
BRNO UNIVERSITY OF TECHNOLOGY
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

FACULTY OF INFORMATION TECHNOLOGY
FAKULTA INFORMAČNÍCH TECHNOLOGIÍ

DEPARTMENT OF COMPUTER SYSTEMS
ÚSTAV POČÍTAČOVÝCH SYSTÉMŮ

ADVANCEDEVOLUTIONOFCELLULARAUTOMATA
POKROČILÁ EVOLUCE CELULÁRNÍCH AUTOMATŮ

HABILITATION THESIS
HABILITAČNÍ PRÁCE

AUTHOR Ing. MICHAL BIDLO, Ph.D.
AUTOR PRÁCE

BRNO 2022

Abstract
This work deals with the methods for advanced evolutionary design of cellular automata.
Cellular automata represent a massively parallel computational model consisting of a lat-
tice of locally interacting computing elements – cells whose states develop in time according
to a set of transition rules which form a local transition function of the cells. Commonly
the rules are represented as a table the rows of which determine new states of cells for
given combinations of states in their neighborhoods. Since there is no general systematic
approach how to design the transition rules, various (meta)heuristics have often been ap-
plied, including evolutionary algorithms. This work investigates the utilization of two novel
representations of transition functions of cellular automata for their automatic design by
means of evolutionary algorithms. Their detailed description and results are presented as a
selection of papers published by the author which are included as appendices of this work.
In particular, an instruction-based representation is proposed and its abilities evaluated on
replication and pattern transformation benchmarks in two-dimensional cellular automata.
The second representation, denominated Conditionally Matching Rules, which represents
the main outcome of this research, is introduced and investigated in several studies. Specif-
ically, it will be shown its utilization in the evolution of computational processes in cellular
automata – the multiplication in binary two-dimensional automata and generic square cal-
culations of natural numbers in multi-state one-dimensional automata. The crucial part
of the studies of conditionally matching rules is devoted to the evolution of multi-state
two-dimensional cellular automata. Advanced case studies are presented including the evo-
lutionary design of replicating loops, pattern development problems and the utilization of
conditionally matching rules for image filtering. Finally, a comparison of the conventional
representation and conditionally matching rules was performed. It was demonstrated that
the representation utilized for the evolution transition functions significantly influences the
behavior that the resulting cellular automata can perform. In all proposed studies the
conditionally matching rules enabled to obtain results which were not known before.

Abstrakt
Tato práce se zabývá metodami pokročilého evolučního návrhu celulárních automatů. Ce-
lulární automaty představují masivně paralelní výpočetní model sestávající z uspořádání
lokálně interagujících výpočetních elementů – buněk, jejichž stavy se vyvíjejí v čase podle
množiny přechodových pravidel utvářejících lokální přechodovou funkci těchto buněk. Ob-
vykle jsou přechodová pravidla reprezentována jako tabulka, jejíž řádky určují nové stavy
buněk pro dané kombinace stavů buněk v jejich okolí. Jelikož neexistuje obecný systema-
tický postup pro návrh přechodových pravidel, jsou často aplikovány různé (meta)heuristiky,
zahrnující též evoluční algoritmy. Tato práce zkoumá využití dvou nových reprezentačních
technik přechodových funkcí celulárních automatů a jejich automatický návrh pomocí evo-
lučních algoritmů. Jejich podrobný popis a výsledky jsou prezentovány jako soubor článků,
publikovaných autorem této práce, které jsou zde zahrnuty v podobě příloh. Konkrétně
je představena technika instrukční reprezentace přechodových funkcí, jejíž schopnosti jsou
vyhodnoceny na problémech replikace a transformace vzorů ve dvourozměrných celulárních
automatech. Druhá reprezentace, nazvaná podmíněně aplikovaná pravidla, představuje
stěžejní část výzkumu této práce a tato je vyhodnocena na následujících případových
studiích. Konkrétně je ukázáno její využití v evoluci postupů pro násobení v binárních
dvourozměrných automatech a obecného výpočtu druhých mocnin přirozených čísel ve
vícestavových jednorozměrných automatech. Hlavní část výzkumu podmíněně aplikovaných
pravidel je zaměřena na evoluci vícestavových dvourozměrných celulárních automatů. Po-
kročilé případové studie zde zahrnují evoluční návrh replikujících se smyček, problém vývoje
vzorů a uplatnění podmíněně aplikovaných pravidel pro filtraci obrazu. Nakonec je před-
stavena studie srovnávající tabulkovou reprezentaci a podmíněně aplikovaná pravidla. Je
ukázáno, že použití konkrétní reprezentace pro evoluci přechodových funkcí zásadně ovliv-
ňuje chování, které mohou výsledné celulární automaty vykonávat. Všechny zde zahrnuté
studie prokázaly, že pomocí podmíněně aplikovaných pravidel je možné dospět k výsledkům,
které dříve nebyly známy.

3

Keywords
Evolutionary algorithm, cellular automaton, transition function, conditional rule.

Klíčová slova
Evoluční algoritmus, celulární automat, přechodová funkce, pdmínkové pravidlo.

Reference
BIDLO, Michal. Advanced Evolution of Cellular Automata. Brno, 2022. Habilitation thesis.
Brno University of Technology, Faculty of Information Technology.

4

Advanced Evolution of Cellular Automata

Declaration
Hereby I declare that this habilitation’s thesis was prepared as an original author’s work.
All the relevant information sources, which were used during preparation of this thesis, are
properly cited and included in the list of references.

. .
Michal Bidlo

October 12, 2022

Acknowledgements
The author would like to thank the colleagues from the Department of Computer Systems
(UPSY) at the Faculty of Information Technology (FIT), primarily Lukáš Sekanina for
maintaining excellent working conditions at the Department of Computer Systems of FIT,
Zdeněk Vašíček for his help with preparing of the first studies of advanced evolutionary
design and Jiří Jaroš for some practical comments and recommendations for this work.
Thanks to PhD students, both from and outside UPSY, namely Marta Jaroš, Ondřej Olšák
and Gabriela Nečasová for inspirative and supportine discussions during writing this thesis.
Last but not least the author appreciates some other colleagues of FIT, primarily Petr
Matoušek, František Zbořil jr., Filip Orság, Zbyněk Křivka, Jaroslav Rozman and Tomáš
Vojnar for their willingness to share their ideas and experience which was also very helpful.
A special thanks belongs to Jitka Soukupová who, even though has never seen me, supported
my efforts indirectly during many discussions with my brother, by her discrete questions,
curiosity about my work and encouraging messages.

Contents

1 Introduction 4

1.1 Motivation . 5
1.2 Goals . 7
1.3 Thesis organization . 8

2 Overview of CA Literature and Research Areas 9

2.1 Identification and Synthesis of Transition Rules 9
2.2 Theoretical Aspects of CA . 10
2.3 Cryptography and Security . 11
2.4 Modeling and Simulation with CA . 12
2.5 Modeling Crowds and Traffic Systems . 12
2.6 Dynamics, Control and Synchronization 13
2.7 CA for Image Processing . 14
2.8 Asynchronous CA . 15

3 Evolutionary Approach to CA 16

3.1 Evolution of binary CA . 16
3.2 Evolution of Game of Life Structures . 17
3.3 Evolution of multi-state CA . 18
3.4 Recent studies of ECA . 18
3.5 Intention of This Work . 20

4 Advanced Evolution of Cellular Automata 21

4.1 Instruction-Based Approach . 21
4.2 Introduction of Conditionally Matching Rules 22
4.3 Evolving Computations in Binary 2D CA 22
4.4 Evolving Generic Computation in Multi-State CA 23
4.5 Evolution of Replicating Structures . 23
4.6 Pattern Formation in CA Using CMRs 24
4.7 Impact of the Rule Encoding on the CA Behavior 24
4.8 Application of CMRs on Image Filtering 25

5 Conclusion 26

5.1 Contributions . 26
5.2 Main Outcomes . 26
5.3 Future Work . 28

1

Bibliography 29

Appendicies – Paper Reprints 40

I Evolution of Cellular Automata Using Instruction-Based Approach 41

II Evolution of Cellular Automata with Conditionally Matching Rules 50

III Evolving Multiplication as Emergent Behavior in Cellular Automata
Using Conditionally Matching Rules 59

IV On Routine Evolution of Complex Cellular Automata 68

V Evolution of Cellular Automata-Based Replicating Structures Ex-
hibiting Unconventional Features 82

VI Advances in the Evolution of Complex Cellular Automata 105

VII Evolution of Cellular Automata Development Using Various Repre-
sentations 131

VIII Evolution of Cellular Automata with Conditionally Matching Rules
for Image Filtering 134

2

List of Abbreviations

ASIC Application-Specific Integrated Circuit
CA Cellular Automaton
CMR Conditionally Matching Rule
EA Evolutionary Algorithm
ECA Evolving Cellular Automaton
ES Evolution Strategy
FPGA Field Programmable Gate Array
GA Genetic Algorithm
GoL Game of Life
GP Genetic Programming
NN Neural Network
PRNG Pseudo-Random Number Generator
PSO Particle Swarm Optimization
VLSI Very Large Scale Integration

3

Chapter 1

Introduction

Complex systems represent a wide interdisciplinary area in which various phenomena (e.g.
natural, social, medical) are studied. Typically, a complex system consists of many elements
(e.g. atoms, cells, creatures etc.) that interact in some sense. During these interactions,
each element exhibits some properties which vary with time, can be observed, measured or
detected and are usually referred to as a state of the element. Depending on the domain,
an element my be, for instance, a neuron with synapses interconnecting other neurons, an
artificial neuron whose outputs (analogically to synapses) express its “state” in the form of
a value and allow transferring it to the inputs of other neurons, a particle whose state may
express its spin together with its position and other properties.

The interactions of the elements with expressing their states during a time period rep-
resents a behavior or development of the system. The behavior of the elements, i.e. the
changes of their states, are driven by some domain-specific rules. If one observes a single
element, it is possible to determine its individual (local) behavior. The observation of the
development of the system as a whole, i.e. the overall behavior of all its elements (visible or
significant in some way), allows determining a global behavior of the system. For example, a
diffusion of two liquids progressively changes the color of neighboring particles whose indi-
vidual behavior is given by rules of the random Brownian motion in an observed area whilst
the global behavior of the whole substance exhibits a process leading to the “stabilization”
of the state of the elements which (when expressed by the color) finally appears to be the
same for all the elements.

The goal of studying complex systems is typically to analyze the behavior observed in a
given (existing) system and to understand its functioning, e.g. by deriving its mathematical
model, the rules of how its elements interact. On the other hand, an opposite approach
may be applied the goal of which is to achieve a specific (desired) behavior of the system
by searching for (or selection of) a suitable arrangement of the elements, their functions
and rules of interactions, i.e. to design or synthesize a (still unknown) system that ought
to exhibit a specific behavior (i.e. to perform or solve a given task).

If a specific complex system is considered, the elements are usually well known entities
for which a simulation model is available or can be derived and implemented together
with the rules of interactions. Once a suitable implementation is available, the current
technology allows in many cases simulating the behavior of a complex system as a whole
(at least to some extent or a size of the system instance). This enables us, for instance, to
perform analysis of its behavior, to make predictions, to identify unknown features, to tune
or modify the system for new scenarios, all without the necessity to work with their real
elements.

4

The simulation allows reducing the cost of studying the complex systems in general,
simplifying substantially the process of analysis of complex systems in various conditions or
even making these tasks possible in situations when working with real elements is dangerous
or not realizable at all (e.g. the study of radioactivity or the research of the universe).

However, there are some major issues:

1. Although a precise model of the elements may exist, the rules of interactions may
be known and the (individual) behavior of every single element may be observed (at
least in some systems), the global system behavior cannot be simply derived from
that. This feature is typical for complex systems and is referred to as emergent
behavior. For example, cellular automata, regulatory networks or particle systems
typically exhibit such behavior.

2. There is usually no central control that would determine the global system behavior
– this behavior really emerges as a result of interactions of all the elements of the
system and their individual behavior. Therefore, the manipulation (e.g. debugging,
optimization, adaptation to various conditions) with such systems is usually not in-
tuitive and traditional working paradigms may be useless. However, the emergent
phenomena represents an important and interesting feature of complex systems as it
may give arise to some processes (e.g. self-organization or replication), that could be
difficult to achieve directly by a central control.

3. As a consequence of the previous paragraphs, there is another substantial issue re-
garding the study of complex systems: when a behavior or properties of a system
ought to be determined for a future time period, it is usually necessary to perform
a simulation of the entire system for a given initial state and conditions which may
be highly time consuming. This issue becomes particularly serious in some systems
whose number of elements may be enormously high (e.g. the number of molecules in
a drop of water) which, in fact, makes a reasonable computer simulation practically
impossible. Therefore simplifications are needed to be applied.

1.1 Motivation
This work will particularly deal with cellular automata as one of the sorts of complex sys-
tems. Cellular automata (CA) represent a massive parallel computational model composed
of a regular structure of simple computing elements (cells), whose number is possible to
scale up and arrange into multiple dimensions. Usually 1D or 2D cellular automata are
considered in which the cells form a linear (circular) or rectangular (toroidal) grid, respec-
tively. The state of each cell is typically expressed as an integer value (or color) and the
states of all cells at every given moment is usually referred as a configuration of the CA, or
sometimes a (global) state of the CA. There are only local interactions between the cells
(i.e. each cell “sees” only the states of itself and its closest neighbors) and the development
of the CA is performed in discrete time steps synchronously, i.e. in each step all cells ac-
quire their new states at the same time. The calculation of the new cell states in each time
step is performed by a transition function of each cell (referred to as the local transition
function). This function is typically expressed as a set of transition rules specifying for each
combination of states in the neighborhood of the given cell a new state of this cell. The
global behavior of a CA is given by the transition functions of its cells, their interactions
and the emergent phenomena.

5

The importance of the research in the area of complex systems and cellular automata
in particular will be illustrated by several examples in the next paragraphs. Further, some
fundamental issues related to the CA design will be mentioned on the basis of which a
hypothesis of this work will be formulated. In general, the concept of cellular automata
may be used in many areas, for both theoretical and real-world purposes.

In theoretical computer science, several CA instances were proven to be computationally
universal. Perhaps the most simplest case is a 1D CA driven by the “famous” Rule 110
as studied by Wolfram and later by Cook [32]. In 2D CA, however, probably the most
known universal computing model is the Game of Life proposed by John Conway [45, 4] in
1970 (demonstrations of universality may be found, for example, in [57, 98, 99]). Another
approach was proposed and proven by Sipper [116]. The aforementioned studies considered
binary CA (i.e. those working with only two cell states, 0 and 1). A more advanced (4-
state) and computationally more efficient computationally complete CA was proposed by
Brian Silverman whose model is currently known as the Wireworld CA [36]. Although these
CA represent theoretical benchmarks rather than really usable computing platforms, the
issue of computational universality in homogeneous, massively parallel arrays may become
important in the future, e.g. for the synthesis of nano-devices or quantum systems [56].

Probably the widest area where CA may be applied is that of modeling, simulation and
prediction of the behavior of various natural as well as real-world systems. In this context,
CA may provide a suitable research or application platform. For example, CA have shown
as an efficient tool to study a wide range of biological systems, including the morphology
of bacterial colonies [16], growth of the microbial biofilms [125] or recently the classifica-
tion of the main variants of the SARS-CoV-2 virus [120]. More general studies consider
various aspects of natural systems that could be beneficial in computers, in particular the
replication, self-organization or adaptation [126]. Real-world applications of CA include,
for instance, modeling urban changes [72], traffic microsimulation [65] or flood analysis [50].
In computer graphics, the concept of CA represents a basis for the raster image processing
[103].

Basically the transition rules of CA are specified as a table the rows of which are of the
form: 𝑐𝑒𝑙𝑙1, 𝑐𝑒𝑙𝑙2, ..., 𝑐𝑒𝑙𝑙𝑛 → 𝑐𝑒𝑙𝑙

′
𝑐 where the part on the left of the arrow (the input of the

transition function) represents states of cells in the neighborhood of a given cell and the
right part (the output of the transition function) gives a new state of the cell (usually of
that in the middle of the neighborhood) for the next time step. In more complex binary
CA transition functions may consider the total number of active cells in the neighborhood
as the primary input for calculating new states which are referred to as totalistic cellular
automata [127] (e.g. the aforementioned Game of Life is a case of totalistic CA). However,
the “programming” of a cellular automaton, i.e. the design of suitable transition function
in order to achieve a given global behavior, represents a difficult task for which there is no
universal approach. Although the synthesis of transition rules was approached from various
perspectives including, for instance, evolutionary computation [79], this task still remains
the biggest challenge for routine cellular automata applications. Therefore, there is an effort
to automate and optimize this process and to study new methods of how to represent the
transition rules in order to make this task realizable using current technologies.

So far, some specific cellular automata have been designed “ad hoc” for several, mostly
benchmark or artificial, problems. Probably the most known instances include Langton’s
[70] or Byl’s [26] self-replicating loops, CA simulating artificial life [71] or various structures
designed for specific purposes in the Game of Life CA (e.g. see [98, 111, 45]). Nevertheless,

6

such approach to discovering the CA rules requires an experienced designer and becomes
intractable for complex non-binary (i.e. multi-state) CA with bigger cellular neighborhood.

The process of automatic CA synthesis for a given target behavior usually leads to
searching for a suitable set of rules in huge spaces of transition functions induced by the given
CA type (the cardinality of the search space is primarily determined by the CA dimension,
the number of cell states and the size of the cellular neighborhood; it grows exponentially
for increasing values of these parameters). Although the simplest cases of 1D binary CA
may be analyzed and studied by means of exhaustive methods (as performed by Wolfram
[127]), more complex instances and applications still represent a significant obstacle the
solution of which, in fact, requires some advanced kind of the search automation. From
this point of view evolutionary algorithms may provide robust searching mechanisms as
indicated (even though for binary CA only) by Cenek and Mitchell in [29].

Based on the aforementioned statements, the following hypothesis may be formulated
for the purposes of this thesis. The hypothesis indicates the overall research objective of
this work the goal of which is to demonstrate further abilities of the evolutionary approach
for the automatic synthesis of the cellular automata rules:

By introducing a suitable form of transition rules it is possible to significantly
improve the evolutionary design process of cellular automata with a remarkable
influence on the potential tasks for which the rules can be obtained as well as
on the behavior of resulting CA themselves.

1.2 Goals
The research conducted within this thesis represents an experimental work regarding the
area of cellular automata which represents the main research interest of the author for
more than 10 years. During this period more than ten original papers have been published
regarding the evolutionary design of CA rules in various domains. Among the firsts, the
CA were applied to generate logic circuits, to perform replication of selected structures or
to calculate some arithmetic operations directly in the cellular array. These experiments
showed that the selection of a suitable encoding of the CA rules (i.e. the form of the
transition function) represents a key issue for a successful evolution in order to achieve a
given CA behavior since the traditional table-based representation showed to be insufficient.
The evolution exhibited low success rates or even was not able to find any acceptable
solution.

The subsequent research was focused on improving the representation techniques to-
gether with tuning the evolution in order to find successful results for complex non-binary
CA as well (e.g. those working with 8 cell states or more). In particular, the work in-
cluded the comparison of the basic representation with a more advanced instruction-based
encoding and, further, an encoding in a form of so-called Conditionally Matching Rules
(CMRs), representing probably the best so far method for the evolution of multi-state CA.
In general, the conducted experiments showed that the new encoding of transition functions
not only allows optimizing the evolutionary search process but also provides results (in the
form of the CA behavior) that have never been achieved before. Moreover, a comparison of
the results obtained by means of the table-based encoding and the Conditionally Matching
Rules showed a significant influence on the behavior of the CA itself in solving the same
problem.

7

On the basis of the observations mentioned above, the following partial objectives of
this work may be formulated:

1. To introduce an instruction-based representation of transition functions and demon-
strate its ability on the evolution of simple replicating structures.

2. To introduce a concept of Conditionally Matching Rules which represents a funda-
mental idea of the author and constitutes a major research outcome of this work. To
demonstrate its abilities in solving basic replication and pattern transformation tasks.

3. To demonstrate the CMR concept in solving some advanced benchmark problems;
in particular, the replication, generic square calculation and development of stable
structures from a seed will be investigated.

4. To compare the features of resulting CA obtained by means of table-based method
and the CMR approach; in particular, it will be shown that both methods provide
totally different CA behavior in solving the same tasks and only the CMR method
was able to develop stable structures in the cellular array.

5. To demonstrate the application of Conditionally Matching Rules in the task of de-
signing image filters; specifically, CA with 256 cell states will be applied on removing
salt-and-pepper noise of the intensity up to 80%.

1.3 Thesis organization
The text is composed of a collection of relevant conference and journal papers to which the
following chapters provide an overall comment. Specifically, chapter 2 summarizes recent
work in the research and applications of cellular automata and identifies some remarkable
well-established areas where current studies related to CA take place. Chapter 3 provides a
similar overview with the focus on the application of evolutionary algorithms in combination
with CA. On the basis of this summary the orientation of the research presented in this
thesis is given in Section 3.5. Chapter 4 describes the main research ideas of this thesis
together with highlighting important results and provides references to relevant papers
included in Appendices of this work. The thesis concludes by Chapter 5 where an overall
summary is presented together with a brief discussion about possible future work.

The main part of this thesis — the research outcomes in the form of a collection of
relevant papers published by the author — is presented in Appendices starting by page 40.

8

Chapter 2

Overview of CA Literature and
Research Areas

In this chapter a summary of well-established CA research and application fields is provided
together with a selection of state-of-the-art papers published during recent years. In addi-
tion to the areas surveyed in more detail in the subsequent sections, some other domains
could be included as well (e.g. CA-based hardware, multi-agent systems and networks)
whose focus is, nevertheless, more distant from the research presented in this thesis. How-
ever, recent studies from these areas may be found, for example, in [51, 78, 129, 128, 118].

In addition to the survey presented in this chapter, a separate overview of evolutionary
algorithms applied in combination with cellular automata will be proposed in Chapter 3.
On the basis of this summary and the results obtained so far in this area, a particular
intention of this thesis (i.e. the orientation of the research) will be described in Section 3.5.

2.1 Identification and Synthesis of Transition Rules
The CA behavior is represented by a sequence of configurations (states of each cell) varying
in time. At every time step the next configuration is determined by the local transition
function of the cells. Note that in this text only uniform CA will be considered, i.e. there
is a single transition function determining the behavior of all cells. However, the task of
designing a CA is to find this transition function which will perform the behavior of interest
of the CA or a transformation (in general in several time steps) of an initial configuration
onto a target configuration. Depending on a particular scenario, the process of discovering
the transition function may be, in principle, considered either as identification of transition
rules or synthesis (i.e. the design) of the rules.

The identification of the transition rules assumes that a sequence of configurations
(i.e. the CA development for a finite number of steps) is known for every time step that
the CA is required to pass through. The task is to identify the transition rules according
to which the cells update their states in each successive step. The solution of this problem
is fundamentally based on the method proposed by Adamatzky in [3]. His approach was
later improved, e.g. by combining it with Learning Classifier Systems [24] or advanced
representation techniques like polynomial representation or decision trees [5]. Other ap-
proaches to this issue, e.g. such based on incomplete observations, neighborhood detection
or combinations of these principles with evolutionary methods, have also been published
[132, 75, 22, 23]. This thesis will not deal with the identification scenarios.

9

A more general task is to perform a synthesis of the transition rules for cases where
the exact CA behavior is not known. In this scenario the design of the transition function
needs to be, in fact, performed together with the discovery of (at least a part of) the CA
development that fulfills the given requirements (for example, to achieve a specific config-
uration from a particular initial configuration, to replicate a given structure, to perform a
periodic process, to achieve a stable configuration, etc.). Usually the number of steps of the
CA needed to perform the given task is not exactly known and even the existence of a valid
solution for given CA parameters cannot be guaranteed. The task of rule synthesis will
be considered in this thesis and evolutionary approach will be applied for its
solution.

The following sections contain an overview of some important research and application
areas in which CA have been studied together with mentioning selected techniques applied
to the solution of particular problems. As there is no unified approach to the synthesis of
the CA rules, it is not possible to provide an exhaustive list of methods which are typically
application-specific.

2.2 Theoretical Aspects of CA
Since the first extensive studies of cellular automata, performed by von Neumann ([90], first
published in 1958, and [89]), and particularly after the publication of Conway’s concept
of the “Life in a grid” in 1970 [45], researchers started to think about CA in a wider
perspective. Nevertheless, besides various application areas that have emerged during the
time, theoretical foundations of CA with some closely related subjects like computation,
complexity or implementation issues, still remain important research domains.

For example, an interesting CA-based method was recently published considering the
computation of shortest paths in grid graphs. 2D cellular automata were applied where
grid graphs are represented as configurations of these CA with nodes and edges modeled by
cells with different state sets. The authors discovered that the worst case time complexity
is 𝑂(𝑛) where 𝑛 is the number of nodes of the connected graph [15].

CA are often investigated towards their ability to accept formal languages in order to
determine their computational capacity. Kutrib and Malcher proposed an opposite ap-
proach by looking at CA towards their ability to generate formal languages. The authors
considered 1D CA and demonstrated their capability to generate the Thue-Morse sequence
within real time and the generation of unary patterns in depth and obtaining a charac-
terization by time-constructible functions and their corresponding unary formal languages
[66].

From both theoretical and application perspective, maximal length 𝑛-cell CA are of
a high interest (e.g. as pseudo-random number generators, VLSI testing, cryptosystems
etc.). Such CA have the cycle of the length 2𝑛 − 1. In [2] the authors investigated non-
linear maximal length CA and proposed a method for their synthesis. A similar issue was
studied also in [47] together with a FPGA-based implementation. It is worth noting that
a more general investigation regarding the maximum length cycles in CA was proposed in
[59] where composited cellular automata were considered.

There are so-called partitioned CA constituting a subclass of standard CA in which
each cell is divided into several parts, and the next state of a cell is determined only by
the adjacent parts of its neighbors. For example, this concept may be used for designing
reversible CA. Morita investigated a class of partitioned CA (particularly so-called elemen-

10

tary triangular partitioned CA) and discovered a new instance that is capable of universal
computation [85].

In addition to the already mentioned rule 110, which is able to perform universal com-
putation, the issue of universality has also been studied in [53] in CA with the rule 184.
The authors showed how such CA can implement any logic circuit by demonstrating a
possibility to construct a computationally complete set of basic logic gates. Finally an
implementation of the adder circuit was proposed in this paper using the CA with rule
184. Another (a more specific) study of universality was published in [60] regarding the
asynchronous brownian CA requiring merely two transition rules and three states.

The elementary binary 1D CA have often been studied theoretically in order to de-
termine their capabilities and properties where a specific rule has been considered. Rules
110 and 184 have already been mentioned above. In addition to that, the computationally
universal rule 110 has also been studied from the point of view of spectral properties of
the computation process [91]. The authors suggest a relationship between a noise which
is possible to identify and quantify from the CA and computability of such CA. Another
rule, particularly the rule 20, was examined in [92] with respect to so-called conflict-like
dynamics of the appropriate CA suggesting that this rule is composed of two simpler CA
(the authors also mention rule 14 with similar property).

2.3 Cryptography and Security
The simple concept of elementary CA has lead to their applications in the area of error
detecting and correcting codes and cryptography, often with a support of hardware imple-
mentations. For example, the proposal of a single-byte error correcting and double-byte
error detecting code published in [31] represented a remarkably simple and cost effective
alternative to the existing Reed-Solomon codes available at that time. Recently, this issue
was revisited and a CA-based single-byte correcting code was adapted for memory systems
[109]. The authors proposed several variants of the code and performed simulations of their
implementation in modern FPGA and ASICs. The results showed a possibility to reduce
the hardware demands substantially in comparison with the existing Reed-Solomon solu-
tions. A generalized solution considering 3-byte and 4-byte error corrections was published
in [17]. According to the mentioned studies, in many cases the CA-based error correct-
ing schemes have shown as simpler and cheaper alternatives to the appropriate variants of
Reed-Solomon coders.

Another area in which CA proved their capabilities is cryptography. For instance, semi-
bent or bent Boolean functions are interesting from a cryptographic point of view, since they
possess several desirable properties which are useful to resist linear cryptanalysis. Recently,
CA have been investigated with respect to their ability to generate such funtions [77, 44].
In addition, a new method utilizing Genetic Algorithms (GA) to evolve 2D CA as pseudo-
random number generators (PRNGs) was proposed in [48] where the authors introduced
a composite fitness metric which allows quantifying the performance of resulting CA with
respect to individual tests, i.e. it allows to find the CAs that are most likely to pass among
a set that fails a specific PRNG test.

From a more general point of view, CA have evolved as a good cryptographic primitive
during recent years for solving various (sub)tasks in this domain. For example, PRNGs
represent important components of stream ciphers and CA have shown capable to combine
some partial results attained in this area with existing traditional stream ciphers in order
to provide new systems with exhibit better cryptographic properties [62, 68, 63, 34]).

11

2.4 Modeling and Simulation with CA
The development of modern computing technology allowed overcoming some demands that
struggled to perform efficient calculations with CA-based systems or to apply the CA to
simulate and analyze real-world or natural complex systems. For example, the latest FPGA
technology provided a powerful platform to accelerate the computation of CA or massively
parallel systems in general (e.g. as recently demonstrated in [67, 12]). In addition to FP-
GAs, modern graphic processing units (GPUs) currently allow performing general-purpose
computations and speed-up significantly some kinds of tasks. The utilization of GPUs for
CA was recently proposed in [28] and in combination with evolutionary techniques for gen-
erating CA rules in [123]. However, some attempts have also been performed to implement
CA by means of future technology (e.g. using graphene nanoribbons [96]).

The application of CA to model and simulate real-world systems include many areas
from which the following were published in the last years. In [1] a new method for evaluating
the characteristics of photovoltaic panels was proposed. The authors introduced a two-
component approach integrated in a CA-based model for processing the evolution and
distribution of the temperature and the electrical output characteristics of the solar cells.
The combination of results from these components then allows simulating the behavior of
the panel numerically.

Modeling the wind flow and fire spreading belongs to complex natural phenomena for
which CA were applied in the past. New studies allowed improving some existing models
and increase their accuracy. For example, an advanced wind flow model and its impact
on the forest fire spread was proposed in [61]. The authors integrated rules not only the
wind direction and speed but also an improved forest fire model and other physical and
climatic attributes into the CA (e.g. topography, land use, nature and density of vegetation
or humidity). Another approach considering a discretized 3D cellular model for modeling
the wind flow was recently proposed in [25].

As regards the simulation and CA rather from theoretical perspective, it was shown in
[64] that for any non-uniform CA (i.e. such that considers a separate transition function for
each cell), there exists a uniform CA that can simulate the non-uniform one. In order to do
that, a function is introduced which maps the rules and states of a non-uniform CA to the
states of the proposed uniform CA. The authors show that different applications that use
different non-uniform CAs can now be implemented in one system, and also propose a brief
overview of such applications. Another study, considering the simulation of CA by means
of another computational model was published in [130] where the author constructs a series
of infinite Petri nets which directly simulate the elementary cellular automaton Rule 110
(more variants of this model were presented).

2.5 Modeling Crowds and Traffic Systems
The simulation of spatial behavior during time belongs to the problems often considered in
relation with CA. Modeling the crowd dynamics, pedestrian movement or traffic flow (as
a more specific subclass of the general area related to the modeling and simulation using
CA) represent typical examples of real-world complex systems. During the last years CA
have shown to be a simple and effective platform for this kind of problems.

The CA-based pedestrian simulation models represent interesting alternatives to par-
ticle systems employing a continuous spatial representation. In CA, however, the space is
discretized which may imply difficulties in modeling real phenomena (e.g. heterogeneity in

12

the walking speed of pedestrians in urban areas). This aspect was studied in [13] where an
adaptation of this concept was proposed for managing the heterogeneous speed profiles in
pedestrian models. In particular, in the discrete space of the CA, the authors work with
a maximum speed of one cell per time step, but model lower speeds by having pedestrians
yielding their movement in several turns, allowing to consider various sorts of pedestrians
walking by different speed. A subsequent study reports the results of controlled experi-
ments performed with various crowd and pedestrian models considering a personal space in
static and dynamic situations: the area surrounding human body, linked to crowding due
to spatial intrusion/restriction. Simulation results together with the parametric evaluation
of pedestrians’ psychological stress reaction to density were presented in [49].

Another study, considering a CA-based model for modeling crowd behavior management
in airports, was published in [81]. The crowd dynamics is typically studies in specific
situations whose conditions and parameters must be taken into account when designing the
CA model (this is particularly true for various airport areas which was the subject of the
aforementioned study). Another scenario was recently published studying spatial games
and memory effects on crowd evacuation behavior by means of CA [82]. It is worth noting,
however, that the pedestrian or crowd behavior is typically not deterministic. An enhanced
CA model, called the fuzzy cellular automaton, which is able to overcame the limitations
of standard CA models, was proposed in [46] where a GPU acceleration of the evaluation
of the fuzzy CA was also applied.

An important part of this domain, with its own specificity, is the issue of modeling and
simulation of road traffic situations (including crossings of different forms, multi-lane and
highway traffic etc.). The concept of cellular automata has shown to provide a powerful
tool to solve these tasks which may be considered on both the macroscopic o microscopic
level. For example, a task of calibration of traffic microsimulation models was studied in
[65]. The authors proposed a Genetic Algorithm-based approach with self-adaptation for
tuning the CA parameters which allowed to obtain more accurate results. More specific
traffic scenarios have also been studies recently (e.g. a cellular automaton models tuned
specifically for multi-lane traffic, including lane-changing activities [131, 33]).

2.6 Dynamics, Control and Synchronization
CA as dynamical systems were, probably for the first time, formalized in [55], an overview
of some modern approaches may be found in [35]. Nowadays the subsequent research gave
rise a new subfield of CA where various tools (mathematical, statistical, experimental etc.)
are applied in order to discover new features of the CA development. The studies include
not only the processes (changes, dynamics) that can be observed in “patterns” generated
by CA but also various issues regarding the control, synchronization, computation and
extensions of the standard CA model.

For example, probabilistic CA have shown as a tool suitable to model many natural phe-
nomena. Some of main control problems of probabilistic CA are reachability and drivability.
The first is related to the possibility of applying a suitable control able to make the system
reach a given state or a set of states. The drivability problem may be considered somehow
complementary to the reachability one. The regional control of probabilistic CA was, in
relation with the mentioned issues, studied in [11, 9] and a related local synchronization
issue in [10].

One of the benchmarks often investigated in CA is the synchronization task which
tries to achieve a periodically alternating homogeneous global configurations from given

13

(or arbitrary) initial configuration. Since the cells (in the standard CA) interact only
locally, the solution of this task is non-trivial. One of the advanced study dealing with the
synchronization task was published in [101].

Another phenomenon studied in the CA dynamics is the issue of attractors. An attractor
may be viewed as a (final) configuration (or somehow restricted sequence of configurations)
of the CA that the CA achieves from a given (or arbitrary) initial configuration. A point
(or single length cycle) attractor is such an attractor which the CA reaches after only one
step from the initial configuration. A new approach for the synthesis of non-uniform CA
having only point attractors was proposed in [86].

In elementary cellular automata the new configuration depends solely on the configura-
tion at the preceding time step. However, this concept may be extended by introducing a
memory which allows the CA to develop in such a way that the new configuration depends
not only on the current one but also on a certain summary of past configurations. This
concept may be beneficial for modeling some kinds of systems exhibiting so-called non-
markovian phenomena whilst the mapping defining the transition rules of the system (i.e.
the formal model) remains unaltered. Dynamical systems with memory (including cellular
automata) were summarized in [7]

2.7 CA for Image Processing
The concept of local cell interactions in 2D CA actually copies the same principle utilized
for image processing. Therefore, CA with various modifications have often been considered
to design image operators like noise removers, edge detectors and others [104, 102].

For instance, a new scheme using 2D CA for an image encryption was proposed in [30].
The authors discovered that the random evolution of CA along with masking makes the
scheme secure and efficient in parallel software implementation. A security analysis has
shown that the scheme with high diffusion and confusion is strong against correlation and
differential attacks.

Several studies have recently dealt with edge detection by means of CA. In [42] the
authors explored the possibility of using high-order CA (a variant of CA which can memorize
a certain finite number of its past states) to perform edge detection. Experiments were
devoted to show how to find optimal parameter values for the proposed model and the
results showed to be very close to the best performing commonly used methods. Another
approach was proposed to design a CA-based edge detector adapted to the particularities
of the image where Genetic Algorithm was applied to identify the best CA rules, which was
considered as an optimization problem. The authors claim that some weak points of a well-
known Canny detector can be overcome by this method [38]. An interesting method was
published in the past considering 2D 256-state CA where the gene expression programming
was employed as the learning algorithm for edge detection in which the chromosome encodes
the transition rule as the expression [115]. Another method was recently focused on bio-
medical images [14].

Image reconstruction and denoising represents an important non-trivial task of image
processing for which CA have also been applied. Salt and pepper noise filtering by means
of fuzzy-CA was studied in [108] where a local fuzzy transition rule is examined which gives
a membership value to the corrupted pixel neighborhood and assigns next state value as a
central pixel value. The authors showed a possibility to removes the noise effectively even at
noise level as high as 90%. A more specialized method investigated denoising of biometric
images: In [121] a new technique called an Iterative Refined Noisy Pixel Restoration was

14

proposed in combination with CA to get rid of salt-and-pepper noise, assessing the output
image quality by means of various metrics and providing better performance compared to
the alternative approaches. Finally, let us mention a method, inspired in physics, called
fractional integral function, which was used for representing cellular automata model and
cell information memory vector to perform face and fingerprint recognition [52].

2.8 Asynchronous CA
Asynchronous CA, nowadays studied as a distinguished subfield of cellular automata, rep-
resent a class of CA in which each cell may be updates to its next state an unbounded
number of times according to a locally discrete time. This means that the updates may
be deterministic, non-deterministic, random, sequential or even synchronous [88]. It was
shown that for each synchronous CA an equivalent (i.e. exhibiting the same behavior) asyn-
chronous CA may be constructed [87]. Recent surveys are available e.g. in [40, 41]. More
specific studies on asynchronous CA include the issue of reversibility [114] or embedding the
rules of the Game of Life into the asynchronous model where also a delay-insensitive circuit
was proposed for its implementation [133]. Recently, asynchronous CA were studied with
respect to the solution of the synchronization benchmark in 1D binary CA with a proof
of correctness of the solution and determination of the upper-bound on the convergence
time to the solution [107]. A study of recurrent rules, their classification and utilization to
hiding some configurations of CA under fully asynchronous updating scheme was proposed
in [106]. Asynchronous CA also showed as a suitable tool to enhance the quality of some
pseudo-random number generators when identifying the CA of full-length cycle [105].

15

Chapter 3

Evolutionary Approach to CA

The simulation of CA-based systems on classical computers represents a computationally
demanding task where (typically) thousands of cells need to be updated during each step
of the CA in order to determine its behavior. The application of evolutionary algorithms
(EAs) for tuning or synthesis of the CA rules was enabled by the development of the
computing technology since the second half of 90s when the first successful studies were
published mostly dealing with some non-trivial benchmark problems in binary CA (e.g.
density classification or synchronization task). Evolutionary algorithms have subsequently
been widely applied in combination with CA since there is no general systematic way to
solve the synthesis of CA rules effectively. Note however that the evolutionary approach to
CA represent a challenging issue even for the modern computers, hence sometimes there is
an effort to accelerate this process on a dedicated parallel HW (e.g. using multi-processors
and GPUs [123, 124, 27, 28]).

This chapter briefly summarizes the history of evolutionary algorithms applied on cel-
lular automata (which have later been referred as evolving cellular automata – ECA), iden-
tifies some distinguished sub-fields and highlights important results. On the basis of the
development of ECA the orientation of the research of this thesis is described in Section
3.5.

3.1 Evolution of binary CA
One of the first serious study of ECA was proposed in [8] when the majority (or density)
classification benchmark was considered in binary 1D CA. Despite the fact this problem
cannot be solved perfectly in 2-state CA [69], it represents an optimization benchmark
suitable for investigating the behavior of complex systems and algorithms for their tuning.
The authors applied Genetic Programming with automatically defined functions to find a
suitable transition function that provided the accuracy of the classification 82.326% which
was the best result compared to all known solutions at that time. To solve this task, the
CA should stabilize into all-1s configuration if the number of 1s in the initial configuration
exceeds the number of 0s and into all-0s otherwise. The solution is challenging since the
decision relates to global CA feature but the CA development (calculating the decision) is
based only on local cell interactions.

A review of a wider research from 1993-1996 related to evolving computations in CA by
means of Genetic Algorithms was published in [80]. In addition to the majority classifica-
tion, the synchronization task and issues related to the possibility of performing computa-

16

tions in locally interconnected “processors” were addressed. This research may probably be
considered as the first application of evolutionary techniques to obtain a useful (although
still rather at a benchmark level) emergent computation in CA.

Sipper et al. was among the firsts who tried to introduce a general evolutionary method
for designing non-uniform CA. The algorithm was denoted as evolutionary programming
and represented, in fact, a parallel EA that evolves local transition rules derived just from
neighboring cells on the basis of the evaluation a desired (global) CA behavior. A hardware
architecture was also proposed for this approach [117, 116].

It is worth mentioning that many other works from this period (e.g. those from Wolfram,
Langton, Packard, Ruppin, Bäck, Juillé or Pollack), investigating similar problems, were
remarkable. Also note that this research was mainly focused on binary 1D or 2D CA which
represent the simplest and fundamental setup.

3.2 Evolution of Game of Life Structures
The search for particular CA rules for a given CA behavior is not, however, the only way
how to evolve the CA. If a suitable CA is known (i.e. for which the transition function
is available), then a target behavior may be designed by searching for a suitable (initial)
configuration of the CA. This approach was applied several times for the Game of Life
(GoL) CA.

Gliders and glider guns represent complex structures with specific cyclic behavior in the
GoL CA. They were also utilized to prove the universality of the GoL CA. Therefore these
structures are interesting from a more general perspective and the main issues are how they
can be discovered, what kind of different variants may exist, what are their properties and
whether it is possible to use them in more complex applications.

The evolutionary search (by means of Genetic Algorithm) for glider guns in GoL CA
was introduced in [112] and revisited in [113] with a comparison of various techniques for
their discovery. In fact it was shown that the original Gosper’s glider gun (which is the
most known in the GoL CA) just represents one of the possible structures that is capable
of periodically generating other structures. Extended studies of this topic were presented
in [110, 111] where the authors also introduced a classification of glider guns that takes into
account the number of emitted gliders of a specific type.

An independent research of selected GoL-related structures was presented in [6]. In
addition to gliders, the authors also considered other structures like R-pentominoes or
exploders. This study had contributions in several aspects: (a) one of the objectives was
to maximize the number of the structures of interest emerging in the CA and (b) several
similar GoL CA were investigated (i.e. not only the Conway’s original concept).

Although not directly related to evolutionary approach and Conway’s version of the
Game of Life, it is worth mentioning a recent study of glider guns published in [119] where
the authors presented a new 2D binary CA with so-called Sayab rule which allows con-
structing a glider gun with just four live cells at its minimal phases – this is probably the
most simplest variant of glider gun known at that time. It was also shown that this glider
gun can implement complex dynamical interactions and gates required for computational
universality [119].

Probably currently the most recent study of the evolution of the GoL-related CA was
published in [122]. The author studied the evolution of autopoietic structures (i.e. “seed”
objects in the GoL array that exhibit some specific behavior like stability, oscillations,
movement etc.) using a variety of biologically analogous aspects integrated into a so-

17

called S-model together with an advanced fitness evaluation of the evolving autopoietic
structures. Finally it is claimed that successful seed patterns are those that create a diversity
of autopoietic structures.

3.3 Evolution of multi-state CA
Discovering of suitable set of rules for multi-state (i.e. non-binary, working with more than
two cell states) CA represents a challenging task because the number of possible transition
functions grows exponentially depending on the number of states as well as on the size of
the cellular neighborhood. Therefore the utilization of EA in this case is fully justifiable.

The 3-state CA may be considered as the most simplest models in this category with
which an interesting study was presented in [95]. The authors applied Genetic Algorithm for
the evolution of rules of 3-state 2D CA the goal of which was to solve a binary classification
problem in the 2D array as described in [58]. It was shown that the best found rules perform
better than the manually designed heuristic CA rule and also outperforms one of the most
widely used statistical method – the k-nearest neighbors algorithm.

The replication problem represents a typical benchmark related to multi-satate CA
working with more than 3 states. In addition to the pioneering work of von Neumann
with self-replicating machines and self-replicating loops for which the rules were designed
manually (e.g. those from Langton or Byl), researchers started to investigate the abilities
of EA for automatic discovery of self-replicating structures. Probably the first successful
application of Genetic Algorithms to design rules for replicating structures in CA was
published in [73, 74]. The authors used a linear encoding of elementary transition rules and
introduced a new concept of CA called Effector Automaton (EfA) which allowed them to
discover new replicating mechanisms that differ substantially from the manually designed
solutions.

An advanced method for the evolutionary discovery of replicating structures in CA
utilized Genetic Programming (GP) and provided an improved performance against the
aforementioned methods (the original idea and initial results were published in [93]). The
authors applied a tree-based representation naturally supported by GP and introduced new
structures called S-tree to encode a seed, i.e. an object representing the initial state of the
CA from which the replicas ought to be generated, and R-tree representing the encoding
of CA rules for the evolution by means of GP. This approach enabled to evolve rules for
a variety of structures to be replicated as well as mechanisms how the replication may be
performed [94].

3.4 Recent studies of ECA
In addition to the studies mentioned in the previous sections, there has been a research of
ECA during recent years from which it is worth mentioning some remarkable articles.

For example, in 2011, probably one of the first studies combining CA and Neural Net-
works (NN) was published in [37]. The authors investigated the possibility to generate
complex self-organizing structures in CA whose cell behavior is controlled by NN inte-
grated in them. EA was applied to train the NN in order to achieve the desired behavior.
Although for complex patterns represented by the CA (e.g. paintings or photographs) the
output is only a rough approximation of the overall mean color scheme, the idea of com-
bining CA and NN introduced an interesting concept that was later revisited in a modified

18

form with remarkable results. In [84] the authors introduced a concept of Growing Neural
Cellular Automata for the investigation of self-organization and morphogenesis in multi-
cellular organisms. Their approach used continuous state values which allowed to design
differentiable transition rules for better control of various phases of morphogenesis observed
in natural systems. However, such rules were not invariant to rotation of the artifacts in
the cellular space which represents a limitation prohibiting the existence of differently ori-
ented instances of the target pattern on the same grid. Therefore an improved concept
was introduced and denominated Isotropic Neural CA [83] which demonstrated an ability
to grow accurate asymmetrical patterns through several methods with an advanced ability
of the patterns to self-repair. Another NN-based concept was applied in [39] where an
evolutionary algorithm was used for producing spiking neural systems in CA that emulate
the patterns of behavior of biological neurons in vitro.

Another concept of CA with continuous state values, denominated MergeLife, was in-
troduced in [54] representing a Genetic Algorithm which is capable to generate full color
(with 16-bit color depth) dynamic animations according to aesthetic user specifications.
The authors proposed several novel fitness measures that when given human selected aes-
thetic guidelines encourage the evolution of complex long-running animations that often
include spaceships, oscillators, still life objects or even Universal Turing Machines.

Although Genetic Algorithm has often been applied to search for the CA rules, it is not
the only EA which may be suitable for this task. However, a wider systematic study of
different EAs in the areas of cellular automata is missing mainly due to a strong dependence
of their applicability on the particular problem to be solved. Nevertheless, it is worth
mentioning a comparative study of Genetic Algorithms and Particle Swarm Optimization
methods (PSO), that was recently presented in [100], where the author also proposed a
new PSO variant called Binary Global-Local PSO (BGL-PSO). Whilst the GA generally
outperformed the PSO methods in both case studied (the density classification problem
and a newly proposed generation of “chaotic” CA), there are some interesting observations
concluding the paper and highlighting some features in favor of PSO [100]:

“While PSO was — absent aggressive non-local jumping — more prone to be caught in
local extrema, many times these local extrema were nonetheless found relatively early in

the search with PSO; moreover, although the GA was typically more effective at finding a
single best candidate solution, the PSO algorithm by contrast commonly found more

instances of different quality solutions. Our BGL-PSO algorithm also consistently
outperformed the binary PSO algorithm for the given CA-related tasks.”

Evolutionary Strategies (ES) were considered for adjusting epidemiological model of
Chagas Disease based on CA [43]. The authors considered an existing model previously ad-
justed by GA whose performance, however, declined with the expansion of the search space.
Therefore an improved method was introduced and tuned applying a new multistage ES,
where different settings are applied based on the current stage of the evolutionary search.
The authors concludes their work by highlighting a fact that the proposed ES provided
solutions with the least error in the set of experiments, demonstrating the improvement
over the previous approach.

To conclude this section, let us mention a recent study investigating the application
of EAs for designing reversible cellular automata, particularly those whose local update
rules are defined by conserved landscapes [76]. The authors compared GA and GP when
formulating this task as an optimization problem and approached its solution in three ways
through a single-objective, a multi-objective, and a lexicographic optimization. Again, their

19

analysis demonstrates some interesting properties of those EAs applied on this problem.
Le us highlight the most important observations [76]:

“In the single-objective approach, we observe that GP can already find an optimal
solution in the initial population. This indicates that evolutionary algorithms are not

needed when evolving only the reversibility of such CA, and a more efficient method is to
generate at random syntactic trees that define the local update rule. On the other hand,

GA and GP proved to be quite effective in the multi-objective and lexicographic approach
to (1) discover a trade-off between the reversibility and the Hamming weight of conserved

landscape rules, and (2) observe that conserved landscape CA cannot be used in
symmetric cryptography because their Hamming weight (and thus their nonlinearity) is

too low.”

3.5 Intention of This Work
As evident from the previous sections, the research of CA is (practically always) performed
for a specific application or benchmark problem for which suitable CA rules ought to be
found. Even though a more general technique is proposed for their synthesis, representation
or computation (e.g. Cellular Programming [116] or Neural Cellular Automata [84]), the
final method must be tuned for the presented case studies. The same approach will be
considered in this thesis.

Various remarkable concepts have been introduced in order to improve the traditional
CA design, its efficiency or suitability to solve particular tasks (e.g. asynchronous control,
continuous state values, non-rectangular grids, effector automata, special rule encoding for
a given problem, integrating other complex models into the cells – for example Neural
Networks, etc.). In this thesis, however, only the basic concept of CA is considered and
the main objective is to make the process of evolutionary CA design more efficient and
accessible for multi-state CA through a new representation of the transition functions in
the form of so-called Conditionally Matching Rules (CMRs).

The proposed approach was motivated by the simplicity of the standard CA concept and
the elementary representation of its transition functions by means of a table of transition
rules. The CMR encoding, in fact, generalizes the table-based method, preserving its simple
concept and allowing to be converted uniquely back to this elementary form. Since the
CMRs showed promising qualities in the initial study, it later became a basis for a wider
research regarding the evolutionary design of multi-state CA solving various non-trivial
problems and working with up to 256 states. This research constitutes the main part of
this thesis with the details and results being presented as a selection of papers, published
by the author, in Appendices I-VIII.

20

Chapter 4

Advanced Evolution of Cellular
Automata

This chapter introduces the main research ideas of this thesis together with highlighting
important results and providing references to relevant papers included in the Appendices.

The research was focused solely on discrete deterministic uniform synchronous elemen-
tary cellular automata with the rectangular shape of cells that are organized into one-
dimensional (1D) or two-dimensional (2D) lattice. Moreover, the simplest form of cellular
neighborhoods will be considered (i.e. the 3-cell neighborhood in 1D and 5-cell von Neu-
mann’s or 9-cell Moore’s neighborhood in 2D). The development of these automata is
performed in discrete time steps from a given initial configuration where all cells update
their states at the same time (synchronously) according to a single transition function (the
notion of uniformity) which calculates the new cell states only from their current states
(the notion of elementary CA). This concept allows preserving all advantageous features
assumed in CA, in particular the simplicity of cells and transition rules, the locality of
cellular interactions and scalability of the lattice.

The objective was to investigate advanced representations of the CA transition func-
tions in order to make their evolutionary synthesis more efficient even for multi-state CA.
At the beginning, some initial experiments were conducted considering the evolution of
transition rules for self-replicating structures in binary 2D CA. However, this showed to be
a challenging task if the basic table-based representation was utilized. Therefore, advanced
representations have been proposed: (1) an instruction-based approach and (2) Condition-
ally Matching Rules. The overview of their research is presented in the next sections.

4.1 Instruction-Based Approach
In order to overcome the difficulties related to the CA evolution using the table-based
representation, a method for encoding the transition functions by means of an instruction-
based approach was proposed the details of which are presented in Appendix I.

This method represents an indirect mapping between the input combinations of states
in the cellular neighborhood and the next states of the cells during the CA development. In
this case the local transition function is described by a program (algorithm) whose execution
calculates the next cell states. The objective of the program-based representation is to
reduce the length of the chromosomes needed to encode the transition rules the synthesis
of which ought to be performed by means of Genetic Algorithm.

21

It was shown that by using the instruction-based approach the transition function for a
given problem may be designed in substantially shorter time and with higher success rate in
comparison with the conventional (table-based) approach (especially for multi-state CA).
The case studies include the replication problem and the problem of development of a given
pattern from an initial seed.

4.2 Introduction of Conditionally Matching Rules
Subsequent experiments with the program-based encoding, however, exhibited difficulties
when the number of cell states increased. Moreover, if the program-based approach is
applied, then the next state is represented by a result of execution of a prescription (the
program) with a limited possibility to detect particular states of the cellular neighborhood
for which specific or separate rules could be more suitable. Further analysis of the results
presented in Appendix I also showed that the program-based approach is somehow limited
in the form of the behavior the CA is finally able to perform. These issues lead to a con-
tinuation of the research with the focus on further experimentation with the rule encoding.
This resulted in a new rule-based representation which was denominated as Conditionally
Matching Rules (CMRs). This way a transition function is composed of a finite sequence
of CMRs the number of which may be specified by the designer as a parameter. Therefore
it allows reducing the length of the chromosomes while preserving a possibility to express
individual transition rules as in the case of the table-based encoding.

The proposed CMR approach, described in more detail in Appendix II, is based on
conditions specified within the transition rules that have to be satisfied with respect to
the current combination of states in the cellular neighborhood in order to determine the
next state of a cell according to a specific CMR. The goal of this representation was to be
more efficient than the aforementioned table- or program-based approach, yet allowing us
to describe specific transition rules in a way naturally convenient to cellular automata. The
first experiments were conducted with the replication problem and pattern transformation
problem in 2D CA. The initial results presented in Appendix II showed that the evolution
is able to design transition functions even for non-trivial behavior of CA that perfectly
fulfilled the specified requirements.

The concept of Conditionally Matching Rules represents the main outcome
of the research presented in this work. As it showed promising in the initial study,
the subsequent research was focused just on this concept. The following sections describe
advanced CA benchmarks and applications of CMRs.

4.3 Evolving Computations in Binary 2D CA
The continuation of the CMR research lead to experiments the goal of which was to ver-
ify the abilities of this approach in combination with Genetic Algorithms to design given
computational process in the 2D cellular array. A detailed description is presented in Ap-
pendix III. The main idea is to interpret some predetermined cells as input operands and
some (possibly other) cells as output bits (i.e. the result of the computation). The genetic
algorithm was applied to find a suitable transition functions for CA according to which
the given computation could be observed during its development for all the possible binary
combinations stored in the input cells. Both the input values and the result is represented
by state values of the given cells. The input values are represented by the initial state of

22

the CA. After a finite number of development steps the cells representing the output bits
are expected to contain the result of the computation. A set of experiments were conducted
considering various setups of the evolutionary system and arrangements of the target com-
putation in the CA. It was shown that such computations can be realized in a uniform
two-dimensional cellular array. This study also presents a comparative evaluation of the
evolutionary experiments for various given scenarios in order to determine abilities of the
system to solve this kind of problems.

Note that the research from Appendix III represents the only scenario in which solely
binary CA with Moore’s neighborhood were considered. It also allowed us to verify the
applicability of the CMRs in CA working with larger (9-cell) neighborhoods. All subsequent
experiments, introduced in the next sections, will consider multi-state CA (working with
at least 6 cell states) with von Neumann’s neighborhood.

4.4 Evolving Generic Computation in Multi-State CA
The main study regarding the Conditionally Matching Rules is presented in Appendix IV.
Two main areas have been investigated: (1) the evolution of generic square calculations in
1D CA which will be briefly introduced in this section and (2) the design of replicating
loop-based structures in 2D CA – this will be mentioned in Section 4.5.

The problem of generic square calculations was inspired by the work of Wolfram [127]
where the transition rules performing this computational process in the CA were designed
manually. The main idea was to encode the input value 𝑛 > 0 in the initial CA config-
uration and the result is obtained by performing a finite number of CA steps until the
configuration stabilizes. This final configuration encodes (in a given manner) the result of
the computation, 𝑛2.

The results presented in Section III of Appendix IV show that it is possible to auto-
matically evolve transition rules (in the CMR form) for calculating the square for various
𝑛 > 0. Moreover, subsequent analysis showed that the resulting CA exhibit substantially
lower number of steps needed to calculate the results in comparison with the solution from
[127].

A continuation of this research was published by the author of this thesis in [20] and its
extended version is included as Appendix VI. Section 4 of Appendix VI proposes a wider
analysis of the resulting square calculating CA. In particular, it is demonstrated that various
generic CA-based solutions of the squaring problem can be discovered, which substantially
overcome the existing solutions regarding both the complexity of the transition functions
and the number of steps (speed) of the calculation.

4.5 Evolution of Replicating Structures
In additional to the work of von Neumann [89] with his theoretical study of self-replication
in CA (whose solution nevertheless exhibited a significant degree of complexity and has
never been physically implemented), several other researchers proposed a concept of so-
called self-replicating loops – specific small structures in multi-state CA together with
their appropriate (usually manually designed) transition rules for the replication of these
structures (see mainly [70, 26, 97]). These structures provided the main inspiration for the
research presented in Section IV od Appendix IV.

23

In this work similar loop-based structures were investigated where the rules for their
replication were generated by means of EA. It was shown that more efficient results regard-
ing the replication speed and the complexity of the resulting CA may be discovered using
the CMR-based representation in comparison with the existing solutions of self-replicating
loops. In particular a novel diagonal replication scheme (discovered by the evolution) was
presented that exhibits a remarkably high replication speed in comparison with the known
solutions.

Further studies of replicating structures were published by the author of this thesis in
[19, 18]. An extended version of [19] is presented in Appendix V. It was shown that new
replicating loops can be discovered that exhibit some unconventional features in comparison
with the known solutions. In particular, several scenarios were presented which can, in
addition to the replication from the initial loop, autonomously develop the given loop from
a seed (a single “active” cell), with the ability of such loop to subsequently produce its own
replicas. Moreover, a parallel replicator was presented that is able to develop the replicas
to several directions using different replication algorithms.

4.6 Pattern Formation in CA Using CMRs
Advanced experiments with the evolution of CMR-based CA were conducted dealing with
the non-trivial pattern formation problem from a seed in two-dimensional CA. Some initial
results are presented in Section 5 of Appendix VI. The objective of this part of research was
to verify the potential of CMRs to evolve CA producing some given exact stable patterns.
The incorporated CA work with 10 and 12 cell states which induce search spaces of enormous
sizes. Despite a low success rates of the initial evolutionary experiments some successful
results were obtained demonstrating that the automatic design of such CA can be realized.
These results probably represent the first case of the automatic evolution of exact behavior
in CA with more than 10 cell states.

4.7 Impact of the Rule Encoding on the CA Behavior
Recent experiments with CMRs and EAs lead to a more systematic comparison of this
representation with the evolution of CA by means of conventional table-based encoding.
The comparison of these results was enabled by applying a custom variant of GA which
provided working solutions for both representations of the transition function.

The main results are presented in Appendix VII and a more detailed evaluation was
proposed in [21]. The French flag development from a seed was considered as a basic case
study. The results showed some remarkable differences in the cellular automata behavior
which are probably caused by the utilization of the two distinct representations. Particularly
it was determined that CMRs allow the CA to develop the pattern gradually from the seed
and even to achieve a stable final configuration. On the other hand the table representation
always exhibited an emergence of a chaotic state from which the pattern eventually appeared
but was destroyed during subsequent CA development and never restored again.

The obtained results demonstrated a necessity of further research of the CA rule encod-
ing in general. So far the CMRs showed some aspects of the CA development which have
never been observed before (in particular the issues of gradual seed growth in multi-state
CA with a pattern stability or possibility to obtain a given exact CA behavior with more
than 10 cell states).

24

4.8 Application of CMRs on Image Filtering
In order to present the concept of CMRs in CA applied in a real-world area, the task of noisy
image filtering was chosen as a case study. In Appendix VIII an evolutionary method for
the design of image filters using 2D CA is presented. In particular the filtering of Salt-and-
Pepper noise from 8-bit gray-scale images is considered. The CMRs are applied to design
CA whose cells represent pixels of the image. In case of the 8-bit images the CA works with
256 cell states. The utilization of CMRs for representing and evolving the filtering functions
is actually a need in this application since the encoding using the traditional table-based
method seems to be inapplicable for such a high number of states.

The main ideas of the proposed approach are the following. A cellular automaton was
initialized by the values of pixels of a corrupted image and a variant of Evolution Strategy
was applied for the design of a suitable transition function able to eliminate the noise from
the image by means of ordinary development of the cellular automaton. It was shown that
using only 5-cell neighborhood of the CA in combination with CMRs the resulting filters
were able to provide a very good output quality and are comparable with several existing
solutions that required more resources. Moreover, the proposed evolutionary method ex-
hibited a high performance which allows us to design filters in very short time even on a
common PC.

25

Chapter 5

Conclusion

The research presented in this work investigated new representations of transition functions
for the evolutionary design of cellular automata. The goal was to enable the evolutionary
algorithms to successfully design complex multi-state cellular automata which have not
been possible to obtain before by means of conventional table-based representation. Several
case studies have been considered including computations in the cellular array, replication
problem, pattern development problem or image denoising. This chapter summarizes the
obtained results and discusses some possibilities of future work.

5.1 Contributions
Two new representations have been proposed which have not been applied in the CA de-
sign so far: the instruction-based representation and Conditionally Matching Rules. The
latter approach showed to be promising for future research. Whilst the transition functions
represented as programs were inspired by techniques like Genetic Programming or similar
concepts, where “callable” functions may be defined as more complex blocks for controlling
a system, they showed rather a limited applicability for the CA evolution. On the other
hand, the CMRs are closer to the original CA control in the form of separate rules according
to which the individual cells may develop. Finally (in this research) this concept showed to
be suitable for a variety of tasks that ought to be solved by cellular automata.

The results in all the considered case studies showed an evident impact the the CMR
representation on both the evolutionary design process of the CA (a higher success rate in
most sets of experiments) and the behavior of the CA themselves. In addition, the CMRs
allowed us to design behavior in multi-state CA which has not been achieved before by
means of the conventional representation (the replicating loops or development of stable
patterns from a seed represent the most remarkable examples). Therefore it may be con-
cluded that the hypothesis stated on page 7 was confirmed by these experiments.
The concept of Conditionally Matching Rules represents the main scientific contribution of
this thesis.

5.2 Main Outcomes
In addition to the proposed representation techniques that allowed the evolution of non-
trivial multi-state cellular automata, the results of various case studies which constituted the
main issues of interest in this work represent the particular outcomes of this research. Let us

26

briefly summarize the most interesting CA obtained from the experiments and observations
related to these results.

The instruction-based approach provided CA with the behavior that exactly matches the
initial specification. In particular, replication of patterns of various shapes and sizes were
successfully realized. The second successful benchmark was a simple pattern development
from a seed. In both cases binary as well as multi-state cellular automata were considered.
It may be stated the first goal from page 8 was fulfilled by this part of research.

The introduction of Conditionally Matching Rules allowed the CA to perform signifi-
cantly more complex behavior discovered by the evolution for various problems. Although
the initial experiments with CMRs were performed on binary CA, the proposed concept
proved its advantages in various applications, specifically the replication problem, pattern
transformation problem and calculations in 2D cellular array. In all these cases the CMRs
allowed obtaining advanced CA whose behavior was difficult to obtain by means of other
known methods (or even such experiments were unsuccessful so far). The invention of a
new innovative representation for the evolution of CA can be considered as an
achievement of goal 2 from page 8

The real demonstration of the abilities of Conditionally Matching Rules was performed
during subsequent research where advanced benchmark problems solven solely by means
of multi-state CA were investigates. In particular, various processes for generic square
calculations in 1D CA were successfully evolved where some of these solutions outperformed
the existing method. Moreover, the problem of designing replicating loops in 2D CA was
considered the results of which provided some interesting concepts allowing to generate
more copies of the given structure in comparison with similar known solutions. The CMRs
also succeeded in advanced pattern development problem from a seed where even stable
structures exhibiting a movement across the cellular array were sometimes obtained as a
side effect that was not the part of the original specification. The successful solution of
various advanced benchmarks by means of CMRs was the fulfillment of goal 3
from page 8

A more in-depth study was performed in order to evaluate the specific type of behavior
of CA driven by Conditionally Matching Rules in comparison with the conventional table-
based representation. The pattern development from a seed was considered as a case study.
The experiments showed some interesting observations. In case of the utilization of CMRs
the CA behavior exhibited a gradual “growth” of the seed which eventually finished in
a given (stable) target pattern. However, when the conventional encoding was applied,
the seed developed into a “random” (chaotic) global state from which the target pattern
emerged after a while literally within a single step from the chaos. However, such patterns
were always destroyed by subsequent CA development and have never restored again (i.e.
the conventional representation failed in the evolution of stable solution). Moreover, some
behavior was not possible to obtain at all by means of the table-based approach (e.g. the
replication of the loops). The demonstration of the impact of CMRs on the CA
behavior accomplished goal 4 from page 8.

Finally, the image denoising task was considered as an application inspired by real-world
problems. The CMRs were applied to design filtering functions of 8-bit gray-scale images
(i.e. the CA worked with 256 states representing the pixel shades) corrupted by Salt-and-
Pepper noise. The initial design (training) of the filters were performed with 10% noise, the
testing was performed with various images corrupted by the noise whose intensity achieved
up to 90%. The proposed method allowed designing good filters within quite short time
periods provided to the evolution (e.g. less than 10 minutes). The best obtained filters were

27

qualitatively comparable with some existing solutions. This part of work has fulfilled
the last goal stated on page 8

5.3 Future Work
The issue related to the encoding of candidate solutions for EA represents one of the key
issue in evolutionary design and optimization in general. The proposed work demonstrated
that this is no less important for the evolution of CA. It is evident from the results obtained
by means of CMRs that the representation may have a significant impact on the resulting
CA behavior. Hence this method seems promising for future research.

So far, only basic CA variants have been considered. Nevertheless this does not mean
that their design is trivial. Here “basic” means rather the CA with smallest cellular neigh-
borhood (i.e. 3-cell neighborhood in 1D CA and 5 cells for 2D lattice). However, even
those scenarios induce huge search spaces for multi-state CA which grows exponentially
with enhancing the neighborhood size. One of the issues for future work is to investigate
the abilities of the new representations to provide solutions for CA with such enhance-
ments which is common in cases of performing complex simulations by means of CA (e.g.
simulation of physical systems, transportation, crowd behavior etc.).

The proposed concepts (the program-based representation and Conditionally Matching
Rules) were tuned so far on some (mostly benchmark) problems for which a suitable config-
urations were found (i.e. the instruction set for the programs and the set of conditions for
CMRs). However, both approaches are quite robust which allows them to be “configured”
in many ways. The issue of determining suitable configurations for given tasks in CA (the
target CA behavior) still remain an open question for which no systematic approach exist
and further research would be needed to apply these methods in other areas.

Finally, some of the most complex setups of the evolutionary CA design are those
where the CA constitute hybrid systems. In this context, as a hybrid system may be,
for example, considered a CA whose transition function is calculated by a neural network
or an other (usually well-established) model. Similarly the transition function may be
formed by combining several (basic) approaches, e.g. the next cell state may be determined
by a program for one condition identified in the cellular neighborhood or by a transition
table for another condition. This setup forms a hybrid system combining the CA and
several different ways controlling its development. This issue may be studied during future
advanced research.

28

Bibliography

[1] Abdennour, I., Ouardouz, M. and Bernoussi, A. S. Modeling of Electrical and
Thermal Behaviors of Photovoltaic Panels Using Cellular Automata Approach. In:
Mauri, G., El Yacoubi, S., Dennunzio, A., Nishinari, K. and Manzoni, L.,
ed. Cellular Automata ACRI 2018. Lecture Notes in Computer Science, vol 11115.
Cham: Springer International Publishing, 2018, p. 57–67.

[2] Adak, S., Mukherjee, S. and Das, S. Do There Exist Non-linear Maximal Length
Cellular Automata? A Study. In: Mauri, G., El Yacoubi, S., Dennunzio, A.,
Nishinari, K. and Manzoni, L., ed. Cellular Automata ACRI 2018. Lecture Notes
in Computer Science, vol 11115. Cham: Springer International Publishing, 2018,
p. 289–297.

[3] Adamatzky, A. Identification of Cellular Automata. CRC Press, 1994.

[4] Adamatzky, A. Game of Life Cellular Automata. 1st ed. Springer Publishing
Company, Incorporated, 2010. ISBN 1849962162, 9781849962162.

[5] Adamatzky, A. Identification of Cellular Automata. In: Meyers, R. A.,
ed. Computational Complexity. Springer New York, 2012, p. 1564–1575.

[6] Alfonseca, M. and Gil, F. Evolving Interesting Initial Conditions for Cellular
Automata of the Game of Life Type. Complex Systems. march 2012, vol. 21,
p. 57–70.

[7] Alonso Sanz, R. Cellular automata and other discrete dynamical systems with
memory. In: 2012 International Conference on High Performance Computing &
Simulation (HPCS). IEEE, 2012, p. 215–215.

[8] Andre, D., Bennett, F. H. and Koza, J. R. Discovery by Genetic Programming
of a Cellular Automata Rule That is Better Than Any Known Rule for the Majority
Classification Problem. In: Proceedings of the 1st Annual Conference on Genetic
and Evolutionary Computation. MIT Press, 1996, p. 3–11.

[9] Bagnoli, F., Dridi, S., Yacoubi, S. E. and Rechtman, R. Regional Control of
Probabilistic Cellular Automata. In: Mauri, G., El Yacoubi, S., Dennunzio, A.,
Nishinari, K. and Manzoni, L., ed. Cellular Automata ACRI 2018. Lecture Notes
in Computer Science, vol 11115. Cham: Springer International Publishing, 2018,
p. 243–254.

[10] Bagnoli, F. and Rechtman, R. Regional Synchronization of a Probabilistic
Cellular Automaton. In: Mauri, G., El Yacoubi, S., Dennunzio, A., Nishinari,

29

K. and Manzoni, L., ed. Cellular Automata ACRI 2018. Lecture Notes in Computer
Science, vol 11115. Cham: Springer International Publishing, 2018, p. 255–263.

[11] Bagnoli, F., Yacoubi, S. E. and Rechtman, R. Regional Control of Boolean
Cellular Automata. In: El Yacoubi, S., Wąs, J. and Bandini, S., ed. Cellular
Automata ACRI 2016. Lecture Notes in Computer Science, vol 9863. Cham:
Springer International Publishing, 2016, p. 101–112.

[12] Bakhteri, R., Cheng, J. and Semmelhack, A. Design and Implementation of
Cellular Automata on FPGA for Hardware Acceleration. Procedia Computer
Science. 2020, vol. 171, p. 1999–2007. ISSN 1877-0509. Third International
Conference on Computing and Network Communications (CoCoNet’19).

[13] Bandini, S., Crociani, L. and Vizzari, G. An Approach for Managing
Heterogeneous Speed Profiles in Cellular Automata Pedestrian Models. Journal of
cellular automata. 2017, vol. 12, no. 5, p. 401–421.

[14] Barik, R., Naskar, M. N. B. J., Modak, S. and Verma, U. Analysis and
Application of Cellular Automata Based Edge Detection Methods on Bio-Medical
Images. International Journal of Engineering Research & Technology (IJERT).
2021, vol. 9, no. 11, p. 143–148. ISSN 1877-0509.

[15] Barman, D. and Das, S. A Cellular Automaton that Computes Shortest Paths in
Grid Graph. In: Gwizdałła, T. M., Manzoni, L., Sirakoulis, G. C., Bandini, S.
and Podlaski, K., ed. Cellular Automata ACRI 2020. Lecture Notes in Computer
Science, vol 12599. Cham: Springer International Publishing, 2021, p. 3–7.

[16] Ben Jacob, E., Schochet, O., Tenenbaum, A., Cohen, I., Czirók, A. et al.
Generic modelling of cooperative growth patterns in bacterial colonies. Nature.
2011, vol. 368, p. 46–49.

[17] Bhaumik, J., Roy Chowdhury, D. and Chakrabarti, I. Null Boundary 90/150
Cellular Automata for Multi-byte Error Correcting Code. In: Bandini, S.,
Manzoni, S., Umeo, H. and Vizzari, G., ed. Cellular Automata ACRI 2010.
Lecture Notes in Computer Science, vol 6350. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2010, p. 231–240.

[18] Bidlo, M. Investigation of Replicating Tiles in Cellular Automata Designed by
Evolution Using Conditionally Matching Rules. In: 2015 IEEE International
Conference on Evolvable Systems (ICES). IEEE Computational Intelligence Society,
2015, p. 1506–1513. Proceedings of the 2015 IEEE Symposium Series on
Computational Intelligence (SSCI).

[19] Bidlo, M. On Routine Evolution of New Replicating Structures in Cellular
Automata. In: 7th International Conference on Evolutionary Computationa Theory
and Applications. SciTePress - Science and Technology Publications, 2015, p. 28–38.
7th International Joint Conference on Computational Intelligence.

[20] Bidlo, M. Evolution of Generic Square Calculations in Cellular Automata.
In: Proceedings of the 8th International Joint Conference on Computational
Intelligence - Volume 3: ECTA. SciTePress - Science and Technology Publications,
2016, p. 94–102. ISBN 978-989-758-201-1.

30

[21] Bidlo, M. Comparison of Evolutionary Development of Cellular Automata Using
Various Representations. MENDEL Soft Computing Journal. 2019, vol. 2019, no. 1,
p. 95–102.

[22] Bołt, W., Baetens, J. M. and De Baets, B. An evolutionary approach to the
identification of Cellular Automata based on partial observations. In: 2015 IEEE
Congress on Evolutionary Computation (CEC). 2015, p. 2966–2972. DOI:
10.1109/CEC.2015.7257258.

[23] Bołt, W., Bołt, A., Wolnik, B., Baetens, J. M. and De Baets, B. A statistical
approach to the identification of diploid cellular automata based on incomplete
observations. Biosystems. 2019, vol. 186, p. 103976. ISSN 0303-2647.

[24] Bull, L., Lawson, I., Adamatzky, A. and DeLacyCostello, B. Towards
Predicting Spatial Complexity: A Learning Classifier System Approach to the
Identification of Cellular Automata. In: The 2005 IEEE Congress on Evolutionary
Computation (CEC 2005). IEEE Computer Society, 2005, p. 136–141.

[25] Byari, M., Bernoussi, A., Amharref, M. and Ouardouz, M. A 3D Cellular
Automata Approach for the Wind Flow Modeling. Journal of Cellular Automata.
2022, vol. 16, 3–4, p. 213–237.

[26] Byl, J. Self-reproduction in small cellular automata. Physica D: Nonlinear
Phenomena. 1989, vol. 34, 1–2, p. 295–299.

[27] Cagigas Muñiz, D., Rio, F. Diaz-del, López Torres, M., Jiménez Morales, F.
and Guisado, J. L. Developing Efficient Discrete Simulations on Multicore and
GPU Architectures. Electronics. january 2020, vol. 9, p. 189.

[28] Cagigas Muñiz, D., Rio, F. D. del, Sevillano Ramos, J. L. and Guisado
Lizar, J.-L. Efficient simulation execution of cellular automata on GPU.
Simulation Modelling Practice and Theory. 2022, vol. 118. ISSN 1569-190X.

[29] Cenek, M. and Mitchell, M. Evolving Cellular Automata. In: Meyers, R. A.,
ed. Computational Complexity: Theory, Techniques, and Applications. New York,
NY: Springer New York, 2012, p. 1043–1052.

[30] Chakraborty, S., Kundu, S. and Chowdhury, D. R. Image Encryption with
Parallel Evolution of 2-D Cellular Automata. In: Giri, D., Raymond Choo, K.-K.,
Ponnusamy, S., Meng, W., Akleylek, S. et al., ed. Proceedings of the Seventh
International Conference on Mathematics and Computing. Singapore: Springer
Singapore, 2022, p. 63–78.

[31] Chowdhury, D., Gupta, I. and Chaudhuri, P. CA-based byte error-correcting
code. IEEE Transactions on Computers. 1995, vol. 44, no. 3, p. 371–382.

[32] Cook, M. Universality in Elementary Cellular Automata. Complex Systems.
Complex Systems Publications, Inc. 2004, vol. 15, no. 1, p. 1–40.

[33] Das, A. K. and Chattaraj, U. Cellular Automata Model for Lane Changing
Activity. International Journal of Intelligent Transportation Systems Research.
2022, vol. 20, p. 446–455. ISSN 1868-8659.

31

[34] Das, S. and Roy Chowdhury, D. CASTREAM: A New Stream Cipher Suitable
for Both Hardware and Software. In: Sirakoulis, G. C. and Bandini, S.,
ed. Cellular Automata ACRI 2012. Lecture Notes in Computer Science, vol 7495.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2012, p. 601–610.

[35] Dennunzio, A., Formenti, E. and Kůrka, P. Cellular Automata Dynamical
Systems. In: Rozenberg, G., Bäck, T. and Kok, J. N., ed. Handbook of Natural
Computing. Springer Berlin Heidelberg, 2012, p. 25–75.

[36] Dewdney, A. K. Computer Recreations. Scientific American. Scientific American,
a division of Nature America, Inc. 1990, vol. 262, no. 1, p. 146–149.

[37] Elmenreich, W. and Fehérvári, I. Evolving Self-organizing Cellular Automata
Based on Neural Network Genotypes. In: Proc. of the 5th International Conference
on Self-organizing Systems. Springer, 2011, p. 16–25.

[38] Enescu, A., Dumitru, D., Andreica, A. and Dioşan, L. Unsupervised Edge
Detector based on Evolved Cellular Automata. Procedia Computer Science. 2020,
vol. 176, p. 470–479. ISSN 1877-0509. Knowledge-Based and Intelligent Information
& Engineering Systems: Proceedings of the 24th International Conference KES2020.

[39] Farner, J. J., Weydahl, H., Jahren, R., Ramstad, O. H., Nichele, S. et al.
Evolving spiking neuron cellular automata and networks to emulate in vitro
neuronal activity. In: 2021 IEEE Symposium Series on Computational Intelligence
(SSCI). IEEE, 2021.

[40] Fatès, N. A Guided Tour of Asynchronous Cellular Automata. Journal of Cellular
Automata. 2014, vol. 9, 5-6, p. 387–416.

[41] Fatès, N. Asynchronous Cellular Automata. In: Adamatzky, A., ed. Cellular
Automata: A Volume in the Encyclopedia of Complexity and Systems Science,
Second Edition. New York, NY: Springer US, 2018, p. 73–92.

[42] Formenti, E. and Paquelin, J.-L. High Order Cellular Automata for Edge
Detection: A Preliminary Study. In: Gwizdałła, T. M., Manzoni, L.,
Sirakoulis, G. C., Bandini, S. and Podlaski, K., ed. Cellular Automata ACRI
2020. Lecture Notes in Computer Science, vol 12599. Cham: Springer International
Publishing, 2021, p. 80–89.

[43] Fraga, L. M., Oliveira, G. M. B. de and Martins, L. G. A. Multistage
Evolutionary Strategies for Adjusting a Cellular Automata-based Epidemiological
Model. In: 2021 IEEE Congress on Evolutionary Computation (CEC). IEEE, 2021,
p. 466–473.

[44] Gadouleau, M., Mariot, L. and Picek, S. Bent Functions from Cellular
Automata [Cryptology ePrint Archive, Paper 2020/1272]. 2020.

[45] Gardner, M. Mathematical Games: The Fantastic Combinations of John
Conway’s New Solitaire Game “Life”. Scientific American. 1970, vol. 223, October
1970, p. 120–123.

32

[46] Gerakakis, I., Gavriilidis, P., Dourvas, N. I., Georgoudas, I. G., Trunfio,
G. A. et al. Accelerating fuzzy cellular automata for modeling crowd dynamics.
Journal of Computational Science. 2019, vol. 32, p. 125–140. ISSN 1877-7503.

[47] Ghosh, S., Sengupta, A., Saha, D. and Chowdhury, D. R. A Scalable Method
for Constructing Non-linear Cellular Automata with Period 2𝑛 − 1. In: Wąs, J.,
Sirakoulis, G. C. and Bandini, S., ed. Cellular Automata ACRI 2014. Lecture
Notes in Computer Science, vol 8751. Cham: Springer International Publishing,
2014, p. 65–74.

[48] Girau, B. and Vlassopoulos, N. Evolution of 2-Dimensional Cellular Automata
as Pseudo-random Number Generators. In: Sirakoulis, G. C. and Bandini, S.,
ed. Cellular Automata ACRI 2012. Lecture Notes in Computer Science, vol 7495.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2012, p. 611–622.

[49] Gorrini, A., Crociani, L., Vizzari, G. and Bandini, S. Cumulative Mean
Crowding and Pedestrian Crowds: A Cellular Automata Model. In: Mauri, G., El
Yacoubi, S., Dennunzio, A., Nishinari, K. and Manzoni, L., ed. Cellular
Automata ACRI 2018. Lecture Notes in Computer Science, vol 11115. Cham:
Springer International Publishing, 2018, p. 481–491.

[50] Guidolin, M., Chen, A. S., Ghimire, B., Keedwell, E. C., Djordjevic, S. et al.
A weighted cellular automata 2D inundation model for rapid flood analysis.
Environmental Modeling and Software. 2016, vol. 84, p. 378–394.

[51] Gwizdałła, T. M., Manzoni, L., Sirakoulis, G. C., Bandini, S.
and Podlaskil, K. (eds.) 14th International Conference on Cellular Automata for
Research and Industry, ACRI 2020, Lodz, Poland, December 2–4, 2020, Proceedings,
LNCS vol. 12599. Cham: Springer, 2021.

[52] Hassan, Y. Fractional integral model in cellular automata embedded for biometric
recognition. ICIC Express Letters. june 2018, vol. 12, p. 607–614.

[53] Hazari, R., Kundu, S., Bhardwaj, M. and Das, S. ECA 184 can implement any
logic circuits. Journal of Cellular Automata. january 2018, vol. 13, p. 359–371.

[54] Heaton, J. Evolving Continuous Cellular Automata for Aesthetic Objectives.
Genetic Programming and Evolvable Machines. USA: Kluwer Academic Publishers.
2019, vol. 20, no. 1, p. 93–125. ISSN 1389-2576.

[55] Hedlund, G. A. Compact CA-Based Single Byte Error Correcting Codec.
Mathematical systems theory. 1969, vol. 3, p. 320–375. ISSN 1432-4350.

[56] Hess, K. Nano-Structures, Quantum Computing and Cellular Automata. Journal
of Computational and Theoretical Nanoscience. 2011, vol. 8, no. 6.

[57] Ilachinski, A. Cellular Automata: A Discrete Universe. World Scientific, 2001.

[58] Ishibuchi, H., Nozaki, K. and Yamamoto, N. Selecting fuzzy rules by genetic
algorithm for classification problems. In: [Proceedings 1993] Second IEEE
International Conference on Fuzzy Systems. 1993, p. 1119–1124 vol.2.

33

[59] Ishida, T. and Inokuchi, S. Limit Cycle for Composited Cellar Automata. In:
Sirakoulis, G. C. and Bandini, S., ed. Cellular Automata ACRI 2012. Lecture
Notes in Computer Science, vol 7495. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2012, p. 32–41.

[60] Isokawa, T., Peper, F., Ono, K. and Matsui, N. A universal Brownian cellular
automaton with 3 states and 2 rules. Natural Computing. 2018, vol. 17, p. 499–509.
ISSN 1572-9796.

[61] Jellouli, O., Bernoussi, A., Amharref, M. and Ouardouz, M. Modeling of
Wind Flow and Its Impact on Forest Fire Spread: Cellular Automata Approach. In:
El Yacoubi, S., Wąs, J. and Bandini, S., ed. Cellular Automata ACRI 2016.
Lecture Notes in Computer Science, vol 9863. Cham: Springer International
Publishing, 2016, p. 269–279.

[62] John, A., Nandu, B. C., Ajesh, A. and Jose, J. PENTAVIUM: Potent
Trivium-Like Stream Cipher Using Higher Radii Cellular Automata. In:
Gwizdałła, T. M., Manzoni, L., Sirakoulis, G. C., Bandini, S. and Podlaski,
K., ed. Cellular Automata ACRI 2020. Lecture Notes in Computer Science, vol
12599. Cham: Springer International Publishing, 2021, p. 90–100.

[63] Jose, J., Das, S. and Chowdhury, D. R. Inapplicability of Fault Attacks against
Trivium on a Cellular Automata Based Stream Cipher. In: Wąs, J., Sirakoulis,
G. C. and Bandini, S., ed. Cellular Automata ACRI 2014. Lecture Notes in
Computer Science, vol 8751. Cham: Springer International Publishing, 2014,
p. 427–436.

[64] Kamilya, S., Das, S. and Sikdar, B. K. Simulation of Non-uniform Cellular
Automata by Classical Cellular Automata and Its Application in Embedded
Systems. Journal of Cellular Automata. 2021, vol. 16, 1–2, p. 61–86.

[65] Korček, P., Sekanina, L. and Fučík, O. Advanced Approach to Calibration of
Traffic Microsimulation Using Travel Times. Journal of Cellular Automata. Old
City Publishing, Inc. 2013, vol. 8, no. 6, p. 457–467.

[66] Kutrib, M. and Malcher, A. One-dimensional pattern generation by cellular
automata. Natural Computing. 2022, vol. 2022. ISSN 1572-9796.

[67] Kyparissas, N. and Dollas, A. Large-Scale Cellular Automata on FPGAs: A
New Generic Architecture and a Framework. ACM Trans. Reconfigurable Technol.
Syst. New York, NY, USA: Association for Computing Machinery. 2020, vol. 14,
no. 1. ISSN 1936-7406.

[68] Lakra, R., John, A. and Jose, J. CARPenter: A Cellular Automata Based
Resilient Pentavalent Stream Cipher. In: Mauri, G., El Yacoubi, S., Dennunzio,
A., Nishinari, K. and Manzoni, L., ed. Cellular Automata ACRI 2018. Lecture
Notes in Computer Science, vol 11115. Cham: Springer International Publishing,
2018, p. 352–363.

[69] Land, M. and Belew, R. K. No Perfect Two-State Cellular Automata for Density
Classification Exists. Physical Review Letters. American Physical Society. 1995,
vol. 74, p. 5148–5150.

34

[70] Langton, C. G. Self-Reproduction in Cellular Automata. Physica D: Nonlinear
Phenomena. 1984, vol. 10, 1–2, p. 135–144.

[71] Langton, C. G. Studying artificial life with cellular automata. Physica D:
Nonlinear Phenomena. 1986, vol. 22, 1–3, p. 120–149.

[72] Liu, Y., Batty, M., Wang, S. and Corcoran, J. Modelling urban change with
cellular automata: Contemporary issues and future research directions. Progress in
Human Geography. 2021, vol. 45, no. 1.

[73] Lohn, J. and Reggia, J. Discovery of self-replicating structures using a genetic
algorithm. In: Proceedings of 1995 IEEE International Conference on Evolutionary
Computation. 1995, vol. 2, p. 678–683 vol.2.

[74] Lohn, J. and Reggia, J. Automatic discovery of self-replicating structures in
cellular automata. IEEE Transactions on Evolutionary Computation. 1997, vol. 1,
no. 3, p. 165–178.

[75] Maeda, K.-I. and Sakama, C. Identifying Cellular Automata Rules. Journal of
Cellular Automata. Old City Publishing. 2007, vol. 2, no. 1, p. 1–20.

[76] Mariot, L., Picek, S., Jakobovic, D. and Leporati, A. Evolutionary algorithms
for designing reversible cellular automata. Genetic Programming and Evolvable
Machines. Kluwer Academic Publishers. 2021, vol. 2021, p. 429–461.

[77] Mariot, L., Saletta, M., Leporati, A. and Manzoni, L. Exploring Semi-bent
Boolean Functions Arising from Cellular Automata. In: Gwizdałła, T. M.,
Manzoni, L., Sirakoulis, G. C., Bandini, S. and Podlaski, K., ed. Cellular
Automata ACRI 2020. Lecture Notes in Computer Science, vol 12599. Cham:
Springer International Publishing, 2021, p. 56–66.

[78] Mauri, G., Yacoubi, S. E., Dennunzio, A., Nishinari, K. and Manzoni, L.
(eds.) 13th International Conference on Cellular Automata for Research and
Industry, ACRI 2018, Como, Italy, September 17–21, 2018, Proceedings, LNCS vol.
11115. Cham: Springer, 2018.

[79] Mitchell, M. Computation in Cellular Automata: A Selected Review.
In: Non-Standard Computation. John Wiley & Sons, 1998, chap. 4, p. 95–140. ISBN
9783527602964.

[80] Mitchell, M., Crutchfield, J. and Das, R. Evolving Cellular Automata with
Genetic Algorithms: A Review of Recent Work. First Int. Conf. on Evolutionary
Computation and Its Applications. may 1996, vol. 1.

[81] Mitsopoulou, M., Dourvas, N., Georgoudas, I. G. and Sirakoulis, G. C.
Cellular Automata Model for Crowd Behavior Management in Airports. In:
Wyrzykowski, R., Deelman, E., Dongarra, J. and Karczewski, K.,
ed. Parallel Processing and Applied Mathematics PPAM 2019. Lecture Notes in
Computer Science, vol 12044. Cham: Springer International Publishing, 2020,
p. 445–456.

35

[82] Mitsopoulou, M., Dourvas, N. I., Sirakoulis, G. C. and Nishinari, K. Spatial
games and memory effects on crowd evacuation behavior with Cellular Automata.
Journal of Computational Science. 2019, vol. 32, p. 87–98. ISSN 1877-7503.

[83] Mordvintsev, A., Randazzo, E. and Fouts, C. Growing Isotropic Neural
Cellular Automata. arXiv, 2022. DOI: 10.48550/ARXIV.2205.01681. Available at:
https://arxiv.org/abs/2205.01681.

[84] Mordvintsev, A., Randazzo, E., Niklasson, E. and Levin, M. Growing Neural
Cellular Automata. Distill. 2020. DOI: 10.23915/distill.00023.
https://distill.pub/2020/growing-ca. Available at:
https://distill.pub/2020/growing-ca/.

[85] Morita, K. Universality of 8-State Reversible and Conservative Triangular
Partition ed Cellular Automata. In: El Yacoubi, S., Wąs, J. and Bandini, S.,
ed. Cellular Automata ACRI 2018. Lecture Notes in Computer Science, vol 9863.
Cham: Springer International Publishing, 2016, p. 45–54.

[86] Naskar, N., Adak, S., Maji, P. and Das, S. Synthesis of Non-uniform Cellular
Automata Having only Point Attractors. In: Sirakoulis, G. C. and Bandini, S.,
ed. Cellular Automata ACRI 2014. Lecture Notes in Computer Science, vol 8751.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2014, p. 105–114.

[87] Nehaniv, C. Asynchronous Automata Networks Can Emulate any Synchronous
Automata Network. International Journal of Algebra and Computation (IJAC).
october 2004, vol. 14, p. 719–739.

[88] Nehaniv, C. L. Evolution in Asynchronous Cellular Automata. In: Proceedings of
the Eighth International Conference on Artificial Life. Cambridge, MA, USA: MIT
Press, 2002, p. 65–73. ICAL 2003.

[89] Neumann, J. von. The Theory of Self-Reproducing Automata. A. W. Burks (ed.),
University of Illinois Press, 1966.

[90] Neumann, J. von and Kurzweil, R. The Computer and the Brain, 3rd ed. Yale
University Press, 2012.

[91] Ninagawa, S. and Martínez, G. J. Power Spectral Analysis of the Computation
Process by Rule 110. In: Wąs, J., Sirakoulis, G. C. and Bandini, S., ed. Cellular
Automata ACRI 2014. Lecture Notes in Computer Science, vol 8751. Cham:
Springer International Publishing, 2014, p. 45–54.

[92] Ohi, F. and Ichikawa, T. Confliction-Like Dynamics of Rule 20 ECA of Wolfram
Class II. In: Sirakoulis, G. C. and Bandini, S., ed. Cellular Automata ACRI
2012. Lecture Notes in Computer Science, vol 7495. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2012, p. 73–82.

[93] Pan, Z. and Reggia, J. Evolutionary Discovery of Arbitrary Self-replicating
Structures. In: Sunderam, V. S., Albada, G. D. van, Sloot, P. M. A.
and Dongarra, J. J., ed. Computational Science – ICCS 2005. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2005, p. 404–411.

36

https://arxiv.org/abs/2205.01681
https://distill.pub/2020/growing-ca/

[94] Pan, Z. and Reggia, J. A. Artificial Evolution of Arbitrary Self-Replicating
Structures in Cellular Spaces. In: Kroc, J., Sloot, P. M. and Hoekstra, A. G.,
ed. Simulating Complex Systems by Cellular Automata. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2010, p. 193–216.

[95] Piwonska, A., Seredynski, F. and Szaban, M. Searching Cellular Automata
Rules for Solving Two-Dimensional Binary Classification Problem. In: Sirakoulis,
G. C. and Bandini, S., ed. Cellular Automata. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2012, p. 121–130.

[96] Rallis, K., Moysidis, S. and Karafyllidis, I. G. Implementation of Cellular
Automata Using Graphene Nanoribbons with Magnetic Contacts. In: Gwizdałła,
T. M., Manzoni, L., Sirakoulis, G. C., Bandini, S. and Podlaski, K.,
ed. Cellular Automata ACRI 2020. Lecture Notes in Computer Science, vol 12599.
Cham: Springer International Publishing, 2021, p. 169–176.

[97] Reggia, J. A., Armentrout, S. L., Chou, H.-H. and Peng, Y. Simple Systems
That Exhibit Self-Directed Replication. Science. 1993, vol. 259, no. 5099,
p. 1282–1287.

[98] Rendell, P. A Universal Turing Machine in Conway’s Game of Life. In: 2011
International Conference on High Performance Computing and Simulation (HPCS).
2011, p. 764–772.

[99] Rendell, P. A Fully Universal Turing Machine in Conway’s Game of Life. Journal
of Cellular Automata. 2013, vol. 9, 1–2, p. 19–358.

[100] Rhodes, A. D. Evolving Order and Chaos: Comparing Particle Swarm
Optimization and Genetic Algorithms for Global Coordination of Cellular
Automata. In: 2020 IEEE Congress on Evolutionary Computation (CEC). IEEE,
2020.

[101] Richard, G. On the Synchronisation Problem over Cellular Automata. In:
Vollmer, H. and Vallée, B., ed. 34th Symposium on Theoretical Aspects of
Computer Science, STACS 2017, March 8-11, 2017, Hannover, Germany. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, 2017, vol. 66, p. 54:1–54:13. LIPIcs.

[102] Rosin, P., Adamatzky, A. and Sun, X. (eds.) Cellular Automata in Image
Processing and Geometry. Emergence, Complexity and Computation series, vol. 10.
Cham: Springer International Publishing Switzerland, 2014.

[103] Rosin, P. and Sun, X. Cellular Automata as a Tool for Image Processing.
In: Emerging Topics in Computer Vision and its Applications. September 2011,
p. 233–251. ISBN 978-981-4340-99-1.

[104] Rosin, P. L. and Sun, X. Cellular Automata as a Tool for Image Processing.
In: Emerging Topics in Computer Vision and its Applications. World Scientific,
p. 233–251.

[105] Roy, S. and Adak, S. Asynchronous Cellular Automata as Randomness Enhancer.
In: Das, S. and Martinez, G. J., ed. Proceedings of First Asian Symposium on
Cellular Automata Technology. Singapore: Springer Nature Singapore, 2022,
p. 139–151.

37

[106] Roy, S. and Das, S. Asynchronous cellular automata that hide some of the
configurations during evolution. International Journal of Modern Physics C.
december 2020, vol. 32.

[107] Ruivo, E. L., Balbi, P. P. and Perrot, K. An asynchronous solution to the
synchronisation problem for binary one-dimensional cellular automata. Physica D:
Nonlinear Phenomena. 2020, vol. 413. ISSN 0167-2789.

[108] Sahin, U., Uguz, S. and Sahin, F. Salt and pepper noise filtering with
fuzzy-cellular automata. Computers & Electrical Engineering. 2014, vol. 40, no. 1,
p. 59–69. ISSN 0045-7906.

[109] Samanta, J., Bhaumik, J. and Barman, S. Compact CA-Based Single Byte Error
Correcting Codec. IEEE Transactions on Computers. Los Alamitos, CA, USA:
IEEE Computer Society. 2018, vol. 67, no. 02, p. 291–298. ISSN 1557-9956.

[110] Sapin, E., Adamatzky, A., Collet, P. and Bull, L. Stochastic automated search
methods in cellular automata: the discovery of tens of thousands of glider guns.
Natural Computing. 2010, vol. 9, no. 3, p. 513–543.

[111] Sapin, E. Gliders and Glider Guns Discovery in Cellular Automata. In: A.
Adamatzky (ed.), Game of Life Cellular Automata. Springer, 2010, p. 135–165.

[112] Sapin, E., Bailleux, O. and Chabrier, J.-J. Research of Complex Forms in
Cellular Automata by Evolutionary Algorithms. In: Liardet, P., Collet, P.,
Fonlupt, C., Lutton, E. and Schoenauer, M., ed. Artificial Evolution. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2004, p. 357–367.

[113] Sapin, E. and Bull, L. Searching for Glider Guns in Cellular Automata: Exploring
Evolutionary and Other Techniques. In: Monmarché, N., Talbi, E.-G., Collet,
P., Schoenauer, M. and Lutton, E., ed. Artificial Evolution. Springer Berlin
Heidelberg, 2008, vol. 4926, p. 255–265. Lecture Notes in Computer Science.

[114] Sarkar, A., Mukherjee, A. and Das, S. Reversibility in Asynchronous Cellular
Automata. Complex Systems. 2012, vol. 21, no. 1, p. 71–84.

[115] Sato, S. and Kanoh, H. Evolutionary design of edge detector using rule-changing
Cellular automata. In: 2010 Second World Congress on Nature and Biologically
Inspired Computing (NaBIC). IEEE, 2010, p. 60–65.

[116] Sipper, M. Evolution of Parallel Cellular Machines – The Cellular Programming
Approach, Lecture Notes in Computer Science, Vol. 1194. Berlin: Springer, 1997.

[117] Sipper, M., Goeke, M., Mange, D., Stauffer, A., Sanchez, E. et al. The firefly
machine: online evolware. In: Evolutionary Computation, 1997., IEEE International
Conference on. 1997, p. 181–186.

[118] Sirakoulis, G. C. and Bandini, S. (eds.) 10th International Conference on
Cellular Automata for Research and Industry, ACRI 2012, Santorini Island, Greece,
September 24-27, 2012, Proceedings, LNCS vol. 7495. Cham: Springer, 2012.

[119] Soto, J. M. G. and Wuensche, A. Logical Universality from a Minimal
Two-Dimensional Glider Gun. Complex Systems. 2018, vol. 27, no. 1.

38

[120] Souza, L. F., Filho, T. M. R. and Moret, M. A. Relating SARS-CoV-2 variants
using cellular automata imaging. Nature Scientific Reports. 2022, vol. 12.

[121] Suresh, A., Sundaranarayana, D. and Kamaleshwar, T. Iterative Refined
Noisy Pixel Restoration (IRNPR) Cellular Automaton Based Image Denoising
Methods for Biometric Images. European Journal of Molecular & Clinical Medicine.
2020, vol. 7, no. 6, p. 2524–2536. ISSN 2515-8260.

[122] Turney, P. D. Evolution of Autopoiesis and Multicellularity in the Game of Life.
Artificial Life. june 2021, vol. 27, no. 1, p. 26–43. ISSN 1064-5462.

[123] Žaloudek, L., Sekanina, L. and Šimek, V. GPU Accelerators for Evolvable
Cellular Automata. In: Computation World: Future Computing, Service
Computation, Adaptive, Content, Cognitive, Patterns. Institute of Electrical and
Electronics Engineers, 2009, p. 533–537.

[124] Žaloudek, L., Sekanina, L. and Šimek, V. Accelerating Cellular Automata
Evolution on Graphics Processing Units. International Journal on Advances in
Software. 2010, vol. 3, no. 1, p. 294–303. ISSN 1942-2628.

[125] Wimpenny, J. W. and Colasanti, R. A unifying hypothesis for the structure of
microbial biofilms based on cellular automaton models. FEMS Microbiology
Ecology. 1997, vol. 22, no. 1, p. 1–16.

[126] Wolfram, S. Cellular Automata and Complexity. Addison Wesley, 1994.

[127] Wolfram, S. A New Kind of Science. Champaign IL: Wolfram Media, 2002.

[128] Wąs, J., Sirakoulis, G. C. and Bandini, S. (eds.) 11th International Conference
on Cellular Automata for Research and Industry, ACRI 2014, Krakow, Poland,
September 22–25, 2014, Proceedings, LNCS vol. 8751. Cham: Springer, 2014.

[129] Yacoubi, S. E., Wąs, J. and Bandini, S. (eds.) 12th International Conference on
Cellular Automata for Research and Industry, ACRI 2018, Fez, Morocco, September
5–8, 2016, Proceedings, LNCS vol. 9863. Cham: Springer, 2016.

[130] Zaitsev, D. Simulating Cellular Automata by Infinite Petri Nets. Journal of
cellular automata. 2018, vol. 13, 1–2, p. 121–144.

[131] Zeng, J., Qian, Y., Yin, F., Zhu, L. and Xu, D. A multi-value cellular automata
model for multi-lane traffic flow under lagrange coordinate. Computational and
Mathematical Organization Theory. 2022, vol. 28, p. 178–192. ISSN 1572-9346.

[132] Zhao, Y. and Billings, S. A. The Identification of Cellular Automata. Journal of
Cellular Automata. Old City Publishing. 2007, vol. 2, no. 1, p. 47–65.

[133] Zhou, W.-H., Lee, J., Li, G.-L. and Imai, K. Embedding Game of Life into a
Simple Asynchronous Cellular Automaton. In: 2014 Second International
Symposium on Computing and Networking. 2014, p. 503–506.

39

Appendices – Paper Reprints

This part contains the main outcomes of the thesis – selected papers published by the
author presenting detailed studies of the issues mentioned in Section 4.

40

Appendix I

Evolution of Cellular Automata
Using Instruction-Based Approach

BIDLO Michal a VAŠÍČEK Zdeněk

In: 2012 IEEE World Congress on Computational Intelligence. CA: Institute of Electrical
and Electronics Engineers, 2012, pp. 1060-1067. ISBN 978-1-4673-1508-1.

M. Bidlo proposed the main idea, designed the experiments and wrote cca 75% of the
paper, Z. Vašíček contributed technically to the design and execution of the experiments,
processing the results and writing cca 25% of the paper.

41

Evolution of Cellular Automata
Using Instruction-Based Approach

Michal Bidlo
Brno University of Technology

Faculty of Information Technology
IT4Innovations Centre of Excellence

Božetěchova 2, 61266 Brno
Czech republic

Email: bidlom@fit.vutbr.cz

Zdenek Vasicek
Brno University of Technology

Faculty of Information Technology
IT4Innovations Centre of Excellence

Božetěchova 2, 61266 Brno
Czech republic

Email: vasicek@fit.vutbr.cz

Abstract—This paper introduces a method of encoding cellular
automata local transition function using an instruction-based
approach and their design by means of genetic algorithms. The
proposed method represents an indirect mapping between the
input combinations of states in the cellular neighborhood and
the next states of the cells during the development steps. In
this case the local transition function is described by a program
(algorithm) whose execution calculates the next cell states. The
objective of the program-based representation is to reduce the
length of the chromosome in case of the evolutionary design of
cellular automata. It will be shown that the instruction-based
development allows us to design complex cellular automata with
higher success rate than the conventional table-based method
especially for complex cellular automata with more than two cell
states. The case studies include the replication problem and the
problem of development of a given pattern from an initial seed.

Index Terms—Cellular automaton, development, replication,
evolutionary design.

I. INTRODUCTION

In the recent years cellular automata (CA) have been suc-
cessfully applied in many scientific areas. The development
of a cellular automaton usually represents a complex process
during which a non-trivial global behavior based only on local
cell interactions using simple rules may emerge [1]. However,
the design of a transition function according to which the CA
should develop to solve a given problem is a challenging task.
The problem is that the number of possible solutions grows
exponentially with the increasing number of cell states and
the size of the cellular neighborhood. Moreover, the process
of creating the transition function is less intuitive than the
traditional algorithm design because of local cell interactions
and parallel matter of the CA development. Therefore, non-
traditional approaches have often been applied, including
evolutionary algorithms.

The goal of this paper is to introduce an instruction-based
approach for the development of cellular automata. The main
idea is to represent the transition function by a program
(a sequence of instructions performing simple elementary
operations) rather than by a table specifying a new state of
a cell for all the possible combinations of states in the cellular
neighborhood. It will be shown that by using the instruction-
based approach the transition function for a given problem

may be designed in substantially shorter time and with higher
success rate in comparison with the conventional (table-based)
approach. The experiments performed to demonstrate the abil-
ity of the proposed approach consider the replication problem
and the development of a specified pattern in the cellular
automaton. The simple genetic algorithm will be utilized to
design the cellular automata.

The paper is organized as follows. The rest of this section
briefly introduces the basic principles of cellular automata
and summarizes the related work. In Section II the concept
of instruction-based development for cellular automata is
described. The setup of the evolutionary system utilized for
the experiments is stated in Section III. Overview of the
experimental results and discussion is proposed in Section IV.
Finally, Section V provides concluding remarks and possible
direction of future research.

A. Cellular Automata

Cellular automata, originally invented by Ulam and von
Neumann in 1966 [2], represent a mathematical model in-
tended to study the behavior of complex systems, especially
the questions of whether computers can self-replicate. Cellular
automata may also be considered as a biologically inspired
technique to model and simulate the cellular development.
A two-dimensional (2D) cellular automaton consists of a
regular grid of cells, each of which can occur in one state from
a finite set of states. The states are updated synchronously
in parallel according to a local transition function. The
synchronous update of all the cells of the CA is called a
developmental step. The next state of a cell depends on the
combination of states in the cellular neighborhood. In this
paper the cellular neighborhood will be considered as a 5-tuple
comprising the investigated cell and its immediate neighbor in
the north, south, east and west direction. The standard form
of the transition function defines next state of a given cell for
every possible combination of states in its neighborhood. Let
us denote sNsSsEsW sC → sCnew a rule of the transition
function, where sN , sS , sE , sW and sC represents the actual
state of the north, south, east, west and the central cell in the
cellular neighborhood respectively and sCnew denotes the next

U.S. Government work not protected by U.S. copyright

WCCI 2012 IEEE World Congress on Computational Intelligence
June, 10-15, 2012 - Brisbane, Australia IEEE CEC

Authorized licensed use limited to: Brno University of Technology. Downloaded on September 08,2022 at 16:24:09 UTC from IEEE Xplore. Restrictions apply.

Appendix I

42

state of the investigated (central) cell. This concept is referred
to as von Neumann’s cellular neighborhood consisting of 5
cells. Boundary conditions have been considered for a finite
size of the cellular grid. Typically zero boundary conditions
have been applied which means that the non-existing neighbors
of the cells at the grid boundary are considered as cells in state
0. Another case may involve cyclic boundary conditions, i.e.
the opposite cells at the grid boundary are considered to be
neighbors and then the 2D CA can be viewed as a toroid.
In case of uniform cellular automata the transition function
is identical for all the cells. In general, non-uniform CA may
have each cell driven by different transition function.

In this paper 2D uniform cellular automata with von Neu-
manns neighborhood and cyclic boundary conditions will be
considered.

B. Related Work

Cellular automata have been applied to solve many complex
problems in different areas. A detailed survey of the principles
and analysis of various types of cellular automata and their
applications is summarized in [1]. Sipper [3] investigated the
computational properties of cellular automata and proposed an
original evolution-based method called cellular programming
for the design of non-uniform cellular automata. He demon-
strated the success of this approach in solving some typical
problems related to the cellular automata, e.g. synchronization
task, ordering task or the random number generation. In the
recent years, scientists have been interested in the design
of cellular automata for solving different tasks using the
evolutionary algorithms.

Several works dealt with the replication problem in the
past as well as in the recent years. Many works have dealt
with the design and development of cellular automata or more
general cell-based systems (e.g. Random Boolean Networks
[4]). For example, Miller investigated the problem of evolving
a developmental program inside a cell to create multicellular
organisms of arbitrary sizes and characteristics. He presented
a system in which the organism organizes itself into a well
defined patterns of differentiated cell types (e.g. the French
flag) [5]. Kowaliw et al. proposed a simplified model of
biological embryogenesis instantiating a subset of 2D cellular
automata and a methodology for “growing” the cells into
agents utilizing only local interactions. His approach was
called Bluenome Developmental Model [6]. Tufte and Haddow
utilized a FPGA-based platform of Sblocks [7] for the online
evolution of digital circuits. The system actually implements
a cellular automaton whose development determines the func-
tions and interconnection of the Sblock cells in order to realize
a specified behavior [8]. The rules for the development of
the cellular automaton has been designed by evolutionary
algorithm. Considering the popular replication problem, prob-
ably the most known approach represents the Langton’s self-
replicating loops [9] that utilize special instructions encoded
in the cell states to determine the development steps of the
cellular automaton. In particular, the loop starts its replication
by creating a “construction arm” by means of which the new

copy of itself emerges. The instruction specified by the com-
binations of states in this arm determines the next step of the
replication process (including turns, loops closing and starting
the next replication process). Pan and Regia also studied the
replication in cellular automata [10]. However, they adopted a
uniform tree-based approach based on Genetic Programming
for representing both arbitrary cellular automata structures and
the rules that control the cell’s transitions. As the authors state
“There is no identifiable instruction sequence or construction
arm, the replicating structures generally translate and rotate
as they reproduce, and they divide via a fissionlike process
that involves highly parallel operations.” [10]. We found their
approach very inspirative because it actually introduces new
way of determining the states during the CA development.
However, we also felt that the method utilized to calculate
the transition function might be simplified substantially by
introducing elementary operations and suitable encoding with
respect to the form of the cellular neighborhood. As we
demonstrate, our approach is applicable on different problems
in two-dimensional cellular automata.

II. INSTRUCTION-BASED DEVELOPMENT FOR CELLULAR
AUTOMATA

The instruction-based development (IBD) was originally
introduced in [11] as an advanced generative genotype–
phenotype mapping in the evolutionary design. The main
goal was to provide an evolutionary system for the automatic
development of generic solutions for different problems. The
instruction-based approach demonstrated its ability to reduce
the search space allowing to develop (arbitrarily) large struc-
tures (instances) of digital circuits.

However, the concept of instructions also may be utilized
for effective representation of functions (similarly to Genetic
Programming for the evolution of computer programs [12]).
Cellular automata belong to the systems in which an efficient
calculation of the local transition function (determining the
process of their development) is essential to solve a given
problem. Conventionally the local transition function is rep-
resented by a table that specifies the next state of a cell for
all the possible combinations of states in its neighborhood. In
case of increasing the number of cell states the number of such
combinations grows exponentially and thus the representation
and design of the transition function becomes difficult. It may
me possible to specify implicit rules of the transition function
(e.g. for some combinations of states the new state of the cell
does not change) but the problem is how to determine the set of
implicit rules for a given task. Therefore, we will represent the
transition function by a program whose instructions perform
elementary or more complex operations over the cell states
of the cellular neighborhood and the next state is chosen
deterministically from this modified neigborhood. Whilst in
[11] the instructions were intended to manipulate the circuit
building blocks (i.e. to perform a construction process), in this
paper another instruction set has to be chosen. In particular,
the instructions will be devoted to the calculation over cell
states and other operations related to the cellular neighbor-

Authorized licensed use limited to: Brno University of Technology. Downloaded on September 08,2022 at 16:24:09 UTC from IEEE Xplore. Restrictions apply.

Appendix I

43

hood. The main idea is to demonstrate that the instruction-
based approach combined with evolutionary algorithms may
be widely applicable. In this paper the case studies include
some problems of cellular automata development, specifically
the replication problem and the development of a given pattern
from an initial seed. The objective is to show that if a suitable
set of instructions is utilized for the evolution of a program-
based transition function of a cellular automaton, then a given
behavior of the CA can be achieved with higher success rate in
comparison with the conventional table-based representation.

A. Operations on the cellular neighborhood

The goal of the IBD approach to cellular automata evolution
is to provide a technique for efficient updating the cell states
during the CA development with respect to the states of the
neighboring cells. The operations of the instructions have been
chosen with respect to the form of the cellular neighborhood.
The execution of the program allows to modify the states in
the cellular neighborhood and subsequently to determine the
next state of the investigated cell. The following development
algorithm will be considered for each cell of the CA:

1) Copy the cell states of the cellular neighborhood into a
temporary data structure whose form corresponds to the
cellular neighborhood.

2) Execute the program representing the transition function
whose instructions will modify the states in the tempo-
rary data structure.

3) Return the state of the central cell in the temporary data
structure as the next state – the result of the transition
function.

The set of instructions that may be utilized in the program
calculating the transition function is summarized in Table I.
As evident the instructions include operations that can modify
one or more cells in the neighborhood copy and the empty
operation allowing to alter the efficient length of the program
during the evolutionary process. Since the instructions operate
over the copy of the cellular neighborhood in a temporary
data structure, the process of calculation of the next state
of a cell does not influence the states of other cells during
a development step and therefore the next states of all the
cells can be determined in parallel which is a characteristic
feature of cellular automata. The instructions were chosen
with respect to general operations that are possible to perform
over cell states (i.e. logic and arithmetic operations over the
state values, transfer a cell state to a different cell in the
neighborhood, swapping the states of two neighbors etc.).
However, no advanced optimization of the instruction set has
been performed in this stage of research because the selection
of proper instructions for a given CA behavior represents a
difficult task and in many cases is a subject of experimental
work.

B. Properties of the Instruction-Based Transition Function

If an evolutionary algorithm is applied to design a CA, the
instruction-based approach is able to shorten the chromosome
substantially and therefore to reduce the search space. In fact,

TABLE I
THE SET OF INSTRUCTIONS UTILIZED FOR THE DEVELOPMENT OF

CELLULAR AUTOMATA. N [i1], N [i2] DENOTE THE CELL STATES FROM THE
NEIGHBORHOOD POSITIONS DETERMINED BY THE INSTRUCTION

ARGUMENTS i1, i2 , S REPRESENTS THE NUMBER OF CELL STATES AND
N,S,E,W AND C SPECIFIES THE CELL STATE IN THE NORTH, SOUTH,

EAST, WEST AND CENTRAL POSITION IN THE NEIGHBORHOOD
RESPECTIVELY.

Instruction Operation Description
AND N [i1] = N [i1] ∧N [i2] logic AND
OR N [i1] = N [i1] ∨N [i2] logic OR

XOR N [i1] = N [i1]⊕N [i2] logic XOR
NOT N [i1] = notN [i1] bitwise NOT
INV N [i1] = S −N [i1] inverse state
MIN N [i1] = min(N [i1], N [i2]) minimum
MAX N [i1] = max(N [i1], N [i2]) maximum
SET N [i1] = N [i2] replace
INC N [i1] = N [i1] + 1 increment
DEC N [i1] = N [i1]− 1 decrement
SWP N [i1] ↔ N [i2] swap
ROR WCE → EWC rotate right
ROL WCE → CEW rotate left
ROU UCS → CSU rotate up
ROD UCS → SUC rotate down
NOP no operation

the design of a CA consists of the evolution of its local
transition function.

For example, if a transition function ought to be evolved for
a CA working with 4 cell states (that is used in some of the
experiments presented in Section IV), then the fully defined
table-based transition function consists of 45 = 1024 integers
(it is the length of a chromosome representing the complete
table of the transition function). Therefore, there are in total
41024 = 3.2317 × 10616 different transition functions for this
CA which represents the search space of the evolutionary
algorithm. Consider that the IBD approach is utilized and
the goal is to evolve a program consisting of 10 instructions.
Moreover, assume that a single instruction consists of 3 inte-
gers (operation code and two arguments), there are 16 different
instructions (i.e. 16 different operation codes) and each of the
arguments can posses one of 5 different values. Then the length
of a chromosome is 10× 3 = 30 integers and the size of the
search space consists of (16 × 5 × 5)10 = 1.048576 × 1026

different programs which is substantially less in comparison
with the table-based representation.

As stated in the previous section, the program is executed
over a copy of the cellular neighborhood. Therefore, the next
states of all the cells can be calculated independently (in
parallel) as usual in common (synchronous) cellular automata.
Another important aspect of the IBD approach is that the
process of calculating the next state for a given cell is
deterministic (there is a specific combination of states in
the neighborhood copy which the program operates on, each
instruction of the program performs a deterministic operation
(function) modifying the states in the neighborhood and the
resulting value — next state — is always considered in a
specific cell of the neighborhood after executing the program).
Considering this feature, the instruction-based transition func-
tion can be deterministically transformed to a corresponding

Authorized licensed use limited to: Brno University of Technology. Downloaded on September 08,2022 at 16:24:09 UTC from IEEE Xplore. Restrictions apply.

Appendix I

44

table-based transition function without changing the nature of
cellular automata.

III. EVOLUTIONARY SYSTEM SETUP

The simple genetic algorithm (GA) was utilized for the
evolutionary design of the cellular automaton that exhibits the
specified behavior. For the comparison purposes we consider
the evolution of common table-based local transition function
as well as the program-based transition function as described
in the previous section. The table-based approach considers the
evolution of a complete transition function (i.e. to determine
a next state for all the possible combinations of states in
the cellular neighborhood). In case of the IBD approach a
program to be evolved consists of 10 instructions. This value
was determined experimentally in order to provide a sufficient
resources to calculate the next states. Of course, some of the
resulting solutions use NOP instructions so the effective length
of the program can be reduced. However, if shorter programs
ought be evolved, then the number of correct solutions in the
search space may be reduced and the success rate decreases.

In all the experiments, the population consists of 16 chro-
mosomes which are initialized randomly (with respect to the
correct range of each gene) at the beginning of evolution.
The chromosomes are selected by means of the tournament
operator with the base 4. The experiments showed that the
crossover operator is not suitable for this problem, thus only
the mutation operator is applied as follows. Two integers of
the chromosome are chosen randomly and their values are
mutated by generating new random values in the appropriate
range.

Each candidate CA is evaluated during 30 development
steps according to the transition function encoded in the
chromosome. The following subsections describe the specific
features of the evolutionary system with respect to the two
different approaches.

The initial state of the CA, the way of calculating the
fitness function and the number of generations of the evolution
depends on the problem to be solved and therefore their
description will be covered in Section IV.

The way of encoding the transition function in the genome
for the table-based and program-based representation and its
properties is described in the following subsections.

A. Table-Based Transition Function

In case of the table-based transition function the chromo-
some encodes the next states of a cell for all the possible
combinations of states in the cellular neighborhood. The index
of a given next state in the chromosome is specified implicitly
by means of the value expressed by the number representing
the combination of states in the cellular neighborhood. The
base of this number equals the number of possible cell
states. Therefore, if we consider the general form of the rule
sN sS sE sW sC → sCnew, only the part on the right of the
arrow are encoded in the chromosome. For example, if a cellu-
lar automaton ought to be evolved working with 2 different cell
states and von Neumann’s neighborhood consisting of 5 cells,

there are 25 rules of the local transition function. Consider the
rule 1 0 0 0 1 → 0. Since the combination of states 1 0 0 0 1
corresponds to the binary representation of value 17, the output
value (0) will be placed in the chromosome at the position 17.

B. Program-Based Transition Function

The program-based representation of the transition func-
tion is encoded in the chromosome as a finite sequence of
instructions from Table I. Each instruction is encoded as three
integers (operation code and two arguments) whose value
ranges depend on the number of instructions and the meaning
of their arguments. The main advantage of this approach is that
the length of the genome is independent on the number of cell
states and the size of the cellular neighborhood. Therefore the
search space can be reduced substantially.

IV. EXPERIMENTAL RESULTS AND DISCUSSION

The abilities of the proposed instruction-based develop-
ment approach introduced in the previous sections will be
demonstrated on two problems: (1) the replication problem
and (2) the problem of development of a given pattern from
a seed. The experimentsl results and discussion are given in
this section.

A. Replication Problem

The goal of the replication problem is to obtain a copy of
a given structure in a finite number of development steps. The
structure is represented by the initial state of the CA. The
genetic algorithm is applied to design a transition function
by means of which the CA develops so that there is a given
number of copies of the initial structure after a finite number
of development steps. The set of experiments performed in this
section considers searching for the transition function (in the
form of table and program) for the replication of structures of
different complexity and size. As noted in Section I-B there
are several approaches to the replication problem. Probably
the simplest technique able to replicate an arbitrary structure
is based on additive cellular automata rules [1]. This problem
can be viewed as a basis for investigating the abilities of the
proposed method (having a known solution, we may search for
the same or similar transition functions using the conventional
and proposed approach).

Fig. 1. Patterns considered in the experiments.

Five sets of experiments were performed, each of which
contained 100 independent runs of the GA. The first set
considered the replication of a simple grid structure (Figure
1a), the second was devoted to the replication of French flag
pattern (Figure 1b), the third set is the replication of Czech flag

Authorized licensed use limited to: Brno University of Technology. Downloaded on September 08,2022 at 16:24:09 UTC from IEEE Xplore. Restrictions apply.

Appendix I

45

best_fitness = 0 # fitness out of all development steps
const REPLICS = the num. of required copies of the given pattern

initialize the CA by the pattern to be replicated
FOR int step = 1 TO DEVEL_STEPS DO
{

fitness = 0 # fitness in one development step
replicas_cnt = 0 # num. of replicas found in a devel. step
ca_step(ca1, genome->prog);

FOR row = 0 TO CA_HEIGHT - PATTERN_HEIGHT DO
{

FOR col = 0 TO CA_WIDTH - PATTERN_WIDTH DO
{

partial_fitness = 0 # fitness in specific part of CA
FOR pr = 0 TO PATTERN_HEIGHT - 1 DO

FOR pc = 0 TO PATTERN_WIDTH - 1 DO
IF ca[row+pr][col+pc] == pattern[pr][pc] THEN

partial_fitness = partial_fitness + 1
save the partial_fitness value
IF found perfect pattern at position (row, col) THEN

replicas_cnt = replicas_cnt + 1
}

}
fit = sum of the REPLICS best saved partial fits
add a bonus if the solution produces more replicas
fit = fit + replicas_cnt * PATTERN_HEIGHT * PATTERN_WIDTH

save the best fitness out of all development steps
IF fitness > best_fitness THEN

best_fitness = fitness
}

RETURN best_fitness

Fig. 2. Calculating the fitness function for the replication problem. The
pattern dimensions PATTERN WIDTH and PATTERN HEIGHT
also include a border consisting of a single line of inactive cells (cells in state
0) because we require the replicated structures to be separated each other.

(Figure 1c), the fourth and fifth replicate WCCI abbreviation
(Figure 1d), where at least 3 and 4 copies are required
respectively. The evolution was executed independently for the
design of the conventional table-based transition function and
the program-based representation. The algorithm calculating
the fitness function is shown in Figure 2 and its principle can
be described as follows. After each development step, every
part of the CA is explored by comparing the states of the given
pattern with the appropriate cell states at the corresponding
positions in the CA. If a state match is detected, then a partial
fitness value associated with the specific part of the CA is
increased by one. After exploring the part of the CA the
resulting partial fitness is saved into a temporary array. If the
partial fitness equals the number of cells the replicating pattern
is composed of, then the value of a replicas counter variable
is increased by one. After exploring all the parts of the CA,
the replicas counter contains the number of perfectly matched
patterns (i.e. the number of replicas that emerged after a given
development step). The fitness value of the given development
step is calculated as the sum of the REPLICS best partial
fitness values, where REPLICS represents the number of
required copies of the (initial) pattern to be replicated. If the
replicas counter detected at least one replicated pattern, then
the fitness value is increased appropriately to prefer solutions
that are able to create perfect replicas. As a final fitness value
of the CA (i.e. the fitness of the candidate transition function)
is considered the highest fitness from all the development steps
during which the CA was evaluated.

The results of the replication experiments are summarized
in Table II. For each pattern the success rate and the average
number of generations needed to find a perfect solution were
measured. The proposed program-based transition function
overcomes the conventional approach in all presented cases,

TABLE II
STATISTICAL RESULTS FOR THE REPLICATION PROBLEM CONSIDERING

THE INSTRUCTION-BASED AND TABLE-BASED DEVELOPMENT. THE GRID
STRUCTURES (FIG. 1A) WERE DEVELOPED IN CA WITH 2 CELL STATES,
THE OTHER PATTERNS CONSIDERED 4 CELL STATES. IF NOT EXPLICITLY

SPECIFIED, 3 REPLICAS WERE REQUIRED.

Instruction-based development
Number of generations

Pattern Succ avg. std. dev. min. median max.
[%]

Fig. 1a 100.0 23 19.4 1 18 80
Fig. 1b 100.0 22 16.4 1 19 80
Fig. 1c 100.0 22 21.4 1 18 112
Fig. 1d 100.0 23 18.1 1 18 81
Fig. 1d (4 repl.) 100.0 55 43.6 2 47 256

Table-based development
Fig. 1a 9.0 5634 2490.2 1500 5250 9052

especially for more complex patterns. In case of the grid
structure replication a perfect program was evolved in all
runs, whilst the table-based approach succeeded only in 9%
of evolutionary runs. It is important to note that the table-
based approach did not provide any solution to the remaining
patterns considered in the experiments. We assume that this
result is caused by the cardinality of the search space that
is substantially higher for the table-based representation and
the evolution is not able to explore it effectively. Another
aspect of this issue is probably based on the operations needed
to express the local transition function. In case of the table-
based representation, the transition function actually needs to
be created at a low level (i.e. for every combination of states
in the cellular neighborhood a new state has to be specified).
However, if the instruction-based approach is considered, the
new state is calculated using higher-level operations (like in a
common programming language), the corresponding program
can be shorter in comparison with the complete table which
leads to a reduction of the search space and the evolution
is able to explore it more effectively. We determined that
several different programs were evolved that produces at least
3 perfect replicas of the given pattern. Although we required 3
replicas, the evolution found in some case a solution providing
4 replicas of the structure.

An example of evolved solution is shown in Figure 3.
In addition, the table-based transition function produced two
solutions for 3 replicas that exhibit a couple of extra active
cells between the replicated patterns (Figure 4). This behavior
was not observed in the program-based approach (only pure
replicated structures were generated). It is probably caused
by the fact that the evolution of the table-based representation
directly allows to alter each single output state of the transition
function whilst the program-based approach actually repre-
sents an indirect mapping between the input combinations of
states in the cellular neighborhood and the output states. This
feature may be considered as both advantage and disadvantage
of the program-based approach. The benefit lies in the fact that
the program-based solutions produce perfect outputs without

Authorized licensed use limited to: Brno University of Technology. Downloaded on September 08,2022 at 16:24:09 UTC from IEEE Xplore. Restrictions apply.

Appendix I

46

Fig. 3. Development of evolved cellular automaton for the replication of a grid structure.

Fig. 4. Example of replication of a simple grid structures with additional active cells.

undesirable active cells. On the other hand the drawback is that
more complex transition functions require (as expected) more
instructions in the program. Nevertheless the evolution is able
to tackle that very efficiently because the proposed approach
solved all the considered problems with substantially higher
success rate and lower computational effort in comparison with
the table-based transition function.

Another examples illustrating the replication of more com-
plex irregular patterns (the Czech flag and a WCCI pattern) are
illustrated in Figure 5 and 6. Both of these automata operate
with 4 cell states.

The evolved transition functions exhibit the features of
additive rules described in [1]. Several different variants were
obtained differing in the number and direction of replicas with
respect to the position of the initial structure. In addition to
the pattern used during the evolution, the resulting programs
are in many cases able to replicate different structures which
confirms the properties of the replicators mentioned in [1].

B. Pattern Development Problem

Another issue that was investigated in our experiments is the
problem of the development of a given pattern in a cellular
automaton from a seed. It means that the initial state of the
CA is represented only by the central cell in non-zero state,
all the other cells possess the state 0. During the evolutionary
process the CA is examined if it matches with the specified
pattern after each development step. In these experiments
the dimensions of the cellular automaton correspond to the
dimensions of the pattern that ought to be developed. The
goal is to design a transition function (again, in the form of
table and program) according to which the CA develops from
the seed into the given pattern.

Four sets of experiments were performed. The first pair of
experiments considered the development of a grid structure
consisting of 5x5 cells (Figure 1a)) and 9x9 cells (Figure 1e).
In the second pair of experiments French flag ought to be
developed (Figure 1b) with the dimensions 6x6 and 9x9 cells.
The candidate solutions are evaluated as follows. A partial
fitness value is calculated after each development step as the

number of cells of the CA whose state equals the state of the
corresponding cell of the target pattern. The fitness function
of a candidate transition function is evaluated as the maximum
of the partial fitness values from all the development steps.

TABLE III
STATISTICAL RESULTS FOR THE PATTERN DEVELOPMENT PROBLEM

CONSIDERING THE INSTRUCTION-BASED AND TABLE-BASED APPROACH.
THE GRID STRUCTURES (FIG. 1E) WERE DEVELOPED IN CA WITH 2 CELL

STATES, THE OTHER PATTERNS CONSIDERED 4 CELL STATES.

Instruction-based development
Number of generations

Pattern Succ. avg. std. dev. min. median max.
[%]

Fig. 1a 100.0 14358 16711.5 143 7543 86445
Fig. 1e 60.0 32504 23387.7 2888 24828 89228
Fig. 1b 79.0 37925 27117.1 1211 31991 97717
French9x9 23.0 62095 21979.8 18784 62143 90233

Table-based development
Fig. 1a 100.0 402 757.3 19 118 4075
Fig. 1e 76.0 24331 26200.6 118 16353 96980
Fig. 1b 54.0 28896 26264.1 475 22028 92948
French9x9 1.0 30614 0.0 30614 30614 30614

Table III summarizes the statistical results from the exper-
iments mentioned in the previous paragraph. The evolution
succeeded in all cases and provided solutions that perfectly
fulfil the objectives specified in the fitness function. There
are some interesting facts that were observed in both rep-
resentations of the transition function. The first is that the
instruction-based approach exhibits higher success rate in
most sets of experiments. The only case in which the table-
based representation is more successful is the development of
a 9x9 grid structure (the program-based approach succeeded
in 60% whilst the conventional method in 76%). This issue
can be explained as follows. The problem considers a binary
CA whose 5-neighborhood implies 232 possible transition
functions specified by the table (the chromosome consists of
32 bits). However, the search space of the program-based
approach is in this case substantially bigger. For example, if
10 instructions in the programs are considered, each consisting
of 3 integers, there are 30 integers in the chromosome, each
of which can possess at least 5 different values so the search

Authorized licensed use limited to: Brno University of Technology. Downloaded on September 08,2022 at 16:24:09 UTC from IEEE Xplore. Restrictions apply.

Appendix I

47

Fig. 5. Development of evolved cellular automaton for the replication of the Czech flag.

Fig. 6. Development of evolved cellular automaton for the replication of WCCI structure.

space contains at least 530 candidate solutions. Therefore it
is harder to find a working solution for the 9x9-cell structure
in so big search space. The second interesting issue is that
although the program-base approach mostly exhibits higher
success rate, the computational effort (expressed by the num-
ber of generations needed to evolve a working solution) is
higher than in case of the conventional approach. This fact
was observed in all the experiments performed in the pattern
development problem. We assume that this feature is caused
by more complex (indirect) mapping between a program and
the corresponding output states of the transition function of
the cellular automata.

Figure 7 shows an example of evolved solution for the
development of French flag in a cellular automaton. In this
case we obtained several solutions that differ in the behavior
of the developed structure if the CA continues to develop. In
most cases the French flag pattern represents an intermediate
state of the CA that is totally destroyed if the development
continues. The second group of solution is able to periodically
recreate the given pattern and the last case includes several
solutions that produce the French flag that is stable during the
subsequent development of the CA. These classes of solutions
are expectable. Since the CA possesses finite dimensions and
the number of cell states is also finite, it can not exhibit infinite
development through infinite different states. Therefore, if the
CA does not exhibit a stable pattern after a finite number of
development steps, then it generates a finite number of differ-
ent patterns in a loop (e.g. see Figure 7)). The corresponding
program that was found by evolution is shown in Table IV.
It is very difficult to identify the principle of this program
(similarly as to identify the individual rules of a transition
function) because the CA behavior is an emergent property
of interaction of all the cells. It can be observed that all the
(temporary) neighborhood cells are affected by the program so

that the development of French flag is probably not a trivial
task. Note that the exact French flag pattern was reached only
in CA whose dimensions correspond to the pattern size. In
larger CA, although, it is possible to develop the pattern in
a subpart of the CA but some of the other cells are affected
too that surrounds the target pattern immediately (confirmed
by the experiments).

TABLE IV
EVOLVED 6X6 CELLULAR AUTOMATON PROGRAM FOR THE

DEVELOPMENT OF FRENCH FLAG PATTERN. THE EVOLUTION WORKED
WITH 10-INSTRUCTION PROGRAM, THE RESULTING SOLUTION
CONTAINED 2 NOPS THAT WERE SUBSEQUENTLY REMOVED.

Line num. Instruction
1: MAX W C
2: XOR C N
3: MIN S E
4: ROD
5: AND E S
6: DEC E
7: OR C E
8: XOR C W

V. CONCLUSIONS

In this paper we presented an instruction-based approach
to the development of 2D cellular automata and their design
using genetic algorithm. The idea was to shorten the genotype
and reduce the search space especially for the CAs with more
than 2 cell states. Two problems were considered in order to
demonstrate the abilities of the proposed approach: (1) the
replication problem and (2) the problem of development of a
given pattern from a seed.

In case of the replication problem, the instruction-based
approach overcame the conventional table-based transition
function in all the performed experiments. We determined that
in addition to the perfect success rate this method also reduces

Authorized licensed use limited to: Brno University of Technology. Downloaded on September 08,2022 at 16:24:09 UTC from IEEE Xplore. Restrictions apply.

Appendix I

48

Fig. 7. Development of French flag pattern in a cellular automaton. This solution shows the development process in which the French flag emerges for the
first time in step 26. Then the pattern is destroyed and emerges again with the period of 12 development steps (the next instance can be observed in step 38).

the computational effort needed to evolve a working solution
of the replication problem.

The pattern development from a seed proposed interesting
results in both of the instruction-based method and the con-
ventional approach. Whilst the instruction-based development
exhibits substantially higher success rate in most of the experi-
ments, the conventional approach provides lover computational
effort for obtaining a working solution.

In summary the proposed method works very well for more
complex cellular automata, even for those in which no working
solution was found by means of the conventional approach.
We assume that the instruction-based approach is applicable
to many other problems whose solution can be realized using
cellular automata. The experiments that were performed in
this paper represent problems for which successful solutions
are known. However, we are going to experiment with more
applications in order to determine the cellular automata be-
havior in different conditions. For example, the optimization
of instruction set for a specific CA behavior seems to be an
interesting area. Experiments in other application domains are
in progress (e.g. development of computational structures or
image operators may represent suitable candidates).

ACKNOWLEDGMENT

This work was supported by the Czech science founda-
tion projects P103/10/1517 and GD102/09/H042, the research
programme MSM 0021630528, the BUT projects FIT-S-11-
1, FIT-S-12-1 and the IT4Innovations Centre of Excellence
CZ.1.05/1.1.00/02.0070.

REFERENCES

[1] S. Wolfram, A New Kind of Science. Champaign IL: Wolfram Media,
2002.

[2] J. von Neumann, The Theory of Self-Reproducing Automata. A. W.
Burks (ed.), University of Illinois Press, 1966.

[3] M. Sipper, Evolution of Parallel Cellular Machines – The Cellular
Programming Approach, Lecture Notes in Computer Science, volume
1194. Berlin: Springer-Verlag, 1997.

[4] S. A. Kauffman, “Metabolic stability and epigenesis in randomly con-
structed genetic nets,” Journal of Theoretical Biology, vol. 22, pp. 437–
467, 1969.

[5] J. F. Miller, “Evolving developmental programs for adaptation, morpho-
genesis and self-repair,” in Advances in Artificial Life. 7th European
Conference on Artificial Life, Lecture Notes in Artificial Intelligence,
volume 2801. Dortmund DE: Springer, 2003, pp. 256–265.

[6] T. Kowaliw, P. Grogono, and N. Kharma, “Bluenome: A novel develop-
mental model of artificial morphogenesis,” in Proc. of the Genetic and
Evolutionary Computation Conference, GECCO 2004, Lecture Notes in
Computer Science, part I., volume 3102. Springer-Verlag, 2004, pp.
93–104.

[7] P. C. Haddow and G. Tufte, “Bridging the genotype–phenotype mapping
for digital FPGAs,” in Proc. of the 3rd NASA/DoD Workshop on
Evolvable Hardware. Los Alamitos, CA, US: IEEE Computer Society,
2001, pp. 109–115.

[8] G. Tufte and P. C. Haddow, “Towards development on a silicon-based
cellular computing machine,” Natural Computing, vol. 4, no. 4, pp. 387–
416, 2005.

[9] C. G. Langton, “Self-reproduction in cellular automata,” Physica D:
Nonlinear Phenomena, vol. 10, no. 1–2, pp. 135–144, 1984.

[10] Z. Pan and J. A. Reggia, “Computational discovery of instructionless
self-replicating structures in cellular automata,” Artificial Life, vol. 16,
no. 1, pp. 39–63, 2010.

[11] M. Bidlo and J. Škarvada, “Instruction-based development: From evo-
lution to generic structures of digital circuits,” International Journal of
Knowledge-Based and Intelligent Engineering Systems, vol. 12, no. 3,
pp. 221–236, 2008.

[12] J. R. Koza, Genetic Programming: On the Programming of Computers
by Means of Natural Selection. MIT Press, 1992.

Authorized licensed use limited to: Brno University of Technology. Downloaded on September 08,2022 at 16:24:09 UTC from IEEE Xplore. Restrictions apply.

Appendix I

49

Appendix II

Evolution of Cellular Automata
with Conditionally Matching Rules

BIDLO Michal a VAŠÍČEK Zdeněk

In: 2013 IEEE Congress on Evolutionary Computation (CEC 2013). Cancún: IEEE Com-
puter Society, 2013, pp. 1178-1185. ISBN 978-1-4799-0452-5.

Conference CORE rank in the year of publication: A; M. Bidlo proposed the main
idea, designed the experiments and wrote cca 75% of the paper, Z. Vašíček contributed
technically to the design and execution of the experiments, processing the results and
writing cca 25% of the paper.

50

Evolution of Cellular Automata
with Conditionally Matching Rules

Michal Bidlo
Brno university of Technology

Faculty of Information Technology
IT4Innovations Centre of Excellence

Božetěchova 2
61266 Brno, Czech Republic
Email: bidlom@fit.vutbr.cz

Zdenek Vasicek
Brno university of Technology

Faculty of Information Technology
IT4Innovations Centre of Excellence

Božetěchova 2
61266 Brno, Czech Republic
Email: vasicek@fit.vutbr.cz

Abstract—This paper introduces a method of representing
transition functions for the purposes of evolutionary design of
cellular automata. The proposed approach is based on conditions
specified in the transition rules that have to be satisfied in order
to determine the next state of a cell according to a specific rule.
The goal of this approach is to reduce the number of elements
needed to represent a transition function while preserving the
possibility to specify traditional transition rules known from the
conventional table-based representation. In order to demonstrate
abilities of the proposed approach, the replication problem and
pattern transformation problem in cellular automata will be
investigated. It will be shown that the evolution is able to design
transition functions for non-trivial behavior of two-dimensional
cellular automata that perfectly fulfil the specified requirements.

I. INTRODUCTION

Cellular automata (CA) represent a biologically inspired
computational model in which time and space are discrete.
The cells represent basic computational elements whose states
are considered as a means for storing and processing infor-
mation inside the CA. Their concept was originally invented
by Ulam and von Neumann in 1966 [1] in order to study
the behavior of complex systems, especially the questions
of whether computers can self-replicate. A two-dimensional
(2D) cellular automaton consists of a regular grid of cells,
each of which can occur in one state from a finite set of
states. In each developmental step of the CA, the states
are updated synchronously in parallel according to a local
transition function. The next state of a given cell depends
on the state of this cell and the combination of states in its
neighborhood.

For the purposes of this paper the following basic con-
cept of cellular automata will be considered. The cellular
neighborhood is represented by a 9-tuple and consists of
the investigated (central) cell and its immediate neighbors
in the horizontal, vertical and both diagonal directions. This
concept is referred to as Moore neighborhood and is illustrated
in Figure 1. The common form of the transition function
defines the next state of a given cell for every possible
combination of states in its neighborhood. Let us denote
NW N NE W C E SW S SE → Cnew a rule of the
transition function, where the symbols on the left of the arrow
(corresponding to the cells from Figure 1) represent actual

cell states of the Moore neighborhood and Cnew denotes the
next state of the investigated cell. Boundary conditions will be
considered because the implementation of cellular automata
considers a finite size of the cellular array. For that reason,
zero boundary conditions will be applied which means that
the non-existing neighbors of the cells at the boundary of
cellular structure are considered as cells in state 0. Every cell
will determine its next state according to a single transition
function, i.e. it is a case of uniform cellular automaton.

Fig. 1. Structure of Moore neighborhood in a cellular automaton. The
neighborhood includes the investigated (central) cell C and its immediate
neighbors. The numbers in parentheses denote the indices of cells in the
neighborhood that will be considered in this paper.

Wolfram studied the mathematical fundamentals of cellular
automata and analyzed their behavior from the theoretical
point of view. Moreover, he performed a broad survey of
various cellular automata applications and summarized the
results in [2]. Sipper studied, among others, non-uniform cel-
lular automata and proposed a specific evolutionary algorithm
called Cellular Programming for the automatic design of non-
uniform CA. Cellular Programming involves a population of
local transition functions whose evolution (using the genetic
operations of crossover and mutation) is carried out with
respect to the arrangement of cells in the CA and their local
interactions. Sipper demonstrated the success of this approach
in solving some typical problems related to cellular automata,
e.g. synchronization task, ordering task or random number
generation. A hardware accelerator of Cellular Programming
was also proposed [3]. Several works have dealt with evolving
cellular automata using genetic algorithms and similar evolu-
tionary techniques. Miller investigated the problem of evolving
a developmental program inside a cell to create multicellular
organisms of various sizes and characteristics. He presented

2013 IEEE Congress on Evolutionary Computation
 June 20-23, Cancún, México

978-1-4799-0454-9/13/$31.00 ©2013 IEEE 1178

Authorized licensed use limited to: Brno University of Technology. Downloaded on September 08,2022 at 16:25:16 UTC from IEEE Xplore. Restrictions apply.

Appendix II

51

a system in which the organism organizes itself into a well
defined patterns of differentiated cell types (e.g. the French
flag) [4]. Tufte and Haddow utilized an FPGA-based platform
for online evolution of digital circuits. Their approach is based
on a special architecture called Sblock that implements the cell
functionality [5]. The interconnection of Sblocks in the FPGA
actually implements a cellular automaton whose development
determines the functions and interconnection of the individual
Sblock cells in order to realize a specified behavior [6]. The
rules for the development of the Sblocks has been designed
using evolutionary algorithm. Kowaliw et al. proposed a sim-
plified model of biological embryogenesis instantiating a sub-
set of 2D cellular automata and a methodology for “growing”
the cells into agents utilizing only local interactions. The
Bluenome Developmental Model, as the authors denote this
approach, implements a grid of cells, each of which contains a
single piece of DNA-like data, which it interprets to decide its
next action. The rules of this model have been searched using
genetic algorithm [7]. Sometimes the traditional concept of
cellular automata has been adapted to solve a specific task. For
example, Random Boolean Networks represent a more general
approach to the development of cellular structure in which
the neighborhood of each cell is not limited to immediate
neighbors only but can be specified arbitrarily. Each cell can
even have different form of neighborhood. This concept was
originally developed as an abstract model for studying the
dynamics of gene regulation [8]. Similar technique related
to the genetic regulatory networks was proposed by Dellaert
et al. [9][10]. The authors implemented the process of gene
regulation using Boolean functions called operons inside the
genome the goal of which was to design an ambitious and
extensive model of development meant that is both biologically
defensible and computationally tractable.

In [11] a genetic algorithm-based approach was presented
for the deign of 2D cellular structures (called agents) that act
as building blocks for assembling more complex objects. The
cooperation between the agents during development exhibit a
self-assembling process of a target entity. The goal of this pro-
cess is to produce large stable structures by evolving rules and
parameters of the building blocks. Kayama has investigated a
network representation of binary cellular automata rules [12].
The goal was to focus on the effective relationships between
cells rather than the states themselves. This approach allows
the techniques of the network theory to be used for the inves-
tigation of CA behavior. An instruction-based representation
of the cellular automata rules was proposed in [13]. In this
case the transition function is encoded as a program consisting
of simple instructions whose aim is to modify the cellular
neighborhood in order to calculate the next cell state. It was
demonstrated that this approach is able to improve the process
of designing cellular automata by means of genetic algorithm
in comparison with the traditional encoding of the CA rules
by means of a table.

The process of designing a transition function according
to which the CA develops in order to achieve a specified
behavior is a challenging task. The problem is that the creation
of transition function is less intuitive than the traditional
algorithm design because the behavior of each cell depends on
its neighbors only and the cells operate in parallel during the
CA development. Moreover, the number of possible transition
functions grows exponentially with the increasing number of

cell states and the size of the cellular neighborhood. Therefore,
non-traditional approaches have often been applied both to the
representation of cellular automata rules and the method of
searching for a specific transition function.

This paper presents a continuation of the research intro-
duced in [13], where an instruction-based representation of
the transition function was proposed. We have determined that
if a suitable form of the transition rules is applied (instead
of the traditional table-based representation), it is possible
to reduce the time needed to design a specific CA to solve
a given task. For example, the replication problem and the
problem of developing a target pattern from a seed was
successfully solved by the instruction-based approach when
the program representing the transition function was designed
by mean of genetic algorithm. The input of the program is the
combination of states in the cellular neighborhood, the output
is a single value representing the next state of the investigated
cell [13]. However, the subsequent experiments showed that
if the program-based approach is applied, then the next state
actually represents a global result of the program execution
and it is difficult to detect states of the cellular neighborhood
for which specific or separate rules could be more suitable.
Therefore, the goal of this paper is to propose a method
of representing the CA rules that is (1) more efficient that
the traditional table-based approach and (2) yet allows us to
describe specific transition rules in a way naturally convenient
to cellular automata. This method will be designated as Con-
ditionally Matching Rules. We will show that this approach
is able to solve the replication problem (as one of the typical
task in CA) and the problem of a non-trivial transformation of
a given initial pattern to another target pattern whose solution
was not successful using the previously mentioned approaches.

The paper is organized as follows. Section II describes the
idea of conditionally matching rules. The evolutionary system
setup is summarized in Section III and the experimental results
are given in Section IV. Concluding remarks are stated in
Section V.

II. CONDITIONALLY MATCHING RULES FOR CELLULAR
AUTOMATA

Conventionally the local transition function is represented
by a table that specifies the next state of a cell for all the
possible combinations of states in its neighborhood. However,
if the number of cell states or the size of cellular neighbor-
hood increases, then the number of such combinations grows
exponentially and thus the representation and design of the
transition function becomes very difficult. It might be possible
to specify a subset of rules for the transition function (e.g.
only for the combinations of states that change the state of
the investigated cell) but the problem is how to determine the
set of rules for a given task especially for complex cellular
automata.

In order to overcome these issues, a new encoding of
cellular automata rules will be introduced. Let us call this ap-
proach as Conditionally Matching Rules (CMR). The encoding
of the local transition function using CMR is fundamentally
inspired by the table-based representation. It means that the
CMR encoding allows to specify the transition rules as usual
in the table-based approach but, in addition to that, more

1179

Authorized licensed use limited to: Brno University of Technology. Downloaded on September 08,2022 at 16:25:16 UTC from IEEE Xplore. Restrictions apply.

Appendix II

52

general rules can be formulated whose interpretation covers
several common rules in a single CMR. In particular, each
rule of the CMR representation consists of a conditional part
and a next state. The conditional part encodes a state and
a condition for every cell in the cellular neighborhood. The
next state is assigned to the investigated cell if the given rule
“matches” to the combination of states in its neighborhood,
i.e. if all the conditions in the conditional part are satisfied.
For the purposes of this paper, the following conditions will be
considered in the CMR: equal (==), not equal (! =), greater or
equal than (>=), less or equal than (<=) and don’t care mask
(?). The structure of a conditionally matching rule for Moore
neighborhood and its relation to this form of neighborhood is
illustrated in Figure 2.

Fig. 2. Structure and interpretation of a conditionally matching rule

The local transition function of a CA consists of a finite
sequence of conditionally matching rules. The process of
determining the next state of a cell using the CMR-based
transition function is the following. The rules are evaluated
sequentially one after another. In each rule the items of the
conditional part are evaluated with respect to the corresponding
cell states in the cellular neighborhood. If all the conditions
are satisfied, then the rule is said to match with the state
of cellular neighborhood and the next state from this rule
represents the result of the transition function (i.e. the new state
of the investigated cell) and no more rules in the sequence need
to be evaluated. If none of the rules representing the transition
function matches, then the cell keeps its current state.

For example, consider a CMR-based transition function
that ought to be applied to determine the next state of central
cell of a given cellular neighborhood (Figure 3). In this case
the transition function consists of three conditionally matching
rules denoted as #1, #2 and #3. In order to determine the
next state, the evaluation of the rules starts with the CMR
#1. The state of cell (1) in the cellular neighborhood shown
in Figure 3 satisfies the condition == 1 in the condition (1)
of rule #1. Condition (2) of rule #1 is a don’t care mask (?)
which means that this condition is also satisfied with respect
to the state of cell (2). Condition (3) is also satisfied because
the state of cell (3) is less than or equal to state 0 specified
in this condition. However, condition (4) assumes that the

Fig. 3. Example of CMR-based transition function consisting of three
conditionally matching rules

state of cell (4) does not equal 0 which is not true because
the state of this cell possesses 0. Therefore, this condition is
not satisfied which means that rule #1 can not match to the
cellular neighborhood and can not be applied to determine the
next state. The execution of the transition function continues
by evaluating rule #2. As all the conditions of this rule are
satisfied with respect to the corresponding cell states in the
neighborhood, the next state specified in rule #2 represents
the result of the transition function and hence the cell (5) will
possess state 2 in the next step. In this case rule #3 does not
need to be evaluated because the next state has already been
determined.

Considering the concept of the CMR-based transition func-
tion, several advantageous features may be identified. Firstly,
the size of representation of CMR-based transition function can
be reduced in comparison with the conventional table-based
format. It is based on the possibility to use relational operators
(especially ! =, <=, >=) and the don’t care mask (?). In fact,
a single CMR with some of those conditions represents sev-
eral rules of the conventional table-based transition function.
Secondly, the CMR approach is deterministic which is given
by the convention that if a rule from the sequentially evaluated
sequence matches, then its next state represents the result of
the transition function, otherwise the investigated cell keeps
its current state. And finally, CMR-based transition functions
can be deterministically transformed to the complete table-
based representation. If all the possible combinations of states
are generated for a given type of cellular neighborhood, then
for each combination a next state is calculated using the CMR
that corresponds to a specific item in the table-based transition
function. Therefore, the CMR encoding fully preserves the
features of traditional cellular automata.

III. EXPERIMENTAL SETUP

Simple genetic algorithm (GA) was utilized for the evolu-
tion of CMR-based transition function in order to achieve a
specific behavior.

Several sets of experiments were performed considering
various numbers of rules encoded in a chromosome. Each

1180

Authorized licensed use limited to: Brno University of Technology. Downloaded on September 08,2022 at 16:25:16 UTC from IEEE Xplore. Restrictions apply.

Appendix II

53

chromosome represents a candidate transition function repre-
sented as a finite sequence of conditionally matching rules. The
structure of each CMR is identical to that shown in the top
part of Figure 2. Each CMR is encoded as a finite sequence of
integers representing the conditional parts (i.e. codes of states
and condition operators) and the next state.

In all experiments, the population consists of 8 individuals
that are initialized randomly at the beginning of evolution-
ary process. The chromosomes are selected by means of
tournament operator with the base 4. Each pair of selected
chromosomes (parents) undergo one-point crossover with the
probability 50% in order to generate two offspring. In case
that the crossover has not been performed, the offspring are
identical to the parents. The following mutation operator is
applied on each offspring. 6 integers are chosen randomly in
the chromosome, each of which is mutated independently with
the probability 50% by generating a new valid random value.

For each set of experiments (considering different num-
ber of CMR the transition function is composed of) 100
independent runs of the GA were performed. The evolution
is terminated if a desired behavior of the candidate CA is
observed (i.e. its chromosome obtained the maximal fitness
value for a given problem) or if a given limit of generations
is reached (this parameter is specific for the problems to be
solved – see the next section).

A binary 2D uniform cellular automaton was used con-
sisting of 24x24 cells. The evaluation of its behavior was
performed within 16 developmental steps. The initial state of
the CA is set as a fixed pattern (in this paper the initial state
is not a subject of evolution, it is specified by the designer).
The selection of the initial pattern and the way of calculating
the fitness function depends on the problem to be solved and
their description is covered in Section IV.

IV. RESULTS AND DISCUSSION

For the purposes of this paper several problems were
chosen (i.e. a specific behavior of the cellular automaton) for
which the transition function has been designed by means
of genetic algorithm in combination with the CMR-based
representation. In this section, it will be shown that the
evolution is able to design transition functions for non-trivial
problems in CA using the 9-cell Moore neighborhood. In the
simplest case of binary CA there are in total 29 = 512 different
transition rules and hence the search space contains 2512

possible transition functions if the conventional table-based
representation is considered. As we demonstrated in [13], the
success rate of evolving the tables for the replication problem
and pattern development problem is substantially lower in
most cases compared to advanced program-based transition
function. For some problems the table-based representation
even did not provide any working solution. In this section
we propose results for the replication problem and pattern
transformation problem using the CMR encoding of transition
functions.

A. The Replication Problem

The goal of replication is to develop a copy of a given
structure represented as a finite-size initial pattern in a finite
number of development steps. The genetic algorithm was

best_fitness = 0 # fitness out of all development steps
const REPLICS = 2 # the minimal number of required replics

initialize the CA by the pattern to be replicated
FOR int step = 1 TO DEVEL_STEPS DO
{

fitness = 0 # fitness in one development step
replics_cnt = 0 # num. of replics found in a devel. step
ca_step(ca1, genome->prog);

FOR row = 0 TO CA_HEIGHT - PATTERN_HEIGHT DO
{

FOR col = 0 TO CA_WIDTH - PATTERN_WIDTH DO
{

partial_fitness = 0 # fitness in specific part of CA
FOR pr = 0 TO PATTERN_HEIGHT - 1 DO

FOR pc = 0 TO PATTERN_WIDTH - 1 DO
IF ca[row+pr][col+pc] == pattern[pr][pc] THEN

partial_fitness = partial_fitness + 1
save the partial_fitness value
IF found perfect pattern at position (row, col) THEN

replics_cnt = replics_cnt + 1
}

}
fit = sum of the REPLICS best saved partial fits
add a bonus if the solution produces more replics
fit = fit + replics_cnt * PATTERN_HEIGHT * PATTERN_WIDTH

save the best fitness out of all development steps
IF fitness > best_fitness THEN

best_fitness = fitness
}

RETURN best_fitness

Fig. 4. The fitness function used for the replication problem (the
same as in [13]). The pattern dimensions PATTERN WIDTH and
PATTERN HEIGHT include a border consisting of a single line of
inactive (zero-state) cells on each side because we required the replicated
structures to be separated each other.

applied to design a transition function by means of which the
CA develops so that there is a given number of copies of the
initial structure after a finite number of development steps.
One of the simplest techniques able to replicate an arbitrary
structure is based on additive transition rules [2]. As we shown
in [13], if such kind of transition function is discovered for a
specific pattern used for training the CA, then the transition
function is able to replicate different structures that were not
considered during evolution. However, in [13], we were able
to evolve only the aforementioned type of replication function.

In this section, we demonstrate that some other replication
processes can be found that (1) are not universal, i.e. the CA
is able to replicate the pattern it was trained for but it fails
if another pattern is specified, and (2) the replicated patterns
can overlap. The fitness evaluation algorithm that was utilized
during evolution is shown in Figure 4. In these experiments,
we required to develop at least two instances of the initial
pattern.

Statistical results related to the replication problem are
summarized in Table I. The maximal number of generations
was set to 500 thousands. If no solution is found within
this limit, the evolution is stopped. For each experiment with
a specific number of conditionally matching rules encoded
in a chromosome 100 independent evolutionary runs were
performed. The success rate, number of generations and rules
of the evolved transition function (in the conventional table-
based representation) was measured with respect to the number
of CMR encoded in a chromosome during evolution. As the
results show the success rate increases with increasing the
number of conditionally matching rules. It indicates that there
are more valid solutions in the search space that is represented
by higher number of conditionally matching rules. An inter-
esting phenomenon can be observed in the number of rules
of the evolved transition functions in the table representation.
The minimal number of rules tend to decrease slightly for

1181

Authorized licensed use limited to: Brno University of Technology. Downloaded on September 08,2022 at 16:25:16 UTC from IEEE Xplore. Restrictions apply.

Appendix II

54

the increasing number of CMR. This observation is unusual
because the more the CMR the more the table-based rules
can be potentially generated. On the other hand, the maximal
number of table-based rules exhibits rather an opposite trend.
It indicates that the complexity of evolved transition functions
transformed into the table representation rather depends on
the general complexity of the CMR representation than on
the number of CMR. Moreover, the lower number of CMR
in general does not mean a reduction in complexity of the
corresponding table-based transition function.

TABLE I. STATISTICAL RESULTS FOR THE REPLICATION PROBLEM
CONSIDERING THE CMR-BASED APPROACH. THE NUMBER OF TABLE

RULES REPRESENTS HOW MANY RULES COMPRISE THE CONVENTIONAL
TABLE-BASED TRANSITION FUNCTION WHOSE APPLICATION MODIFIES

THE STATE OF INVESTIGATED CELL.

Number of Success Mean number Number of table rules:
CMR rate of gen. (std. dev.) mean min. max.
08 27 252390 (131598) 265 232 288
10 39 173072 (124653) 267 197 298
12 43 196924 (135305) 265 205 294
14 64 163372 (110220) 264 188 302
16 70 168246 (92543) 270 193 337
18 70 135745 (101820) 267 195 330
20 82 125458 (95564) 270 218 330
22 89 139410 (92700) 260 195 319
24 86 152829 (99917) 260 196 341
26 94 146169 (101447) 258 203 320

In order to design a transition function for the replication
problem, an initial (training) pattern was used as shown in
Figure 5, part I. Figure 5 also shows one of the solutions
that was found using genetic algorithm for the replication
task. As evident, pattern I. is replicated after 8 steps and the
CA produces more copies if the development continues. The
replics are isolated each other – there is at least one line of
zero-state cells between the neighboring rectangles delimiting
the replicated structures. Part II. of Figure 5 shows another
example of development using the same transition function.
However, although the initial pattern is very simple and the
CA is possible to produce some copies during development,
the result is not the desired replication of the original pattern.
More complex pattern is depicted in part III. of Figure 5. As
the CA development shows, this transition function is not able
to produce any copy of this structure because the shape of the
original is destroyed. Hence the evolved replication function
is not universal. In fact, the CA was trained for a specific
pattern that was used for evaluating the candidate solutions. A
specific feature of this result is that the process of development
produces active cells only on the right of the initial pattern (i.e.
there is no active development to the other sides). It seems
that this solution is the simplest one for obtaining two replics
in a limited number of steps. However, the obtained results
contain solutions that replicate to one of the other sides which
indicates that the evolution is able to find symmetric rules in
order to create copies of the initial structure into the “empty”
(zero-state) cells that are available inside the CA.

Another example of a successful result is shown in Figure
6. The same initial structure was used to train the CA during
evolution. However, the replication process is different. In
this case the direction of the replication is on the north-west
side and the first complete replics arise after the fourth step.
Although the shapes of the replics are isolated, their delimiting
rectangles overlap by three cells (including the one-line of
zero-state cells on each side of the shape). The experiments

Fig. 5. Replication of some selected initial structures in a cellular automaton.
This case represents an example of non-universal replicator, some structures
are not replicated correctly.

showed that this kind of replication is much less common in
the obtained results which indicate either a need of a more
complex transition function or that this kind of transition
function is rare in the search space. Similarly to the previous
example, a result replicating into the opposite direction was
also observed.

Fig. 6. Diagonal replication of an initial structures using the transition
function from Figure 7

Fig. 7. Evolved CMR-based transition function for the replication process
from Figure 6 Each row represents a conditionally matching rule. The numbers
in parentheses denote indices of cells in Moore neighborhood (according to
Figure 1) whose states are evaluated within the conditions. Note that the cell
indices are shown for convenience only, they are considered implicitly by the
positions of conditions in the rules.

The proposed results show that various solutions exist for
the replication of a given structure. In general, they may not
be considered as universal replicators because some of them
fail in replication of other structures. This feature is caused by
the fact that a single specific pattern was considered during
evolution of the transition function and, in fact, the CA is
trained to this pattern only. It also means that the replication
process itself may be specific for a given pattern. This issue
might be interesting, for example, from a computational point
of view. One of the hypotheses of this kind of research may be
whether are there suitable structures whose replication could
be considered as an efficient computation algorithm for a given
task using CA in addition to currently known solutions (e.g.
Tempesti Loops [14]).

1182

Authorized licensed use limited to: Brno University of Technology. Downloaded on September 08,2022 at 16:25:16 UTC from IEEE Xplore. Restrictions apply.

Appendix II

55

B. The Pattern Transformation Problem

The objective of the pattern transformation problem is to
find a transition function for a CA that is able to transform
a specific pattern (represented by the initial state of the CA)
into a given target pattern in a finite number of steps. For the
purposes of this experiment, a counter-clockwise rotation by 90
degrees of the initial pattern will be considered. Note that this
transform represents one of the problems whose solution was
not successful using other CA design approaches (i.e. evolution
of the transition function as a table or a program investigated
in [13]).

Statistical results related to the pattern transformation prob-
lem are summarized in Table II. The maximal number of
generations was set to 1 million. If no solution is found within
this limit, the evolution is stopped. Similarly to the replication
problem, the success rate tends to increase in most cases
with the increasing number of CMR although the maximum
observed success rate is significantly lower. However, the
number of table rules exhibits an opposite trend compared to
the replication experiments. For the increasing number of CMR
both the minimal and maximal number of table rules tend to
increase. It may indicate that the pattern transformation task is
robust, i.e. the solution can be achieved in many different ways
(both less and more complex) and the more CMR the more
complex transition function can be found. This observation
can also be confirmed by the resulting CA behavior for which
(as shown later) different number of steps may be needed to
transform the given pattern using variable transition functions.

TABLE II. STATISTICAL RESULTS FOR THE PATTERN
TRANSFORMATION PROBLEM CONSIDERING THE CMR-BASED APPROACH.
THE NUMBER OF TABLE RULES REPRESENT HOW MANY RULES COMPRISE

THE CONVENTIONAL TABLE-BASED TRANSITION FUNCTION WHOSE
APPLICATION MODIFIES THE STATE OF INVESTIGATED CELL.

Number of Success Mean number Number of table rules:
CMR rate of gen. (std. dev.) mean min. max.
08 21 406258 (486154) 115 58 178
10 34 353064 (425202) 119 67 250
12 27 299977 (319499) 140 100 214
14 45 250068 (229413) 147 88 221
16 47 229491 (213390) 147 87 318
18 48 224394 (227729) 152 96 209
20 60 180913 (204358) 163 124 234
22 64 158919 (156925) 169 81 273
24 45 163746 (168598) 187 99 338
26 53 208153 (213602) 175 110 270

The initial pattern used in our experiments is described
in the upper-left part of Figure 8. The structure to be rotated
is represented by a 10x10-cell shape including one line of
zero-state cells on each side delimiting the given structure.
The fitness evaluation is performed as follows. After each
step of the CA a partial fitness is calculated as the number
of cells in correct state in the 10x10-cell region. Note that
the target state of each cell is determined according to the
known pattern which represents the rotated initial 10x10-cell
structure by 90 degrees counter-clockwise. The fitness value
of a candidate transition function is the maximum from the
partial fitness values. The pattern transformation is not a trivial
task considering the fact that only local cell interactions are
involved during the CA development. It means that the global
behavior representing the process of rotation is an emergent
feature of the CA.

Several perfect results have been obtained using the CMR-
based approach. One of the results is shown in Figure 8.
As evident, the initial pattern is precisely rotated after 13th
step. Of course, no subsequent rotation will take place if
the development continues because it represents another task
for the CA that was not considered during evolution. In this
case, the rotated pattern is destroyed during the next steps
and the CA gets into a loop in which several states alternate
periodically. The transition function that was evolved for the
CA from Figure 8 is shown in Figure 9. The table-based
representation of this transition function consists of 58 rules
that change the state of the investigated cell which represents
the most compact solution that was evolved in this paper.

Fig. 8. Counter-clockwise rotation by 90 degrees in a cellular automaton.
The pattern to be rotated is represented by the initial state. The rotation is
performed in 13 steps using the transition function from Figure 9.

Fig. 9. Evolved transition function for counter-clockwise rotation of an initial
structure from Figure 8. Each row represents a conditionally matching rule.
The numbers in parentheses denote indices of cells in Moore neighborhood
(according to Figure 1) whose states are evaluated within the conditions. Note
that the cell indices are shown for convenience only, they are considered
implicitly by the positions of conditions in the rules.

Another perfect solution is shown in Figure 10 and the
corresponding CMR-based transition function in Figure 11.
This transformation shows a more intricate process; the initial
pattern is precisely rotated after the 16th step. Moreover, if the
development continues, another remarkable pattern emerges in
step 30 - a triangular structure that was not explicitly consid-
ered during evolution. The “fate” of this triangle in this CA is
not very good – it is going to disappear completely. However,
the process during which it happens could be interesting. As

1183

Authorized licensed use limited to: Brno University of Technology. Downloaded on September 08,2022 at 16:25:16 UTC from IEEE Xplore. Restrictions apply.

Appendix II

56

shown in Figure 10 (Step 50), a stair-like pattern is formed
that successively removes the active cells at the hypotenuse of
the original triangle. Although the triangle in step 30 consists
of only 36 active cells, it takes in total 64 steps before it
disappears.

Fig. 10. Counter-clockwise rotation by 90 degrees in a cellular automaton
according to the transition function from Figure 11

Fig. 11. Evolved transition function for counter-clockwise rotation of
an initial structure from Figure 10. Each row represents a conditionally
matching rule. The numbers in parentheses denote indices of cells in Moore
neighborhood (according to Figure 1) whose states are evaluated within the
conditions. Note that the cell indices are shown for convenience only, they are
considered implicitly by the positions of conditions in the rules.

The same process can be observed for such triangles of
different sizes. An example of a complete development is
shown in Figure 12 for the triangle whose size (i.e. each
its side) is represented by 4 active cells. This triangle is
going to disappear after the 16th step which is interesting
from a computational point of view. It can be observed that
the number of steps for the triangle to disappear is equal to
the square of the number of cells representing its size. For
example, the triangle whose each side consists of 10 active
cells needs 102 = 100 steps to disappear. Note that this feature
was not considered during evolution of the CA (the goal was
only to perform rotation of the initial structure).

Fig. 12. Example of a process of disappearing a triangle whose number
of steps represents the square of size of the triangle. The development is
performed according to the transition function from Figure 11.

The solutions that were presented for the pattern rotation
problem work in cellular automata of arbitrary size that is
sufficient for representing the initial pattern. For example, if
a 100x100-cell CA is used whose central region is initialized
by the structure to be rotated, the transformation process will
be performed correctly. However, other solutions have been
observed whose functionality is limited only to the CA whose
size corresponds to that considered during evolution. It means
that some results can not be considered as general with respect
to the CA size. The reason of this issue lies in the fact that
only CA of finite sizes can be practically implemented in
which a form of boundary conditions has to be applied. In our
experiments, zero-boundary conditions were considered which
in fact influences the CA development in a limited cellular
space. In some cases the evolution utilized this feature and
adapted the solution to the conditions of a finite CA size.

V. CONCLUSIONS

In this paper a method for representing transition func-
tions for cellular automata has been presented. The proposed
approach is based on introducing conditions into the transition
rules that have to be satisfied in order to match the rule (i.e. to
use it for determining the next state of a cell). One of the main
features of this representation is that the number of elements
needed to represent a transition function can be reduced in
comparison with the conventional table-based representation.
Yet, the possibility of specifying traditional transition rules (as
in the table-based approach) is preserved which is suitable in
situations when it is needed to determine a new cell state for
a specific combination of states in the cellular neighborhood.

In the case study considering the replication problem,
several solutions were designed using a genetic algorithm.
It was determined that the CA is able to replicate a given

1184

Authorized licensed use limited to: Brno University of Technology. Downloaded on September 08,2022 at 16:25:16 UTC from IEEE Xplore. Restrictions apply.

Appendix II

57

structure but failed in replicating some other structures that
were not considered during evolutionary search of the tran-
sition function. It means that the evolution utilized specific
features of the input pattern for which the replication rules
were adapted. Therefore, other replication schemes may exist
for different patterns which could be potentially useful, for
example, for the purposes of performing computations using
cellular automata.

The pattern transformation problem involved a counter-
clockwise rotation by 90 degrees of a given structure in
a cellular automaton. This task belongs to some previously
studied problems whose solution failed using other approaches
to the cellular automata design. In this paper, several perfect
results were obtained demonstrating various solutions of the
pattern transformation. It was determined that in some cases a
computationally interesting behavior (specifically, calculation
the square of a number representing the size of the input
pattern) can be observed that was not explicitly considered
during evolution.

This work was focused on binary cellular automata with
Moore neighborhood. However, the results of our subsequent
experiments indicate that the proposed approach can be ap-
plied for the design of cellular automata working with higher
number of states. Therefore, our next research will be devoted
to the design of complex cellular automata for which the
conventional approaches do not provide satisfactory results.
In particular, more non-trivial patterns will be studied in the
replication problem (including self-replicating loops) and the
resulting cellular automata will be also analysed with respect
to their computational properties. Another interesting research
area could be the CMR approach itself in which each CMR
might be evaluated in order to determine its contribution to
achieve a given CA behavior. A study of these features might
enable to optimize the evolvability of the CMR representation.

ACKNOWLEDGMENT

This work was supported by the Czech Science Founda-
tion project P103/10/1517 and the IT4Innovations Centre of
Excellence CZ.1.05/1.1.00/02.0070.

REFERENCES

[1] J. von Neumann, The Theory of Self-Reproducing Automata. A. W.
Burks (ed.), University of Illinois Press, 1966.

[2] S. Wolfram, A New Kind of Science. Champaign IL: Wolfram Media,
2002.

[3] M. Sipper, Evolution of Parallel Cellular Machines – The Cellular
Programming Approach, Lecture Notes in Computer Science, volume
1194. Berlin: Springer-Verlag, 1997.

[4] J. F. Miller, “Evolving developmental programs for adaptation, morpho-
genesis and self-repair,” in Advances in Artificial Life. 7th European
Conference on Artificial Life, Lecture Notes in Artificial Intelligence,
volume 2801. Dortmund DE: Springer, 2003, pp. 256–265.

[5] P. C. Haddow and G. Tufte, “Bridging the genotype–phenotype mapping
for digital FPGAs,” in Proc. of the 3rd NASA/DoD Workshop on
Evolvable Hardware. Los Alamitos, CA, US: IEEE Computer Society,
2001, pp. 109–115.

[6] G. Tufte and P. C. Haddow, “Towards development on a silicon-based
cellular computing machine,” Natural Computing, vol. 4, no. 4, pp.
387–416, 2005.

[7] T. Kowaliw, P. Grogono, and N. Kharma, “Bluenome: A novel develop-
mental model of artificial morphogenesis,” in Proc. of the Genetic and
Evolutionary Computation Conference, GECCO 2004, Lecture Notes in
Computer Science, part I., volume 3102. Springer-Verlag, 2004, pp.
93–104.

[8] S. A. Kauffman, “Metabolic stability and epigenesis in randomly
constructed genetic nets,” Journal of Theoretical Biology, vol. 22, pp.
437–467, 1969.

[9] F. Dellaert and R. Beer, “Toward an evolvable model of development for
autonomous agent synthesis,” in Proc. of the 4th International Workshop
on the Synthesis and Simulation of Living Systems (Artificial Life IV).
MIT Press, 1994, pp. 246–257.

[10] ——, “A developmental model for the evolution of complete au-
tonomous agents,” in Proc. of the 4th International Conference on
Simulation of Adaptive Behavior. Cambridge, MA: MIT Press-
Bradford Books, 1996, pp. 393–401.

[11] Y. Guo, G. Poulton, G. James, P. Valencia, V. Gerasimov, and
J. Li, “Designing stable structures in a multi-agent self-assembly sys-
tem,” in Intelligent Agent Technology, 2004. (IAT 2004). Proceedings.
IEEE/WIC/ACM International Conference on, 2004, pp. 405–408.

[12] Y. Kayama, “Network view of binary cellular automata,” in Cellular
Automata for Research and Industry, ser. Lecture Notes in Computer
Science Volume 7495. Springer Verlag, 2012, pp. 224–233.

[13] M. Bidlo and Z. Vasicek, “Evolution of cellular automata using
instruction-based approach,” in 2012 IEEE World Congress on Compu-
tational Intelligence. IEEE Computer Society, 2012, pp. 1060–1067.

[14] G. Tempesti, “A new self-reproducing cellular automaton capable of
construction and computation,” in Advances in Artificial Life, Proc. 3rd
European Conference on Artificial Life, ser. Lecture Notes in Artificial
Intelligence, vol. 929. Springer Verlag, 1995, pp. 555–563.

1185

Authorized licensed use limited to: Brno University of Technology. Downloaded on September 08,2022 at 16:25:16 UTC from IEEE Xplore. Restrictions apply.

Appendix II

58

Appendix III

Evolving Multiplication as
Emergent Behavior in Cellular
Automata Using Conditionally
Matching Rules

BIDLO Michal

In: 2014 IEEE Congress on Evolutionary Computation (CEC 2014). Beijing: IEEE Com-
putational Intelligence Society, 2014, pp. 2732-2739. ISBN 978-1-4799-1488-3.

Conference CORE rank in the year of publication: B

59

Evolving Multiplication as Emergent Behavior
in Cellular Automata Using Conditionally Matching Rules

Michal Bidlo

Abstract— In this paper a special representation technique
called conditionally matching rules will be applied in order to
design computational processes in uniform cellular automata.
The goal is to verify abilities of this approach in combination
with genetic algorithm on the problem of disigning various
cellular automata that exhibit a given computational process.
The principle of a computational process in a cellular automa-
ton is to interpret some cells as input bits and some (possibly
other) cells as output bits (i.e. the result of the computation).
The genetic algorithm is applied to find a suitable transition
function of a cellular automaton according to which the given
computation could be observed during its development for all
the possible binary combinations stored in the input cells. Both
the input values and the result is represented by state values of
cells. The input of the computation will be represented by the
initial state of the cellular automaton. After a finite number
of development steps the cells representing the output bits
are expected to contain the result of the computation. A set
of experiments will be performed considering various setups
of the evolutionary system and arrangements of the target
computation. It will be shown that non-trivial computations
can be realized in a uniform two-dimensional cellular array.

I. INTRODUCTION

Cellular automata (CA) represent a biologically inspired
dynamical system with a discrete time and space. Cells
represent basic computational elements of a CA. At a given
moment each cell possesses a value representing its state
from a finite set of states. The cell states can be considered as
data (information) units processed by the cellular automaton.
The concept of cellular automata was originally invented by
Ulam and von Neumann in 1966 [1] for studying the behavior
of complex systems.

A two-dimensional (2D) cellular automaton consists of
a regular grid of cells that are arranged into a regular
matrix (mesh). In each (discrete) developmental step of the
CA the states of all the cell are updated synchronously in
parallel according to a local transition function. The next
state of a given cell depends on the combination of states
in its neighborhood (including the cell itself). A sequence of
updating the cell states during discrete time steps represents
development of the cellular automaton.

For the purposes of this paper the following concept
of the cellular automata will be considered. The cellular
neighborhood of each cell is represented by a 9-tuple (3x3
cells) consisting of the investigated (central) cell and its
immediate neighbors in the horizontal, vertical and diagonal
directions. Since only finite-size cellular automata can be
practically implemented, boundary conditions will be defined

Michal Bidlo is with the Faculty of Information Technology, Brno Uni-
versity of Technology, IT4Innovations Centre of Excellence, Božetěchova
2, 61266 Brno, Czech Republic, email: bidlom@fit.vutbr.cz.

for the cells at the border of the cellular mesh. In this paper
zero boundary conditions will be applied which means that
non-existing neighbors of the border cells are considered as
notional cells in a permanent state 0.

Conventionally the local transition function is represented
by a table that specifies the next state of a cell for all the pos-
sible combinations of states in its neighborhood. However, if
the number of cell states or the size of the cellular neighbor-
hood increases, then the number of such combinations grows
exponentially and thus the representation and design of the
transition function becomes a challenging task.

In order to overcome this issue, a new technique for repre-
senting the transition functions was introduced by Bidlo et al.
and called as Conditionally Matching Rules (CMR) [2]. This
approach is fundamentally inspired by the conventional table-
based representation. It means that the CMR encoding allows
to specify the transition rules as usual in the table-based
approach but, in addition to that, more general rules can
be formulated whose interpretation covers several common
rules in a single CMR. In particular, a conditionally matching
rule consists of a conditional part and a next state. The
conditional part encodes a series of pairs — a condition
function and a state value — whose number corresponds
to the number of cells in the cellular neighborhood. The
structure of a CMR is illustrated in the upper part of Figure
1. A local transition function of a CA consists of a finite
sequence of conditionally matching rules. The process of
determining the next state of a cell using the CMR-based
transition function is the following. The CMRs are evaluated
sequentially one after another until a CMR matches the states
in the cellular neighborhood. In order to determine a CMR
match, each rule of its conditional part is evaluated with
respect to the corresponding cell state in the neighborhood
(see Figure 1). If all the conditions are satisfied, then the next
state from the matching CMR represents the result of the
transition function (i.e. the new state of the investigated cell)
and none of the remaining CMRs in the sequence needs to
be evaluated. If none of the CMRs representing the transition
function matches, then the cell keeps its current state. The
experiments showed that if the CMR approach is utilized
to represent transition functions, then more complex cellular
automata can be effectively evolved in comparison with the
traditional representation [2]. Hence the advanced features
and abilities of the CMR representation are worth the next
investigation.

In addition to a wide range of applications utilizing cellular
automata to solve some specific tasks (e.g. modeling com-
plex biological and physical systems, artificial live, random
number generation and many others [3]), cellular automata

2732

2014 IEEE Congress on Evolutionary Computation (CEC)
July 6-11, 2014, Beijing, China

978-1-4799-1488-3/14/$31.00 ©2014 IEEE

Authorized licensed use limited to: Brno University of Technology. Downloaded on September 08,2022 at 16:25:51 UTC from IEEE Xplore. Restrictions apply.

Appendix III

60

Fig. 1. Structure and interpretation of a conditionally matching rule

also represent a platform to perform computations. Various
concepts of computation performed in cellular automata
have been studied both theoretically and practically (i.e.
using real implementations in FPGAs or as application-
specific circuits [4][5]). The importance of undertaking such
kind of research is motivated especially by the fact that
cellular automata represent (in many cases) homogeneous
and massive parallel computing platform with typically local
interactions of cells. The issue of homogeneity may be
important in a process of designing large systems whose
elements (computational units – cells), for example, perform
a given function that, in cooperation with each other, realizes
a specific (emergent) behavior. An advantage of such system
may be its scalability (it is easy to connect additional cells
with the same function) or a possibility of repair in case of a
cell failure. Advanced concepts may consider specializations
of different cells during the system functioning. This idea
is mostly inspired by multicellular (biological) systems in
which a target organism can grow during its life and the cells
change their kind with respect to a location in the organism
or on the basis of external conditions. Some studies and
applications of these issues (in a more general conception
referred as computation development) were published in [6].
Computational universality of cellular automata was proven
for the first time by their inventor John von Neumann in [1].
His CA worked with 29 cell states which was later reduced
to 8 states by Codd [7]. Lindgren and Nordahl demonstrated
that even 1D cellular automaton can be utilized as universal
computing platform (i.e. a platform that is able to simulate
the computation using Turing machine). They proposed a
proof of universality for the 7-state 1D CA with 3-cell
neighborhood and 4-state 1D CA with 5-cell neighborhood
[8]. Sipper showed that 2D binary non-uniform cellular
automata are able to perform computations by demonstrat-
ing how to realize computationally complete set of logic
functions and their interconnection [4]. Uniform 2D binary
cellular automaton was demonstrated to be a computationally
universal platform using the popular Conway’s Game of

Life rules [9]. The idea was to utilize some “living” cell
structures like glider guns, gliders, periodic patterns etc. to
simulate the computational process of Turing machine. These
structures represent a means for implementing basic logic
gates, synchronization mechanism and memory elements
which represent fundamental components of a universal
computer. Another interesting computationally universal 2D
CA is represented by the rules of Langton’s ant [10]. His
CA represents a model with simple transition rules that
is able to exhibit complex emergent behavior. A proof of
universality of Langton’s ant was proposed in [11]. Other
(not necessarily universal) cellular automata able to perform
specific compatational tasks were also published (e.g. Lang-
ton’s loop implementing self-replication [12], Tempesti loop
which added an ability of construction [13] and others).

The goal of this paper is to show that various CA setups
together with some appropriate evolutionary system setups
are able to design transition functions allowing us to perform
a specific computational task in the CA. In particular, we
propose two sets of condition functions for the CMR in
combination with various input and output cell arrangements
in order to design CA whose development exhibits 2x2-
bit multiplication. The objective of studying various CMR
setups is to determine how the different sets of condition
functions influence the ability of the evolutionary algorithm
to find a solution of a given task in cellular automata. The
experiments will be evaluated with respect to the success rate
and computational effort of the evolutionary design process.
Features and abilities of the obtained results will be discussed
with respect to a future research.

II. SETUP OF CONDITIONALLY MATCHING RULE

The original concept of the conditionally matching rules
introduced in [2] considered ordinary relational operators
equal to (==), not equal to (! =), greater or equal than
(>=), less or equal than (<=) and a don’t care mask (?)
as the set of conditions. In case of binary cellular automata,
where the state of a cell can be either 0 or 1, each condition
in a CMR actually represent a function with two binary
inputs (where one bit represents the state of a cell from the
cellular neighborhood, the other is a state value specified
in the conditional part). The function calculates a single-bit
output indicating whether the given part of the CMR matches
the corresponding cell state. Table I shows results of the
aforementioned functions for all their possible input values.

Since there are 4 possible input combinations, 24 = 16
different functions exist in total which could be used as
condition functions in CMRs. Our previous experiments
showed that it is not suitable to consider all the 16 functions
because the space of the transition functions becomes very
huge and the problem of finding a specific behavior of the
CA represents a challenging task. Therefore, the selection
of a subset of condition functions represents a reasonable
solution. However, the main question is how to select this
subset for the CMR in order to allow efficient design of
transition functions for cellular automata. In [2] it was
demonstrated that the subset of functions summarized in

2733

Authorized licensed use limited to: Brno University of Technology. Downloaded on September 08,2022 at 16:25:51 UTC from IEEE Xplore. Restrictions apply.

Appendix III

61

TABLE I
THE TRUTH TABLE FOR THE ORIGINAL CONDITION FUNCTIONS ==, ! =,

>=, <= AND A DON’T CARE ?. IF THE RESULT OF A CONDITION

FUNCTION IS 1, THEN THE APPROPRIATE CELL STATE MATCHES THE

STATE SPECIFIED IN THE CONDITIONAL PART WITH RESPECT TO THIS

FUNCTION. SCELL DENOTES THE STATE OF A CELL IN THE CELLULAR

NEIGHBORHOOD, SCMR REPRESENTS THE STATE SPECIFIED WITHIN A

CONDITION IN THE CMR.

Inputs to condition function Condition function
SCELL SCMR == ! = ≤ ≥ ?

0 0 1 0 1 1 1
0 1 0 1 1 0 1
1 0 0 1 0 1 1
1 1 1 0 1 1 1

Table I represents one of the possible choices in order to
achieve non-trivial behavior in binary 2D cellular automata.
This subset was chosen experimentally on the basis of
analyzing the target CA behavior (the replication and pattern
transformation task).

In order to determine whether a more suitable subset
of condition functions exists, the following approach was
considered for the experiments presented in this paper. There
are in total 216 = 65536 different subsets considering the
complete set of 16 condition functions. It is possible to per-
form exhaustive search through all the subsets and evaluate
the number of different functions that can be realized using
the proposed CMR-based representation. For the purposes of
this paper, the problem of calculating single-output binary
functions with 9 inputs was considered in order to evaluate
each subset of the condition functions. In fact, this setup
is identical to exploring transition functions for 2D uniform
binary cellular automata with 9-cell Moore neighborhood.
Since it is impossible to perform in a reasonable time the
exhaustive search of all tle possible 9-input functions, the
evaluation was performed by generating 1 billion random
samples of CMR sequences (considering the number of
CMRs from 1 to 8). This experiment showed that one of
the highest numbers of different functions can be generated
using the subset of condition functions summarized in Table
II. As evident, the resulting subset of condition functions
contains, in addition to the relational operators <= and
>=, the identity function of the cell state (let us denote
it as id(SCELL) where SCELL represents the cell state),
the negation of SCELL (not(SCELL)) and does not contain
don’t care mask (?). Note that in this experiment no specific
function (or CA behavior) was required, only the number of
various functions was observed. The goal of this experiment
was to identify a subset of condition functions for the CMR
representation that would be potentially able to solve as wide
set of tasks as possible.

Figure 2 shows an example of transition function repre-
sented by three conditionally matching rules. The CMRs
utilize the condition functions from Table II. In order to
determine the next state of the investigated cell (denoted by
the thick rectangle in Figure 2), the CMRs are evaluated

TABLE II
THE TRUTH TABLE FOR A NEW SET OF CONDITION FUNCTIONS THAT

MAY POTENTIALLY BE ABLE TO GENERATE A WIDER RANGE OF

FUNCTIONS USING THE CMR REPRESENTATION.

Inputs to condition function Condition function
SCELL SCMR id(SCELL) not(SCELL) ≤ ≥

0 0 0 1 1 1
0 1 0 1 1 0
1 0 1 0 0 1
1 1 1 0 1 1

sequentially one after another in order to find a CMR that
matches the state of the cellular neighborhood. For the CMR
#1 it can be seen that condition (2) — the identity function
— does not match because the state of cell (2) in the
neighborhood has state 0. Therefore, CMR #1 can not be
applied to determine the next state. Considering the CMR #2,
it can be verified that this CMR fulfills all its conditions with
respect to the states in the cellular neighborhood (the rule (1)
satisfies the condition SCELL >= 1 because SCELL(1) = 1,
the rule (2) after its evaluation matches the state of cell (2)
because not(SCELL(2)) = not(0) = 1 and so on). Therefore,
the CMR #2 will be applied to determine the next state of
the investigated cell, i.e. its new state will be 0.

Fig. 2. Example of a transition function represented by conditionally
matching rules. Note that the identity function (id) and negation (not) do not
need any state value in the conditional part of the CMR because the decision
of matching their part of CMR is based only on evaluating the appropriate
cell state in the cellular neighborhood. The thick rectangle denotes the cell
for which the new state ought to be calculated.

III. EVOLUTIONARY SYSTEM SETUP

Genetic algorithm (GA) was utilized for the evolution of
CMR-based transition functions in order to realize 2x2-bit
multiplication in 2D uniform binary cellular automata.

The population consists of 16 individuals (chromosomes)
that are initialized randomly at the beginning of the evo-
lutionary process. Each chromosome represents a candidate
transition function represented as a finite sequence of CMRs.

2734

Authorized licensed use limited to: Brno University of Technology. Downloaded on September 08,2022 at 16:25:51 UTC from IEEE Xplore. Restrictions apply.

Appendix III

62

The structure of each CMR is identical to that shown in
the top part of Figure 1. Each CMR is encoded as a finite
sequence of integers representing the conditional parts (i.e.
the states and condition functions) and the next state.

The fitness function implements the following multipli-
cation scheme in the cellular automata for evaluating the
chromosomes. A binary input test vector (representing the
operands to be multiplied) is generated into the given cells
(let’s call them the input cells) as the initial state of the CA.
For 2x2-bit multiplication there are 4 input cells, i.e. two 2-
bit operands. All the other cells are initialized by the state
0. Now the CA performs 16 development steps according
to the transition function encoded in the chromosome after
which the result of multiplication is verified as a sequence of
states of the given (output) cells. For 2x2-bit multiplication
there are 4 output cells, i.e. a 4-bit product. The fitness value
is increased by one for every correct bit of the result with
respect to the input vector. The evaluation is performed for
all the possible input test vectors. For 2x2-bit multiplication
there are n = 24 = 16 input test vectors and p = 4 bits of
the product. Therefore, the maximal fitness for the 2x2-bit
multiplication Fmult = n× p = 16× 4 = 64. Moreover, we
required the cells of the result to keep the states representing
the product during the subsequent CA development. Hence
the cell states representing the product are compared to the
values after performing one more step of the CA for each
of the input test vectors. If all the output cells keep their
resulting states, the fitness is increased by one. Note that the
input values are usually modified during the CA development
(there is no requirement to keep them within the input cells).
The maximal value of the complete fitness can be expressed
as Fmax = Fmult + n = 64 + 16 = 80.

Each step of the evolution is performed by generating
offspring from parent chromosomes using a mutation op-
erator until an entire new population is created. The parent
chromosome is selected using tournament operator out of T
chromosomes randomly chosen from the actual population,
i.e. the fittest individual from the group of T chromosomes
becomes the parent. The parameter T is referred to as
the base of the tournament selection operator. The parent
undergoes mutation as follows. A random integer M in the
range from 1 to 4 is generated. Then M random positions
within the parent chromosome are selected. The offspring
is created by replacing the actual genes at these positions
by new randomly generated values. No crossover operator is
applied.

In order to explore the possibilities of realizing the pro-
posed multiplication scheme, several sets of experiments
were performed considering various setups. The two sets
of condition functions presented in Table I and II were
investigated within the evolutionary process. The GA was
parametrized by the base of the tournament operator for T =
2, 4, 6, 8. The number of CMRs (#CMRs) of the transition
function was considered for #CMRs = 6, 8, 10, 12. For
each combination of these parameters, several setups of the
input and output cells were considered as shown in Figure

Fig. 3. The setups for input and output cell arrangements in cellular
automata: (a) separated, (b) alternating, (c) diagonal, (d) shared. In each
of the setups, a and b denote the input cells whose states represent values
for the 2-bit operands, p denote the output cells in which the resulting
product is expected after the CA development. Note that in the shared setup
(d) the result is expected in the same cells as the input operands.

3. The cellular automaton consisting of 10x10 cells was
used for the evaluation of the chromosomes. The structure
containing the input and output cells is located in the middle
of the CA. The reason for choosing larger CA is not to strictly
limit the computation process by the boundary conditions
(required for finite-size CAs).

For each set of experiments (specified by the aforemen-
tioned parameters and cell setups) 100 independent evolu-
tionary runs were performed. The evolution is terminated if
the desired behavior of the candidate CA is observed (i.e. a
chromosome with the maximal fitness value is found) or if
a limit of 100 thousands generations is reached.

IV. EXPERIMENTAL RESULTS

In this section we propose an overview of the experimental
results obtained from the evolutionary system described in
Section III. For each set of experiments the success rate and
computational effort (measured as the number of generations
of the GA needed to find a solution) were evaluated. The
experiments showed that it is possible to realize the given
computational task in uniform 2D binary cellular automata.
We also determined that the required behavior discovered by
the evolution may not be limited to a specific CA size.

The results of evolution using the original condition func-
tions from Table I are shown in Table IIIa. The results
of the application of the new set of condition functions
from Table II are summarized in TableIIIb. In each set of
experiments the success rate and computational effort of
the evolutionary process was investigated with respect to
the base of tournament selection (T) and the number of
conditionally matching rules (#CMRs) of the transition
function. As the results show for both sets of the condition
functions, the success rate tends to increase with increasing
the #CMRs which indicates that although a larger search
space is needed to explore (with potentially higher amount
of target solutions), then the evolution is able to explore it
effectively and in many cases even with less computational
effort (expressed by the number of generations Avg.#gen).
Similar trend can also be observed for the increasing the
base of tournament selection T . This parameter actually
increases the selection pressure during evolution (the higher
the T the higher the selection pressure) which means that the
individuals with higher fitness are able to generate offspring
chromosomes towards the target solutions within the search

2735

Authorized licensed use limited to: Brno University of Technology. Downloaded on September 08,2022 at 16:25:51 UTC from IEEE Xplore. Restrictions apply.

Appendix III

63

TABLE III
STATISTICAL RESULTS OF THE EVOLUTIONARY EXPERIMENTS PERFORMED FOR VARIOUS NUMBERS OF CONDITIONALLY MATCHING RULES

(#CMRs) AND VARIOUS BASE VALUES OF THE TOURNAMENT SELECTION IN GA (T). THE SUCCESS RATE (Succ.) AND AVERAGE NUMBER OF

GENERATIONS (Avg.#gen) NEEDED TO FIND A WORKING SOLUTION WERE MEASURED. Std. dev. DENOTE THE STANDARD DEVIATION CALCULATED

FROM THE NUMBER OF GENERATIONS OF THE SUCCESSFUL EVOLUTIONARY RUNS.

space. However, the comparison of the results in Table III
shows that in most cases the success rate is lower for the
new set of condition functions from part (b) in comparison
with the original set – part (a). This result is surprising
because the new function set was evaluated to be able to
realize a wide range of functions as described in Section II.
Therefore, it is not possible to conclude that this function
set would be generally more efficient than other sets. The
lower success rate may be caused by the fact that the new

function set in combination with the CMR approach repre-
sents a search space in which the target functions (regarding
the multiplication task) are rather rare in comparison with
the original set of condition functions. The optimal set of
condition functions is thus evidently specific for a particular
problem. Therefore, a more suitable function set may exist
for solving the multiplication problem in cellular automata.
However, to discover such optimal set still remains an open
question.

2736

Authorized licensed use limited to: Brno University of Technology. Downloaded on September 08,2022 at 16:25:51 UTC from IEEE Xplore. Restrictions apply.

Appendix III

64

Fig. 4. Example of an evolved CA development performing the multipli-
cation 3 × 3 = 9. White cell in the CA represents the state 0, black cell
represents the state 1. The input operands as well as the resulting product are
considered in direct binary representation using the cell states (the operands
a = b = (11)bin = (3)dec, the product p = (1001)bin = (9)dec). Both
the operand bits and product bits are interpreted from MSB to LSB as from
left to right.

Fig. 5. Example of a CMR-based transition function discovered by
GA using the function set from Table II. This transition function realizes
multiplication in the CA from Figure 4. One row in this figure represents a
CMR. The converted table-based representation consists of 31 conventional
rules.

Nonetheless, both the proposed sets of condition functions
allowed us to find some working solutions for different
input and output cell configurations illustrated in Figure
3. As evident from Table III, the success rate is highly
influenced by the cell setup. It can be seen that the highest
success rates (greater than 60%) were achieved using the
shared and alternating cell setups. The other setups (diagonal
and separated) exhibit substantially lower success rates. The
following reasons may be given for this result. If the input
and output cells are close to each other, then the CA needs
less steps to produce the result (i.e. the input values can be
processed rather locally). On the other hand, if the inputs are
distributed in a larger area or if the result is expected away
from the inputs, then a more complex transition function
is needed in order to process the inputs and transfer the
resulting values to the output cells (the CA needs more steps
to produce the result).

Figure 4 shows an example of evolved CA development
performing the multiplication of two 2-bit operands. The ap-
propriate CMR-based transition function discovered by GA
is shown in Figure 5. The CA was initialized by the operand
values within the input cells according to the shared cell
setup shown in Figure 3d. In this case the CA needs 4 steps
to produce the final product. As evident from Figure 4, the
state of the output cells become stable during the subsequent
CA development as required within the evolutionary process.
In addition to the fact that the CA provides correct results
for all the possible input operands, its development seems
chaotic. However, an interesting emergent behavior can be
observed when a larger CA is considered. For example, a
final state of a 40x40-cell CA after the 30th development
step is shown in Figure 6 with the input/output cells marked
by p. The same task (i.e. to calculate the expression 3 × 3)
was considered according to the setup from Figure 3d and
the evolved transition function from Figure 5. Interestingly,
the global CA behavior is similar to that produced by some
typical rules of the elementary 1D cellular automata (for
example, using the rules 22, 122 or 126 according to Wolfram
code [3]). In our case, the pattern in Figure 6 was generated
within a 2D CA by a successive “growth” of the cells
upwards, developing a structure very similar to Sierpinski
triangle. Although this structure can be obtained in a 1D
CA using relatively simple rules from an initial seed, the
transition functions obtained in this paper do not seem to
be trivial. Similar emergent behavior can be observed within
the development from a random initial state in a CA with
enough area of 0-state cells available above the randomly
initialized cells (see Figure 7). One of the open questions
related to this issue is whether such emergent behavior could
provide us with some advantages to perform (advanced) CA-
based computation (e.g. using a specific operand encoding or
interpretation of the CA development).

Another example of a successful multiplication in CA is
illustrated in Figure 8 using the diagonal cell setup according
to Figure 3c. This CA was discovered using the set of
condition functions from Table I, the evolved transition
function is shown in Figure 9. In this case the CA needs
10 steps to produce the result. After stabilizing the states of
the output cells, the CA development exhibits an emergent
pattern expanding from top to bottom and from left to right.
In addition, a simple vertical line of state-1 cells grows
upwards. We have determined that the number of those
vertical lines depends on the number of 1’s in the resulting
product. This growing structure is very important in this
particular CA because it contains the crucial states of the
result. An example of the multiplication 3× 3 = 9 is shown
in Figure 10. As evident there are two 1s in the resulting
product ((9)dec = (1001)bin) so that two state-1 lines grow
upwards. The emerging pattern can be observed in the bottom
part of Figure 10.

V. CONCLUSIONS

This paper presented a continuation of research regarding
the evolutionary design of 2D uniform cellular automata

2737

Authorized licensed use limited to: Brno University of Technology. Downloaded on September 08,2022 at 16:25:51 UTC from IEEE Xplore. Restrictions apply.

Appendix III

65

Fig. 6. The state of the 40x40-cell CA after the 30th development step
performing the same multiplication task as shown in Figure 4 according
to the transition function from Figure 5. The output cells containing the
resulting product are denoted by p. These four cells were also initialized
before the CA development by the values of the input operands. This is a
final stable state of the CA that does not change anymore.

Fig. 7. An emergent pattern developed by 2D CA from some randomly
initialized cells at the bottom of the cellular array. The CA develops
according to the evolved transition function from Figure 5.

Fig. 8. Example of the development of CA performing the multiplication
2 × 2 = 4 using a diagonal input and output cell arrangement. White cell
in the CA represents the state 0, black cell represents the state 1. The input
operands are considered in the direct binary representation using the cell
states (a = b = (10)bin = (2)dec, the product p = (0100)bin = (4)dec).
The operand bits are interpreted at the main diagonal from MSB to LSB
(from top-left to bottom-right), the product is interpreted at the antidiagonal
from MSB to LSB (from bottom-left to top-right).

Fig. 9. Example of a CMR-based transition function discovered by
GA using the function set from Table I. This transition function realizes
multiplication in the CA from Figure 8. One row in this figure represents a
CMR. The converted table-based representation consists of 73 conventional
rules.

2738

Authorized licensed use limited to: Brno University of Technology. Downloaded on September 08,2022 at 16:25:51 UTC from IEEE Xplore. Restrictions apply.

Appendix III

66

Fig. 10. Emergent behavior of the CA controlled by the transition function
from Figure 9. The result of the product 3 × 3 = 9 is shown within the
cells marked by two dots in the upper-left part of the CA. The diagonal cell
setup was considered according to Figure 3c.

using conditionally matching rules. We focused on a case
study whose objective was to design CA that are able to
perform multiplication of two 2-bit operands. Several sets
of experiments were presented considering various setups of
both the evolutionary system (using the genetic algorithm)
and cellular automata. In particular, two different sets of
condition functions for realizing the transition rules of the
CA were investigated in combination with various input and
output cell arrangements in the CA. The experiments showed
that the success rate of discovering a working solution is
highly dependent on that cell arrangement. Moreover it
also depends on the set of functions considered for the
conditionally matching rules. Surprisingly, the experiments
exhibit lower success rate in case of the condition functions
that were identified in a separate experiment as potentially
promising to solve a wide range of tasks. However, all
sets of experiments provided some working solutions with
interesting features.

The first is that the evolved transition functions are not
limited to a CA of a specific size (i.e. the considered multi-
plication task may perfectly be solved in a larger CA even
with more areas with the input and output cell structures).
The second interesting phenomenon is the emergent global
behavior (developed patterns) of the resulting CA in which
a well-organized structures can be observed in addition to
the primary computational task. A detailed analysis of some
evolved results showed that such well-organized patterns of
various complexity is a common feature of CA exhibiting the
required computation. An interesting fact of these patterns is
that they are very similar to some typical structures generated
by one-dimensional cellular automata.

One of the questions that may arise from this investigation
may be whether the process of multiplication could be
simplified or optimized (e.g. to minimize the number of
rules of the converted conventional transition function). Since
massive parallel and homogeneous platforms may be very
important in the future (especially in nanotechnology, molec-
ular computing systems and similar areas), the principles of
elementary approaches to studying the design, optimization
and functioning of such systems are definitely worth the
subsequent research.

The observations from the obtained results propose some
issues for the future research in this area. For example,
the selection of optimal set of condition functions in order
to effectively design CA for solving a specific task still
represents a challenging task. The in-depth analysis of the
evolved functions and the possibilities of their applications
in a wider context of the cellular platforms will also be
investigated. Our ongoing experiments are devoted to the
research of conditionally matching rules for efficient design
of non-binary cellular automata.

ACKNOWLEDGEMENTS

This work was supported by the Czech Science Foun-
dation project 14-04197S, BUT project FIT-S-14-2297
and the IT4Innovations Centre of Excellence project
CZ.1.05/1.1.00/02.0070, funded by the European Regional
Development Fund and the national budget of the Czech
Republic via the Research and Development for Innovations
Operational Programme, as well as Czech Ministry of Ed-
ucation, Youth and Sports via the project Large Research,
Development and Innovations Infrastructures (LM2011033).

REFERENCES

[1] J. von Neumann, The Theory of Self-Reproducing Automata. A. W.
Burks (ed.), University of Illinois Press, 1966.

[2] M. Bidlo and Z. Vasicek, “Evolution of cellular automata with con-
ditionally matching rules,” in 2013 IEEE Congress on Evolutionary
Computation (CEC 2013). IEEE Computer Society, 2013, pp. 1178–
1185.

[3] S. Wolfram, A New Kind of Science. Champaign IL: Wolfram Media,
2002.

[4] M. Sipper, Evolution of Parallel Cellular Machines – The Cellular
Programming Approach, Lecture Notes in Computer Science, volume
1194. Berlin: Springer-Verlag, 1997.

[5] G. Tufte and P. C. Haddow, “Towards development on a silicon-based
cellular computing machine,” Natural Computing, vol. 4, no. 4, pp.
387–416, 2005.

[6] S. Kumar and P. J. Bentley (eds.), On Growth, Form and Computers.
Elsevier Academic Press, 2003.

[7] E. F. Codd, Cellular Automata. Academic Press, New York, 1968.
[8] K. Lindgren and M. G. Nordahl, “Universal computation in simple

one-dimensional cellular automata,” Complex Systems, vol. 4, no. 3,
pp. 299–318, 1990.

[9] E. R. Berlekamp, J. H. Conway, and R. K. Guy, Winning Ways for
Your Mathematical Plays, Vol. 2. A. K. Peters/CRC Press, 1982.

[10] C. G. Langton, “Studying artificial life with cellular automata,” Phys-
ica D: Nonlinear Phenomena, vol. 22, no. 1–3, pp. 120–149, 1986.

[11] A. Gajardo, A. Moreira, and E. Goles, “Complexity of langton’s ant,”
Discrete Applied Mathematics, vol. 117, no. 1–3, pp. 41–50, 2002.

[12] C. G. Langton, “Self-reproduction in cellular automata,” Physica D:
Nonlinear Phenomena, vol. 10, no. 1–2, pp. 135–144, 1984.

[13] G. Tempesti, “A new self-reproducing cellular automaton capable of
construction and computation,” in Advances in Artificial Life, Proc. 3rd
European Conference on Artificial Life, ser. Lecture Notes in Artificial
Intelligence, vol. 929. Springer Verlag, 1995, pp. 555–563.

2739

Authorized licensed use limited to: Brno University of Technology. Downloaded on September 08,2022 at 16:25:51 UTC from IEEE Xplore. Restrictions apply.

Appendix III

67

Appendix IV

On Routine Evolution of Complex
Cellular Automata

BIDLO Michal

In: IEEE Transactions on Evolutionary Computation, vol. 20, no. 5, 2016, pp. 742-754.
ISSN 1089-778X.

Journal Impact Factor in the year of publication: 10.629; This work was awarded
by Silver Medal in 2016 Annual “Humies” Awards For Human-Competitive Results1,
a prestigious international competition held as a part of the Genetic and Evolutionary
Computation Conference (GECCO), Denver, CO, US, 2016.

1 http://gecco-2016.sigevo.org/index.html/Humies.html
https://www.human-competitive.org/awards

68

http://gecco-2016.sigevo.org/index.html/Humies.html
https://www.human-competitive.org/awards

742 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 20, NO. 5, OCTOBER 2016

On Routine Evolution of Complex
Cellular Automata

Michal Bidlo

Abstract—This paper discusses a special technique, called con-
ditionally matching rules (CMRs), for the representation of
transition functions of cellular automata (CA) and its application
to the evolutionary design of complex multistate CA. The problem
of designing replicating loops in 2-D CA and the square calcula-
tion in 1-D CA will be treated as case studies. It will be shown
that the evolutionary algorithm in combination with CMRs is
able to successfully solve these tasks and provide some innova-
tive results compared to existing solutions. In particular, a novel
replication scheme will be presented that exhibits a higher repli-
cation speed in comparison with the existing replicating loops. As
regards the square calculation, some results have been obtained
that allow a substantial reduction of the number of steps of the
cellular automaton against the currently known solution. The uti-
lization of the CMRs in the proposed experiments represents the
first case of a successful automatic evolutionary design of com-
plex CA for solving nontrivial problems in which the existing
conventional approaches have failed.

Index Terms—Cellular automaton, evolutionary
algorithm (EA), replicating loop, square calculation.

I. INTRODUCTION

S INCE the introduction of cellular automata (CA) in [1],
researchers have dealt with the problem of how to effec-

tively design a cellular automaton (and its transition func-
tion in particular) to solve a given task. Although many
successful applications of CA have so far been presented
in various domains (e.g., concerning artificial life [2], [3],
nano-computing [4], image processing [5], [6], molecular
simulations [7], or even the utilization of DNA (deoxyribonu-
cleic acid) molecules to constructing nano-scale CA-based
computing devices [8] including some applications of this
concept [9]), the process of designing suitable rules to solve
specific problems in CA still represents a difficult task.

This paper deals with the evolutionary design of CA using
a special representation technique referred to as condition-
ally matching rules (CMRs). The basic structure of a cellular
automaton assumes a regular structure of cells, each of which

Manuscript received June 4, 2015; revised September 17, 2015 and
December 20, 2015; accepted December 24, 2015. Date of publication January
8, 2016; date of current version September 30, 2016. This work was supported
in part by the Czech Science Foundation through the Advanced Methods for
Evolutionary Design of Complex Digital Circuits project GA14-04197S.

The author is with the IT4Innovations Centre of Excellence, Faculty
of Information Technology, Brno University of Technology, Brno 61266,
Czech Republic (e-mail: bidlom@fit.vutbr.cz).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TEVC.2016.2516242

at a given moment occurs in a state from a finite set of states.
The behavior (or development) of a CA will be considered as a
synchronous update of the cell states according to a transition
function in discrete time steps. It will also been assumed that
the states are discrete (integer) values. The transition function
determines the next state of a cell depending on the combina-
tion of states in a cellular neighborhood that includes the cell
to be updated and its neighbors. There are two fundamental
concepts of CA as regards its transition function.

1) The basic (uniform) CA work with cells that share a
single transition function. In this case, the transition
function of a cell can be considered as the transition
function of the CA.

2) The nonuniform concept allows individual cells to deter-
mine their states according to different (local) transition
functions.

In both cases the behavior of the CA arises from a cooperative
update of all its cells during a sequence of development steps.
The design of a suitable (efficient) transition function repre-
sents a key process aimed at achieving the desired behavior of
a CA. The cellular neighborhood is defined uniformly for each
cell and its form primarily depends on the dimension of the
CA. In this paper, 1-D and 2-D uniform CA will be consid-
ered whose behavior is controlled by a deterministic transition
function and the cellular neighborhood is defined as follows.
In the case of the 1-D CA the neighborhood of each cell is
composed of the given cell and its immediate left and right
neighbor (a three-cell neighborhood). Regarded as the cellu-
lar neighborhood of the 2-D CA will be the given cell and its
immediate neighboring cells in the north, south, east, and west
directions (a five-cell neighborhood). Cyclic boundary condi-
tions will be applied due to the limitation of the CA size to
a finite number of cells only for practical implementations.
This means that the left-most and right-most cells in the 1-D
CA are considered as neighbors and similarly, in the case of
the 2-D CA, the opposite cells at the boundary of the cellular
array in both dimensions are considered as neighbors. The CA
will be assumed to work with more than two cell states and
referred to as multistate CA.

A. Overview of Cellular Automata Literature

Many CA-based systems were successfully designed using
analytical methods (for example, for the investigation into
computational properties of the CA and construction of
computing systems [10]–[15], development of replicating
structures [16]–[19], or solving some specific mathematical
operations and benchmarks in the cellular space [20]–[24]).

1089-778X c© 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Authorized licensed use limited to: Brno University of Technology. Downloaded on September 08,2022 at 16:26:22 UTC from IEEE Xplore. Restrictions apply.

Appendix IV

69

BIDLO: ON ROUTINE EVOLUTION OF COMPLEX CA 743

However, the process of determining a suitable transition
function for a given application represents a difficult task,
especially due to an enormous growth of the solution space in
dependence on the number of cell states, and due to the fact
that the process of “programming” the CA is not intuitive. In
order to overcome this issue, the aim is to automate the process
of designing (or identifying) the transition rules, using both
deterministic algorithms and other heuristics or unconven-
tional (nondeterministic) techniques, including evolutionary
algorithms (EAs).

Adamatzky [25] proposed an algorithm for the identifica-
tion of CA rules from a given series of global transformations
during a finite number of CA steps. His approach was
later improved, e.g., by combining it with learning classi-
fier systems [26] or advanced representation techniques like
polynomial representation or decision trees [27]. Holland [28],
Packard [29], and Richards et al. [30] were among the first
who applied genetic algorithm (GA) in order to adapt the tran-
sition rules. Sapin et al. [31] used an evolutionary approach
to study the problem of discovering gliders in a cellular array.
Sipper [32] proposed a special technique, called cellular pro-
gramming, for a parallel evolution of nonuniform CA, using a
modified GA in each cell. In recent years, several works were
published dealing with the design of CA using, various evo-
lutionary techniques. For example, Breukelaar and Bäck [33]
applied GA in order to evolve multidimensional uniform CA
to solve the density task and checker-board benchmarks. They
used ordinary table-based representation of the transition func-
tion and focused on tuning the GA settings, concluding that
their system performed better than that in an earlier work
published by Mitchell et al. [34]. Sapin [35] investigated the
evolutionary discovery of glider guns in CA. Elmenreich and
Fehérvári [37] proposed an original technique for calculating
the transition function of CA, using neural networks (NNs).
The goal was to train the NN by means of evolutionary pro-
gramming [36] in order to develop self-organizing structures in
the CA [37]. In addition, various advanced concepts and mod-
ifications of CA were investigated. For instance, Medernach
et al. [38] studied a heterogeneous concept of CA whose cells
utilize some advanced items like age, decay, or genetic transfer
using open-ended evolution to create an evolving ecosystem of
competing cell colonies. Bandini et al. [39] dealt with effects
in CA that may be observed by introducing asynchronous
update schemes.

As regards research into multistate CA in recent years, sev-
eral studies using various bio-inspired techniques have been
proposed. For example, in [40] a swarm intelligence algo-
rithm, called stochastic diffusion search, was applied as a tool
to identify symmetry axes in patterns generated by CA. The
results provided a deeper insight into the emergent behavior
of CA and showed some interesting features (e.g., aesthetic
qualities) of the generated patterns with potential applications
in computer graphics. Javid, al-Rifaie, and Zimmer [40] say
“a 2-D multistate cellular automaton with periodic boundary
provides an endless environment for the growth of patterns
and the observation of emergent complex behavior over the
time of evolution.” This statement indicates the importance
of (multistate) CA research since the results may provide

valuable information for the area of complex systems in gen-
eral (especially the issue of emergent behavior, which allows
using simple rules in order to achieve a complex, cooperative
global behavior). Skaruz et al. [41] published an approach to
pattern and image reconstruction, using multistate CA. They
applied the three-state 2-D CA with nine-cell neighborhood
and showed that the GA was able to discover satisfactory
transition rules to reconstruct an image with up to 70% of
damaged pixels. It is worth noting, however, that a certain
margin of error can be tolerated in the case of image pro-
cessing, which may reduce the complexity of searching for
the rules. Baetens and De Baets [42] studied the issue of
stability and defect propagation in the development of 1-D
three-state CA with three-cell neighborhood. In particular, it
was shown how the assessment of stability could be performed
using nondirectional Lyapunov exponents (based on a previ-
ous study proposed in [43]). The authors focused on a special
class, called totalistic CA, in which the rules depend only on
the total (average) of the cell states in a neighborhood.

The main focus of this paper (in comparison with the afore-
mentioned studies) is on investigating both 1-D and 2-D CA
working with at least six cell states. The transition function
(to be discovered by EA) is not limited to any specific class
of CA (i.e., any arbitrary solution is acceptable that satisfies
the conditions, i.e., the behavior specified for the CA). The
CA behavior (evaluated in the fitness function of EA) will be
exactly given (for example, as a minimal number of copies of
a specific structure required to emerge within a given finite
number of CA steps, an exact pattern to be developed from a
given initial CA state, the result of a calculation encoded in a
stable final CA state with respect to the initial state).

B. Motivation and Goals

Cellular systems demonstrated some advantageous features
in solving various problems of both application-specific and
generic nature. Although some automatic design techniques
for CA have been proposed and successfully validated on
selected case studies and benchmarks, some limitations can
be observed if a solution of a different kind or more general
problem is needed. For example, cellular programming cannot
effectively handle uniform CA that may be more interesting
from the viewpoint of the physical implementation or control
than the nonuniform model. The identification of the transi-
tion rules from a CA development sequence is not applicable
if the behavior of the CA is not known exactly. For the increas-
ing number of cell states the solution space of the CA grows
significantly, which makes the search for a suitable transition
function difficult (the problem of scale). But it is not only
for these reasons that the research into new (unconventional)
design methods and representations is still important.

Considering the recent progress in physical theory and
information technology, advanced models have been studied
involving principles from quantum theory [44], [45], nanoscale
design [46], [47], implementation on the molecular level [48],
or combination of some of these principles for the field-
programmable gate array design [49]. Another example could
be the evolution of transport networks using CA models

Authorized licensed use limited to: Brno University of Technology. Downloaded on September 08,2022 at 16:26:22 UTC from IEEE Xplore. Restrictions apply.

Appendix IV

70

744 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 20, NO. 5, OCTOBER 2016

inspired by slime mold of a large cell called Physarum poly-
cephalum [50]. This shows that CA have become a model
applicable in current interdisciplinary areas for which new
findings will be important even from the research on the
elementary level.

The following scenarios can be identified regarding the
design of transition rules for CA.

1) Identification of the Transition Rules From a CA
Analysis: This method assumes that a sequence of CA
states is known (i.e., the CA development for a finite
number of steps). The task is to identify the transition
rules according to which the cells update their states.

2) Design of the Transition Rules for Given Conditions in
CA: The exact CA behavior is not known, the task is to
design a transition function together with (a part of) the
CA development that fulfils the given requirements (e.g.,
to achieve a specific state from a known initial state, to
achieve a periodic or stable behavior, etc.). This scenario
will be considered in this paper.

The goal of this paper is to investigate the automatic evo-
lutionary design of complex multistate CA, using an EA
combined with a special technique to encode the transition
functions referred to as CMRs. In order to demonstrate the
abilities of this method, several different conditions required
and evaluated in the CA will be considered. In particular, the
problem of generic square calculation in 1-D CA will be pre-
sented as the first case study, whose results show that it is
possible to substantially reduce the number of steps needed
to calculate the square in comparison with the existing solu-
tion. The second (more complex) study will investigate the
evolution of nontrivial replication processes in 2-D CA taking
into consideration three different loop-like structures. It will
be shown that more efficient results can be generated using
the CMRs in comparison with the existing solutions. A novel
replication scheme will be presented that exhibits a higher
replication speed in comparison with the existing replicating
loops. The utilization of the CMRs in this paper represents
the first case of a successful evolutionary search for solu-
tions to problems in multistate CA for which the conventional
approaches have failed.

II. CA EVOLUTION USING CONDITIONAL RULES

For a successful CA design the representation (encoding) of
the transition function represents a key issue. This section sum-
marizes the most important representations known from the
literature and describes the principles and setup of CMRs—an
advanced representation proposed for the evolutionary design
of multistate CA—that will be considered for the experiments
in this paper.

A. Overview of Representations for Cellular Automata

A common (basic) approach to representing the transition
rules is a table-based method where a rule specifies a new
state for a given (single) combination of states in the cellular
neighborhood. For example, Packard [29], Richards et al. [30],
Sipper [32], or Breukelaar and Bäck [33] used this kind of
encoding for the evolutionary design of CA. However, the

table-based method is not suitable for multistate CA because
the complexity of designing such CA increases significantly
with increasing number of states. Therefore, advanced rep-
resentations have been investigated. Andre et al. [52], [53]
utilized genetic programming (GP) [52], in which the tran-
sition function is encoded in a tree representing a program
that calculates the updated cell states. Other specific repre-
sentations have been used for the identification of CA rules
from a sequence of global states, e.g., polynomial representa-
tions [54] or decision trees [55]. The advanced representation
techniques can provide some improvements over the basic
approach, e.g., a reduction of the size of representation
and computational complexity or increasing the modification
(manipulation) efficiency. In particular, Bidlo and Vasicek [57]
used a representation based on linear GP [56] to evolve CA and
demonstrated an increased success rate and reduced compu-
tational effort over the table-based method for the replication
and pattern development problem. However, advanced exper-
iments showed that this method was not suitable for more
complex problems in which specific transition rules need to
be applied. Therefore, the concept of CMRs was introduced
as described in the following section.

B. Conditionally Matching Rules

CMRs were introduced in [58] and their abilities demon-
strated when solving a specific kind of the replication problem
and a nontrivial pattern transformation problem in binary 2-D
CA, where the GP-based representation failed. Moreover, the
potential of this method was demonstrated by further success-
ful experiments regarding the evolution of multiplication in
the uniform 2-D cellular array [59]. The following paragraphs
describe the setup of the CMRs that will be applied to the
evolutionary design of multistate CA.

A conditionally matching rule (CMR) represents a general-
ized rule of a transition function for determining a new cell
state (in view of the table rules). Whilst, the basic transition
rule specifies a new state for a specific combination of states
in the cellular neighborhood, a single CMR may cover more
than one combination. A CMR is composed of two parts: 1) a
conditional part and 2) a new state. The number of items (size)
of the conditional part corresponds to the number of cells in
the cellular neighborhood. Let us define the condition item as
an ordered pair of a condition and a state value. The condi-
tion is typically expressed as a function whose result can be
interpreted either as true or false. The condition function eval-
uates the state value in the condition item with respect to the
state of the appropriate cell in the cellular neighborhood. In
particular, each item of the conditional part is associated with
a cell in the neighborhood with respect to which the condi-
tion is evaluated. If the result of the evaluation is true, then
the condition item is said to match with the cell state in the
neighborhood. In order to determine a new cell state according
to a given CMR, all its condition items must match (in such a
case the CMR is said to match). Fig. 1 shows an example of a
CMR defined for a 2-D CA with five-cell neighborhood where
ordinary relational operators ==, �=,≤, and ≥ are considered
as the condition functions. Note that these operators will be
considered for all the experiments presented in this paper.

Authorized licensed use limited to: Brno University of Technology. Downloaded on September 08,2022 at 16:26:22 UTC from IEEE Xplore. Restrictions apply.

Appendix IV

71

BIDLO: ON ROUTINE EVOLUTION OF COMPLEX CA 745

Fig. 1. Example of a conditionally matching rule working with four cell states
and the five-cell neighborhood. The right-most value of the CMR represents
the new state (shown in bold).

A CMR-based transition function is considered as a finite
sequence of CMRs. The algorithm of determining a new state
is the following. The CMRs are evaluated sequentially, starting
with the first CMR in the sequence. If a CMR compares the
given cellular neighborhood, then this CMR is used to deter-
mine the new state of the cell to be updated. Note that, because
of the sequential evaluation of the CMRs, it is always the first
matching CMR in the sequence. If none of the CMRs matches,
then the cell keeps its current state. This approach ensures that
the process of calculating the new state is deterministic (on the
assumption that the condition functions are deterministic too).
The aspect of determinism is important in order to preserve
the traditional concept of CA, and with respect to the applica-
tions investigated in this paper. In the case of the deterministic
CA, the process of development ensures that for a given con-
figuration the CA produces a specific behavior (result of the
development). Specifically, the result of the square calculation
has to be the same for a given value, and for the replication
of a loop it is expected the copy is the same as the original
structure. Moreover, a deterministic (CMR-based) transition
function can be transformed into a corresponding table-based
representation, which allows us to use a conventional form of
the transition rules implemented in many existing CA simula-
tors. Another advantageous feature of the CMRs is the ability
to specify conventional (table-based) rules if needed. In order
to do that, the relation == with given state values specified in
each item of the conditional part of a CMR allows specifying
a transition rule for a given (single) combination of states in
the cellular neighborhood.

An example of a 1-D CA step according to a sample
CMR-based transition function is shown in Fig. 2(a) and (b).
Note that the cell states are updated synchronously, i.e., the
cells evaluate the transition function in parallel with respect to
the actual CA state (2 1 2 3). Cell c1 will not change its state
because no CMR matches the cellular neighborhood 021. For
cell c2 only CMR r2 matches the neighborhood 212, therefore,
the new state of this cell will be 2. Cell c3 will get its new
state according to CMR r3, which matches the neighborhood
123. Finally, rules r2 and r4 match the neighborhood 230 of
cell c4, therefore CMR r2 will change the state of c4 to 2.

Considering the aforementioned example with a four-state
CA and three-cell neighborhood, the complete table of the
transition function consists of 43 = 64 rules (each rule for a
single specific combination of states in the cellular neighbor-
hood). This means there are in total 464 possible transition
functions (possibilities of what next state can be specified

(a)

(c)

(b)

Fig. 2. (a) Example of a multistate 1-D CA working with four cell
states, a three-cell neighborhood, and zero boundary conditions. Single step
performed according to a (b) CMR-based transition function is illustrated.
(c) Corresponding chromosome of this transition function together with
encoding the condition functions as integer values.

for each combination). However, the CA often involves only
a subset of rules—combinations of neighborhood states—for
which a different state is specified with respect to the current
state of the cell to be updated (these rules need to be explic-
itly specified in the transition function). For the purposes of
the evolutionary design it would be possible to shorten the
chromosomes of the EA (and thus to reduce the search space)
if the subset of explicit rules were known. Unfortunately, it
is difficult to effectively predict these rules for a given appli-
cation if the CA development is not known exactly. In order
to reduce the size of the chromosomes needed to encode the
transition function, the CMR approach was introduced. If the
example from Fig. 2 is considered (four cell states, three-cell
neighborhood, and four condition functions), each CMR can
be encoded as a 7-tuple of integers. For a transition function
consisting of four CMRs, a candidate solution can be repre-
sented by 4×7 = 28 integers, each of which may acquire four
different values. Therefore, the search space can be reduced
substantially to 428 possible solutions. Our hypothesis is that
the CMRs allow exploring more effectively the search space
and discovering solutions to some problems that were not
achieved using the conventional representation.

C. Design of CMR-Based CA Using Evolutionary Algorithm

In this paper, the search for a suitable sequence of
CMRs satisfying a given CA behavior is performed using a
population-based EA. The EA has been chosen after a long-
term experience with the CA design, and its setup is based
on that proposed in [58]. Our preliminary experiments with
this EA showed that its simple concept and computationally
efficient mutation operator represent the biggest advantages
(potentially suitable for accelerated hardware implementations
in the future). The small population size allows performing
a satisfactory amount of iterations (hundreds of thousands
to several millions, depending on the specific experiment) in
order to evolve the candidate solutions whose evaluation takes
a long time with respect to the computational effort of the EA
(this holds for the evaluation of CA performing several tens
of development steps). Note that a detailed investigation and

Authorized licensed use limited to: Brno University of Technology. Downloaded on September 08,2022 at 16:26:22 UTC from IEEE Xplore. Restrictions apply.

Appendix IV

72

746 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 20, NO. 5, OCTOBER 2016

optimization of the EA operation are not the subject of this
paper.

A population of eight chromosomes is considered, each
of which represents a candidate transition function encoded
as a finite sequence of CMRs. Each CMR is encoded as a
finite sequence of integers representing the conditional parts
(i.e., the condition functions and state values) and the next
state as illustrated in Fig. 2(c). Note that the chromosome is
represented as a linear array of integers directly coding the
condition functions and state values for each CMR. The chro-
mosomes for the initial population are generated randomly at
the beginning of the evolution. The evaluation of each chromo-
some is performed using a CA whose development (controlled
by the transition function encoded in the chromosome) from
a given initial state is observed with respect to the required
behavior for a finite number of steps. The objective function
that calculates the fitness values of the chromosomes is spe-
cific for different case studies and will be described for each
experiment in Sections III and IV.

In each generation of the EA a new population is cre-
ated according to the following algorithm: four chromosomes
are selected randomly, the best one of which is considered
as a parent (i.e., fitter chromosomes are preferred to gener-
ate offspring)—it is a case of the tournament selection with
base 4. An offspring is created by mutating 0–2 randomly
selected integers in the parent, which is performed via replac-
ing the selected integers by new valid randomly generated
values. The number of integers to be mutated is also selected
randomly; if 0 integers are chosen, then the offspring is iden-
tical to the parent. The chromosome selection and mutation
continue until the new population of the same size is filled
by the offspring. If a solution is found (after evaluating the
chromosomes in the new population) that satisfies the given
CA behavior, then the evolution is considered as successful. If
no solution is found within a maximal number of generations
(which is specific to various experiments), then the evolution is
terminated.

III. EXPERIMENTS WITH SQUARE CALCULATIONS

The first case study considers the evolutionary design of
1-D CA whose development can be interpreted as calculating
the square of a number. The basic idea to perform this opera-
tion in the CA (together with choosing the appropriate number
of cell states, representation of input values, and way of eval-
uating candidate solutions) has been inspired by Wolfram’s
work [23, Section Computations in Cellular Automata, p. 638].
The computation of x2 is interpreted as a CA development
that comes (after a finite number of steps) into a stable state
in which the result for the given x is encoded.

In the proposed experiments a 1-D CA consisting of 100
cells and working with eight cell states will be considered.
The value of x will be encoded in the initial CA state as a
continuous sequence of cells in state 1, whose length corre-
sponds to x, the other cells possess state 0. For example, a
ten-cell CA encoding x = 3 can appear as 0001110000. The
result is assumed to be a stable CA state in which a contin-
uous sequence of cells of a single state different from state 0

TABLE I
STATISTICS OF THE EVOLUTIONARY EXPERIMENTS DEALING WITH THE

CALCULATION OF x2 IN 1-D CA. THIS SET OF EXPERIMENTS

CONSIDERED CA WORKING WITH EIGHT CELL STATES

can be detected whose number equals x2, the other cells are
required to be in state 0. The goal is to discover CA that are
able to calculate the square of an arbitrary number x > 1.

Two scenarios of the fitness evaluation are investigated: in
the first case the values of x from 2 to 5 are evaluated during
the evolution whilst the second setup considers x from 2 to 6.
This approach is motivated by the assumption that if the CA
is required to work for more values of x during the evolution,
then it will be harder for the EA to design such a CA (i.e.,
the success rate will be lower) but, on the other hand, more
general solutions could be obtained (i.e., such CA that, using
the evolved transition function, are able to correctly calculate
the square for any higher number not considered in the fit-
ness evaluation). The result of the x2 calculation in the CA is
evaluated after the 99th and 100th steps in order to determine
whether the resulting state is stable. Considering the aforemen-
tioned setup the fitness of a fully working solution for x from 2
to 5 is given by Fmax 2−5 = 4∗2∗100 = 800 (4 different values
of x are considered, the result of each is evaluated for the last
two steps in a CA consisting of 100 cells), the second scenario
considers the maximal fitness Fmax 2−6 = 5 ∗ 2 ∗ 100 = 1000.
The maximal limit of generations for these experiments was
set to 200 000. For each scenario 100 independent evolutionary
runs were executed. The success rate and the average number
of generations needed to find a working solution were mea-
sured. In order to identify general solutions for the square
calculation, the resulting CA were validated for the values of
x up to 100, using the transition functions obtained from the
successful evolutionary runs. For the purposes of this paper
the solution that passed this test is considered as general.

Table I summarizes the statistics of the evolution for this set
of experiments. As evident, the success rate is substantially
lower if more values of x (i.e., from 2 to 6) are evaluated.
In this case, approximately half the evolutionary runs fin-
ished successfully in comparison with the scenario with x
from 2 to 5. However, more general solutions were obtained as
shown in the last row of Table I, which confirms the assump-
tion stated in the previous paragraph. Although the general
square calculation definitely cannot be regarded as a trivial
task for uniform CA, the success rate and the resulting num-
ber of generations indicate that the proposed CMR encoding
of the transition functions represents an efficient technique of
solving this problem for reasonable values of x considered
during the fitness evaluation.

Authorized licensed use limited to: Brno University of Technology. Downloaded on September 08,2022 at 16:26:22 UTC from IEEE Xplore. Restrictions apply.

Appendix IV

73

BIDLO: ON ROUTINE EVOLUTION OF COMPLEX CA 747

TABLE II
ANALYSIS OF SELECTED RESULTS FOR THE SQUARE CALCULATION. THE

NUMBER OF STEPS OF THE CA NEEDED TO OBTAIN THE RESULT OF x2

FOR x FROM 2 TO 9 USING THE BEST OBTAINED RESULTS AND

WOLFRAM’S SOLUTION [23] ARE SHOWN

Fig. 3. Calculation of x2 in one of the best CA discovered by evolution
(x = 5 in this example). This CA works with 432 transition rules, 32 steps
are needed to obtain the result (note that Wolfram’s solution [23] needs 78
steps).

Table II shows the number of steps of the best evolved
solutions needed to obtain the result of x2 in the CA. The
results obtained are compared to Wolfram’s solution published
in [23]. The number of CA steps determines the efficiency of
the square calculation (i.e., the fewer steps, the faster the calcu-
lation). From this point of view the best result obtained in this
paper (denoted as Solution #3 in Table II, whose CA is con-
trolled by 432 rules) is more than twice faster in comparison
with Wolfram’s CA (see the last row of Table II). For exam-
ple, Solution #3 calculates 52 in 32 steps whilst Wolfram’s
CA needs 78 steps. An example calculating 52 using our best
solution is illustrated in Fig. 3.

An analysis of the results has shown that all the general
solutions exhibit a regular pattern generated by the CA dur-
ing its development (which is actually inevitable in order to
correctly calculate the result for various x using the same

transition function of the CA). However, it can be observed
that various approaches can be discovered that differ in both
the efficiency and the complexity of the CA. Moreover, one
of the key features is the way of encoding the input value
and the result. Whilst Wolfram used a method of represent-
ing these values by two different (nonzero) states in the CA,
the encoding proposed in this paper considers only a single
state and allows the result to be represented by a different
state than the input value is encoded by (which probably
enabled a more efficient square calculation in comparison with
Wolfram’s solution). These observations indicate that research
into advanced techniques of input and output representation
could provide further interesting solutions to this problem.

IV. EXPERIMENTS WITH REPLICATING LOOPS

The second case study considers a class of 2-D CA that are
able to replicate a given structure. Replicating loops represent
one of the typical benchmarks that have been studied in rela-
tion with CA. There are various variants of loops that differ
in shape, size, complexity, or replication speed. In most cases
CA that perform replication of the currently known loops were
designed using analytical approaches (i.e., the transition rules
were specified manually after an in-depth understanding of
the loop structure and the transformation process leading to
the creation of its copy). In this section, we demonstrate that
it is possible to automatically design transition functions for
various replicating loops. In particular, it will be shown that
the EA can discover a completely new replication scenario
whose replication speed is several times higher in comparison
with some currently known loops. Note that for the purposes
of this paper the replication speed will be considered as the
number of copies of the loop that can be created depending
on the number of CA steps executed. The reason for the uti-
lization of this metric is that it allows quantifying an amount
of objects (e.g., loop structures) the CA is able to create in a
given number of steps and comparing its behavior with other
known replicating structures. In general, the speed of the CA
development could, for example, express the area of the cel-
lular array the CA is able to cover (or to process), taking into
consideration some constraints and conditions of a specific
application.

Experiments with the replicating loops were conducted
using the EA described in Section II-C, for which the maximal
number of generations was set to 3 million. The evolution time
of a single run is approximately 12 h when using the Anselm
cluster, which is a part of the Czech National Supercomputing
Center.1

Several sets of experiments were conducted with various
replicating loops. Fig. 4(a)–(c) shows the loops that were con-
sidered in our experiments. For the purposes of this paper the
loops will be denominated by symbolic names as round loop
[Fig. 4(a)], rectangular loop [Fig. 4(b)], and envelope loop
[Fig. 4(c)]. Note that the loop shapes as well as the numbers
of cell states proposed for specific experiments were chosen
on the basis of the existing replicating loops. In addition, the

1http://www.it4i.cz/?lang=en
https://docs.it4i.cz/anselm-cluster-documentation/hardware-overview

Authorized licensed use limited to: Brno University of Technology. Downloaded on September 08,2022 at 16:26:22 UTC from IEEE Xplore. Restrictions apply.

Appendix IV

74

748 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 20, NO. 5, OCTOBER 2016

Fig. 4. Loop structures considered for the replication experiments (the corre-
sponding state values of cells are also shown). (a) Round loop. (b) Rectangular
loop. (c) Envelope loop. (d) Illustration of a fitness calculation scheme used
for the round and the rectangular loop. The textured cells are evaluated with
respect to the required replica structure. A boundary of white cells in state 0
separates the replicas. The initial loop is marked by a thick rectangle.

objective is to determine the ability of the EA and CMRs to
tackle various ways of the fitness evaluation and specification
of the target CA behavior.

The round loop and rectangular loop share a common prin-
ciple of the fitness evaluation based on the known shape and
size of the loop. Fig. 4(d) illustrates the concept of the fitness
evaluation containing a rectangular loop as an example (note
that the CA size was chosen with respect to a reasonable space
for creating the replicas in various directions). As shown by
the textured cells, the replicas are expected to be in a regular
grid with respect to the initial loop. This scenario was applied
on the basis of some existing replicating loops that work in
a similar way. The replicas are required to be separated from
each other by a boundary consisting of cells in state 0. Thus,
in the case of the rectangular loop in Fig. 4(d) the complete
rectangle of a replica to be evaluated consists of 6×6 cells as
marked by a thick rectangle. In order to evaluate a candidate
solution, the CA development is analyzed for 30 steps. After
each step of the CA the following calculation is performed.
The partial fitness is calculated separately for each replica in
the grid as the number of cells in correct state with respect to
the loop rectangle. Then the step fitness is defined as a sum of
all partial fitness values for a given step of the CA as follows.
If the partial fitness equals the number of cells in a given rect-
angle (i.e., a perfect replica is detected), then the step fitness
is increased by the double of this number (as a bonus for find-
ing a replica), otherwise the step fitness is increased by the
original partial fitness value. The final fitness is determined as
the maximal step fitness out of all the CA steps considered for
the evaluation. If at least four perfect replicas are detected in a
state within the 30-step development, the evolution is finished
successfully.

In order to validate the results, a software simulator devel-
oped by the author of this paper is applied. A larger CA is
executed for more than 30 steps using the evolved transition
functions, and a visual inspection is performed in order to

identify general replicators. For the purposes of this paper,
each solution with the ability to persistently produce repli-
cas according to the specification in the fitness function is
classified as a general replicator.

Statistical results of the replication experiments are sum-
marized in Table III. For each type of the replicating loop the
success rate and computational effort (expressed as the aver-
age number of generations needed to find a working solution)
were evaluated depending on various selected CMR counts.
The number of general solutions is determined out of all suc-
cessful experiments performed for a given loop. Setups with
six and eight cell states were considered for the rectangular
and the round loop. The results show that 30 or 40 CMRs
are in most cases adequate to find a working solution. For
20 CMRs the success rate is usually very low, probably due
to a lack of resources (rules available for the CA) that can be
expressed by the CMRs. On the other hand, 50 CMRs induced
a huge search space that is very time consuming for the EA to
explore (i.e., the success rate is low with a given generation
limit). Although the success rate achieved in general is under
20%, these experiments showed for the first time the possi-
bility of automatically designing complex multistate CA using
the CMR encoding. Note that we were not able to successfully
design any of the CA that use conventional representations of
the transition functions.

The results in Table III also show that most of the experi-
ments require on average more than a million generations in
order to find a working solution. This means that the repli-
cation does not represent a trivial task for the EA so that
a significant part of the search space needs to be explored.
Although the population works with eight individuals only
(this may justify the need for a higher number of genera-
tions), the time needed to evaluate the candidate solutions is
considerable, which is not feasible for larger populations. The
advantage of such a small population is also supported by the
fact that in the proposed EA a single parent is chosen from
four individuals (i.e., from half the population) and this par-
ent produces offspring for the next generation. Experiments
showed that a larger population did not improve the success
rate because most of the time was spent on the fitness cal-
culation, with no significant increase in the exploration of
promising parts of the solution space. Several parameters can
be tuned in the proposed EA: population size, tournament
selection base, and the number of genes to be mutated. The
optimal setting is usually problem dependent, which requires
tuning the EA separately for different case studies. However,
the tuning of the EA was not a goal of this paper—the objec-
tive was to evaluate the proposed EA with CMRs using several
different tasks in CA. In the case of successful experiments
the tuning of the EA and examination of its features for vari-
ous problems can be performed, which represents a topic for
the future research.

Most of the general results obtained in this paper replicate
the given loop in a single direction only. However, in some
cases the EA discovered a novel approach that can be used to
effectively replicate the given structure from many (previously
created) instances simultaneously. The best results obtained for
each loop are described in the following sections.

Authorized licensed use limited to: Brno University of Technology. Downloaded on September 08,2022 at 16:26:22 UTC from IEEE Xplore. Restrictions apply.

Appendix IV

75

BIDLO: ON ROUTINE EVOLUTION OF COMPLEX CA 749

TABLE III
STATISTICS OF EXPERIMENTS DEALING WITH EVOLUTION OF THE REPLICATING STRUCTURES FROM FIG. 4.

RESULTS ARE CALCULATED OUT OF 100 INDEPENDENT EVOLUTIONARY RUNS

Fig. 5. Transition function for the replication of the round loop from Fig. 6.
(a) CMR representation discovered by the EA. (b) Corresponding table-based
representation.

A. Results for the Round Loop

Although the round loop itself consists of only four dif-
ferent states [including the “empty” state 0—see Fig. 4(a)],
the target CA works with eight cell states. This setup was
chosen in order to increase the probability of discovering var-
ious replication scenarios, which was the main goal of these
experiments. For this experiment, a minimum of four replicas
were required to emerge (potentially including the initial loop)
within a maximal number of 30 development steps. Note that
during the evolution the initial loop was initialized in an inner
part of the CA [as shown in Fig. 4(d)] in order to allow the
EA to discover replication in any direction. This setup is moti-
vated by some of the existing replicating loops that work in a
similar way (i.e., the replicas can “grow” in more directions
simultaneously).

The transition function of one of the best evolved solutions
for the round loop is shown in Fig. 5, and the CA develop-
ment performing the replication process is illustrated in Fig. 6.
This CA represents the best result of this paper and will be
referred to as Bidlo’s loop. As evident from Fig. 6, the first
replica is created after the 12th step on the right (east) from
the initial loop. However, some cells are emerging both in the
east and south before the first replica is finished. These cells

actually represent a basis for the next replicas being created
concurrently during the subsequent development. From this
process it can be seen that the evolution discovered a new
replication scheme—let us call it a diagonal replication as it
creates successive copies of the loop diagonally between the
east and south directions. The following stages can be identi-
fied with respect to the overall CA development: 1) the first
replica emerges after the 12th step on the east side; 2) this
replica produces the first diagonal level after the next eight
steps; and 3) every next diagonal level is finished after six
steps. Note that the development pattern of the CA is regular
since stage 3, i.e., the number of replicas can be predicted and
an analysis of the global CA behavior can be performed.

For comparison purposes, Byl’s loop was chosen [17]
because of its closest similarity to the round loop with
respect to the shape, size, and complexity (see the illus-
tration of the loops in Fig. 7). Both these loops were
analyzed in detail, using our CA simulator, with the follow-
ing results. The transition function of Byl’s loop consists of
238 rules, our solution for the round loop works with 84
rules. The CA simulator can provide integer sequences con-
taining the numbers of replicas at the respective time (i.e.,
after executing the CA for the appropriate number of steps).
For example, the CA with Bidlo’s loop (discovered in this
paper) can produce 3, 6, 10, 15, 21, 28, 36, 45, . . . replicas in
20, 26, 32, 38, 44, 50, 56, 62, . . . steps, respectively. In order
to mathematically express the number of Bidlo’s loop depend-
ing on the number of CA steps N, a manual analysis of these
sequences was performed; the result is described by

CBidlo = N2 − 10N + 16

72
; N ≥ 20 ∧ (N − 20) % 6 = 0. (1)

A similar analysis was performed to express the number of
Byl’s loop as described by

CByl = 2N2

625
− 8N

25
+ 15; N ≥ 100 ∧ N % 25 = 0. (2)

Note that the sign % in the formulas denotes the mod-
ulo division. Additional conditions for N are specified in
order to express only the numbers of steps after which
a group of replicas has just been completed (for other
values of N the result is not a whole number). The cor-
rectness of the equations was confirmed using our CA sim-
ulator. Alternatively, suitable mathematical software can be

Authorized licensed use limited to: Brno University of Technology. Downloaded on September 08,2022 at 16:26:22 UTC from IEEE Xplore. Restrictions apply.

Appendix IV

76

750 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 20, NO. 5, OCTOBER 2016

Fig. 6. Replication of the round loop in a CA developing according to the transition function from Fig. 5. The sequence of CA states reads from left to
right, top to bottom.

Fig. 7. Comparison of the number of replicas based on the number of CA
steps for Byl’s loop [17] and Bidlo’s (round) loop.

involved. For example, WolframAlpha2 represents a straight-
forward tool for such an analysis. By entering a part of the
sequence containing the number of replicas for Byl’s loop

2http://www.wolframalpha.com/

(15, 25, 39, 57, 79, 105, 135, 169), WolframAlpha provides a
mathematical expression for this sequence as shown by

CByl−WA = 2x2 + 4x + 9; x = 1, 2, 3, 4, 5, 6, . . . (3)

Note that in this case x represents an independent variable, not
the number of the CA steps. Similarly, the number of replicas
of Bidlo’s loop can be expressed independently of N as shown,
which was derived by WolframAlpha

CBidlo−WA = 1

2
(x + 1)(x + 2); x = 1, 2, 3, 4, 5, 6, . . . (4)

Again, our software simulator was applied that confirmed the
correctness of the equations provided by WolframAlpha with
respect to the output from the corresponding CA.

In the case of Byl’s loop a group of replicas is completed
after every 25 steps, for the round loop a whole diagonal
of replicas is finished after every six steps. Although Byl’s
loop replicates into four directions, its replication speed is
significantly lower in comparison with the round loop, which
replicates in two dimensions only (see Fig. 7). This feature
follows from the significantly lower factor of the element N2

in (2) compared to (1) for the round loop. This means that the
solution obtained in this paper is significantly more efficient
(from the point of view of both the replication speed and the
complexity of the transition function) compared to Byl’s loop.

Authorized licensed use limited to: Brno University of Technology. Downloaded on September 08,2022 at 16:26:22 UTC from IEEE Xplore. Restrictions apply.

Appendix IV

77

BIDLO: ON ROUTINE EVOLUTION OF COMPLEX CA 751

Fig. 8. Example of development of the rectangular loop discovered by the evolution. The CA works with eight states and the sequence of steps reads from
left to right, top to bottom. The initial state is marked by a thick rectangle (top left).

Considering the replication period (i.e., the number of steps
after which a new group of replicas is completed), which deter-
mines the replication speed, our solution even overcomes (with
its replication period of six steps) all the best known replicat-
ing loops. For example, in addition to Byl’s loop [17] with a
replication period of 25 steps, Chou–Reggia’s loop [18] has
a 15-step replication period, Langton’s loop [2] replicates in
every 151 steps or Perrier’s loop [60] exhibits a replication
period of 235 steps. Therefore, Bidlo’s (round) loop can be
considered as the fastest replicating loop known so far and
represents the main result of this paper.

B. Results for the Rectangular Loop

In order to show that the CMR encoding of the transition
function is not limited to a specific loop only, other structures
were also considered. The rectangular loop from Fig. 4(b) uses
the same principle of the fitness evaluation as the round loop
does. Several perfect solutions were obtained in which the
aforementioned concept of diagonal replication can also be
observed. One of those solutions is depicted in Fig. 8.

In this case, the development starts by a stage 1 that takes
16 steps during which two different replication processes are
performed in both the east and south direction (the result of
this stage is shown in the top-left part of Fig. 8). The next
groups of replicas are developed during stage 2 after every
13 steps. However, it can be observed that the replication into
the two directions is not symmetric [see Fig. 8, step 35 (the
first row of replicas contains three complete loops whilst the
south direction contains four loops in the first column)]. This
irregularity causes that some loops are not able to finish their
replication, which leads to some “dead areas,” which emerge
during the CA development. Since step 35 it is evident that
the loop marked by the black arrow starts its east replication

Fig. 9. Sample state of a 200×200-cell CA performing a replication of the
rectangular loop. The state represents a continuation of the development from
Fig. 8 after 871 steps and shows a chaotic arrangement of dead areas caused
by an asymmetric diagonal replication.

in step 36 but the arm constructed in step 38 (consisting of
two cells in state 3) no longer develops during the next steps,
producing a dead area that can be clearly visible after step 66.
In order to identify the consequences of this anomaly a 200×
200-cell CA was considered with the initial loop in its top-left
corner. The development takes 871 steps until the CA reaches
its stable state with the whole cellular space filled by replicas
and dead areas (see Fig. 9), whose arrangement seems rather

Authorized licensed use limited to: Brno University of Technology. Downloaded on September 08,2022 at 16:26:22 UTC from IEEE Xplore. Restrictions apply.

Appendix IV

78

752 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 20, NO. 5, OCTOBER 2016

chaotic. Moreover, the development of this loop was observed
using 400 × 400- and 800 × 800-cell CA with no systematic
arrangement of the loops and dead areas that would allow
predicting reliably the global behavior of such a CA.

Although the chaotic behavior is quite common for CA in
class 3 of Wolfram’s classification [23], it has been rarely
observed in the case of replicating structures. However, the
issue of prediction and potential applications of such behavior
still represent open problems for the future research. Note that
some other solutions were obtained that are able to replicate
the rectangular loop without malformations, using the diagonal
replication scheme.

C. Results for the Envelope Loop

The last experiment from the area of replicating structures
demonstrates another approach to the fitness evaluation and
considers a more complex replicating loop denominated as
envelope loop [see Fig. 4(c)]. In this case the CA works with
eight different cell states, the initial state consists of a single
instance of the loop to be replicated (see the top-left state of
Fig. 10 denoted as “initial state”). Contrary to the previous
experiments, this replication task is evaluated using a fixed
(reference) pattern as a complete CA state containing a copy
of the original loop in a specific position (see the bottom-
right state of Fig. 10 denoted as “step 20”). The reason for
this experiment is to determine the ability of the EA to evolve
CMRs for the transformation into an exact copy arrangement
and to identify whether general replicators are possible in this
case (i.e., the ability of the CA evolved to repeatedly generate
replicas according to the original specification if the devel-
opment continues). Since the fitness evaluation is different,
compared to the previous loops, the success of this experiment
also indicates that the CMR approach is robust.

The step fitness function is calculated after each step of the
CA as the number of cells in correct states with respect to
the reference pattern. The final fitness is defined as the max-
imum out of all the step fitness values. From a more general
point of view the evaluation of the candidate solutions may be
considered as a pattern transformation problem transforming
the initial state into another target state containing the replica.
The results are finally verified in order to determine whether
the transition function is able to generate more replicas if the
CA development continues. Fig. 10 shows an example of a
successful solution performing a complete development of a
single copy of the envelope loop. This solution is able to gen-
erate further replicas from the most recent one whereas each
new replica is “shifted” by two cells down from its prede-
cessor (as originally specified by the reference pattern during
the evolution). The new replica is finished after 20 develop-
ment steps and this solution represents the fastest replicator out
of the results obtained for the envelope loop. The transition
function consists of 102 table-based rules (transformed from
the evolved CMR encoding). Note that various perfect results
were obtained, for example, a CA working with 88 rules (the
most compact transition function so far obtained for this loop)
generating replicas in 25 steps, another solution uses 96 rules
and the replication takes 30 steps.

Fig. 10. CA development performing the replication of the envelope loop.
The sequence of CA states reads from left to right, top to bottom.

D. Discussion

The EA provided working solutions that satisfy the given
requirements in all the experiments, which indicates that the
CMR approach is robust. Since the fitness function represents
one of the key aspects of a successful evolutionary system
(together with the representation of candidate solutions), it
may enable the CMR concept to be successfully applied
in advanced CA models in various areas (e.g., nonuniform,
asynchronous, or probabilistic CA).

An observation of the evolved CA development showed
that different replication techniques could be obtained even
for a specific loop. For example, in addition to the results
proposed in Section IV-A, a CA working with six cell states
was discovered that needed the same number of steps (12) to
replicate the initial loop but its transition function contained
99 rules (the solution from Section IV-A works with eight
cell states and 84 rules, Byl’s loop replicates according to 238
rules). In the case of both the round loop and the rectangu-
lar loop the replication process designed by the EA exhibits a
pipelining principle (i.e., the replication of the next group of
loops is in progress before the previous group has been fin-
ished). Although the replication process works for a specific
direction only (e.g., it does not allow an easy modification
or adaptation of the transition rules by “rotating” the cellular
neighborhood known from Byl’s loop [17]), it has been shown
that the proposed loops replicate with a higher speed against
the existing loops. Another important aspect discovered by
the EA, which probably contributes to the replication speed,
is the diagonal replication. Moreover, it seems that the diag-
onal replication represents a technique that enabled reducing

Authorized licensed use limited to: Brno University of Technology. Downloaded on September 08,2022 at 16:26:22 UTC from IEEE Xplore. Restrictions apply.

Appendix IV

79

BIDLO: ON ROUTINE EVOLUTION OF COMPLEX CA 753

the number of transition rules needed to perform the replica-
tion. In particular, the proposed Bidlo’s loop can create 528
instances in 200 CA steps compared to 79 instances of Byl’s
loop in the same time (i.e., in this case the proposed loop
produced more than six times more copies than Byl’s loop).

Although the form or arrangement of the proposed loops
was inspired by the existing (self-replicating) loops, the results
obtained do not exhibit the concept of self-replication in
which the information needed to create the replica is encoded
in the loop body. In fact, no exact solution to any exist-
ing self-replicating loop has yet been rediscovered using the
proposed approach. The information encoded in the loop,
which specifies the self-replication features, determines the
CA development, which is specific to the given loop (e.g.,
Langton’s loop encodes a sequence of states that determine
how to create the replication “arm,” when to turn the arm in
order to create the corners of the loop or how to “close” the
final replica). The transition function must interpret this infor-
mation in order to control the CA development accordingly.
The problem is that if such a transition function is specific to a
given loop (i.e., there are no or only very few transition func-
tions in the solution space that would perform self-replication
of the given loop), then the EA may not be able to find the
solution in a reasonable time.

However, the proposed approach allowed discovering trans-
formations for creating replicas that are completely new or
even exhibit some phenomena that would probably not be
intended or acceptable during a manual CA design. In order
to enable the EA to design innovations, it is important for the
evaluation of the candidate solutions not to be very strict. In
particular, the diagonal replication scheme, pipelining prin-
ciple or malformation of the loops during the replication
process represent phenomena designed by the EA that were
not explicitly specified (required) by the designer.

V. CONCLUSION

In this paper, some selected applications of CMRs were
presented for a routine evolutionary design of complex multi-
state uniform CA. The proposed EA in combination with the
CMR encoding was able to find working solutions to problems
for which the conventional representation techniques failed.
In particular, a novel replication scheme in 2-D CA was dis-
covered in this paper that allows a faster development of the
copies of the given structure in comparison with the known
approaches. Some techniques were evolved to calculate the
square of integer numbers in 1-D CA that require a consider-
ably lower number of steps compared to the existing solution.
The results obtained represent the first case of a successful
automatic design of multistate CA for this kind of problems.

In general, the proposed approach showed the ability to find
working solutions to various kinds of problems (the square cal-
culation in 1-D CA and replication in 2-D CA, where the result
can be specified either as a minimal number of replicas or by
a fixed pattern). This indicates that other classes of problems
could be successfully solved in the future. For example, the
CMRs might allow optimizing the pattern generation in the
area of computer graphics. Other potential applications may

include the design of CA for random number generation or
the optimization of test pattern generators for digital circuits.

As regards the proposed case studies, the results bring some
open questions whose investigation could be beneficial to
both elementary and advanced CA-based models. For instance,
what is the best way of encoding the information on self-
replication for the purposes of the evolutionary design? Could
the CMRs be adapted in order to provide the capability to
optimize the number of states during evolution? Are there any
new operators for the EA that would allow optimizing the evo-
lutionary process itself? These issues represent ideas for our
future research.

REFERENCES

[1] J. Von Neumann, The Theory of Self-Reproducing Automata,
A. W. Burks, Ed. Urbana, IL, USA: Univ. Illinois Press, 1966.

[2] C. G. Langton, “Studying artificial life with cellular automata,” Phys. D
Nonlin. Phenom., vol. 22, nos. 1–3, pp. 120–149, 1986.

[3] M. Sipper, “Studying artificial life using a simple, general cellular
model,” Artif. Life, vol. 2, no. 1, pp. 1–35, 1994.

[4] F. Peper, J. Lee, S. Adachi, and T. Isokawa, “Cellular nanocomputers:
A focused review,” Int. J. Nanotechnol. Mol. Comput., vol. 1, no. 1,
pp. 33–49, 2009.

[5] P. L. Rosin, A. Adamatzky, and X. Sun, Cellular Automata in Image
Processing and Geometry. Cham, Switzerland: Springer, 2014.

[6] M. Espinola, J. A. Piedra-Fernandez, R. Ayala, L. Iribarne, and
J. Z. Wang, “Contextual and hierarchical classification of satellite images
based on cellular automata,” IEEE Geosci. Remote Sens., vol. 53, no. 2,
pp. 795–809, Feb. 2015.

[7] S. Sahu et al., “On cellular automata rules of molecular arrays,” Natural
Comput., vol. 11, no. 2, pp. 311–321, 2012.

[8] P. Yin, S. Sahu, A. J. Turberfield, and J. H. Reif, “Design of
autonomous DNA cellular automata,” in DNA Computing (LNCS 3892),
A. Carbone and N. A. Pierce, Eds. Heidelberg, Germany: Springer, 2006,
pp. 399–416.

[9] G. C. Sirakoulis, “Parallel application of hybrid DNA cellular automata
for pseudorandom number generation,” J. Cell. Autom., vol. 11, no. 1,
pp. 63–89, 2016.

[10] E. F. Codd, Cellular Automata. New York, NY, USA: Academic, 1968.
[11] M. Sipper, “Quasi-uniform computation-universal cellular automata,” in

Advances in Artificial Life (LNCS 929). Heidelberg, Germany: Springer,
1995, pp. 544–554.

[12] E. R. Berlekamp, J. H. Conway, and R. K. Guy, Winning Ways for Your
Mathematical Plays, vol. 4, 2nd ed. Natick, MA, USA: CRC, 2004.

[13] J.-B. Yunés, “Achieving universal computations on one-dimensional
cellular automata,” in Cellular Automata for Research and
Industry (LNCS 6350). Heidelberg, Germany: Springer, 2010,
pp. 660–669.

[14] G. D. Stefano and A. Navarra, “Scintillae: How to approach comput-
ing systems by means of cellular automata,” in Cellular Automata for
Research and Industry (LNCS 7495). Heidelberg, Germany: Springer,
2012, pp. 534–543.

[15] P. Rendell, “A fully universal turing machine in Conway’s game of life,”
J. Cell. Autom., vol. 8, nos. 1–2, pp. 19–38, 2013.

[16] C. G. Langton, “Self-reproduction in cellular automata,” Phys. D Nonlin.
Phenom., vol. 10, nos. 1–2, pp. 135–144, 1984.

[17] J. Byl, “Self-reproduction in small cellular automata,” Phys. D Nonlin.
Phenom., vol. 34, nos. 1–2, pp. 295–299, 1989.

[18] J. A. Reggia, S. L. Armentrout, H.-H. Chou, and Y. Peng, “Simple sys-
tems that exhibit self-directed replication,” Science, vol. 259, no. 5099,
pp. 1282–1287, 1993.

[19] G. Tempesti, “A new self-reproducing cellular automaton capable of con-
struction and computation,” in Proc. 3rd Eur. Conf. Artif. Life, vol. 929.
Granada, Spain, 1995, pp. 555–563.

[20] M. Land and R. K. Belew, “No perfect two-state cellular automata
for density classification exists,” Phys. Rev. Lett., vol. 74, no. 25,
pp. 5148–5150, 1995.

[21] M. S. Capcarrere, M. Sipper, and M. Tomassini, “Two-state, r = 1
cellular automaton that classifies density,” Phys. Rev. Lett., vol. 77,
pp. 4969–4971, Dec. 1996.

Authorized licensed use limited to: Brno University of Technology. Downloaded on September 08,2022 at 16:26:22 UTC from IEEE Xplore. Restrictions apply.

Appendix IV

80

754 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 20, NO. 5, OCTOBER 2016

[22] S. Sahoo, P. P. Choudhury, A. Pal, and B. K. Nayak, “Solutions on
1-D and 2-D density classification problem using programmable cellular
automata,” J. Cell. Autom., vol. 9, no. 1, pp. 59–88, 2014.

[23] S. Wolfram, A New Kind of Science. Champaign, IL, USA: Wolfram
Media, 2002.

[24] S. Ninagawa, “Solving the parity problem with rule 60 in array size of
the power of two,” J. Cell. Autom., vol. 8, nos. 3–4, pp. 189–203, 2013.

[25] A. Adamatzky, Identification of Cellular Automata. Boca Raton, FL,
USA: CRC, 1994.

[26] L. Bull, I. Lawson, A. Adamatzky, and B. DeLacyCostello, “Towards
predicting spatial complexity: A learning classifier system approach to
the identification of cellular automata,” in Proc. IEEE Congr. Evol.
Comput. (CEC), Edinburgh, U.K., 2005, pp. 136–141.

[27] A. Adamatzky, “Identification of cellular automata,” in Computational
Complexity, R. A. Meyers, Ed. New York, NY, USA: Springer, 2012,
pp. 1564–1575.

[28] J. H. Holland, Adaptation in Natural and Artificial Systems. Ann Arbor,
MI, USA: Univ. Michigan Press, 1975.

[29] N. H. Packard, “Adaptation toward the edge of chaos,” in Dynamic
Patterns in Complex Systems, J. A. S. Kelso, A. J. Mandell, and
M. F. Shlesinger, Eds. Teaneck, NJ, USA: World Sci., 1988,
pp. 293–301.

[30] F. C. Richards, T. P. Meyer, and N. H. Packard, “Extracting cellu-
lar automaton rules directly from experimental data,” Phys. D Nonlin.
Phenom., vol. 45, nos. 1–3, pp. 189–202, 1990.

[31] E. Sapin, O. Bailleux, and J. Chabrier, “Research of complexity in cel-
lular automata through evolutionary algorithms,” Complex Syst., vol. 17,
no. 3, pp. 231–241, 2007.

[32] M. Sipper, Evolution of Parallel Cellular Machines—The Cellular
Programming Approach (LNCS 1194). Heidelberg, Germany: Springer,
1997.

[33] R. Breukelaar and T. Bäck, “Using a genetic algorithm to evolve
behavior in multi dimensional cellular automata,” in Proc. Genet. Evol.
Comput. Conf. (GECCO), Washington, DC, USA, 2005, pp. 107–114.

[34] M. Mitchell, J. P. Crutchfield, and P. T. Hraber, “Evolving cellular
automata to perform computations: Mechanisms and impediments,”
Phys. D, vol. 75, nos. 1–3, pp. 361–391, 1994.

[35] E. Sapin, “Gliders and glider guns discovery in cellular automata,” in
Game of Life Cellular Automata, A. Adamatzky, Ed. London, U.K.:
Springer, 2010, pp. 135–165.

[36] L. J. Fogel, A. J. Owens, and M. J. Walsh, Artificial Intelligence Through
Simulated Evolution. New York, NY, USA: Wiley, 1966.

[37] W. Elmenreich and I. Fehérvári, “Evolving self-organizing cellular
automata based on neural network genotypes,” in Proc. 5th Int. Conf.
Self-Organizing Syst., Karlsruhe, Germany, 2011, pp. 16–25.

[38] D. Medernach, T. Kowaliw, C. Ryan, and R. Doursat, “Long-term evo-
lutionary dynamics in heterogeneous cellular automata,” in Proc. 15th
Annu. Conf. Genet. Evol. Comput., Amsterdam, The Netherlands, 2013,
pp. 231–238.

[39] S. Bandini, A. Bonomi, and G. Vizzari, “An analysis of different types
and effects of asynchronicity in cellular automata update schemes,” Nat.
Comput., vol. 11, no. 2, pp. 277–287, 2012.

[40] M. A. J. Javid, M. M. al-Rifaie, and R. Zimmer, “Detecting symme-
try in cellular automata generated patterns using swarm intelligence,” in
Theory and Practice of Natural Computing (LNCS 8890), A.-H. Dediu,
M. Lozano, and C. Martín-Vide, Eds. Cham, Switzerland: Springer,
2014, pp. 83–94.

[41] J. Skaruz, F. Seredynski, and A. Piwonska, “Two-dimensional pat-
terns and images reconstruction with use of cellular automata,”
J. Supercomput., vol. 69, no. 1, pp. 9–16, 2014.

[42] J. M. Baetens and B. De Baets, “Towards a comprehensive understanding
of multi-state cellular automata,” in Cellular Automata (LNCS 8751),
J. Wa̧s, G. C. Sirakoulis, and S. Bandini, Eds. Cham, Switzerland:
Springer, 2014, pp. 16–24.

[43] J. M. Baetens and B. De Baets, “Phenomenological study of irregular
cellular automata based on Lyapunov exponents and Jacobians,” Chaos,
vol. 20, no. 3, 2010, Art. ID 033112.

[44] A. Bisio, G. M. D’Ariano, P. Perinotti, and A. Tosini, “Free quantum
field theory from quantum cellular automata,” Found. Phys., vol. 45,
no. 10, pp. 1137–1152, 2015.

[45] V. A. Mardiris, G. C. Sirakoulis, and I. G. Karafyllidis, “Automated
design architecture for 1-D cellular automata using quantum cellu-
lar automata,” IEEE Trans. Comput., vol. 64, no. 9, pp. 2476–2489,
Sep. 2015.

[46] K. Sridharan and V. Pudi, Design of Arithmetic Circuits in Quantum
Dot Cellular Automata Nanotechnology. Cham, Switzerland: Springer,
2015.

[47] A. N. Bahar, S. Waheed, and N. Hossain, “A new approach of presenting
reversible logic gate in nanoscale,” SpringerOpen J. Electron. Electr.
Eng., vol. 4, no. 1, p. 153, 2015.

[48] S. Sahu et al., “Molecular implementations of cellular automata,” in
Cellular Automata for Research and Industry (LNCS 6350). Heidelberg,
Germany: Springer, 2010, pp. 650–659.

[49] H. Balijepalli and M. Niamat, “Design of a nanoscale quantum-dot cel-
lular automata configurable logic block for FPGAs,” in Proc. IEEE
55th Int. Midwest Symp. Circuits Syst. (MWSCAS), Boise, ID, USA,
Aug. 2012, pp. 622–625.

[50] M.-A. I. Tsompanas, G. C. Sirakoulis, and A. I. Adamatzky, “Evolving
transport networks with cellular automata models inspired by slime
mould,” IEEE Trans. Cybern., vol. 45, no. 9, pp. 1887–1899, Sep. 2015.

[51] J. R. Koza, Genetic Programming: On the Programming of Computers
by Means of Natural Selection. Cambridge, MA, USA: MIT Press, 1992.

[52] D. Andre, F. H. Bennett, III, and J. R. Koza, “Discovery by genetic
programming of a cellular automata rule that is better than any known
rule for the majority classification problem,” in Proc. 1st Annu. Conf.
Genet. Evol. Comput., 1996, pp. 3–11.

[53] D. Andre, F. H. Bennett, III, and J. R. Koza, “Evolution of intricate
long-distance communication signals in cellular automata using genetic
programming,” in Proc. Artif. Life V 5th Int. Workshop Synth. Simulat.
Living Syst., 1996, pp. 513–522.

[54] Y. Zhao and S. A. Billings, “The identification of cellular automata,”
J. Cellular Automata, vol. 2, no. 1, pp. 47–65, 2007.

[55] K.-I. Maeda and C. Sakama, “Identifying cellular automata rules,”
J. Cellular Automata, vol. 2, no. 1, pp. 1–20, 2007.

[56] M. F. Brameier and W. Banzhaf, Linear Genetic Programming.
New York, NY, USA: Springer, 2007.

[57] M. Bidlo and Z. Vasicek, “Evolution of cellular automata using
instruction-based approach,” in Proc. IEEE Congr. Evol. Comput.,
Brisbane, QLD, Australia, 2012, pp. 1060–1067.

[58] M. Bidlo and Z. Vasicek, “Evolution of cellular automata with condi-
tionally matching rules,” in Proc. IEEE Congr. Evol. Comput. (CEC),
Cancún, Mexico, 2013, pp. 1178–1185.

[59] M. Bidlo, “Evolving multiplication as emergent behavior in cellular
automata using conditionally matching rules,” in Proc. IEEE Congr.
Evol. Comput., Beijing, China, 2014, pp. 2732–2739.

[60] J.-Y. Perrier, M. Sipper, and J. Zahnd, “Toward a viable, self-
reproducing universal computer,” Phys. D Nonlin. Phenom., vol. 97,
no. 4, pp. 335–352, 1996.

Michal Bidlo received the Ph.D. degree in
information technology from the Faculty of
Information Technology (FIT), Brno University
of Technology (BUT), Brno, Czech Republic, in
2009.

He is an Assistant Professor with the Department
of Computer Systems, FIT, BUT. He has authored
or co-authored over 20 conference/journal papers
focused on evolutionary design and evolvable
hardware. His research interests include cellular
automata, evolutionary computation, evolvable

hardware, and bio-inspired systems.

Authorized licensed use limited to: Brno University of Technology. Downloaded on September 08,2022 at 16:26:22 UTC from IEEE Xplore. Restrictions apply.

Appendix IV

81

Appendix V

Evolution of Cellular
Automata-Based Replicating
Structures Exhibiting
Unconventional Features

BIDLO Michal

In: International Joint Conference on Computational Intelligence, IJCCI 2015, Lisbon,
Portugal, November 12-14, 2015, Revised Selected Papers. Cham: Springer International
Publishing, 2016, pp. 21-41. ISBN 978-3-319-48506-5.

The original work was published in [19], 2015 International Joint Conference on Computa-
tional Intelligence (IJCCI), Lisbon, Portugal, and selected for publication of an extended
version hereafter.

82

Evolution of Cellular Automata-Based
Replicating Structures

Exhibiting Unconventional Features

Michal Bidlo

Brno University of Technology
Faculty of Information Technology

IT4Innovations Centre of Excellence
Božetěchova 2, 61266 Brno, Czech Republic

E-mail: bidlom@fit.vutbr.cz

http://www.fit.vutbr.cz/~bidlom

Abstract. Replicating loops represent a class of benchmarks, which is
commonly studied in relation with cellular automata. Most of the known
loops, for which replication rules exist in two-dimensional cellular space,
create the copies of themselves using a certain construction algorithm
that is common for all the emerging replicas. In such cases, the replication
starts from a single instance of the loop (represented as the initial state
of the cellular automaton) and is controlled by the transition function of
the automaton according to which the copies of the loop are developed.
Despite the fact that universal replicators in cellular automata are pos-
sible (for example, von Neumann’s Universal Constructor), the process
of replication of the loops is usually specific to the shape of the loop and
the replication rules given by the transition function. This work presents
a method for the automatic evolutionary design of cellular automata,
which allows us to design transition functions for various structures that
are able to replicate according to a given specification. It will be shown
that new replicating loops can be discovered that exhibit some uncon-
ventional features in comparison with the known solutions. In particular,
several scenarios will be presented which can, in addition to the repli-
cation from the initial loop, autonomously develop the given loop from
a seed, with the ability of the loop to subsequently produce its replicas
according to the given specification. Moreover, a parallel replicator will
be shown that is able to develop the replicas to several directions using
different replication algorithms.

Keywords: genetic algorithm, cellular automaton, transition function,
conditional rule, replicating loop

1 Introduction

Since the introduction of cellular automata (CA) in [von Neumann, 1966], re-
searchers have dealt, among others, how to effectively design a cellular au-
tomaton (and its transition function in particular) to solve various problems.

Appendix V

83

2

For example, cellular automata have been studied for their ability to perform
computations, e.g. using principles from the famous Conway’s Game of Life
[Berlekamp et al., 2004] or by simulating elementary logic functions in non-
uniform cellular matrix [Sipper, 1995].

One of the topics widely studied in the area of artificial life is the problem
of (self-)replicating loops. Since the introduction of probably the most known
loop by Langton [Langton, 1984], which is able to replicate in 151 steps in a
CA working with 8 states, some other researchers have dealt with this topic
trying to simplify the replication process or enhance the abilities of the loop
during replication. For example, Byl introduced a smaller loop that is able
to replicate in 25 steps using a CA that works with 6 cell states [Byl, 1989].
Later, several unsheathed loops were proposed by Reggia et al. from which the
simplest loop consists of 6 cells only and is able to replicate using 8-state CA
in 14 steps [Reggia et al., 1993]. On the other hand, Tempesti studied a pos-
sibility to introduce construction capabilities into the loops and proposed a
10-state CA that allows to generate patters inside the replicating structures
[Tempesti, 1995]. Perrier et al. created a “self-reproducing universal computer”
using 64-state CA by “attaching” executable programs (Turing Machines) on the
loops [Perrier et al., 1996]. Although the aforementioned solutions were achieved
using analytic methods, the process of determining suitable transition rules for
a given problem represents a difficult task and requires an experienced designer
(the process of “programming” the CA is not intuitive). As the number of cell
states increases, the process of the CA design becomes challenging due to a sig-
nificant increase of the solution space. Moreover, for some problems no analytic
approach has yet been known to the design of the transition rules. In such cases
various unconventional techniques have been applied including Genetic Algo-
rithm (GA) [Holland, 1975]), possibly in combination with other heuristics.

For example, Mitchell et al. investigated a problem of performing computa-
tions in cellular automata using GA [Mitchell et al., 1993]. Their work contains
a comparison with the original results obtained by Packard in [Packard, 1988]
which can be considered as a milestone in applying evolutionary algorithms
(EA) to the design and optimisation of cellular automata. In particular, the
authors in [Mitchell et al., 1993] claim: “Our experiment produced quite differ-
ent results, and we suggest that the interpretation of the original results is not
correct.” It may indicate that the research of cellular automata (and their typ-
ical features like emergent behaviour or cooperative cell signalling by means
of local rules) using various computing techniques can provide valuable infor-
mation for advanced studies and applications in this area. Note that Mitchell
et al. considered binary (i.e. 2-state) 1D cellular automata only which rep-
resent a fundamental concept for advanced models. Sipper proposed a tech-
nique called Cellular Programming (a spatially distributed and locally inter-
acting GA) that allows for the automatic design of non-uniform CA that are
well suited to various problems [Sipper, 1997]. Sapin et al. introduced a GA-
based approach to the design of gliders and glider guns in 2D cellular au-
tomata [Sapin and Bull, 2008][Sapin et al., 2010]. It was shown that a sponta-

Appendix V

84

3

neous emergence of glider guns in CA can occur with a significant number of new
gun-based and glider structures discovered by EA. The aim of the glider research
was to construct a system for collision-based computationally universal cellular
automata that are able to simulate Turing machines [Sapin and Bull, 2008]. In
recent years, several solutions emerged that aim to optimize the CA design by in-
troducing various evolution-based and soft-computing techniques in combination
with suitable representations of the transition functions. For example, Elmen-
reich et al. proposed an original technique for the calculation of the transition
function using neural networks (NN) [Elmenreich and Fehérvári, 2011]. The goal
was to train the NN by means of Evolutionary Programming [Fogel et al., 1966]
in order to develop self-organising structures in the CA. A novel technique for
encoding the transition functions of CA, called Conditionally Matching Rules,
was introduced in [Bidlo and Vasicek, 2013], and some applications in binary CA
with advantages over the conventional (table-based) encoding were presented in
[Bidlo, 2014].

Whilst the most of the aforementioned studies considered binary CA (i.e.
those working with two cell states only), which may be suitable for straightfor-
ward hardware implementations (e.g. Sipper’s Firefly machine [Sipper et al., 1997]),
multi-state CA can provide a more efficient way for the representation and pro-
cessing of information in CA thanks to the ability of individual cells to work with
more than two states. This feature is important for studying complex systems
that are in most cases described by integer (or real-valued) variables. In addition,
the introduction of more than two states per cell in the CA may allow to reduce
the resources needed to solve a given problem (e.g. the size of the cellular ar-
ray or dimension of the automaton). For example, Yunès studied computational
universality in multi-state one-dimensional cellular automata [Yunès, 2010]. A
technique for the construction of computing systems in 2D CA was demonstrated
by Stefano and Navarra in [Stefano and Navarra, 2012] using rules of a simple
game called Scintillae working with 6 cell states. Their approach allows to design
components (building blocks) for the construction of bigger systems, e.g. on the
basis of gate-level circuits.

The goal of this study is to demonstrate the evolutionary design of 2D cel-
lular automata, using the concept of conditionally matching rules to encode the
transition functions, which are able to replicate the given structures with respect
to a given arrangement in the cellular array. In particular, uniform, multi-state
cellular automata will be treated, the cells of which work with 8 and 10 states.
The GA will be applied in order to design suitable transition rules that perform
replication of the given structure according to the designer’s specification. It will
be shown that novel replication scenarios can be found in CA that can copy the
given loop not only from its initial instance but also, from a seed the loop can
autonomously grow. Moreover, a parallel replication scheme will be presented,
the objective of which is to speed-up the replication process by allowing the
structures to replicate to more directions in the 2D CA. The results will demon-
strate the ability of the GA to discover different replication scenarios for the

Appendix V

85

4

replicas developing in parallel in the cellular automaton, which will be encoded
in a single evolved transition function.

2 Cellular Automata

The original concept of cellular automaton, introduced in [von Neumann, 1966],
which will be considered in this study, assumes a 2D matrix of cells, each of
which at a given moment acquires a state from a finite set of states. The de-
velopment of the CA is performed synchronously in discrete iterations (time
steps) by updating the cell states according to local transition functions of the
cells. Uniform cellular automata will be investigated in which the local transition
function is identical for all cells and hence it can be considered as a transition
function of the CA. The next state of each cell depends on the combination of
states in its neighbourhood. In this work, von Neumann neighbourhood will be
assumed that includes a given (Central) cell to be updated and its immediate
neighbours in the North, South, East and West direction (i.e. it is a case of a
5-cell neighbourhood).

Since the CA behaviour can practically be evaluated in the cellular array
of a finite size, boundary conditions need to be specified in order to correctly
determine cell states at the edge of the array. Cyclic boundary conditions will
be implemented which means that cells at an edge of the CA are “connected”
to the appropriate cells on the opposite edge (i.e. these cells are considered as
neighbours) in each dimension. In case of the 2D CA the shape of such cellular
array can be viewed as a toroid.

The transition function is usually defined as a mapping that for all possible
combinations of states in the cellular neighbourhood determines a new state. This
mapping can be represented as a set of rules of the form Nt Wt Ct Et St → Ct+1

where Nt,Wt, Ct, Et and St denote cell states in the defined neighbourhood at a
time t and Ct+1 is the new state of the cell to be updated. It means that for ev-
ery possible combination of states Nt Wt Ct Et St a new state Ct+1 needs to be
specified. However, if the number of cell states increases, the number of possible
transition rules grows significantly which is inconvenient for efficient CA design.
Of course, not all transition rules need to be specified explicitly but the problem
is how to choose the rules which modify the central cell in the neighbourhood.
Therefore, an advanced representation of the transition rules was proposed and
denominated as Conditionally Matching Rules [Bidlo and Vasicek, 2013]. Con-
ditionally matching rules allows us to reduce the size of representation of the
transition functions especially with respect to the evolutionary design of cellular
automata.

3 Conditionally Matching Rules

The concept of conditionally matching rules (CMR) showed as a very promising
technique in comparison with the conventional (table-based) approach consider-
ing various experiments with binary cellular automata (e.g. pattern development

Appendix V

86

5

task [Bidlo and Vasicek, 2013] or binary multiplication in 2D CA [Bidlo, 2014]).
In this work, evolutionary design of the CMR-based representation will be in-
vestigated in order to design cellular automata with up to 10 cell states that
support replication of a given structure.

A conditionally matching rule represents a generalised rule of a transition
function for determining a new cell state. Whilst the common approach specifies
a new state for every given combination of states in the cellular neighbourhood,
the CMR-based approach allows to encode a wider range of combinations into a
single rule. A CMR is composed of two parts: a condition part and a new state.
The number of items (size) of the condition part corresponds to the number of
cells in the cellular neighbourhood. Let us define a condition item as an ordered
pair consisting of a condition function and a state value. The condition function
is typically expressed as a function whose result can be interpreted as either true
or false. The condition function evaluates the state value in the condition item
with respect to the state of the appropriate cell in the cellular neighbourhood.
In particular, each item of the condition part is associated with a cell in the
neighbourhood with respect to which the condition is evaluated. If the result of
such evaluation is true, then the condition item is said to match with the state
of the appropriate cell in the neighbourhood. In order to determine a new cell
state according to a given CMR, all its condition items must match (in such case
the CMR is said to match).

The following condition functions will be considered: == 0, 6= 0,≤,≥. Note
that this condition set represents a result of our long-term experimentation and
experience with the CMR approach and will be used for all the experiments
in this study. The condition == 0, respective 6= 0, evaluates whether the cor-
responding cell state is equal to 0 (i.e. a “dead” state), respective whether it
is different from state 0. Note that the state value of the condition item for
== 0 and 6= 0 is considered implicitly within the condition itself. The conditions
≤ and ≥ represent relational operators “less or equal” and “greater or equal”
respectively for which the state value of the condition item must be explicitly
specified.

Figure 1 shows an example of conditionally matching rules defined for a
2D CA with the 5-cell neighbourhood together with the illustration of cells
the condition items are related to. CMR (A) is a matching CMR since all the
conditions of its condition part are evaluated as true with respect to the sample
neighbourhood shown in the left part of Fig. 1. On the other hand, CMR (B)
does not match because the second condition item ! = 2 evaluates as false with
respect to the west cell that possesses state 2. Similarly, the third condition == 0
of CMR (B) is not true as the central cell is in state 2.

A CMR-based transition function can be specified as a finite (ordered) se-
quence of conditionally matching rules. The following algorithm will be applied
to determine a new state of a cell. The CMRs are evaluated sequentially one
by one. The first matching CMR in the sequence is used to determine the new
state. If no of the CMRs matches, then the cell keeps its current state. These
conventions for evaluating and applying the CMRs ensure that the process of cal-

Appendix V

87

6

2

>=

1

==

2

not-

is0

/=

2

is0
1

32

1

0

==

1

!=

2

is0 /=

2

<=

1
3

(A)

(B)

Fig. 1. Example of a conditionally matching rule specified for 5-cell neighbourhood.
The value of the new state is written in bold. (A) example of a matching CMR, (B)
example of a CMR that does not match – the second and third condition is evaluated
as false.

Fig. 2. Structure of a chromosome for genetic algorithm encoding a CMR-based tran-
sition function. cx denote a condition for the cell at position x in the neighbourhood,
sx represents the state value to be investigated using the appropriate condition with
respect to the state of cell at position x, ns specifies the next state for a given CMR.
All the conditions and state values are represented by integer numbers.

culating the new state is deterministic (it is assumed that the condition functions
are deterministic too). Therefore, it is possible to convert the CMR-based transi-
tion function to a corresponding table-based representation which preserves the
fundamental concept of cellular automata. Moreover, every condition set that in-
cludes relation == allows to formulate transition rules for specific combinations
of states if needed (by specifying == for all condition items of the CMR).

In order to obtain the conventional (table-based) representation of the tran-
sition rules from an evolved CMR-based solution, the following algorithm is
applied using the same CA that was considered during evolution. Let Ct and
Ct+1 denote states of a cell in two successive steps of the CA at time t and t+ 1
respectively. A transition rule of the form Nt Wt Ct Et St → Ct+1 is generated
for the combination of states in the cellular neighbourhood if Ct 6= Ct+1. This
process is performed after each step and for each cell until the CA reaches a
stable or periodic state. The set of rules obtained from this process represents
the corresponding conventional prescription of the transition function. Note that
only the rules that modify the cell state are generated, all the other rules are
implicitly considered to preserve the current state.

Appendix V

88

7

4 Evolutionary System Setup

A genetic algorithm is utilized for the evolution of CMR-based transition func-
tions in order to achieve the given behaviour in cellular automata. Each chro-
mosome of the GA represents a candidate transition function encoded as a finite
sequence of CMRs. The chromosome is implemented as a vector of integers in
which the condition items and next states of the CMRs are encoded. Note that
the population consists of chromosomes of a uniform length (given by the num-
ber of CMRs) which is specified as a parameter for a specific experiment. The
structure of a chromosome is depicted in Figure 2.

The population of the GA consists of 8 chromosomes that are initialised ran-
domly at the beginning of the evolutionary process. In each generation, four indi-
viduals are selected randomly from the current population, the best one of which
is considered as a parent. In order to generate an offspring, the parent undergoes
a process of mutation as follows. A random integer M in range from 0 to 2 is gen-
erated. Then M random positions in the parent chromosome are selected. The
offspring is created by replacing the original integers at these positions by new
valid randomly generated values. If M equals 0, then no mutation is performed
and the offspring is identical to the parent. The process of selection and mutation
is repeated until the entire new population is created. Crossover is not applied
because no benefit of this operator was observed during the initial experiments.
Note that the same GA has successfully been applied since the introduction of
CMRs in various case studies [Bidlo and Vasicek, 2013][Bidlo, 2014]. Although
no optimal (evolutionary) approach has yet been known for uniform CA, our ex-
periments indicate that small-population EA (i.e. less than 10 individuals) with
a simple mutation operator may represent a suitable class of algorithms to ob-
tain working solutions with a reasonable success rate and computational effort.
However, the detailed analysis and wider comparison of different techniques is
not a subject of this study.

For each experiment, the GA is executed for 3 million generations. If no
correct solution is found within this limit, the evolution is terminated. The eval-
uation of the chromosomes (i.e. the fitness function) and details regarding various
experimental settings are described in the next section.

5 Experimental Results

This section summarises statistics of the evolutionary experiments performed
and presents some results together with a more detailed analysis. Two sets of
experiments are considered, the goal of each is to design CA that is able to
replicate the given loop. The first set works with a big loop (the denomination is
chosen for the purposes of this work with respect to the loop in the second set of
experiments), the objective is to design transition rules that are able to develop
a single replica of the loop in a given arrangement against the initial loop. In the
second set, a simpler, small loop is treated, the goal is to find replication rules
for the development of two independent replicas in parallel on the left and right

Appendix V

89

8

side of the initial loop. Note that the loops consist of cells in 7 different states
(including state 0). In both sets of experiments, the CA working with 8 and 10
cell states are investigated. Moreover, different numbers of CMRs (varying from
20 to 50) encoded in the GA chromosomes are considered. For each setup, 100
independent evolutionary runs are executed. The experiments were executed
using the Anselm cluster1, the time of a single run (3 million generations) is
approximately 12 hours.

5.1 Replication Evolution of the Big Loop

A big loop is considered for the replication in the first set of experiments, the
structure of which is shown in Figure 3a. The genetic algorithm is applied to
design the transition rules for the CA, which perform the replication of the loop
in a maximum of 30 steps. The required CA state, that contains the replica, is
depicted in Figure 3b. The following algorithm is applied to the evaluation of the
candidate solutions during evolution and the calculation of the fitness function.
A partial fitness function is evaluated after each CA step as the number of cells
in correct states with respect to Figure 3b. The final fitness value of a given
candidate solution is defined as the maximum of the partial fitness values. It
this case the replication can be considered as a pattern transformation problem
from a single (initial) loop onto two loops in a given arrangement. However,
the loop is expected to replicate again and again during the subsequent CA
development, which will be validated for the results obtained from the evolution.
Moreover, an assumption is considered that each newly created loop is shifted by
two cells down with respect to its predecessor (as shown in Fig. 3b). Therefore,
the solutions obtained are further investigated using a visual software simulator
developed by the author of this work in order to check that. The goal of this
approach is to determine whether the GA is able to discover various new general
replication scenarios. Note that, for the purposes of this study, the term “general”
means the ability of a solution to repeatedly produce more replicas of the given
loop, not an ability to replicate arbitrary loops.

Table 1 summarises the results of experiments with the big loop and provides
an overview of some basic parameters of the CA that can be observed during its
development using the evolved transition functions. As evident, the maximum
success rate achieved during the experiments is only 12% which is not very high.
Note, however, that the replication of the proposed loop represents a problem
for which no working solution was found during our previous experiments using
the table-based transition functions.

In addition to the results obtained for the CA working with 8 cell states, some
successful solutions have even been obtained for 10 cell states which indicates
that the CMRs are an efficient encoding of the transition rules that allows for
the design of more complex multi-state CA. The solutions obtained in this work
demonstrate a wide range of various replication schemes that can be performed
using CA. For example, a solution was found that is able to replicate the loop

1 https://docs.it4i.cz/anselm-cluster-documentation/hardware-overview

Appendix V

90

9

Fig. 3. The structure of the big loop in the cellular automaton that was evaluated
during evolution: (a) the initial CA state containing the loop to be replicated, (b) the
target state specifying the replica arrangement.

Table 1. Results of the evolutionary experiments considering the design of transition
functions for the replication of the loop from Figure 3a. Success rate – the number
of successful experiments out of 100 independent experiments performed that has met
the fitness specification in a limit of 3 million generations, Replicates repeatedly –
the number of results from the successful experiments that are able to produce more
replicas during the subsequent CA development, Min. steps – the minimal number of
steps of the CA needed to create the replica (i.e. the lowest value of this parameter
from the group of “Replicates repeatedly” solutions, Min. rules – the minimal number
of table-based transition rules obtained (i.e. the lowest value of this parameter from
the group of “Replicates repeatedly” solutions.

CA with 8 cell states CA with 10 cell states

Num. of Success Replicates Min. Min. Success Replicates Min. Min.
CMRs rate [%] repeatedly steps rules rate repeatedly steps rules

20 0 - - - 1 0 - -
30 10 6 19 84 12 9 21 146
40 9 4 20 139 12 6 16 186
50 10 6 18 130 12 6 21 177

in 16 steps (the best result achieved for this loop) whilst some CA require 30
steps (the maximal allowed number of steps) in order to finish the replication.
Similarly, the number of transition rules generated from the CMRs varies from
84 to more than 1500 rules. These results indicate that cellular automata can
in some cases exhibit behaviour that has not yet been discovered which may be
beneficial not only for the area of CA but also, for the study of complex systems
in general.

Figure 4 shows a CA development performed by one of the successful transi-
tion functions obtained for the replication of the given loop. It is one of the best

Appendix V

91

10

Fig. 4. Develpment of a CA performing replication of the loop from Figure 3a. The
sequence of steps reads from left to right and top to bottom. The upper part of each step
of the CA illustrates the replication of the initial loop. The bottom part demonstrates a
seed represented by a cell in state 5. Note that after the loop is finished, its replication
continues in the same way as from the initial instance (shown by the last CA state).

solutions discovered in this work with respect to the number of steps needed to
create a copy of the loop. The transition function was found with 30 CMRs in
the GA chromosomes and the corresponding conventional representation con-
tains 238 transition rules. If the development of the initial loop is considered
(see the upper parts of each step in Figure 4), the CA needs 21 steps to cre-
ate a complete replica. As shown by the last step, more replicas can be created
in the same way according to the original specification if the CA development
continues. However, a more detailed investigation of this result showed that the
complete initial loop is not strictly needed in order to successfully perform the

Appendix V

92

11

replication. For example, the loop is able to emerge even from a single seed – the
lower parts of each step presented in Figure 4 shows a development of the loop
from a single initial cell (a seed) in state 5. As marked by the up-most black
arrow a complete loop is developed from the seed after 18 steps which is by 3
steps faster compared to the development from the initial loop. This behaviour
is caused by a need of the initial loop to generate a cell in state 5 (i.e. the same
state as the seed) from which the replica can be developed (it takes 3 steps –
see the top-right CA state in Figure 4). The process of finishing the replica is
identical with the development from the seed. Note that the ability of the tran-
sition function to develop and replicate the loop from a seed was not explicitly
required in the fitness evaluation. Hence it can be considered as an additional,
unconventional feature of this solution.

>=6;>=1;>=3;==0;>=1|7 ==0;>=4;<=0;==0;!=0|1 N W C E S C N W C E S C N W C E S C N W C E S C N W C E S C N W C E S C

>=0;<=3;>=0;<=0;>=3|1 <=2;==0;==0;<=2;>=1|3 0 0 0 0 3 1 1 0 7 2 1 1 1 2 7 7 7 1 1 7 7 0 0 4 4 2 3 0 4 1 7 1 3 0 4 7

==0;==0;==0;>=3;!=0|6 >=7;==0;>=6;>=6;<=2|2 0 0 0 0 7 1 1 0 7 2 7 1 1 3 1 0 0 6 1 7 7 0 3 2 4 2 7 0 3 1 7 2 0 0 3 1

<=1;!=0;<=1;>=5;<=1|0 <=5;!=0;>=7;!=0;<=0|7 0 0 1 1 0 0 1 0 7 7 1 1 1 3 6 0 0 7 1 7 7 3 0 6 4 7 0 0 0 3 7 2 6 0 0 0

==0;!=0;>=3;<=2;!=0|5 >=0;==0;==0;!=0;!=0|1 0 1 0 0 2 7 1 0 7 7 7 1 1 3 6 7 1 1 2 1 3 0 0 1 4 7 3 0 0 7 7 4 3 0 0 0

>=4;>=0;>=7;==0;>=2|6 !=0;!=0;==0;==0;==0|3 0 1 0 0 4 1 1 1 0 0 3 1 1 3 7 0 3 1 2 1 4 0 1 1 5 0 6 2 5 1 7 6 2 6 1 6

<=7;>=5;!=0;<=4;!=0|2 <=1;<=0;!=0;!=0;>=6|7 0 1 1 1 7 3 1 1 1 7 1 0 1 3 7 4 0 6 2 1 7 3 0 6 6 0 0 0 0 5 7 6 4 4 1 2

<=5;<=3;==0;<=7;<=1|0 ==0;>=4;<=2;<=7;>=6|1 0 1 1 5 0 0 1 1 3 0 0 1 1 4 0 0 0 3 2 5 1 0 0 6 6 0 0 1 0 5 7 6 6 0 1 7

>=3;>=3;!=0;>=0;!=0|6 >=5;>=1;>=1;==0;==0|0 0 1 3 0 0 1 1 1 4 7 1 1 1 4 1 0 0 6 2 6 0 3 3 4 6 0 5 1 0 7 7 7 3 0 0 7

!=0;>=4;<=4;>=5;==0|2 <=7;==0;==0;<=5;<=3|5 0 1 3 1 6 5 1 1 7 4 0 6 1 4 3 0 0 6 2 6 0 4 3 3 6 1 0 0 0 3 7 7 3 0 4 7

<=3;<=1;!=0;==0;<=2|1 !=0;>=5;==0;!=0;!=0|3 0 1 7 0 2 5 1 1 7 7 2 1 1 4 4 0 0 6 2 7 4 1 1 2 6 1 0 0 4 1 7 7 7 0 0 4

==0;>=5;<=3;==0;<=3|4 ==0;==0;==0;>=5;!=0|6 0 2 4 0 1 5 1 2 1 0 0 6 1 4 6 0 0 7 2 7 4 3 5 2 6 1 1 0 0 0	

==0;!=0;>=2;==0;!=0|4 ==0;<=3;==0;==0;!=0|7 0 4 0 0 1 1 1 2 3 0 0 6 1 5 5 0 1 2 2 7 6 0 0 4 6 3 0 0 0 3	

!=0;>=5;>=6;==0;<=6|4 !=0;==0;>=5;!=0;>=7|3 0 4 4 6 0 2 1 2 4 0 0 6 1 6 0 0 0 3 2 7 7 0 0 4 6 4 3 0 0 0	

<=7;==0;>=0;<=2;!=0|1 !=0;<=6;>=5;<=2;<=0|7 0 5 0 0 0 4 1 2 4 0 3 1 1 6 4 0 0 6 2 7 7 0 6 2 6 6 0 0 0 3	

>=1;>=7;!=0;==0;==0|7 ==0;<=0;>=0;<=2;==0|0 0 5 0 0 1 4 1 2 4 6 1 2 1 6 4 3 1 2 2 7 7 3 6 2 6 7 0 0 0 3	

<=7;>=3;<=6;<=3;>=3|4 ==0;==0;==0;>=2;<=4|5 0 5 1 0 4 2 1 2 4 6 7 2 1 6 4 3 3 2 3 0 4 0 0 1 6 7 3 0 4 7	

!=0;!=0;>=6;!=0;==0|6 ==0;>=5;>=0;>=5;>=2|7 0 5 4 0 1 5 1 2 5 5 1 2 1 6 4 4 1 2 3 4 4 0 0 6 7 0 0 0 0 1	

==0;==0;>=0;==0;<=3|5 ==0;<=4;==0;>=6;<=2|6 0 6 0 0 0 4 1 2 6 0 0 7 1 6 6 0 0 4 3 5 0 0 0 3 7 0 3 0 0 1	

<=1;<=3;>=3;>=7;!=0|1 ==0;<=0;>=1;>=4;==0|2 0 7 0 0 0 4 1 2 6 0 3 1 1 6 6 0 1 2 3 6 0 0 0 3 7 0 5 0 0 7	

>=4;<=3;!=0;==0;!=0|2 >=5;==0;==0;<=2;>=6|4 0 7 0 0 1 4 1 2 6 6 1 2 1 6 6 7 1 2 3 7 0 0 0 3 7 1 0 0 0 1	

==0;<=0;==0;<=6;<=1|7 !=0;!=0;<=7;>=5;==0|3 0 7 3 0 0 4 1 2 6 7 1 1 1 6 7 0 0 4 3 7 4 0 0 7 7 1 0 0 3 1	

>=0;>=5;<=7;>=2;==0|6 !=0;>=2;!=0;==0;==0|6 0 7 4 3 0 6 1 2 7 0 3 1 1 7 0 0 0 3 4 1 0 0 4 1 7 1 1 0 1 2	

<=1;>=2;!=0;>=5;<=7|2 <=0;<=2;<=5;!=0;>=7|3 0 7 6 6 3 2 1 2 7 4 0 6 1 7 3 0 0 7 4 1 1 0 2 2 7 1 2 0 6 1	

>=7;<=2;==0;<=6;<=1|1 >=6;==0;<=3;<=5;<=1|1 1 0 5 2 6 1 1 2 7 7 0 6 1 7 4 0 0 7 4 1 5 0 0 7 7 1 3 0 0 0	

 (a) (b)

t t t t t t+1 t t t t t t+1 t t t t t t+1 t t t t t t+1 t t t t t t+1 t t t t t t+1

Fig. 5. Transition function for the CA in Fig. 6 and 7: (a) the evolved representation
with 50 CMRs, (b) the corresponding conventional representation consisting of 130
rules. This result represents one of the best solutions discovered for the replication of
the big loop.

Another result is presented in the form of an evolved transition function
(Fig. 5) and the appropriate CA development (Figures 6 and 7). This cellular
automaton demonstrates a development process from a seed that at first creates
rather a chaotic structure even larger than the required loop itself. A “mature”
loop is developed from this structure during the subsequent CA development
that is able to replicate itself. Whilst the replication of the initial loop takes 25
steps (marked by the black arrow in Figure 6), the development of the chaotic
structure needs 36 steps. Starting by step 37 (Fig. 7) the loop is developed from
that structure in the same way as from the initial loop. It was verified that the
loops are able to replicate repeatedly if the CA development continues.

For both the presented solutions the transition function was identified as
redundant (i.e. not all the conventional transition rules generated from the CMR
representation are needed for the replication of the initial loop required by the
fitness function). A more detailed analysis showed that this redundancy is caused

Appendix V

93

12

Fig. 6. Part 1 of the replication according to the transition function from Figure 5.
The sequence of steps reads from left to right and top to bottom. The development
shows a replication of the initial loop (the upper part of each step) and a growth of a
non-specific structure from a seed allowing to create the loop autonomously (the lower
part of each step). The seed is represented by a cell in state 7.

by the finite CA size with cyclic boundary conditions and by generating the
transition rules from the CMRs until the CA reaches a stable or periodic state.
Although this approach leads to more complex table-based transition functions,
in this case it showed as very beneficial for achieving some additional features
that were not required during evolution (especially the ability to develop the
loops from a seed). Advanced experiments with the resulting CA showed that if
the transition functions are optimized (i.e. only the rules for the development of a
single replica from the initial loop are considered), the CA in most cases loose the
ability of the development from the seed. It was also determined that the seed-

Appendix V

94

13

Fig. 7. Part 2 of the replication according to the transition function from Figure 5.
The sequence of steps reads from left to right and top to bottom. The development
shows an autonomous growth of the loop from a non-specific structure that emerged
in the last step of Figure 6 (the bottom part of each step). It was verified that the
loop is able to replicate in the same way as the initial loop during the subsequent CA
development.

based development does not work in case of the known replicating loops (e.g.
Langton’s or Byl’s loop). In the future, this ability may be beneficial for the
advanced study of complex systems in which a given (complex) configuration
needs to be achieved — distributed — from a single cell or a simple initial
configuration. In addition to the results presented herein, various other solutions
were found that are able to replicate a given structure. It indicates that the
replication in CA is not limited to known schemes only but can be performed in
many different ways.

5.2 Parallel Replication of the Small Loop

The second set of experiments presents the evolution of parallel replication tech-
niques of a small loop with its structure shown in Figure 8a. As with the evolution
of the big loop, the CA behaviour is evaluated for 30 steps using the partial fit-
ness calculated after each step with respect to the target arrangement of the
replicas shown in Figure 8b, and the final fitness value is given by the maximum
of the partial fitness values. In this case, however, two replicas are required with
the arrangement on the left and right side of the original loop. The hypothesis
evaluated herein is that if suitable transition functions exist for the development

Appendix V

95

14

of the replicas, then at least a subset of the results will produce the replicas
repeatedly in the given directions during the subsequent CA development (i.e.
for the purposes of this study, such the solutions will be considered as general).
Since the loop is not fully symmetric with respect to the cell states on the sides
of the loop, it is expected that different replication algorithms (i.e. sequences of
the CA steps) need to be designed to produce the replicas.

Fig. 8. The structure of the small loop in the cellular automaton that was evaluated
during evolution: (a) the initial CA state containing the loop to be replicated, (b) the
target state specifying the replicas arrangement, (c) example of a symmetric loop.

Table 2 summarises the results of experiments with the small loop and pro-
vides an overview of some basic parameters of the CA that can be observed dur-
ing its development using the evolved transition functions. Although the shape
of the small loop is simpler than the big loop, the requirement of two indepen-
dent replicas increases the overall complexity of this task, the maximum success
rate achieved does not exceed 12%. Despite this fact, the evolution provided
some solutions that perfectly fulfil the target specification and, in addition, also
exhibit the capability of the seed-based development which was not explicitly
required.

Table 2. Results of the evolutionary experiments considering the design of transition
functions for the replication of the loop from Figure 8a. The success rate, the number
of general solutions, the minimal number of transition rules and the minimal number
of CA steps needed to create the replicas were evaluated.

CA with 8 cell states CA with 10 cell states

Num. of Success Replicates Min. Min. Success Replicates Min. Min.
CMRs rate [%] repeatedly steps rules rate repeatedly steps rules

20 0 - - - 2 0 - -
30 9 5 18 134 9 3 17 120
40 7 6 17 123 9 4 17 134
50 8 4 18 157 12 7 17 219

Appendix V

96

15

Figure 9 shows a CA that performs a successful parallel replication of the
small loop. The CA works with 8 cell states and, in addition to the replication
of the initial loop, is also able to perform the development and replication of
the loop from a seed. This is one of the most efficient and compact solution
obtained in this study regarding the number of CA steps and the number of
transition rules. The corresponding table-based transition function consists of
154 rules as shown in Figure 10. The CA needs to perform 23 steps in order
to finish the replicas of the initial loop. However, if a cell is initialised as a
seed by one of the states 1, 3, 5, 6, or 7, the small loop autonomously grows
into its full shape and subsequently is able to replicate according to the original
specification. The analysis of the seed-based development showed that the loop
needs 19 steps to fully develop from state 1, 18 steps from states 3, 6 and 7,
and 24 steps from state 5. An interesting behaviour of the CA can be observed
after finishing the seed development when the loop ought to be replicated. In
particular, the loop replicates according to the given specification from states
1, 3, 6, and 7. However, the state-5 seed creates an undesirable structure that
prevents the loop replication to the left side, i.e. the loop developed from state
5 can replicate to the right side only (see Figure 11). This indicates that a wide
range of states used as the seed allows emerging the loop using various processes
(i.e. sequences of CA states), which are totally different from the processes of
replication from the complete loop. Although the state-5 seed does not enable
to replicate the loop to both sides, the solution can be considered as robust
because the undesirable structure does not cause the destruction of the loop
that can subsequently replicate to the right side.

As an example of our research regarding the optimisation of replication tech-
niques in cellular automata, a symmetric loop is considered as shown in Figure
8c. Although the evaluation method applied to design the CA for this loop is
out of the scope of this study, a result of a successful parallel replication will be
presented, which demonstrates the potential of the GA in combination with the
CMR encoding to discover novel techniques in cellular automata. As in the pre-
vious example, the goal of the experiment was to design transition rules for the
parallel replication of the loop to the given directions. Since the loop is symmetric
with respect to the arrangement of the cell states, it would be possible to adapt
a single replication algorithm to perform the replication process simultaneously
to various directions. Such adaptation is based on “rotating” the transition rules
according to the ordering of cells in the cellular neighbourhoods with respect to
the given directions as known from Byl’s loop [Byl, 1989]. However, if the evalua-
tion of the candidate solutions during evolution is performed with respect to the
number and arrangement of the replicas only, then the GA can discover various
independent replication algorithms as shown in Figure 12. The corresponding
transition function contains 137 table-based rules and is shown in Figure 13. In
this solution, not only the algorithms for the replication to the left and right
side differ significantly, the number of steps needed to create the replica on the
left side is nearly the double of the number of steps required for the replication
to the right side. As evident from Figure 12, the first replica of the initial loop

Appendix V

97

16

is created on the right side after the 15th step, the first replica on the left side
needs 26 steps to be completed. After the 27th step, the second replica on the
right side is completed whilst the second copy on the left side has just started
to develop. Such a process has never been observed before as regards the known
replicating loops and hence it can be considered as an unconventional feature of
the solution obtained in this experiment.

5.3 Summary and Discussion

Both the proposed loops proved the ability to replicate according to the given
specification. It is worth to note that although the development of the loop from
a seed was not explicitly required, the evaluation of the results obtained for both
the loops showed that this ability is not rare. This means that the seed-based
development may be evolved directly (without any initial loop available) in order
the given loop can emerge autonomously. Some experiments were performed in
order to validate this hypothesis, with the following observations. The GA is able
to discover transition rules for the development of the given loop from the seed.
However, no solution has yet been achieved that would be able to subsequently
replicate the loop. One of the reasons for this issue may be the fact that the exact
place in the cellular space, where the loop is developed from the seed, is hard to
predict (it depends on the state of the seed, shape of the loop and the transition
rules). Therefore, it is not evident how the replicas ought to be specified within
the target CA state for the continuous replication. More research is needed in
order to determine the necessary information provided to the GA, which would
enable to solve this problem.

In order to perform a general evaluation of the results obtained within the
context of computational features of cellular automata and with respect to the
existing replicating loops, the following issues need to be clarified:

1. The objective was not to design self-replication. The loops with the ability
to self-replicate contain the information of how to create a copy encoded in
their “body” as a suitable arrangement of cell states. The transition rules
interpret this information and calculate the appropriate state transitions of
the CA in order to perform the replication process. In this work, however,
the initial loop is considered as an object of a given shape that ought to be
transformed onto a CA state that contains the copy of the loop. The goal
was to find both the transition rules and the sequence of the CA states that
lead to the emergence of the replica.

2. The resulting CA do not represent universal computing models (it was not
a goal of the experiments). It means that a specific transition function, that
was obtained as a result of a successful evolution, is dedicated to replicate
the given loop only that was a subject of evaluation in the fitness function.
Nevertheless, as the results showed, some transition functions are able to
create the loops from a seed which was not explicitly required within the
fitness evaluation.

Appendix V

98

17

Although the shape of the proposed loops was inspired by the existing (self-
replicating) loops and the GA provided some successful results to replicate the
loops with respect to the given specifications, no working solution has yet been
achieved by the GA to replicate the existing loops (e.g. Byl’s loop) with the
exact shape and arrangement of the replicas. This issue can be caused by the
fact that some of the self-replicating loops are dynamical structures even after
the replica is finished (e.g. Byl’s loop exhibits such feature). However, only static
replicas were considered in our experiments. Another aspect may be the size
of the loop. Large loops require a considerable number of steps to finish the
replica (e.g. Langton’s loop needs 151 steps), which makes the evaluation of
such solutions very time-consuming. Finally, the information encoded in the
loop body, that specifies the self-replication features, actually determines the
replication algorithm (i.e. the CA development) which is specific for the given
loop. If no more valid replication algorithms exist in the solution space for a
given loop, then the GA may not be able to find the solution in a reasonable
time.

6 Conclusions

In summary, the results presented in this work shows several facts related to the
problem of replication in cellular automata. First, there are plenty of transition
functions that are able to replicate a given loop. The experiments showed that
it is possible to discover such functions routinely by means of the genetic algo-
rithm even for complex multi-state cellular automata (herein demonstrated for
CA working with 8 and 10 cell states). This was enabled by the utilisation of con-
ditionally matching rules as a technique for the representation of the transition
functions. Second, some unconventional features of the solutions were identified
that cannot be observed in the known replicating loops and have never been
published before. Specifically, in case of some solutions obtained, the CA can
be initialised by a single-cell seed in a non-zero state, which allows developing
the given loop that is subsequently able to replicate. Note that this ability was
identified as an extra feature of the resulting cellular automata, which was not
explicitly required by the specification for the evolutionary algorithm. This shows
that some cellular automata are able, using a minimum information encoded in
the initial state, to autonomously develop a complex emergent behaviour that
is fully determined by the transition function and the state of a single cell only.
Another feature, that was achieved by the evolution, is a parallel replication
of the given loop into more directions, using different algorithms to create the
replicas. The results showed that this behaviour is needed if the arrangement of
the cell states in the loop is not fully symmetrical. However, an unconventional
parallel replication can be observed even in case of a symmetric loop, where the
difference is both in the way of the replication and the number of steps needed
to create the replicas. Again, the evolution itself discovered such the behaviour
just on the basis of the given target pattern containing the replicas of the initial
loop.

Appendix V

99

18

The results obtained bring some open questions, the answers of which could
be beneficial for the research of cellular automata in general. For example, can
the seed-based development create a configuration in the CA that supports self-
replication (or other useful features)? Are there other (simple) structures that
support development of more complex (self-)replicating objects? Can evolution-
ary techniques be applied to the design of computationally universal CA-based
models? Not only these questions represent ideas for our future work.

Acknowledgements

This work was supported from IT4Innovations excellence in science project (IT4I
XS LQ1602).

References

[Berlekamp et al., 2004] Berlekamp, E. R., Conway, J. H., and Guy, R. K. (2004).
Winning Ways for Your Mathematical Plays, 2nd Ed., Volume 4. A K Peters/CRC
Press.

[Bidlo, 2014] Bidlo, M. (2014). Evolving multiplication as emergent behavior in cellular
automata using conditionally matching rules. In 2014 IEEE Congress on Evolution-
ary Computation, pages 2001–2008. IEEE Computational Intelligence Society.

[Bidlo and Vasicek, 2013] Bidlo, M. and Vasicek, Z. (2013). Evolution of cellular au-
tomata with conditionally matching rules. In 2013 IEEE Congress on Evolutionary
Computation (CEC 2013), pages 1178–1185. IEEE Computer Society.

[Byl, 1989] Byl, J. (1989). Self-reproduction in small cellular automata. Physica D:
Nonlinear Phenomena, 34(1–2):295–299.

[Elmenreich and Fehérvári, 2011] Elmenreich, W. and Fehérvári, I. (2011). Evolving
self-organizing cellular automata based on neural network genotypes. In Proceed-
ings of the 5th International Conference on Self-organizing Systems, pages 16–25.
Springer.

[Fogel et al., 1966] Fogel, L. J., Owens, A. J., and Walsh, M. J. (1966). Artificial
Intelligence through Simulated Evolution. Wiley, New York.

[Holland, 1975] Holland, J. H. (1975). Adaptation in Natural and Artificial Systems.
University of Michigan Press, Ann Arbor.

[Langton, 1984] Langton, C. G. (1984). Self-reproduction in cellular automata. Physica
D: Nonlinear Phenomena, 10(1–2):135–144.

[Mitchell et al., 1993] Mitchell, M., Hraber, P. T., and Crutchfield, J. P. (1993). Re-
visiting the edge of chaos: Evolving cellular automata to perform computations.
Complex Systems, 7(2):89–130.

[Packard, 1988] Packard, N. H. (1988). Adaptation toward the edge of chaos. In J.
A. S. Kelso, A. J. Mandell, and M. F. Shlesinger, editors, Dynamic Patterns in
Complex Systems, pages 293–301. World Scientific.

[Perrier et al., 1996] Perrier, J.-Y., Sipper, M., and Zahnd, J. (1996). Toward a viable,
self-reproducing universal computer. Physica D, 97:335–352.

[Reggia et al., 1993] Reggia, J. A., Armentrout, S. L., Chou, H.-H., and Peng,
Y. (1993). Simple systems that exhibit self-directed replication. Science,
259(5099):1282–1287.

Appendix V

100

19

[Sapin et al., 2010] Sapin, E., Adamatzky, A., Collet, P., and Bull, L. (2010). Stochas-
tic automated search methods in cellular automata: the discovery of tens of thou-
sands of glider guns. Natural Computing, 9(3):513–543.

[Sapin and Bull, 2008] Sapin, E. and Bull, L. (2008). Searching for glider guns in
cellular automata: Exploring evolutionary and other techniques. In Monmarch, N.,
Talbi, E.-G., Collet, P., Schoenauer, M., and Lutton, E., editors, Artificial Evolution,
volume 4926 of Lecture Notes in Computer Science, pages 255–265. Springer Berlin
Heidelberg.

[Sipper, 1995] Sipper, M. (1995). Quasi-uniform computation-universal cellular cu-
tomata. In Advances in Artificial Life, ECAL 1995, Lecture Notes in Computer
Science, Vol. 929, pages 544–554. Springer Berlin Heidelberg.

[Sipper, 1997] Sipper, M. (1997). Evolution of Parallel Cellular Machines – The
Cellular Programming Approach, Lecture Notes in Computer Science, Vol. 1194.
Springer, Berlin.

[Sipper et al., 1997] Sipper, M., Goeke, M., Mange, D., Stauffer, A., Sanchez, E., and
Tomassini, M. (1997). The firefly machine: online evolware. In Evolutionary Com-
putation, 1997., IEEE International Conference on, pages 181–186.

[Stefano and Navarra, 2012] Stefano, G. D. and Navarra, A. (2012). Scintillae: How to
approach computing systems by means of cellular automata. In Cellular Automata
for Research and Industry, Lecture Notes in Computer Science, Vol. 7495, pages
534–543. Springer.

[Tempesti, 1995] Tempesti, G. (1995). A new self-reproducing cellular automaton ca-
pable of construction and computation. In Advances in Artificial Life, Proc. 3rd
European Conference on Artificial Life, Lecture Notes in Artificial Intelligence, Vol.
929, pages 555–563. Springer.

[von Neumann, 1966] von Neumann, J. (1966). The Theory of Self-Reproducing Au-
tomata. A. W. Burks (ed.), University of Illinois Press.

[Yunès, 2010] Yunès, J.-B. (2010). Achieving universal computations on one-
dimensional cellular automata. In Cellular Automata for Research and Industry,
Lecture Notes in Computer Science Volume 6350, pages 660–669. Springer.

Appendix V

101

20

Fig. 9. A sequence of CA steps demonstrating the parallel replication of the small loop
according to the evolved transition function from Figure 10. The states are ordered from
left to right and top to bottom. The bottom part of each state shows the replication
from the initial loop, the top part of each state demostrates the development and
replication of the loop from a seed.

Appendix V

102

21

Fig. 10. A transition function designed by evolution for the parallel replication of the
small loop from Figure 8a.

Fig. 11. A sample of the CA development from the seed according to the transition
function from Figure 10: (a) the initial seed, (b) the small loop is developed from the
seed after step 24, leaving an undesirable structure on its left side, (c) the loop creates
its first replica after step 47, the undesirable structure prevents from the replication
on the left side, (d) the replication to the right in progress after step 51, the structure
on the left no longer changes.

Appendix V

103

22

Fig. 12. A sample of the parallel replication of the symmetric loop from Figure 8c
according to the transition function shown in Figure 13. Note that the number of steps
needed to develop a replica on the right side is half the number of steps required to
finish a replica on the left side.

Fig. 13. The transition function designed by evolution for the parallel replication of
the symmetric loop from Figure 8c.

Appendix V

104

Appendix VI

Advances in the Evolution of
Complex Cellular Automata

BIDLO Michal

In: International Joint Conference on Computational Intelligence, IJCCI 2016, Porto,
Portugal, November 9-11, 2016 Revised Selected Papers. Cham: Springer International
Publishing, 2017, pp. 123-146. ISBN 978-3-319-99282-2.

This work represents an extended version of [20] which was awarded by the Best Paper
Award in 2016 International Joint Conference on Computational Intelligence (IJCCI),
Porto, Portugal, and selected for publication of an extended version hereafter.

105

Advances in the Evolution
of Complex Cellular Automata

Michal Bidlo

Brno University of Technology
Faculty of Information Technology

IT4Innovations Centre of Excellence
Božetěchova 2, 61266 Brno, Czech Republic

E-mail: bidlom@fit.vutbr.cz

http://www.fit.vutbr.cz/~bidlom

Abstract. In this study we present some advanced experiments dealing
with the evolutionary design of multi-state uniform cellular automata.
The generic square calculation problem in one-dimensional automata
will be treated as one of the case studies. An analysis of the evolution-
ary experiments will be proposed and properties of the resulting cellular
automata will be discussed. It will be demonstrated that various ap-
proaches to the square calculations in cellular automata exist, some of
which substantially overcome the known solution. The second case study
deals with a non-trivial pattern development problem in two-dimensional
automata. Some of the results will be presented which indicate that an
exact behaviour can be automatically designed even for cellular automata
working with more than ten cell states. A discussion for both case studies
is included and potential areas of further research are highlighted.

Keywords: evolutionary algorithm, cellular automaton, transition func-
tion, conditional rule, square calculation, pattern development

1 Introduction

The concept of cellular automata was introduced by von Neumann in [15]. One of
the aspects widely studied in his work was the problem of (universal) computa-
tional machines and the question about their ability to make copies of themselves
(i.e. to self-reproduce). Von Neumann proposed a model with 29 cell states to
perform this task. Later Codd proposed another approach and showed that the
problem of computation and construction can be performed by means of a sim-
plified model working with 8 states only [7].

Several other researchers studied cellular automata usually by means of vari-
ous rigorous techniques. For instance, Sipper studied computational properties of
binary cellular automata (i.e. those working with 2 cell states only) and proposed
a concept of universal computing platform using a two-dimensional (2D) CA with
non-uniform transition function (i.e. each cell can, in general, be controlled by a
different set of transition rules) [21]. Sipper showed that, by introducing the non-
uniform concept to the binary CAs, universal computation can be realised, which

Appendix VI

106

2

was not possible using the Codd’s model. In fact, Sipper’s work significantly re-
duced the complexity of the CA in comparison with the models published earlier.
Nevertheless even the binary uniform 2D CAs can be computationally universal
if 9-cell neighbourhood is considered. Such CA was implemented using the fa-
mous rules of the Game of Life [2] (original proof of the concept was published
in 1982 and several times revisited – e.g. see [8][11][17][18]).

Although binary CAs may be advantageous due to simple elementary rules
and hardware implementations in particular, many operations and real-world
problems can effectively be solved by multi-state cellular automata (i.e. those
working with more than 2 cell states) rather than those using just two states.
For example, a technique for the construction of computing systems in a 2D CA
was demonstrated in [23] using rules of a simple game called Scintillae working
with 6 cell states. Computational universality was also studied with respect to
one-dimensional (1D) CA, e.g. in [13][27].

However, in some cases application specific operations (algorithms) may be
more suitable than programming a universal system, allowing to better optimize
various aspects of the design (e.g. resources, efficiency, data encoding etc.). For
example, Tempesti [25] and Perrier et al. [12] showed that specific arrangements
of cell states can encode sequences of instructions (programs) to perform a given
operation. Wolfram presented various transition functions for CAs in order to
compute elementary as well as advanced functions (e.g. parity, square, or prime
number generation) [26]. Further problems were investigated in recent years
[16][19].

In addition to the computational tasks, various other (more geneal) bench-
mark problems have been investigated using cellular automata, e.g. including
principles of self-organization, replication or pattern formation. For example,
Basanta et al. used a genetic algorithm to evolve the rules of effector automata
(a generalised variant of CA) to create microstructural patterns that are sim-
ilar to crystal structures known from some materials [1]. An important aspect
of this work was to investigate new materials with specific properties and their
simulation using computers. Suzudo proposed an approach to the evolutionary
design of 2D asynchronous CA for a specific formation of patterns in groups in
order to better understand of the pattern-forming processes known from nature
[24]. Elmenreich et al. proposed an original technique for growing self-organising
structures in CA whose development is controlled by neural networks according
to the internal cell states [9].

The proposed work represents an extended version of our recent study pub-
lished in [4], the aim of which is to present a part of our wider research in the
area of cellular automata, where representation techniques and automatic (evo-
lutionary) methods for the design of complex multi-state cellular automata are
investigated. The goal of this work is to design transition functions for cellu-
lar automata using evolutionary algorithms, which satisfy the given behaviour
with respect to some specific initial and target conditions. In particular, it will
be shown that the evolutionary algorithm can design various transition func-
tions for uniform 1D CAs (that have never been seen before) to perform generic

Appendix VI

107

3

square calculations in the cellular space using just local interactions of cells. An
additional analysis of the results demonstrates that various generic CA-based so-
lutions of the squaring problem can be discovered, which substantially overcome
the known solution regarding both the complexity of the transition functions
and the number of steps (speed) of calculation. In order to show the abilities of
the proposed method for designing CA using the concept of conditionally match-
ing rules, some further experiments are presented regarding the evolution of 2D
multi-state cellular automata in which the formation of some non-trivial patterns
is treated as a case study. As cellular automata represent a platform potentially
important for future technologies (see their utilisation in various emerging fields,
e.g. [14], [22] or [20]), it is worth studying their design and behaviour on the el-
ementary level as well (i.e. using various benchmark problems).

2 Cellular Automata for Square Calculations

For the purposes of developing algorithms for squaring natural numbers, 1D
uniform cellular automata are treated with the following specification (target
behaviour). The number of cell states is investigated for values 4, 6, 8 and 10
(this was chosen on the basis of the existing solution [26] that uses 8 states;
moreover it is worth of determining whether less states will enable to design
generic solutions and whether the EA will be able to find solutions in a huge
search space induced by 10 cell states). The new state of a given cell depends on
the states of its west neighbour (cW), the cell itself (central cell, cC) and its east
neighbour (cE), i.e. it is a case of 3-cell neighbourhood. A step of the CA will
be considered as a synchronous update of state values of all its cells according
to a given transition function. For the practical implementation purposes, cyclic
boundary conditions are considered. However, it is important to note that CAs
with sufficient sizes are used in order to avoid affecting the development by the
finite number of cells.

The value of x is encoded in the initial CA state as a continuous sequence
of cells in state 1, whose length (i.e. the number of cells in state 1) corresponds
to x, the other cells possess state 0. For example, the state of a 12-cell CA,
which encodes x = 3, can appear as 0000011100000. The result y = x2, that
will emerge from the initial state in a finite number of steps, is assumed as
a stable state in which a continuous sequence of cells in non-zero states can be
detected, the length of which equals the value of y, the other cells are required in
state 0. For the aforementioned example, the result can appear as 002222222220
or even 023231323200 (there is a sequence of non-zero cells of length 32 = 9).
The concept of representing the input value x and the result y is graphically
illustrated in Figure 1. This is a generalised interpretation based on the idea
presented in [26], page 639. The goal is to discover transition functions for the
CA, that are able to calculate the square of arbitrary number x > 1.

Appendix VI

108

4

Fig. 1. Illustration of encoding integer values in a 1D cellular automaton. In this ex-
ample x = 3, y = 9. Extracted from [4].

2.1 Conditionally Matching Rules

In order to represent the transition functions for CAs, the concept of Condition-
ally Matching Rules (CMR), originally introduced in [6], will be applied. This
technique showed as very promising for designing complex cellular automata
[3][5]. For the 1D CA working with 3-cell neighbourhood, a CMR is defined as
(condW sW)(condC sC)(condE sE)→ sCnew, where condF denotes a condition
function and sF denotes a state value. Each part (condF sF) on the left of the
arrow is evaluated with respect to the state of a specific cell in the neighbour-
hood (in this case cW , cC and cE respectively). For the experiments presented in
this work the relation operators =, 6=, ≥ and ≤ are considered as the condition
functions. A finite sequence of CMRs represents a transition function. In order
to determine the new state of a cell, the CMRs are evaluated sequentially. If
a rule is found in which all conditions are true (with respect to the states in
the cell neighbourhood), sCnew from this rule is the new state of the central
cell. Otherwise the cell state does not change. For example, consider a transition
function that contains a CMR (6= 1)(6= 2)(≤ 1) → 1. Let cW , cC , cE be states
of cells in a neighbourhood with values 2, 3, 0 respectively, and a new state of
the central cell ought to be calculated. According to the aforementioned rule,
cW 6= sW is true as 2 6= 1, similarly cC 6= sC is true (3 6= 2) and cE ≤ sE
(0 ≤ 1). Therefore, this CMR is said to match, i.e. sCnew = 1 on its right side
will update the state of the central cell. Note that the same concept can also
be applied to CA working with a wider cellular neighborhood. For example, a
CMR for a 2D CA with 5-cell neighborhood would consist of 5 items for the
conditional functions instead for 3 items.

The evolved CMRs can be transformed to the conventional table rules [5]
without loss of functionality or violating the basic CA principles. In this work
the transformation is performed as follows: (1) For every possible combination of
states cW cC cE in cellular neighborhood a new state sCnew is calculated using
the CMR-based transition function. (2) If cC 6= sCnew (i.e. the cell state ought

Appendix VI

109

5

to be modified), then a table rule of the form cW cC cE → sCnew is generated.
Note that the combinations of states not included amongst the table rules do
not change the state of the central cell, which is treated implicitly during the
CA simulation. The number of such generated rules will represent a metrics
indicating the complexity of the transition function.

In order to determine the complexity of the transition function with respect
to a specific square calculation in CA, a set of used rules is created using the
aforementioned principle whereas the combinations of states cW cC cE are con-
sidered just occurring during the given square calculation in the CA. There
metrics (together with the number of states and CA steps) will allow us to com-
pare the solutions obtained by the evolution and to identify the best results with
respect to their complexity and efficiency.

An evolutionary algorithm will be applied to search for suitable CMR-based
transition functions as described in the following section.

3 Setup of the Evolutionary System

A custom evolutionary algorithm (EA) was utilised, which is a result of our
long-term experimentation in this area. Note, however, that neither tuning of
the EA nor in-depth analysis of the evolutionary process is a subject of this
work. The EA is based on a simple genetic algorithm [10] with a tournament
selection of base 4 and a custom mutation operator. Crossover is not used as it
has not shown any improvement in success rate or efficiency of our experiments.

The EA utilises the following fixed-length representation of the conditionally
matching rules in the genomes. For the purpose of encoding the condition func-
tions =, 6=, ≥ and ≤, integer values 0, 1, 2 and 3 will be used respectively. Each
part (condF sF) of the CMR is encoded as a single integer PF in the range from
0 to M where M = 4 ∗ S − 1 (4 is the fixed number of condition functions con-
sidered and S is the number of cell states) and the part → sCnew is represented
by an integer in the range from 0 to S − 1. In order to decode a specific con-
dition and state value, the following operations are performed: condF = PF/S,
sF = PF mod S (note that / is the integer division and mod is the modulo-
division). This means that a CMR (condW sW)(condC sC)(condE sE)→ sCnew

can be represented by 4 integers; if 20 CMRs ought to be encoded in the genome,
then 4 ∗ 20 = 80 integers are needed. For example, consider S = 3 for which
M = 4 ∗ 3− 1 = 11. If a 4-tuple of integers (2 9 11 2) representing a CMR in the
genome ought to be decoded, then the integers are processed respectively as:

– condW = 2/3 = 0 which corresponds to the operator =, sW = 2 mod 3 = 2,
– condC = 9/3 = 3 which corresponds to the operator ≤, sC = 9 mod 3 = 0,
– condE = 11/3 = 3 which corresponds to the operator ≤, sE = 11 mod 3 = 2,
– sCnew = 2 is directly represented by the 4th integer.

Therefore, a CMR of the form (= 2)(≤ 0)(≤ 2)→ 2 has been decoded.
The following variants of the fitness functions are treated (note that the input

x is set to the middle of the cellular array):

Appendix VI

110

6

1. RESULT ANYWHERE (RA-fitness): The fitness is calculated with respect
to any valid arrangement (position) of the result sequence in the CA. For ex-
ample, y = 4 in an 8-cell CA may be rrrr0000, 0rrrr000, 00rrrr00, 000rrrr0
or 0000rrrr, where r 6= 0 represent the result states that may be generally
different within the result sequence. A partial fitness value is calculated for
every possible arrangement of the result sequence as the sum of the number
of cells in the expected state for the given values of x. The final fitness is the
highest of the partial fitness values.

2. SYMMETRIC RESULT (SR-fitness): The result is expected symmetrically
with respect to the input. For example, if 0000011100000 corresponds to
initial CA state for x = 3, then the result y = 32 is expected as a specific
CA state 00rrrrrrrrr00 (each r may be represented by any non-zero state).
The fitness is the number of cells in the expected state.

The fitness evaluation of each genome is performed by simulating the CA for
initial states with the values of x from 2 to 6. The result of the x2 calculation is
inspected after the 99th and 100th step of the CA, which allows to involve the
state stability check into the evaluation. This approach was chosen on the basis
of the maximal x evaluated during the fitness calculation and on the basis of
the number of steps needed for the square calculation using the existing solution
[26]. In particular, the fitness of a fully working solution evaluated for x from 2
to 6 in a 100-cell CA is given by Fmax = 5 ∗ 2 ∗ 100 = 1000 (there are 5 different
values of x for which the result x2 is investigated in 2 successive CA states, each
consisting of 100 cells). The evolved transition functions, satisfying the maximal
fitness for the given range of x, are checked for the ability to work in larger CAs
for up to x = 25 The solutions which pass this check are considered as generic.

The EA works with a population of 8 genomes initialised randomly at the be-
ginning of evolution. After evaluating the genomes, four candidates are selected
randomly, the candidate with the highest fitness becomes a parent. An offspring
is created by mutating 2 randomly selected integers in the parent. The selection
and mutation continue until a new population of the same size is created and
the evolutionary process is repeated until 2 million generations are performed.
If a solution with the maximal fitness is found, then the evolutionary run is
considered as successful. If no such solution is found within the given generation
limit, then the evolutionary run is terminated and regarded as unsuccessful.

4 Results of Square Calculations in 1D CA

The evolutionary design of CAs for the generic square calculation has been in-
vestigated for the following settings: the number of states 4, 6, 8 and 10, the
transition functions consisting of 20, 30, 40 and 50 CMRs and two ways of the
fitness calculation described in Section 3. For each setup, 100 independent evo-
lutionary runs have been executed. The success rate and average number of
generations needed to find a working solution were observed with respect to the
evolutionary process. As regards the parameters of the CA, the minimal number
of rules and steps needed to calculate the square of x were determined.

Appendix VI

111

7

Table 1. Statistics of the evolutionary experiments conducted using the RA-fitness
(the upper part of the table) and the parameters of the generic solutions (in the lower
part of the table). The parameters of the best results obtained are marked bold. Note
that # denotes “the number of”, the meaning of “generated rules”, “used rules” and
”steps” of the CA is defined in Section 2. Extracted from [4].

the number of states

4 6 8 10

the num. succ. avg. min. min. succ. avg. min. min. succ. avg. min. min. succ. avg. min. min.

of CMRs rate gen. steps rules rate gen. steps rules rate gen. steps rules rate gen. steps rules

20 3 844364 54 35 30 769440 45 120 45 570939 39 232 35 328210 47 569

30 3 620998 52 36 24 749837 40 120 38 595467 42 340 33 363360 45 663

40 2 1344286 77 46 19 629122 37 136 30 701612 41 365 29 244566 46 662

50 2 959689 73 43 20 813803 41 134 35 582342 39 348 38 373490 40 762

the number of generic solutions (#generic) obtained for the given number of states

and parameters of the generic solutions: #generated rules/#used rules/#steps for 62)

#generic, 1 5 6 3

176/52/46, 164/33/87, 435/49/68, 403/51/79, 934/64/56, 835/61/79,

parameters 36/26/74 152/49/78, 185/66/70, 422/39/65, 392/62/76, 916/35/76

175/52/69 423/41/68, 429/94/76

For the purposes of comparison of the results proposed in Section 4.3, the
CA will be denominated by unique identifiers of the form CA–XX–YY, where
XX and YY are integers distinguishing the sets of evolutionary experiments and
the CA obtained.

4.1 Results for the RA-Fitness

For the RA-fitness, the statistical results are summarised in Table 1. The ta-
ble also contains the total numbers of generic solutions discovered for the given
state setups and parameters determined for these solutions. For every number
of states considered, at least one generic solution was identified. For example, a
transition function was discovered for the 4-state CA, which consists of 36 table
rules (transformed from the CMR representation evolved). This solution can be
optimised to 26 rules (by eliminating the rules not used during the square calcu-
lation) which represents the simplest CA for generic square calculations known
so far (note that Wolfram’s CA works with 8 states and 51 rules [26]). Moreover,
for example, our solution needs 74 steps to calculate 62 whilst Wolfram’s CA
needs 112 steps, which also represents a substantial innovation discovered by the
EA. The CA development corresponding to this solution is shown in Figure 2.

Another result obtained using the RA-fitness is illustrated by the CA devel-
opment in Figure 3. In this case the CA works with 6 states and its transition
function consists of 52 effective rules. The number of steps needed, for exam-
ple, to calculate 62, is 46 (and compared to 112 steps of Wolframs CA, it is
an improvement of the CA efficiency by more than 50%) which represents the
best CA known so far for this operation and the best result obtained from our
experiment.

Appendix VI

112

8

Fig. 2. Example of a 4-state squaring CA development for x = 3, 4 and 5 using our
most compact transition function. This solution is denominated as CA–30–00 and its
rules are: 0 0 1→ 3, 0 1 1→ 2, 0 3 0→ 2, 1 0 0→ 3, 1 0 2→ 2, 1 0 3→ 2, 1 1 0→ 0,
1 1 2→ 2, 1 1 3→ 2, 1 2 1→ 1, 1 3 0→ 1, 1 3 1→ 1, 1 3 2→ 2, 1 3 3→ 0, 2 1 2→ 3,
2 1 3→ 3, 2 2 0→ 1, 2 2 1→ 1, 2 3 1→ 1, 2 3 2→ 2, 3 0 2→ 3, 3 1 0→ 3, 3 1 1→ 3,
3 1 3→ 3, 3 2 0→ 3, 3 2 3→ 3. Extracted from [4].

Appendix VI

113

9

Fig. 3. Example of a 6-state CA development for x = 4, 5 and 6. This is the fastest CA-
based (3-neighbourhood) solution known so far and the best result obtained from our
experiments. This solution is denominated as CA–50–12 and its rules are: 0 0 4 → 2,
0 0 5→ 2, 0 1 1→ 0, 0 2 3→ 0, 0 2 4→ 4, 0 2 5→ 3, 0 3 2→ 2, 0 3 3→ 0, 0 4 0→ 2,
0 4 2→ 2, 0 5 3→ 0, 0 5 5→ 4, 1 0 0→ 3, 1 1 0→ 3, 1 1 1→ 5, 1 1 4→ 5, 1 4 4→ 5,
2 0 4→ 3, 2 1 0→ 2, 2 2 5→ 5, 2 3 0→ 2, 2 3 4→ 2, 2 4 0→ 2, 2 4 1→ 2, 2 4 2→ 2,
2 4 3→ 2, 2 4 4→ 2, 2 4 5→ 5, 2 5 2→ 2, 2 5 4→ 2, 3 3 0→ 4, 3 4 4→ 2, 4 0 0→ 1,
4 1 0→ 4, 4 1 1→ 4, 4 1 4→ 4, 4 2 0→ 4, 4 2 1→ 4, 4 2 3→ 4, 4 2 4→ 4, 4 3 0→ 4,
4 4 5→ 1, 4 5 1→ 4, 4 5 4→ 4, 4 5 5→ 1, 5 1 1→ 4, 5 1 4→ 4, 5 2 4→ 4, 5 3 3→ 4,
5 5 3→ 4, 5 5 4→ 4, 5 5 5→ 1. Extracted from [4].

One more example of evolved CA is shown in Figure 4. This generic solution
was obtained in the setup with 8-state CA, however, the transition function
works with 6 different states only. There are 49 transition rules, the CA needs
68 steps to calculate 62. This means that the EA discovered a simpler solution
(regarding the the number of states and table rules) which is a part of the solution
space of the 8-state CA. Again, this result exhibits generally better parameters
compared to the known solution from [26]. The CA development, that was not
observed in any other solution, is also interesting visually - as Fig. 4 shows, the
CA generates a pattern with some “dead areas” (cells in state 0) within the cells
that subsequently form the result sequence. The size of these areas is gradually
reduced, which finally lead to derive the number of steps after which a stable
state containing the correct result for the given x has emerged (illustrated by
the right part of Figure 4 for x = 8 whereas the CA needs 122 steps to produce
the result).

4.2 Results for the SR-Fitness

Table 2 shows the statistics for the SR-fitness together with the total numbers of
generic solutions discovered for the given state setups and parameters determined
for these solutions. As evident, the success rates are generally lower compared
to the RA-fitness which is expectable because the SR-fitness allows a single
arrangement only of the result sequence in the CA. Moreover, just two generic

Appendix VI

114

10

Fig. 4. Example of a 6-state squaring CA development (originally designed using 8-
state setup) for x = 4, 6 and 8. This solution is denominated as CA–40–01. Its develop-
ment shows a specific pattern evolved to derive the result of x2, which was not observed
in any other solution. The part on the right shows a complete global behaviour of this
CA for x = 8 with some “dead areas” (marked by black spots) which lead to the correct
stable result by progressively reducing the size of these areas (in this case the result of
82 is achieved after 122 steps). Extracted from [4].

Appendix VI

115

11

CAs have been identified out of all the runs executed for this setup. However, the
goal of this experiment was rather to determine whether solutions of this type
ever exist for cellular automata and evaluate the ability of the EA to find them.
As regards both generic solutions, their numbers of used rules and CA steps
are significantly better in comparison with Wolfram’s solution [26]. Specifically,
Wolfram’s solution uses are 51 rules and the calculation of 62 takes 112 steps,
whilst the proposed results use 33, respective 36 rules and calculate 62 in 71,
respective 78 steps. Moreover, one of them was discovered using a 4-state CA
(Wolfram used 8 states), which belongs to the most compact solutions obtained
herein and known so far.

Table 2. Statistics of the evolutionary experiments conducted using the SR-fitness
(the upper part of the table) and the parameters of the generic solutions (in the lower
part of the table). The parameters of the best result obtained are marked bold. Note
that # denotes “the number of”, the meaning of “generated rules”, “used rules” and
”steps” of the CAs is defined in Section 2. Extracted from [4].

the number of states

4 6 8 10

the num. succ. avg. min. min. succ. avg. min. min. succ. avg. min. min. succ. avg. min. min.

of CMRs rate gen. steps rules rate gen. steps rules rate gen. steps rules rate gen. steps rules

20 2 634948 71 38 4 734200 38 126 11 982446 34 234 18 855791 53 542

30 0 - - - 5 905278 48 150 17 934123 51 327 15 910269 35 742

40 1 1546681 79 45 4 928170 33 147 11 1033059 53 317 15 898314 52 748

50 0 - - - 3 989039 44 138 12 811686 32 380 17 861850 52 796

the number of generic solutions (#generic) obtained for the given number of states

and parameters of the generic solutions: #generated rules/#used rules/#steps for 62)

#generic, 1 0 1 0

parameters 38/33/71 234/36/78

Figure 5 shows examples of a CA (identified as generic) evolved using the
SR-fitness. The transition function, originally obtained in 8-state CA setup, is
represented by 36 used rules and works with 7 states only. Although this result
cannot be considered as very efficient (for 62 the CA needs 78 steps), it exhibits
one of the most complex emergent process obtained for the square calculation,
the result of which is represented by a non-homogeneous state. The sample on
the right of Fig. 5 shows a cutout of development for x = 11 in which the global
behaviour can be observed. This result demonstrates that the EA can produce
generic solutions to a non-trivial problem even for a single specific position of
the result sequence required by the SR-fitness evaluation.

4.3 Analysis and Comparison of the Results

In this section an overall analysis and comparison of the results obtained for
the generic square calculations is provided and some of further interesting CA
are shown. Note that the data related to the CA behavior and visual samples

Appendix VI

116

12

Fig. 5. Example of a 7-state CA controlled by a transition function evolved using the
SR-fitness. This solution is denominated as CA–20–07. A complete development is
shown for x = 4 and 5 (the left and middle sample respectively), the part on the right
demonstrates a cutout of global behaviour of the CA for x = 11. Extracted from [4].

Appendix VI

117

13

of selected calculations were obtained using our experimental software (i.e. the
evolutionary system and a dedicated CA simulator developed specifically for this
purpose). There are in total 17 different CA obtained from our experiments and
included in this evaluation.

In order to provide a direct comparison of computational efficiency of the CA,
the number of steps needed to calculate the square was evaluated for the values
of the input integer x from 2 to 16. We used the WolframAlpha computational
knowledge engine1 to generate expressions which allow us to determine the num-
ber of steps of a given CA for x > 16. Tables 3 and 4 summarize the analysis.
The resulting CA are sorted from the best to worst regarding the number of
steps for x = 16 as the sorting criterion.

For some CA the equations derived by WolframAlpha are specified for an
independent integer variable n > 0 by means of which the number of steps can
be determined for a given input value of x. For example, the number of steps
an of the CA–50–27 from Table 3 can be determined as an = n(2n + 3) for all
x ≥ 1, i.e. in order to calculate the number of steps for x = 7, for example,
then n = x − 1 = 6 and the substitution of this value to the equation gives
an = 6 ∗ (2 ∗ 6 + 3) = 90 steps which corresponds to the value from Table 3
for x = 7 (observed for this CA using our CA simulator). The reason for taking
n = x− 1 follows from the fact that the cellular automata work for x ≥ 2.

For some CA WolframAlpha derived an iterative expression determining the
number of steps an+1 from the previous value an. For example, the CA–50–12
(the best one in this work) allows determining the number of steps for a given x
as an+1 = n(3n+ 7)− an for n ≥ 2. Therefore, in order to calculate the number
of steps e.g. for x = 8, it is needed to take n = x− 2 = 8− 2 = 6, the value for
the previous x = 7 must be known, i.e. an = 64 from Table 3, and substituting
to the equation an+1 = 6 ∗ (3 ∗ 6 + 7)− 64 = 86 which is the number of CA steps
needed to calculate the result of 82 (as corresponds to the value from Table 3
for this CA for x = 8 observed in our CA simulator).

The aforementioned example also shows that it is not possible in some cases
to express the number of CA steps for arbitrary n ≥ 1 which means that the
development of some CA for low values of x exhibit some anomaly in comparison
with the development for larger input values. The reason for this behavior still
remains in general an open question but our observations indicate that this is
probably the case of CA exhibiting a complex (and mostly visually very attrac-
tive) pattern generated by the development. For a low input value (e.g. x < 5 in
case of the CA–40–14 from Table 3) the development does not need to involve all
possible state transitions before reaching the result state, which would otherwise
emerge for larger x. Therefore, the development for x < 5 is specific, leading to
the numbers of steps that is not possible to express together with the numbers
of steps for larger input values.

The overall comparison of some selected CA is shown in Figure 6. As evident
from this figure (and from the equations in Table 3 and 4), the computational
efficiency of the CA (i.e. the number of steps needed for given x) in all cases

1 https://www.wolframalpha.com/

Appendix VI

118

14

Table 3. The number of steps of resulting CA needed to calculate the square for
x = 2, ..., 16 together with expressions allowing to calculate the number of steps for
given n = x− 1. (Part 1 of the CA comparison.)

the input value of x

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

the equation derived for the num. of steps of a given CA and

the num. of CA steps needed to finish the calculation of x2

CA–50–12: an+1 = n(3n + 7) − an for n ≥ 2

5 11 18 30 46 64 86 110 138 168 202 238 278 320 366

CA–30–08: an = 2n2 + n + 1, n ≥ 1

4 11 22 37 56 79 106 137 172 211 254 301 352 407 466

CA–50–27: an = n(2n + 3), n ≥ 1

5 14 27 44 65 90 119 152 189 230 275 324 377 434 495

CA–40–01: an = 2n2 + 3n + 3, n ≥ 1

8 17 30 47 68 93 122 155 192 233 278 327 380 437 498

CA–40–14: an+1 =
an(n−3)

n−5
− 2(11n+13)

n−5
, n ≥ 5

8 16 29 46 68 94 124 158 196 238 284 334 388 446 508

CA–30–11: an+1 = −an + 4n2 + 13n + 11 for n ≥ 2

3 17 35 51 76 100 133 165 206 246 295 343 400 456 521

CA–30–00: an+1 =
an(n−1)

n−3
+ −15n−19

n−3
, n ≥ 3

4 17 32 51 74 101 132 167 206 249 296 347 402 461 524

CA–50–22: an+1 = 2(2n2 + 7n + 7) − an for n ≥ 1

14 24 34 58 76 108 134 174 208 256 298 354 404 468 526

CA–20–07: an = 1
4
(8n2 + 22n − 5(−1)n − 3), n ≥ 1

8 17 35 52 78 103 137 170 212 253 303 352 410 467 533

Appendix VI

119

15

Table 4. The number of steps of resulting CA needed to calculate the square for
x = 2, ..., 16 together with expressions allowing to calculate the number of steps for
given n = x− 1. (Part 2 of the CA comparison.)

the input value of x

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

the equation derived for the num. of steps of a given CA and

the num. of CA steps needed to finish the calculation of x2

CA–40–34: an = 1
4
(8n2 + 22n − 3(−1)n + 3), n ≥ 1

9 19 36 54 79 105 138 172 213 255 304 354 411 469 534

CA–50–07: an = 1
2
(5n2 + 3n − 2), n ≥ 1

3 12 26 45 69 98 132 171 215 264 318 377 441 510 584

CA–20–00: an+1 = −an + 5n2 + 9n + 2 for n ≥ 1

5 13 27 47 71 101 135 175 219 269 323 383 447 517 591

CA–30–31: an+1 =
an(n2−8n−2)

n2−10n+7
+ −27n2+13n+9

n2−10n+7
, n ≥ 9

2 16 33 54 79 108 141 178 219 271 331 397 469 547 631

CA–50–17: an = 3n2 + 1, n ≥ 1

4 13 28 49 76 109 148 193 244 301 364 433 508 589 676

CA–20–27: an+1 =
an(n−1)

n−3
− 15(n+1)

n−3
, n ≥ 3

7 15 30 51 78 111 150 195 246 303 366 435 510 591 678

CA–50–15: an = 3n2 + 2n + 2, n ≥ 1

7 18 35 58 87 122 163 210 263 322 387 458 535 618 707

Wolfram’s CA: an = 3n2 + 7n + 2, n ≥ 1

12 28 50 78 112 152 198 250 308 372 442 518 600 688 782

Appendix VI

120

16

exhibit a quadratic form. However, the CA efficiency differ substantially between
various solutions. Whilst Wolfram’s CA exhibits the highest numbers of steps out
of all CA that were available for the square calculations herein, our experiments
showed that (1) this approach can be improved substantially and (2) various
other solutions with a moderate efficiency exist for this task. Some of them are
presented as visualisation of the appropriate CA development in Figure 7 and 8.
Specifically, the CA–30–08 from Figure 7a represents an example of the second
best result discovered from our evolutionary experiments. Its simple pattern
exhibit a high degree of regularity which is probably the cause of very simple
equation expressing the number of steps for given x (Table 3). More complex,
less computationally efficient and visually interesting patterns are generated by
CA–50–22 (Figure 7b, Table 3) and CA–40–34 (Figure 7c, Table 4). On the other
hand, the CA–30–31 from Figure 8a produces results of calculating x2 that is
composed of various (stable) state values and this CA also exhibit the most
complex equation needed to express its number of steps for given x (see Table
4). Together with CA from Figure 8b,c it belongs to the least computationally
efficient (i.e. requires many steps to produce the result – see the comparison in
Figure 6) but also can be viewed as solutions that demonstrate the variety of
different styles of how the result of x2 in CA can be achieved.

4.4 Discussion

In most cases of the experimental settings the EA was able to produce at least
one generic solution for the CA-based square calculation. Despite the 2 million
generation limit, the results from Table 1 and 2 show that the average number
of generations is mostly below 1 million, which indicates a potential of the EA
to efficiently explore the search space. In comparison with the initial study of
this problem proposed in [5], where 200,000 generations were performed, the sig-
nificant increase of this parameter herein is important with respect to achieving
a reasonable success rate and producing generic solutions (note that an initial
comparison of various ranges for x evaluated in the fitness was proposed in [5],
the result of which was considered in this work).

As regards the RA-fitness, which can be considered as the main technique
proposed herein for the evolution of cellular automata, a more detailed analysis
was performed with various multi-state CA. As the results in Table 1 show that
the number of generic solutions increases for the number of states from 4 to 8,
then for 10-state CAs a significant reduction can be observed. This is probably
caused by the exponential increase of the search space depending on the number
of states. The results indicate that the 8-state setup represents a very feasible
value that may be considered as sufficient for this kind of problem (note that 6
generic solutions were obtained for this setup).

In both sets of experiments with the RA-fitness and SR-fitness, a phenomenon
of a reduction of the number of states was observed. This is possible due to the
identification of just the rules that are needed for the CA development to cal-
culate the square out of all the rules generated from the evolved CMR-based

Appendix VI

121

17

0 5 10 15 20
x

0

200

400

600

800

1000

1200

1400

st
ep

s

the number of CA steps needed to calculate x2 for x=2,...,20

CA--30--08
CA--30--31
CA--40--34
CA--50--12
CA--50--15
CA--50--17
CA--50--22
Wolfram

Fig. 6. Evaluation of the computational efficiency (i.e. the number of steps needed
to achieve the result of x2) of some selected CA whose development is also presented
visually in various figures in this paper. A comparison with the existing Wolfram’s CA
[26] (the top-most curve) is included.

Appendix VI

122

18

(a) (b) (c)

Fig. 7. Visualisation of the development of some selected squaring cellular automata
obtained from our experiment: (a) CA–30–08, x = 8, (b) CA–50–22, x = 7, (c) CA–
40–34, x = 7.

transition function for every valid combination of states in the cellular neigh-
bourhood. It was determined that the CAs in some cases do not need all the
available cell states to perform the given operation.

5 Evolution of Complex 2D Cellular Automata

In order to provide a wider overview of what CA the proposed method can
handle, some experiments dealing with the evolution of uniform multi-state 2D
automata were conducted. The pattern development problem was chosen as a
case study. In particular, some non-trivial and asymmetric patterns were chosen
as shown in Figure 9.

In order to evaluate a candidate CA, up to 40 development steps were per-
formed and the steps 16-40 was assigned a partial fitness calculated as the num-
ber of cells in correct states with respect to the given pattern. The final fitness of
the candidate CA was the maximum of the partial fitness values. The reason for
this setup is to reduce the time needed for the evaluation because the patterns
probably cannot be finished in less than 16 steps (this values was determined
empirically). Therefore, no inspection of cell states is performed in steps 1-15.
Moreover, no exact number of steps is known in which a pattern can be finished
so that the aforementioned range of steps provides the evolution with a wider

Appendix VI

123

19

(a) (b) (c)

Fig. 8. Visualisation of the development of some selected squaring cellular automata
obtained from our experiment: (a) CA–30–31, x = 7, (b) CA–50–17, x = 7, (c) CA–
50–15, x = 7.

(a) (b)

Fig. 9. Samples of selected patterns treated in the experiments for the pattern devel-
opment problem in 2D CA: (a) the BUT logo (note that the T-like structure, composed
of cells in state 1, is the subject of the CA development on the red background – cells
in state 0), (b) a label containing the author’s surname (composed of cells in state 1,
the other cells are in state 0).

Appendix VI

124

20

space to discover a solution. This setup does not eliminate a possibility of de-
stroying the pattern that emerged at a certain step during the subsequent CA
development. However, the development of a stable pattern was not a primary
goal of these experiments.

It is difficult to provide statistical data from these experiments since only very
few successful results have been obtained so far and there has been a research
in progress regarding the optimization of evolutionary techniques used for the
design of complex cellular automata. Therefore, only some selected results are
presented in this section.

The first experiment — the development of the BUT logo — dealt with the
CA working with 10 cell states. There are 105 various combinations in the 5-cell
neighborhood which implies 10100000 possible transition functions. A single state-
1 cell (a seed) was used as an initial state of the CA. The evolution managed to
find a transition function (in the form of a sequence of CMRs that was converted
to the table-based representation for the presentation purposes) that successfully
develops the initial seed into the given pattern as shown in Figure 9a. Although
the pattern stability was not required, the pattern no longer changes by further
CA development. A sample of the complete sequence of states leading to the
emergence of this pattern (the BUT logo) is shown in Figure 10 together with
the appropriate transition function. The CA uses 90 transition rules and needs
20 steps to finish the pattern.

The second experiment — the development of the author’s surname — delat
with the CA working with 12 cell states. There are 125 various combinations
in the 5-cell neighborhood which implies 10248832 possible transition functions.
In fact, this pattern requires to develop several (separate) structures (letters) of
non-zero cells which form the complete label. A sample of the CA development
together with the transition function is shown in Figure 11. This is the only
result obtained so far which is able to fully develop this pattern (from a triples
of separate cells in states 1, 2 and 3 as an initial CA state – see the top-left
corner of Fig. 11a). Similarly to the previous experiment, this pattern is also
stable during further CA development which is especially interesting due to its
increased complexity. The CA needs 32 steps to develop the target label from
the initial state and the transition function consists of 161 rules (see Figure 11b).

5.1 Discussion

Although the evolution of multi-state 2D CA is much more difficult than the 1D
CA, the experiments provided some successful results with various target pat-
terns. The results presented in this section probably represent the first case when
complex 2D CA with at least 10 cell states were automatically designed using
an evolutionary algorithm in a task of the non-trivial exact pattern develop-
ment. In addition to the CA shown in Fig. 10 and 11, the evolution succeeded in
searching other patterns as well (e.g. French flag, Czech flag, moving labels, repli-
cating objects or multi-state gliders). This indicates that the proposed design
method may be applicable in a wider area of cellular automata. A limitation
for a higher success rate of the evolutionary experiments probably lies in the

Appendix VI

125

21

(a) (b)

Fig. 10. Example of an evolved CA for the development of the BUT logo. The initial
state consists of a single cell state 1, the other cells possess state 0. (a) The sequence of
CA states producing the final pattern (ordered from left to right and top to bottom).
(b) The appropriate transition rules for this CA.

Appendix VI

126

22

(a) (b)

Fig. 11. Example of an evolved CA for the development of the author’s surname. The
initial state consists of three vertically alligned cells in states 1, 2 and 3 respectively
with a single state-0 cells between them. (a) The sequence of CA states producing
the final ”BIDLO” pattern (ordered from left to right and top to bottom). (b) The
appropriate transition rules for this CA.

Appendix VI

127

23

requirement of an exact pattern development. Our initial experiments suggest
that promising areas for the CA applications may be those where approximate
results are acceptable or the CA states allow us to tolerate some variations dur-
ing the development. For example, the image processing, traffic prediction or
design of approximative algorithms represent possible topics. Therefore, the fu-
ture research will include modeling, simulation and optimization of such kinds
of systems in cellular automata.

Even though the representation of the transition functions by means of condi-
tional rules has proven a good applicability on various tasks, the optimization of
the evolutionary algorithm used to search for the rules is probably still possible.
This could not only improve the success rate of the evolutionary experiments
but also reduce the computational effort and allow applying the concept of uni-
form computing platforms in real-world applications (e.g. with acceleration of
the computations using modern reconfigurable technology).

6 Conclusions

In this study we have presented some advanced topics related to the evolution of
complex multi-state cellular automata. In particular, an analysis of CA for the
generic square calculations has been proposed in the first case study. The results
showed that some various algorithms to perform this task exist in CA, which
differ both in the complexity of resulting transition functions and the efficiency
of the computation (i.e. the number of steps of the CA needed to produce the
result). Moreover, our best results presented herein have overcome the known
solution (Wolfram’s squaring CA), providing a reduction of the number of steps
by approximately 50%.

The second case study has dealt with the non-trivial pattern development
problem in two-dimensional CA. Several results have been presented that provide
an exact and stable pattern developed from a simple initial CA state. Cellular
automata working with 10 and 12 cell states have been treated, which induce
search spaces of enormous sizes. Despite low success rates of the evolution, the
results obtained have shown that the automatic design of such CA is possible
even though our ongoing experiments indicate that the evolutionary algorithm
still provides a space for further optimization.

In general, the proposed results probably represent the first case of the auto-
matic design of exact behaviour in CA with more than 10 cell states. We believe
that these pieces of knowledge will allow us to further improve our design method
and to apply cellular automata for modeling, simulation and optimization of
real-world problems.

Appendix VI

128

24

Acknowledgements

This work was supported by The Ministry of Education, Youth and Sports of
the Czech Republic from the National Programme of Sustainability (NPU II),
project IT4Innovations excellence in science – LQ1602, and from the Large In-
frastructures for Research, Experimental Development and Innovations project
“IT4Innovations National Supercomputing Center – LM2015070”.

References

1. Basanta, D., Bentley, P., Miodownik, M., Holm, E.: Evolving cellular automata
to grow microstructures. In: Genetic Programming, Lecture Notes in Computer
Science, vol. 2610, pp. 1–10. Springer Berlin Heidelberg (2003)

2. Berlekamp, E.R., Conway, J.H., Guy, R.K.: Winning Ways for Your Mathematical
Plays, 2nd Ed., Volume 4. A K Peters/CRC Press (2004)

3. Bidlo, M.: Investigation of replicating tiles in cellular automata designed by evo-
lution using conditionally matching rules. In: 2015 IEEE International Conference
on Evolvable Systems (ICES). pp. 1506–1513. Proceedings of the 2015 IEEE Sym-
posium Series on Computational Intelligence (SSCI), IEEE Computational Intel-
ligence Society (2015)

4. Bidlo, M.: Evolution of generic square calculations in cellular automata. In: Pro-
ceedings of the 8th International Joint Conference on Computational Intelligence
- Volume 3: ECTA. pp. 94–102. SciTePress - Science and Technology Publications
(2016)

5. Bidlo, M.: On routine evolution of complex cellular automata. IEEE Transactions
on Evolutionary Computation 20(5), 742–754 (2016)

6. Bidlo, M., Vasicek, Z.: Evolution of cellular automata with conditionally matching
rules. In: 2013 IEEE Congress on Evolutionary Computation (CEC 2013). pp.
1178–1185. IEEE Computer Society (2013)

7. Codd, E.F.: Cellular Automata. Academic Press, New York (1968)
8. Durand, B., Rka, Z.: The game of life: Universality revisited. In: Mathematics and

Its Applications, Volume 460 Cellular Automata. pp. 51–74. Springer Netherlands
(1999)

9. Elmenreich, W., Fehérvári, I.: Evolving self-organizing cellular automata based on
neural network genotypes. In: Proceedings of the 5th International Conference on
Self-organizing Systems. pp. 16–25. Springer (2011)

10. Holland, J.H.: Adaptation in Natural and Artificial Systems. University of Michi-
gan Press, Ann Arbor (1975)

11. Ilachinski, A.: Cellular Automata: A Discrete Universe. World Scientific (2001)
12. Jean-Yves Perrier, Moshe Sipper, J.Z.: Toward a viable, self-reproducing universal

computer. Physica D 97(4), 335–352 (1996)
13. Lindgren, K., Nordahl, M.G.: Universal computation in simple one-dimensional

cellular automata. Complex Systems 4(3), 299–318 (1990)
14. Mardiris, V., Sirakoulis, G., Karafyllidis, I.: Automated design architecture for 1-d

cellular automata using quantum cellular automata. Computers, IEEE Transac-
tions on 64(9), 2476–2489 (2015)

15. von Neumann, J.: The Theory of Self-Reproducing Automata. A. W. Burks (ed.),
University of Illinois Press (1966)

Appendix VI

129

25

16. Ninagawa, S.: Solving the parity problem with rule 60 in array size of the power
of two. Journal of Cellular Automata 8(3–4), 189–203 (2013)

17. Rendell, P.: A universal turing machine in conway’s game of life. In: 2011 Interna-
tional Conference on High Performance Computing and Simulation (HPCS). pp.
764–772 (2011)

18. Rendell, P.: A fully universal turing machine in Conway’s game of life. Journal of
Cellular Automata 9(1–2), 19–358 (2013)

19. Sahoo, S., Choudhury, P.P., Pal, A., Nayak, B.K.: Solutions on 1-d and 2-d density
classification problem using programmable cellular automata. Journal of Cellular
Automata 9(1), 59–88 (2014)

20. Sahu, S., Oono, H., Ghosh, S., Bandyopadhyay, A., Fujita, D., Peper, F., Isokawa,
T., Pati, R.: Molecular implementations of cellular automata. In: Cellular Au-
tomata for Research and Industry. pp. 650–659. Lecture Notes in Computer Sci-
ence, Vol. 6350, Springer (2010)

21. Sipper, M.: Quasi-uniform computation-universal cellular cutomata. In: Advances
in Artificial Life, ECAL 1995, Lecture Notes in Computer Science, Vol. 929. pp.
544–554. Springer Berlin Heidelberg (1995)

22. Sridharan, K., Pudi, V.: Design of Arithmetic Circuits in Quantum Dot Cellular
Automata Nanotechnology. Springer International Publishing Switzerland (2015)

23. Stefano, G.D., Navarra, A.: Scintillae: How to approach computing systems by
means of cellular automata. In: Cellular Automata for Research and Industry. pp.
534–543. Lecture Notes in Computer Science, Vol. 7495, Springer (2012)

24. Suzudo, T.: Searching for pattern-forming asynchronous cellular automata – an
evolutionary approach. In: Cellular Automata, Lecture Notes in Computer Science,
vol. 3305, pp. 151–160. Springer Berlin Heidelberg (2004)

25. Tempesti, G.: A new self-reproducing cellular automaton capable of construction
and computation. In: Advances in Artificial Life, Proc. 3rd European Conference
on Artificial Life. pp. 555–563. Lecture Notes in Artificial Intelligence, Vol. 929,
Springer (1995)

26. Wolfram, S.: A New Kind of Science. Wolfram Media, Champaign IL (2002)
27. Yuns, J.B.: Achieving universal computations on one-dimensional cellular au-

tomata. In: Cellular Automata for Research and Industry. pp. 660–669. Lecture
Notes in Computer Science Volume 6350, Springer (2010)

Appendix VI

130

Appendix VII

Evolution of Cellular Automata
Development Using Various
Representations

BIDLO Michal

In: GECCO’19 Proceedings of the Genetic and Evolutionary Computation Conference Com-
panion. Praha: Association for Computing Machinery, 2019, pp. 107-108. ISBN 978-1-
4503-6748-6. Accessible online: https://dl.acm.org/citation.cfm?id=3321881

131

Evolution of Cellular Automata Development
Using Various Representations

Michal Bidlo
Brno University of Technology, Faculty of Information Technology, IT4Innovations Centre of Excellence

Brno, Czech Republic
bidlom@fit.vutbr.cz

ABSTRACT
This paper introduces a comparative summary regarding an evolu-
tion of multi-state cellular automata by means of various represen-
tations of their transition functions. In particular, a conventional
table-based representation and an advanced approach using so-
called Conditionally Matching Rules is applied. The French flag
development from a seed is considered as a case study. The results
show some remarkable differences in the cellular automata be-
haviour that are evidently caused by the representation used. They
include the issue of emergence of the pattern from a chaotic state
or rather a more systematic construction, a stability of the pattern
developed and a limitation of its successful construction to fixed-
size automata only. The comparison of the results is enabled by
using a custom variant of genetic algorithm that provided working
solutions for both representations of the transition function.

CCS CONCEPTS
•Mathematics of computing→Evolutionary algorithms;De-
velopmental representations;

KEYWORDS
cellular automaton; transition function; development; evolutionary
algorithm
ACM Reference Format:
Michal Bidlo. 2019. Evolution of Cellular Automata Development Using
Various Representations. In Proceedings of (GECCO ’19 Companion). ACM,
New York, NY, USA, 2 pages. https://doi.org/10.1145/3319619.3321881

1 INTRODUCTION
Cellular automata (CAs) have been introduced in [5] as a mathe-
matical model of complex systems in which the space, time and
states are discrete. A cell represents a basic CA element, typically
arranged in a regular lattice, whose state develops in steps accord-
ing to a local transition function. Although CAs have extensively
been studied both theoretically (e.g. [6], [1]) and practically (e.g.
designing nano-scale arithmetic circuits [4] or performing compu-
tations [3]), the design of the transition function in order to achieve

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
GECCO ’19 Companion, July 13–17, 2019, Prague, Czech Republic
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-6748-6/19/07. . . $15.00
https://doi.org/10.1145/3319619.3321881

a given (global) CA behaviour (i.e. a solution to a given task) rep-
resents a difficult problem because this behaviour emerges from
local interactions between many cells and is hard to predict it from
the transition function itself. Therefore, the aim is to automate this
process, e.g. using evolutionary algorithms (EAs) to design CAs.

In this paper we mention some approaches that may be utilised
for the evolutionary design of CA and compare themwith respect to
the properties of the solutions obtained. Specifically, two represen-
tation techniques of the CA transition functions will be considered:
(a) a conventional table-based representation and (b)a method called
Conditionally Matching Rules (CMRs). Whilst the conventional ap-
proach utilises a set of rules, each of which determines a new state
of a cell for a given valid combination of states in its neighbourhood
(typically in the form N W C E S → Cnew , where C represents
the state of the (Central) cell to be updated and N ,W , E and S is
the state of its North,W est, East and South neighbour, respectively,
and Cnew is the new cell state), the CMRs use more general rela-
tions between the cell states and values specified in the CMRs as
described in Section 2.

The goal of this paper is to show some initial results that indicate
that both aforementioned representation techniques can be applied
for the evolution of complex 2D CA but the latter may provide
remarkably more robust and efficient solutions.

2 CONDITIONALLY MATCHING RULES
The concept of ConditionallyMatching Rules and their evolutionary
design is described in detail in [2]. For the purposes of this paper, let
us consider a 2D CA working with 5-cell neighbourhood (including
theNorth,W est,Central, East and South cell). A conditional rule for
such CA is defined as (cndN sN) (cndW sW) (cndC sC) (cndE sE)
(cndS sS) → snew , where cndx denote a condition operator (=, ,,
≤ or ≥) and sy represent a state value. Each CMR contains a pair (a
condition and a state value) that corresponds to (is evaluated with
respect to) a specific cell in the neighbourhood. A finite sequence of
CMRs represents a transition function that, for example, contains a
rule (, 1) (, 2) (≤ 1) (≥ 2) (= 3) → 2. Let cN ,cW ,cC ,cE ,cS be cells
in states 2,3,0,3,3 respectively, and a new state of cC needs to be
determined. The CMRs are evaluated sequentially until a rule is
found whose all conditions are true with respect to the cell states
in the given neighbourhood. According to the aforementioned rule,
cN , 1 is true as 2 , 1, similarly cW , 2 is true (3 , 2) and the
remaining conditions are also true. Therefore, this CMR is said to
match, i.e. snew = 2 on its right side will be the new state of cC .
If no matching rule is found, then the cell keeps its current state.
Note that the CMR-based transition functions can be transformed
to the appropriate table rules which preserves the original concept
of CAs [2].

107

Appendix VII

132

GECCO ’19 Companion, July 13–17, 2019, Prague, Czech Republic M. Bidlo

Table 1: Successful runs (out of 100) of our custom EA gen-
erating 16 offspring from the best half of 8 individuals.

#states 6 8 10 12 14 16
Table repr. 0 1 7 4 1 0
40 CMRs 0 0 0 0 0 1
50 CMRs 1 0 2 5 3 2
60 CMRs 11 15 18 14 14 15
70 CMRs 19 21 34 39 43 36

Figure 1: The French flag solution evolved using the conven-
tional table-based approach in a CAworkingwith 10 states1.

3 EXPERIMENTAL RESULTS
We are tuning several evolutionary techniques which has shown
necessary for obtaining working results. For example, the standard
genetic algorithm failed in all cases of experiments we conducted so
far. Therefore, a custom EA was applied whose preliminary results
(the success rates of the CA evolution using both the table-based
representation and the CMR method) are shown in Table 1.

Two samples of resulting CA development are shown in Fig. 1
(for the table representation) and Fig. 2 (for the CMR representation).
As evident, the development of both CAs is different despite the fact
that the CA concept is the same (the evolved CMRs were converted
to the equivalent table rules). It was determined that the table-based
solution does not work in CA of other sizes, the emergence of the
pattern is rather chaotic and at a single step only, then it is destroyed
and never restored again.. The CMR solution can develop a stable
pattern that is independent on the CA size, the construction of
which is progressive (and more systematic) from the initial seed.
The evolved solution from Fig. 1 utilises 1274 active rules (i.e. those
changing the cell state) whilst the converted CMR solution from Fig.
2 works with 129 rules only. Note that we observed such remarkably
distinguished features in all results obtained for various patterns
in CAs working with various numbers of states using the two
representations. The evolution of CMRs also exhibits significantly
higher success rates than the table-based representation.

Figure 2: The French flag solution evolved using the CMR
representation in a CA working with 8 states1.

4 CONCLUSIONS
The results obtained may definitely be important for the future
research of CAs since they clearly show how the representation
influence not only the process of evolution but the also the form
and features of the results. We also identified the importance of
searching new variants of EAs which allowed us to design complex
multi-state CAs that have not been obtained before. Therefore, the
detailed statistical evaluation of the EA used, analysis of the results
and solution of other problems in CAs represent our main work for
the future research. We believe that a systematic study in this area
may provide a better understanding of complex systems and help
us optimise their automatic design using evolutionary techniques.

ACKNOWLEDGMENTS
This work was supported by The Ministry of Education, Youth
and Sports of the Czech Republic INTER-COST project LTC18053
and Large Infrastructures for Research, Experimental Development
and Innovations project LM2015070 of the IT4Innovations National
Supercomputing Center.

REFERENCES
[1] Andrew Adamatzky. 2010. Game of Life Cellular Automata (1st ed.). Springer

Publishing Company, Incorporated.
[2] Michal Bidlo. 2016. On Routine Evolution of Complex Cellular Automata. IEEE

Transactions on Evolutionary Comp. 20, 5 (2016), 742–754.
[3] Genaro J. Martínez, Andrew Adamatzky, and Harold V. McIntosh. 2017. A Compu-

tation in a Cellular Automaton Collider Rule 110. Springer International Publishing,
Cham, 391–428.

[4] K. Sridharan and V. Pudi. 2015. Design of Arithmetic Circuits in Quantum Dot
Cellular Automata Nanotechnology. Springer International Publishing Switzerland.

[5] J. von Neumann. 1966. The Theory of Self-Reproducing Automata. A. W. Burks
(ed.), University of Illinois Press.

[6] S. Wolfram. 2002. A New Kind of Science. Wolfram Media, Champaign IL.

1See an interactive simulator with this CA: https://github.com/bidlom/GECCO2019

108

Appendix VII

133

Appendix VIII

Evolution of Cellular Automata
with Conditionally Matching Rules
for Image Filtering

BIDLO Michal

In: 2020 IEEE Congress on Evolutionary Computation (CEC 2020). Los Alamitos: IEEE
Computational Intelligence Society, 2020, ISBN 978-1-7281-6929-3. Accessible online:
https://ieeexplore.ieee.org/document/9185767

Conference CORE rank in the year of publication: B

134

Evolution of Cellular Automata
with Conditionally Matching Rules

for Image Filtering
Michal Bidlo

Brno University of Technology
Faculty of Information Technology

IT4Innovations Centre of Excellence
Božetěchova 2, Brno, Czech Republic

bidlom@fit.vutbr.cz

Abstract—We present an evolutionary method for the design of
image filters using two-dimensional uniform cellular automata.
Specifically, a technique called Conditionally Matching Rules is
applied to represent transition functions for cellular automata
working with 256 cell states. This approach allows reducing the
length of chromosomes for the evolution substantially which was
a need for such high number of states since the traditional table-
based encoding would require enormous memory space. The
problem of removing Salt-and-Pepper noise from 8-bit grayscale
images is considered as a case study. A cellular automaton will
be initialised by the values of pixels of a corrupted image and
a variant of Evolution Strategy will be applied for the design
of a suitable transition function that is able to eliminate the
noise from the image during ordinary development of the cellular
automaton. We show that using only 5-cell neighbourhood of the
cellular automaton in combination with conditionally matching
rules the resulting filters are able to provide a very good output
quality and are comparable with several existing solutions that
require more resources. Moreover, the proposed evolutionary
method exhibits a high performance which allows us to design
filters in very short time even on a common PC.

Index Terms—Evolution strategy, cellular automaton, condi-
tional rule, image filter, salt-and-pepper noise.

I. INTRODUCTION

Noise elimination from digital images represents a typical
low level image processing task [1]. It often represents a
significant step in the image pre-processing before performing
advanced algorithms such as image segmentation, recognition
or classification. Usually the noise elimination has to be
implemented by means of non-linear functions (referred to
as non-linear image filters) because the noise is inherently
non-linear. Therefore, it is not possible to apply mathematical
theories known from linear filters, which leads to mostly
experimental design of non-linear filters.

This work was supported by Czech Science Foundation project GA19-
10137S, by The Ministry of Education, Youth and Sports from the National
Programme of Sustainability (NPU II) project IT4Innovations excellence
in science - LQ1602” and by the IT4Innovations infrastructure which is
supported from the Large Infrastructures for Research, Experimental Develop-
ment and Innovations project IT4Innovations National Supercomputing Center
- LM2015070”.

A. Conventional image filter design

In conventional approaches, the image filter typically con-
sists of two parts: a noise detector and a filtering algorithm. In
such case, the filtering algorithm is executed only if the noise
detector evaluates a given part of image as a noise. Otherwise,
the input pixel is sent to the filter output unmodified. This
approach allows decomposing the filter design into simpler
parts which are then solved separately [1]. On the other hand,
some approaches consider the filter as a “black box” that takes
image data as inputs, implements a suitable function for the
noise elimination and produces a filtered pixel as its output.
This approach showed to be very powerful for evolutionary
image filter design which will be mentioned in Section I-B.
Conventional non-linear image filters of this kind are mostly
based on the calculation of median out of the pixel values
belonging to a given filtering window (usually of size 3x3 or
5x5 pixels). These techniques may be used for comparison
with advanced (experimentally designed) filters.

The basic median filter (MF) is a special case of order
statistic filters [2]. They can be implemented effectively in
hardware using the concept of sorting networks as described
in [3]. The weighted median filter (WMF) represents an ex-
tension of this concept, which assigns weights to some values
within the filtering window. The center weighted median filter
(CWMF) [4] is a special case which weights only the central
value of the window.

The adaptive median filter (AMF) can be considered as a
multi-level order statistic filter [5], the goal of which is to
detect and subsequently replace corrupted pixels only. Usually,
two levels working with the 3× 3 and 5× 5 filtering window,
respectively, are utilised. The filtering is performed in two-
phases. In the first phase, a sorting network is used for
calculating the minimum, maximum and median value for the
pixels inside the filtering window. In the second phase, these
values are used together with the value of the original central
pixel to decide whether it is affected by noise.

Another MF modification includes the directional weighted
median filter (DWMF) [6] which utilizes a noise detector

978-1-7281-6929-3/20/$31.00 ©2020 IEEE

Authorized licensed use limited to: Brno University of Technology. Downloaded on September 08,2022 at 16:29:49 UTC from IEEE Xplore. Restrictions apply.

Appendix VIII

135

that is based on the differences between the central pixel and
its neighbours aligned with four main directions (horizontal,
vertical and two diagonal). The noise detection is based on
calculating the weighted sum of absolute differences between
the value of the central pixel and pixels within the given
direction and a threshold is used to determine whether the
pixel is corrupted by noise and needs to be replaced. This
method is applied iteratively (in 5–10 steps) with a decreasing
threshold in order to achieve a required output quality.

Finally, let us mention the pixel-wise MAD (PWMAD) [7] as
an iterative non-linear image filter that addresses the problem
of random valued shot noise removal. The noisy pixels are
detected using a local variance estimator based on the iterative
calculation of the median of the absolute deviations from the
median.

There are also other filtering principles that do not strictly
utilise the notion of locality (filtering windows), use more
complex operations and are therefore suitable for software
implementations only (e.g. [1], [8]–[11]).

B. Design of image filters by means of evolutionary algorithms

Evolutionary algorithms [12] have recently been applied
in many application domains including image processing.
The evolutionary design of image filtering circuits can be
found in the area of evolvable hardware methods [13]. Earlier
works have dealt with several basic approaches, including
the optimization of filter coefficients [14], [15] and stack
filter evolution [16]. Currently, the design of image filters at
the circuit level is usually performed by means of Evolution
Strategy using the Cartesian Genetic Programming (CGP)
representation [17]. A survey of image filter design methods
that utilize CGP can be found in [18].

In addition to relatively simple non-linear functions com-
posed of operations such as minimum, maximum, or average
[19]–[21], advanced concepts have been investigated, e.g.
using bank of filters [22], switching concept [23], [24] or
fault-tolerant image filter design [25]. Later, the image filter
evolution was accelerated using Field Programmable Gate Ar-
rays (FPGAs) [26], [27], graphic processing units (GPU) [28],
computer clusters and advanced pre-compilation techniques
[29]. An advanced extensive study of evolutionary design of
switching filters by means of CGP and their comparison with
conventional filters can be found in [30].

C. Image filtering using cellular automata

Cellular automata (CA), originally introduced by John von
Neumann in [31], represent a massively parallel computational
platform suitable for various applications. The basic structure
of a cellular automaton assumes a regular structure of cells,
each of which at a given moment occurs in a state from a
finite set of states. The behaviour (or development) of a CA
is considered as a synchronous update of all cells according
to a transition function in discrete time steps. The transition
function determines the next state of a cell depending on the
combination of states in its neighbourhood. For the purposes
of this paper, uniform two-dimensional (2D) CA will be

considered in which the cells are arranged into a square lattice
and there is a single transition function according to which all
cells are to be updated. The cellular neighbourhood will be
defined uniformly for each cell and will consist of a given
cell and its immediate neighbours in the north, south, east and
west direction (it is a case of 5-cell neighbourhood also called
von Neumann neighbourhood). The task of designing a CA for
a given task consists of finding a suitable transition function
(possibly with appropriate initial states of cells) in order to
achieve a given behaviour performed by the CA development.

Cellular automata have also been applied to image pro-
cessing tasks (including image and video compression, image
resizing, edge detections and others). A wider overview can
be found in [32]. Rosin applied a sequential floating forward
search method for feature selection and identification of good
rule sets for a range of tasks, namely noise filtering (also
applied to grayscale images using threshold decomposition),
thinning, and convex hulls [33]. Selvapeter and Hordijk in-
troduced several modifications to the standard CA concept
and applied them to improve the filtering performance. For
example, a random CA rule solves the noise propagation
present in deterministic CA filters. A mirrored CA is used
to solve the fixed boundary problem. The authors showed that
these methods can outperform some standard filtering methods
[34]. Diosan et al. investigated various methods suitable for
image segmentation by means of CA [35]. Kundra et al.
applied CA to detect edges in digital images. The approach is
based on 2-fold symmetry that implies 51 patterns from which
the best rule for image detection can be derived [36].

The utilisation of the pure CA concept for image processing
represents a difficult problem. The existing works are mostly
limited to simplified cases (e.g. binary images only) or use
the CA as a mean to derive suitable steps in order to perform
the image processing algorithm. In this paper we apply basic
CA whose state will directly represent an image and use an
evolutionary algorithm in order to design a transition function
(the filtering algorithm) as described in Section I-D.

D. Goal of this paper

In this paper we use a method for efficient representation
of transition functions of CA, called Conditionally Matching
Rules (CMRs) [37], and apply a variant of Evolution Strategy
(ES) in order to find various transition functions suitable for
removing Salt-and-Pepper noise from 8-bit grayscale images.
The CA states will directly be represented by 256 possible
pixel values of the filtered image. The filtering algorithm
will be represented by a single transition function of the CA
designed by the ES. The main objective is to demonstrate
that using the 5-cell neighbourhood (instead of 3× 3 or 5× 5
windows) and CMR-based transition functions with only basic
relational operators (specifically =, �=, ≤, ≥), which represents
significantly reduced resources against many other methods,
high-quality image filters can be obtained. Moreover, we show
that this approach in combination with the evolution strategy
exhibits a very good performance which allows designing
filters in very short time even on a common PC.

Authorized licensed use limited to: Brno University of Technology. Downloaded on September 08,2022 at 16:29:49 UTC from IEEE Xplore. Restrictions apply.

Appendix VIII

136

II. EVOLUTION OF CELLULAR AUTOMATA USING
CONDITIONALLY MATCHING RULES

Conventionally, the local transition function of a CA is rep-
resented by a table specifying transition rules for any possible
combination of states in the cellular neighbourhood. For the
concept of 2D CA, introduced in Section I-C, each row of the
table contains a rule of the form sN sW sC sE sS → snewC ,
where sx is the state of a cell at position x in cellular
neighbourhood and snewC is a new state of the cell in the
middle of the neighbourhood for the next time step. However,
the size of the table grows exponentially depending on the
number of cell states and the size of the cellular neighbourhood
which makes the representation and design of complex CA
very difficult. Although a subset of rules could be specified to
represent a transition function, the problem is how to identify
the rules suitable for a given task. In this paper we deal with
256 cell states for which there are in total 2565 possible rules.
Designing a complete transition function in the form of the
table for such CA is practically impossible because because its
storage would require 1 TB of memory (considering a single
rule to be encoded as the next state value represented as 1
byte).

A. Conditionally Matching rules (CMRs)

Conditionally matching rules can be considered as an
advanced representation method for transition functions of
complex CA. The first extensive study of this concept and
its suitability for the evolutionary design of complex CA was
proposed in [37] and recently in [38]. The main idea of a CMR
is, in general, to represent using a single conditional rule more
than one conventional table rules. This way the size of the
transition function structure can be reduced substantially.

For the purposes of this paper, a conditional rule (CMR)
for a 2D CA working with 5-cell neighbourhood is defined as
(cndN sN) (cndW sW) (cndC sC) (cndE sE) (cndS sS) →
snewC , where cndx denote a condition operator and sx represent
a state value. Each CMR thus consists of pairs: (a condition
and a state value), that corresponds to (is evaluated with
respect to) a specific cell in cellular neighbourhood, and a
new state value. For the experiments presented in this paper,
the following conditions are considered: = 0, �= 0, ≤ s, ≥ s,
where s denotes an arbitrary state value from range 0 to 255.
This means that in case of conditions = and �= the cell states
are always evaluated against state 0 and conditions ≤ and ≥
allows evaluating against any given state value. This set of
conditions resulted from our long-term experimentation with
cellular automata and its suitability was proven in several
studies (e.g. recently [37], [38], [39]). A finite sequence of
CMRs represents a transition function for a CA.

For example, consider a conditional rule (�= 0)(≥ 2)(=
0)(≥ 2)(≥ 1) → 2 and let cN , cW , cC , cE , cS be cells in
states 2, 3, 0, 3, 3 respectively. The new state of cC will be
determined by evaluating the CMR-based transition function
as follows. The CMRs are evaluated sequentially until a rule
is found whose all conditions are true with respect to the cell
states in the given neighbourhood. Consider the evaluation

of the aforementioned conditional rule according to which
cN �= 0 is true because cN = 2, cW ≥ 2 is also true since
3 ≥ 2, cC = 0 which satisfies the third condition and the
last two conditions hold too because both cE and cS possess
state 3. All conditions of the CMR were evaluated as true,
therefore this CMR is said to match and will be applied to
determine the next state of cC (i.e. snewC = 2 according to
the value on the right side of the CMR). If no matching
rule in the sequence is found, then the cell keeps its current
state. Note that the CMR-based transition functions can be
transformed to the appropriate table rules which preserves the
original concept of CAs as described in [37]. However, for the
CA working with 256 cell states, that we deal in this paper,
the table representation is intractable because of enormous
memory requirements as mentioned above.

B. Evolutionary design of CMR-based cellular automata for
image filtering

In this section the representation, fitness function and evo-
lutionary algorithm will be described.

A sequence of CMRs is represented by an array of integers
of a fixed size. Since 5-cell neighbourhood is considered, each
CMR consists of 5 pairs of integers (one integer encodes the
condition and the other the state value) and a single integer
encoding the new state value. Hence in total a single CMR
is composed of 5 × 2 + 1 = 11 integers. Note that for the
set of conditions described in Section II-A, the following
integers are considered for their encoding: 0 for =, 1 for �=,
2 for ≤ and 3 for ≥. Let G denote the number of CMRs
in a sequence of CMRs. Then each chromosome, encoding
a transition function, consists of G × (5 × 2 + 1) integers.
The goal of the evolution is to find such a transition function
according to which the CA behaviour satisfies (or optimises)
given criteria.

For the purposes of image filter design, where Ifil denotes
the corrupted image (i.e. the image to be filtered) and Iref is
its reference (uncorrupted) version, both of size K×L pixels,
mean square error (MSE) was chosen as the fitness metric.
The aim of the evolution is to minimize this criterion, i.e. the
lower the MSE, the better the filter. MSE can be expressed
as follows:

MSE =
1

KL

K∑

i=1

L∑

j=1

(Ifil[i, j]− Iref [i, j])
2. (1)

In order to evaluate a candidate solution, represented by a
CMR-based transition function for a CA, the K × L-cell
CA is initialised by the values of pixels of Ifil. Then three1

steps of the CA are performed using the CMRs encoded in
the chromosome. The current cell states are evaluated with

1Note this value was determined experimentally and is primarily based on
the fact that only 5 pixels enter the filter, only a single transition function
is considered, hence some intermediate steps may be required in order to
eliminate (a substantial part of) the noise from the filtered image; this fully
corresponds to the basic concept of uniform CA which allows us to more
deeply investigate advanced techniques in the future.

Authorized licensed use limited to: Brno University of Technology. Downloaded on September 08,2022 at 16:29:49 UTC from IEEE Xplore. Restrictions apply.

Appendix VIII

137

respect to Iref according to (1). The MSE is assigned to the
chromosome as fitness value.

For the evolution of CMR-based transition functions, we
applied a variant of (μ, λ)-Evolution Strategy algorithm, where
μ is the size of parent population and λ is the number of
offspring generated from the parent population (λ > μ). The
evolution works as follows. The initial parent population is
generated randomly. The selection for reproduction, introduced
for the purposes of this paper, is performed by a “round
robin” scheme as follows. The parent chromosomes are se-
lected deterministically one by one, each of which undergoes
mutation of j integers, where j is the index of the parent
in the population (from 1 to μ). The mutation is performed
by randomly selecting j integers of the chromosome and
replacing them by new valid randomly generated values. Since
λ > μ, after selecting the last parent the selection continues
again from the first parent (round robin) until λ offspring are
created. Then the offspring are evaluated by the fitness, sorted
from the best to worst according to their fitness values and
the best μ offspring replaces the original parent population.
Moreover, the best-so-far solution is recorded during the
evolution and replaced in case of any better one is detected.
Note that the mutation of j integers, based on the index j
of the parent in the (sorted) population, ensures that the best
individual undergoes the smallest modification whilst in case
of worse individuals more changes are allowed. The evolution
repeats until a maximum number of generations are performed,
then the best-so-far individual is returned as a result.

III. EXPERIMENTAL RESULTS

In this paper we consider the evolutionary design of image
filters for filtering Salt-and-Pepper noise as a case study. Note
that Salt-and-Pepper noise causes corruption of some pixels
of the image by the maximal or minimal value of the pixel
value scale. In particular, in case of 8-bit grayscale images,
each corrupted pixel possesses either value 0 (i.e. black) or
255 (i.e. white). The intensity of the noise will be represented
in percentages. For example, 10% noise of 200 × 200-pixel
image means that 400 randomly selected pixels out of the
total 40,000 pixels of the image are corrupted.

A. Objectives of experiments

The experiments conducted in this paper were focused on
the following objectives. To demonstrate that the proposed
variant of ES in combination with the CMR encoding allows
an efficient evolution of high-quality filters with reduced
resources of the CA. In particular we show that the evolution is
able to provide in a short time image filters that can eliminate
(or substantially reduce) Salt-and-Pepper noise of various
intensities. Despite the fact that many currently known filters
usually work with filtering windows of 3×3 or 5×5 pixels and
the filtering algorithms are implemented as complex functions
over 8-bit values (e.g. see [30]), in this paper we consider only
5-cell neighbourhood of the 2D CA as the inputs of the filter.
Moreover, the training of the filter is performed using a single
image which allows keeping a reasonable computational effort.

As evident we provide significantly less resources to the design
process and claim that even so the ES can provide solutions
of high quality. The primary goal here is not to overcome
the best filters known so far but to propose an alternative
scheme (i.e. filtering by means of ordinary cellular automata)
and demonstrate its usability.

B. Experimental setup

A wider analysis of ES-based evolution of cellular automata
was published in [39] where we identified that the (μ, λ)-ES
exhibits a good ability to avoid getting stuck in local optima
in the task of designing complex CA. From this analysis
we also identified a suitable ES setup for the experiments
presented in this paper which is μ = 4, λ = 8. For the image
filter design, the maximum number of generations will be set
to 100,000. Figure 1 shows the image utilised for training
(i.e. fitness evaluation of candidate solutions). It is a picture
of “Lena”2 that is often considered for evaluating image
processing experiments. The training image was corrupted
by 10% noise. Several sets of experiments were conducted
with various numbers of CMRs (in particular, we consider 5,
10, 20 and 30 CMRs the transition functions consist of). For
each set of experiments 96 independent evolutionary runs were
executed on the Salomon cluster3 equipped by 2 x Intel Xeon
E5-2680v3, 2.5 GHz, 12 cores per each computational node.

(a) corrupted by 10% noise (b) reference image

Fig. 1: Training image used for the evolution of image filters.

C. Statistics of evolutionary process

For each considered number of CMRs (5, 10, 20 and 30)
96 filters were obtained from each independent evolutionary
run. In order to evaluate the performance of the evolutionary
process, we observed the improvements of fitness of the best
solution during each run. Figure 3 shows the progress for
each run in each set of experiments considering the maximum
100,000 generations. As evident, in most cases there is a
rapid improvement of the best fitness during the first 2000
generations and further improvements can be achieved during
the rest of the generations for some runs. Therefore, if a filter

2https://kasunkosala.wordpress.com/computer-vision-and-digital-image-
processing/

3see https://docs.it4i.cz/salomon/hardware-overview/

Authorized licensed use limited to: Brno University of Technology. Downloaded on September 08,2022 at 16:29:49 UTC from IEEE Xplore. Restrictions apply.

Appendix VIII

138

(a) experiments with 5 CMRs (b) experiments with 10 CMRs (c) experiments with 20 CMRs (d) experiments with 30 CMRs

Fig. 3: Progress of improving the best solution during the evolution of independent runs. Note that at the beginngin the fitness
was around 6000 but the scale of the limit of the vertical axis was set lower due to illustration purposes. As can be seen, a
rapid improvements can be observed in most runs which allows designing (prototype) filters in a couple of minutes).

Fig. 2: The evolved CMR representation of the F89 filter

needed to be designed very quickly, it would be possible
to shorten the evolution time substantially by reducing the
number of generations. We measured that such runs can be
performed on a common PC or modern laptop in order to
obtain a filter of average quality within several tens of seconds
in average (or up to a few minutes for larger numbers of
CMRs). This is particularly true for experiments with 10 and
20 CMRs in which we identified the best filters out of all
experiments. This aspect represents one of the contributions of
this paper – a possibility to obtain filters of a reasonable quality
in very short time. Note that in [30] the average computation
time on Xeon X5670, 2.93 GHz using an optimised CGP
implementation and 250,000 generations was about 4 hours.

D. Evaluation of evolved filters

In order to evaluate the evolved filters, the Peak Signal-to-
Noise Ratio (PSNR) was calculated for various images and
noise intensities according to (2) which represents a common
metric for the evaluation of image quality (the higher the
PSNR, the better the filter and image quality).

PSNR = 10 log10

2552

1
KL

∑K
i=1

∑L
j=1(Ifil[i, j]− Iref [i, j])2

(2)

After training the filters during evolution we used a set of 24
test images from Vašı́ček’s database4 corrupted by the noise
from 10% to 70% for the evaluation of obtained results. Figure
4 shows analysis of filters obtained from selected evolutionary
runs in each set of experiments. The PSNRs exhibit similar
(but not exactly the same) values for all sets of experiments
in most cases, i.e. we obtained many various filters of similar
(average) quality. As may be seen in Fig. 4c and 4d, for 30
CMRs in chromosomes there are several results (specifically
F49, F51, F73, F74) that do not fit the usual PSNR course.
In these cases, the evolution got stuck and was not able to
further improve a suboptimal solution. Such filters do not work
as expected and usually destroy the filtered image. The best
filters achieved PSNR about value 30 for 10% noise which
decreases to 12–15 in most cases for the highest noise intensity
considered (70%).

In order to compare the results obtained in this paper with
other solutions (both conventionally designed and evolved),
the appropriate PSNRs are presented in Fig. 4e and 4f [30].
A significant difference of these solutions from our filters is
that they all work with filtering windows 3 × 3 or 5 × 5
pixels and use advanced operations which means that their
implementations are more complex. On the other hand, the
proposed method using CMRs requires only basic relational
operators. Despite this fact, the average PSNRs of the the
conventional (median) filters from [30] are comparable to
(some of them are even worse than) the values of our solutions.
This is particularly true for Fig. 4e, where a single-step
filtering is considered. Although the best evolved filters in
[30] exhibit better PSNRs (between 30 and 35), the difference
against the proposed results is not very high (the better filtering
quality is expectable because of more resources used for
their implementation). The image quality of those filters may
further be improved by applying multi-step approach (similar
to the CA development) as shown in Fig. 4f. The observations
obtained from this comparison indicate that similar filtering
quality can be obtained using the simplest concept of 2D
cellular automata and with less computational effort which
was the objective of this paper.

4https://www.fit.vutbr.cz/˜vasicek/imagedb/

Authorized licensed use limited to: Brno University of Technology. Downloaded on September 08,2022 at 16:29:49 UTC from IEEE Xplore. Restrictions apply.

Appendix VIII

139

(a) runs 81–88 using 20 CMRs (b) runs 89–96 using 20 CMRs

(c) runs 49–56 using 30 CMRs (d) runs 73–80 using 30 CMRs

(e) single-step filtering from [30] (f) multi-step filtering from [30]

Fig. 4: Analysis of filters from selected evolutionary runs. The filtering quality is expressed as average PSNR val-
ues evaluated for each filter and noise intensity from 10% to 70% using 24 test images from Vašı́ček’s database
(https://www.fit.vutbr.cz/˜vasicek/imagedb/). In all cases (a-d) the PSNRs were evaluated after 3 CA steps. Figures (e, f)
are extracted from [30] for comparison purposes – the “sp” filters were evolved, the rest is conventionally designed.

Although the PSNR allows us to quantify the filter quality,
it can not substitute visual evaluation of filtered images. For
this purpose we chose one of promising filters and used it
for filtering several images. Specifically, filter F89 will be
considered from Fig. 4b whose PSNR analysis indicates its
ability to filter higher noise intensities. Its CMR representation
discovered by the evolution is shown in Figure 2. Figure 5
demonstrates filtering of 10% noise of the training image in
3 CA steps. Since this image was used to evaluate candidate
filters during evolution, it is no surprise that the filter provides
very good output quality. Although some pixels evidently
remained corrupted, their values are closer to those of the

reference image. However, it is important to remember that
the filter works with 5 input pixels only and the result was
evaluated after 3 CA steps. We verified that similar output
quality can be observed on other images corrupted by 10%
noise. A more interesting evaluation of the proposed filter is
shown in Fig. 6 where 30% noise is considered. Note that
neither such high noise intensity nor this image was seen by
the filter during evolution. As can be observed, the filtered
image also exhibits a very reasonable quality with only a few
remaining noisy pixels. Again, 3 CA steps were sufficient to
achieve this result. In order to demonstrate good features of
the filter, it is important to determine whether it can generalise

Authorized licensed use limited to: Brno University of Technology. Downloaded on September 08,2022 at 16:29:49 UTC from IEEE Xplore. Restrictions apply.

Appendix VIII

140

(a) corrupted image (b) 1st step (c) 2nd step (d) 3rd step

Fig. 5: Demonstration of filtering 10% noise from the training image by one of the best evolved filters in 3 CA steps.

(a) corrupted image (b) 1st step (c) 2nd step (d) 3rd step

Fig. 6: Demonstration of filtering 30% noise by one of the best evolved filters in 3 CA steps.

(i.e. is able to filter other images than that on which it was
trained, possibly with higher noise intensity). For this purpose
the “selfie” of the author of this paper corrupted by 50% noise
was chosen that exhibits a significantly different shape than
both the training image and that evaluated in Fig. 6. In this
case the filtering process was performed in 5 steps and the
result is shown in Fig. 7. As can be seen, it is very hard to
retrieve some details from the corrupted image (Fig. 7a). Clear
shapes start to appear already after 2nd step (Fig 7c) and the
best result (not changing significantly with further CA steps)
can be achieved after 4th and 5th step – see Fig 7e and 7f
respectively. One may conclude that, given the filter setup and
noise intensity, the filter exhibits a reasonable output quality5.

IV. CONCLUSIONS

An evolutionary method was presented for the design of
image filters using two-dimensional uniform cellular automata.
A technique called Conditionally Matching Rules was applied
to represent transition functions for cellular automata working
with 256 cell states. This approach allowed reducing the length
of chromosomes for the evolution substantially which was
a need for such high number of states since the traditional
table-based encoding would require enormous memory space.
The problem of removing Salt-and-Pepper noise from 8-bit
grayscale images was considered as a case study. A cellular
automaton was directly initialised by the values of pixels of
a corrupted image and the evolution was applied to design a

5the uncorrupted version of this image can be viewed at
https://www.fit.vut.cz/person/bidlom/

suitable transition function that is able to eliminate the noise
from the image during ordinary development of the cellular
automaton. We showed that high-quality filters can be obtained
using only 5-cell neighbourhood of the cellular automaton
and the best results provide a good output quality which
is comparable with several existing solutions that require
more resources. Moreover, the proposed evolutionary method
demonstrated a high performance allowing us to design filters
in very short time on a common PC.

The proposed method represents the simplest approach of
filtering images by means of cellular automata in which the
cell states are directly represented by the values of pixels.
Considering the obtained results, there may be a possibility to
further improve the concept. For example, Moore’s 3× 3-cell
cellular neighbourhood can be used, an advanced selection
of particular (subset of) CMRs to determined the next state
may be considered or various sequentially applied transition
functions might be performed. Moreover, further research will
also be focused on more complex noise scenarios (e.g. random
noise or impulse burst noise).

REFERENCES

[1] E. R. Dougherty and J. T. Astola, Eds., Nonlinear Filters for Image
Processing, ser. SPIE/IEEE Series on Imaging Science & Engineering.
SPIE/IEEE, 1999.

[2] M. O. Ahmad and D. Sundararajan, “A fast algorithm for two-
dimensional median filtering,” IEEE Transactions on Circuits and Sys-
tems, vol. 34, pp. 1364–1374, 1987.

[3] Z. Vasicek and L. Sekanina, “Novel hardware implementation of adap-
tive median filters,” in Proc. of 2008 IEEE Design and Diagnostics of

Authorized licensed use limited to: Brno University of Technology. Downloaded on September 08,2022 at 16:29:49 UTC from IEEE Xplore. Restrictions apply.

Appendix VIII

141

(a) corrupted image (b) 1st step (c) 2nd step (d) 3rd step (e) 4th step (f) 5th step

Fig. 7: Demonstration of filtering 50% noise by one of the best evolved filters in 5 CA steps.

Electronic Circuits and Systems Workshop. IEEE Computer Society,
2008, pp. 110–115.

[4] S. Ko and Y. Lee, “Center weighted median filters and their applications
to image enhancement,” IEEE Transactions on Circuits and Systems,
vol. 15, pp. 984–993, 1991.

[5] H. Hwang and R. Haddad, “Adaptive median filters: new algorithms
and results,” IEEE Transactions on Image Processing, vol. 4, no. 4, pp.
499–502, April 1995.

[6] Y. Dong, “A New Directional Weighted Median Filter for Removal
of Random-Valued Impulse Noise,” IEEE Signal Processing Letters,
vol. 14, no. 3, pp. 193–196, 2007.

[7] V. Crnojevic, V. Senk, and Z. Trpovski, “Advanced impulse detection
based on pixel-wise MAD,” IEEE Signal Processing Letters, vol. 11,
no. 7, pp. 589–592, 2004.

[8] P. Koivisto, H. Huttunen, and P. Kuosmanen, “Training-based optimiza-
tion of soft morphological filters,” Journal of Electronic Imaging, vol. 5,
no. 3, pp. 300–322, 1996.

[9] P. Koivisto, J. Astola, V. Lukin, V. Melnik, and O. Tsymbal, “Removing
Impulse Bursts from Images by Training-Based Filtering,” EURASIP
Journal on Applied Signal Processing, vol. 2003, no. 3, pp. 223–237,
2003.

[10] M. Nikolova, “A variational approach to remove outliers and impulse
noise,” J. Math. Imaging Vis., vol. 20, no. 1-2, pp. 99–120, 2004.

[11] J. Zhu, S. Wang, X. Wu, and K. F.-L. Chung, “A novel adaptive svr
based filter asbf for image restoration,” Soft Comput., vol. 10, no. 8, pp.
665–672, 2006.

[12] A. E. Eiben and J. E. Smith, Introduction to Evolutionary Computing.
Berlin Heidelberg: Springer-Verlag, 2015.

[13] J. D. Lohn and G. S. Hornby, “Evolvable hardware: Using evolutionary
computation to design and optimize hardware systems,” IEEE Compu-
tational Intelligence Magazine, vol. 1, no. 1, pp. 19–27, 2006.

[14] J. Dumoulin, J. Foster, J. Frenzel, and S. McGrew, “Special Purpose Im-
age Convolution with Evolvable Hardware,” in Real-World Applications
of Evolutionary Computing – Proc. of the 2nd Workshop on Evolutionary
Computation in Image Analysis and Signal Processing EvoIASP’00, ser.
LNCS, vol. 1803. Springer-Verlag, 2000, pp. 1–11.

[15] S. Marshall, N. Harvey, and D. Greenhalgh, “Design of morphological
filters using genetic algorithms,” in Tenth European Signal Processing
Conference. EURASIP, 2000, pp. 389–392.

[16] R. Porter, “Evolution on FPGAs for Feature Extraction,” Ph.D. disserta-
tion, Queensland University of Technology, Brisbane, Australia, 2001.

[17] J. F. Miller, Cartesian Genetic Programming. Springer-Verlag, 2011.
[18] L. Sekanina, L. S. Harding, W. Banzhaf, and T. Kowaliw, Image

Processing and CGP, ser. Natural Computing Series. Springer Verlag,
2011, pp. 181–215.

[19] L. Sekanina, “Image filter design with evolvable hardware,” in Appli-
cations of Evolutionary Computing, ser. LNCS, vol. 2279. Springer
Verlag, 2002, pp. 255–266.

[20] A. Burian and J. Takala, “Evolved Gate Arrays for Image Restoration,”
in Proc. of 2004 Congress on Evolutionary Computing CEC’04. IEEE
Publ. Press, 2004, pp. 1185–1192.

[21] Y. Zhang, S. Smith, and A. Tyrrell, “Intrinsic Evolvable Hardware in
Digital Filter Design,” in Applications of Evolutionary Computing, ser.
LNCS, vol. 3005. Quimbra, Portugal: Springer, 2004, pp. 389–398.

[22] Z. Vasicek and L. Sekanina, “Reducing the area on a chip using a bank
of evolved filters,” in Evolvable Systems: From Biology to Hardware,
ser. LNCS, vol. 4684. Springer Verlag, 2007, pp. 222–232.

[23] T. Sun and Y. Neuvo, “Detail-preserving median based filters in image
processing,” Pattern Recognition Letters, vol. 16, pp. 341–347, 1994.

[24] Z. Vasicek, M. Bidlo, L. Sekanina, and K. Glette, “Evolutionary design
of efficient and robust switching image filters,” in Proceedings of the
2011 NASA/ESA Conference on Adaptive Hardware and Systems. IEEE
Computer Society, 2011, pp. 192–199.

[25] Z. Bao, F. Wang, X. Zhao, and T. Watanabe, “Fault-tolerant image filter
design using ga,” in TENCON 2010 - 2010 IEEE Region 10 Conference.
IEEE, 2010, pp. 897–902.

[26] Z. Vasicek and L. Sekanina, “Hardware accelerator of cartesian genetic
programming with multiple fitness units,” Computing and Informatics,
vol. 29, no. 7, pp. 1359–1371, 2010.

[27] J. Wang, Q. S. Chen, and C. H. Lee, “Design and implementation of a
virtual reconfigurable architecture for different applications of intrinsic
evolvable hardware,” IET computers and digital techniques, vol. 2, no. 5,
pp. 386–400, 2008.

[28] S. Harding, “Evolution of image filters on graphics processor units
using cartesian genetic programming,” in 2008 IEEE World Congress
on Computational Intelligence, J. Wang, Ed., IEEE Computational
Intelligence Society. Hong Kong: IEEE Press, 1-6 Jun. 2008.

[29] Z. Vasicek and K. Slany, “Efficient phenotype evaluation in cartesian
genetic programming,” in Proc. of the 15th European Conference on
Genetic Programming, ser. LNCS 7244. Springer, 2012, pp. 266–278.

[30] Z. Vašı́ček, M. Bidlo, and L. Sekanina, “Evolution of efficient real-time
non-linear image filters for fpgas,” Soft Computing, vol. 17, no. 11, pp.
2163–2180, 2013.

[31] J. von Neumann, The Theory of Self-Reproducing Automata. A. W.
Burks (ed.), University of Illinois Press, 1966.

[32] P. Rosin, A. Adamatzky, and X. Sun, Cellular Automata in Image
Processing and Geometry. Springer, 2014.

[33] P. L. Rosin, “Training cellular automata for image processing,” IEEE
Trans. on Image Processing, vol. 15, no. 7, pp. 2076–2087, July 2006.

[34] P. J. Selvapeter and Wim Hordijk, “Cellular automata for image noise
filtering,” in 2009 World Congress on Nature Biologically Inspired
Computing (NaBIC), Dec 2009, pp. 193–197.

[35] L. Diosan, A. Andreica, and A. Enescu, “The use of simple cellular
automata in image processing,” Studia Universitatis Babe-Bolyai Infor-
matica, vol. 62, pp. 5–14, 06 2017.

[36] P. Kundra, H. M. Singh, V. Kumar, and P. Juneja, “Digital image edge
detection using cellular automata,” International Journal of Innovative
Technology and Exploring Engineering (IJITEE), vol. 8, no. 7S2, pp.
332–337, 2019.

[37] M. Bidlo, “On routine evolution of complex cellular automata,” IEEE
Trans. on Evolutionary Computation, vol. 20, no. 5, pp. 742–754, 2016.

[38] ——, Advances in the Evolution of Complex Cellular Automata, ser.
International Joint Conference, IJCCI 2016 Porto, Portugal, November
9-11, 2016 Revised Selected Papers. Springer International Publishing,
2019, pp. 123–146.

[39] ——, “Comparison of evolutionary development of cellular automata
using various representations,” MENDEL Soft Computing Journal, vol.
2019, no. 1, pp. 95–102, 2019.

Authorized licensed use limited to: Brno University of Technology. Downloaded on September 08,2022 at 16:29:49 UTC from IEEE Xplore. Restrictions apply.

Appendix VIII

142

	Introduction
	Motivation
	Goals
	Thesis organization

	Overview of CA Literature and Research Areas
	Identification and Synthesis of Transition Rules
	Theoretical Aspects of CA
	Cryptography and Security
	Modeling and Simulation with CA
	Modeling Crowds and Traffic Systems
	Dynamics, Control and Synchronization
	CA for Image Processing
	Asynchronous CA

	Evolutionary Approach to CA
	Evolution of binary CA
	Evolution of Game of Life Structures
	Evolution of multi-state CA
	Recent studies of ECA
	Intention of This Work

	Advanced Evolution of Cellular Automata
	Instruction-Based Approach
	Introduction of Conditionally Matching Rules
	Evolving Computations in Binary 2D CA
	Evolving Generic Computation in Multi-State CA
	Evolution of Replicating Structures
	Pattern Formation in CA Using CMRs
	Impact of the Rule Encoding on the CA Behavior
	Application of CMRs on Image Filtering

	Conclusion
	Contributions
	Main Outcomes
	Future Work

	Bibliography
	Appendicies – Paper Reprints
	Evolution of Cellular Automata Using Instruction-Based Approach
	Evolution of Cellular Automata with Conditionally Matching Rules
	Evolving Multiplication as Emergent Behavior in Cellular Automata Using Conditionally Matching Rules
	On Routine Evolution of Complex Cellular Automata
	Evolution of Cellular Automata-Based Replicating Structures Exhibiting Unconventional Features
	Advances in the Evolution of Complex Cellular Automata
	Evolution of Cellular Automata Development Using Various Representations
	Evolution of Cellular Automata with Conditionally Matching Rules for Image Filtering

