random variables M and the maximum total
degree of polynomials p. Therefore, in case of a large stochastic
model, it is easy to obtain a computationally highly demanding
problem. The solution can be a utilization of advanced model selec-
tion algorithms e.g. Least Angle Regression (LAR) [32] to find an
optimal set of PCE terms as proposed by Blatman and Sudret [31]
and implemented in several software packages together with sim-
ilar model selection algorithms [33] for practical construction of
PCE [34–37].

3. Statistical moments derived from PCE

A specific form of PCE and orthogonality of polynomials allows
for a powerful and efficient post-processing. Once a PCE approxi-
mation is created, it is possible to obtain statistical moments of
QoI. Generally, a statistical moment of any order is defined as:

Ym� � ¼ R
g Xð Þ½ �mpX xð Þdx ¼ R X

a2NM

baWa nð Þ
" #m

pn nð Þdn ¼

¼ R X
a12NM

. . .
X

am2NM

ba1 . . .bamWa1 nð Þ . . .Wam nð Þpn nð Þdn ¼

¼
X

a12NM

. . .
X

am2NM

ba1 . . .bam
R
Wa1 nð Þ . . .Wam nð Þpn nð Þdn:

As can be seen from the final part of the formula, in case of PCE,
it is necessary to integrate over basis functions (orthonormal poly-
nomials), which leads to dramatic simplification in comparison to
the integration of the original mathematical function. Moreover, it
is also possible to write an analytical expression of the integral in
several cases. Specifically, the first statistical moment (mean value)
is obtained as

lY ¼ Y1
D E

¼
Z X

a2NM

baWa nð Þ
" #1

pn nð Þdn ¼
X
a2NM

ba

Z
Wa nð Þpn nð Þdn:

Considering the orthonormality of polynomialsZ
Wa nð Þpn nð Þdn ¼ 08a– 0; W0 � 1;

it is possible to obtain the mean value directly from the PCE deter-
ministic coefficients. Namely, the mean value is equal to the first
deterministic coefficient of the expansion

lY ¼ Y1
D E

¼ b0: ð12Þ

The second statistical moment Y2
D E

is written as

Y2
D E

¼ R P
a2AM;p

baWa nð Þ
" #2

pn nð Þdn ¼

¼ P
a12AM;p

P
a22AM;p

ba1ba2
R
Wa1 nð ÞWa2 nð Þpn nð Þdn ¼

¼ P
a2AM;p

b2
a

R
Wa nð Þ2pn nð Þdn ¼ P

a2AM;p

b2
a Wa;Wah i:

Considering again the orthonormality of polynomials, defined
by the inner product in Eq. 3, it is possible to obtain the variance

r2
Y ¼ Y2

D E
� l2

Y as a sum of all squared deterministic coefficients

except the intercept, which represents the mean value:

r2
Y ¼

X
a2A
a–0

b2
a: ð13Þ

Higher statistical central moments, skewness cY (3rd moment)

and kurtosis jY (4th moment), are generally obtained as follows:

cY :¼ 1
r3 E Y � lY

� �3h i
¼ 1
r3

X
a2A
a–0

X
b2A
b–0

X
c2A
c–0

WaWbWc
� �

babbbc ð14Þ

jY :¼ 1
r4 E Y � lY

� �4h i
¼ 1
r4

X
a2A
a–0

X
b2A
b–0

X
c2A
c–0

X
d2A
d–0

WaWbWcWd

� �
babbbcbd ð15Þ

Note that the integration of higher products may be time con-
suming, especially in a high-dimensional space with high total
polynomial order. Unfortunately, there is no closed analytical for-
mula for these higher-order products applicable for orthonormal
polynomials of any type. Nevertheless, there are known explicit
expressions of the third-order products for several types of polyno-
mials e.g. Hermite, Jacobi and generalized Laguerre. Finding the
third-order product of orthogonal polynomials is a subject of the
so-called standard linearization problem, which has been deeply
investigated by mathematicians [38–41]. Although this topic is
extremely broad and investigating various polynomial families,
this paper is limited only to review of main results involving Her-
mite and Jacobi polynomials often used in PCE associated to Gaus-
sian resp. Uniform distributions of germs.
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The standard linearization formula for general orthogonal poly-
nomials Pn is defined by the following expression:

PkPlh i ¼
Z

Pk nð ÞPl nð Þpndn ¼ xldk;l; ð16Þ

where dkl is Kronecker delta and xl > 0 is the normalization con-
stant. The expression for the third-order product is then as follows:

bPk
bPl
bPm

D E
¼

ffiffiffiffiffiffiffiffiffiffiffiffi
xm

xkxl

r
B k; l;mð Þ ¼ bB k; l;mð Þ: ð17Þ

Note that bB k; l;mð Þ are associated to normalized polynomials

P̂n ¼ x�1
2

n Pn. The fourth-order product can be obtained from the
third-order product by a mathematical induction:

bPj
bPk

bPl
bPm

D E
¼

Xjþk

n¼0

bB j; k; nð Þ bPl
bPm

bPn

D E
¼

Xjþk

n¼0

bB j; k; nð ÞbB l;m; nð Þ: ð18Þ

Specifically the most important family of polynomials used in
PCE is represented by Hermite polynomials associated to Gaussian
distribution of a germ. The univariate probabilists’ Hermite poly-
nomial of nth order normalized by xn ¼ n! is:

Hn nð Þ ¼ �1ð Þnffiffiffiffiffi
n!

p e
n2
2
dn

dnn
e�

n2
2 ; n 2 N ð19Þ

The coefficients bB k; l;mð Þ for Hermite polynomials are

bB k; l;mð Þ ¼ k
g �m

	 

l

g �m

	 

m

g � k

	 
� �1
2

; ð20Þ

whenever 2g ¼ kþ lþm is even and jk� lj 6 m 6 kþ l. OtherwisebB k; l;mð Þ ¼ 0. The proof can be found in [42,39].
The second important distribution of germ is uniform, which is

associated to Legendre polynomials. The orthonormal Legendre
polynomials are special case of Jacobi polynomials, deeply investi-
gated in literature and thus only selected results are summarized
further. The univariate Legendre polynomial of nth order normal-
ized by xn ¼ 1

2nþ1 is given by Rodrigues’ formula:

Ln nð Þ ¼ 1
2nþ 1ð Þ2nn!

dn

dnn
n2 þ 1
� �n

; n 2 N ð21Þ

The coefficients bB k; l;mð Þ for Legendre polynomials are

bB k; l;mð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
xm

xkxl

r
2mþ 1ð Þ k l m

0 0 0

	 
2

ð22Þ

whenever 2g ¼ kþ lþm is even and l;m;n satisfy triangle inequal-

ity, otherwise bB k; l;mð Þ ¼ 0. Note that the last squared term repre-
sents Wigner (3j) coefficient function for compactness of formula.
Proof can be simply obtained from Neumann-Adams formula [41]
by proper normalization.

Finally, from Eq. 4 and Eq. 17 it follows for general multivariate
case:

bPa
bPb

bPc

D E
¼

YM
m¼1

bB am; bm; cmð Þ ð23Þ

and similarly from Eq. 18:

bPa
bPb

bPc
bPd

D E
¼

YM
m¼1

Xamþbm

n¼0

bB am; bm;nð ÞbB cm; dm;nð Þ: ð24Þ

where am represents mth position of multindex a etc. Note that it is
possible to combine Legendre and Hermite polynomials for each of

input variables and use corresponding formulas for bB k; l;mð Þ, since
the final statistical moments are obtained as a product of separatebB k; l;mð Þ in each dimension. Utilization of the reviewed analytical
formulas leads to significant improvement of computational effi-
ciency and thus it allows estimation of higher statistical moments
even for high M and p.

4. Probability distribution function of QoI

It is important to remember that PCE is an expansion to con-
struct a random variable with a probability distribution identical
to the quantity of interest Y. It is not an expansion of its probability
distribution function f Y (PDF) or cumulative distribution function
FY (CDF). If one is interested in the distribution of YPCE, it is possible
to utilize one of the well-known classical distribution expansions
such as Gram–Charlier expansion (G-C) or a similar Edgeworth
expansion. The Edgeworth expansion contains one more Hermite
polynomial compared to G-C, while keeping the number of param-
eters constant. However, it was shown [43], that the range of
parameters, for which positivity of the approximation is guaran-
teed, is smaller than for G-C. For this reason, G-C is used here for
the estimation of distribution of QoI.

Let us assume that it is possible to write probability distribution
of Y as a perturbation of Gaussian PDF /. Once the QoI is normal-
ized to be zero-mean and unit-variance, the Gram–Charlier expan-
sion of f Y is as follows:

f Y yð Þ ¼
X1
n¼0

cnHn yð Þ/ yð Þ: ð25Þ

After several mathematical operations, considering the charac-
teristics of Hermite polynomials, it is possible to write the approx-
imation of PDF in the terms of its central moments (e.g. the first
four moments) in the form of G-C type A:

f Y yð Þ ¼ 1þ cYffiffiffiffiffi
3!

p H3 yð Þ þ jY � 3ffiffiffiffiffi
4!

p H4 yð Þ
� �

/ yð Þ: ð26Þ

In practical computation, the moments are estimated from sam-
ples and the estimation is highly sensitive to outliers. Fortunately,
it is possible to get statistical moments analytically in case of PCE
as was shown in the previous section. Therefore, once the PCE is
available, it is possible to analytically obtain f Y yð Þ. For the further
sections, it is necessary to derive an explicit expression for CDF as
well.

Theorem 1. The Gram–Charlier expansion of CDF FY is in the
following form:

FY ¼ U yð Þ � cY
3

ffiffiffiffiffi
2!

p H2 yð Þ þ jY � 3
4

ffiffiffiffiffi
3!

p H3 yð Þ
� �

/ yð Þ: ð27Þ

Proof. The integration of orthogonal probabilists’ Hermite polyno-
mials Hn yð Þ and standard Gaussian pdf / yð Þ is:

1ffiffiffiffiffiffiffi
2p

p
Z t

�1
Hn yð Þe�1

2y
2
dy:

Polynomials Hn yð Þ are described by the Hermite differential
equation

d2Hn yð Þ
dy2

� y
dHn yð Þ

dy
þ nHn yð Þ ¼ 0

and Apell sequence

dHn yð Þ
dy

¼ nHn�1 yð Þ:
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First both sides of the above equations are multiplied by e�
1
2y

2 :

e�
1
2y

2 d2Hn yð Þ
dy2

� e�
1
2y

2
y
dHn yð Þ

dy
þ e�

1
2y

2
nHn yð Þ ¼ 0 ð28Þ

and

e�
1
2y

2 dHn yð Þ
dy

¼ e�
1
2y

2
nHn�1 yð Þ: ð29Þ

From Eq. 29, by differentiation with respect to the variable y,
the following expression is obtained:

�ye�
1
2y

2 dHn yð Þ
dy þ e�

1
2y

2 d2Hn yð Þ
dy2 þ

þye�
1
2y

2
nHn�1 yð Þ � e�

1
2y

2
n dHn�1 yð Þ

dy ¼ 0

Then, the Eq. 28 is subtracted from the above formula:

ye�
1
2y

2
nHn�1 yð Þ � e�

1
2y

2
n
dHn�1 yð Þ

dy
� e�

1
2y

2
nHn yð Þ ¼ 0;

which can be rewritten as

� �ye�
1
2y

2
Hn�1 yð Þ þ e�

1
2y

2 dHn�1 yð Þ
dy

	 

¼ e�

1
2y

2
Hn yð Þ:

Finally, the following relationship is obtained:

� d
dy

e�
1
2y

2
Hn�1 yð Þ

� �
¼ e�

1
2y

2
Hn yð Þ: ð30Þ

Using the obtained result, the solution of the integral is

1ffiffiffiffi
2p

p
R t
�1 Hn yð Þe�1

2y
2
dy ¼ 1ffiffiffiffi

2p
p

R t
�1 � d

dy e�
1
2y

2
Hn�1 yð Þ

� �h i
dy ¼

¼ � 1ffiffiffiffi
2p

p e�
1
2t

2
Hn�1 tð Þ:

For orthonormal Hermite polynomials, it is necessary to divide
both sides of Eq. 30 by a normalization constant

ffiffiffiffiffi
n!

p
which leads

to:

1ffiffiffiffiffiffiffi
2p

p
Z t

�1
Hn yð Þe�1

2y
2
dy ¼ � 1ffiffiffi

n
p 1ffiffiffiffiffiffiffi

2p
p e�

1
2t

2
Hn�1 tð Þ: ð31Þ

The integration of Gram–Charlier expansion in order to obtain
CDF is

FY ¼ R t
�1 f Y yð Þdy ¼ U tð Þ þ cYffiffiffi

3!
p

R t
�1 H3 yð Þ/ yð Þdy

þ jYffiffiffi
4!

p
R t
�1 H4 yð Þ/ yð Þdy ¼ U tð Þ � cY

3
ffiffiffi
2!

p H2 tð Þ þ jY�3
4
ffiffiffi
3!

p H3 tð Þ
h i

/ tð Þ:

where the last operation arises from the Eq. 31. h

5. Hoeffding-sobol decomposition and reduced PCE

One of the advanced methods for global sensitivity analysis –
ANOVA – is represented by Sobol indices derived from the
Hoeffding-Sobol decomposition [7]. A brief overview of the theo-
retical background is given in this subsection (more details about
the derivation of Sobol indices directly from PCE can be found in
[8]). Let X be a random vector with independent margins. For
any x 2 RM and any subset u# I ¼ 1; . . . ;Mf g;xu concatenates the
components of x whose indices are included in u. According to
the Hoeffding-Sobol decomposition, any square integrable function
g xð Þ can be decomposed as:

g xð Þ ¼ g0 þ
XM
i¼1

gi xið Þ þ
XM

16i<j6M

gij xi; xj
� �þ . . .þ g1;2;...M xð Þ ¼

¼ g0 þ
X

u � 1; . . . ;Mf g
u–£

gu xuð Þ: ð32Þ

In consequence of the defined decomposition, the variance of
Ycan be decomposed as well as:

r2
Y ¼ Var Y½ � ¼

X
u � 1; . . . ;Mf g

u–£

Var gu Xuð Þ½ �; ð33Þ

where Var gu xuð Þ½ � are partial variances. The first Sobol indices are
obtained if u contains a single i-th input variable, the second-
order indices correspond to two input variables, etc. Important
information about the influence of input variables and all interac-
tions can by expressed by total Sobol indices representing the first
order influence and influence of all interactions, which are com-
puted as

STi ¼
X
i2u

Su: ð34Þ

A numerical computation of Sobol indices by Monte Carlo is
typically highly computationally demanding. Fortunately, there is
a connection between PCE and the Hoeffding-Sobol decomposition
as was already shown in [8]. PCE can be rewritten in the form of
the Hoeffding-Sobol decomposition by a simple reordering of the
terms:

g xð Þ ¼ g0 þ
X

u� 1;...;Mf g
u–£

gu xuð Þ � gPCE xð Þ ¼ b0 þ
X
a2Au

baWa nð Þ; ð35Þ

where the set of basis multivariate polynomials dependent on Xu is
defined as:

Au ¼ a 2 AM;p : ak – 0 $ k 2 u

 �

: ð36Þ
Therefore, Sobol indices can be analytically obtained directly

from PCE in virtue of Eq. 13 as follows [8]:

SPCEi ¼

X
a2Ai

b2
a

r2
Y

Ai ¼ a 2 AM;p : ai > 0;aj–i ¼ 0

 �

; ð37Þ

ST;PCEi ¼

X
a2AT

i

b2
a

r2
Y

AT
i ¼ a 2 AM;p : ai > 0


 �
: ð38Þ

The above expressions represent just a selection of the specific
PCE coefficients associated to Xu. However, for the further sections,
it is beneficial to understand this process as a reduction of the orig-
inal function to gPCE

u as the first step and a calculation of the vari-
ance of gPCE

u using Eq. 13 as the second step. The obtained partial
variance is then normalized by the original variance assuming all
terms of PCE.

Formally written, for any set u � I ¼ 1; . . . ;Mf g let � u be the
complement to u, i.e. � u ¼ I n u. The reduced PCE approximation
gPCE
u (neglecting the influence of selected variables Xu, whose

indices are included in u) of the original model has the following
form:

gPCE
u xð Þ ¼ b0 þ

X
a2A�u

baWa nð Þ; ð39Þ

where the reduced set of multivariate polynomials is defined as
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A�u ¼ a 2 AM;p : ak – 0 $ k 2� u

 �

: ð40Þ
For the sake of clarity, the set of multivariate polynomials for nth

order indices, i.e. when u contains n variables, is defined as

A�u ¼ a 2 AM;p : au ¼ 0 [
X
a
ai –

X
au

aj

( )
; ð41Þ

and for total indices, i.e. when u contains a single variable and the
analyst is interested in the total influence of single variables
together with all their interactions, it is defined as

A�u ¼ a 2 AM;p : au ¼ 0

 �

: ð42Þ
The first order or total Sobol indices are then calculated using

reduced PCE as

SPCEu ¼ 1�
r2

gPCEu

r2
gPCE

: ð43Þ

As can be seen, the influence of variables Xu is measured by
reduced PCE, which neglects these variables, and by the proper
normalization of the result. Note that it is possible to create
reduced PCE in the first or total order sense, neglecting just the
first order terms associated with the input variable (terms con-
taining only the selected variable), in other words, all terms asso-
ciated with the input variable (the first order and all terms with
interactions). This approach for the construction of reduced PCE is
the core of the proposed sensitivity analysis described in the fol-
lowing sections.

6. Distribution-based global sensitivity analysis using reduced
PCE

6.1. Theoretical derivation of sensitivity indices

Although ANOVA represents an effective global sensitivity anal-
ysis, it is a second-order method in sense of statistical moments. It
is not able to take higher statistical moments into account, and as a
result, it may not be able to correctly identify the role of input vari-
ables. The solution is a sensitivity method working with a shape of
the probability distribution function. The main difference between
these methods is the measure of distance between given distribu-
tions [44]. In the following paragraphs, there is a brief description
of selected measures, which were proposed for distribution-based
global sensitivity analysis in literature.

The pilot work on this topic was proposed by Borgonovo [9].
The rationale of Borgonovo sensitivity indices is as follows: let f Y
be the density function of model response obtained with all
input parameters X free to vary according to their probability
distribution. If one variable is frozen on specific value xi, the
conditional density function f Y jxi of the model response given xi
is obtained. Generally, it is possible to assume a fixed vector
xu at a specific value. The shift s Xuð Þ between f Y and f Yjxu can
be interpreted as the influence of Xu on the shape of distribution
of Y. Of course, f Yjxu is a random variable and thus it is necessary
to estimate the expected shift EXu s Xuð Þ½ �. Sensitivity indices based
on EXu s Xuð Þ½ � take the whole distribution into account in contrast
to Sobol indices. The shift s Xuð Þ can be generally measured by
various metrics. Two of them are briefly described in following
paragraphs.

According to Borgonovo [9], the expected shift is defined utiliz-
ing the following measure:

EXu s Xuð Þ½ � ¼
Z
RM

f Xu
xuð Þ

Z
f Y yð Þ � f Y jXu

yð Þ
��� ���dy� �

dxu: ð44Þ

In order to ensure that sensitivity indices are in interval 0;1h i,
Borgonovo proposed the moment-independent sensitivity indices
based on the normalized expected shift as du ¼ EXu s Xuð Þ½ �=2. In a
later study, Liu and Homma [45] proposed to use CDF instead of
PDF.

Further, following the idea of Borgonovo, researchers Gamboa
et al. [11] have recently proposed a sensitivity measure based on
Cramér-von Mises distance between the CDF
FY tð Þ ¼ P Y 6 tð Þ; t 2 R of the mathematical model response and
the conditional cumulative distribution function (CCDF)
Fu
Y tð Þ ¼ P Y 6 t j Xuð Þ; t 2 R of Y given Xu. Using the Hoeffding-

Sobol decomposition of function, Gamboa et al. derived following
Cramér-von Mises indices in a similar manner as Sobol indices:

Cu ¼
R
R
E Fu

Y tð Þ � FY tð Þ� �2h i
dFY tð ÞR

R
FY tð Þ 1� FY tð Þð ÞdFY tð Þ ; ð45Þ

where s Xuð Þ ¼ Fu
Y tð Þ � FY tð Þ� �2 is a Cramér-von Mises distance

between CDF and CCDF, which is normalized by a denominator
analogous to Sobol indices. The obtained indices also have similar
properties to Sobol indices, and thus can be easily interpreted.

Both methods presented above are designed for the estimation
by a double-loop Monte Carlo approach, which may be computa-
tionally demanding or even not feasible for industrial applications.
Therefore, the following section is focused on an efficient deriva-
tion of distribution-based sensitivity indices directly from PCE
using results of the previous sections.

Generally, if one is interested in the quantification of influence
of input variable to higher-order moments, it is natural to study
the shape of probability distribution, which contains information
from all statistical moments. Further, it is assumed that distribu-
tions of input variables and QoI can be analytically expressed,
and thus Monte Carlo approach is not needed. Sensitivity analysis
is then focused on the comparison between two distribution func-
tions (PDF or CDF). There are several distance measures in mathe-
matical literature, e.g. Helliger distance, Kullback–Leibler distance
or energy distance [46].

In this paper, the Gram–Charlier expansion is used as the ana-
lytical expression of probability distribution in order to obtain a
fast and accurate calculation of sensitivity measure. Of course,
one can use any type of measure to quantify the sensitivity indices.
Here, the relative entropy of two distributions is compared by the
Kullback–Leibler divergence [12]:

Ku
f Y

¼
Z
R

f PCEY tð Þ ln f PCEY tð Þ
f PCEu tð Þ

dt; ð46Þ

where the probability distribution function f PCEY is obtained analyt-

ically by the Gram–Charlier expansion from PCE and f PCEu is similarly
obtained from the reduced PCE defined in previous section. Note
that the reduced PCE gPCE

u has the identical mean value (the first
deterministic coefficient) as the original PCE, and thus it neglects
only the uncertainty caused by selected variable. Although the Kull-
back–Leibler divergence is not a true distance measure, because it is
non-symmetric and it does not satisfy the triangular inequality, it is
a non-negative measure and thus can be used for the quantification
of the difference between any two distributions. Moreover Ku

f Y
¼ 0 if

and only if f PCEY ¼ f PCEu and thus neglecting the uncertainty of Xu has
no effect on the probability distribution of the mathematical model.

The numerical stability of Gram–Charlier expansion is higher
for CDF, thus the cumulative Kullback–Leibler divergence proposed
by Park [47] is recommended for industrial applications:

Ku
FY

¼
Z r

l
FPCE
Y tð Þ ln FPCE

Y tð Þ
FPCE
u tð Þ dt þ E Y½ � � E gPCE

u Þ� �
: ð47Þ
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Note that reduced PCE satisfies E Y½ � ¼ E gPCE
u

� �
and r2

gPCE > r2
gPCEu

,

thus it is possible to define the following global boundaries of
the integral:

l ¼ inf t 2 R : FPCE
u tð Þ > 0

n o
; r ¼ sup t 2 R : FPCE tð Þ < 1

n o
: ð48Þ

Since the Kullback–Leibler divergence is a measure of the informa-
tion lost when FPCE

u is used to approximate FPCE
Y , there is a problem

with the proper normalization of indices. However, for the decision
making, one might prefer relative values of indices, which provide
an easy interpretation. Since Ku

FY
for all possible subsets

u � I ¼ 1; . . . ;Mf g can be calculated without any additional compu-
tational demands, it is proposed here to normalize the indices in
order to express a relative measure in the interval 0;1h i as:

Ku ¼ Ku
FYX

D ¼ Ið Þ
D–I

KD
FY

; ð49Þ

where D ¼ Ið Þ is the power set of I, i.e. D contains all possible sub-
sets of I of a given order, e.g. if one is interested in the relative first
order influence of variables, D ¼ Ið Þ contains all single input vari-
ables; if one is interested only in second order influence, D ¼ Ið Þ
contains all possible subsets of I containing two variables etc. Of
course, it is possible to use this approach for total influence just
by a different definition of A�u using Eq. 41 or Eq. 42 similarly as
in the case of Sobol indices. Note that it is also possible to use
directly Ku

FY
, if one is interested in influence of higher order interac-

tions and thus the differences between first order and total order
indices are important. Unfortunately, Ku

FY
have no meaningful inter-

pretation in contrast to Sobol indices and thus it is recommended to
use direct values only for comparative study of higher-order inter-
actions. It is obvious that in practical computation, it is possible to
get Ku of the desired order if and only if the PCE contains the terms
of the desired order.

6.2. Computational algorithm of the proposed sensitivity analysis

First of all, non-intrusive form of PCE approximating given QoI
must be constructed. The algorithm for sparse PCE using LAR as

the best model selection algorithm is employed in numerical
examples [35]. Once the PCE approximation of the QoI is available,
it is possible to obtain Ku together with Su by its simple post-
processing summarized in Algorithm 1 and graphically repre-
sented in Fig. 1. The whole process consists of several tasks pre-
sented in previous sections: derivation of the higher statistical
moments according to Section 3 (using Eq. 22 and Eq. 24); analyt-
ical approximation of CDF using the Gram–Charlier expansion
according to Section 4; finally reduced PCEs gPCE

u in the first order
and total order sense are built for all input variables and used for
the calculation of the proposed distribution-based indices Ku and
Sobol indices SPCEu , which are obtained from gPCE

u without additional
computational demands. Note that thanks to analytical equations
for higher moments and CDF, it is possible to employ this algo-
rithm even for high M and p.

Algorithm 1. Distribution-based sensitivity analysis using PCE

Input: A; b

1: analytical derivation of l;r2; c and j from gPCE

2: construction of FPCEY by Gram–Charlier expansion
3: for all Xu

4: construction of reduced PCE gPCEu (neglecting selected
terms)

5: analytical derivation of r2; c and j from gPCEu

6: construction of FPCEu by Gram–Charlier expansion
7: calculation of Ku

FY by numerical integration
8: end for
9: calculation of Ku by normalization of Ku

FY

Output: Ku

7. Numerical examples

7.1. Illustrative examples

The first, very simple example presents the process of the pro-
posed distribution-based sensitivity analysis and its comparison to

Fig. 1. Graphical summary of the proposed sensitivity algorithm.
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Sobol indices. The general motivation of the distribution-based
sensitivity measure is the following: let X1 � LN and X2 � Uwith
identical mean l ¼ 10 and variance r2 ¼ 1 but generally different
shape of distribution. The QoI is described by the sum of random
variables:

Y ¼ X1 þ X2: ð50Þ
Note that mean and variance of QoI are identical to the case

with Gaussian input variables. The numerators of Sobol indices
can be obtained very easily as

Var E Y j X1½ �ð Þ ¼ Var X1ð Þ ¼ Var X2ð Þ ¼ Var E Y j X2½ �ð Þ
In other words, Sobol indices are identical for both input ran-

dom variables regardless of the distribution of variables. However,
the input variables do not share the same probability distribution,
and thus should not have generally the same importance. There-
fore, it is necessary to use distribution-based sensitivity analysis
in order to quantify the difference between X1 and X2.

The numerical results obtained by PCE and the proposed
distribution-based sensitivity method are summarized in Table 1,
where Ku represents the proposed distribution-based Kullback–
Leibler relative indices and SPCEu Sobol indices derived from PCE.
Note that the first order and total indices (marked with the super-
script T) are identical due to the simple form of the mathematical
model without any interactions.

For the sake of clarity, two elementary examples using same QoI
are described in this paragraph. In case of variables with identical
type of distribution, the indices are generally identical for Ku as
well as for SPCEu in a relative sense due to a different normalization,
i.e. in case of the simple sum of two variables assumed above, with
independent identically distributed variables (i.i.d.) random vari-
ables one gets SPCEi ¼ Ki ¼ 0:5. Also note that sensitivity indices
are not affected by mean values (by definition of reduced PCE)
and thus in case of the simple sum of two variables assumed above
with X1 � N 100;0:001ð Þ and X2 � N 0;1ð Þ one gets SPCE1 ¼ K1 ¼ 0

and SPCE2 ¼ K2 ¼ 1.
Further, let us investigate a modification of the previous QoI.

Now it is described by the following non-linear mathematical
model

Y ¼ X1 þ X2 þ X2
1X

2
2; ð51Þ

and X1 � LN and X2 � U with identical mean l ¼ 10 and variance
r2 ¼ 4. The whole process of construction of indices is identical to
the one in the previous example and the obtained results are sum-
marized in Table 2.

As can be seen, the indices are in compliance with Sobol indices.
In this case, Sobol indices would not be able to recognize the differ-
ence between input variables if X1 and X2 had identical first four
statistical moments, but generally different distribution [11].

The next example taken from [44] is focused on the difference
between the total order and first order sense of sensitivity indices.
The input variables are i.i.d. standard Gaussian random variables
and the mathematical model is

Y ¼ 5þ 2X1 þ 7X2X3 þ 3X2
2 þ 2X1X2X3: ð52Þ

Note that the random variable X3 has only an interaction effect,
and thus the first order sensitivity index should be zero. The
distribution-based sensitivity analysis is performed identically as
in the previous examples assuming the first order reduced PCE
and the total order reduced PCE. The numerical results of the pro-
posed indices and Sobol indices are summarized again in Table 3.

As can be seen, the proposed method correctly quantified the
influence of the variable X3, i.e. the first order effect is zero but it
has significant total order effect. Although the results are in com-
pliance with Sobol indices, the absolute values are different due
to the normalization of Ku providing an easy interpretation of the
results in range 0;1h i, which might be beneficial for industrial
applications and decision making. Specifically, it can be repre-
sented as a percentage expression of information lost due to the
neglect of uncertainty of input variable, and such information
may be crucial for further reduction of the stochastic model.

The next multiplicative model was selected as a benchmark
with known analytical solution [10]:

Y ¼
YM
i¼1

Xai
i : ð53Þ

The reference solutions of Borgonovo distribution-based sensi-
tivity indices du are given for the following setting: weights are
a ¼ 1;M ¼ 3 and Xi are independent random variables having log-
normal distribution LN kY ; fYð Þ with mean values l ¼ 1 and vari-
ances r2 ¼ 16;4;1½ �.

Surrogate model represented by PCE was created with maximal
polynomial degree p ¼ 10 and ED containing 1000 samples gener-
ated by LHS. The sparse PCE is created by the algorithm presented
in [35] (based on LAR) but generally any algorithm might be
employed for efficient construction of PCE. The accuracy of PCE
measured by coefficient of determination is R2 ¼ 0:98. Obtained
results of the proposed technique, reference values obtained ana-
lytically [10] and the reference values normalized by their sum
(relative values) are compared in Table 4. As can be seen, the pro-
posed indices lead to an accurate estimation of relative probability-
based sensitivity indices. The small difference is caused by an accu-
racy of PCE. The normalization is necessary due to different sensi-
tivity metrics of reference solution and the proposed technique.

Table 1
Numerical comparison of Sobol indices and proposed indices.

Variable SPCEi
Ki ST;PCEi KT

i

X1 0.50 0.46 0.50 0.46
X2 0.50 0.54 0.50 0.54

Table 2
Difference between Sobol indices and proposed indices for non-linear function.

Variable SPCEi
Ki ST;PCEi KT

i

X1 0:49 0:59 0:57 0:58
X2 0:43 0:41 0:51 0:42

Table 3
Results of sensitivity analysis on example focused on first and total order influence.

Variable SPCEi
Ki ST;PCEi KT

i

X1 0.053 0.086 0.107 0.001
X2 0.240 0.914 0.947 0.920
X3 0.000 0.000 0.707 0.079

Table 4
Comparison of the proposed sensitivity indices to the reference analytical solution.

Variable Reference d Normalized d KT
i

X1 0.472 0.68 0.68
X2 0.155 0.22 0.23
X3 0.071 0.10 0.09
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7.2. Engineering analytical example

The next example is represented by a typical engineering prob-
lem with a known analytical solution, a maximum deflection of a
fixed beam loaded by a single force in mid-span

Y ¼ 1
16

FL3

Ebh3 ; ð54Þ

containing 5 lognormally distributed uncorrelated random vari-
ables according to Table 5, where b and h represent the width and
height of the rectangular cross-section, E is the modulus of elasticity
of concrete, F is the loading force and L is the length of the beam.

For this example, it is simple to obtain an analytically lognormal
distribution of Y, and thus numerical results can be compared to

analytical results assumed as a reference solution. The product of
lognormally distributed variables is a lognormal variable
Y � LN kY ; fYð Þ, where parameters of distribution are obtained as:

kY ¼ ln
1
16

	 

þ kF þ 3kL � kE � kb � 3kh;

fY ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f2F þ 3fLð Þ2 þ f2E þ f2b þ 3fhð Þ2

q
:

Using the adaptive algorithm, it was possible to build the PCE
with ED containing 100 samples generated by Latin Hypercube
Sampling (LHS) [48] and maximal polynomial order p ¼ 5. Since
the function is not in a polynomial form, the PCE is an approxima-
tion of the original model with an accuracy measured by Leave-
one-out cross validation Q2 ¼ 0:998. The obtained statistical
moments of PCE used for G-C expansion are compared with analyt-
ical reference solution and statistical moments of an initial exper-
imental design in Table 6.

As can be seen, 100 samples are enough for the estimation of
the first four statistical moments by PCE and it is far more accurate
in comparison to simple LHS sampling used for ED. The results of
sensitivity analysis derived from PCE are summarized in Table 7.
The first order indices as well as total order indices have an iden-
tical trend as Sobol indices and even small differences between E
and h are identified correctly.

7.3. Engineering applications

7.3.1. Concrete beam ARW1 failing in shear 2D
The first engineering application is a replication of experimental

programme by Anderson & Ramirez [49]. In this experiment a
beam ARW1 of cross-Section 406 � 406 mm was subjected to a
four-point bending test with a shear span a = 0.91 m. The beam
was designed to fail in shear. The shear reinforcement is composed
of double stirrups No. 3 with diameter 9.525 mm. Top longitudinal
reinforcement consists of 5 bars No. 6 (diameter 19.05 mm) and
bottom reinforcement of 5 bars No. 9 (diameter 28.65 mm). NLFEM
was created in Atena Science software focused on non-linear frac-
ture mechanics of concrete structures [50] and the ‘Nonlinear
Cementitious’ material model was used for the concrete material.
The geometry of the beam, the reinforcement and results of NLFEM
are depicted in Fig. 2.

Table 5
Stochastic model of mid-span deflection of a fixed beam.

Parameter b h L E F

l 0:15 0:3 5 30 100
r 0:0075 0:015 0:05 4:5 20

Units [m] [m] [m] [GPa] [kN]

Table 6
Comparison of first four statistical moments obtained by proposed method with
analytical solution and experimental design.

Method l r2 c j

Analytical 6.69 4.09 0.91 4.46
PCE 6.69 4.08 0.88 4.41

ED (LHS) 6.65 3.41 0.78 4.10

Table 7
Global sensitivity analysis of deflection of a fixed beam.

Variable SPCEi
Ki ST;PCEi KT

i

b 0.026 0.004 0.029 0.004
h 0.251 0.185 0.266 0.175
L 0.01 0.001 0.011 0.001
E 0.250 0.177 0.263 0.166
F 0.438 0.633 0.460 0.654

Fig. 2. Geometry in [m] of ARW1 beam and results of NLFEM.
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From the obtained results of equivalent plastic strain in con-
crete and plastic strain in reinforcement (see Fig. 2), it is clear that
the beam is failing in shear. Shear failure mechanism represents
complex phenomenon and thus it is beneficial to perform sensitiv-
ity analysis.

PCE was created using the adaptive algorithm as in previous
examples with ED containing 30 samples generated by LHS and
maximal polynomial order p ¼ 8. The obtained accuracy measured
by Leave-one-out cross validation Q2 ¼ 0:92. Note that although
such accuracy is not sufficient for a reliability analysis, it is accept-
able for a sensitivity analysis.

The stochastic model contains 4 lognormal random variables
(parameters of concrete and reinforcement): f c - compressive
strength of concrete, f y - yield strength of the reinforcement, f t -
tensile strength of concrete, Gf - fracture energy of concrete. The
statistical moments of input variables together with obtained
results are summarized in Table 8.

From the obtained results, it is clear that a shear mechanism is
dominantly affected by an uncertainty of f c and Gf . Moreover, there
are important interactions between f t and Gf , while f c has domi-
nant first-order influence. As can be seen, results of the proposed
sensitivity indices are supported by results of Sobol indices. These
results are in compliance also with theory assuming that the shear
mechanism is resisted by concrete struts acting in compression
and a development of cracks is governed by Gf and f t .

7.3.2. Prestressed concrete roof girder 3D
The second analyzed structure is a full-scale LDE7 roof girder

produced by Franz Oberndorfer GmbH & Co KG in Austria. Details
of NLFEM and stochastic model are described in the following
paragraphs. Presented results are a part of the long-term practical
research project focused on development of digital twin including
laboratory experiments [51,52], stochastic modelling [53], semi-

probabilistic design [54] and surrogate modelling [55,4,56]. The
girder is made from concrete C50/60 and is prestressed by 2x8
strands in each web (Cables - St 1570/1770 – F93). Strands are
located in following distances from bottom: 70 and 7�40 mm. It
has a TT-shaped cross-section and the total length is 30.00 m
and the height is 0.50 m at ends and 0.90 in the middle. The rein-
forcement and geometry of the beam is symmetrical according to
middle cross-sectional and longitudinal plane. The load was
applied 4.125 m from support above both webs and the ultimate
limit state is represented by the critical value of the force applied
during the simulation (QoI is the peak of load–deflection diagram).
The geometry of the girder, the cross-section and a place of applied
load can be seen in Fig. 3.

The ‘3D Nonlinear Cementitious 2’ material model was used for
the concrete. The geometry of the beam, supports, and reinforce-
ment was created exactly according to drawings provided by the
manufacturer. The ‘3D Nonlinear Cementitious 2’ material model
was used for the concrete. The steel reinforcement and pre-
stressing tendons were modeled using 1D elements with a multi-
linear stress vs. strain diagram with hardening. Prestressing was
applied in the form of initial strain in the tendons. Prestress losses
(immediate and long-term) were taken into account according to
the fib Model Code 2010. The evaluation of FEM is highly time-
consuming, therefore using the surrogate model is necessary to
perform the sensitivity analysis.

The stochastic model is based on laboratory experiments and it
contains 5 lognormal random variables as can be seen in Table 9:
material parameters of concrete as in previous example together
with E-Young‘s modulus of concrete and I:L:U- uncertainty of cal-
culated immediate prestress losses. Moreover in order to obtain
realistic results, the correlations among concrete characteristics
(summarized in Table 10) were assumed according to results of
the previous research [53].

PCE was created using the adaptive algorithm as in previous
examples with ED containing 100 samples generated by LHS, max-
imal polynomial order p ¼ 8. Since the function is not in a polyno-
mial form, the PCE is an approximation of the original model with
an accuracy measured by Leave-one-out cross validation
Q2 ¼ 0:98. Note that input random vector was transformed into
uncorrelated standardized space by Nataf transformation in order
to use Hermite polynomials as PCE basis. The obtained results of
global sensitivity analysis obtained directly from PCE are summa-
rized in Table 11 and graphically interpreted in Fig. 4.

Note that obtained distribution-based sensitivty indices lead to
same ranking of input random variables, though Ki amplify the
dominance of f c . This is caused by significant influence of f c not

Table 8
Stochastic model and obtained results for the beam ARW1.

Parameter f t f c Gf f y

l 2:3 28 176 439
CoV [%] 22 16 22 6:7
Units [MPa] [MPa] [Jm2] [MPa]

Ki 0:03 0:84 0:12 0:01

KT
i

0:05 0:74 0:20 0:01

SPCEi
0:13 0:52 0:25 0:02

ST;PCEi
0:18 0:52 0:35 0:02

Fig. 3. Geometry of the prestressed roof girder LDE7.

Lukáš Novák Computers and Structures 267 (2022) 106808

10



only to variance of QoI but also to skewness and kurtosis. In order
to reduce the uncertainty of resistance in shear of LDE7 and thus
increase the design value of resistance, it is crucial to reduce
and/or identify the uncertainty of f c. From obtained results it can
be concluded that it is not necessary to include Gf and E into
stochastic model, since its influence is negligible.

7.4. ROSA example

The last analytical example is focused on potential of the pro-
posed approach in structural reliability – estimation of ROSA
indices. Two of recently proposed ROSA methods were selected
for numerical example performed in this paper: contrast indices
[20] and sensitivity indices according to Xiao et al. [57]. The failure
probability is the key quantity of interest in both cases. The first
ROSA method is first-order Contrast index measuring the differ-
ence between Pf and conditional Pf jXi. The index is calculated
using a formula derived in [21]:

Ci ¼
Pf 1� Pf
� �� E Pf jXi 1� Pf jXi

� �� �
Pf 1� Pf

� � : ð55Þ

The formula above gives a better insight into the essence of the
calculation of Ci in comparison to its general form available in [20].
The second type is the first order index according to Xiao et al.
defined as

Ki ¼
E jPf � Pf jXij
� �

2Pf
ð56Þ

where jPf � Pf jXij measures the absolute difference between uncon-
ditional and conditional failure probability. Note that, both selected
ROSA methods use mean value of difference E 	ð Þ and thus the prac-
tical computations typically need double-loop approach, which can
be numerically very demanding in industrial (numerical)
applications.

The typical example of structural reliability used for numerical
study is taken from [21], where it was calculated by double-loop
numerical integration and thus reference numerical solution is
available. The mathematical model of structural reliability is in
the following fundamental form:

Z ¼ R� F; ð57Þ

where the resistance of structure R � N 412:54;34:1322
� �

is inde-

pendent of the load action F � N lF ;34:132
2

� �
. The mean value

of the load action lF 2 92:54;722:54h i increases with step

Table 11
Global sensitivity analysis of the LDE7 girder failing in shear.

Variable SPCEi
Ki ST;PCEi KT

i

I:L:U 0.18 0.10 0.18 0.05
f c 0.56 0.83 0.57 0.89
E 0.02 0.01 0.02 0.01
f t 0.19 0.05 0.19 0.04
Gf 0.05 0.01 0.05 0.01

Fig. 4. Obtained Sobol indices (blue) and the proposed Kullback–Leibler indices derived from PCE (red) for fixed beam (right) and roof girder LDE7 (left).

Table 9
Stochastic model of the girder LDE7.

Parameter I:L:U f c E f t Gf

l 1 77 34:8 3:9 219:8
CoV [%] 10 6:4 10:6 10:6 12:8
Units [-] [MPa] [GPa] [MPa] [Jm2]

Table 10
Correlation matrix of concrete material parameters.

f c E f t Gf

f c 1 0.8 0.7 0.6
E 0.8 1 0.5 0.5
f t 0.7 0.5 1 0.8
Gf 0.6 0.5 0.8 1
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DF ¼ 10. The increasing of lF leads to higher failure probability,
since the mean value of safety margin lZ decreases.

The PCE is based on experimental design containing 100 sam-
ples generated by LHS in order to uniformly cover the whole design
domain. Once the PCE approximation is available, it is possible to
derive conditional failure probabilities from reduced PCEs and
Gram–Charlier expansions similarly as in previous examples
focused on distribution-based sensitivity. Obtained results (de-
picted in Fig. 5) of first order Contrast indices and ROSA indices
according to Xiao et al. are identical to reference solution by
double-loop Monte Carlo.

Note that the ROSA indices estimated by PCE are in this case
exact and thus reference solutions coincide with PCE estimators
in Fig. 5. Although it is clear that the obtained PCE approximation
leads to the exact solution due to a simple form of mathematical
model and thus obtained perfect accuracy of PCE (which is not
realistic in practical examples), it shows the methodology to be
correct and it can be generally used as a fast approximation for
time-consuming models and errors of estimated ROSA indices are
given by accuracy of PCE approximation.

8. Discussion and further work

Numerical results presented in the previous section provide an
explanation and an illustration of the proposed distribution-based
sensitivity indices derived directly from PCE together with Sobol
indices. The proposed method can thus be used as complementary
information to the commonly known results of ANOVA, since the
distribution-based sensitivity analysis takes the whole distribution
into account, which might be crucial in some applications, and its
derivation is without any additional computational demands. In
this section, some possibilities of the proposed method and solu-
tions of the selected problems beyond the scope of this paper are
briefly discussed, in order to generalize the proposed approach
for industrial applications.

First of all, there is an important property of the proposed
method for a localized sensitivity analysis, i.e. it is possible to study
the influence of input random variables in the area of interest (e.g.
around the design point). Since the Kullback–Leibler divergence
compares two probability distributions in a given interval, it is pos-
sible to calculate the sensitivity indices by the same procedure, just
with different integral boundaries li and ri covering the area of
interest:

Ku
FY

¼
Z ri

li

FPCE
Y tð Þ ln FPCE

Y tð Þ
FPCE
u tð Þ dt: ð58Þ

Although, it would be possible to define Ku
FY

with switched posi-

tion of FPCE
Y tð Þ and FPCE

u tð Þ, it would lead to computational issues

since FPCE
u tð Þ neglects the uncertainty of selected variables, and thus

can be significantly lower than original CDF FPCE
Y tð Þ or even close to

zero in the area of interest. Therefore, it is recommended to use
expression above for sensitivity analysis.

In case of arbitrary polynomial basis which can not be used for
analytical derivation of statistical moments, it is possible to utilize

PCE as a response surface to obtain probability density function f PCEY

of approximated model response. For this purpose, it is necessary
to evaluate the PCE with a sufficiently large sample set (around
nsim � 106) and estimate the probability density function using
e.g. a kernel density estimator:

f PCEY yð Þ ¼ 1
nsim h

Xnsim
i¼1

K
y� gPCE xið Þ

h

	 

; ð59Þ

where gPCE is a response surface (an approximation of the original
mathematical model) represented by PCE, K is the kernel function
(e.g. standard normal density) and h is the bandwidth. The cumula-
tive distribution function can be estimated assuming CDF as a ker-
nel function (e.g. standard normal cumulative distribution
function). This solution may be highly computationally demanding,
since it needs a sufficient number of simulations for the estimation
of FPCE

u tð Þ for all subset of I, using the reduced PCE gPCE
u as a response

surface. The rest of the process is identical to the one described in
this paper. This approach was already investigated in a previous
study [58] of the author of this paper. Identical approach should
be used if a distribution of QoI is highly non-Gaussian and thus it
is not possible to employ Gram–Charlier expansion for its analytical
approximation.

Naturally an accuracy of estimations of higher statistical
moments is given by an accuracy of PCE, which is highly affected
by statistical sampling. Further work will be focused on compar-
ison of advanced sampling methods (e.g. [59–61]) in context of
distribution-based sensitivity analysis. Moreover, recently pro-
posed adaptive sequential sampling developed for correct estima-
tion of variance of QoI [62] will be employed in further studies in
order to increase the accuracy and stability of estimated moments.

9. Conclusion

PCE is usually constructed as a surrogate model for further
Monte Carlo type analysis, nonetheless, it is beneficial to study
the structure of PCE in order to obtain additional information on
a given stochastic problem. The novel approach for the
distribution-based sensitivity analysis derived directly from PCE,
which offers important information about mathematical model,
is presented here. It is shown how to derive the reduced PCE
neglecting the influence of selected input variables, and how to
construct the corresponding probability distribution using derived
analytical formula for Gram–Charlier expansion. The influence of
an input variable is measured by the Kullback–Leibler divergence,
which takes the whole shape of distribution into account. The pro-
posed sensitivity indices are obtained after a relative normalization
in order to allow for a simple interpretation in industrial applica-
tions and decision making. The numerical results of the proposed
method are compared to the commonly known and frequently
used Sobol indices. Although the results are in compliance with
Sobol indices in most cases, it is shown that Sobol indices are only
a second-order method, and thus may fail to identify the correct
influence of input variables. It can be seen that the proposed
method can yield important complementary information in sensi-
tivity analysis together with Sobol indices obtained without addi-
tional computational demands. The results presented herein

Fig. 5. PCE approximation of ROSA indices dependent on failure probability.
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could be interesting for theoretical researchers in the area of sen-
sitivity analysis and PCE as well as for engineers working in indus-
try, as the proposed approach presents additional information for
sensitivity analysis taking the whole distribution into account.

List of Abbreviations and Selected Symbols

polynomial chaos expansion (PCE); quantity of interest (QoI);
non-linear finite element model (NLFEM); analysis of variance
(ANOVA); reliability-oriented sensitivity analysis (ROSA); ordinary
least squares (OLS); experimental design (ED); least angle regres-
sion (LAR); probability distribution function (PDF); cumulative dis-
tribution function (CDF); Gram–Charlier expansion (G-C);
conditional cumulative distribution function (CCDF); independent
identically distributed variables (i.i.d.); latin hypercube sampling
(LHS).

input random vector X; QoI (model response) Y; mathematical
model g Xð Þ; multi-index a; deterministic coefficients oF PCE b;
multivariate orthogonal polynomials in PCE W; number of terms
in PCE P; set of basis functions in PCE A; number of input random
variables M; maximum total degree of polynomials p; mean value
of QoI lY ; variance of QoI r2

Y ; skewness of QoI cY ; kurtosis of QoI
jY ; PDF of QoI f Y ; CDF of QoI FY ; conditional cumulative distribu-
tion function of QoI Fu

Y ; Kullback–Leibler divergence Ku
FY
; normal-

ized Kullback–Leibler indices Ku; Sobol indices derived from PCE
SPCEu ; Borgonovo sensitivity indices d.

Declaration of Competing Interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared
to influence the work reported in this paper.

Acknowledgments

The author would like to express his thanks for the support pro-
vided by the Czech Science Foundation Project No. 20-01734S.

References

[1] Wiener N. The Homogeneous Chaos. Am J Mathe 1938;60(4):897–936. https://
doi.org/10.2307/2371268.

[2] Sudret B, Berveiller M, Lemaire M. A stochastic finite element procedure for
moment and reliability analysis. Eur J Comput Mech 2006;15(7–8):825–66.
https://doi.org/10.3166/remn.15.825-866.

[3] Ghanem RG, Spanos PD. Stochastic Finite Elements: A Spectral
Approach. Berlin, Heidelberg: Springer-Verlag; 1991.

[4] Novak L, Novak D. Surrogate modelling in the stochastic analysis of concrete
girders failing in shear. In: Proc. of the Fib Symposium 2019: Concrete -
Innovations in Materials, Design and Structures; 2019. p. 1741–1747, ISBN:
9782940643004.

[5] Borgonovo E, Plischke E. Sensitivity analysis: A review of recent advances. Eur J
Oper Res 2016;248(3):869–87. https://doi.org/10.1016/j.ejor.2015.06.032.

[6] Chastaing G, Gamboa F, Prieur C. Generalized Hoeffding-Sobol decomposition
for dependent variables - application to sensitivity analysis. Electronic J Stat
2012;6:2420–48. https://doi.org/10.1214/12-EJS749.

[7] Sobol I. Global sensitivity indices for nonlinear mathematical models and their
monte carlo estimates. Mathe Comput Simul 2001;55(1):271–80. https://doi.
org/10.1016/S0378-4754(00)00270-6.

[8] Sudret B. Global sensitivity analysis using polynomial chaos expansions. Reliab
Eng Syst Saf 2008;93(7):964–79. https://doi.org/10.1016/j.ress.2007.04.002.

[9] Borgonovo E. A new uncertainty importance measure. Reliab Eng Syst Saf
2007;92(6):771–84. https://doi.org/10.1016/j.ress.2006.04.015.

[10] Borgonovo E, Castaings W, Tarantola S. Moment independent importance
measures: New results and analytical test cases. Risk Anal 2011;31(3):404–28.
https://doi.org/10.1111/j.1539-6924.2010.01519.x.

[11] Gamboa F, Klein T, Lagnoux A. Sensitivity analysis based on cramér–von mises
distance. SIAM/ASA J Uncertainty Quantif 2018;6(2):522–48. https://doi.org/
10.1137/15M1025621.

[12] Kullback S, Leibler RA. On Information and Sufficiency. Ann Math Stat 1951;22
(1):79–86. https://doi.org/10.1214/aoms/1177729694.

[13] Park CK, Ahn K-I. A new approach for measuring uncertainty importance and
distributional sensitivity in probabilistic safety assessment. Reliab Eng Syst Saf
1994;46(3):253–61. https://doi.org/10.1016/0951-8320(94)90119-8.

[14] Liu H, Chen W, Sudjianto A. Relative Entropy Based Method for Probabilistic
Sensitivity Analysis in Engineering Design. J Mech Des 2005;128(2):326–36.
https://doi.org/10.1115/1.2159025.

[15] Teixeira R, O’Connor A, Nogal M. Probabilistic sensitivity analysis of offshore
wind turbines using a transformed kullback-leibler divergence. Struct Saf
2019;81:101860. https://doi.org/10.1016/j.strusafe.2019.03.007.

[16] Madsen HO. Omission sensitivity factors. Struct Saf 1988;5(1):35–45. https://
doi.org/10.1016/0167-4730(88)90004-5.

[17] Luyi L, Zhenzhou L, Jun F, Bintuan W. Moment-independent importance
measure of basic variable and its state dependent parameter solution. Struct
Saf 2012;38:40–7. https://doi.org/10.1016/j.strusafe.2012.04.001.

[18] Wei P, Lu Z, Hao W, Feng J, Wang B. Efficient sampling methods for global
reliability sensitivity analysis. Comput Phys Commun 2012;183(8):1728–43.
https://doi.org/10.1016/j.cpc.2012.03.014.

[19] Kala Z. Global sensitivity analysis of reliability of structural bridge system. Eng
Struct 2019;194:36–45. https://doi.org/10.1016/j.engstruct.2019.05.045.

[20] Fort J-C, Klein T, Rachdi N. New sensitivity analysis subordinated to a contrast.
Commun Stat - Theory Methods 2016;45(15):4349–64. https://doi.org/
10.1080/03610926.2014.901369.

[21] Kala Z. Sensitivity analysis in probabilistic structural design: A comparison of
selected techniques. Sustainability 2020;12(11). https://doi.org/
10.3390/su12114788.

[22] Kala Z. New importance measures based on failure probability in global
sensitivity analysis of reliability. Mathematics 2021;9(19). https://doi.org/
10.3390/math9192425.

[23] Ling C, Lu Z, Cheng K, Sun B. An efficient method for estimating global
reliability sensitivity indices. Probab Eng Mech 2019;56:35–49. https://doi.
org/10.1016/j.probengmech.2019.04.003.

[24] Xiu D, Karniadakis GE. The wiener–askey polynomial chaos for stochastic
differential equations. SIAM J Sci Comput 2002;24(2):619–44. https://doi.org/
10.1137/S1064827501387826.

[25] Jakeman JD, Franzelin F, Narayan A, Eldred M, Plfüger D. Polynomial chaos
expansions for dependent random variables. Comput Methods Appl Mech Eng
2019;351:643–66. https://doi.org/10.1016/j.cma.2019.03.049.

[26] Kiureghian AD, Liu P. Structural reliability under incomplete probability
information. J Eng Mech 1986;112(1):85–104. https://doi.org/10.1061/(ASCE)
0733-9399(1986)112:1(85).

[27] Lebrun R, Dutfoy A. A generalization of the Nataf transformation to
distributions with elliptical copula. Probab Eng Mech 2009;24(2):172–8.
https://doi.org/10.1016/j.probengmech.2008.05.001.

[28] Lebrun R, Dutfoy A. Do Rosenblatt and Nataf isoprobabilistic transformations
really differ? Probab Eng Mech 2009;24(4):577–84. https://doi.org/10.1016/j.
probengmech.2009.04.006.

[29] Lebrun R, Dutfoy A. An innovating analysis of the Nataf transformation from
the copula viewpoint. Probab Eng Mech 2009;24(3):312–20. https://doi.org/
10.1016/j.probengmech.2008.08.001.

[30] Torre E, Marelli S, Embrechts P, Sudret B. A general framework for data-driven
uncertainty quantification under complex input dependencies using vine
copulas. Probab Eng Mech 2019;55:1–16. https://doi.org/10.1016/j.
probengmech.2018.08.001.

[31] Blatman G, Sudret B. Adaptive sparse polynomial chaos expansion based on
least angle regression. J Comput Phys 2011;230(6):2345–67. https://doi.org/
10.1016/j.jcp.2010.12.021.

[32] Efron B, Hastie T, Johnstone I, Tibshirani R. Least angle regression. Ann Stat
2004;32(2):407–99. https://doi.org/10.1214/009053604000000067.

[33] Lüthen N, Marelli S, Sudret B. Sparse polynomial chaos expansions: Literature
survey and benchmark. SIAM/ASA J Uncert Quantif 2021;9(2):593–649.
https://doi.org/10.1137/20M1315774.

[34] Olivier A, Giovanis DG, Aakash B, Chauhan M, Vandanapu L, Shields MD. UQpy:
A general purpose python package and development environment for
uncertainty quantification. J Comput Sci 2020;47:101204. https://doi.org/
10.1016/j.jocs.2020.101204.

[35] Novak L, Novak D. Polynomial chaos expansion for surrogate modelling:
Theory and software. Beton- und Stahlbetonbau 2018;113(S2):27–32. https://
doi.org/10.1002/best.201800048.

[36] Marelli S, Sudret B. UQLab: A framework for uncertainty quantification in
Matlab. In: Vulnerability, Uncertainty, and Risk; 2014. p. 2554–2563.
https://doi.org/10.1061/9780784413609.257.

[37] Patelli E, Tolo S, George-Williams H, Sadeghi J, Rocchetta R, de Angelis M,
Broggi M. Opencossan 2.0: an efficient computational toolbox for risk,
reliability and resilience analysis. In: Proceedings of the joint ICVRAM
ISUMA UNCERTAINTIES conference; 2018. p. 1–8.

[38] Gasper G. Linearization of the product of jacobi polynomials. i. Can J Mathe
1970;22(1):171–5. https://doi.org/10.4153/CJM-1970-020-2.

[39] Savin E, Faverjon B. Computation of higher-order moments of generalized
polynomial chaos expansions. Int J Numer Meth Eng 2017;111(12):1192–200.
https://doi.org/10.1002/nme.5505.

[40] Chaggara H, Koepf W. On linearization and connection coefficients for
generalized hermite polynomials. J Comput Appl Math 2011;236(1):65–73.
https://doi.org/10.1016/j.cam.2011.03.010.

[41] Adams JC. On the expression of the product of any two legendre’s coefficients
by means of a series of legendre’s coefficients. Proc Roy Soc London 1878;27
(185–189):63–71. https://doi.org/10.1098/rspl.1878.0016.

Lukáš Novák Computers and Structures 267 (2022) 106808

13



[42] SullivanTJ. IntroductiontoUncertaintyQuantification,Vol.63ofTexts inApplied
Mathematics, Springer; 2015. https://doi.org/10.1007/978-3-319-23395-6.

[43] Barton DE, Dennis KE. The conditions under which Gram-Charlier and
Edgeworth curves are positive definite and unimodal. Biometrika 1952;39(3/
4):425–7. https://doi.org/10.2307/2334037.

[44] Greegar G, Manohar C. Global response sensitivity analysis using probability
distance measures and generalization of sobol’s analysis. Probab Eng Mech
2015;41:21–33. https://doi.org/10.1016/j.probengmech.2015.04.003.

[45] Liu Q, Homma T. A new importance measure for sensitivity analysis. J Nucl Sci
Technol 2010;47(1):53–61. https://doi.org/10.1080/18811248.2010.9711927.

[46] Ullah A. Entropy, divergence and distance measures with econometric
applications. J Stat Plann Inference 1996;49(1):137–62. https://doi.org/
10.1016/0378-3758(95)00034-8.

[47] ParkS,RaoM,ShinDW.Oncumulative residualkullback–leibler information.Stat
Probab Lett 2012;82(11):2025–32. https://doi.org/10.1016/j.spl.2012.06.015.

[48] McKay MD, Conover WJ, Beckman RJ. A comparison of three methods for
selecting values of input variables in the analysis of output from a computer
code. Technometrics 1979;21:239–45. https://doi.org/10.1080/
00401706.1979.10489755.

[49] Anderson NS, Ramirez JA. Detailing of stirrup reinforcement. Aci Struct J
1989;86:507–15.

[50] Cervenka J, Papanikolaou VK. Three dimensional combined fracture-plastic
material model for concrete. Int J Plast 2008;24(12):2192–220. https://doi.org/
10.1016/j.ijplas.2008.01.004.
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Abstract

Developing surrogate models for costly mathematical models representing physical systems is challenging since
it is typically not possible to generate large training data sets, i.e. to create a large experimental design. In such
cases, it can be beneficial to constrain the surrogate approximation to adhere to the known physics of the model.
This paper presents a novel methodology for the construction of physics-informed polynomial chaos expansions
(PCE) that combines the conventional experimental design with additional constraints from the physics of the
model represented by a set of differential equations and specified boundary conditions. A computationally effi-
cient means of constructing physically constrained PCEs, termed PC2, is proposed and compared to the standard
sparse PCE. Algorithms are presented for both full-order and sparse PC2 expansions and an iterative approach
is proposed for addressing nonlinear differential equations. It is shown that the proposed algorithms lead to
superior approximation accuracy and do not add significant computational burden over conventional PCE. Al-
though the main purpose of the proposed method lies in combining training data and physical constraints, we
show that the PC2 can also be constructed from differential equations and boundary conditions alone without
requiring model evaluations. We further show that the constrained PCEs can be easily applied for uncertainty
quantification through analytical post-processing of a reduced PCE by conditioning on the deterministic space-
time variables. Several deterministic examples of increasing complexity are provided and the proposed method
is demonstrated for uncertainty quantification.

Keywords: Polynomial Chaos Expansion, Physical Constraints, Surrogate modelling, Uncertainty Quantification,
Physics-informed Machine Learning

1. Introduction

Mathematical models of real-life physical systems are typically highly computationally demanding and con-
tain various uncertain variables. It is therefore necessary to develop surrogate models as computationally cheap
approximations to perform uncertainty quantification (UQ), optimization, parametric studies, and other tasks.
These surrogate models treat the original model as a black-box and are trained from several deterministic simu-
lations at given data points in the design domain. Their practical use requires a sufficient number of data points
covering the space of input variables, which can be prohibitively expensive. To reduce training data demands and
improve approximation accuracy, it can be beneficial to incorporate additional constraints, e.g., known physi-
cal principles, in the training process to ensure realistic and physically meaningful surrogate model behavior.
Therefore, in recent years there has been considerable interest in developing machine learned surrogate models
capable of satisfying physical constraints – a field broadly referred to as physics-informed machine learning [1].
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Much of the work in physics-informed machine learning has focused on neural network models. Although
the first studies on physics-constrained neural networks emerged in the 1990s [2, 3, 4], this topic has garnered
significant attention by the hugely popular physics-informed neural networks (PINNs) [5] and the related physics-
informed neural operators [6]. Numerous variants of deep neural networks with physical constraints are now
available, including physics-informed autoencoders [7], the Deep Ritz Method [8], and the Deep Galerkin Method
[9] to name just a few. In fact, the recent developments and applications of PINNs and related neural networks are
so numerous we cannot possibly cover them here. But neural networks are not the only machine learning models
that benefit from physical constraints. Recent studies have also incorporated physical constraints into Gaussian
process regression models [10, 11], which have the benefit of providing a natural measure of uncertainty. These
physically constrained Gaussian processes have been applied for UQ of highly complex physical systems [12].

This paper focuses on imposing constraints on Polynomial Chaos Expansions (PCE) [13], which we treat here
as a machine learning regression method [14, 15]. Our interest in PCEs stems from their usefulness for UQ tasks
that include moment estimation and sensitivity index computation [16], which derive from their orthogonality
properties with respect to the probability measures of the input variables, as well as their relative computational
efficiency in training. Although PCE surrogate models have distinct benefits for UQ [17, 18], they suffer from
the curse of dimensionality, since the number of PCE terms grows rapidly with both dimension and maximum
polynomial order. Naturally, this significantly affects the number of data points needed for regression-based
training. As a result, recent research has focused on exploiting the model to minimize the size of the basis set
and maximize the information obtained from each data point. This involves identifying an optimally sparse basis
using adaptive algorithms [19], determining the optimal positions of data points for regression [20, 21, 22, 23],
and constructing various types of localized surrogates consisting of many low-order PCEs [24, 25, 26]. In addition
to the information obtained directly from model evaluations, there are often specific physical characteristics and
constraints derived from the nature of the model or quantity of interest (QoI) that should be incorporated into
the PCE. We propose a novel and computationally efficient method to incorporate known physics in the form of
ordinary differential equations (ODEs) and partial differential equations (PDEs) and their boundary conditions
(Dirichlet, Neumann, or mixed) in the PCE training, referred to as a physics constrained polynomial chaos (PC2)
expansion. We enforce the constraints at discrete points in the input domain, referred to as virtual points, to solve
a constrained least squares optimization problem for the PC2 coefficients. This approach can be generalized to
incorporate any form of equality-type constraints, where we specifically explore equality constraints that derive
from ODEs/PDEs. Extension of the PC2 method to more general constraints (e.g. inequality constraints) requires
the use of more advanced optimizers and is the topic of a future work.

Incorporating known physics and boundary conditions into the construction of a PCE approximation improves
generalization and typically results in higher prediction accuracy, especially in regions of the input space con-
taining an insufficient number of training points. In the proposed PC2 framework, we can generally adopt any
suitable optimization technique to solve the constrained optimization problem. However, as the number of PC2

coefficients and virtual points increases, certain numerical optimization techniques may suffer from convergence
issues, or their computational cost could be significant, which restricts their use to low or moderate dimensional
problems. In this paper, we focus specifically on equality-type constraints with the objective of minimizing the
sum of squared residuals (SSR), and thus it is possible to use the well-known method of Lagrange multipliers.
The Karush-Kuhn-Tucker (KKT) stationarity condition yields a system of equations that can be solved directly
for the PC2 coefficients. This approach is a natural extension of the ordinary least squares (OLS) approach, as
used in standard PCE [27], to incorporate known equality-type constraints in a computationally efficient manner.
We further show that the approach can be combined with sparse regression methods, specifically Least Angle
Regression (LAR) [28], to efficiently reduce the basis set. We then apply the method to several benchmark ODEs
and PDEs to illustrate its performance. Finally, we demonstrate how it can be used for general UQ purposes.

2. Non-intrusive Polynomial Chaos Expansion

Assume a probability space (Ω,F ,P), where Ω is an event space, F is a σ-algebra on Ω and P is a probability
measure on F . If the Doob-Dynkin lemma is satisfied and the input variable of a mathematical model, Y = u (X ),
is a random variable X (ω) ,ω ∈ Ω, the model response Y (ω) is also a random variable. Assuming that Y has
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finite variance, PCE represents the output variable Y as a function of an another random variable, ξ, called the
germ with a known distribution as

Y = u (X ) = uPCE (ξ) , (1)

and represents the function u(X ) by an infinite expansion of polynomials that are orthogonal with respect to the
probability density, pξ(ξ), of the germ. These polynomials form a basis of the Hilbert space L2 (Ω,F ,P) of all
real-valued random variables of finite variance, where P takes over the meaning of the probability distribution.
The orthogonality condition is given by the inner product on L2 (Ω,F ,P) defined for any two functions ψ j and
ψk with respect to the weight function pξ(ξ) as:

〈ψ j ,ψk〉=
∫
ψ j (ξ)ψk (ξ) pξ (ξ) dξ= 0 ∀ j ̸= k. (2)

This means that there are specific orthogonal polynomials associated with the corresponding distribution
of the germ. Orthogonal polynomials corresponding to common distributions can be chosen according to the
Wiener-Askey scheme [29], or numerically constructed for non-standard distributions, e.g. for non-Wiener-Askey
distributions, dependent random variables [30, 31, 32], or moment-based/data-driven arbitrary PCEs [33, 34].
For further processing, it is beneficial to use orthonormal polynomials, where the inner product of the polynomials
is equal to the Kronecker delta δ jk, i.e. δ jk = 1 if j = k, and δ jk = 0 otherwise.

In the case of XXX and ξ being vectors containing M independent random variables, the polynomial basis Ψ(ξ)
is multivariate and it is built up as a tensor product of univariate orthonormal polynomials, i.e.

Ψααα (ξ) =
M∏

i=1

ψαi
(ξi) , (3)

where ααα ∈ NM is a set of integers called the multi-index reflecting polynomial degrees associated to each ξi . The
quantity of interest (QoI), i.e. the response of the model Y = u (XXX ), can then be represented as [35]

Y = u (XXX ) =
∑
ααα∈NM

βαααΨααα (ξ) , (4)

where βααα are deterministic coefficients and Ψααα are multivariate orthonormal polynomials.
For practical computation, the PCE expressed in Eq. (4) must be truncated to a finite number of terms, P.

One can generally choose any truncation rule (e.g. tensor product of polynomials up to the selected order p),
but the most common truncation is achieved by retaining only terms whose total degree |ααα| is less than or equal
to a given p, in which case the truncated set of PCE terms is defined as

AM ,p =

¨
ααα ∈ NM : |ααα|=

M∑
i=1

αi ≤ p

«
. (5)

The cardinality of the truncated index set AM ,p is given by

cardAM ,p =
(M + p)!

M ! p!
≡ P . (6)

When the PCE is truncated to a finite number of terms, there is an error ϵ in the approximation such that

Y = u(XXX ) =
∑
ααα∈A

βαααΨααα (ξ) + ϵ = YPCE + ϵ.

From a statistical point of view, the PCE is a simple linear regression model with intercept. Therefore, it is possible
to use ordinary least squares (OLS) regression to solve for the coefficients βββ that minimize the error ϵ. To solve
this regression problem for βββ , we first generate nsim realizations of the input random vector XXX , denoted X, and
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compute the corresponding results of the model Y , together called the experimental design (ED) or training data
set. Then, the vector of P deterministic coefficients βββ can be determined by OLS as

βββ =
�
ΨTΨ
�−1
ΨT Y, (7)

where Ψ is the data matrix:

Ψ =
�
Ψi j = Ψ j

�
ξ(i)
�

, i = 1, . . . , nsim, j = 0, . . . , P − 1
	

. (8)

Note, however, that Eq. (7) is not typically used in practice due to ill-conditioning. Instead, more stable numerical
methods, such as singular value decomposition, will usually be employed. Moreover, it is clear from Eq. (6)
that P is strongly dependent on the number of input random variables M and the maximum total degree of
polynomials p. Considering that estimating βββ by OLS requires at least O (P ln(P)) samples for a stable solution
[36, 37], the problem can become computationally demanding for large or strongly non-linear models. To reduce
computational expense, one can use advanced model selection algorithms such as LAR [38, 28] to find an optimal
set of PCE terms, and thus reduce the number of samples needed to compute the unknown coefficients. Further
reduction can be obtained by incorporating additional physical constraints.

3. Physically Constrained Polynomial Chaos Expansion (PC2) – Deterministic Formulation

In this section, we propose a novel approach to perform PCE regression with known physical constraints. The
approach, referred to as Physically Constrained Polynomial Chaos (PC2), expands the classes of regression models
that can obey physical constraints to include PCE, which is widely used for UQ (Section 4). Yet, a physics-informed
PCE may be an attractive option even for deterministic problems because, for sufficiently smooth problems, it
will produce an accurate solution with fewer required training points. Combined with computationally efficient
optimization strategies, this may make it less costly to train than other methods, such as PINNs. We therefore
begin by formulating the constrained regression problem for the solution of deterministic PDEs.

Consider the general partial differential equation given by

L (x, t; u (x, t)) = f (x, t) , ∀x ∈ D, t ∈ T
B (x, t; u (x, t)) = g (x, t) , ∀x ∈ ∂D, t ∈ T (9)

where T ⊂ R, D ⊂ R3 with boundary ∂D, L is a differential operator with boundary operator B , u(·) is the
response of the system, and f , g are external forces/source terms. We aim to solve the PCE regression problem
described above as constrained by the general Eq. (9). That is, we define the objective function by

M (βββ) =min
βββ

nsim∑
j=1

�
Y j − uPCE(x j , t j)

�2
=min

βββ
∥Y −Ψβββ∥2

s.t. L (xV, tV; u(xV, tV)) = f (xV, tV),
B(xBC, tBC; u(xBC, tBC)) = g(xBC, tBC, )

(10)

where we define three discrete sets of samples of size nsim, nBC, and nV. Respectively, these define the size of the
experimental design (nsim) corresponding to (in the deterministic setting) the number of points in space and time
at which the PDE solution is obtained through model evaluation, the number of boundary points (nBC) at which
only the boundary conditions are enforced on the PCE model, and the number of virtual points (nV) at which
the PCE approximation is constrained to satisfy the PDE. Note that, in general, there is no relationship between
nsim, nBC, and nV – all of which may be assigned arbitrarily as long as P ≤ nsim + nBC + nV. Although (x, t) is a
deterministic vector, for the PC2 regression here it is assumed to be a random vector with uniform distribution
U . This is important primarily because it dictates that we use Legendre polynomial basis functions for both space
and time according to the Wiener-Askey scheme. Consequently, all deterministic input variables (x, t) must
be transformed to standardized space, i.e. ξ ∼ U [−1, 1], via an operator T . That is, we define the boundary
points and virtual points by ξBC = T (xBC, tBC) and ξV = T (xV, tV), respectively. Without loss of generality,
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uniform distributions are assumed in this paper for the sake of convenience since Legendre polynomials can be
efficiently constructed, and their derivatives are easily computed. However, the uniform distribution assumption
does not preclude the use of non-uniform statistical sampling methods or the use of sparse data obtained from
measurements. On the contrary, it has been shown that importance sampling can lead to improved PCE accuracy
[39]. One may also employ active learning approaches to identify an optimal sampling scheme for the given
problem [21]. On the other hand, employing the uniform distribution and Legendre polynomials may lead to
slow convergence or affect the sparsity/stability of the constructed PCE in some applications. In such cases, one
could assume a more appropriate distribution and associated basis. Generally speaking, one can assume arbitrary
distributions as long as it is possible to differentiate the associated basis functions to obtain derivatives up to nth
order.

3.1. Physical Constraints & Lagrange Multipliers

The constrained optimization problem defined by Eq. (10) can be solved efficiently using the method of
Lagrange multipliers. The Lagrangian function takes the following form:

L (βββ ,λ) =
1
2
M (βββ) +

nBC∑
b=1

λb

�
aT

bβββ − cb

�
+

nV∑
v=1

λv

�
aT

vβββ − cv

�
. (11)

Boundary conditions are prescribed by the boundary operator B , evaluated for the PCE at nBC points ξBC,
and the corresponding vector cBC consisting of nBC rows determined by cb = g

�
ξ(b)BC

�
. Similarly, ODE/PDE

constraints are given by the differential operator L , evaluated for the PCE at nV virtual points ξV, and the
corresponding vector cV consisting of nV rows given by cv = u

�
ξ(v)V

�
. We then assemble these constraints

into a matrix A where ab =
¦

a j
b =B
�
Ψ j

�
ξ(b)BC

��
, j = 0, ..., P − 1

©
form the first nBC rows and the vectors

av =
¦

a j
v =L
�
Ψ j

�
ξ(v)V

��
, j = 0, ..., P − 1

©
form the remaining nV rows of the matrix. Therefore, instead of

solving the coefficients βββ by Eq. (7), we construct the following system of linear equations reflecting the OLS
solution with physical constraints obtained from the Karush–Kuhn–Tucker (KKT) conditions:

�
ΨTΨ AT

A 0

�

KKT matrix

�
βββ
λ

�
=
�
ΨT Y

c

�
. (12)

Constructing the A matrix requires derivatives of the PCE model. We notice, however, that the PCE and its
derivatives have the same coefficients βββ . The constraints can therefore be imposed by efficiently computing the
term-wise derivatives of the basis functions as follows:

∂ n f
∂ xn

i

=
∂ n
�∑

ααα∈A βαααΨααα (ξ)
�

∂ ξn
i

∆n
Γ =
∑
ααα∈A

βααα
∂ nΨααα (ξ)
∂ ξn

i

∆n
Γ (13)

where∆Γ reflects the scaling of the time-space variable x i to the standardized variable ξi , i.e. ∆Γ = 2/ (xmax − xmin)
for Legendre polynomials defined on ξi ∈ [−1,1] orthonormal to X i ∼ U [xmin, xmax]. Derivatives of the Legen-
dre polynomials can be obtained efficiently using various numerical implementations, e.g. SciPy [40] employed
in this paper, or one can find closed-form expressions for the derivatives of normalized Hermite and Legendre
polynomials [41]. Note that the number of terms in the PCE constraints (columns of A) is identical to the number
of terms in the original PCE and it is also possible to perform basic arithmetic operations on the basis directly
to satisfy the prescribed operator L using the PCE alone (i.e. we do not need to solve the PDEs to satisfy the
constraints). The total computational cost of solving the KKT system is O

�
(nV + nBC + P)3

�
. We further require

that nV + nBC + nsim ≥ P to avoid solving an under-determined system. Subject to this constraint, it is possible
to generate an arbitrarily large number of virtual points (similar to PINNs) leading to a better conditioned KKT
matrix [42]. However, this may lead to a very large data matrix that results in a highly over-determined system,
which increases the computational cost of the solution. Therefore, we use the minimum number of virtual points
obtained as nV = P − nBC − nsim, which assures a well-determined KKT system of equations.
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Naturally, the imposed physical constraints can significantly reduce nsim, which is crucial for costly models.
On the other hand, imposing constraints (particularly Dirichlet boundary conditions) may necessitate higher-
order polynomial approximations and, for sparse PCE solutions, may require a larger basis set. As a result, for
certain problems this may lead to Runge’s phenomenon. Additional studies are necessary to determine when
such phenomena arise. Moreover, the number and positions of the virtual and boundary samples (in addition
to the training points) could significantly affect the convergence. This problem of optimal experimental design
has been extensively studied for standard PCE [39, 43, 44, 45] and has further led to the development of various
techniques for sequential sampling [21, 23, 46]. Similar studies could inform best practices in determining the
training points, virtual points, and boundary points for PC2. Such studies are beyond the scope of this work.

3.2. Approximation Error Estimation
Throughout the training process, it is important to estimate the PC2 accuracy. This is especially crucial for

the adaptive sparse PC2 construction employed in this paper (and developed in Section 5), where it is necessary
to iteratively compare several surrogate models differing in maximum polynomial orders and sparsity in order
to choose the best approximation. Ideally, the ED should be divided into validation and training sets, but this
might be extremely computationally demanding for engineering applications with complex numerical models.
Therefore, in the field of UQ, it is often preferred to estimate the approximation error directly from the training
set without additional sampling. A common choice of error measure is the mean squared error (MSE), which
is well-known from machine learning and statistics. However, driving MSE down on the training data set alone
may lead to over-fitting. Alternatively, one of the most widely-used methods in UQ is the leave-one-out cross-
validation (LOO-CV) error, which can be obtained analytically from a single conventional PCE [47]. However,
since the PC2 is designed for a very small (or even missing, i.e. nsim = 0) ED, the standard MSE or LOO-CV may
not be appropriate. Moreover, the LOO-CV cannot be computed analytically for PC2 and therefore it can only
be applied through a brute force implementation at high computational cost. Instead, we use an extended MSE
reflecting error in the given PDE and boundary conditions, similar to the error measure applied for PINNs [1], to
assess error during the training process. The extended MSE ε consists of three terms – error in the approximated
function εu (“data error”), error associated with failure to obey the PDE constraints εL (“PDE error”), and error
in the boundary conditions εB (“BC error”), expressed as:

ε= εu + εL + εB . (14)

The tendency to over-fitting is mitigated by the second and third components of the error measure ε – the mean
squared error in the given PDE and boundary conditions. Note that ε is evaluated from the training set in each
iteration of the adaptive algorithm for construction of PC2. Upon completion of the training, the PC2 model
accuracy is assessed by computing ε from a large validation set, as described further in the numerical examples.

4. PC2 for Uncertainty Quantification

In this section, we extend the deterministic formulation of PC2 to perform UQ – which, along with improve-
ments in computational efficiency discussed above, is an essential motivation for using PCE as opposed to other
physically constrained ML methods such as PINNs. Consider the general stochastic partial differential equation
given by

L (x, t,XXX (ω); u(x, t,XXX (ω))) = f (x, t,XXX (ω)), ∀x ∈ D, t ∈ T ,ω ∈ Ω
B(x, t,XXX (ω); u(x, t,XXX (ω))) = g(x, t,XXX (ω)), ∀x ∈ ∂D, t ∈ T ,ω ∈ Ω (15)

where the meaning of the symbols is identical to Eq. (9) andXXX (ω) ∈ Rd is a d-dimensional random vector having
sample space Ω. We now aim to solve the PCE regression problem described above as constrained by Eq. (15).
That is, we define the objective function as

M(βββ) =min
βββ

nsim∑
j=1

�
Y j − uPCE
�
x j , t j ,X j
��2
=min

βββ
∥Y −Ψβββ∥2

s.t. L (xV, tV,XXX (ω) ; u (xV, tV,XXX (ω))) = f (xV, tV,XXX (ω)) ,
B (xBC, tBC,XXX (ω) ; u (xBC, tBC,XXX (ω))) = g (xBC, tBC,XXX (ω))

(16)
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where we define two discrete sets of nBC boundary points (xBC, tBC,X) and nV virtual points (xV, tV,X). As in
the deterministic formulation, all input variables are transformed to standardized space according to the Wiener-
Askey scheme, i.e. ξBC = T (xBC, tBC,X) and ξv = T (xV, tV,X), but more general arbitrary PCE basis functions
may be selected. Note that the boundary and virtual points retain the random vector XXX , and do not (necessarily)
contain specific boundary or virtual points for XXX . This is because physical constraints are typically expressed
in terms of the physical variables (x, t) and are not (in general) expressed in terms of the random variables
contained in XXX . That is, XXX does not necessarily affect the constraints associated with either L andB (although
it can). As a result, the random vectorXXX usually serves only to increase the dimension of the input random vector
and thus the solution of the Eq. (16) follows the same form as the deterministic formulation given in Eq. (12).

If, on the other hand, the physical constraints associated with the PDE or BCs are expressed in terms of the
random variables in XXX , virtual and/or boundary points can be used to enforce these constraints in the same
manner as performed above. If these are expressed as equality constraints, the KKT equations to solve the con-
strained optimization do not change. On the other hand, if these constraints are expressed as inequalities (e.g.
non-negative coefficients) then more advanced optimizers are required. This will be the topic of future work.

The resulting constrained PCE is expressed as a function of the complete set of physical and random variables
ξ = T (x, t,XXX ). The form of the PCE as a linear summation over orthonormal polynomials allows for powerful
and efficient post-processing. In particular, once a PCE approximation is created, it is possible to directly estimate
statistical moments of the output from the expansion. The first statistical moment (the mean value) is simply the
first deterministic coefficient of the expansion µY =



Y1
�
= β000. The second raw statistical moment,



Y2
�
, can be

estimated by



Y2
�
=

∫ �∑
ααα∈A

βαααΨααα (ξ)

�2
pξ (ξ) dξ =
∑
ααα1∈A

∑
ααα2∈A

βααα1
βααα2

∫
Ψααα1
(ξ)Ψααα2

(ξ) pξ (ξ) dξ (17)

=
∑
ααα∈A

β2
ααα

∫
Ψααα (ξ)

2pξ (ξ) dξ =
∑
ααα∈A

β2
ααα 〈Ψααα,Ψααα〉=
∑
ααα∈A

β2
ααα.

Considering the orthonormality of the polynomials, it is possible to obtain the varianceσ2
Y =


Y2
�−µ2

Y as the sum
of all squared deterministic coefficients except the intercept (which represents the mean value). Note that the
estimation of higher statistical central moments, specifically skewness and kurtosis, are more complicated since
they require triple and quad products. These can be obtained analytically only for certain polynomial families,
e.g. formulas for Hermite and Legendre polynomials (and their combination) can be found in [48]. Moreover,
it can be shown that PCE takes the form of the Hoeffding-Sobol decomposition and thus Sobol indices can be
obtained analytically by applying Eq. (17) to selected subsets of the PCE terms [16].

As can be seen, a main advantage of PCE over other surrogate models lies in the convenience of performing
uncertainty quantification, i.e. the above analytical moment and sensitivity estimates. The PC2 framework inher-
its this convenience when appropriate conditions are established. As noted, the PC2 is expressed in terms of both
the random variables XXX and the deterministic space-time coordinates (x, t). Therefore, to properly estimate sta-
tistical moments or sensitivity indices, we must condition the PCE on (x, t), yielding local space-time statistics.
Numerical estimation of the local mean value E [u|x, t] and variance σ2

[u|x,t] are based on a simple rationale:
deterministic values can be specified directly as constants in the PCE. Following the concept of reduced PCE [48],
the local variance σ2

[u|x ,t] depends only on PCE terms containing the random variables XXX , while all other terms
are constants whose sum is equal to the local expected value E [u|x , t].

Formally stated, the random variables form a subset of all M input variables {x, t,XXX }, i.e., XXX ⊂ {x, t,XXX }. We
define the index subset u ⊆ I = {1, ..., M} and its complement uc as

u= {i ∈ I : ξi ∈ T (XXX )} , uc = {i ∈ I : ξi ∈ T ({x, t})} . (18)

For the sake of clarity, the set of multivariate basis polynomials dependent on XXX and its complement are

AXXX = {α ∈A : αk ̸= 0↔ k ∈ u } , A∼XXX = {α ∈A : αk ̸= 0↔ k ∈ uc } . (19)

The local variance is further obtained by a simple post-processing of the terms containing the random vari-
ables. First, it is necessary to find a unique basis, defined by the unique set of polynomials from AXXX . Although
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the original basis set A contains only unique terms, after the reduction there could be identical terms, e.g. two
terms differing only in polynomial degrees associated with variables in uc. The coefficients of terms with dupli-
cate multi-indices are then summed and assigned to the unique term in the reduced PCE. The constants arising in
mixed PCE terms containing deterministic and random variables must be added to the coefficients associated with
the unique basis. Finally, the local mean and variance are obtained directly from the coefficients of the reduced
PCE, i.e. the expected value is obtained from the coefficients associated with terms containing only deterministic
variables in complement set A∼XXX and the variance is obtained from the coefficients associated with terms in AXXX
as:

E [u|x, t] = β0 +
∑
ααα∈A∼XXX

βααα (20)

σ2
[u|x,t] =
∑
ααα∈AXXX

β2
ααα (21)

For the sake of clarity, the reduced PCE concept is illustrated in the following simple example for a PCE
approximation with p = 2 containing a deterministic space variable x and a single random variable X :

u(x ,X ) = β0 + β1,0ψ
x
1 (T (x)) + β2,0ψ

x
2 (T (x))

E[u|x]
+β0,1ψ

X
1 (X ) + β0,2ψ

X
2 (X ) + β1,1ψ

x
1 (T (x))ψX

1 (X )

u(X |x) = E [u|x] + �β0,1 + β1,1ψ
x
1 (T (x))
�

β1

ψX
1 (X ) + β0,2

β2

ψX
2 (X ) → σ2

[u|x] = β
2
1 + β

2
2

Here, the conditional mean and variance are specifically shown as the components with dependence only on
the spatial variable x and the sum of the squares of the coefficients whose polynomials depend on the random
variable X , respectively.

5. Numerical Algorithms

In this section, we present computationally efficient algorithms to solve for the PC2 coefficients. We then
extend the approach to use a reduced basis set defined through LAR. Finally, an iterative scheme is proposed to fit
the PC2 constrained by nonlinear PDEs. Implementation of the proposed approach is simple and straightforward:
it requires simply setting up and solving the KKT system of linear equations, which is compatible with existing
non-intrusive regression methods. Therefore, it is possible to use various adaptive sparse non-intrusive algorithms
to solve for the PC2 expansion. The main three algorithms are presented in the following paragraphs.

The basic algorithm for assembling the KKT equations begins by building sub-matrix A containing the given
physical constraints in the form of boundary/initial conditions evaluated at ξBC and the PDE evaluated at ξV.
The sub-matrix A prescribes all constraints and initial conditions on βββ , leading to efficient and accurate estimates
even for very low-size (or even missing) ED. Then, the unknown coefficient vector βββ is obtained as the solution
of the linear system in Eq. (12) where the KKT matrix is composed of A and the information sub-matrix ΨTΨ.
The whole process is detailed in Algorithm 1.

Since KKT-based estimation of the PCE coefficients βββ is computationally efficient, Algorithm 1 can be easily
combined with adaptive sparse solvers such as LAR. The complete algorithm integrating the KKT solver into LAR
is provided in Algorithm 2. The LAR-KKT algorithm combines information from the ED and physical constraints
to identify the optimal basis for the PC2 approximation as schematically depicted in Fig. 1. Information obtained
from the ED is specifically utilized to identify the most suitable basis set by standard LAR. Physical constraints
are further imposed on the βββ estimates and a suitable error measure ε (Eq. (14)) is then used to select the most
accurate PC2. Note that the KKT solution can be generally combined with any existing adaptive sparse regression
algorithm by simply replacing standard OLS with the solution of the KKT system.

The solution is more complicated for non-linear PDEs because the derivatives of the PCE depend on the PCE
coefficients themselves. Therefore, it is necessary to know the complete form of the PCE, and thus βββ . It is not
sufficient to simply take derivatives of the basis functions. Naturally, the PCE and its derivatives evaluated at the
virtual samples are not known at the start of the algorithm. Therefore, it is necessary to initially construct the PCE
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Algorithm 1 KKT solver with virtual samples

Input: ED ({x, t,XXX } and Y), Ψ, boundary conditions (ξBC, cBC), L ,B , f
1: for b← 1 to nBC do
2: for j← 1 to P do
3: evaluate a j

b =B(Ψ j(ξ
(b)
BC ))

4: append a j
b to A

5: end for
6: end for
7: sample nV = P − nBC − nsim virtual points ξV (MC, LHS etc.)
8: for v← 1 to nV do
9: for j← 1 to P do

10: evaluate a j
v =L (Ψ j(ξ

(v)
V ))

11: append a j
v to A

12: end for
13: evaluate cv = f (ξ(v)V )
14: append cv to cV
15: end for
16: assemble vector c= [cBC,cV]
17: construct KKT normal equations according to Eq. (12)
18: solve the system by OLS

Output: PCE coefficients βββ

Algorithm 2 LAR-KKT algorithm

Input: ED ({x, t,XXX } and Y), Ψ, boundary conditions (ξBC, cBC), L ,B , f , pmax
1: for p← 1 to pmax do
2: generate set of basis functions A
3: identify the sequence of the most important basis functions by LAR
4: for i← 1 to P do
5: construct Ψ
6: estimate βββ by KKT (Algorithm 1)
7: get approximation error εp,i
8: end for
9: end for

Output: {Ψ,βββ} associated to the lowest εp,i

Figure 1: Graphical representation of LAR-KKT algorithm combining p-adaptivity, the LAR algorithm and the KKT solver with virtual/boundary
samples.
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Algorithm 3 Iterative KKT solver for non-linear PDEs

Input: ED ({x, t,XXX } and Y), Ψ, boundary conditions (ξBC, cBC), L ,B
1: get cBC and βββ0 from Algorithm 1 without L
2: sample nV = P − nBC − nsim virtual points ξV (MC, LHS etc.)
3: for v← 1 to nV do
4: for j← 1 to P do
5: evaluate a j

v =Lβββ0
(Ψ j(ξ

(v)
V ))

6: append a j
v to A

7: end for
8: evaluate cv = f (ξ(v)V )
9: append cv to cV

10: end for
11: assemble vector c= [cBC,cV]
12: for i← 1 to niter do
13: construct KKT normal equations
14: get βββ i by least squares
15: for v← 1 to nV do
16: for j← 1 to P do
17: evaluate a j

v =Lβββ i
(Ψ j(ξ

(v)
V ))

18: append a j
v to A

19: end for
20: evaluate cv = u(ξ(v)V )
21: append cv to cV
22: end for
23: end for

Output: PCE coefficients βββ = βββniter

(estimate the coefficients βββ) without virtual samples and iteratively improve the estimate by evaluating the PDE
at the virtual samples. An iterative KKT-based algorithm for simple non-linear PDEs is presented in Algorithm 3.

6. Numerical Experiments

To present the capabilities of the proposed PC2 approach, several examples are presented for various types of
PDEs. First, PC2 is applied to three 1D examples of different nature, including an inhomogeneous ODE, an ODE
with BCs of arbitrary order, and a non-linear ODE. PC2 is then used to approximate the solution to the 2D wave
equation and the heat equation with an uncertain input variable. The full PC2 is constructed using Algorithm 1
(KKT) and the sparse adaptive PC2 is constructed using Algorithm 2 (LAR-KKT). In both cases, the PC2 is trained
to minimize the extended MSE in Eq. (14) across a set of training points, virtual points, and boundary points.
The results are compared to the standard iterative unconstrained LAR method [28] trained using the LOO-CV
implemented in UQPy [49, 50] considering identical input and output quantities as the trained PC2. All compared
methods are extended by p adaptivity (p ∈ [5, 25]) governed by ε for PC2 and εu for the unconstrained LAR-PCE
to obtain the highest possible accuracy.

The ED, containing nsim realizations of the original mathematical model (ground-truth solution of the ODE/PDE),
is generated by Latin Hypercube Sampling (LHS). Note that, for deterministic problems nsim defines the number
of points in space and time at which the PDE is solved, while for stochastic problems nsim corresponds to the num-
ber of realizations of the complete input random vector (containing random variables and space/time variables)
for which the PDE is solved. The sets of nV virtual samples and nBC boundary samples are generated by Crude
Monte Carlo (MC) sampling unless stated otherwise. Note that Dirichlet BCs are included in the ED for the stan-
dard LAR-PCE method for a fair comparison, though additional information from the PDE and higher-order BCs
can only be incorporated in PC2. Convergence is measured by two global quantities characterizing error across
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the entire input domain computed from a large validation set after completion of model training. The first is the
mean squared error where we report convergence of the extended MSE from Eq. (14) as well as its individual
constituents εu, εL , and εB . Again, this is computed on the validation set, and is therefore denoted εmean to
distinguish it from the extended MSE computed on the training data. The second is the maximum squared error
given by:

εmax :=max
x,t

��
u(x, t, |X)− ũ(x, t, |X)�2

�
(22)

where again, we show the total εmax as well as the individual constributions from εu, εL , and εB .
All numerical results were replicated for 100 independent trials and, for each example, statistical results are

presented with convergence plots showing the mean ±σ intervals for εmean and εmax and their constituents. The
validation sets contain 1000 MC samples for 1D examples and 100M MC samples for higher dimensional examples,
together with 100 samples on the boundaries for the estimation of εB . Convergence is plotted with respect to
increasing training set size, nsim, since evaluations of the original model typically dominate the computational
cost of surrogate modeling. Although the number of virtual samples, determined as nV = P−nBC−nsim, varies in
each iteration of the adaptive LAR-KKT algorithm, their sampling and evaluations come at little computational
cost since we need only apply the differential operator to the basis functions evaluated at ξv and apply the
corresponding values of the PDE source terms.

Finally, detailed insight is also illustrated by a local error measure represented by the absolute difference
between the target quantity of interest q and its approximation q̃ as:

|ε(x, t)| :=|q(x, t)− q̃(x, t)| (23)

For this quantity of interest, we typically consider the approximated function itself, the mean or standard deviation
of the solution.

6.1. 1D Poisson Equation: Inhomogeneous ODE

The first example shows the application of the PC2 to a simple 1D inhomogeneous ODE. Homogeneous and
inhomogeneous ODEs/PDEs solved by PC2 differ only in the vectors cV – containing specific values for inho-
mogenous PDEs and zeros for homogenous PDEs. Naturally, cV could contain constants or results of functions of
(xV, tV,XXX (ω)). The Poisson equation and the assumed BC are as follows:

∆u(x) = 2, x ∈ [−1,1], (24)

∂ u(x)
∂ x

����
x=1

= 4, u(−1) = 0.

where ∆ is the Laplace operator and nBC = 2 corresponding to constraints prescribed at the 2 boundary points.
The numerical results are summarized in Fig. 2. Note that although the figure contains ±σ intervals, these

are not visible for the KKT method due to extremely low variance in the obtained accuracy. The accuracy is
measured by three the quantities εu,εL ,εB and their sum representing total error (ε) from Eq. (14) evaluated
on the validation set. Note that while εu is typically a sufficient measure in standard surrogate modeling, for
physics-informed surrogate models it is also important to measure εL and εB to ensure the physical constraints
are satisfied. Standard LAR shows convergence to the exact solution measured by εu after nsim = 8 samples.
Meanwhile, the KKT method is exact even for nsim = 2 realizations of the ground-truth solution. The KKT-LAR
method converges in nsim = 4 samples while having a large variance for nsim = 3 samples. This behavior is
also seen in the linear ODE example presented next, where the effect of sparsity is insignificant. It is therefore
generally more efficient to use the standard KKT method for simple linear ODEs. Although all compared methods
converge to the exact solution for nsim = 10, the standard LAR method leads to significant errors for lower nsim,
where although it has almost perfect accuracy measured by εu for nsim = 4, it still has significant errors in the
remaining physically constrained criteria. Meanwhile, KKT and LAR-KKT converge consistently in total ε and
each of its components.
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Figure 2: Numerical results for the 1D Poisson equation for increasing number of samples in the domain. The top row shows the mean
squared errors and the bottom row shows the maximum squared errors obtained by the simple KKT (Algorithm 1), LAR-KKT (Algorithm 2)
and standard LAR methods. Each column corresponds to a specific component of the total error measure ε.

6.2. 1D Euler Equation: Arbitrary BC

Using PC2 it is possible to solve PDEs containing derivatives of arbitrary order inL andB if the nth derivative
of the PCE basis functions exists. This example presents the 1D Euler beam equation with given BCs as follows:

∂ 4u(x)
∂ x4

+ 1= 0, x ∈ [0,1], (25)

u(0) = 0, u′(0) = 0 u′′(1) = 0, u′′′(1) = 0

where nBC = 4 corresponding to the constraints prescribed at the two boundary points. This ODE with the
prescribed BCs represents the deflection of a cantilever beam with a uniformly distributed load having intensity
q = 1. The obtained results are shown in Fig. 3 in the identical form as in the previous example. The convergence
trends of the compared methods are similar to the previous example, though the differences between standard
LAR and PC2 are more significant. PC2 convergence is consistent with respect to all criteria as can be clearly seen
in convergence plots of the LAR-KKT method, while the standard LAR approach leads to similar overfitting up to
nsim = 6 similar to the previous example.

6.3. 1D Logistic Equation: Non-linear ODE

The last example presenting the capabilities of the proposed PC2 for ODEs is a non-linear logistic equation
commonly representing population growth. Non-linear ODEs/PDEs solved by PC2 require iterative construction
of the KKT system using Algorithm 3, though it is not applicable to strongly non-linear systems. For more com-
plicated equations, it is necessary to use more advanced and more computationally expensive optimizers. The
1D logistic equation with a single BC ( nBC = 1) is given in the following form:

∂ u(x)
∂ x

= u(x) (1− u(x)) , x ∈ [−5, 5], (26)

u(0) = 0.5
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Figure 3: Numerical results for the 1D Euler equation for increasing number of samples in the domain. The top row shows the mean squared
errors and the bottom row shows maximum squared errors obtained by the simple KKT (Algorithm 1), LAR-KKT (Algorithm 2) and standard
LAR methods. Each column corresponds to a specific component of the total error measure ε.

The numerical results are summarized in Fig. 4. The convergence trend is similar for all methods, but PC2

achieves significantly higher accuracy. Note that the simple KKT solver is the most accurate for a very low number
of samples, though for increasing number of samples the benefit of the sparse solution obtained by the LAR-KKT
solver leads to superior accuracy. Interestingly, the convergence trend of the standard LAR is very similar to the
LAR-KKT, although there is a significant difference in the absolute accuracy. Regardless of nsim, the accuracy of
LAR at the given BCs is nearly perfect, possibly indicating that it is overfitting. Meanwhile, both PC2 methods
consistently converge in all presented criteria. Relatively slow convergence in εL and εB obtained by the KKT
solution clearly show the benefit of sparse solvers in this example, since some basis functions with high p are
most suitable for an accurate PCE approximation. However, since the cardinality of the full basis set used in the
KKT method is high, it requires a large nsim for accurate coefficient estimates.

6.4. Wave equation: Time-dependent PDE

The previous 1D examples clearly show the advantages of PC2 for various types of ODEs. Naturally, the PC2 can
be used for problems with a larger number of input variables. This will be presented through the time-dependent
wave equation given by:

∂ 2u(x , t)
∂ t2

= 4
∂ 2u(x , t)
∂ x2

, x ∈ [0,1], t ∈ [0, 2] (27)

∂ u(x , 0)
∂ t

= 0, u(0, t) = u(1, t) = 0, u(x , 0) = sin (πx).

Although the extension of PC2 for n-dimensional problems is straightforward since it is based on standard
PCE, there is one significant difference in comparison to the 1D examples: the boundary and initial conditions
are now always prescribed point-wise and thus the accuracy of PC2 is also dependent on the number and position
of the nBC boundary samples. In this paper, we use the DeepXDE python package [51] for deterministic sampling
on the boundaries and thus their position does not influence the variance of the convergence plots. Convergence

13



Figure 4: Numerical results for the 1D logistic equation for increasing number of samples in the domain. The top row shows the mean
squared errors and the bottom row shows the maximum squared errors obtained by the simple KKT (Algorithm 1), LAR-KKT (Algorithm 2)
and standard LAR methods. Each column corresponds to a specific component of the total error measure ε.

plots for nBC = 10 samples on the boundaries are shown in Fig. 5. PC2 converges rapidly to a very accurate
approximation, although the εu for very small nsim is identical to LAR. However, the PDE error εL is negligible
for PC2, but LAR does not respect the PDE, and as a result, it does not converge to the original model. Note that,
although not shown, the difference between the PC2 and LAR is significantly higher for increasing nBC since the
Neumann BC can only be imposed in PC2.

A detailed comparison of the PC2 and standard LAR solutions for a selected realization are shown in Fig. 6. The
top row shows the solution of the wave equation for a selected t where the dashed line represents the analytical
reference solution and the colored line shows the solution by LAR (left) and PC2 (right). The approximations
are discretized at 200 points and their colors correspond to the logarithm of the local squared errors of the PDE,
logεL . The bottom row shows approximations of the wave equation over the entire input space together with
given the ED, xBC and xV. It is clear that the standard LAR does not produce a sufficiently accurate approximation
of u(x , t), which is also reflected by the high εL . Furthermore, even when LAR produces similar errors εu, its PDE
errors εL are much larger as illustrated by a second realization in Fig. 7. In this case, LAR leads to εu < 10−3,
though it is clear from the colors of logεL that the prescribed PDE is not respected. Note that PC2 leads to near
perfect approximations in both selected realizations.

6.5. Heat Equation: Uncertainty Quantification

The last numerical example presents a main advantage of PC2 – analytical UQ of the original model containing
deterministic and random variables as proposed in Section 4. This example is thus divided to two parts: (i)
a convergence study assuming all input variables to be deterministic, which shows the efficiency of PC2 as a
surrogate model; and (ii) UQ of the given model with a random variable input.

We specifically study the heat equation with uniformly distributed coefficient of thermal diffusivity D taking
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Figure 5: Numerical results for the wave equation for increasing number of samples in the domain. The top row shows the mean squared
errors and the bottom row shows the maximum squared errors obtained by the simple KKT (Algorithm 1), LAR-KKT (Algorithm 2) and
standard LAR methods. Each column corresponds to a specific component of the total error measure ε.

Figure 6: Selected realization of LAR (left) and PC2 (right) for the 2D wave equation. The left pane shows significant error εu and εL for
the standard LAR. The right pane shows a very accurate solution from PC2 using an identical ED, xBC and xV .

the following form:

∂ u(x , t)
∂ t

= D ∂
2u(x , t)
∂ x2

, x ∈ [0, 1], t ∈ [0,1], D ∼ U[0.2,0.8] (28)

u(0, t) = u(1, t) = 0, u(x , 0) = sin(πx)
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Figure 7: Selected realization of LAR (left) and PC2 (right) for the 2D wave equation. The left and right panes show similar errors εu (bottom)
but PC2 shows much lower error in the PDE error εL (top) using an identical ED, xBC and xV .

Deterministic value of coefficient of thermal diffusivity
In the first part of this example, we assume a deterministic value for the coefficient of thermal diffusivity

D = 0.4. The results in Fig. 8 shows the convergence for nBC = 10 and increasing number of samples nsim in
the space-time domain. The benefit of imposing the physical constraints can be clearly seen by comparing the
convergence plots. The convergence rate for the standard LAR is significantly lower than PC2, while both PC2

algorithms achieve near-perfect accuracy after nsim = 15. Note that LAR-KKT has a higher variance since the
selected sparse set of basis functions is dependent on the given ED, as expected.

Uncertain coefficient of thermal diffusivity
In the second part, there are 2 deterministic variables (space coordinate x and time t) and one random

variable D ∼ U[0.2,0.8]. To efficiently quantify solution uncertainty, PC2 is based only on nBC = 90 boundary
samples and a set of virtual points. We do not run the deterministic simulation using samples of D. In other
words, nsim = 0. This scenario is of significant practical interest, because the traditional solution of a PDE with
uncertain inputs requires repeated solution of the PDE with different realizations of the random variables, which
could be costly. The number of samples on the boundaries is selected to be large to specifically highlight the
advantages of PC2 for UQ, since the general convergence for PC2 was shown in the previous deterministic case.
An empty ED (nsim = 0) leads to very efficient UQ, since it requires no model evaluations. Moreover, we can
easily modify the stochastic model of the input variables – increasing the number of random variables, changing
their distributions etc. – without re-evaluating the model, as would be necessary for standard surrogate models.

Once the PC2 model is trained, we can use it to easily estimate the local means, variances, and quantiles (e.g.
±σ) as depicted in Fig. 9, which compares the mean solution and mean ±σ for PC2 with Monte Carlo simulation
using LHS with nsim = 105 samples. Note that there are negligible errors in the local mean values. The estimated
local variance is also compared to the LHS solution in Fig. 10. Although the PC2 is based only on BC and PDE
samples, it leads to a very accurate approximation of local statistics. Moreover, the PC2 model also reflects the
uncertainty in D very well in predictions. Fig. 11 shows the PC2 approximations in space-time and errors for
selected values of D.
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Figure 8: Numerical results for the heat equation for nBC=10 and increasing number of samples in the time-space domain. The top row
shows the mean squared errors and the bottom row shows the maximum squared errors obtained by the simple KKT (Algorithm 1), LAR-KKT
(Algorithm 2) and standard LAR methods. Each column corresponds to a specific component of the total error measure ε.

7. Conclusions & Further Work

A novel methodology for constructing physics-informed non-intrusive regression-based PCE, referred to as PC2

was proposed in this paper. Physical constraints in the form of ordinary and partial differential equations and
their boundary conditions are imposed in a constrained least squares solution to assemble a KKT system of linear
equations using the method of Lagrange multipliers. The proposed approach does not significantly increase the
computational cost to estimate the PCE coefficients, but improves accuracy considerably. The proposed solution
can be further employed with existing adaptive algorithms in lieu of of conventional ordinary least squares.
An algorithm based on least angle regression is then proposed to achieve a constrained sparse solution with p-
adaptivity. The presented approach was developed specifically for UQ of costly mathematical models of physical
systems using a small ED. PC2 enables analytical UQ similar to standard PCE by simple post-processing of the
coefficients, though the PC2 must first be reduced to exclude the influence of deterministic variables. From the
obtained numerical results, it is clear that PC2 achieves significant improvement in approximation accuracy in
terms of surrogate model prediction error, but also with respect to error in the PDE and boundary conditions for
low-to-mid size ED with little additional computational cost. We compared two algorithms for PC2 construction –
a sparse LAR-KKT solver and a KKT-based PCE with a full set of basis functions, and it can be concluded that while
LAR-KKT does not always lead to superior results, its benefits are more significant with increasing dimension of
input random vector. Note that both algorithms can be applied in tandem in practical applications, since the PC2

using the full set of basis functions increases the computational cost of LAR-KKT just by one additional iteration.
Finally, it was shown in the final numerical example that it is possible to create a PC2 surrogate using only a set of
virtual samples and boundary conditions, which leads to extremely efficient UQ in comparison to other existing
techniques.

This work opens the door to several open questions that should be investigated in further research. First,
the proposed approach is limited to problems with linear and weakly nonlinear differential constraints. More
complicated non-linear PDEs will require advanced optimization techniques and thus PC2 must be extended
also for broader classes of applications and suitable optimization techniques should be identified. Moreover, the
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Figure 9: Estimates of the local mean values at given coordinates E [u | x , t] (middle), and local E [u | x , t]±σ[u|x ,t] quantiles (left and right).
Comparison of the analytical solution by PC2 (top), Monte Carlo simulation using the original model (middle), and their absolute difference
(bottom).

Figure 10: Estimates of the local variance at given coordinates σ2
[u|x ,t]. Comparison of the numerical estimation by LHS (left), the analytical

solution by PC2 (middle), and their absolute difference (right).

use of polynomial basis functions restricts the application of PC2 to sufficiently smooth operations, which could
be alleviated by coupling the proposed method with domain-decomposition techniques and/or multi-element
techniques [25, 32, 24]. Further, PC2 can be combined with optimal sampling strategies for both the ED and the
virtual/boundary points and active learning techniques for sample selection such as the Θ criterion[21] recently
proposed by authors of this paper. Finally, the presented examples are low-dimensional. Moving forward, it will
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Figure 11: Prediction of the heat equation solution by PC2 based on nBC = 90 samples for different values of D. Each row shows the original
function, the PC2 approximation, and the error corresponding to a selected realization of D.
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be necessary to investigate the scalability of the proposed approach with increasing input dimension – particularly
with respect to the dimension of the random variable inputs. However, since PC2 is based on a well-established
non-intrusive regression-based approach, it is generally possible to apply existing techniques for high-dimensional
PCEs based on the sparsity-of-effects principle [14]. Moreover, the curse of dimensionality could also be mitigated
by using techniques such as stochastic domain decomposition [52]. Future work will focus on investigating the
scalability of PC2 and ultimately extending the method for higher-dimensional applications.
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1. Motivation and significance

Uncertainty Quantification (UQ) is the science of characterizing,
quantifying, managing, and reducing uncertainties in mathematical,
computational and physical systems. Depending on the sources of un-
certainty, UQ provides a multitude of methodologies to quantify their
effects. For instance, given the probability distribution for the inputs
to a computational model, forward uncertainty propagation methods
aim to estimate the distributions or statistics of resulting quantities
of interest. Inverse UQ, on the other hand, aims to infer uncertainties
in input quantities given limitations and uncertainties in the observed
system response, e.g. for model calibration from experimental data. Nu-
merous related tasks fall under the broad classification of UQ including
sensitivity analysis, which aims to quantify the influence of multiple
inputs to a system, and reliability analysis which aims to estimate (and
sometimes minimize) the probability of failure of the system.

A major challenge in UQ is to reduce the high computational
expense associated with many repeated model evaluations. This can be
achieved through advances in sampling, development of computation-
ally inexpensive surrogate models (or metamodels), and by leveraging
high performance computing. To address these challenges, multiple
software packages and libraries have been developed. Some of the most
comprehensive libraries for UQ include OpenTurns [1], Korali [2],
MUQ [3], UQTk [4], Dakota [5], OpenCossan [6] and UQLab [7].
These software are developed in either C, C++ programming languages
or Matlab and although many provide bindings to Python (to dif-
fering extents), they are not generally suitable for direct extension
in Python, which is one of the most widely used languages in the
scientific community.

Apart from these general purpose UQ libraries, several packages
that target specific applications or with more limited scope are avail-
able. In R, the DiceDesign [8] package aids experimental design,
while DiceKriging and DiceOptim [9] use Kriging for metamodel-
ing and surrogate-based optimization, respectively. The Matlab code
FERUM [10], developed at UC Berkeley and IFMA, Clermont, serves
as a general purpose finite element structural reliability code, while
SUMOToolbox [11] is a framework for global surrogate modeling and
adaptive sampling. The Engineering Risk Analysis group at TU Munich
also provides a collection of Matlab and Python routines [12] re-
lated to the group’s research. Specifically in Python, several focused
libraries have been developed. UncertaintyPy [13] was developed
for UQ in computational neuroscience. PyROM framework [14] pro-
vides a user-friendly way to implement model reduction techniques.
The ChaosPy package provides UQ functionality centered around
polynomial chaos expansions. Bayesian calibration algorithms are im-
plemented in SPUX [15] and ABCpy [16] and sensitivity analyses
by SALib [17]. PyMC [18] provides a simple Python interface that
allows its user to create Bayesian models and fit them using Markov
Chain Monte Carlo methods. PyGPC [19] library is based on general-
ized polynomial chaos theory and provides capabilities for uncertainty
and sensitivity analysis of computational models. Three of the latest
additions are PyApprox [20], which provides wide-ranging func-
tionality, NeuralUQ [21] focused on UQ in neural network models,
and Fortuna that provides uncertainty estimates, classification and
prediction for production systems.

UQpy aims to provide a comprehensive UQ library with wide-
ranging capabilities spanning the areas discussed above, as well as a
development environment for creating new UQ methodologies. The
UQpy package was originally introduced in [22], where the overall
structure of v3 was described. Since then, the authors have reworked
the UQpy architecture with the goal to simplify its structure, enhance
its extensibility, and make it more robust. The updated architecture
of the library rendered it not backwards compatible, as the strategy
for construction of classes has changed. Yet porting older solutions to
the new structure can be performed in a straightforward manner. This
restructuring resulted in the current version we present here, v4.1.

The first task carried out towards v4.1 was to restructure the file
system. The previous structure, which maintained a single Python
file per module, had reached size limitations and made it cumbersome
for the team members to add new functionalities or update existing
ones. In the reorganization, a directory was created for each module,
which contains, in a hierarchical structure, subdirectories for specific
functionalities, with one file dedicated to each class. Slight modifica-
tions were also made to the existing code to ensure compliance with
PEP8 by renaming modules, classes, and function signatures. Instead
of monolithic classes per functionality, each component was split into
a separate class with a dedicated abstract baseclass, where ap-
plicable. This choice reduced code complexity, provided a standardized
way of extending components, and enabled the construction of the final
functionality, using object composition and inheritance.

The second step to improve internal and external collaboration
was to deprecate the ‘‘branch-per-developer’’ strategy and move to a
feature-based branch structure using the Github Flow. This removed
unnecessary redundancies and complications when multiple people are
working on related functionalities. At the same time, the workflow
is now directly combined with testing automation and Continuous
Integration/Continuous Delivery (CI/CD) workflows. Unit tests were
implemented throughout the software, achieving code coverage greater
than 80%. The CI pipeline includes linting, code quality checks, and
automated semantic versioning, while the CD pipeline packages and
distributes the code via multiple channels, such as PyPI, conda-
forge, and Docker images. This CI/CD pipelines are explained in
more detail in Section 3.

The documentation was revamped to reflect the new hierarchical
structure of the code, with embedded examples serving as tutorials
to quickly familiarize users with the code functionality. Specifically,
for each class, a gallery of examples is created using the sphinx-
gallery extension [23]. The users can now download the examples
in both Jupyter notebook and Python format or directly interact with
the example in a dedicated Binder environment. Finally, several new
functionalities were introduced either by the development team or
external collaborations, thus boosting UQpy’s capabilities.

2. Software description

2.1. Software architecture

UQpy is a Python-based toolbox that provides a series of com-
putational methodologies and algorithms for wide-ranging UQ prob-
lems. The core of UQpy is based on state-of-the-art Python libraries,
specifically NumPy [24], which is the most fundamental package sup-
porting array and linear algebra operations, SciPy [25], that pro-
vides algorithms for optimization, integration and basic statistics, and
scikit-learn [26], which includes various tools for supervised
and unsupervised learning. UQpy is split into eleven modules, nine
of which address specific tasks in UQ and which will be discussed
in detail in the following section. A module that enables necessary
simulations in all other modules, called run_model, aids in the batch
execution of both Python and third-party computational models and
includes functionality for parallelization via MPI for high performance
computing. Finally, a utilities module contains various functions
that are common to multiple modules.

2.2. Software modules

In this section, all existing modules of UQpy will be briefly intro-
duced, with emphasis on software updates compared to v3. The basic
module structure and capabilities are illustrated in Fig. 1. The detailed
UML diagrams for all modules are included in the UQpy documentation
allowing architecture visualization.
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Fig. 1. Structure and capabilities of the UQpy modules.

2.2.1. distributions module
The distributions module serves as the basis for most prob-

abilistic operations in UQpy. It is fully compatible with scipy dis-
tributions and enables users to create probability distribution objects.
Compared to the previous version, the baseclass hierarchy was sim-
plified. An abstract baseclass Distribution serves as the interface
for creating all subsequent distributions. Depending on the dimension-
ality of the distribution this baseclass is further refined into Dis-
tribution1D and DistributionND for univariate and multivari-
ate distributions respectively, while the Distribution1D is further
subclassed into DistributionsContinuous1D and Distribu-
tionsDiscrete1D for continuous and discrete random variables.
Within this structure, 23 distinct distributions are implemented. A
Copula baseclass with two implementations enables users to add de-
pendence between 1D distribution objects. All baseclasses can be easily
extended by users to implement any distribution of their choice by
simply creating a new child class for the distribution and implementing
the requisite methods.

2.2.2. sampling module
This module provides a wide range of methods to draw samples

of random variables. The following classes enable Monte Carlo sim-
ulation and variance reduction methods: MonteCarloSampling,
SimplexSampling, ImportanceSampling, and Stratified-
Sampling. The StratifiedSampling class has been refactored
as a parent class for all stratified sampling approaches with Lat-
inHypercubeSampling, TrueStratifiedSampling, and Re-
finedStratifiedSampling as child classes, all of which utilize
a common Strata class for geometric decomposition of the domain.
Markov Chain Monte Carlo (MCMC) methods are included, with the
MCMC abstract baseclass serving as the common interface and 7 dif-
ferent methodologies implemented as subclasses. The latest version
includes two new implementations of parallel and sequential tempering
MCMC algorithms. Additional MCMC methods can be implemented by
the user by simply creating a new subclass with the requisite methods.
The module also includes the AdaptiveKriging for adaptive sample
generation for Gaussian process surrogate modeling (see Section 2.2.9)
using specified (and custom) learning functions. Compared to v3, all
learning functions have been extracted as separate classes, with a com-
mon LearningFunction baseclass, allowing users to easily create
custom implementations.

2.2.3. transformations module
This module contains isoprobabilistic transformations of random

variables. Except for updates in naming conventions, this module re-
tained the previous functionality with the Nataf, Correlate, and
Decorrelate transformations being available.

2.2.4. stochastic_process module
This module supports the simulation of univariate, multivariate,

and multidimensional Gaussian and non-Gaussian stochastic processes,
with the latest addition since v3 being the two-dimensional Karhunen–
Loève Expansion in the KarhunenLoeveExpansion2D class. All
pre-existing classes of SpectralRepresentation, Bispectral-
Representation and KarhunenLoeveExpansion have been up-
dated to conform with PEP8 Python coding standards.

2.2.5. run_model module
This module is not directly related to any specific UQ operations,

yet it is an integral part of the UQpy software. It lies at its core and
supports the execution of either Python or third-party computational
models at specified sampling points.

UQpy interfaces Python models directly, by importing and exe-
cuting the code. On the other hand, UQpy interfaces with third-party
software models through ASCII text files to introduce uncertainties
in their inputs and uses a standardized scripting format for model
execution. In both cases, UQpy supports serial and parallel execution.
Parallel execution allows the execution of different samples simulta-
neously, with options for local and cluster execution. Local parallel
execution uses MPI and the mpi4py library to distribute the random
samples among tasks that are processed independently. In this case,
the model evaluation cannot invoke MPI internally. In cluster enabled
parallelization, with the aid of a bash script, a tiling of the jobs can be
performed to include both shared and distributed memory parallelism,
while enabling the user to work with different HPC schedulers.

2.2.6. dimension_reduction module
In the update from v3 to v4.1, the dimension_reduction mod-

ule was rewritten from scratch. The existing DirectPOD and Snap-
shotPOD methods were reworked to comply with the latest Python
coding conventions and the HigherOrderSVD class was added. To
support Grassmann manifold projections and operations, a series of
classes were added. The GrassmannProjection class serves as the
parent for classes that project data arrays onto the manifold, with the
SVDprojection subclass currently available. After the data have
been projected, operations such as computing the Karcher mean or
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Frechet variance are available with the aid of the GrassmannOpera-
tions class. Interpolation can be performed on the manifold with the
GrassmannInterpolation class. Special attention was given to the
DiffusionMaps class, where the kernel computation was extracted
and delegated to a hierarchy of kernel classes in the utilities
modules for broader use in future development of other kernel-based
methods. More detail can be found in Section 2.2.11.

2.2.7. inference module
The functionality of the inference module was retained from

v3 to v4.1 but restructured. The previous InferenceModel class,
which defines the model on which inference is performed, has now
been split into three separate classes depending on the specific model
type, namely DistributionModel, LogLikelihoodModel and
ComputationalModel, all under the revised InferenceModel
baseclass. For information theoretic-based model selection using the
InformationModelSelection class, the information criteria have
been extracted as separate classes, AIC, BIC, AICc, under a new com-
mon InformationCriterion baseclass. The remaining functional-
ity of MLE, BayesParameterEstimation, and BayesModelSe-
lection was updated according to the newly adopted coding conven-
tions and, for Bayesian evidence computation, the EvidenceMethod
baseclass has been established with the HarmonicMean subclass de-
fined and allowing straightforward implementation of new Bayesian
evidence methods as distinct subclasses.

2.2.8. reliability module
Modifications to the reliability module were made to ensure

compliance with the latest Python coding guidelines. The first and
second-order reliability methods, FORM and SORM, were restructured as
subclasses under a common TaylorSeries baseclass to remove code
redundancies. The existing SubsetSimulation class was retained
and revised to match best practices.

2.2.9. surrogates module
One of the most heavily refactored modules in the latest version is

surrogates. Generally, surrogate models are now developed under
the abstract Surrogate baseclass. The previously existing Kriging
class was removed entirely and is now replaced with the more general
GaussianProcessRegression, which includes the functionality
to perform regression or interpolation (Kriging). Kernels are extracted
as separate classes, with the abstract baseclass Kernel (from the
utilities module), serving as an interface. The RBF and Matern
kernels have been implemented. For use with GaussianProcess-
Regression, multiple regression methods are implemented as sub-
classes under the Regression baseclass. The newest addition to
GaussianProcessRegression is the ability to add constraints us-
ing the virtual point method. These constraints are implemented under
the Constraints baseclass, which makes adding new constraints
straightforward by implementing a new subclass with the requisite
methods.

The PolynomialChaosExpansion class was rewritten from
scratch (now as a subclass of Surrogate) to resolve performance
issues. Two new baseclasses were introduced. The Polynomials
baseclass defines sets of orthogonal polynomials as subclasses, includ-
ing the Hermite and Legendre polynomial classes. The Polyno-
mialBasis baseclass establishes a set of subclasses to define the
polynomial basis, e.g. using a classical tensor product basis Ten-
sorProductBasis, or introducing new ways to reduce the basis
computation such as the TotalDegreeBasis and HyperbolicBa-
sis classes. This makes the code easily extensible to include new
means of basis construction. All regression methods were united as
subclasses under the Regression baseclass, again making it more
easily extended for new methods, and the computationally efficient
LeastAngleRegression was added.

Lastly, the SROM method was retained and updated to conform with
the latest Python software development practices.

2.2.10. sensitivity module
In v3, the sensitivity module only contained the Morris-

Sensitivity method. This module significantly benefited from the
extensibility introduced in UQpy with v4.1. The Sensitivity ab-
stract baseclass now contains the first major contribution from ex-
ternal collaborators introduced in a set of subclasses that include
SobolSensitivity, GeneralizedSobolSensitivity, Chat-
terjeeSensitivity, and CramerVonMisesSensitivity. Ad-
ditionally, the updated polynomial chaos expansion code in the sur-
rogates module (see Section 2.2.9), allows the computation of first
and total order sensitivity indices with reduced computational cost
through the PceSensitivity class, which takes advantage of a
fitted PolynomialChaosExpansion object.

2.2.11. utilities module
The new utilities module contains code that may be used in

multiple modules. This currently contains two abstract baseclasses,
the Kernel baseclass and the Distance baseclass for computing
kernels and measures of distance, respectively. Within each baseclass,
there are two additional baseclasses for Euclidean and Grassmannian
kernels/distances. Several kernels and distances have been added as
subclasses and new ones can be easily developed by writing a new
subclass with the requisite methods.

3. Continuous integration

UQpy v3 [22] was developed using the flexible standards of an
academic software, which challenged the ability of the team to col-
laborate and develop new features using a streamlined workflow. To
this end, the latest version was fully restructured to enhance its ex-
tensibility, while modern software development practices were intro-
duced to support collaboration and ensure code robustness and quality.
The standard of Github Flow was adopted as development strategy.
The master branch of the Github repository always contains the
latest stable version. A Development branch is now used for merg-
ing all newly developed functionality and bug fixes. New versions
of the software are released when a pull request is merged from
the Development branch to master. For developing new features,
a feature-{functionality} branch is created from the latest
Development state and merged back once complete. The case is
similar for bug fixes, with branches following the bugfix-{bug}
naming convention. The aforementioned workflow enables a consistent
way of treating new functionality or addressing errors arising during
development.

To ensure the code quality of all previously implemented fea-
tures, the development team enforced unit testing practices. Since
the functionality implemented in UQpy is inherently stochastic, and
its randomness stems from random number generators, a process of
setting the seed to ensure test reproducibility is adopted. All previous
functionalities are tested against benchmark problems to achieve a
minimum of 80% line coverage. To ensure that the code coverage
directive is enforced, Azure Pipelines were used to automatically run
all tests and compute coverage when a commit is pushed to the Github
repository. The static code analyzer Pylint is also used to enforce
coding standards and ensure that no syntax errors are allowed. In
addition to these checks, a code quality tool named SonarCloud
is used to eliminate code vulnerabilities. This tool is triggered when
creating a pull request and automatically detects any code smells, bugs
or code duplications introduced, and fails when exceeding a predefined
threshold. For a pull request to be acceptable, all test, linting, and
code quality must satisfy minimum acceptance criteria and must pass a
detailed code review from the code owners. Only then will the additions
be merged to Development and subsequently to master branch.

Apart from the Continuous Integration process mentioned above,
that ensure the robustness of UQpy, a set of Continuous Deployment
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(CD) actions are triggered. The first action is to evoke the GitVer-
sion tool, which traverses the Git history of the code and deter-
mines the version of the code automatically, as a sequence of numbers
v{Major}.{Minor}.{Patch}. Using the computed version, the
code is packaged and automatically distributed to Python Packaging
Index (PyPI), Github release inside the repository, as well as a Docker
image that contains the latest UQpy version.

Finally, a structured logging framework was established – in lieu
of print commands triggered by if statements that were previously
used to indicate errors or faults – that allows users to select the required
level of severity tracked during code execution. Six different levels of
severity are available in Python, namely NOTSET, DEBUG, INFO,
WARN, ERROR, and CRITICAL, with the ERROR being the default case
in UQpy. The users can choose a more verbose setting by opting for the
INFO severity level. Logging output is then directed to their sinks of
choice e.g. Terminal, Logfile, Http Streams, etc.

4. Impact

The latest version of UQpy modernizes the software to meet best
practices in scientific software development, while also updating and
improving functionality. This makes the package easier to use and
more robust, broadens the classes of problems that it can solve, and
greatly enhances the development experience. These points are critical
to the widespread adoption of UQ in scientific applications. This robust
yet friendly Python library is both user- and developer-friendly and
provides core functionality to casual users, state-of-the-art methods for
advanced users, and a carefully designed environment for developers of
UQ methods. With the advent of version 4, we have seen the user-base
increase as the library has been adopted by external UQ teams, and
have now successfully integrated updates from third-party developers
— both of which serve to advance the field of UQ.

To summarize, the entire package has been restructured from a
single-file per area to a module hierarchy. Wherever possible, subop-
tions inside algorithms were extracted using the Strategy design pattern
to enhance encapsulation and allow users to select their functionality
in a more clear and straightforward manner. Baseclasses are now used
throughout the code, which provides interfaces for the implementation
of new algorithmic alternatives. To enhance the team collaboration
efforts, the already existing version control and Github repository were
supported with a CI/CD pipeline that automates software testing and
code quality checks to ensure the best scientific output, while each
new merge to the master is followed by package releases to PyPI,
conda-forge, and Dockerhub image repository.

Compared to the other existing UQ packages, many of which have
been listed above, the aim of UQpy is twofold. First of all, we aim
to provide an extensive fully Python-based UQ library that addresses
the wide-ranging needs of the scientific community. At the same time,
we want to provide a toolbox that allows its straightforward extension
with new functionalities and its use in real-world UQ applications. The
developments outlined here represent significant advancements toward
these two objectives.

5. Conclusions

In this work, the open-source library for uncertainty quantification
UQpy and specifically the latest v4.1 was introduced. All changes and
updates to the modules of the library were explained in detail, with
one of the most significant being the new software development and
continuous integration workflow. The latest version enables users and
external collaborators to expedite the development of new features
using UQpy as a platform. This is proven by the new functionali-
ties introduced from both the development team, as well as external
collaborators.
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Appendix. UQpy future extensions

UQpy is continuously updated with new capabilities developed as
a product of the research conducted in the group and through external
contributions. When possible, existing capabilities are also made more
robust and computationally efficient to address the needs of compu-
tationally intensive research objectives in UQ. The following describes
tentative plans for future development in UQpy.

Existing modules are planned to be expanded with the following
capabilities:

• Dimension Reduction: We are looking to enrich the module
with advanced manifold projection methods including kernel
PCA [27], principal geodesic analysis (PGA) [28], and Isomaps
[29] among others, while also adding new Euclidean/
Grassmannian kernels [30–32].

• Sampling: We aim to expand the StratifiedSampling class with
existing generalized of stratified sampling methods developed
in the group such as: Partially Stratified Sampling (PSS) [33],
Latinized Stratified Sampling (LSS) [33], and Hierarchical Latin
Hypercube Sampling (HLHS) [34].

• Surrogates: We plan to enrich the Gaussian Processes with
additional constraints such as monotonicity, convexity and dif-
ferential constraints [35].

• Surrogates: We plan to incorporate the novel physics con-
strained Polynomial Chaos Expansions developed in the group
[36,37].

• Surrogates: We plan to add Geometric Harmonics [38] for
out-of-sample extensions on a manifold.

• Sensitivity: We are currently building the capability for
Gaussian Process-based Sobol indices estimates [39].

In addition to these extension we envision the development of new
modules that will further enhance the capabilities of UQpy as a general
purpose uncertainty quantification library.



SoftwareX 24 (2023) 101561

6

Dimitrios Tsapetis et al.

• Multi-fidelity Modeling: This module will include multi-
fidelity modeling algorithms that include those based on control
variates [40] as well as those using Gaussian process correc-
tions and model selection – including methods developed in the
group [41–43].

• Neural Networks: Algorithms for Bayesian Neural Networks
[44], physics-informed Neural Networks [45] and Deep Operator
Networks [46] are under development within the group and are
planned to be incorporated in the future versions of UQpy – likely
by coupling with other open-source Python libraries that contain
computationally efficient Neural Network implementations [26,
47,48].

• Multi-scale Modeling: A module for stochastic hierarchi-
cal multi-scale modeling is currently under development that
advances deterministic capabilities developed in this field [49].

These future enhancements will further solidify UQpy as a leading
software in the field and will be made possible by the streamlined
architecture, development, and integration processes described herein.
Please note that the list above is subject to change in future releases.
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4 Discussion & Concluding Remarks
The increasing economical and safety requirements placed on new structures to-
gether with the increasing number of existing structures, which should be adapted
to new conditions, make uncertainty quantification in civil engineering more impor-
tant than ever before. Unfortunately, there still exists a gap between purely scientific
methods and extremely simplified techniques for industrial applications implemented
in design codes, and thus further development of suitable methods and their adap-
tations are needed. This thesis presented several significant results obtained in the
recent years from two sub-fields of UQ: simplified methods for estimation of sta-
tistical moments, and surrogate modeling using polynomial chaos expansion. Both
areas contain important UQ methods allowing for industrial applications differing in
complexity of the stochastic models and the associated computational costs. While
simplified methods are suitable for simple structural elements represented by costly
mathematical models, surrogate models provide tools for a complex stochastic anal-
ysis and UQ of physical systems.

The first chapter of the thesis summarized the theoretical background of the novel
Eigen ECoV method [19] – a simplified safety format for the design and assessment
of structures represented by non-linear finite element models. Eigen ECoV is based
on the identical assumptions as other existing ECoV methods already implemented
in design codes, though it offers a much higher adaptivity and versatility. Moreover,
the whole process of Eigen ECoV derivation is simple and straightforward, and thus
can be used for the derivation for various similar ECoV methods. Finally, the role
of correlation among input random variables was investigated. A lack of knowledge
on the joint probability distribution is typical for industrial applications, since only
marginal probability distributions are usually known, although it is necessary to
define a correlation structure of the input random variables in order to completely
describe an input random vector [58]. The proposed correlation interval approach
consequently reveals the impact of vague information about an assumed correlation
structure. The theoretical derivation of Eigen ECoV is supported by the obtained
numerical results presented in the second paper – a thorough comparison of ex-
isting safety formats in several numerical examples representing realistic concrete
structural members failing in several modes [20]. The comparison serves also as a
guideline for engineers who would like to use advanced safety formats in industrial
applications, since the paper contains all the necessary values of safety factors and
input quantiles. The obtained numerical results greatly correspond to the theoreti-
cal assumptions of Eigen ECoV. The correlation interval approach clearly shows the
influence of an assumed correlation matrix, and quantifies the impact of vague or
incomplete definitions of correlations among input random variables. Although the
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proposed method works for the investigated simple structural members very well,
there is still one open research question – how to derive safety formats for struc-
tures with multiple competing failure modes? This is not a trivial task, since all
existing methods are typically based on the assumption of Gaussian or Lognormal
distribution of the QoI. Therefore, further work in this field will be dedicated to the
investigation of suitable methods for generally multi-modal probability distributions
of QoIs.

A complex stochastic analysis is typically based on the Monte Carlo simulation,
and so it is necessary to create an accurate and computationally efficient surrogate
model of the original mathematical model. Therefore, the second chapter of this
thesis deals with the efficient construction of surrogate models for various types of
functions. Specifically, PCE approximations were investigated in this thesis since
they achieve a high accuracy for low-size ED. The accuracy and efficiency of a PCE
construction is highly affected by the optimality of ED, i.e. the positions and the
number of statistical samples. The first article presented in the second chapter is
thus focused on active learning for PCE [42]. The proposed method referenced as
the Θ criterion combines the exploration of the design domain with the exploitation
of the PCE approximator in order to identify locations of the input space associ-
ated to significant non-linearity of the approximated mathematical model. Although
the presented results were superior in comparison to the state-of-the art techniques,
there is still a strong limitation for highly non-linear functions. Therefore, the second
paper attached to the second chapter is focused on the input domain decomposition
and construction of localized PCEs [47]. The whole methodology is driven by the Θ
criterion, which leads to optimal decomposition of the input domain with respect to
local contributions to a variance of QoI. The obtained numerical results show con-
vergence for highly non-linear functions as well as for functions with discontinuities.

PCE methods can be beneficially utilized for UQ due to their possibilities for
the analytical estimation of statistical moments and sensitivity indices of QoI. The
third paper attached to the second chapter presents reviewed theoretical properties
of orthonormal polynomials utilized in a novel distribution-based sensitivity analysis
[52]. The proposed method represents a complex sensitivity measure based on the
shapes of conditional probability distributions, and it can be derived analytically
from PCE coefficients. Moreover, the paper presents a concept of reduced PCE,
which is further utilized for UQ in the recently proposed physics-informed PCE [55].
The physically constrained PCE also referenced as PC2 is a promising technique
in the framework of physics-informed machine learning, i.e. the construction of
surrogate models constrained by physical knowledge. Such techniques lead to a
superior performance in comparison to standard data-driven methods using ℳ(X)
as a black box, and they also have higher possibilities for extrapolation. Moreover,
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such methods represent ideal tools for realistic engineering applications based on
several observations or calculations and typically limited knowledge regarding the
governing physics. These are referenced as grey box modeling in contrast to the
perfectly known physical models referenced as white box modeling in the framework
of scientific machine learning. The general classification of surrogate modeling with
respect to the amount of available data and known physics is schematically depicted
in Fig. 4.1.

The PC2 approach is the first PCE technique reflecting the given physical con-
straints and boundary conditions. PC2 connects several results obtained from the
author’s previous research into a novel and innovative tool for scientific machine
learning and UQ. The most significant benefits of PC2 over other physics-informed
machine learning techniques are its computational efficiency in low ED regime, and
its natural possibilities for UQ thanks to the concept of the reduced PCE. In this
pioneering work, the general theoretical background and concept of PC2 were in-
troduced together with practical details for the construction of constrained approx-
imations (e.g. basis functions of space-time variables and their derivations). The
proposed methodology was validated on several differential equations including non-
linear ODE and PDE with random parameters.

In its current form, PC2 can be used for linear PDEs (or slightly non-linear)
and general equality constraints. However, the proposed framework can be easily
extended to general constraints including non-equality constraints including mono-
tonicity, non-negativity, and others. Therefore, further work will be focused on the
generalization of PC2 and its computational optimization. Moreover, this research
opens the door for several questions that should be investigated in further research
regarding suitable sampling techniques for virtual samples and boundary samples,

Fig. 4.1: Classifications of scientific machine learning areas.
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various numerical optimization techniques, adaptivity, sparsity, general scalability,
etc. ensuring further continuity of this research.

Although the developed methods represent a significant progress beyond the
state-of-the-art techniques, it was necessary to provide algorithms and codes to the
UQ community in order to propagate and validate the techniques. Moreover, shar-
ing the codes together with preprints of the presented articles reflects the principles
of open science, which, as the author believes, is necessary for further scientific de-
velopments. Therefore, the last paper attached to the second chapter of this thesis
presents the UQPy software package containing all of the developed techniques to-
gether with various methods for UQ developed by an international team of scientists
and professional software developers [57]. UQPy has gained a significant attention in
the UQ community and is used by several research teams. A significant achievement
can also be seen in the fact that UQPy was adopted by the Computational Mod-
eling and Simulation Center (SimCenter), which is a part of the Natural Hazards
Engineering Research Infrastructure program, USA.

This habilitation thesis summarized the recent results obtained by solving several
research projects at the FCE, BUT in collaboration with international partners. The
results are connected by a single task: the development of methods for UQ in civil
engineering. It can be concluded that the presented theoretical methods based on
cutting-edge techniques have the potential to become efficient tools for industrial
design and the assessment of structures, as well as for further theoretical research
in the fields of computational science, applied mathematics, and ultimately UQ in
engineering.
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